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1 Introduction

The Equity Premium Puzzle is still a prominent topic in financial economics. First described

by Mehra and Prescott (1985), investors and asset managers are interested in improving its

predictability. We work with a challenging dataset, where predictors are often weak and the

‘best’ model changes over time. There is abundant previous research claiming to find good

models and predictors. However, prominent papers such as Welch and Goyal (2008) indicate

that most are unable to outperform the historical average prediction. Researchers such as

Pesaran and Timmermann (1995) have indicated that this is due to the time-varying predictive

power of factors and uncertainty during model selection.

We evaluate the performance of several machine learning methods for forecasting the equity

premium. Following the paper of Zhang et al. (2020), these models are estimated under both

the traditional recursive window scheme and a more advanced AveW technique, which attempts

to deal with parameter instability and structural breaks by dividing the estimation sample into

several periods, which is combined further with the historical average as shrinkage target.

A diverse range of machine learning models are evaluated. These are: the simple K-Nearest

Neighbors from Fix and Hodges (1989), kernel-augmented Support Vector Regression as de-

scribed in Smola and Schölkopf (2004), the popular Random Forest model from Hastie et al.

(2009), the AdaBoost boosting algorithm proposed by Drucker (1997), and three variants of

neural networks, including the Elman RNN from Elman (1990), the LSTM from Hochreiter and

Schmidhuber (1997), and the GRU from Cho et al. (2014). Additionally, we show that faster

computation times are possible with the application of a widely-available commercial cloud

platform.

These models are evaluated against the historical average prediction as the benchmark, by

comparing the MSE of their forecasts. Evaluations are done with the popular dataset of Welch

and Goyal (2008) updated in 2022, including observations from December 1926 to December

2016. From this data, we obtain 12 predictor variables and create forecasts of the excess return

on the CRSP value-weighted stock market index.

From our methods, we obtain several key insights. First, the results seen in the paper

of Zhang et al. (2020) are highly reproducible, even when they are applied on the updated

dataset. The AveW estimation method and HA combination allow several econometric methods

to outperform the historical average benchmark. When applying machine learning methods,

we find that algorithms requiring less training time and having lower possible hyperparameter

combinations to be more appropriate for our application due to computational restrictions. Some

of these machine learning methods, such as K-Nearest Neighbors are improved by AveW and
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HA combination, but others such as Support Vector Regression are not. In terms of accuracy,

we find that K-Nearest Neighbors and RBF-Kernel Support Vector Regression have very high

outperformance over the benchmark. Finally, we find very interesting forecasting results of K-

Nearest Neighbors and RBF-Kernel Support Vector Regression, where these methods perform

the best in periods of highly positive returns, which stands in contrast to most models which

perform well in periods of downturn.

Our paper is structured as follows. Section 2 is the Literature Review, where we discuss

related research and propose the main research question and related sub-questions. Section

3 is the Data section, where have a short overview on the datasets utilized. Section 4 is the

Methodology, where we provide more details on the models, metrics, and tests used for answering

the main research question. Section 5 is the Results, which contains the output of our methods

and a discussion of what they mean. Section 6 is the Conclusion, where we answer the research

question, look through the limitations of our results, and suggest further research topics.

2 Literature Review

Throughout the years, many models and variables have been suggested for predicting the equity

premium. Welch and Goyal (2008) examines the performance of several of these variables. Their

results show most models perform poorly both in-sample and out-of-sample, failing to improve

upon simply predicting the historical mean. They attribute this to the instability of models and

frequent structural change. Intuitively, as economic conditions change, it is reasonable to guess

that interactions between economic variables change as well.

Methods from the machine learning field have become widely used for financial applications.

While machine learning is a broad term with various interpretations, we will consider the fol-

lowing definition: algorithms specialized in prediction, which require few or no assumptions on

the nature of the data, and allow for flexible forecast models. Results from papers such as Gu

et al. (2020) indicate that machine learning based forecasts are able to perform more than twice

as well for asset pricing, compared to more traditional regression methods.

We are interested how these methods may also be used for forecasts of the equity premium.

This motivates our main research question: “How can we apply machine learning methods to

improve equity premium predictability?”

While the estimation of forecast models are traditionally done through expanding or rolling

window estimation as described in Elliott and Timmermann (2016), Zhang et al. (2020) show

that the average windows (AveW) method used by Pesaran and Timmermann (2007) allows for

better forecasting accuracy, for every model considered by the authors. This method averages
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the same model class, estimated over windows to accommodate structural breaks. This AveW

forecast is then combined again with the historical using the approach seen in Lin et al. (2016),

further improving the forecast accuracy of all models used; even allowing the kitchen sink fore-

casts to perform better than the benchmark. As we aim to improve upon these statistical and

econometric methods, we must first replicate the results of Zhang et al. (2020), leading to our

first sub-question: “To what extent can we replicate the forecasting performance of Zhang et al.

(2020)?”

Many recent papers on asset pricing advocate the use of machine learning methods. Feng

et al. (2018) show how deep learning methods as an extension of non-linear econometric models

can be applied for predicting the market risk premium. Chen et al. (2019) utilize deep neural

networks to predict individual stock returns, proposing a novel three-network model to incor-

porate the theoretical structure of a stochastic discount factor. Rossi (2018) utilizes boosted

regression trees for monthly forecasts of stock return and volatility, creating forecasts based on

many conditioning variables without strict assumptions such as linearity, improving the per-

formance of mean-variance portfolio allocation. Bianchi et al. (2021) show that neural networks

and trees are also applicable in forecasting the returns of other asset classes, in this case bonds.

