Recency Adapted Next Basket
Recommendation

by

Hanna Hurenkamp

501224
3th of July

ERrRASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Supervisor: Luuk van Maasakkers
Second assessor: Jeffrey Durieux

Abstract

Recommendation methods are in high demand with the rapid development of the e-
commerce industry. The better predictions one is able to make, the more pleasant the
shopping process for the customer, and the better the expectations for the producers. In
this paper, we analyse recommendation methods for next basket predictions and especially
the incorporation of the aspect of recency. We try to answer the question on how to include
the aspect of time in a general applicable way in next basket recommendation.

We investigate and reproduce the prediction methods as proposed by Faggioli et al.
(2020). They use the principle of collaborative filtering (CF) and transform existing methods
to recency-aware methods, which only consider a subset of the most recent orders. These
recency-aware methods do create more accurate predictions than using the complete order
history of an user, but do also discard a substantial part of the available data. Therefore,
we propose several time weight methods. To all orders a time weight is assigned; to recent
orders a greater time weight is assigned than to orders made long ago. The time weights are
based on either a exponential decay function or a logistic decay function. We find that for
small recommendation rankings, the time weight methods perform best for the user-based
CF method using a exponential decay function. For a complete recommendation of the whole
next basket, the recency-aware user-based CF method performs best.

1 Introduction

E-commerce is ever evolving and more importantly increasing in both users and suppliers. Over
the past few years supermarkets have joined this industry and are getting a lot of competition
from the so called speed delivery grocery services. Therefore, optimising their e-commerce
services is of high importance. If one would be able to construct an effective and accurate
recommendation system, it would be highly beneficial to both supermarket services and to the
customers of these stores. Supermarket services will be able to predict the shopping behaviour of
their customers and use this in decision-making processes in for instance advertising or inventory
systems. For customers, an accurate recommendation system will make the online shopping
experience faster, easier and more pleasant.

In this research we will build on one specific article called recency-aware Collaborative Filter-
ing for Next Basket Recommendation by Faggioli et al. (2020). They propose a recommendation
framework that is built on collaborative filtering (CF) and relies mainly on the principles of pop-
ularity, similarity and recency. This paper consists partly of a reproduction of this article and
therefore will firstly implement their methods and attempt to obtain similar results. The other
part of this paper consists of an extension on their research considering the aspect of recency in
the recommendation framework. Faggioli et al. (2020) constructed a model in which only a spec-
ified number of recent baskets of customers were taken into consideration. This method turned
out to make better predictions compared to using the complete shopping history of consumers.
However, there are two main issues with this method which we will try to solve. Firstly, a lot of
information is discarded since one only considers a certain number of recent baskets. Secondly,
this approach selects the same number of recent baskets for every customer; irrespective of the
customer’s shopping behaviour. The last five baskets for a weekly shopper span a very different
time compared to those of a daily shopper.

To improve on these two issues we will focus on the following question: How do we include
the aspect of time in a general applicable way in next basket recommendation? This will add to
previous research as we will combine the existing recommendation frameworks like collaborative
filtering with an optimal use of the available data. We will investigate this by firstly implementing
the proposed methods of Faggioli et al. (2020) and then investigating methods which incorporate
the aspect of time in making predictions. As we will mainly be focusing on the recency aspect
we will aim to make these methods applicable to and accurate for both frequent shoppers and
occasional shoppers.

This research therefore provides a model that will be more generally applicable and that
uses information more efficiently. Our results show that the implementation of the principle of
recency yields better prediction scores for both the recency-aware methods and the time weight
methods. The time weight methods do outperform the recency-aware methods for predicting
the complete basket of a user, but for predicting the first five or ten items they yield similar
results.

The remainder of the paper is structured as follows. Section 2 treats previous researches on
this topic and gives an overview of the theory used to construct this paper. Section 3 provides
the necessary information on the data, including data characteristics. Section 4 discusses the
methodology. Thereafter, Section 5 describes the results of our research. Section 6 states the
conclusion of this research. The lessons learned and ideas for future research in Section 7
conclude the paper.

2 Theoretical Framework

Recommendation models have been used for quite some time and are always changing and
improving. As part of the great number of possible implementations of machine learning, rec-
ommendation models aim to predict ratings a user might give to a specific item and returns

a ranking of these prediction for each user. Nowadays, more people make use of the many e-
commerce possibilities and therefore models need to be able to process more information and
preferably in shorter time. As there are more users of e-commerce services, one also needs to
adapt existing models to use the available data in an optimal way to make accurate predictions.

An often used technique in recommender systems is Collaborative Filtering (CF). This tech-
nique uses information of all users to construct recommendations for every individual user. The
main idea works in two different ways. If other users, similar to the target user, have already
purchased a certain item, then it is likely that the target user will appreciate that item as well.
Furthermore, if items are similar in some sense, then if the target user has bought one of them,
the likelihood that this user will buy the similar item increases (Aiolli, 2013). Using this infor-
mation Faggioli et al. (2020) follow a standard approach in making a ranking of the items for
each user and use this ranking to make predictions of the next move of the user.

