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1 Introduction

Pricing an asset is essential for many parties in the economy. Pension funds, asset managers,

private investors, central banks, etc. are all interested in the "true" price of an asset. Lettau and

Pelger [2020a] state that "finding the "right" factors has become the central question of asset

pricing." A lot of research on finding these factors has been conducted. Currently, hundreds of

potential risk factors are proposed. According to Feng, Giglio, and Xi [2017], this leads to a

"zoo" of factors in which it is hard to distinguish between useful and redundant pricing factors

that appear significant.

Lettau and Pelger [2020a] propose a new method to find the most important factors ex-

plaining asset returns. This new method proposed is called risk-premium Principal Component

Analysis (RP-PCA). Standard PCA only uses information contained in the second moment of as-

set returns, whereas RP-PCA uses information contained in both the first and second moments.

Lettau and Pelger [2020a] apply the RP-PCA method to a small set of double-sorted portfolios

with 25 assets. Also, RP-PCA is applied to a larger set of anomaly portfolios used in Kozak,

Nagel, and Santosh [2020]. Lettau and Pelger [2020a] find that RP-PCA factor models provide

smaller pricing errors and higher Sharpe Ratios. Also, a clear economic interpretation can be

given to the RP-PCA factors.

In this paper, we apply the RP-PCA and PCA methods to the excess returns of the same

double-sorted and single-sorted portfolios as in Lettau and Pelger [2020a]. To extend the paper,

we apply both methods to a set of 48 industry portfolios. We evaluate the differences between

RP-PCA and PCA and compare both with the Fama-French three-factor model proposed in

Fama and French [1993], which is used as a benchmark model. It is interesting to see, if also for

industry portfolios, RP-PCA provides better results than PCA and the Fama-French three-factor

model. As the RP-PCA method is relatively new, it is relevant to test the performance on a

different dataset. Currently, there is no literature comparing the RP-PCA method with other

methods, except for the article in which the RP-PCA method is proposed [Lettau and Pelger,

2020a].

More importantly, the economic interpretation of the factors is researched. According to

Cavaglia, Brightman, and Aked [2000], the relative importance of industry factors has been

growing over time due to globalization. Can the factors found be related to (co-moving) indus-

tries, or do other aspects play a role? This leads to the following research question:

What are the most important factors explaining the asset returns of industry portfolios?

We use a set of monthly returns of 48 different industry portfolios. Because of the high
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number of industries, each of the 48 industries is rather specific. The 48 specific industries can

be divided into five broader industries. It could be the case that the factors explaining the

industry portfolios can be related to these broader industries. It is also possible that we find

factors that explain certain industries that are unrelated to each other via those five broader

industries, which could lead to new insights. This can be useful for investors because they can

use that information to reduce risk when they know which industries are co-moving.

From an academic point of view, this research can also be useful. Lettau and Pelger state

that RP-PCA results in smaller pricing errors and higher Sharper ratios (SR) than PCA. Also,

RP-PCA is computationally not much more complex than PCA. Therefore RP-PCA could be

used for different applications when it turns out that RP-PCA produces better results than PCA

in different samples.

The fit of RP-PCA, PCA, and Fama-French are evaluated using the maximum Sharpe ratio,

cross-sectional pricing errors, and the unexplained time-series variation. We find that, consistent

with Lettau and Pelger [2020a], RP-PCA outperforms PCA and Fama-French for the double-

sorted portfolios. Also, RP-PCA can detect factors that PCA is not able to detect. For the

single-sorted anomaly portfolios, RP-PCA again outperforms both PCA and Fama-French. More

specifically, the RP-PCA model with five factors is the most preferred. A model with RP-PCA

factors 1, 2, 4, and 5 is the preferred model for the industry portfolios. This model results in

the smallest cross-sectional pricing errors and explains best the common time-series movement.

However, in terms of the Sharpe ratio, this model is outperformed by the Fama-French five-factor

model. RP-PCA and PCA generate very similar results in terms of factors and factor loadings.

When increasing the RP-PCA parameter γ substantially, RP-PCA and PCA still select the same

factors. The first factor found can be interpreted as a market factor. The second factor is related

to the mining industry. The fifth factor can be linked to one of the five broader industries, the

High-Tech industry. No interpretation can be found for the third and fourth factors.

2 Relevant Literature

A lot of research has been conducted on finding the factors explaining asset returns. Well-known

research was conducted by Fama and French [1993]. They found that the returns of assets can

be described by three factors. The first factor is the market risk. The second factor is the re-

turn of a portfolio long in high book-to-market stocks and short in low book-to-market stocks.

The third factor is the return of a portfolio long in small-cap companies and short in large-cap

companies. Research has also been conducted on finding the factors that explain the returns of

industry portfolios in particular. In most papers researching this, factors are constructed based
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on economic theory. Cavaglia, Hodrick, Vadim, and Zhang [2002], for example, compare different

models based on economic theory, including the Fama-French three-factor model, to price the

returns on 36 industry portfolios. They find that the Fama-French three-factor model performs

best compared to the other methods used in the paper. We use this model as a benchmark and

compare the PCA method and the newly proposed RP-PCA method to it. Our paper has some

similarities with Elhadary [2021]. This paper tries to explain industry portfolios using the tradi-

tional Fama-French three-factor model and an industry-based Fama-French three-factor model.

For this industry-based model, the Fama-French factors are constructed for each industry group.

The industry portfolios are divided into industry groups based on their Standard Industrial

Classification (SIC) code, which is the same approach as in our paper. The SIC code defines

a company’s core business and, thus, the industry it belongs to. Elhadary [2021] shows that

the industry-based Fama-French three-factor model outperforms the traditional Fama-French

three-factor model.