Comparisons of multiple machine learning models in the context of risk premium prediction

are done by Gu et al. (2020). Based on the literature on machine learning in empirical asset

pricing, we propose the second sub-question: “Which machine learning methods are appropri-

ate for equity premium forecasting?”. To answer this sub-question, we consider the following

criteria for an appropriate model. First, a model should perform consistently well, without too

much dependence on a perfect implementation. Second, the model should be computable in a

reasonable amount of time on a representative modern machine.

While we are able to measure forecasting performance through simply evaluating loss func-

tions, various tests exists which allow a more concrete comparison of forecasts. Zhang et al.

(2020) include two main performance measures for each model. The R2
OS is a convenient, in-

terpretable metric to evaluate the performance of a complex model relative to a benchmark.

To provide a more statistical judgement, the MSFE-adjusted test developed by Clark and West

(2007) can be used to give a probabilistic measure of forecast quality improvement compared

to the benchmark. Finally, we construct simple mean-variance portfolios and calculate their

△(ann%) and Sharpe ratio, to provide a more economic measure of forecasting performance.

We rely on these methods to assess the performance of our models, leading to our third sub-

question: “Are machine learning methods able to produce more accurate forecasts of the equity

premium?”
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3 Data

3.1 Equity Premium Prediction

The dataset used in this paper contains the same variables as Welch and Goyal (2008), updated

with more recent observations and with changes to several data points. From this dataset,

we follow Zhang et al. (2020) and include the following 12 predictor variables: dividend–price

ratio (DP), log dividend yield (DY), log earnings–price ratio (EP), stock variance (SVAR),

book-to-market ratio (BM), net equity expansion (NTIS), Treasury bill rate (TBL), long-term

return (LTR), term spread (TMS), default yield spread (DFY), default return spread (DFR), and

inflation (INFL). For replication purposes, we use an initial training period of (1926:12–1956:12)

and an out-of-sample period (1957:01–2016:12).

Descriptive statistics and a correlation matrix of the data are provided in Appendix B. Note

that we can already see the challenge from Figure 1: None of our predictors are highly correlated

Note that while Zhang et al. (2020) use excess returns calculated from the S&P 500 index as

the dependent variable, we use the excess returns on the CRSP value-weighted index (EQPREM)

to represent the equity premium, which is also included in the data of Welch and Goyal (2008).

4 Methodology

This section details the econometric methods used in our paper. We begin by replicating selected

results from the paper of Zhang et al. (2020). The same forecast models are replicated, using

the same estimation methods. The performance of these models are evaluated with the same

performance metrics. We extend the research through the addition of several machine learning

methods and check if the findings still hold when we apply both the forecast models of Zhang

et al. (2020) and the machine learning methods to the updated data.

4.1 Econometric Forecast Models

Our paper includes the same forecasting models as in Zhang et al. (2020), which for convenience

we will refer to as “Econometric Forecast Models”. As the standard model, we use the “kitchen

sink” regression described by Welch and Goyal (2008), representing a simple model requiring

OLS assumptions while ignoring model uncertainty and parameter instability. The model is

defined as

rt+1 = Xtβ + et+1, t = 0, 1, . . . , T − 1 (1)

with rt+1 being EQPREM at time t+1, Xt a 1×(p+1) vector of predictors as Section described
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in 3.1, β the parameter vector, et+1 a vector of error terms, p the number of predictors, and

T the number of time periods or sample size. We also include six forecast models, with short

descriptions of them below.

1. Least Absolute Shrinkage and Selection Operator (Lasso): A method for variable selection

and regularization during estimation of linear models, popularized by Tibshirani (1996).

Compared to OLS, Lasso can be viewed as introducing ℓ1 norm penalty to the least-

squares objective function. Allows coefficients to become zero, and may improve prediction

accuracy as it removes less useful predictors.

2. Elastic Net (ElasticNet): Another method for variable selection and regularization, first

described by Zou and Hastie (2005). In addition to Lasso’s ℓ1 norm penalty, also adds the

ℓ2 of Ridge regression in an attempt to combine both their advantages.

3. Bayesian Model Averaging (BMA): Model averaging relies on the hypothesis that a com-

bination of several models may produce better forecasts compared to a single one. The

BMA forecast as described by Hoeting et al. (1999) utilizes the BIC of individual models

to produce an approximation of their analytically optimal BMA weights.

4. Mallows Model Averaging (MMA): Uses the weights minimizing a Mallows criterion. As

described in Hansen (2007), this method asymptotically gives the lowest squared error,

given that the individual linear regression models are conditionally homoskedastic. Addi-

tionally, Hansen (2008) shows that minimizing the Mallows criterion also minimizes the

1-step mean-squared forecast error.

5. Jackknife Model Averaging (JMA): A model averaging technique first described my Hansen

and Racine (2012) which allows for heteroskedasticity; asymptotically optimal and gives

the lowest expected squared error when there is heteroskedasticity. Weights are determined

by minimizing a leave-one-out cross-validation criterion.

6. Weighted-average least squares (WALS): A general model averaging technique first de-

scribed by Magnus et al. (2010). Deals with the disadvantages of BMA, as the algorithm

has linear-time computational complexity, and lowers reliance on a prior probability dis-

tribution specification.

MMA and JMA utilize a nested model scheme, where individual linear regressions are made,

with the larger models always containing the predictors of the smaller ones. BMA enumerates

all possible combinations of predictors and estimates a linear regression on each. Note that

more detailed descriptions of these models are included in the paper of Zhang et al. (2020), and

Appendix B.1 also includes notes on our implementation.
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4.2 Estimation Methods

The following forecast model estimation techniques are used by Zhang et al. (2020), representing

both a traditional and more advanced method.