The type of predictions that have to be made, depends on the type of user feedback. There
are numeric ratings, for instance a movie rating, which are typically composed of triples in
the form of (u,i,r); consisting of the rating value r being given by user u to item i. Another
form of feedback is called positive-only feedback, which is presented as a pair in the form (u, 1),
representing a positive interaction between user v and item 4, for instance the purchase of an
item in a shopping cart. In the case of numeric ratings, one has to make predictions for the
missing values in the user-item matrix, which is often treated as a regression task. In the
case of positive-only feedback, the user-item matrix consists of of true values for positive user
preference, and false values which either denote the dislike for an item or the unfamiliarity
with an item. The aim is to predict the true values for each user, which is more related to
classification problems Vinagre et al. (2015).

The existing collaborative filtering algorithms can roughly be divided into two main cate-
gories: memory-based and model-based CF algorithms. Model-based CF algorithms construct
a model of the information contained in the user-item matrix. In this research we focus on
memory-based CF algorithms. A priori knowledge about the behaviour of users and items is
exploited and used to make a prediction for the target consumer (Aiolli, 2013). In constructing
predictions three aspects have a key role; popularity, similarity and recency.

Among others Anderson et al. (2014) argue that the principle of popularity is of great
influence in making predictions as it is fairly plausible that if a user consumed an item many
times in the past, we could expect it to be likely to be consumed again. This expectation can be
supported by means of the power of habits and loyalty. However, another theory is that users
are variety-seeking: once they have consumed an item enough times, they prefer exploring new
things over exploiting what they already know. As said before CF uses information of all users
and based on the individual behaviour of the target user, makes predictions for this specific user.
This differs from a more general technique, in which the global popularity of an item is used to
make predictions. This global popularity denotes the popularity of the concerned item-based on
all users and does not link the target user’s individual choice history to its predictions. Faggioli
et al. (2020) therefore define the global popularity of an item and the user-wise popularity of
an item. The global popularity denotes how often an item occurs in all baskets; the user-wise
popularity denotes for each user how often an item occurs in all their baskets.

As explained before, CF can be applied in multiple ways. One can use the similarity of items
to make predictions or the similarity among users. The first approach is called item-based CF
and investigates the similarity among all products. Sarwar et al. (2001) look into different tech-
niques for computing item-item similarities namely the often used asymmetric cosine similarity,
similarity based on correlation and an adjusted cosine similarity. When analysing similar users
to predict the target user’s behaviour, it is called user-based CF. For this, Faggioli et al. (2020)
use a similar approach to determine the similarity by applying the asymmetric cosine similarity.

Faggioli et al. (2020) mainly focus on the incorporation of recency in making next basket
predictions. They note that seasonality and drifts in item’s popularity are common patterns in

grocery shopping such as Christmas products and changes in availability.

The time dimension in CF methods can be approached in different ways. Time-aware models
explicitly model time features, such as the day of the month or the hour of the day. Time-
dependent models treat ratings as a chronological sequence, implicitly trying to capture temporal
dynamics (Shi et al., 2014). For these last models, absolute timestamps in the data are not
necessary, since only the chronological order of the data is used.

Faggioli et al. (2020) construct such a time-dependent model and propose a concept of
recency-aware user-wise popularity to take these popularity drifts and time-related aspects of
this setting into account. They investigate for which recency window, which denotes how many
previous baskets of every user are taken into account, they can construct the most accurate
predictions. A drawback of this approach is that by applying a recency window over the number
of baskets, the assumption is made that the period covered by the most recent r baskets for
each user is approximately the same. This assumption is likely to be violated by many users’
histories.

Therefore we look at other methods including the aspect of time (Vinagre et al., 2015). As
noted by Ding and Li (2005) this previously explained approach can also aggravate sparsity,
since a lot of data is discarded. They therefore propose to maintain all data and to include a
time weight function and attempt to find appropriate time weights for items that ensures that
the items rated recently are able to contribute more to the prediction of the recommendation
items. In their proposed algorithm, they choose an exponential form for the time function to
achieve the goal, as the exponential time function is widely used in many applications in which
it is desirable to gradually decay the history of past behaviour as time goes by (Aggarwal et al.,
2004).

Another approach to include the time aspect is performed by Pradel et al. (2011). Where
Faggioli et al. (2020) investigates a certain number of previous baskets, Pradel et al. (2011)
selects a certain period that has passed with respect to the reference day. This method again
has the drawback of discarding possibly useful data.

A different method that does not require exact purchase dates is one proposed in Ding et al.
(2006). They propose to include the aspect of recency by comparing the last rating of an item
with the first rating. The more this first rating differs from the most previous rating, the less it
is included in the construction of the prediction for the next item. This mechanism is used for
movie ratings for which ratings are on a scale between zero and five. For binary rating scales
the idea of last score of an item differing more and less with the first score will give somewhat
less information, since the only outcomes will be zero and one.