This research contributes to the emerging literature that uses econometric methods to explain

and forecast asset prices. In recent years, numerous new techniques for asset pricing have been

proposed. Fan, Liao, and Wang [2016] developed a model that allows for time-varying factor

loadings: projected-PCA. Kelly, Pruitt, and Su [2020] came up with the idea of instrumented-

PCA, which performs dimensionality reduction of the characteristics space. Also, this research

is part of the growing field of econometrics literature that merges regularization and latent

factor extraction. Principal components can be constructed by iteratively applying least squares

regressions. Bai and Ng [2019] replace least squares with ridge regressions. When extreme

outliers are present or some factors have very small loadings, it is useful to apply this method.

This method decreases the eigenvalues of the common components to zero. This approach leads

to smaller variation but at the cost of a higher bias.

Our research adds to the existing literature by applying a newly proposed method, RP-

PCA, to a different dataset and evaluating its performance. Also, we try to give an economic

interpretation to the factors found, which can be useful for investors and asset managers.

3 Methodology

In this section, we explain the idea and intuition behind RP-PCA and PCA. We denote the

excess return of asset n at time t as Xnt. The excess return of an asset is equal to the "raw"

return minus the risk-free rate. Therefore, we first subtract the risk-free rate from the raw asset

returns. The excess returns can be explained by systematic risk factors Ft and idiosyncratic

components ent. We observe the excess returns Xnt of N assets over T time periods as

3



Xnt = FtΛ
T
n + ent, n = 1, ..., N, t = 1, ..., T, (1)

where Ft are the factors, Λn are the factor loadings, and ent are the idiosyncratic components.

The essential idea is to describe the variation in the N excess returns with a limited number of

k factors, where k < N .

3.1 PCA

According to Lettau and Pelger [2020b], PCA aims to find the factors that explain as much

common time-series variation as possible. As shown by Stock and Watson [2002], the PCA

factors and factor loadings are solutions to the following function:

min
Λ,F

1

NT

N∑
n=1

T∑
t=1

((Xnt − X̄n)− (Ft − F̄ )ΛT
n )

2, (2)

where X̄n and F̄ represent the mean of the excess returns and the mean of the factors, respectively.

The loadings, Λ, are eigenvectors of the largest eigenvalues of the sample covariance matrix

of the excess returns X:

Σ =
1

T
XTX −XX

T
, (3)

where X denotes the sample mean of the excess returns.

The factors can be obtained from a regression of X on the estimated loadings. The jth factor

explaining the excess returns can be found as follows:

Fjt = Λ′
jXt, (4)

where Λj is the jth factor loading, corresponding to the jth eigenvector of the sample covariance

matrix of the excess returns.

3.2 RP-PCA

First, the idea of the Arbitrary Pricing Theory (APT) is explained. According to Ross [2013],

the APT suggests that the excess returns can be explained by the exposure to systematic risk

factors (Λn) multiplied by the risk premium of the factors (E[Ft]):

E[Xn,t] = E[Ft]Λ
T
n . (5)

So, according to ATP, the systematic factors should explain the cross-section of expected

returns. Therefore, the objective of the APT is to minimize the cross-sectional pricing error:

1

N

N∑
n=1

(Xn − FΛT
n )

2. (6)
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RP-PCA combines PCA and APT. Therefore we can say that RP-PCA explains as much

common time-series variation as possible and considers cross-sectional pricing errors. This results

in the following objective function, which is a combination of the objective functions of both PCA

and APT:

min
Λ,F

1

NT

N∑
n=1

T∑
t=1

(X̃nt − F̃tΛ
T
n )

2 + γ
1

N

N∑
n=1

(Xn − FΛT
n )

2, (7)

where γ determines how much weight is given to the cross-sectional pricing errors from APT

relative to the time-series errors from PCA.

RP-PCA applies PCA to a matrix different from the sample covariance matrix. RP-PCA

applies PCA to the matrix

ΣRP =
1

T
XTX + γXX

T
. (8)

Formulas (3) and (8) again show the difference between PCA and RP-PCA. RP-PCA gives a

higher weight to the mean than PCA. Note that they are equal when γ = −1. In essence, PCA

is a more specific/restricted case of RP-PCA because, in RP-PCA, one can choose the parameter

γ to be equal to any number, as opposed to PCA, in which γ is always equal to minus one.

3.3 Performance Evaluation

Next, we evaluate the performance of RP-PCA, PCA, and the Fama-French models. The perfor-

mance is evaluated both in-sample and out-of-sample based on three different measures, being:

• Maximum Sharpe ratio obtained from estimated factors (SR)

• Root-mean-squared pricing errors (RMSα)

• Idiosyncratic variance (σ̄2
e)

3.3.1 In-Sample

We want to find the model that best describes the asset returns. The stochastic discount factor

(SDF) is used to describe asset prices. The closer the model is to the true SDF of the assets,

the higher the maximum Sharpe ratio. Therefore, we prefer a high maximum Sharpe ratio. The

maximum Sharpe ratio can be obtained from the estimated factors. These factors are estimated

using either RP-PCA, PCA, or are equal to the factors implied by Fama-French. First, compute

b = Σ−1
F µF , where Σ−1

F and µF are equal to the covariance matrix and the mean of the estimated

factors, respectively. The in-sample maximum Sharpe ratio can then be obtained as

SR =
E[bT F̂t]

σ(bT F̂t)
. (9)
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To compute the other two performance measures, we regress the excess returns on the estimated

factors and a constant using Ordinary Least Squares (OLS):

Xnt = αn + F̂tB
T
n + ent, n = 1, ..., N. (10)

The value of αn can be seen as the magnitude of the pricing errors of the model. This αn is used

to describe the cross-sectional pricing errors. The values of ent are used to compute the amount

of unexplained time-series variation. This results in the following two performance measures:

RMSα =

√
α̂T α̂

N
(11)

σ̄2
e =

1
N

∑N
n=1 V ar(ên)

1
N

∑N
n=1 V ar(Xn)

. (12)

Ideally, you want both RMSα and σ̄2
e as low as possible.