First, we have the Recursively Expanding Window. Each forecast model is estimated using

all of the data before some time t, and the model is used to predict a variable’s realization at

time t + 1. Whenever we move the estimation point, the data that was previously used for

forecasting is then added to the estimation set. For more details on the expanding window, we

refer to Elliott and Timmermann (2016).

The Average Windows (AveW) forecasting method as described by Pesaran and Pick (2011)

is also utilized. The idea is similar to model averaging, where the forecasts of multiple models are

combined. However, we now combine the forecasts of models from different estimation windows.

This is also expected to help deal with structural breaks in the data, due to the inclusion of

different windows. Let t0 be the end of the observation window, m = 10 the number of estimation

windows, with wi = wmin + i−1
m−1(t0 − wmin), for i = 1, 2, . . . ,m the size of estimation window

i. This produces estimation windows Wi = {rt+1, Xt}t0−1
t=t0−wi

, for i = 1, 2, . . . ,m. The AveW

forecast is then formulated as

r̂AveW
t0+1 =

1

m

m∑
i=1

r̂t0+1 (Wi) , (2)

with r̂t0+1 (Wi) as the forecast of a model estimated over window Wi.

4.3 Combining Forecasts

A novel forecast combination approach is the HA combination from Zhang et al. (2020), where

the AveW forecasts are then combined with the historical average. This is shown below as

r̂Ct0+1 = (1− δ)r̂HA
t0+1 + δr̂AveW

t0+1 , (3)

where r̂HA
t0+1 is the historical average forecast, r̂AveW

t0+1 the AveW forecast, and δ the forecast

combination weight. This weight can then be set through performance-based methods, e.g.

giving larger weights to models with lower mean-squared forecast error. Although it is possible

to derive theoretically optimal weights, research such as Rapach and Zhou (2013) indicate that

when the forecasts from different models are correlated it is difficult to precisely estimate them

precisely, causing poor practical performance. As such, Zhang et al. (2020) decide to use a simple

equal weighted approach. They hypothesize that this approach “diversifies” the construction of

forecasts to help the combined forecast become less sensitive to model uncertainty.
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4.4 Evaluation Metrics

The out-of-sample R2 as described in Campbell and Thompson (2008) is a convenient metric

for measuring the performance of forecast models, with its calculation described below as

R2
OS = 1− MSFEM

MSFEbmk
= 1−

1
q

∑t0+q
t=t0+1

(
rt − r̂Mt

)2
1
q

∑t0+q
t=t0+1 (rt − r̄t)

2 , (4)

with [t0 + 1, t0 + q] the time interval for forecast evaluation, MSFEM and MSFEbmk mean-

squared forecast errors of a complicated model and a benchmark model respectively, and q the

number forecasts made. The benchmark model will always be the historical average forecast,

r̄t0+1 = 1
t0

∑t0
t=1 rt. R2

OS is favorable for several reasons. It is simple to interpret, as it is a

measure of the percentage increase or reduction in MSFE of a complicated model compared

to the benchmark. A positive value shows that a forecast model performs better than the

benchmark, and a negative value indicates worse performance.

Clark and West (2007) show that it is possible to test the significance of positive R2
OS values,

by testing for significant difference in MSFE. The MSFE-adjusted statistic is defined as follows.

Let ŷ1t,t+τ and ŷ2t,t+τ be the τ -steps ahead forecasts of the benchmark and sophisticated model

respectively, at time t. Define adj as the sample average of (ŷ1t,t+τ − ŷ2t,t+τ )
2, which we will

use as adjustment. MSFE1 = P−1
∑

(yt+τ − ŷ1t,t+τ )
2 and MSFE2 = P−1

∑
(yt+τ − ŷ2t,t+τ )

2

represent the MSFE of models 1 and 2 respectively. Our null hypothesis is then H0 : CW =

MSFE1 − (MSFE2 − adj) ≤ 0 vs H1 : CW > 0. For simplicity, we define

f̂t+τ = (yt+τ − ŷ1t,t+τ )
2 −

[
(yt+τ − ŷ2t,t+τ )

2 − (ŷ1t,t+τ − ŷ2t,t+τ )
2
]

(5)

which we regress on a constant, and perform the test by using the resulting t-statistic, with the

number of forecasts made as the degrees of freedom for a test of zero coefficient. Note that this

is an approximation, as the distribution of the CW-statistic is non-standard.

To provide a more clear economic meaning of our results, we also calculate the sharpe ratio,

and the △(ann%) metric expressed in annualized percentage return. This value is interpreted as

the gain in utility for an investor in terms of additional management fees they would be willing

to pay due to the performance improvement provided by constructing a mean-variance portfolio

based on a model’s forecasts. Additional information on its calculation is provided by Zhang

et al. (2020).

4.5 Machine Learning Models

We create forecasts based on several popular machine learning methods and compare their

performance to the six sophisticated models included by Zhang et al. (2020). For this section,
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denote {(yi, xi)} as a set of dependent variable-predictor vector pairs, (ypred, xpred) a point to

be predicted, and ŷ the predicted value of ypred made by the model.

Most, if not all machine learning methods require a choice of hyperparameters. These refer to

the parameters of a model or algorithm that are chosen before it sees the training data, and will

affect both in-sample and out-of-sample performance. This paper uses the simple grid search

method to find the best choice of hyperparameters. One major disadvantage of this method

is its computation time. To illustrate, let there be a model that requires κ hyperparameters,

where for each hyperparameter we search along ni possible values for i = 1, . . . , κ. Assuming a

search on each hyperparameter combination takes the same amount of time to evaluate, (which

does not hold in practice), grid search will have a time complexity of O(n1n2 · · ·nκ). Given the

nature of our investigation that require models to be re-estimated once per forecast (expanding

window) and ten times per forecast (AveW), computation time could mean that some machine

learning methods are less appropriate for this task. Note that additional implementation details

are provided in Appendix B.2.