Ultimately the aim is to make predictions of a user’s next basket. Faggioli et al. (2020) use
the similarity and popularity scores to eventually construct the predictions. To evaluate their
methods they make use of the normalized Discounted Cumulative Gain (nDCG) (Busa-Fekete
et al., 2012). This measure is a widely used evaluation metric for learning-to-rank algorithms
and gives in indication on how correctly the predicted ranking is with respect to the true ranking.
For numeric feedback another metric is also used, called the Mean Average Error (MAE), which
computes the average absolute deviation of recommendations from their true user-specified val-
ues (Ding & Li, 2005). As positive-only feedback only has true values of 0 and 1 this deviation
from the predicted value gives somewhat less information and therefore the nDCG metric is
preferred.

3 Data

We make use of the dataset Instacart (“Accessed in 2022. The Instacart Online Grocery
Shopping Dataset”, 2017), which is also used by Faggioli et al. (2020). It contains information
on almost 50,000 products and the aisle and department they are stored in. Besides that the
dataset contains information of over one million orders of over 200,000 customers concerning the

products they have ordered, the number of days since their prior order and if a certain product
has been ordered before. Also information on which day of the week and at which hour of the
day their order is made is available. The order in which products are put in one’s basket is also
known.

3.1 Data preparation and insights

To be able to process the data and to implement our methods on our devices, we take a subset of
the data. We choose to include 5% of all users and their most popular 3,000 items. As proposed
by Faggioli et al. (2020) we then perform a few pre-processing steps on the dataset. Empty
baskets because of the removal of products are discarded and after that users with less than 2
baskets are excluded from further analysis. Table 1 shows the composition of the used subset of
the Instacart dataset.

Table 1: Dataset composition

Dataset Users Items #Baskets min Baskets max Baskets avg #Baskets per User
Instacart 206209 49685 3346083 3 100 16.22
Subset 10214 3000 155176 3 100 15.19

Furthermore, we create a new variable called production time, which denotes the time from the
last purchase to the considered purchase; the number of days that have passed since a ’'rating’
for an item was produced (Ding & Li, 2005). Since the Instacart dataset does not provide
exact data, every user has its own timeline. At ¢t = 0 the last purchase takes place, and at for
the other purchases the value of ¢ depends on their individual production time.

Figure 1: Data insights

Orders distribution in time

Most Popular Products

Banana

Bag of Organic Bananas
Organic Strawberries
Organic Baby Spinach
Organic Hass Avocado
Organic Avocado
Strawberries

Large Lemon

Organic Whole Milk
Limes

Organic Raspberries fresh fruits
Organic Yellow Onion
Organic Garlic
Organic Zucchini
Cucumber Kirby

Frequency
product

fresh vegetables
packaged vegetables fruits
milk

o 5000 10000 15000 20000
Times bought

0 50 100 150 200 250 300 350
Production Time [days) (b) Most Popular Products

(a) Orders Distribution in Time
We see in Figure la that the time span of order history of users is decreasing and that more
orders are made recently before the last purchase compared to a year before the purchase. In

Figure 1b we see that the most popular products are often found in a few aisles; namely the
fresh fruit and vegetables isles, or aisles offering dairy products.

4 Methodology

We will briefly explain the methods of Faggioli et al. (2020), as we reproduce these in the first
place. Thereafter, we elaborate on our own proposed methodology.

Let U be the set of users of cardinality n, and let Z be the set of items of cardinality m. For
each user u, we consider an ordered set of transactions by where ¢ indicates the ordinal position
of the grocery shopping, with b} being the first basket and bf “ the last for user u. We can define
B, = {b}|t € 1,..., By} as the set of transactions of a specific user u. We also define the set of
baskets of a user u containing a specific item i as B, = {b%|b¥ € B, Ai € b¥} C By, |B,| = BL.

4.1 Baseline Models

Faggioli et al. (2020) use four recommendation models based on the following aspects: global
popularity, user-wise popularity, item-based collaborative filtering, user-based collaborative fil-
tering. For the last three models they investigate the improvement when incorporating their
proposed method for including the aspect of recency.

4.1.1 Global Popularity (Gpop)

The global popularity of an item, which is, by definition, independent from a single user, is
defined as the following: '
Zueu BIZL

: (1)
Zueu BU
This is the most simplistic method in which no information on individual users is used or
similarity in any form. Therefore it functions as benchmark model.

T —

4.1.2 User-wise Popularity (UWPop)

The user-wise popularity is the popularity per item computes for each user the user-wise pop-
ularity of each item. It is computed by dividing the number of times an item has been bought
by the target user by the total number of purchases of this user and is defined as follows:

Bi
u

Based on these values the recommendation for the next basket can be composed. Here, the
principle of recency-aware user popularity is introduced. Here we only consider the last r baskets
of a user in constructing the user-wise popularity. It is defined as follows:

. Zt:u[Bu—r]Jr ||/L € b?”

u
Q@
T min(r, By,)

)

: 3)

where r is the size of the recency window, ||z|| is the indicator function which returns 1 if the
predicate x is true, 0 otherwise, and [z]+ indicates the maximum between z and 0. Clearly, if
r > B, then m'@Qr = 7;'. We refer to the recency-aware user popularity as UWPop@r.