3.3.2 Out-of-Sample

For the out-of-sample performance evaluation, we use a rolling window of 20 years (240 observa-

tions). Using these 240 observations, we estimate the factor loadings. To obtain the parameters

needed for calculating the performance measures, we use the following procedure:

• Using the excess returns at time t + 1 and the estimated factor loadings up to time t, we

predict the factor F̂t+1.

• Compute bt = Σ−1
F µF in the estimation window.

• Calculate the estimated out-of-sample portfolio return bTt F̂t+1.

• Compute Bn in the equation Xnt = αn + F̂tB
T
n + ent, for n = 1, ..., N , using data

contained in the estimation window.

• Calculate the out-of-sample pricing error as α̂n,t+1 = Xn,t+1 − F̂t+1B
T
n .

After covering the whole testing sample, one can obtain the performance measures similarly

to in-sample, using the following formulas:

SR =
E[bT F̂t+1]

σ(bT F̂t+1)
(13)

RMSα =

√
α̂T α̂

N
, where ᾱn =

1

T

T∑
t=1

α̂n,t+1 (14)

σ̄2
e =

1
N

∑N
n=1 V ar(α̂n)

1
N

∑N
n=1 V ar(Xn)

. (15)
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4 Data

For replicating part of the research conducted by Lettau and Pelger [2020a], we use monthly

portfolio returns ranging from November 1963 until December 2017 (T=650). First, we look

at the returns of a small cross-section of double-sorted portfolios with 25 test assets. These

portfolios are from the Kenneth R. French Data Library [French, 2022]. Next, we consider a

larger cross-section of single-sorted anomaly portfolios. We use the same 370 anomaly decile

portfolios as Kozak, Nagel, and Santosh [2020]. The portfolio returns can be found on the

personal website of Serhiy Kozak, [Kozak, 2013]. An in-depth explanation of the used anomaly

portfolios can be found in Kozak, Nagel, and Santosh [2020].

For the extension part of this paper, we look at the returns of 48 different industry portfolios.

We use data ranging from January 1970 until April 2022 (T=628). The returns of the industry

portfolios can be obtained from the Kenneth R. French Data Library, [French, 2022]. The

industry portfolios consist of stocks included in the NYSE, AMAX, and NASDAQ. Every year,

each stock is assigned to an industry portfolio at the end of June based on its SIC code. RP-PCA,

PCA, and Fama-French are all applied to excess returns. Therefore, we have to subtract the

risk-free rate from the returns of double-sorted portfolios, the single-sorted anomaly portfolios,

and the industry portfolios. The risk-free rate is also obtained from the Kenneth R. French Data

Library [French, 2022].

5 Results

5.1 Double-Sorted Portfolios

We compare the performance of the RP-PCA, PCA, and the Fama-French three-factor model for

the double-sorted portfolios. We use eight sets of 25 double-sorted portfolios. The portfolios are

sorted on size and book-to-market value, accruals, investment, profitability, short-term reversal,

momentum, volatility, and idiosyncratic volatility. We set the RP-PCA parameter γ equal to 20,

but the results are similar for different values of γ.
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Table 1: Out-of-sample performance of RP-PCA, PCA and Fama-French models

SR RMSα σ̄e

RP-PCA PCA FF RP-PCA PCA FF RP-PCA PCA FF

SIZE&BM 0.20 0.18 0.15 0.17 0.17 0.18 7.97% 7.91% 7.97%

SIZE&ACC 0.21 0.12 0.15 0.09 0.11 0.10 6.74% 6.44% 7.17%

SIZE&INV 0.26 0.22 0.15 0.13 0.15 0.13 6.95% 7.00% 7.06%

SIZE&OP 0.13 0.14 0.15 0.09 0.10 0.11 6.94% 7.08% 8.54%

SIZE&ST-REV 0.16 0.11 0.15 0.18 0.11 0.19 7.89% 7.86% 10.88%

SIZE&MOM 0.21 0.18 0.15 0.20 0.21 0.30 8.30% 8.40% 13.76%

SIZE&IVOL 0.29 0.23 0.15 0.16 0.17 0.22 6.22% 6.24% 7.11%

SIZE&VOL 0.27 0.21 0.15 0.18 0.19 0.23 6.27% 6.30% 7.04%
Note. Eight sets of 25 double-sorted portfolios are used. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 20. All models use three factors. The best-performing models

are marked in bold.

As can be seen in Table 1, in terms of the Sharpe ratio, RP-PCA outperforms PCA in seven

out of eight cases. What stands out is that for all different portfolios, the out-of-sample Sharpe

ratio for Fama-French is equal. The out-of-sample Sharpe ratio is calculated solely based on

the estimated factors, the mean, and the covariance matrix of the estimated factors. Factors

of the Fama-French three-factor model are known and equal for different portfolios. Therefore,

the out-of-sample Sharpe ratio for the Fama-French three-factor model is the same for all eight

portfolios. This is not the case for RP-PCA or PCA, because those methods extract the factors

from the excess portfolio returns. Different portfolios have different returns, resulting in different

factors and Sharpe ratios. In terms of cross-sectional errors (RMSα), RP-PCA outperforms PCA

and Fama-French for all eight portfolios. The idiosyncratic variance is smaller for RP-PCA in five

of the eight cases than for the other two methods. In the other three cases, PCA results in the

smallest out-of-sample idiosyncratic variance. When considering all three performance measures,

we can state that RP-PCA has better out-of-sample performance than PCA and Fama-French

for the double-sorted portfolios.