4.5.1 K-Nearest Neighbors Regression (KNRUnif, KNRDist)

The K-nearest neighbors algorithm is a supervised, non-parametric method. This algorithm was

first proposed by Fix and Hodges (1989), and produces a prediction based on the K data points

that have the lowest measure of distance to the predicted point. While Devroye et al. (2013)

includes several theoretical results on consistency when using the algorithm for classification,

most literature on its use for regression are on implementation details.

For the simplest variant, training a nearest neighbors model is only a matter of storing

the data points (yi, xi) from the training set. Prediction of some point (ypred, xpred) is more

computationally intensive, as described in Imandoust et al. (2013). First, calculate a distance

metric di, e.g. the Euclidean or Mahalanobis distance, between all xi of the training set and

xpred. These distances are sorted in ascending order. Let A be the set data points with the K

smallest values of di. The model prediction is calculated as ŷ =
∑

j∈A γjyj , with {γj} a set of

weights, usually uniform (KNRUnif) or distance-based (KNRDist).

4.5.2 Support Vector Regression (SVRRBF, SVRSigmoid)

While originally used for classification, an extension on support vector machines allows the

method to be used on regression problems. This was first seen in Drucker et al. (1996), and

Smola and Schölkopf (2004) gives a detailed overview on how this is done and further devel-

opments on the algorithm. With {(yi, xi)} as training data, we aim to find a function f(x) that
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maps xi to yi with the restriction that the distances between all yi and f(xi) are at least some

constant ϵ. For this algorithm, this function is always a dot product of xi. In the linear case, we

have f(x) = ⟨θ, xi⟩+ ν where θ is a vector of weights. This gives a linear optimization problem

that can be written as

minimize
1

2
||θ||2 + C

ℓ∑
i=1

(ξi + ξ∗i ) (6)

s.t. yi − ⟨θ, xi⟩ − ν ≤ ε+ ξi, (7)

⟨θ, xi⟩+ ν − yi ≤ ε+ ξ̇∗i , (8)

ξi, ξ
∗
i ≥ 0, (9)

with ξi and ξ∗i slack variables to allow optimization with infeasible constraints, C > 0 constant

penalty on the objective function.

There are various methods to introduce non-linearity. A naive approach would be to add

squares of predictors to the function. However, this would cause the optimization problem to

become quadratic, yielding a high computational cost. A better approach is to use an implicit

mapping between predictors can be made by using a kernel k(x, x′) := ⟨Φ(x), Φ(x′)⟩. We utilize

both the radial basis function (SVRRBF) and sigmoid (SVRSigmoid) kernels.

4.5.3 Random Forest Regression (RandomForest)

An ensemble method that utilizes the output of multiple regression trees to produce forecasts.

Breiman et al. (2017) describes the use of trees for both regression and classification problems.

Regression trees are decision trees with continuous values for its leaves, and are grown by splitting

nodes such that the split minimizes a loss criterion, most commonly the mean squared error.

However, trees tend to over-fit training data resulting in high variance and low bias. This

causes low out-of-sample performance. Random forests as described in Hastie et al. (2009)

utilize multiple uncorrelated trees to produce better forecasts. Individual trees are grown with

bootstrapped samples, and their forecasts are aggregated (Bagging). Let {Zb}Bb=1 be the set of

bootstrap samples, {f̂ b(x)}Bb=1 the set of regression trees trained on each bootstrap sample b.

The bagging prediction is computed as

f̂bag(x) =
1

B

B∑
b=1

f̂ b(x), (10)

for B the number of trees. In addition to bootstrapping for each tree grown, random forests

apply an additional method when growing the regression trees: when searching for a split, only

a subset of the predictors will be used. The reason for this is that a few predictors might be very
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strong and will be included in many trees. By removing predictors when splitting, correlations

between individual trees can be reduced.

4.5.4 AdaBoost Regression (AdaBoost)

Another ensemble method commonly used with decision trees. Unlike the random forest which

attempts to create a number of low-correlated trees, AdaBoost is a boosting algorithm, which

iteratively trains lower-performing forecast models with respect to the performance of its pre-

decessors to build better performing models.

The AdaBoost regression is described in Drucker (1997). To initialize the algorithm, set

weights {wi}, wi = 1/N for each item in the training set {(yi, xi)}, N the size of the training

set. The following procedure is repeated until a stopping criterion is reached, which can be

some iteration limit J . Let j be the iteration number. Take a bootstrap sample with size

N1, {(yk, xk)}N1
k=1 with replacement, with pi = wi/Σ

N
i=1wi as the probability observation i of

the training set is included in the sample. Train the regression tree on all observations k

from the bootstrap sample to produce the model f̂j(x). With the model, produce predictions

{ŷk,j = f̂j(xk)}N1
k=1 and calculate a loss function Lk on each prediction, the average loss L =∑N1

k=1 Lkpk, and βj =
L

1−L
as the measure of predictor confidence. Then, update each weight as

wi = β∗∗[1 − Li]. After all iterations are completed, we obtain models {f̂j(x)}Jj=1, and model

confidence measures {βj}Jj=1. These are used to produce the AdaBoost forecast

f̂Ada(x) = inf

 y∈Y : j: f̂j(x)≤ y log(1/βj) ≥
1

2

∑
j

log(1/βj)

 . (11)

This iterative procedure would intuitively cause over-fitting. However, Wyner et al. (2017)’s

derivations show AdaBoost’s empirical effectiveness can be explained from its property as a

weighted ensemble classifier, effectively becoming a “random forest of forests”.