4.1.3 Item Popularity-based CF (IB-CF)

The Item Popularity-based CF method aims at recommending baskets that contain popular
items similar to the ones of the target user. The notion of similarity is not based on inherent
item similarity in this context, but on the reoccurence of certain combinations of products. For
instance, a combination of biological soap and biological strawberries; the products themselves
inherently differ, but they share a common characteristic. This same idea can be found for other
features, like low budget, gluten-free and so on. This information can be used to determine
which products are similar to those bought by the user and to recommend these. The similarity
between product ¢ and j is based on the number of times an order contains the two products

relative to the total amount of orders which contain one of these products. It is constructed in
the following way:
. |B; N B;| e g ot
S\%,7) = e isarm e - Plty) P) 4
(:9) = (g i = P)P(Gl) (4)
where B; denotes the set of transactions (i.e., baskets) in which the item i appears and 0 < o < 1
is a trade-off parameter which balances the importance of the probabilities. The more often two
products are bought together, the higher their similarity score.
This similarity is used in forming the predictions for the next baskets, which are computed
in the following way:
F = s(i,)}, (5)
JEL
here g denotes the locality as presented by Aiolli (2013). It is an hyper parameter which
represents the strength we want to use in enforcing similarity. A higher value of ¢ means
that in the neighbourhood of an item we want to keep only highly similar items. For the IB-CF
based on the recency-aware user-wise popularity, we refer to IB-CF@Qr.

4.1.4 User Popularity- based CF (UB-CF)

The User Popularity-based method relies on the similarity among users. It compares users based
on their personal set of items they have bought over time. If users have a lot of items in common
when comparing their item set, their similarity score will be higher.

|Z., N Z,|

= e e (6)
|Zu || T =

w(u,v)
where Z,, denotes the item set of user u and 0 < o <1 represents the same trade-off parameter
as previously mentioned in the IB-CF method. Here the similarities are again used to construct
the predictions. As it helps to rate new items that can be of interest to the target users, since
similar users have appreciated them as well. The predictions are made in the following way:

= w(u,v)iny, (7)

veU

where the hyper parameter ¢ serves again as the locality and for which a high value means that
we are allowing only users that are really similar to the target one to contribute to the final
score. For the UB-CF based on the recency-aware user-wise popularity, we refer to UB-CF@r.

4.2 Time Weight Adapted Models

We will investigate several methods to optimise the recency aspect in making predictions. Since
the Instacart dataset does not contain specific purchase dates, but only information on the
number of days since prior order, we propose an alternative way to still make the predictions
time dependent using our constructed variable production time as explained in Section 3. We
will use the last order in the training set as individual reference date per user.

4.2.1 Time-weight model formulation

The aforementioned recency-aware methods discard a substantial part of data, since not all
orders have to be considered for small values of the hyper parameters. Therefore we also apply
the time-weight method of Ding and Li (2005). They assume that the time function they use is
a monotonic decreasing function, which reduces uniformly with time ¢ and the value of the time
weight lies in the range (0,1].

As mentioned in Section 2, Ding and Li (2005) choose an exponential form for the time
function based on previous literature. They also discuss the use of a logistic time function.

They include a factor f(t;.) in the prediction formula for each item where ¢;. represents the
number of days that have passed since the user’s rating was made (production time). The time
weight function is defined as follows:

f(t)=e, (8)
where X is the decay rate and computed by the half-life parameter Ty in the following way:
F(To) = (1/2) f(0), 9)
1
A= — 1
TO (10)

a half-life parameter denotes the time required for a quantity to reduce to half of its initial
value. In this case Ty denotes the time after which half of the weight has been distributed, and
therefore F'(Tj) can be seen as a cumulative function.

Since no exact purchase dates are available, we will use the last purchase as reference point.
We will thus consider a timeline for each user individually. We choose to also consider a logistic
time function. The function is defined as follows:

f(t) = Hei(t—to) (11)

where we use the decay rate v and £y denotes the z value of the inflection point of the function,
where the function changes of decreasingly concave down to decreasingly concave up. The larger
the value of this inflection point, the longer a large time weight is given to orders. We set this
value equal to half a year (183 days), since the data span maximally a year. These functions
enable us to assign a time weight to all purchases made and therefore do not discard any data.
For both these functions it holds that the value of the time weight reduces with time. The more
recent the data, the higher the value of the time weight that is assigned to a purchase.

Figure 2: Decay functions and corresponding time weights

Expenential Decay Function Logistic Decay Function
109 4 =10 U I —— =10
v TO=50 kT T0=50
08 =100 08 .. T0=100
1 \\
1 \\
£ ! £ .
£ 06 \ £ 06 S
z ' z
w o -
E 04 i E 04 RN
= % =
~
0.2 02 .,
0.0 R T T R 0.0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
preduction time preduction time
(a) Exponential function for different values of Ty (b) Logistic function for different values of Tj

In Figures 2a and 2b we observe the difference between the exponential and logistic function
and the values they take on for different values of T;. We see that the exponential function has
a steeper curve at the data points that are close to zero compared to data points that are far
away from zero. For the logistic function we observe that the gradient of the curve at the middle
data point is steepest.