But what causes this difference in terms of performance between RP-PCA and PCA? To

better understand the difference, we take a closer look at the Size/Accruals and Size/Short-term

reversal portfolios. Figure A.1 in Appendix A shows the out-of-sample Sharpe ratios, cross-

sectional pricing errors, and the unexplained time-series variation as a function of the RP-PCA

weight γ. This visualizes the behavior of RP-PCA for different values of γ. We consider using

one factor up to six factors to illustrate the effect of each factor added.
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Observable is that adding more factors results in better out-of-sample performance. For

the Size-Accrual portfolios, the value of γ does not affect the performance when one or two

factors are included. However, when adding a third factor, the Sharpe ratio increases and the

cross-sectional pricing error decreases as γ increases. The idiosyncratic variation stays almost

constant for different values of γ. So, RP-PCA outperforms PCA in terms of Sharpe ratio

and cross-sectional pricing errors in a three-factor model. But what exactly causes RP-PCA to

outperform PCA? To investigate this further, we look at the factor loadings of the first three

factors for γ = −1 and γ = 20, corresponding to PCA and RP-PCA, respectively. Figure A.2 in

Appendix A shows the heatmap of the factor loadings. The loadings of the first two factors of

the Size/Accrual portfolios are almost identical for RP-PCA and PCA. This is in line with the

fact that for a one- and two-factor model, the value of γ does not affect the performance of the

model. The first factor has positive weights on all portfolios. This factor can thus be interpreted

as a market factor. The second factor has negative weights for small-size stocks and positive

weights for big-size stocks. This factor can be linked to the Small minus Big (SMB) factor from

the Fama-French three-factor model. In this case, the factor is a Big minus Small (BMS) factor,

but a different way of identification can cause this difference. The third RP-PCA factor shows a

different pattern than the third PCA factor. The third RP-PCA factor has positive weights for

high-accrual stocks and negative weights for low-accrual stocks. This factor is thus built similar

to a Fama-French type factor and could be interpreted as a "high-minus-low accrual factor".

The third PCA factor has no clear pattern and does not add much information. This illustrates

why the three-factor RP-PCA model has a higher Sharpe ratio and lower cross-sectional pricing

error than the three-factor PCA model.

Figure A.1 in Appendix A shows that for the Size/Short-term reversal portfolios, the value of

γ does not affect the performance of RP-PCA when one factor is included. When three factors

are included, the performance of RP-PCA is only slightly affected by the value of γ. When two

factors are included in the model, the performance of RP-PCA is considerably affected by the

value of γ. More specifically, when γ > 5, the performance increases in terms of Sharpe ratio

and cross-sectional errors. Figure A.2 in Appendix A again compares the factor loadings for

γ = −1 and γ = 20. Once more, the first RP-PCA and PCA factors have positive loadings for

all portfolios and thus can be interpreted as market factors. The second and third factors are

different for RP-PCA and PCA. The second RP-PCA factor is similar to the third PCA factor,

and the third RP-PCA factor is similar to the second PCA factor. A possible explanation is that

the difference in returns between high short-term reversal and low short-term reversal portfolios

is larger than the difference in returns between big-size and small-size portfolios. Because of
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the larger return differences in the reversal dimension, the reversal factor better explains the

cross-section of returns. RP-PCA tries to minimize the cross-sectional pricing errors, while PCA

does not. Therefore, this factor is preferred by RP-PCA.

So, RP-PCA outperforms both PCA and Fama-French when applied to double-sorted portfo-

lios. Furthermore, interpretation can be given to the RP-PCA factors. The first RP-PCA factor

can be interpreted as a market factor. The second and third RP-PCA factors are built similarly

to Fama-French type factors.

5.2 Single-Sorted Portfolios

Subsequently, we evaluate the performance of the RP-PCA method on a large cross-section

of single-sorted anomaly portfolios from the Serhiy Kozak website, Kozak [2013]. The single-

sorted anomaly portfolios are decile portfolios constructed from 37 anomaly characteristics, which

results in a total of 370 portfolios. Lettau and Pelger [2020a] show that most information is

contained in the extreme decile portfolios, the first and tenth deciles. Therefore, we use the set

of 74 first and tenth decile portfolios for the major part of the analysis. As mentioned earlier,

the sample ranges from November 1963 until December 2017 (T=650).

5.2.1 RP-PCA Versus PCA

We compare the fit of RP-PCA and PCA. We use the performance measures explained in the

Methodology to compare the fit: maximum Sharpe ratio, cross-sectional pricing errors, and

the unexplained time-series variation. We evaluate the fit both in-sample and out-of-sample

using the set of 74 extreme decile portfolios. The fit is evaluated using only one factor, and we

successively add factors up to ten factors. The results are shown in Figure B.1 in Appendix B.

For each amount of factors considered, the in-sample and out-of-sample Sharpe ratios are higher

for RP-PCA than for PCA. Also, both the in-sample and out-of-sample Sharpe ratios increase

as you add more factors. The RP-PCA in-sample Sharpe ratio especially increases when adding

the second and the fifth RP-PCA factor. After adding more than five factors, the in-sample

Sharpe ratio stays around a constant level. The out-of-sample RP-PCA Sharpe ratio grows more

steadily when adding the first five factors. Again, adding more factors does not increase the

out-of-sample Sharpe ratio by much after adding the first five factors. The out-of-sample Sharpe

ratios are marginally lower than the in-sample Sharpe ratios, indicating that the RP-PCA model

is not overfitted.

