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1 Introduction

Modern asset pricing theory predicts that expected returns can be explained by the exposure of an asset

to risk factors. Investors are compensated for their exposure to these factors by way of a risk premium.

Theory has proposed a multitude of factors, where Harvey et al. (2015) document more than 300 pub-

lished proposed risk factors. An alternative to using a theoretical factor model is to use a statistical

factor model. In a statistical factor model, the latent factors are found by applying principal component

analysis (PCA) to the variance-covariance matrix of the returns, rather than choosing the factors through

economic theory. The standard version of PCA incorporates information in the second moments of the

data, but not the information contained in the means of the data. This leads factors based on PCA to

capture comovement well, however they do not necessarily capture the differences in risk premia of the

assets.

This paper will explore an alternative estimator, Risk-Premium PCA (RP-PCA), as introduced by Lettau

and Pelger (2020), which can be seen as a generalized version of PCA that accounts for cross-sectional

pricing errors. It incorporates information in both the means and the variances of the assets, thus identi-

fying factors that can explain the comovement and the cross-section of expected returns simultaneously.

The question the first part of this paper answers is: To what extent can RP-PCA identify latent

risk factors which capture the comovement and the cross-section of stock returns?

The second part of this paper will focus on implementing the RP-PCA estimator into the three-pass

estimator approach by Giglio and Xiu (2021). Their approach focuses on the estimation of risk-premia.

Classical techniques such as Fama-MacBeth regressions and mimicking portfolio projections all suffer

from omitted variable bias. The three-pass estimator, however, is designed to avoid omitted variable bias

and measurement error bias, thus providing a more reliable way to estimate risk premia.

The premise of the three-pass estimator is that PCA, which is used in the first step, is able to

consistently recover a rotation of the factor space. However, standard PCA is only able to do this when

the latent factors are sufficiently strong. As shown in Lettau and Pelger (2020) RP-PCA is able to detect

weak factors which cannot be detected by PCA, thus it is able to more consistently recover a rotation of

the factor space. Therefore, I will use RP-PCA in the first step of the three-pass estimator to create a

three-pass estimator that is more robust to weak factor structures. The central question in this second

part of the paper is: How much more robust to weak factors is the three-pass estimator based

on RP-PCA?

To test the performance of the RP-PCA estimator, two sets of data are used. One smaller dataset

consisting of 25 double-sorted portfolios for various anomalies that have been shown to generate ex-

cess returns. The other is a larger dataset with single-sorted decile portfolios on 37 different anomaly

characteristics.

This paper is at the crossroads between the literature which explores factor models and the literature

surrounding the estimation of risk premia. The former is seeing advances by way of projected PCA that

allows time-varying factor loadings in Fan et al. (2016), and in instrumented PCA (IPCA) by Kelly et al.
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(2019). Furthermore, Bai and Ng (2019) lay the theoretical foundation for robust principal components.

On the side of the latter, previous theory mostly focused on either two-pass regressions, such as in Black

et al. (1972) and Fama and MacBeth (1973). The econometric techniques and theory driving the two-

pass regression have been improved in recent years in papers like Connor et al. (2012) who explore a

nonparametric regression methodology. The other side of the risk premium estimation literature focuses

on mimicking portfolios, introduced by Breeden et al. (1989) and further popularized by Lamont (2001).

This technique is being expanded by the use of boosting algorithms as in Lönn and Schotman (2018). The

three-pass estimator by Giglio and Xiu (2021) can be interpreted as both an extension of the two-pass

regression approach and the mimicking portfolio approach.

The paper follows the following structure. Section 2 discusses first the estimation of the RP-PCA

estimator, thereafter the three-pass estimator and finally the way in which both can be combined to create

a robust three-pass estimator. Section 3 gives an overview of the data and its sources. Section 4 presents

the empirical results, it is divided into three parts. Firstly, in Subsection 4.1 the RP-PCA estimator

is tested on eight double sorted portfolios, Subsection 4.2 evaluates the RP-PCA estimator based on a

larger dataset of single sorted portfolios. Finally, Subsection 4.3 discusses the empirical performance of

three-pass estimator based on RP-PCA. Section 5 presents an overview of results and some concluding

remarks.

2 Methodology

In this section, I first introduce the Risk-Premium Principal Component Analysis (RP-PCA) estimator,

which utilizes information contained in the means and the covariances to better identify the factors that

generate excess returns. Second, the three-pass estimator by Giglio and Xiu (2021) is presented. This

estimator deals with omitted variable bias and measurement error bias when estimating risk premia in

linear factor models. Finally, I will show how the RP-PCA estimator can be combined with the three-pass

estimator to form a more robust estimator of factor risk premia.

2.1 Risk-Premium PCA

RP-PCA can be seen as a generalised version of standard PCA, leading to an almost identical theoretical

framework. In this framework, the excess return of an asset n at time t, Xnt, can be decomposed into

two parts. There exists a systematic component which can be captured by K factors that are the same

for all assets. The loadings Λ are asset specific and correspond to each asset’s exposure to the risk factor

F. The second part is an idiosyncratic part, it captures asset-specific risk and is thus unique for each

asset. The excess returns of N assets over T time periods thus follow the mathematical structure:

Xnt = Ft Λ
⊤
n + ent (1)
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⇐⇒ X
T×N

= F
T×K

Λ⊤
K×N

+ e
T×N

(2)

In a statistical factor model such as PCA and RP-PCA, it is assumed that both the latent factors

F and their loadings Λ are unknown. I consider cases where the number of cross-sectional observations

N and the number of time series observations T goes to infinity, but N/T converges to a finite limit.

Further, the assumption is made that the factors and residuals are uncorrelated, such that the covariance

matrix of the returns consists of a systematic and an idiosyncratic part:

V ar(X) = ΛV ar(F)Λ⊤ + V ar(e) (3)

From Equation 3 it follows that the largest eigenvalues of the matrix V ar(X) are driven by the factors.

Principal component analysis makes use of this fact to estimate the loadings and factors. PCA thus only

uses information that is contained in the variance of the excess returns and ignores any information that

might be contained in the means.

For excess returns, however, we know that there is information contained in the means. Ross’ arbitrage

pricing theory (APT) implies that the mean excess return of a given asset is equal to its exposure to risk

factors multiplied by the risk premium, plus some idiosyncratic component.

E[Xn] = αn + Λn E[F] (4)

Since my analysis is based solely on diversified portfolios, I can assume that the idiosyncratic part αn

of the expected returns is equal to zero. Thus the strong form of Ross’ APT applies here, it is given by:

E[Xn] = Λn E[F] (5)

PCA is designed such that the factors it identifies explain as much time variation as possible. Con-

ventional PCA can be applied to either the sample covariance matrix or the sample correlation matrix.

The covariance matrix is given by 1
TX

⊤X−XX
⊤

where X denotes the sample mean excess return. The

correlation matrix is simply the case when the test assets are normalized by their standard deviation,

such that the diagonal of the variance-covariance matrix of the returns is equal to one.

Standard PCA analysis proceeds by rotating the N test assets X using the eigendecomposition of the

variance-covariance matrix of the excess returns (ΣX), to obtain N orthogonal factors. The eigenvalues of

the rotated factors correspond to their variances. The factors with the largest eigenvalues have the largest

variance and thus explain the largest part of total variance, therefore the factors are sorted according

to their eigenvalues. Then the K factors with the largest eigenvalues are chosen as estimates of the true

factors F in Equation 2. PCA thus achieves a dimension reduction from N to K, which is why it is

suitable for large datasets.

The factor loadings Λ in Equation 2 are proportional to the eigenvectors associated with the K largest

eigenvalues. The K × N matrix of estimated loadings Λ̂PCA is thus equal to the matrix of eigenvectors
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that correspond to the K largest eigenvalues. The estimated T × K matrix of rotated orthogonal factors

is then given by F̂PCA = XΛ̂PCA (Λ̂⊤
PCA Λ̂PCA)

−1.