4.5.5 Neural Networks (RNN, LSTM, GRU)

Neural networks are models which rely on groups of nodes, each of which receives input vectors,

and calculates one or more mathematical functions to produce outputs. Wang (2003) provides

a description of the traditional neural network. Each node has parameters commonly called

weights and biases. Weights Va,b of node a multiply the bth element of input vector x of length

La (Note the subscript on the length, as different nodes in a network may have different input

lengths), which are then summed together to produce a scalar along with the bias term ba. The

resulting sum is then passed through a non-linear function g(.), called the activation function.

This results in the node’s output ha, as shown below as
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ha = g(

La∑
b=1

Vabxb + ba). (12)

Groups of nodes are organized into layers. In general the outputs of one layer becomes the

input for the next. The strength of neural networks comes from the universal approximation

theorem(s); it is proven that multi-layer neural networks can represent any computable function.

We will be using three types of neural networks that have empirically been shown to perform

well on data in the form of sequences.

The RNN, proposed by Elman (1990) is a simple method to incorporate a time or sequence

structure into neural network models. This is done by adding an additional input to each node:

its own output from the previous time period. While this would seem as if each time period

adds an additional layer to the network, replacing regular neural network nodes with recurrent

nodes does not add additional layers. Another type of recurrent network we use is the LSTM,

which was proposed by Hochreiter and Schmidhuber (1997). This type of node is composed

of multiple mathematical functions and a cell that stores long-term information. Gates which

act similarly to simple neural network nodes (also containing inputs, parameters, and outputs)

determine how much information from the cell is kept (forget gate), and what information is

used to update the cell (input gate). The LSTM node has become one of the most popular

methods for modeling sequence data due to its high empirical performance. Lastly, we use the

GRU node introduced by Cho et al. (2014). Similar to the LSTM nodes, GRU nodes utilize

gates to control the flow of information. But unlike the LSTM, GRU nodes combine the forget

and input gates into a single gate and uses a single hidden-cell state.

4.6 Computational Methods

The increase in available computational power has made the use of complex statistical methods

more practical. Several methods from Section 4.1 are known to be computationally expensive

(e.g. BMA). The machine learning methods in Section 4.5 may require even more, due to cross-

validation. This could present a problem, especially when AveW is used; a reasonable guess is

computation time increases by a factor of m compared to expanding window.

While Moore’s law was reasonably accurate in predicting the doubling of single-thread pro-

cessor speeds every two years, industry experts such as Sutter et al. (2005) foresee that additional

gains in computational power have to come from more processors instead of higher clock speeds.

As such, using a more recent processor model will not allow much faster runtime.

Fortunately, all of our estimation schemes in Section 4.2 belong in the class of embarrassingly

parallel algorithms, which easily allows multiprocessing. Every forecast made is independent of
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all the others; no intermediate results need to be shared and only input data needs to be

separately parsed. As such, our computer code can be written in a way that utilizes multiple

CPU cores running in parallel, and can expect computation time to be approximately inversely

related to the number of CPU cores used. It will not be exactly inversely related due to differing

overheads required when creating the different inputs of each forecast.

5 Results

Model Name R2
OS (%) CW Test Time (s)

Expanding Window

LinearRegression -7.72% 0.51 9

Lasso -0.56% -0.32 16

ElasticNet -0.56% -0.31 14

BMA -2.06% -1.31 446

MMA -3.39% 0.27 16

JMA -4.01% 0.63 19

WALS -3.97% 0.38 31

AveW

LinearRegression -2.02% 1.97** 9

Lasso 0.59% 1.72** 138

ElasticNet 0.77% 1.90** 133

BMA -0.81% 1.01 2,894

MMA -0.04% 1.77** 64

JMA 0.21% 2.09** 73

WALS 0.05% 1.94** 198

AveW + HA

LinearRegression 1.14% 1.97** -

Lasso 0.66% 1.72** -

ElasticNet 0.76% 1.90** -

BMA 0.20% 1.01 -

MMA 1.05% 1.76** -

JMA 1.40% 2.14** -

WALS 1.22% 1.94** -

((a)) Econometric Forecast Models

Model Name R2
OS (%) CW Test Time (s)

Expanding Window

KNRUnif 0.19% 2.10** 65

KNRDist 0.03% 1.98** 62

SVRRBF 1.37% 3.20*** 72

SVRSigmoid -0.02% 1.52* 63

RandomForest 0.23% 1.56* 785

AdaBoost 0.17% 1.20 1,896

AveW

KNRUnif 0.85% 2.61*** 449

KNRDist 0.61% 2.46*** 461

SVRRBF 0.82% 2.91*** 365

SVRSigmoid -0.87% 1.30* 331

RandomForest 0.51% 1.87** 7,153

AdaBoost -0.97% 0.75 16,100

AveW + HA

KNRUnif 1.24% 2.61*** -

KNRDist 1.16% 2.46*** -

SVRRBF 1.30% 2.91*** -

SVRSigmoid 0.31% 1.30* -

RandomForest 0.50% 1.87** -

AdaBoost -0.01% 0.75 -

Expanding Window - 12 Period Reestimation

RNN -7.41% -226.74 864

LSTM -3.68% -378.51 1,249

GRU -7.41% -226.74 841

((b)) Machine Learning Models

Note: This table contains statistics measuring out-of-sample forecast evaluation. R2
OS contains out-of-sample R2 values.

CW Test refers to the MSFE-Adjusted test statistic of Clark and West (2007). Asterisks (*) indicate significance at 10%

(*), 5% (**), and 1% (***) levels. Time refers to the real-time running time required for model estimation, forecasting,

and forecast evaluation. AveW + HA forecasts were derived from pre-computed AveW values; as such computation time

is not relevant. (a) denotes running time without multiprocessing (not run on multiple CPU cores).