Next, we look at the root-mean-squared cross-sectional pricing errors, RMSα. The more

factors you add, the lower the RMSα. This again suggests that the model does not suffer from
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overfitting. Also, the second and fifth RP-PCA factors have the largest effect on the in-sample

RMSα. This is not the case for the out-of-sample RMSα, which decreases more gradually. After

adding the first five factors, adding more factors does not change the RP-PCA RMSα notably.

Lastly, we look at the idiosyncratic variation. The idiosyncratic variation decreases both in-

sample and out-of-sample when adding more factors. The plots of the idiosyncratic variation

are nearly identical for comparable RP-PCA and PCA models. The objective functions (2) and

(7) of PCA and RP-PCA show that both methods try to explain as much common time-series

variation as possible and thus minimize the idiosyncratic variation. Therefore the amount of

unexplained idiosyncratic variation is similar for both methods. RP-PCA tries to explain as

much cross-sectional time-series variation as possible, whereas PCA does not. Therefore RP-

PCA gives lower root-mean-squared cross-sectional pricing errors than PCA.

Table 2 compares RP-PCA, PCA, and Fama-French models with three and five factors in

terms of Sharpe Ratio, root-mean-squared cross-sectional pricing errors, and idiosyncratic vari-

ation. We use the sample including the 74 extreme first and tenth decile portfolios. The full

sample (using all 370 portfolios) and another sample using 98 extreme first and tenth decile

portfolios based on a smaller sample (November 1973-December 2017, T=530) are added for

robustness in Table B.1 in Appendix B. For the three-factor models, RP-PCA dominates PCA

and Fama-French in terms of Sharpe ratio and cross-sectional pricing errors. A similar result is

obtained for the five-factor models. Overall, the results show that RP-PCA outperforms both

PCA and Fama-French. More specifically, the RP-PCA model with five factors is the preferred

model, resulting in the highest Sharpe ratio and the lowest cross-sectional pricing errors.

Table 2: In- and out-of-sample performance of RP-PCA, PCA, and Fama-French models.

In-sample Out-of-sample

Model(k) SR RMSα σ̄e SR RMSα σ̄e

RP-PCA(3) 0.37 0.23 13.88% 0.31 0.22 15.42%

PCA(3) 0.23 0.27 13.74% 0.11 0.26 15.88%

FF(3) 0.21 0.31 17.49% 0.15 0.25 16.64%

RP-PCA(5) 0.59 0.16 10.43% 0.50 0.15 12.11%

PCA(5) 0.32 0.21 10.30% 0.24 0.19 12.04%

FF(5) 0.32 0.26 16.05% 0.32 0.19 13.91%
Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10. The best-performing models are marked in bold.
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5.2.2 Time-Series Versus Cross-Sectional Factors

After focussing on the performance of the different models, we now look at the individual factors.

Again we use the sample of 74 extreme first and tenth decile portfolios. Table 3 shows the mean,

variance, Sharpe ratio, and mean rank of the first ten factors obtained by RP-PCA and PCA.

Table 3: Individual factors obtained by using RP-PCA and PCA.

RP-PCA PCA

Factor Mean Variance SR Mean Rank Mean Variance SR Mean Rank

1 5.02* 1932.09 0.11 1 4.83* 1941.87 0.11 1

2 2.32* 66.22 0.29 3 0.18 102.39 0.02 9

3 0.30 100.83 0.03 2 1.65* 69.03 0.20 2

4 0.10 65.34 0.01 4 1.05* 64.06 0.13 3

5 0.73* 26.30 0.14 5 0.83* 20.18 0.18 4

6 0.03 19.52 0.01 6 0.34* 19.39 0.08 7

7 0.14 17.93 0.03 7 0.79* 16.14 0.20 5

8 0.05 15.40 0.01 8 0.57* 15.08 0.15 6

9 0.04 13.53 0.01 9 0.20 13.46 0.01 8

10 0.03 11.95 0.01 10 0.04 11.95 0.01 10
Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10. Significant means are marked with a star.

For both RP-PCA and PCA, the first factor has a way larger variance than the other factors,

which is a common result for asset returns. The ranking of the PCA factors is solely based on their

variance. This is not the case for RP-PCA. The variance of the second RP-PCA factor is lower

than that of the third RP-PCA factor. However, the mean of the second RP-PCA factor is high

and significant. Therefore, it is selected by RP-PCA before the factor with a higher variance. The

second RP-PCA factor is priced higher than the third, but the third captures more co-movement

and is not / less priced. Factors with significant means and high Sharpe ratios (factors 2 and 5)

capture the cross-section of returns, while factors with low means and high variance (factors 3

and 4) capture co-movement. To elaborate further on the individual RP-PCA factors, we look

at the fit for models using different sets of RP-PCA factors. The results are presented in Table 4.
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Table 4: Fit for RP-PCA model with subset of factors.

In-Sample Out-of-sample

Factors SR RMS σ̄e SR RMS σ̄e

[1,2,3,4,5] 0.59 0.16 10.43% 0.38 0.15 11.84%

[1] 0.11 0.33 20.75% 0.12 0.32 22.64%

[1,2,5] 0.57 0.23 17.07% 0.36 0.18 18.11%

[2,5] 0.41 1.69 74.72% 0.20 0.34 21.97%

[1,3,4] 0.12 0.33 13.93% 0.12 0.31 15.89%

[3,4] 0.03 0.66 93.06% 0.01 0.52 55.88%
Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10.

The fit of the model using factors 1, 2, and 5 in terms of Sharpe ratio and cross-sectional

pricing errors is pretty similar to the fit of the model using all five factors. In terms of explained

common time-series variation, the model with all five factors outperforms the model using only

factors 1, 2, and 5. This indicates that adding factors 3 and 4, having a low mean and high

variance, increases the amount of explained common time-series variation.