The exponential function thus focuses more on the most recent data, whereas the logistic
function has its major decay halfway the total time passed. By investigating both functions
we can analyse which time-course applies best to the data. When analysing the influence of
the half-time parameter Ty we take into consideration that it is inversely proportional to de-
cay rates A and -y; the lower the value of Ty the higher the decay rate and the faster old data

7

decays and the more focus is laid on the recent data. Optimally we would assign a personal
decay rate to each user and to each item group (Ding & Li, 2005). A high value of T would
suit customers who are consistent in their preferences for certain items, for instance for dairy
products when a consumer buys every week a certain amount of milk and yoghurt. For items
such as pie or birthday candles, a lower value of Ty would be more suitable, since these often
are non-recurring purchases. A lower value of Ty would be more suited for users who frequently
change their preferences such that the decay rate will be higher and thus recent data will be
given more weight since their order history will not be much help in making prediction due to
their changing consuming behaviour.

We will therefore cluster consumers to allow for different values of T0. We make groups based
on two time related characteristics: the average inter order time and the variance of this inter
order time such that consumers who are very consistent in their shopping are grouped together
and consumers with a very irregular shopping visits are in another group. As done by Ding and
Li (2005) we use simple K-means clustering to divide users into different clusters. The idea of
this approach is that it divides the data into clusters such that the distance between the data
points per cluster is minimised. To minimise this distance in a fair way, we normalise both the
average inter-order time and the variance of this time. We will consider multiple values of Ty
for each cluster in order to find a value that fits the cluster best and optimises the next basket
predictions of this cluster.

Similarly to Faggioli et al. (2020) we include this time weight in the user-wise popularity
formula; in this way we can implement the time weight aspects in the user-wise popularity
predictions and the IB-CF and UB-CF predictions. This time weight aware user-wise popularity
function is defined in the following way:

S B li € b £ (tm)
By
Bu Zm:l

where ||z|| is the indicator function which returns 1 if the predicate = is true, 0 otherwise.
Furthermore, m denotes the number of the basket that is considered and t,, the production
time of this basket m. f(t,,) denotes the time weight function which either takes on exponential
form or logistic form as defined before.

TQTW = , (12)

4.3 Train test division and hyper parameter validation

As proposed by Faggioli et al. (2020) in order to build and validate the proposed methods we
split the dataset in the following sections: the training set is composed by all baskets but the
last one of all users. The validation set is composed by the last baskets of 50% of all users
randomly selected and is used to select the best hyper-parameters of the methods. The test set
is the set of the remaining 50% of the last baskets.

Since we perform different methods to incorporate the recency aspect, we have different
hyper parameters to validate. Firstly, for the recency-aware user popularity of Equation 3 the
validation of the hyper parameters has been performed while using the following set of values: for
the recency window r € {1,5, 25,100, co}; locality ¢ € {1, 5,10, 50,100, 1000}. The asymmetry
a has a larger set of validation values in main namely o € {0,0.25,0.5,0.75,1}. However, due
to limited time we fix o to be equal to 0.5.

For the time weight aware user-wise popularity of Equation 12, we optimise the value of T
e {10, 20, 50, 100, 200} based on (Ding & Li, 2005) in order to find the most accurate decay
rate A\ for the exponential decay function and v for the logistic decay function. We define the
decay rates separately to allow for potential difference. We do this validation process for each
cluster separately, to allow for different values of T0 for each cluster and thus type of consumer.

4.4 Performance measure

We use the evaluation metric as proposed by Faggioli et al. (2020), which is the Normalised
Discounted Cumulative Gain. As explained by Busa-Fekete et al. (2012) the nDCG is used in
learning to rank algorithms. The IDCG score denotes the Ideal Discounted Cumulative Gain
score, which is the optimal score a ranking is able to obtain. It gives the DCG score if all
items in the ranking are ranked correctly. Since we consider the optimal score for a certain test
basket, we consider only as many items as can fit into the test basket. To get the nDCG score we
investigate how many items are actually ranked correctly and divide this by the optimal possible
score (IDCG). The relevance denoted by R;, takes on a value 1 if item i is ranked correctly and
takes on 0 if not. Since the relevance score is divided by log(i + 1), the nDCG value increases
more for items ranked correctly at higher places in the ranking than for items ranked correctly
at the end of the ranking. The formula of the nDCG is defined in Equation 13, in which the
second fraction denotes the DCG value.

1 rel(R;y,)
D 1
nDOGOk(Ry) = IDCGQk — log(i + 1)’ (13)
where
min(k,B) 1
ID = _ 14
CGQak ; gl 1) (14)

As proposed by Faggioli et al. (2020) we fix k = 5,10, B, where B denotes the number of items
of the test basket. We observe that for k < B, the higher the nDCG score, the more accurate
the predictions that have been made. For £ > B one has to take into consideration that we
predict more items than fit into the test basket, so the chance of getting more items correctly is
increased and therefore the nDCG value will be equal or increase for larger k.

5 Results

We firstly show the reproduced results based on the methods of Faggioli et al. (2020). After
that, we look at the results obtained from the time weight adapted algorithms for different type
of time functions. For all methods we have performed hyper parameter validation beforehand.