Table 1: Forecast Evaluation Results

13



This section discusses the main results of our research. Evaluation of the models in Section

4.1 and Section 4.5 were run on a GCP (Google Cloud) E2 machine with 16 vCPUs and 16GB

RAM. We believe this machine is a representative example of a modern desktop computer. The

advantage of using a cloud platform is that it enables anyone to access additional computational

power without having to buy more hardware. In practice, we used three instances to receive

results earlier.

5.1 Econometric Forecast Models

From our investigation, we found that the results of Zhang et al. (2020) were reasonably rep-

licable, with several key differences. This can be seen in Table 1(a), which contains metrics

computed from forecasts made using the methods from 4.1, and can begin to compare our

results with theirs.

Under expanding window estimation, we observe a very similar pattern in R2
OS values, with

LinearRegression performing the worst and Lasso very close to the historical average. In our

case, ElasticNet and JMA perform slightly worse. The performance of JMA may be explained

by the implementation details of JMA as seen in Appendix B.1, where the ordering of nested

models is randomized. With ElasticNet, the difference is most likely due to the changes in the

data. The values of CW Test statistics also suggest similar outcomes, where none of the forecasts

are significantly better than the historical average even at a 10% significance level.

AveW estimation also provides similar benefits as seen in Zhang et al. (2020). All of the

econometric forecast models are improved by the forecasting scheme, allowing Lasso, ElasticNet,

JMA, and WALS to beat the historical average in terms of R2
OS and confirmed by the CW Test

at 5% significance. These results indicate that the AveW scheme does help produce forecasts

more robust to structural breaks and time-varying predictor strength, at least for these popular

econometric models.

HA combination manages to improve the performance of most models. This is especially true

for LinearRegression, BMA, and MMA, which previously had negative R2
OS values. ElasticNet

is the anomaly, where forecasting performance slightly drops. Across the board, the significance

of CW Test statistics does not change compared to AveW. For the econometric forecast models,

Computation times follow a similar pattern as Zhang et al. (2020), with LinearRegression

taking the least amount of time and BMA requiring much more. Additionally, our use of parallel

computing shows major improvements in computation time. Zhang et al. (2020) indicate that

BMA with AveW requires more than 20,000 seconds to complete, while ours requires only

around 2,900 seconds, which is nearly a 10-fold improvement. One may suggest that this is due
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to implementation or programming language differences. However, sources such as Virtanen

et al. (2020) indicate that the speed of Python is not significantly different from Matlab for

numerically-heavy operations, suggesting that the speed increase comes from elsewhere, namely

multiprocessing. One thing to note is that although it is unfortunate WALS was not parallelized

as explained in B.1, computation times remain quite low, with AveW WALS not taking more

than 50% longer than the parallelized AveW Lasso.

5.2 Machine Learning Methods

We have found that many, but not all of our machine learning models from 4.5 are able to

produce good forecasts of the equity premium. These results are displayed in Table 1(b).

The traditional expanding window estimation produces surprisingly good results. Most of

the machine learning methods, except for SVRSigmoid, already beat the benchmark as shown by

positive R2
OS . SVRRBF performs exceptionally well, producing the highest R2

OS value across all

models estimated under expanding window. The CW test statistics confirm this as well, showing

that both variants of K-nearest neighbors outperform the historical average at 5% significance,

and SVRRBF at 1% significance.

However, the AveW estimation does not provide universal performance improvements. While

both variants of K-nearest neighbors receive large improvements in terms of R2
OS and significance

of the CW test, we observe lower performance for both variants of support vector regression

and AdaBoost. These results suggest that AveW estimation is not universally applicable for

improving forecasts.

Similar to the previous results in 5.1, HA combination improves most, but not all machine

learning models estimated under AveW, with RandomForest being the exception. While this

allows both variants of K-nearest neighbors to have very significant CW test statistics, it is

interesting to note that for SVRRBF, HA combination does not produce better forecasts as the

simple expanding window estimation. From this, we suggest that AveW and HA combination

should only be applied for specific machine learning models.

Among the K-neighbors, support vector, and tree-based models, computation times are quite

different. The K-neighbors and support vector run fairly quickly, and even on AveW would not

require more than 10 minutes to complete. The tree-based models are much more expensive,

each taking more than an hour to complete. Given the poorer performance and much higher

computation times of the tree-based models, we indicate our preference for the K-neighbors and

support vector models.

Results for the neural network models were placed in a separate section, as we had to apply
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a different estimation scheme for them: the models were re-estimated after every 12 periods

instead of one model per period. This was unfortunately caused by high computation time. We

can see that even for the fastest GRU model, the regular expanding window scheme would take

approximately 800·12 = 9600 seconds to complete, which with AveW could increase that further

to around 9600·10 = 96000 seconds. Even so, we can see from a glance they perform very poorly.

As indicated in Appendix B.2, our implementation includes very few runs of cross-validation,

which is likely one of the reasons for the poor performance. Additional cross-validation is

infeasible, unless we can access much more computational power, possibly through GPUs. Our

results suggest that neural networks may be a poor choice when we are required to re-estimate

the model many times.