The RP-PCA estimator is formed by applying PCA to the matrix

ΣRP =
1

T
X⊤X+ γXX

⊤
(6)

It is clear from Equation 6 that when γ = −1, RP-PCA is equal to standard PCA. Furthermore, RP-PCA

is equal to PCA applied to the second moment matrix when γ is set to zero. This means that RP-PCA

with the γ parameter set to zero is equivalent to PCA applied to demeaned data, which is often done in

practice. RP-PCA with γ > 0 can be seen as a form of PCA that overweights the means of the data. As

in standard PCA, the eigenvectors of the K largest eigenvalues of ΣRP are proportional to the loadings

Λ̂RP. However, unlike in PCA, the eigenvalues cannot be interpreted as factor variances. In RP-PCA

they denote more of a general notion of signal strength of a factor. A regression of the excess returns on

the estimated loadings gives the RP-PCA factors F̂RP = XΛ̂RP (Λ̂⊤
RP Λ̂RP)

−1.

The RP-PCA approach is compared against standard PCA and the Fama-French three- and five-factor

models. The performance of each model is evaluated both in- and out-of-sample based on three differ-

ent criteria: the maximum achievable Sharpe ratio, the root-mean-squared alpha, and the unexplained

idiosyncratic variance.

The maximum achieveable Sharpe ratio from a linear combination of the factors is given by the Sharpe

ratio of the mean-variance optimal portfolio of the factors. Given the estimated factors F̂, their weights

in the mean-variance optimal portfolio can be computed as:

b̂MV = Σ−1
F µF (7)

By multiplying the estimated factors F̂ with their weights b̂MV in the mean-variance optimal portfolio

we find the minimum variance SDF. The maximum possible Sharpe ratio is then computed by dividing

the time-series SDF mean by the time-series SDF standard deviation. This maximum possible Sharpe

ratio is thus an indication of how close to the true SDF the model is.

The other performance measures used in this paper find their origin in the way the RP-PCA loadings

Λ̂ can be related to ordinary least squares (OLS) betas of the time series regressions of excess returns on

factors. The factor model in Equation 2 implies that if the factors F are already known, the loadings of

the assets Λ can be estimated by OLS without a constant. By using this model the no-constant structure

is thus imposed onto the data. Alternatively, we can estimate:

Xnt = αn + F̂tB
⊤
n + ent (8)

The model can then be evaluated by the estimated α̂n and ênt. The RMSα, or root-mean-square error, is

computed by taking the root of the mean of the squares of α̂n. It corresponds to the average pricing error

across assets, a lower value thus indicates a better performing model. Another measure we can compute

is the unexplained idiosyncratic variance, or σ2
e. This is calculated by taking the mean of the variance

of the residual for each asset. If we further divide by the average variance of the assets Xn, we get the
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unexplained variance expressed as a percentage of total variance. This measure is by definition minimized

by PCA in-sample and shows how much of the total variance cannot be explained by the factor model,

a lower number thus indicates a better performing model.

To test the out-of-sample (OOS) performance of the models the same measures are used. The factors

and loadings are estimated using a rolling window of twenty years (T = 240). To calculate the maximum

possible Sharpe ratio OOS, the first data point outside the window is used in combination with the

estimated Λ̂ inside the window, to obtain the forecasted value of the factors outside the window. By

multiplying this with the optimal mean-variance weights in the window as calculated in Equation 7 we

arrive at the maximum possible Sharpe ratio for each window. The total OOS Sharpe ratio is then simply

the average Sharpe ratio over all possible windows.

The RMSE and unexplained idiosyncratic variance are computed similarly. First, a regression is per-

formed to estimate the B in Equation 8 within the window. This estimated B is then used in combination

with the next data point outside the window, to calculate the OOS alpha for that window. The time-

series average of this alpha is then taken to find the total OOS alpha. From the total OOS alpha, the

OOS RMSα and σ2
e are then calculated the same way as in-sample.

2.2 Three-pass estimator

The three-pass estimator is a method to estimate the risk premium of a risk factor gt developed by

Giglio and Xiu (2021). The estimator deals with measurement error and missing variable bias, which

are problems that can occur when using the two most common ways of estimating risk premia: Fama-

MacBeth two-pass regressions and the mimicking portfolio approach. These techniques are explained in

more detail at the end of this section and the theoretical framework of why they are sensitive to omitted

variable bias and measurement error is laid out in Giglio and Xiu (2021).

The three-pass estimator is named appropriately so, because it estimates the risk premium of a factor

gt in three steps, or passes. The first step is to use PCA on a set of test asset returns, such that some

rotation of the true factor space is recovered. Here it is important that one: the test assets represent the

aggregate stock market well, they must be influenced by the same risk factors as the market. Second, it

is important that the underlying factor structure is strong enough, such that a rotation of the priced risk

factors can be detected by PCA. Finally, the number of factors to use has to be selected, this paper uses

k = 7 factors following Giglio and Xiu (2021). Further research might focus on techniques to determine

the correct number of factors, or examine the robustness to the chosen number of factors.

Once the factors and the loadings have been estimated by PCA, the second step of the three-pass

procedure, the cross-sectional regression step, can commence. To obtain the risk premia of the estimated

factors, the average excess return for each asset X is regressed onto the estimated factor loadings Λ̂ using

ordinary least squares (OLS):

γ̂ = (Λ̂⊤Λ̂)−1Λ̂⊤X (9)

The third step of the approach by Giglio and Xiu (2021) is to run a time series regression using
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OLS. The dependent variable is the factor of which the risk premium is to be estimated gt, in case the

risk premium of a combination of factors is to be estimated, we take the cross-sectional mean G. The

independent variables are the factors we estimated in step one, denoted by F̂. The variable η̂ which is

estimated here can be interpreted as the loading of gt onto the unobservable fundamental factors.

η̂ = G F̂⊤(F̂ F̂⊤)−1 (10)

Finally, the risk premium of the observable factor gt can be estimated by combining the estimators

from steps two and three.

γ̂g = η̂ γ̂ (11)

All previous steps can be combined to write the estimator in a more compact form.

γ̂g = G F̂⊤(F̂ F̂⊤)−1(Λ̂⊤Λ̂)−1Λ̂⊤X (12)

2.3 Robust three-pass estimator

The idea of the robust three-pass estimator is based on the assumption by Giglio and Xiu (2021) that

PCA will consistently recover a rotation of the factor space if the factors are sufficiently strong. Lettau

and Pelger (2020) show that not all factors driving stock returns are strong factors and that PCA will

not recover some of these weak but informative factors. I will use RP-PCA instead of standard PCA in

the first step of the three-pass estimator in order to more consistently recover the factor space, thus more

accurately identifying risk premia when weak factors are present in the dataset.

To evaluate the performance of the robust three-pass estimator I compare it against a variety of risk

premium estimation models. The models will be used to estimate the risk premium of traded factors, such

as the five Fama-French factors and the 37 anomalies in Kozak et al. (2020), see Section 3 for a detailed

description of the data. Since these are all traded factors their risk premium can be reliably estimated by

taking the mean return of the factor over the sample period. The models are then compared by evaluating

the difference between the mean factor return and the estimated risk premium. The closer the estimated

risk premium is to the mean return, the better the model. As a general measure of model performance

the root-mean-square error over multiple factors, such as the five Fama-French factors, is then computed

for all models. This means the difference between the mean and the estimated risk premium is squared,

then the mean over all factors gt is taken, and finally, the root of this number is the RMSE of the model.

The first model used for comparison is the Fama and MacBeth (1973) two-pass regression. Two-pass

regressions estimate the risk premium γg by first doing a time-series regression of the test assets’ excess

return onto the factor of which the risk premium is to be estimated 1. This gives the estimated risk

exposure of the assets to the risk factor. Second, a cross-sectional regression of the mean asset returns

onto the asset risk exposure gives the estimated risk premium γ̂g.