5.1 Reproduced results
5.1.1 Hyper parameter validation

Table 3a shows the optimal hyper parameter values as a result of the hyper parameter validation.
Based on this validation process, we opt for a value of r = 5 and ¢ = 5 as these in general lead
to the most accurate predictions. The hyper parameter g represents the strength we want to
use to enforce similarity; thus a higher value of q means that only highly similar items are given
influence in the predictions. As the value of ¢ = 5 is optimal for ¢ € {1, 5,10, 50, 100, 1000}, we
see that very strict requirements on similarity do not pay off.

Figure 3b shows the effect on the nDCG scores when selecting different values of the recency
window r € {1,5,25,100,00}. It is clear that a value of = 1 results in the lowest nDCG scores.
Besides that the influence of the parameter r is seen most when switching from r =1 to r = 5.
Hereafter, increasing the value of r does not affect the nDCG value as rapidly as before. Hence,
selecting only the five last orders of a user leads to optimal performance of our models.

Figure 3: Hyper parameter validation

(a) Hyper parameter validation outcomes Parameter validation recency-aware methods

D.44
Method r q :
paz{ | o
5 5 -
UWPop@r 10 5 - 3 040
B 25 - 5 o
3
5 5 5 036
IB-CF@r 10 5 5 , WP
B 5 5 0.34 B
us
5 5 5 o 200 400 G600 BOO 1000
UB-CFa@r 10 5 5 value af
B 5 5 (b) nDCG scores for different values of Tj

5.1.2 Optimal Scores

Table 2 shows the attained nDCG scores, where the bold scores represent the highest scores.

Table 2: nDCG scores of reproduced algorithms

Algorithm nDCG@B nDCG@10 nDCGQ@5

Gpop 0.103 0.108 0.111
UWPop 0.413 0.421 0.417
IB-CF 0.386 0.423 0.421
UB-CF 0.419 0.425 0.421
UWPop@r 0.414 0.427 0.427
IB-CFa@r 0.392 0.431 0.430
UB-CF@r 0.425 0.433 0.430

We see that the best nDCG values are obtained for the UB-CF@r method. We see also for all
methods that correctly prediction the whole basket yields lower scores than for prediction five
or ten products. This has to do with the size of the test basket in the models. As explained in
Section 4.4 the IDCG@k value depends on the number of items in the test basket. Since half of
the test baskets contain less than seven items, the IDCG value for k = 10 and k& = B is often the
same. When considering the DCG factor, however, it will always remain at least the same value
when increasing k. Simply put, for larger k the chances increase that the IDCG value remains
the same, while the DCG factor stays equal/increases, which leads to higher nDCG scores. The
chances of this effect depend on the basket size of the test set and since quite some of our baskets
contain less than 10 items, we do have to take this effect into account. This means that we can
best look at the value for k = 5 and k = B, as there are few baskets with less than five items
and obviously the aforementioned bias does not present itself for k = B.

Besides that, we see that for all methods the recency-aware variants produce better prediction
scores. This indicates that we can better use the last five baskets to predict one’s next basket,
than using all previous baskets.

We also have to note that the obtained scores for the IB-CF and UB-CF method do quite
differ from the findings by Faggioli et al. (2020). We have constructed our nDCG scores for
the non recent-aware methods already with the optimal hyper parameter ¢ = 5. We think that
Faggioli et al. (2020) do not do this yet, but keep ¢ = 1, since we get similar findings for IB-CF

10

and UB-CF when setting ¢ = 1. We choose not to set ¢ = 1, since we have already investigated
that this does not give optimal results.

5.2 Time weight model results
5.2.1 Hyper parameter Validation and Clustering

For the time weight models, we firstly constructed user clusters based on the average inter
order time and the volatility of this time as explained in Section 4. Figure 4 shows the three
user clusters that are made, in which the yellow crosses represent the cluster centroids. In our
validation set, cluster 0 contains 2075 users, cluster 1 consist of 1101 users and cluster 2 has a
size of 1931 users.

10 Cluster
0
1
2

vE:}

volatility (days)
=
[=4]

=
.

02

0.0

0.0 02 04 0.6 0.8 10
average InterOrder Time (days)

Figure 4: User clusters formed by simple Kmeans method

We observe that there is a certain trend in the relation between the average inter order time
and the volatility of this time. For small inter order times the volatility is low. Then, when the
inter order time increases for the majority of the data the volatility increases as well. There are
also quite some points where the volatility decreases again for higher values of the average inter
order time. The average inter order time is the time in days between a user’s orders on average
so this would mean that there is a group of users who consistently (small volatility) do their
shoppings very frequently (small inter order time); the group in red with label 1. Part of the
turquoise group with label 0 consistently does their shoppings very sparsely. The blue group of
users and the majority of the turquoise group is the least consistent in their shoppings as can
be seen by the high volatility values.

Table 3 shows the optimal hyper parameter values as a result of the hyper parameter valida-
tion. The value for the parameter (70g, 701, 702) denotes the values of the half time parameters
for respectively user cluster 0 (green), user cluster 1 (red) and user cluster 2 (blue) for either
the exponential decay function or the logistic decay function. Figure 5 shows the effect on the
nDCG scores when selecting different values of T0.