5.3 Forecasting Extreme Periods

Period Observations LinearRegression WALS SVRRBF KNRUnif

Moderate Absolute Returns

0 < ∥rt∥ ≤ 0.5 299/720 -16.44% -8.03% -2.87% -1.45%

Extreme Absolute Returns

∥rt∥ ≥ 0.5 234/720 -0.26% 0.51% -0.12% -0.01%

∥rt∥ ≥ 1.0 96/720 2.19% 1.70% 1.37% 1.14%

∥rt∥ ≥ 1.5 52/720 -1.36% -0.88% 1.61% 1.24%

∥rt∥ ≥ 2.0 39/720 4.02% 3.18% 2.08% 2.08%

Extreme Positive Returns

rt ≥ 0.5 124/720 -3.63% -1.03% 12.33% 7.14%

rt ≥ 1.0 52/720 -1.34% -0.61% 7.47% 2.71%

rt ≥ 1.5 25/720 -6.40% -4.14% 6.02% 2.17%

rt ≥ 2.0 14/720 -5.17% -3.29% 4.07% 1.17%

Extreme Negative Returns

rt ≤ 0.5 110/720 3.51% 2.23% -14.07% -8.02%

rt ≤ 1.0 44/720 5.51% 3.88% -4.40% -0.35%

rt ≤ 1.5 27/720 2.70% 1.73% -1.94% 0.49%

rt ≤ 2.0 25/720 7.68% 5.76% 1.29% 2.45%

Note: This table contains R2
OS values for a selection of models, divided over periods of extreme returns. Here, rt denotes

returns normalized over the out-of-sample period of 1957:01–2016:12. All model forecasts were computed with the HA

combination method.

Table 2: Model Performance During Extreme Periods
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We find very interesting results when our models are evaluated for different magnitudes of ex-

treme returns. Following Zhang et al. (2020), we examine the performance of our models during

periods of extreme market movement. To provide additional insight, we include computations

of R2
OS when normalized returns are positive.

Overall, the four models in Table 2 show underperformance compared to the historical av-

erage benchmark during periods of moderate normalized returns. Economists such as Fama

and French (1989) have theorized that the equity premium is more predictable during economic

downturns, suggesting that predictions based on complex models would perform better during

extreme downturns. We observe this reflected LinearRegression and WALS, where they show

much higher R2
OS when normalized returns are negative.

While SVRRBF and KNRUnif also perform better in periods of extreme market movements,

we observe that this occurs when extreme normalized returns are positive. Meanwhile, these two

models seem to do much worse when extreme normalized returns are negative. These results

stand in contrast to previous literature and call for further investigation, suggesting the existence

of models better at capturing the data-generating process of the equity premium when markets

are rising. A combination of models performing better in extreme rising and falling markets, and

the historical average prediction during moderate times, may be able to provide better overall

predictions.

5.4 Portfolio Performance

From Table 3, we can see that the econometric forecast models produce lower performance

overall compared to Zhang et al. (2020), both in terms of △(ann%) and Sharpe ratio values.

In particular, we do not observe the spectacular △(ann%) values for portfolios constructed

using forecasts from LinearRegression, WALS, and MMA. In fact for BMA, this value becomes

negative; an investor would not want to pay management fees if a fund would rely on this model

alone.

Fortunately, our machine learning models show more favorable results. KNRUnif, KNRDist,

and SVRRBF produce very high utility for investors, exceeding all the econometric forecast

models. Portfolios constructed using forecasts of these models are also better in terms of the

Sharpe ratio. These results are of particular interest to asset managers, as a fund utilizing these

models could be more marketable.
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Model △(ann%) Sharpe

Econometric Forecast Models

LinearRegression 0.700 0.107

LassoCV 0.550 0.119

ElasticNetCV 0.666 0.123

BMA -0.069 0.091

MMA 0.743 0.110

JMA 0.907 0.115

WALS 1.077 0.118

Machine Learning Models

KNRUnif 1.615 0.140

KNRDist 1.558 0.139

SVRRBF 2.270 0.154

SVRSigmoid 0.618 0.106

RandomForest 0.346 0.115

AdaBoost -0.215 0.089
Note: This table contains △(ann%) and Sharpe ratio values evaluated over the out-of-sample period of 1957:01–2016:12.

All model forecasts were computed with the HA combination method.

Table 3: Portfolio Performance Metrics

6 Conclusion

In our research, we aim to answer the following main question: “How can we apply machine

learning methods to improve equity premium predictability?”. To do this, we first investigated

whether the performance improvements obtained by Zhang et al. (2020) through AveW estim-

ation and HA combination are replicable on the updated data of Welch and Goyal (2008). We

then proceed to apply the same estimation schemes to multiple machine learning methods. The

out-of-sample R2 metric and the MSFE-Adjusted test statistic of Clark and West (2007) are

then used to evaluate the performance of our models.

Running the models of Zhang et al. (2020), we find that their results are nearly perfectly

replicable, with some minor exceptions. JMA performs worse on expanding window, and HA

combination does not improve ElasticNet. Most of the time, for the econometric forecast models,

we see that AveW estimation is better than expanding window, and HA combination is better

than both. We also find that when using HA combination, the performance of LinearRegression

and WALS is much better when standardized equity premiums
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Applying our machine learning methods, we find that some are more suited than others for

our investigation. K-Nearest Neighbors, Random Forest, and AdaBoost perform consistently on

different estimation methods and are improved by the advanced AveW estimation and the HA

combination forecast. Meanwhile, Support Vector Regression is more difficult to use, as it relies

on a more perfect implementation to achieve the best results. Neural network models are not

well suited for this problem, as they are too computationally intensive and require much more

complicated cross-validation to perform well.

Several classes of machine learning methods are able to produce benchmark-beating forecasts

of the equity premium. A few, namely Uniform-Weighted K-Nearest Neighbors and RBF Kernel

Support Vector Regression perform significantly better than the other models we ran, achieving

high out-of-sample R2 at 1% significance, which had never been seen beforehand. When used

for portfolio construction, these models allow for both higher utility and risk-adjusted return

compared to portfolios constructed using only econometric forecast models. In addition, we

find the surprising result that these two methods perform better when standardized returns

are positive, while other models are performing better during periods of negative standardized

returns.