1These test assets are also referred to as base assets in this paper. They should span the entire factor space as best

as possible, therefore I take the entire set of N=370 decile-1 through decile-10 anomaly portfolios unless otherwise noted.

Robustness checks to this choice of base assets are available in the appendix
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In the literature, two-pass regression models are often augmented by adding control factors to the

first regression. Rather than regressing the assets’ excess returns on only the risk factor itself, they are

regressed onto the risk factor and the control factor(s). This makes it so any risk premium related to the

controls is not seen as risk belonging to the risk factor. In this paper, three different two-pass models are

considered: one with no controls at all, one with only the market factor as control, and lastly one with

the three Fama-French factors as controls.

The second model used to compare the robust three-pass estimator is the mimicking portfolio model.

Using this approach, the risk premium is estimated by projecting the risk factor onto a set of tradable

excess asset returns. This constructs a portfolio that is maximally correlated with the risk factor. The

risk premium can then simply be estimated by taking the mean return of the mimicking portfolio. I

consider three versions of this approach: the first one projects the risk factor only onto the market factor,

thus achieving some CAPM-like model without a constant. The second model projects the risk factor

onto the three Fama-French factors. Lastly, I consider an approach where the risk factor is projected

onto the set of 74 decile-1 and decile-10 anomaly portfolios from Kozak, Nagel and Santosh.

Lastly, the robust three-pass estimator is compared against its regular counterpart as described in

Subsection 2.2. For both the regular three-pass estimator and the robust three-pass estimator the set of

base assets used should span the factor space of the returns. Furthermore, these techniques are designed

to work best in large N environments. Therefore, the entire set of N = 370 decile-1 through decile-10

anomaly returns are used as test assets.

3 Data

Firstly, the performance of the RP-PCA approach will be tested on a smaller sample containing double-

sorted anomaly portfolios. The dataset consists of eight sets of double-sorted 5x5 portfolios on size

and book-to-market, accruals, investment, profitability, momentum, short-term reversal, variance, and

residual variance. Excess returns are calculated by subtracting the risk-free rate from the simple returns.

The portfolio returns and the risk-free rate are downloaded from the Kenneth French data library.

Thereafter, results will be examined for a larger cross-section of single-sorted decile portfolios. The

dataset consists of all 37 characteristics that are used in Kozak et al. (2020). Following Lettau and Pelger

(2020), I decide to show results only for the extreme first and tenth deciles, rather than for the whole

dataset. This is possible since most relevant information is contained in these extreme deciles. While

this reduction in portfolios is useful to allow for more clear presentation of the results, it is not necessary

since PCA and RP-PCA are well-suited to handle large cross-sections of data. Again the risk-free rate is

subtracted from the returns to arrive at excess returns. The single-sorted characteristic portfolio returns

are downloaded from the Serhiy Kozak website.

The RP-PCA method is tested against standard PCA and the Fama and French (1993) three-factor model

in the smaller dataset, while it will also be tested against the Fama and French (2015) five-factor model in

the larger dataset. The factor returns for both models are downloaded from the Kenneth French library.
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2 For all data I consider monthly data in the sample period from November 1963 until December 2017,

leading to T=650 observations. Table 1 gives an overview of all different datasets and their sources.

Table 1: Overview of the data sources

Name Source Description N T

Double sorts Kenneth French library Eight sets of double sorted portfolios 25 650

Single sorts Serhiy Kozak’s website 37 decile portfolios sorted on anomaly characteristics 370 650

Extremes Serhiy Kozak’s website First and tenth deciles of the single sorts 74 650

3-factor FF Kenneth French library Factor returns in the 3-factor Fama-French model 3 650

5-factor FF Kenneth French library Factor returns in the 5-factor Fama-French model 5 650

Risk-free rate Kenneth French library 1-month treasury bill return 1 650

4 Empirical results

In this section, the empirical application of RP-PCA to return data will be discussed. This is done in

two parts: firstly results for RP-PCA applied to eight double-sorted portfolios with 25 test assets each

will be shown. Thereafter, the method is applied to a larger cross-section of single-sorted portfolios

for various anomaly characteristics. For a detailed description of the data see section 3. All reported

Out-Of-Sample (OOS) results are estimated using a rolling window of 20 years (T = 240). With the

estimated loadings and factors over this period the OOS pricing error at t + 1 is estimated. The mean

and variance of this OOS pricing error correspond to the average pricing error and the unexplained

idiosyncratic variation. Furthermore, the factor weights in the mean-variance optimal portfolio are used

to estimate the maximum Sharpe ratio OOS. This thus gives three performance metrics: the root-mean-

square pricing error (RMS), average unexplained variance (σ2
e) and the maximum Sharpe ratio that can

be obtained by a linear combination of the factors.

4.1 Double-sorted portfolios

Table 2 reports the Sharpe Ratio, RMS and idiosyncratic variance for eight double-sorted portfolios

on size and book-to-market, accruals, investment, operating profitability, residual variance, variance,

momentum and reversal. I compare results for the RP-PCA model and PCA model with three factors

with a modified version of the Fama-French three-factor model. The Fama-French model consists of

a market factor, small-minus-big (SMB) factor and a high-minus-low (HML) factor. Both the SMB

factor and the HML factor are constructed from the appropriate double-sorted portfolios. So for example

2The factor returns are constructed from one double-sorted portfolio on size and book-to-market for the three-factor

model, while for the five-factor model they are constructed from three sets of double-sorted portfolios on size and book-to-

market, profitability, and investment. Therefore, the returns of the SMB factor are different in the three- and five-factor

models.
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for accruals, the SMB factor corresponds to the average return of the five portfolios with the smallest

companies minus the average return of the five portfolios with the largest companies. The HML factor

corresponds with the average return of the five portfolios containing the companies with the highest

accruals, minus the average return of the five portfolios with the companies with the lowest accruals.

Furthermore, γ = 20 in the RP-PCA model, however, the results are not sensitive to this choice, as will

be shown later in this paper.

An inspection of the Sharpe ratios for the various models reveals that in seven out of eight cases the

Sharpe ratio is highest for RP-PCA. The RP-PCA technique is specifically developed to be able to detect

weak factors with high Sharpe ratios, these results give a preliminary indication that it is able to perform

this task better than the PCA and Fama-French models. Furthermore, the RMS for RP-PCA is lowest

in all cases, and the unexplained variation is also lowest in five out of eight cases. This last result is

interesting because PCA, by definition, minimizes in-sample idiosyncratic variation, however, as Table 2

shows, OOS this property of PCA often does not hold anymore and RP-PCA is in practice better able

to minimize OOS idiosyncratic variation.

Table 2: OOS Sharpe ratio, RMS and unexplained idiosyncratic variation of RP-PCA, PCA and the

Fama-French three-factor model for eight double-sorted portfolios.

Sharpe Ratio RMS σ2
e

RP-PCA PCA FF RP-PCA PCA FF RP-PCA PCA FF

Book-to-Market 0.20 0.18 0.18 0.17 0.17 0.18 7.97 7.91 7.87

Accruals 0.21 0.12 0.14 0.09 0.11 0.11 6.74 6.44 6.90

Investment 0.26 0.23 0.20 0.13 0.15 0.16 6.95 7.00 7.20

Operating profitability 0.13 0.14 0.15 0.09 0.10 0.10 6.94 7.08 7.08

Residual Variance 0.29 0.23 0.24 0.16 0.17 0.18 6.22 6.24 6.35

Variance 0.27 0.21 0.24 0.18 0.19 0.20 6.27 6.30 6.41

Momentum 0.21 0.18 0.17 0.20 0.21 0.22 8.30 8.40 8.48

Reversal 0.16 0.11 0.11 0.18 0.19 0.19 7.89 7.86 7.82

OOS maximal Sharpe ratios, root-mean-squared pricing errors and unexplained idiosyncratic variation for double sorted

portfolios on size and the shown characteristic. Bold numbers indicate the best performing models, the bold numbers have

been determined with an accuracy higher than two decimals.