11

Table 3: Hyper parameter validation outcomes

Method k exp(701,702,703) log(T09,T01,7T02)
5 (50, 100, 50) (50, 100, 50)
UWPop@T0 10 (20, 100, 50) (50, 100, 50)
B (50, 100, 50) (50, 100, 50)
5 (50, 100, 50) (50, 100, 50)
IB-CFQTO 10 (50, 100, 50) (50, 100, 50)
B (50, 100, 50) (50, 100, 50)
5 (50, 50, 50) (50, 100, 50)
UB-CFQTO 10 (50, 100, 100) (50, 100, 50)
B (50, 100, 50) (100, 100, 50)

Figure 5: Influence of T0 on nDCG scores per cluster

Influence of TO on nDCG scores per cluster (exponential decay) Influence of T0 on nDCG scores per cluster (logistic deca

cluster 0
cluster 1
cluster 2

cluster 0
cluster 1
cluster 2

o.48 046

0.46
0.44

0.44

nDCG value
nDCG value

042
042

0.40
0.40 [. o o ammmmme

0.38
200 b 50 75

100 125
value of TO

3 w0 TS 150 175 00 125 200

value of TO

(b) nDCG scores (UB-CF method) for logistic de-
cay function for different values of Ty

150 175

(a) nDCG scores (UB-CF method) for exponential
decay function for different values of T

Validating on Tj has shown that for almost all methods and values of k the optimal values of
(T'09,701,T02) = (50, 100, 50). The decay rate parameters A and g thus have the same value.
Furthermore, we notice that cluster 0 and cluster 2 have the same optimal half-time parameter,
50, and thus the same decay rate; A = p = 0.02. Cluster 1 has a different optimal half-time
parameter, 100, which leads to the decay rate A = pr = 0.01. As has been seen in Figure 4 cluster
1 is the group of users with a small average inter order time and a small volatility of this time. A
higher decay rate, means that more focus is laid on recent data compared to lower decay rates.
A lower decay rate would fit users who are more consistent in their shopping behaviour, which
fits the characteristics of the more consistent cluster 1.

Besides that, we observe in Figures 5a and 5b that indeed the course of the nDCG values per
clusters changes differently for increasing 70. Both for the exponential decay functions and the
logistic decay function, we note that cluster 0 and cluster 2 show a similar trend for increasing
value of T0, containing a slight peak at T'0 = 50 and decreasing from that point on. For cluster
1 we note that there is no such clear peak in the nDCG values. Moreover, we remark that the
predictions per clusters do slightly differ in performance accuracy. For both decay functions
cluster 0 obtains the most accurate predictions and cluster 1 the least. A factor of influence
could be the cluster size, since we note that in this case the larger the cluster size, the better
the predictions. We do have to note, however, that the nDCG score per cluster is averaged over
the number of users in the considered cluster, so it cannot be biased for cluster size.

12

5.2.2 Optimal Results

Table 4 shows the attained nDCG scores where the scores in bold are the highest values. The
nCDG scores are averaged over the nDCG scores per cluster, taking into account the size of the
clusters. This means that the final nDCG scores are computed as follows:

numClust

finaINDCG = Z
c=0

clustersize,

totUsers *nDCG, (15)

where clustersize denotes the number of users in the corresponding cluster and totUsers the total
number of users in the test set. nDCG,. denotes the highest nDCG score obtained by cluster c.
Table 4 shows the final nDCG scores, where the bold scores represent the highest scores.

Table 4: nDCG scores of timeWeight algorithms

TimeFunction Algorithm nDCG@B nDCG@10 nDCGQ@5

UWPopQT0 0.373 0.434 0.440
exponential IB-CFQT0 0.383 0.445 0.443
UB-CFQTO0 0.385 0.447 0.445
UWPop@QT0 0.372 0.434 0.430
logistic IB-CFQT0 0.375 0.436 0.432
UB-CFQTO0 0.377 0.438 0.434

We note that the highest nDCG scores are obtained by using the UB-CFQTO0 method. This is
similar to the recency-aware results, for which the user-based method also yielded the highest
nDCG scores. Furthermore, we observe that the use of the exponential function as decay function
results in noticeably better prediction scores compared to using a logistic decay function.

6 Conclusion

In this paper, we try to answer the main question on how to include the aspect of time in a
general applicable way in next basket recommendation. We do so by reproducing the methods
proposed by Faggioli et al. (2020), which use: global popularity, user-wise popularity, item-
based similarity and user-based similarity. They make these methods so called recency-aware
by introducing methods which only consider a certain number of the most recent orders. We
find, just as they do, that the recency-aware methods perform better than those which use the
whole order history without adaptations.

Since their recency-aware methods do discard a lot of information, we investigated time
weight methods. These methods do not discard any data and use the principle of time more
accurate with regard to the shopping behaviour of both frequent and occasional shoppers. We
considered two decay functions; the exponential and logistic decay function. We found that
the exponential decay function leads to more accurate predictions. When considering different
shapes of these functions, this finding means that it works better to distribute time weight
predominantly to recent orders, instead of a larger part of the orders. We find that the time
weight method leads to higher nDCG scores for predicting a small set of items. It does, however,
not outperform the recency-aware methods when making predictions for the whole basket.

The evaluation metric used is the nDCG metric, which measures how many items are actually
ranked correctly, divided by the optimal possible score. As explained before, for this dataset it is
most realistic to analyse the accuracy when predicting either the first five items or the complete
next basket.