The model using factors 1, 3, and 4 has a low Sharpe ratio and high cross-sectional pricing

errors compared to the model using all five factors. This can be declared by the fact that factors 3

and 4, having a low mean and high variance, are not priced but capture co-movement. Therefore,

the cross-section of the asset returns is not explained well. Because factors 3 and 4 capture co-

movement well, the explained time-series variation of the model using factors 1, 3, and 4 is close

to the model using all five factors (roughly 86% compared to 90% in-sample and 84% compared

to 88% out-of-sample).

So, adding RP-PCA factors 2 and 5 to the model improves the Sharpe ratio and the cross-

sectional fit but not the time-series fit. Adding RP-PCA factors 3 and 4 improves the time-series

fit but not the Sharpe ratio and the cross-sectional fit. So, a model using factors 1, 2, and 5 can

be used to capture the cross-section of the returns, and a model using factors 1, 3, and 4 can be

used to capture the common time-series movement of the returns.

The results for the double-sorted and single-sorted portfolios are similar to the results ob-

tained in Lettau and Pelger [2020a]. We find that RP-PCA outperforms PCA and Fama-French

in terms of Sharpe ratio and pricing errors. Also, we can give interpretation to the factors. When

applied to the double-sorted portfolios, the first RP-PCA factor can be interpreted as a market

factor. The second and third RP-PCA factors are built similarly to Fama-French type factors.

When applied to the single-sorted portfolios, the first factor again can be interpreted as a market
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factor. The second and fifth RP-PCA factors have high means and relatively low variance. The

third and fourth factors have low means and relatively high variance. A model using RP-PCA

factors 1, 2, and 5 can be used to capture the cross-section of the returns, and a model using

RP-PCA factors 1, 3, and 4 can be used to capture the common time-series movement.

5.3 Industry portfolios

5.3.1 RP-PCA Versus PCA

After replicating part of the paper by Lettau and Pelger [2020a], we evaluate the RP-PCA method

on industry portfolios. We compare the fit of RP-PCA with the fit of PCA and Fama-French

models. We use a set of 48 industry portfolios from the Kenneth R. French Data Library French

[2022]. The data ranges from January 1970 until April 2022 (T=628). Table 5 shows the in- and

out-of-sample fit of RP-PCA, PCA, and Fama-French models using three and five factors.

Table 5: In- and out-of-sample performance of RP-PCA, PCA, and Fama-French models.

In-sample Out-of-sample

Model(k) SR RMSα σ̄e SR RMSα σ̄e

RP-PCA(3) 0.15 0.21 32.98% 0.01 0.29 39.00%

PCA(3) 0.13 0.22 32.92% 0.05 0.27 38.79%

FF(3) 0.19 0.25 44.09% 0.18 0.23 43.76%

RP-PCA(5) 0.21 0.16 26.82% 0.05 0.23 31.77%

PCA(5) 0.17 0.18 26.75% 0.08 0.23 31.95%

FF(5) 0.33 0.31 41.75% 0.33 0.20 38.38%
Note. The sample consists of 48 industry portfolios. The sample ranges from January 1970 until April 2022

(T=628). RP-PCA parameter γ = 10. Best-performing models are marked in bold.

Table 5 shows that in terms of Sharpe ratio, the Fama-French model outperforms RP-PCA

and PCA both in-sample and out-of-sample. Especially the out-of-sample Sharpe ratios for

RP-PCA and PCA are very low compared to the Sharpe ratio implied by Fama-French. The

in-sample cross-sectional pricing errors are the lowest for RP-PCA models. However, Fama-

French outperforms RP-PCA and PCA in terms of out-of-sample cross-sectional pricing errors.

PCA explains more time-series variation compared to RP-PCA and Fama-French. So, when only

looking at Table 5, one would suggest that the Fama-French five-factor model is the preferred

model. Remarkable is the fact that the out-of-sample cross-sectional pricing errors are lower for

Fama-French than for RP-PCA. When looking at the objective function of RP-PCA, RP-PCA

aims to find factors that minimize the cross-sectional pricing errors. The Fama-French factors,
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on the other hand, are based on economic theory. To further investigate the fit of RP-PCA and

PCA, we evaluate the fit using only one factor and successively add factors up to ten factors.

The results are shown in Figure C.1 in Appendix C.

When looking at the in-sample performance of both RP-PCA and PCA, the performance

increases when more factors are added. Also, RP-PCA performs better than PCA in terms

of in-sample Sharpe ratio and cross-sectional pricing errors. After adding the sixth factor, the

in-sample RP-PCA Sharpe ratio and the in-sample RP-PCA cross-sectional pricing error do not

increase much when adding additional factors. The in-sample unexplained time-series variation

is equal for RP-PCA and PCA. This can again be declared by the fact that both methods try to

minimize the unexplained time-series variation in their objective function. So, in-sample, RP-

PCA has a better fit than PCA. When looking at the out-of-sample fit of RP-PCA and PCA, the

patterns of the Sharpe ratio and the cross-sectional pricing errors look rather odd when adding

factors. A model with more than one RP-PCA factor results in a lower Sharpe ratio than a

model with only the first RP-PCA factor. The third RP-PCA factor, in particular, has a big

negative impact on the Sharpe ratio. Also, for the out-of-sample cross-sectional pricing error,

adding the second and third RP-PCA factors increases the cross-sectional pricing error. In terms

of Sharpe ratio and cross-sectional pricing errors, PCA outperforms RP-PCA out-of-sample.