How is it possible that RP-PCA outperforms standard PCA in most cases? There are three ways in

which the RP-PCA model can differ from the standard PCA model. Firstly, it can detect a different set

of factors. Second, the compositions of the factors that are detected can be different. Lastly, the order in

which the factors are detected can be different. To see the effects of these differences, two cases will be

inspected in more detail: size/accruals and size/reversal. These cases illustrate the differences between

RP-PCA and PCA most clearly.

The three most prominent factors in these portfolios are the market factor, the size factor and the
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accruals/reversal factor, since this is how the portfolios have been sorted. As is shown in Figures 1, 2

and 3, both RP-PCA and PCA extract the market factor and a size factor. However, standard PCA

is not able to detect the long/short factor related to accruals, while RP-PCA is able to pick up on this

factor. Furthermore, in the case of the portfolio sorted on size and short-term reversal, the order of the

factors changes. For RP-PCA the second factor is the high/low reversal factor, while the second factor

for standard PCA is the one related to size. This is because the reversal factor captures more return

differences than the size factor and is thus given a higher weight in the RP-PCA estimation.

Figure 1 plots the Sharpe ratio, root-mean-square error and idiosyncratic variation as a function

of gamma. Firstly, note that a model with only one factor is completely insensitive to the choice of

gamma, indicating that standard PCA as well as RP-PCA are able to identify the market factor correctly

regardless of the choice of gamma. Similarly, the choice of gamma seems to have little effect on the SR,

RMS and unexplained variance for a model with two factors in the size/accruals portfolio. However,

for the size/short-term reversal portfolio, we see an increase in the Sharpe ratio in a two-factor model

starting from around γ = 5, indicating that RP-PCA selects a higher Sharpe ratio factor as the second

factor than standard PCA. A similar effect can be seen in the size/accruals portfolio once a third factor

is added to the model. The Sharpe ratio and RMS start improving as soon as the gamma parameter is

higher than -1.

To find out what causes these differences, we will inspect the factor loadings of the first three factors

for the size/accrual and size/reversal portfolios. Figure 2 shows the factor loadings for both PCA and

RP-PCA for the size/accruals portfolio and Figure 3 shows the same for the size/reversal portfolio. Note

here that unlike in Lettau and Pelger (2020), I show the loadings in the case where the eigenvectors have

been normalized to have unit length, Λ⊤Λ = I. This means the sum of the squares of the loadings in the

heatmap will thus add up to one. The normalization only affects the numerical value of the loadings and

the factors, not the composition or detection of factors.

A closer inspection of Figure 2 reveals that for the size/accruals portfolio the loadings of the first

factor are all positive and similar in size, this corresponds with an average return, or market, factor.

The second factor also looks very similar for RP-PCA and PCA, with negative loadings for small stock

portfolios and positive loadings for big ones. Hence, this factor corresponds with a long/short small minus

big portfolio in both cases. Interestingly, we observe very different loadings for the third factor. RP-PCA

gives negative weights to high-accrual stock portfolios and positive weights to low ones, thus successfully

detecting the low minus high accrual long/short factor. PCA on the other hand shows no clear pattern,

referring back to Figure 1 we see that indeed this factor adds very little information.

Figure 3 shows a clear example of the way in which the ordering of the factors can differ between

RP-PCA and PCA. Both methods select the market factor first, indicated by the all-positive weights for

the first factor. The second factor, however, corresponds to a long/short portfolio based on size for PCA,

while for RP-PCA it is given by a long/short portfolio based on reversal. Consequently, the third factor

in the PCA model is the reversal factor, while it is the size factor in the RP-PCA model. In the top-right
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(a) Size/Accruals (b) Size/Short-Term Reversal

Figure 1: Out of sample results as a function of γ

panel of Figure 1 it is shown that the Sharpe ratio increases as gamma increases. This shows that the

second factor in the RP-PCA model, the reversal factor, has a higher Sharpe ratio than the size factor.

Since the RP-PCA model overweights the means in the covariance matrix, it will prioritize this factor

over the size factor.

4.2 Single-sorted anomaly portfolios

To continue the empirical examination of RP-PCA, I will apply the estimator to a larger cross-section of

portfolios. All 37 anomaly characteristics from the data set in Kozak, Nagel and Santosh are considered.

The complete dataset contains decile sorts for each anomaly making for a total of N = 370 portfolios.

While RP-PCA and PCA are well-suited to handle large datasets like this, I will perform most of the

empirical analysis only on the 74 decile-1 and decile-10 portfolios. This makes the presentation of results

more feasible and clear to the reader, while most of the significant information is contained in these

extreme deciles, so there is very limited loss of information. All results are robust to the use of the 74

extreme deciles compared to the 370 total deciles. For more specific information on the data used see
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Section 3.

4.2.1 Number of systematic factors

Figure 4 gives the difference of consecutive eigenvalues of the matrix 1
TX

⊤X+γXX
⊤
for the decile-1 and

decile-10 portfolios as well as the full set of portfolios. We consider first the top figure, where RP-PCA is

applied to the 74 decile-1 and decile-10 portfolios. The first eigenvalue difference is an order of magnitude

(a) Size/Accruals: RP-PCA (b) Size/Accruals: PCA

Figure 2: Loadings of the first three PCA (γ = −1) and RP-PCA (γ = 20) factors for the Size/Accruals

portfolio
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greater than the others. The figure is most interesting around the fifth difference, the difference between

the fifth and sixth eigenvalue, because for the low-gamma RP-PCA we see this difference is small, but

for high-gamma RP-PCA the difference is still quite large. This indicates that RP-PCA will generally

include the fifth factor, while standard PCA might not. The same conclusions can be drawn from the

bottom figure, indicating that these results are robust. From now on we will thus consider five-factor

PCA and RP-PCA models.

(a) Size/Reversal: RP-PCA (b) Size/Reversal: PCA

Figure 3: Loadings of the first three PCA (γ = −1) and RP-PCA (γ = 20) factors for the Size/Reversal

portfolio
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4.2.2 Estimation results RP-PCA versus PCA

Figure 5 gives an overview of the Sharpe ratio, root-mean-square error, and the residual variance expressed

as a percentage of the total variance, for RP-PCA and standard PCA. Considering the in-sample results,

expressed in the left-hand column, first. We observe that for any number of factors greater than one

RP-PCA is able to achieve a higher Sharpe ratio and RMSE. Note that PCA by definition minimizes

in-sample residual variance, but achieves similar or only slightly better results compared to RP-PCA.

Further, we note that the ordering of the factors seems to differ between RP-PCA and PCA. Where the

second RP-PCA factor achieves a large increase in Sharpe ratio and a decrease in the RMSE, the second

factor in the PCA model achieves almost no improvement in these areas. Conversely, the third factor

in the RP-PCA model improves the Sharpe ratio and the RMSE only marginally, while the third PCA

factor achieves much larger improvements.

Figure 4: Difference of consecutive eigenvalues of the matrix 1
TX

⊤X+ γXX
⊤
for the extreme deciles (N

= 74) and the full set of single sorted portfolios (N = 370).
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The bottom-left image in Figure 5 provides us with some intuition as to why the ordering of the

factors might be switched. The third factor in the RP-PCA model contributes more to a reduction in

residual variance than the second factor. Since PCA is defined to minimize residual variance it will always

prioritize this factor, therefore it is the second factor in the PCA model. RP-PCA on the other hand

considers not only the reduction in residual variance but also the improvement in the maximal achievable

Sharpe ratio. Since the second RP-PCA factor achieves a sizeable reduction in residual variance, though

not as large as the third factor, as well as a drastic increase in the Sharpe ratio, RP-PCA will prioritize

this factor.