13

So if one wants to have the most accurate predictions, one should use the exponential time
weight method for UB-CFQT0 with varying half-time parameters per user cluster. Then one
can predict the top five items per user most correctly, which can be useful for e-commerce if one
would like to fill user’s baskets automatically with already five products to simplify the shopping
process. If one needs predictions to support inventory choices, it would be better to use the
time-aware method for UB-CFQ@r, since it performs best for predicting complete baskets and
not only a certain top of products is considered but everything that would need to be in stock.

7 Discussion

As mentioned in the Introduction, a challenge in recommendation systems is the ability to
process large amounts of data on users and their choices. In this research, we were only able to
use around 5% of the complete dataset, which means that a lot of potentially useful information
has not been used. A device that can process more data, or a longer time span to perform
research would help, but even then the design of the similarity matrices will always be hard
considering memory issues. For further research, a different method which does not require
substantial matrices would save a lot of computation time.

Besides using a small subset of the data, we also did not make use of all provided information.
There is also information which day of the week or hour of the day an order is placed. One could
expect that if someone has been buying milk and bread every Tuesday morning and pancakes
every Friday afternoon for several months, that they will do that again next Tuesday morning
and Friday afternoon. It could thus be interesting to incorporate the information available on
these aspects of the orders.

Lastly, using a time weight function does solve the issue of discarding too much data. One
could however optimise this even more by allowing T to be user specific and product group
specific. Users have different shopping behaviours and for steady shoppers a lower decay rate
would be more suitable, while for inconsistent shoppers a higher decay rate would probably lead
to better performances. The same principle holds for product types, e.g. the decay rate for
Christmas products can be a lot higher than for milk and bread. Differentiating Ty for users and
product clusters would possibly improve the predictions. Next to differentiating the value of the
decay rate, one could also differentiate the inflection point value for the logistic function. In this
research, we only applied the logistic function varying the value T0. For further research, one
could also vary the inflection point value to allow for even more possible shapes of the logistic
decay function, which could correspond better to the aspect of recency.

14

References

Accessed in 2022. The Instacart Online Grocery Shopping Dataset. (2017). https://www.
instacart.com/datasets/grocery-shopping-2017

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A framework for projected clustering of
high dimensional data streams. Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, 852—-863.

Ajolli, F. (2013). Efficient top-n recommendation for very large scale binary rated datasets.
Proceedings of the 7Tth ACM conference on Recommender systems, 273-280.

Anderson, A., Kumar, R., Tomkins, A., & Vassilvitskii, S. (2014). The dynamics of repeat
consumption. Proceedings of the 23rd international conference on World wide web, 419—
430.

Busa-Fekete, R., Szarvas, G., Elteto, T., & Kégl, B. (2012). An apple-to-apple comparison of
learning-to-rank algorithms in terms of normalized discounted cumulative gain. FCAI
2012-20th European Conference on Artificial Intelligence: Preference Learning: Problems
and Applications in AI Workshop, 242.

Ding, Y., & Li, X. (2005). Time weight collaborative filtering. Proceedings of the 14th ACM
international conference on Information and knowledge management, 485—-492.

Ding, Y., Li, X., & Orlowska, M. E. (2006). Recency-based collaborative filtering. Proceedings
of the 17th Australasian Database Conference-Volume 49, 99-107.

Faggioli, G., Polato, M., & Aiolli, F. (2020). Recency aware collaborative filtering for next basket
recommendation, 80-87. https://doi.org/10.1145/3340631.3394850

Pradel, B., Sean, S., Delporte, J., Guérif, S., Rouveirol, C., Usunier, N., Fogelman-Soulié, F., &
Dufau-Joel, F. (2011). A case study in a recommender system based on purchase data.
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, 377-385.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. Proceedings of the 10th international conference on World
Wide Web, 285-295.

Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix:
A survey of the state of the art and future challenges. ACM Computing Surveys (CSUR),
47(1), 1-45.

Vinagre, J., Jorge, A. M., & Gama, J. (2015). An overview on the exploitation of time in collab-
orative filtering. Wiley interdisciplinary reviews: Data mining and knowledge discovery,
5(5), 195-215.

15

A Code explanation

In order to obtain the results presented in this thesis, we will give a short guideline to the code.

The code consists of three scripts: onlyDefs, ExtensionA, and parValidation. In the only-
Defs file all reproduced methods are coded and the way in which a subset of the data was taken.
The file parValidation contains the codes for the validation of the reproduced results and the
ExtensionA file consist of the codes for the methods of my extension and of their validation.
For taking a subset of the data, in onlyDefs a method called SubsetData can be found, after
which the train test validate sets are formed. In this script the methods for creating the pre-
dictions for global popularity, user-wise popularity, IB-CF and UB-CF are firstly defined. To
obtain the recency-aware variants, we used the recency-aware user-wise popularity computed in
RecencyAwareUWwP.

The validation of the hyperparameters of the reproduced results methods can be found in
the file parValidation. Furthermore, all methods needed for our own proposed methods and
their validation are stored in the file ExtensionA.

16