Overall, we conclude that machine learning can be utilized to produce good-quality forecasts

of the equity premium. Not all machine learning methods are applicable to the problem, and

some require a careful choice of estimation scheme and hyperparameter tuning. However, when

done properly, machine learning allows significant outperformance often found during periods

with different return characteristics compared to models previously considered.

From our investigation, we propose a direct area for further research: combining our predict-

ive models with a directional prediction of the stock market. If we are able to find sufficiently

accurate predictions of the stock market direction, we can leverage the fact that we have mod-

els performing much better during rising and falling stock markets to produce more accurate

forecasts of the equity premium. We also discuss our limitation on computing power: some of

our models, such as the neural networks, were unable to perform well. This was likely because

we did not properly tune their hyperparameters. In practice, financial institutions interested in

using our methods will have significantly more computing resources, and may be able to achieve

better results.

As a final note, we would like to thank our thesis supervisor Prof. Onno Kleen for consistent

guidance and helpful input throughout the research process.
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A Data

count mean std min 25% 50% 75% max

EQPREM 1080.0 0.005052 0.054502 -0.339221 -0.020066 0.009416 0.034981 0.346243

DP 1080.0 -3.365963 0.460030 -4.523640 -3.584079 -3.338036 -3.023517 -1.873246

DY 1080.0 -3.361231 0.458045 -4.530894 -3.583574 -3.332392 -3.020019 -1.912904

EP 1080.0 -2.732454 0.416647 -4.836482 -2.939130 -2.785351 -2.458990 -1.774952

SVAR 1080.0 0.002887 0.005777 0.000072 0.000705 0.001267 0.002453 0.070945

BM 1080.0 0.571922 0.265128 0.120510 0.346138 0.546952 0.751562 2.028478

NTIS 1080.0 0.017616 0.025549 -0.055954 0.006365 0.017275 0.027534 0.177040

TBL 1080.0 0.034343 0.031039 0.000100 0.003800 0.030000 0.051825 0.163000

LTR 1080.0 0.004780 0.024481 -0.112400 -0.007000 0.003150 0.016100 0.152300

TMS 1080.0 0.017179 0.013113 -0.036500 0.008700 0.017750 0.026200 0.045500

DFY 1080.0 0.011311 0.006956 0.003200 0.006900 0.009100 0.013300 0.056400

DFR 1080.0 0.000309 0.013629 -0.097500 -0.005025 0.000500 0.005500 0.073700

INFL 1080.0 0.002436 0.005354 -0.020548 0.000000 0.002422 0.005081 0.058824

Note: This table contain descriptive statistics for our data. Some are taken directly from Welch and Goyal (2008), while

items such as EQPREM are derived from it.

Table 4: Descriptive Statistics
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Figure 1: Correlation Matrix

B Implementation

• Parallel computation: Joblib Development Team (2020) package allows more robust par-

allelization of functions

B.1 Econometric Forecast Models

• Lasso: Implementation in Python from Pedregosa et al. (2011). Estimation using (regular)

5-Fold cross-validation.

• ElasticNet: Implementation in Python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation.

• BMA: Model averaging of individual linear regressions. Models estimated on all possible

combinations of predictors are included.

• MMA: Python port of Matlab code from Hansen and Racine (2012). Initialization modified

for ordering of nested models: First, Lasso is run to get initial included variables based on
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estimated coefficient size. Then, variables with zero Lasso coefficient are randomly ordered,

before estimation of the nested models. Includes use of the optimizer from Andersen et al.

(2010).

• JMA: Python port of Matlab code from Hansen and Racine (2012). Initialization modified

for ordering of nested models: First, Lasso is run to get initial included variables based on

estimated coefficient size. Then, variables with zero Lasso coefficient are randomly ordered,

before estimation of the nested models. Includes use of the optimizer from Andersen et al.

(2010).

• WALS: Run with Matlab code of Magnus et al. (2010) called from a Python environ-

ment. Implementation is not parallelized, as we found that a new Matlab engine needed

to be initialized for every forecast using our current expanding window and AveW frame-

work, creating a computation overhead which is more expensive than simply sequentially

producing forecasts.

B.2 Machine Learning Models

• KNRUnif: Implementation in python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation on: 50 values of number of neighbors.

• KNRDist: Implementation in python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation on: 50 values of number of neighbors.

• SVRRBF: Implementation in python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation on: 10 values on strength of regularization.

• SVRSigmoid: Implementation in python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation on: 10 values on strength of regularization.

• RandomForest: Implementation in python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation on: 3 values on minimum samples per leaf, 2 values of

maximum features per split.

• AdaBoost: Implementation in python from Pedregosa et al. (2011). Estimation using

(regular) 5-Fold cross-validation on: 3 values of learning rate.

• RNN: Implementation in python from Paszke et al. (2019), wrapped in Tietz et al. (2017)

for compatibility with our forecasting framework. Estimation using (regular) 3-Fold cross-

validation on: 2 values of learning rate, 2 values of number of layers, 2 values of layer

size.

• LSTM: Implementation in python from Paszke et al. (2019), wrapped in Tietz et al. (2017)

for compatibility with our forecasting framework. Estimation using (regular) 3-Fold cross-
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validation on: 2 values of number of layers, 2 values of layer size.

• GRU: Implementation in python from Paszke et al. (2019), wrapped in Tietz et al. (2017)

for compatibility with our forecasting framework. Estimation using (regular) 3-Fold cross-

validation on: 2 values of learning rate, 2 values of number of layers, 2 values of layer

size.
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