Out-of-sample results are largely similar, with RP-PCA outperforming standard PCA in terms of

Sharpe ratio and RMSE in all cases with more than one factor. Furthermore, the differences in residual

variance seem even smaller than in-sample and the RP-PCA and PCA residual variance is now almost

indistinguishable. This indicates that while RP-PCA also takes into account the means of the data and

achieves a sizeable improvement in terms of Sharpe ratio and RMSE, it does not compromise the ability

of PCA to explain a large part of the variance in the data, especially OOS.

Both out-of-sample and in-sample an almost monotonic increase in Sharpe ratio and decrease in

RMSE are visible. The fact that this pattern holds up out-of-sample indicates that neither model suffers

from excessive overfitting. Interestingly, it seems like the roles of the second and third factors in the

PCA model are a lot less defined out-of-sample than in-sample. Where in-sample the second PCA factor

contributed very little to the Sharpe ratio and the third factor made for a big increase, OOS the second

factor makes for a small increase and the addition of the third factor actually causes a decrease in the

maximal Sharpe ratio OOS. A similar pattern is visible in the IS and OOS RMSE for PCA. For RP-PCA

we also see a smoothening of the roles of the factors OOS. The third and fourth factors contribute little

to the Sharpe ratio and RMSE IS, but OOS they do make for an increase in the Sharpe ratio and a

decrease in RMSE. Furthermore, similar to the third factor in PCA, the seventh RP-PCA factor adds

to the maximum Sharpe ratio in-sample, but actually leads to a decrease OOS. In conclusion, RP-PCA

improves the maximum Sharpe ratio and root-mean-square error in- and out-of-sample while leaving

almost the same amount of unexplained variance.

Table 3 shows in- and out-of-sample RMSE, unexplained idiosyncratic variation and Sharpe ratio for

standard PCA and RP-PCA. The Fama-French three-factor model, based on market, SMB and HML,

and the Fama-French five-factor model, which additionally includes RMW and CMA, are also considered

for comparison. The first three rows show results for three-factor models, while the last three rows present

empirics for five-factor models.

In the case of three factors, RP-PCA performs best in every metric with the exception of in-sample

unexplained idiosyncratic variation, which is to be expected because PCA minimizes in-sample unex-

plained idiosyncratic variation by definition. OOS however, we notice that RP-PCA is also able to have

the lowest idiosyncratic variation, indicating that the RP-PCA model might be less susceptible to the

risk of overfitting than standard PCA. The Fama-French model performs considerably worse than both
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PCA and RP-PCA in-sample, but out-of-sample it has comparable performance to PCA, though still

strictly worse than RP-PCA.

The five-factor models display similar results to the three-factor models. Yet again RP-PCA has

a better Sharpe ratio and RMSE both in- and out-of-sample, even achieving almost double the Sharpe

ratio as the PCA and Fama-French models. However, in the five-factor case, PCA also leaves less residual

variance OOS. The difference between 12.04% for PCA and 12.13% for RP-PCA is not very large, while

the differences in RMSE and Sharpe ratios are much larger.

Comparing the five-factor RP-PCA model with the three-factor RP-PCA models, we see that the

(a) In-Sample (b) Out-of-Sample

Figure 5: Fit for 74 decile-1 and decile-10 portfolios. Maximal Sharpe ratios, root-mean-squared pricing

errors, and unexplained idiosyncratic variation for different number of factors. RP weight γ = 10.
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out-of-sample performance of the five-factor model is between 20% and 50% better across the various

metrics, with the Sharpe ratio seeing the most improvement and the unexplained idiosyncratic variation

seeing the least improvement. Furthermore, if we compare in-sample performance with out-of-sample

performance for both models we see that the deterioration is similar for both models. This indicates

that the risk of overfitting is not much worse for the five-factor model. We conclude that a five-factor

RP-PCA model is the preferred model for all three datasets.

Table 3: Performance measures RP-PCA, PCA and Fama-French models

In-Sample Out-of-Sample

RMSE σ2
e Sharpe RMSE σ2

e Sharpe

RP-PCA(3) 0.24 13.95 0.41 0.21 15.40 0.34

PCA(3) 0.27 13.74 0.23 0.26 15.88 0.11

Fama-French(3) 0.31 17.49 0.21 0.25 16.54 0.16

RP-PCA(5) 0.16 10.45 0.61 0.15 12.13 0.51

PCA(5) 0.21 10.30 0.32 0.19 12.04 0.24

Fama-French(5) 0.26 16.05 0.32 0.19 13.91 0.31

In-sample and out-of-sample root-mean-square error (RMSE), idiosyncratic variation (σ2
e), and maximal Sharpe ratio. Bold

numbers indicate the best performing models. Results are for the 74 decile-1 and decile-10 portfolios.

Figure 6 shows in- and out-of-sample root-mean-squared cross-sectional pricing errors (α’s) for each

anomaly based on models with five factors. The alphas are first computed for each asset, in the OOS

case the time-series mean alphas per asset. Thereafter all alphas are squared and the mean per anomaly,

so the average of the decile-1 and decile-10 alpha, is taken. Lastly, the square root of the alphas is taken.

The anomalies in Figure 6 are sorted by the Sharpe ratio of the decile-10 minus decile-1 return. The blue

bars represent the RP-PCA alphas and the orange bars represent the PCA alphas.

Both in- and out-of-sample the PCA pricing errors for high Sharpe ratio anomalies are much higher

than the ones for RP-PCA. Especially for the portfolios where PCA produces the highest pricing errors

RP-PCA is able to find a lot of improvement. However, the dispersion seems to be a bit smaller OOS

compared to IS. In-sample we see that PCA produces much smaller pricing errors for some low-Sharpe

ratio portfolios, but OOS this difference has almost entirely disappeared. In conclusion, the RP-PCA

model lowers pricing errors of most portfolios compared to standard PCA, especially for high Sharpe

ratio portfolios the reduction is grand.

4.2.3 Time-series versus cross-sectional factors

In this section, we will consider the properties of the individual factors in the models, whereas so far

we have focused more on the performance of various models as a whole. Table 4 shows the mean,

variance and Sharpe ratio of the first ten factors as estimated by RP-PCA and PCA. All factors have
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been normalized such that their mean return is positive. For both PCA and RP-PCA the variance of

the first factor is a magnitude larger than the other factors. The factors are sorted in descending order

based on their variance for PCA, as PCA by construction minimizes the amount of residual variance.

For RP-PCA however, we observe that this ordering is broken briefly because the second factor has lower

variance than the third factor. RP-PCA is designed to not only minimize residual variance but also to

detect weaker but high Sharpe ratio factors. This aspect of RP-PCA is reflected in its prioritizing of the

higher-Sharpe, lower-variance factor over the lower-Sharpe higher-variance factor, whereas PCA does the

exact opposite.

Upon closer inspection of the first five RP-PCA factors, we find that the first, second and fifth factors

all have relatively high means and Sharpe ratios. On the other hand, the third and fourth factors have

low means but do explain a significant part of the total variation. This indicates that the second and fifth

factors might correspond with priced factors that capture the cross-section of returns, while the third

and fourth factors are not priced but capture the co-movement of returns.