The out-of-sample maximum Sharpe ratio consists of two components (recall Formula (13) in

the Methodology). To get a better insight into the out-of-sample RP-PCA Sharpe ratio, we look

at the behavior of the two components of the Sharpe ratio separately when additional factors

are added. The standard deviation of the expected returns (denominator of the Sharpe ratio)

can be seen as a measure of volatility. The two separate components, calculated using only one

up to ten factors, are shown in Figure C.2 in Appendix C. This figure shows that adding more

factors gradually increases the volatility. However, the expected return decreases when more

factors are added, which decreases the Sharpe ratio. Especially adding the third RP-PCA factor

is disastrous for the expected returns of the industry portfolios. To get a better insight into the

RP-PCA (and PCA) factors, we try to interpret them by looking at the individual factors and

factor loadings.

5.3.2 Interpretation of the Factors

Bro and Smilde [2014] state that "loadings define what a principal component represents". There-

fore, by looking at the factor loadings, we can see which industries are represented by which

factors. This way, we can give interpretation to the RP-PCA and PCA factors. The 48 industry

portfolios can be divided into five broader industries based on their SIC code. We order the
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industry portfolios in such a way that the first x industries belong to broader industry 1, the

next y industries belong to broader industry 2, etc. We consider the same five broader industries

as on the website of Kenneth R. French [French, 2022]: Consumer goods, Manufacturing, High-

technology, Health, and Other. The number of industry portfolios belonging to each of the five

broader industries is shown in Table 6. The exact ranking of the industry portfolios, including

the portfolio names, can be found in Table C.1 in Appendix C.

Table 6: The number of industry portfolios belonging to each of the five broader industries.

Industries Consumer Goods Manufacturing High-Tech Health Other

Portfolios included 13 16 4 3 12
Note. The total number of industry portfolios is equal to 48. Based on their SIC code, the industry portfolios

are assigned to one of the broader industries.

It could be the case that the factors explaining the industry portfolios can be related to the

five broader industries. Therefore, we construct heatmaps in which each column corresponds to

one of the five broader industries. Figure C.3 in Appendix C shows heatmaps of the first five

RP-PCA factor loadings with γ = 10 and PCA factor loadings with γ = −1. We consider the

first five factors because the fifth factor is the last factor that has a substantial incremental effect

on the out-of-sample Sharpe ratio for either RP-PCA or PCA.

The first thing that stands out when looking at Figure C.3 is that the factor loadings of

RP-PCA and PCA display similar patterns for the first five factors. For RP-PCA and PCA,

the first factor has positive loadings for all portfolios. This factor can thus be interpreted as a

market factor. The loadings of the second factor are mostly somewhere in the range of [-0.1,

0.1]. However, the factor loadings of industry portfolios 17, 25, 26, 39, and 40 have relatively

high positive values compared to the others. These portfolios correspond to the industries of

steel, coal, oil, gold, and mines, respectively. Especially the factor loadings of the coal and the

gold industry are very high (0.51 and 0.66). These industries are not categorized together into

the same broader industry based on their SIC code. However, the industries can be linked to

each other based on (economic) theory. All five industries are related to mining or subtracting

finite goods from the earth. For the production of steel, large amounts of iron ore are required,

according to ArcelorMittal [2022], one of the largest steel producers in the world. Iron ore is

excavated in mines and therefore related to the mining industry. Also, the gold industry depends

on the amount of gold excavated in gold mines. Coal also comes from coal mines and is thus

strongly related to the mining industry. Oil does not come from mines. However, it is extracted

from underground reservoirs. Because the second factor represents industries related to mining
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and sourcing of raw materials, this factor can be interpreted as a "mining factor" or a "sourcing

of raw materials factor".

The loadings of the third RP-PCA and PCA factor are again similar. Most loadings are

somewhere in the range of [-0.2, 0.2]. However, two factor loadings stand out. The factor

loadings of the coal and the gold industry portfolios are equal to about -0.6 and 0.6, respectively.

This factor could explain the difference between the gold and coal industries. However, we

can not give clear interpretation to the factor. Also, no literature about a potential negative

relationship between these two industries can be found. The loadings of the fourth RP-PCA

factor display a similar pattern to those of the fourth PCA factor. However, the loadings do not

show a clear pattern. Also, the loadings can not be related to co-moving industries or different

behavior of industries. The loadings of the fifth RP-PCA factor display a similar pattern as the

loadings of the fifth PCA factor. The fifth RP-PCA factor is heavily loaded on the third industry

category. This is the High-Tech industry. Therefore, we can say that the fifth factor is linked to

the High-Tech industry.

After evaluating the factor loadings, we conclude that RP-PCA can not detect any factors

that PCA is not able to detect. Also, we find that we can give interpretation to the first, second,

and fifth RP-PCA factors. The first factor has positive weights for all portfolios and thus can

be interpreted as a market factor. The second factor can be related to mining or the sourcing

of raw materials from the earth. The fifth factor can be linked to the High-Tech industry. No

clear interpretation can be found for the third and fourth RP-PCA factors. Next, we consider

the properties of the individual factors.

5.3.3 Time-Series vs Cross-Sectional Factors

Table 7 shows the mean, variance, Sharpe ratio and mean rank of the first five RP-PCA and

PCA factors. The variance of the first factor is much larger than the variance of the other factors,

which is a typical result for asset returns. As expected, the PCA factors are ranked based on

their variance. However, the RP-PCA factors are also ranked based on their variance. The

RP-PCA factor with the lowest mean is selected as the second factor by RP-PCA. This is not as

expected, as RP-PCA also takes into account the mean of the factor. It could be the case that

the RP-PCA parameter γ = 10 is too low. Therefore, we also consider the individual factors

when γ is equal to 50 and 100. The results are shown in Table C.2 in Appendix C.
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Table 7: Individual factors obtained by using RP-PCA and PCA.