Table 5 shows the root-mean-square error (RMS), unexplained idiosyncratic variation (σ2
e), and the

Figure 6: RMS of time-series α’s by characteristic. First and last deciles of 37 single-sorted anomaly

portfolios. Shown is the square root of the average of the squared decile-1 and decile-10 alpha per

anomaly, anomalies are sorted on the Sharpe ratio of the decile-10 minus decile-1 return. Alphas are

calculated based on five-factor PCA and RP-PCA models, where the OOS alpha corresponds to the

mean alpha over the entire period.
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Table 4: Individual factors

RP-PCA PCA

Factor Mean Variance Sharpe Mean Variance Sharpe

1 5.14 1911.94 0.12 4.83 1941.87 0.11

2 2.14 79.11 0.24 0.18 102.39 0.02

3 0.09 101.90 0.01 1.65 69.03 0.20

4 0.06 65.45 0.01 1.05 64.06 0.13

5 0.43 31.48 0.08 0.83 20.18 0.18

6 0.02 19.53 0.00 0.34 19.39 0.08

7 0.07 18.13 0.02 0.79 16.14 0.20

8 0.02 15.42 0.01 0.57 15.08 0.15

9 0.02 13.54 0.01 0.20 13.46 0.05

10 0.02 11.96 0.01 0.04 11.95 0.01

Mean, variance and Sharpe ratio for the first ten factors estimated by RP-PCA and PCA. The RP-PCA factors are

estimated using γ = 20.

Sharpe ratio for various subsets of the five-factor PCA model. A model containing only the first factor

is able to produce an RMS of 0.32, σ2
e of 22.70, and a Sharpe ratio of 0.1 OOS. In terms of RMS and

idiosyncratic variation, this is about half of the performance of the full five-factor model, while the Sharpe

ratio is five times lower than the full model. A subset containing only factors one, two and five is able

to achieve almost the same Sharpe ratio and RMS IS as the full model, however, OOS the difference is

larger. Furthermore, the full model leaves significantly less residual variation, indicating that a model

containing only factors one, two and five is able to capture priced factors well, but misses some time-series

co-movement in the data.

The subset containing only factors one, three and four on the other hand produces only a slightly

better RMS and Sharpe ratio than the one-factor model. However, it is able to reduce unexplained

idiosyncratic variation significantly compared to the one-factor model. This shows that the one, three

and four-factor model is not able to adequately capture all priced risk factors, but it does capture time-

series co-movement in the data.

When examining the models where the first factor is not included, this pattern becomes more clear.

The subset of factors two and five make for a high Sharpe ratio, but also high RMS and high residual

variance IS. Interestingly, OOS the RMS and unexplained idiosyncratic variation are much smaller than

IS. The reason for this is that the factors are orthogonal in-sample. So higher order factors can only

capture variation that has not yet been captured by the lower order factors. Since the first factor already

captures a significant part of the total variation there is not much variation left to be captured by the

higher order factors in-sample. Out-of-sample however, the factors are not necessarily orthogonal so the
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higher order factors can capture some part of the variation that the first factor would normally capture.

The model containing only factors three and four has high RMS and residual variation both IS and OOS.

The Sharpe ratio is only 0.01 in-sample, the lowest out of all considered subsets. OOS this Sharpe ratio

improves to 0.15, likely due to the factors not necessarily being orthogonal OOS and thus the third and

fourth factors can account for a portion of the Sharpe ratio that would be due to the first and second

factors in-sample.

To conclude this section we identify the first RP-PCA factor as important both for the cross-sectional

and time-series fit of the model, likely representing a market factor. The second and fifth factors cor-

respond to high-Sharpe ratio factors which contribute to a decrease in RMS, but less to the residual

variance. These factors are priced factors important for explaining the cross-section of returns. Lastly,

we identify the third and fourth factors as low-Sharpe ratio factors which are not priced. They contribute

most to decreasing residual variance and are important for explaining the cross-section of returns.

Table 5: Model fit for subsets of factors

In-sample Out-of-Sample

RMS σ2
e Sharpe RMS σ2

e Sharpe

(1,2,3,4,5) 0.16 10.45 0.61 0.15 12.13 0.51

(1) 0.33 20.76 0.12 0.32 22.70 0.10

(1,2,5) 0.19 17.22 0.60 0.21 17.17 0.34

(2,5) 1.75 51.77 0.30 0.30 19.78 0.08

(1,3,4) 0.33 13.92 0.12 0.30 16.20 0.14

(3,4) 0.65 93.10 0.01 0.70 88.69 0.15

Root-mean-square error (RMS), unexplained idiosyncratic variation (σ2
e), and the Sharpe ratio for subsets of the five-factor

RP-PCA model. The factors are estimated using γ = 20.

4.2.4 Composition of the SDF

In this section, we will study the composition of the SDF. The implied SDF is perfectly negatively

correlated with the tangency portfolio of the estimated factors. Since the estimated factors themselves

are linear combinations of the test assets, we can express the SDF as a linear combination of the test

assets. Figure 7 shows the SDF weights for each of the 74 test portfolios, sorted by the Sharpe ratio of

the decile-10 minus decile-1 return. The top figure shows the weights as estimated by RP-PCA, while the

bottom figure shows the weights estimated by PCA. The orange bars indicate the decile-10 weights and

the blue bars the decile-1 weights. For both estimation methods, most decile-10 weights are positive and

decile-1 weights are negative, thus creating long-short portfolios. However, the weights do not necessarily

sum to one and we see in some cases that both the decile-1 and decile-10 weights are positive (value), or

both the weights are negative (indrrev for PCA).
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Figure 7: Asset weights in RP-PCA and PCA SDFs. Loadings of the SDF for each of the 37 anomalies

as estimated by RP-PCA (top) and PCA (bottom). The anomalies are sorted by there Sharpe ratio.

For RP-PCA the magnitude (in absolute value) of the asset weights in the SDF seems to correlate

greatly to the Sharpe ratio of the asset. The largest absolute weights are given to the anomalies with the

highest Sharpe ratio, while the anomalies with low Sharpe ratios also receive low absolute weights in the

SDF. This correlation between the Sharpe ratio and SDF weight seems to not be present in the weights
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estimated by PCA at all.

Figure 8: Portfolio returns and SDF loadings. Average portfolio return and weight in the SDF for 74

decile-1 and decile-10 portfolios. Top figure shows the RP-PCA SDF loadings while the bottom figure

shows the loadings for standard PCA. Decile-1 returns are given in blue and decile-10 returns in orange.
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Figure 8 shows the average return of each portfolio together with its weight in the SDF for the

RP-PCA (top) and PCA (bottom) models. The correlation between average portfolio return and SDF

weight is also printed in the figure. The SDF weights for RP-PCA are strongly correlated with the

average portfolio returns, with the correlation being 0.89. The scatterplot shows that portfolios with

high average returns, such as indrrevlv decile-10, have large positive weights, while low-return portfolios,

such as indrrevlv decile-1, receive large negative weights.

For the PCA model, there is a similar correlation, but it is not nearly as strong. The overall correlation

coefficient between average returns and SDF weights is only 0.56 in this case. We see that some portfolios

with relatively high returns, such as indrrev decile-10, receive negative weights in the SDF. On the other

hand, some low-return portfolios, such as indrrevlv decile-1, receive a positive weight in the SDF.

The difference in correlation between average returns and SDF weights between the PCA and RP-PCA

models gives an indication of why the maximum possible Sharpe ratio is so much higher for RP-PCA

than PCA, as is shown in Table 3.

4.3 Robust three-pass estimator

In this section risk-premia of various traded factors will be estimated using a variety of techniques. We

will examine whether a version of the three-pass estimator by Giglio and Xiu (2021) which is based on

RP-PCA instead of PCA is able to add to the current selection of risk-premium estimation techniques.

The standard three-pass estimator uses PCA in the first step to recover a rotation of the factor space

of the returns. The estimator is based on the assumption that the factors driving returns are strong

enough to be detected by PCA. We have seen in this paper that RP-PCA is able to detect weak factors

more consistently than PCA, therefore it is a good replacement for PCA in the first step of the three-pass

estimator, making the assumption that a rotation of the whole factor space is discovered in the first step

more plausible. From now on the version of the three-pass estimator which uses RP-PCA in the first step

will be referred to as robust three-pass estimator.

The robust three-pass estimator will be compared against its regular counterpart as described in

Giglio and Xiu (2021), as well as three different two-pass regression models, and three mimicking portfolio

approaches. The two-pass regressions consist of a model with no control variables in the regression, a

model with only the market as a control variable, and a model with the three Fama-French factors

as controls (market, SMB, and HML). For the mimicking portfolio approach the risk factor will be

projected onto only the market factor, the three Fama-French factors (market, SMB and HML), and

onto the set of 74 decile-1 and decile-10 anomaly portfolios. The complete set of 370 decile-1 through 10

portfolios is used to run the two- and three-pass regressions. Note that it would technically be possible to

project the risk factor onto the entire set of 370 portfolios using the mimicking portfolio approach since

N = 370 < 650 = T , but this approach is inefficient since N is still very large relative to T. For a more

detailed description of the auxiliary models see section 2.3.

The robust three-pass estimator approach will be tested by estimating the risk premia of the five
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factors in the Fama and French (2015) model. Since these are all traded factors, the risk premium of

each factor in the sample period can be calculated by taking the mean return of the factor in this period.

The mean return can thus be used as a target and various models can be compared by how close the risk

premium estimate is to the mean return.

Table 6 gives the average and estimated risk-premia for the five Fama-French factors using three

versions of the two-pass estimator, three versions of the mimicking portfolio approach and the normal

and robust three-pass estimator. Following Giglio and Xiu (2021) the three-pass method is implemented

using seven factors. Note first that any version of the mimicking portfolio approach where the risk factor

is projected onto itself will deliver a risk-premium estimate exactly equal to the mean. This is because it

can perfectly project the risk factor onto itself and take zero weights for any other possible factors, the

average return of the projection will then be equal to the average return of the factor itself. Because of

this fact, the mimicking portfolio approach with three Fama-French factors delivers perfect estimates of

the risk-premium for the first three Fama-French factors. However, performance is significantly worse for

the last two.

The last row of table 6 shows the root-mean-square error (RMSE) which is calculated by taking the

root of the mean squared difference between the factor’s average return and the estimated risk premium.

It gives an indication of a model’s overall performance, where all estimates have to be close to the average

return and large differences are punished harder. The best performing models according to this criterion

are the mimicking portfolio approach based on the 74 extreme deciles and the robust three-pass estimator,

with an RMSE of 0.05 and 0.06 respectively.

Among the second best models is the regular three-pass estimator, having an RMSE of 0.11. When

comparing the regular three-pass estimator directly with the robust three-pass estimator, we observe that

the robust three-pass estimator produces equal or better risk-premium estimates for every risk factor.

Actually, when considering more than two decimals, the robust three-pass estimator produces strictly

better estimates than the regular three-pass estimator. Specifically, in the cases where the regular three-

pass estimate is far off, such as for RMW and CMA, the robust three-pass estimator is able to find large

improvements.

Tables 7 and 8 in the appendix provide robustness checks for these conclusion. Firstly, Table 7 checks

the robustness of the mimicking portfolio, regular three-pass, and robust three-pass models with regard

to the set of assets the risk factor is being projected onto. We calculate the estimated risk premium for

each of the five Fama-French factors, using the eight different sets of double-sorted portfolios, for each

model. Thereafter, the RMSE of these five risk premium estimates is calculated for each model, this is

the figure given in the table. The mean and standard deviation of the eight RMSEs is also given. We see

that the robust three-pass estimator still outperforms the standard three-pass estimator in six out of eight

cases. Furthermore, the average RMSE is lowest for mimicking portfolio and robust three-pass estimator

at 0.14, while the standard deviation of the RMSE of the three-pass estimator is slightly higher at 0.05.

Note here that the (robust) three-pass estimator is designed to work best in large N environments, while
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the mimicking portfolio approach becomes less efficient as N increases. With this notion, we can conclude

that the (robust) three-pass estimator is not sensitive to the choice of base assets.

Table 8 shows average and estimated risk premia, as in Table 6, but for a much larger set of risk

factors. We consider all 37 anomalies from the Kozak, Nagel and Santosh dataset, the risk factor is

defined as the decile-10 return minus decile-1 return, and anomalies in Table 8 have been sorted by their

Sharpe ratio 3. The last row reports the RMSE, which is defined the same way as for Table 6. The

RMSE for the robust three-pass estimator is the lowest out of all models considered, even being three

times as low as its non-robust counterpart.

This indicates that the robust three-pass estimator is able to detect weaker factors which are important

for determining the risk premium of some factors. We conclude that the robust RP-PCA estimator reduces

the risk of not identifying factors that are important in determining risk-premia and is therefore able to

produce more accurate estimates than the standard three-pass estimator.

Table 6: Average and estimated risk premia for the five Fama-French factors

Two-Pass Mimicking Portfolio Three-pass

Mean No Controls Market FF3 Market FF3 Extremes Regular Robust

Market 0.53 0.58 0.58 0.56 0.53 0.53 0.52 0.54 0.52

SMB 0.21 0.98 -0.01 -0.01 0.11 0.21 0.20 0.19 0.23

HML 0.34 -1.11 0.32 0.31 -0.08 0.34 0.30 0.23 0.26

RMW 0.26 -1.01 0.23 0.39 -0.06 -0.08 0.22 0.16 0.24

CMA 0.30 -0.66 0.27 0.33 -0.09 0.11 0.20 0.12 0.20

RMSE - 1.02 0.11 0.12 0.30 0.18 0.05 0.11 0.06

Mean return and estimated risk premia for the five Fama-French factors using various estimation methods. The two-pass

regressions use no controls, only the market factor as control, and the three Fama-French factors as control. Mimicking

portfolio approach is applied to only the market portfolio, the three Fama-French factors and 74 decile-1 and decile-10

anomaly portfolios. The three-pass estimator is implemented in the standard way as described in Giglio and Xiu (2021) and

a robust version where RP-PCA is used in the first step, rather than standard PCA. Both three-pass estimators use seven

factors and the robust version uses a gamma parameter in the RP-PCA step of 20. The root-mean-square error (RMSE) is

the root of the mean of the squared difference between the average factor return and the risk premium estimate.

5 Conclusion

This paper first performs a large empirical analysis of the risk premium PCA (RP-PCA) estimator by

Lettau and Pelger (2020). This estimator aims to identify latent factors in asset pricing by not only

3Note that in this table a mimicking portfolio approach with five Fama-French factors is used rather than the decile-1

and decile-10 portfolios as before. This is because the risk factors are linear combinations of these decile-1 and decile-10

returns. Projecting the risk factor onto these returns would thus always result in a risk premium estimate equal to the

mean return.
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incorporating information in the second moment of asset returns, like standard PCA but also using

information contained in the first moment. Consequently, the objective of PCA is to extract factors

that both capture time-series comovement as well as reduce cross-sectional pricing errors. RP-PCA can

be seen as a generalized version of PCA and can be simply implemented by using standard eigenvalue

decomposition after adding a variable to the variance-covariance matrix of asset returns.

Second, the RP-PCA estimator is integrated into the three-pass risk estimation framework by Giglio

and Xiu (2021). The aim of the standard three-pass framework is to estimate risk premia without the

risk of omitted variable or measurement error bias. However, it relies on the assumption that the factors

driving stock returns are sufficiently strong enough to be detected by standard PCA. RP-PCA is shown

to detect weak factors with higher accuracy than standard PCA, therefore I use RP-PCA over standard

PCA in the three-pass estimator, which is named the robust three-pass estimator.

The empirical findings can be summarized as follows. For eight sets of double-sorted portfolios with

N = 25, a three-factor RP-PCA model is able to reduce pricing errors and unexplained variation while

increasing the maximum possible Sharpe ratio out-of-sample compared to standard PCA and the three-

factor Fama-French model. The difference arises because RP-PCA is able to identify factors that are too

weak to be detected by standard PCA, or because the ordering of the factors is different. A five-factor

RP-PCA model is sufficient to capture the time-series and cross-sectional characteristics of 370 single-

sorted decile portfolios based on 37 anomaly characteristics. The RP-PCA model is able to produce lower

pricing error and higher Sharpe ratio than standard PCA and the five-factor Fama-French model, both

in- and out-of-sample. Furthermore, while standard PCA by definition minimizes in-sample unexplained

idiosyncratic variance, RP-PCA produces similar results in-sample and is even able to have less residual

variance in some cases out-of-sample. Analysis of the roles of the individual factors reveals that the

first factor in both PCA and RP-PCA can be seen as a market factor. It is important for explaining

the time-series comovement of returns, as well as the cross-section of returns. The second and fifth

RP-PCA factors have high means and high Sharpe ratios but contribute relatively little to the reduction

of idiosyncratic variance. These factors are important for explaining the cross-section of returns, while

their roll in explaining time-series comovement is less defined. Contrarily, factors 3 and 4 have low means

and Sharpe ratios, but contribute more to the reduction in idiosyncratic variance. They can be seen as

important for time-series comovement, but less important for the cross-section of returns. RP-PCA is

able to achieve a twice as high Sharpe ratio out-of-sample compared to PCA. This is possible because the

cross-sectional penalty imposed by RP-PCA makes for a strong correlation between mean asset returns

and weight in the SDF. This correlation is much lower for standard PCA.

The implementation of the RP-PCA estimator into the three-pass estimator produces very promising

results. For all five Fama-French factors the robust three-pass estimator produces strictly better risk

premium estimates than the standard three-pass estimator. The root-mean-square error of the robust

three-pass estimator is twice as low as standard PCA over the five Fama-French factors and even three

times as low over the full set of 37 anomaly high-minus-low factors. The results are robust to the choice
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of base assets.

The RP-PCA approach provides a reliable way of estimating factor models for asset returns. The

implementation into the three-pass estimator allows for risk-premium estimation robust to measurement

error, omitted variables, and weak factors. Future research can focus on the implementation of RP-PCA

into other methods that rely on standard PCA, such as the SDF estimation by Kozak et al. (2020) and

the instrumented-PCA estimator in Kelly et al. (2019). Furthermore, the robust three-pass estimator

can be tested on its sensitivity to the choice of the number of factors used in the first step.

The objective of this paper is to show the merit of using RP-PCA in the three-pass estimator, to do so

only the risk premia of traded factors are estimated since they can be compared with the mean return of

the factor to provide a measure of accuracy. Now that the concept of the robust three-pass estimator has

been shown to work in this paper, it can be applied in future research to different, possibly non-traded,

factors.

6 Appendix

Table 7: RMSE of the estimation of the risk premium of five Fama-French factors using different double-

sorted portfolios as base assets.

Mimicking Portfolio Regular Three-Pass Robust Three-Pass

Book-to-Market 0.10 0.10 0.09

Accruals 0.23 0.27 0.26

Investment 0.10 0.12 0.11

Operating profitability 0.17 0.17 0.16

Residual Variance 0.11 0.08 0.09

Variance 0.11 0.09 0.10

Momentum 0.16 0.18 0.16

Reversal 0.16 0.18 0.17

Mean 0.14 0.15 0.14

Standard Deviation 0.04 0.06 0.05

RMSE when estimating the risk premium of the five factors in the Fama-French model. Left column shows which assets

are used as the base assets, the assets onto which the risk factor is projected. The last two rows give the mean and standard

deviation of the RMSE over the 8 double-sorted portfolios. Best performing models are given in bold.
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Table 8: Average and estimated risk premia for 37 high minus low anomaly portfolios

Two-Pass Mimicking Portfolio Three-pass

Mean No Controls Market FF3 Market FF3 FF5 Regular Robust

indrrevlv 1.29 1.39 0.76 0.60 0.11 0.22 0.25 0.09 0.96

indmomrev 1.12 3.37 0.99 1.03 0.04 0.04 0.14 0.08 0.77

indrrev 0.97 1.32 0.22 0.09 0.19 0.28 0.22 0.12 1.07

season 0.77 3.22 0.45 1.42 0.07 -0.02 0.01 0.04 0.57

valprof 0.75 -0.98 0.62 1.06 -0.04 0.32 0.43 0.03 0.94

mom12 1.26 -3.01 0.69 0.87 -0.13 -0.32 0.02 -0.01 1.08

valmomprof 0.83 -2.39 0.70 0.83 -0.08 0.10 0.20 0.03 0.98

inv 0.46 -2.00 0.88 0.92 -0.06 0.13 0.20 -0.01 0.37

ciss 0.47 -0.87 0.64 1.02 -0.18 -0.07 0.12 -0.13 0.42

igrowth 0.36 -2.19 0.87 0.92 -0.03 0.13 0.25 0.01 0.25

sp 0.52 2.27 0.53 0.37 0.05 0.58 0.69 0.17 0.67

ep 0.57 -1.86 0.74 1.06 -0.16 0.23 0.49 0.01 0.65

noa 0.37 -0.54 0.09 0.89 0.01 -0.08 -0.05 -0.02 0.34

prof 0.38 2.43 -0.10 0.57 0.04 -0.12 0.10 0.01 0.34

accruals 0.35 -3.44 0.93 0.75 -0.03 -0.01 -0.06 -0.02 0.19

aturnover 0.41 2.36 0.59 0.75 0.08 0.07 0.40 0.10 0.68

value 0.47 1.39 0.52 0.39 -0.02 0.58 0.62 0.13 0.61

valmom 0.52 -2.27 0.85 0.81 -0.10 0.24 0.32 0.08 0.68

cfp 0.42 -0.22 0.58 0.41 -0.04 0.50 0.58 0.11 0.52

momrev 0.45 3.46 0.37 -0.29 0.02 0.36 0.32 0.07 0.46

growth 0.29 -1.71 0.65 0.63 -0.09 0.20 0.41 -0.00 0.27

lrrev 0.41 1.96 0.35 -0.09 -0.00 0.49 0.48 0.06 0.61

ivol 0.55 -1.50 0.12 0.44 -0.46 -0.46 0.09 -0.31 0.43

indmom 0.45 -3.05 0.76 0.83 -0.11 -0.13 0.07 0.04 0.35

strev 0.36 1.91 0.02 -0.17 0.20 0.27 0.19 0.12 0.99

valuem 0.38 2.68 0.14 -0.11 0.07 0.66 0.45 0.10 0.45

size 0.27 1.93 -0.02 -0.19 0.10 0.38 0.28 0.09 0.27

mom 0.36 -2.66 0.51 0.66 -0.12 -0.24 -0.08 0.00 0.55

lev 0.25 2.54 0.56 -0.05 0.05 0.63 0.57 0.20 -0.02

roaa 0.20 -1.20 0.06 0.56 -0.18 -0.36 -0.02 -0.16 0.21

divp 0.16 -1.77 0.49 -0.20 -0.22 0.30 0.31 -0.07 0.18

invcap 0.10 -1.55 0.48 0.43 -0.23 0.18 0.51 -0.04 0.07

roea 0.08 -1.26 0.05 0.41 -0.19 -0.38 -0.00 -0.17 0.13

gmargins 0.02 -1.58 -0.30 -0.04 -0.07 -0.34 -0.33 -0.15 -0.00

price 0.03 -1.87 0.10 0.29 -0.28 -0.65 -0.29 -0.20 -0.08

shvol -0.01 -1.21 0.13 0.31 -0.42 -0.22 0.13 -0.30 0.10

sgrowth -0.05 -1.71 0.45 -0.25 -0.10 0.19 0.36 -0.02 0.08

RMSE - 2.18 0.33 0.42 0.59 0.55 0.45 0.54 0.1829
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