RP-PCA PCA

Factor Mean Variance SR Mean Rank Mean Variance SR Mean Rank

1 4.46 1214.88 0.13 1 4.38 1218.37 0.13 1

2 0.01 146.53 0.00 5 0.01 146.53 0.00 5

3 0.54 87.17 0.06 4 0.31 88.85 0.03 4

4 0.67 74.18 0.07 2 0.52 74.97 0.06 2

5 0.63 59.88 0.08 3 0.71 58.73 0.09 3
Note. The sample consists of 48 industry portfolios. The sample ranges from January 1970 until April 2022

(T=628). RP-PCA parameter γ = 10.

Table C.2 in Appendix C shows that, even when the RP-PCA parameter γ is increased by

a factor of five or ten, RP-PCA is still not able to select factors with a high mean. The factor

with mean rank five is still selected as the second factor by RP-PCA when the RP-PCA weight

γ is increased. So, RP-PCA can not detect factors that PCA is not able to detect, even when γ

is increased. This suggests that the RP-PCA method is not an improvement compared to PCA

for explaining industry portfolios. To elaborate further on the individual RP-PCA factors, we

look at the fit for models using different sets of RP-PCA factors. The results are presented in

Table 8.

Table 8: Fit for RP-PCA model with subset of factors.

In-Sample Out-of-sample

Factors SR RMS σ̄e SR RMS σ̄e

[1] 0.13 0.22 43.77% 0.17 0.24 50.21%

[1,2] 0.13 0.22 37.01% 0.17 0.25 42.71%

[1,2,3] 0.15 0.21 32.98% 0.01 0.29 38.79%

[1,2,4] 0.16 0.21 33.57% 0.18 0.24 38.47%

[1,2,5] 0.16 0.21 34.22% 0.21 0.22 38.96%

[1,4,5] 0.19 0.19 37.57% 0.22 0.21 42.89%

[1,2,4,5] 0.19 0.19 30.81% 0.22 0.20 35.14%

[1,2,3,4,5] 0.21 0.16 26.82% 0.05 0.23 31.77%
Note. The sample consists of 48 industry portfolios. The sample ranges from January 1970 until April 2022

(T=628). RP-PCA parameter γ = 10.

Table 8 shows that the in-sample performance measures gradually improve when adding

more factors. The third RP-PCA factor does not harm the in-sample performance. However,
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the out-of-sample Sharpe ratio heavily decreases when adding the third RP-PCA factor. This

can be seen by the difference in out-of-sample Sharpe ratio between the models with factors [1,2]

and [1,2,3] and the models with factors [1,2,4,5] and [1,2,3,4,5]. Also, in terms of cross-sectional

pricing errors, the out-of-sample performance decreases when adding the third RP-PCA factor.

Therefore, we prefer a model without the third RP-PCA factor. More specifically, the preferred

model is a model with the first, second, fourth, and fifth RP-PCA factor. This model results in

the highest Sharpe ratio, the smallest cross-sectional pricing errors, and performs well in terms

of explained common time-series movement. When comparing this model with the Fama-French

five-factor model in Table 5, Fama-French outperforms this model in terms of Sharpe ratio.

However, in terms of cross-sectional pricing errors and explained common time-series movement

RP-PCA outperforms the Fama-French five-factor model. So, the RP-PCA model with factors

1, 2, 4, and 5 is the best fit for industry portfolios in terms of explaining the cross-section and

the common time-series movement but does not lead to the highest Sharpe ratio.

6 Conclusion and Discussion

In this paper, we compare the newly proposed RP-PCA method with PCA and Fama-French.

RP-PCA tries to capture as much common time-series movement as possible and minimizes the

cross-sectional pricing errors. PCA only tries to capture as much common time-series movement

as possible. When applied to double-sorted portfolios, RP-PCA outperforms PCA and Fama-

French. Also, interpretation can be given to the RP-PCA factors. The first factor can be

interpreted as a market factor. The second and third RP-PCA factors are built similarly to

Fama-French type factors. For the set of single-sorted anomaly portfolios, RP-PCA outperforms

both PCA and Fama-French in terms of Sharpe ratio and root-mean-squared pricing errors. We

find that the first five factors found by RP-PCA are sufficient to explain the returns of 370

single-sorted decile portfolios. Next to this, we can give interpretation to the factors found. The

first factor has positive weights for all portfolios and thus can be interpreted as a market factor.

The second and fifth factors have a high mean and low variance and, thus, a high Sharpe ratio.

Therefore, a model using the first, second, and fifth factors best explains the cross-sectional

return differences. The third and fourth factors have high variance, a low mean, and thus a low

Sharpe ratio. A model using the first, third, and fourth factors captures most of the common

time-series movement. The analysis of double-sorted and single-sorted anomaly portfolios is a

replication of the paper by Lettau and Pelger [2020a]. The results obtained and the conclusions

drawn are very similar.

We extend the paper of Lettau and Pelger by applying the RP-PCA method to a set of 48
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industry portfolio returns. We find that the out-of-sample performance of RP-PCA is relatively

weak. This is mainly due to the presence of the third RP-PCA factor. When removing the third

RP-PCA factor, the performance of RP-PCA increases. A model with RP-PCA factors 1, 2,

4, and 5 performs best among all RP-PCA models. This model has the best fit for industry

portfolios. Also, there is not much difference between RP-PCA and PCA in terms of factors and

factor loadings. It could be the case that there is not much risk-premium contained in industry

portfolios. Another possible explanation could be that the cross-section is too small. However,

the fact that RP-PCA does well on the set of 74 extreme first and tenth decile anomaly portfolios

weakens this declaration.

RP-PCA takes into account the mean of a factor when selecting factors. However, even when

increasing the RP-PCA parameter γ by a factor of ten, RP-PCA is still unable to detect other

factors than PCA. The first factor found by RP-PCA and PCA can be interpreted as a market

factor. The second factor can be interpreted as a factor related to mining or extracting finite

goods from the earth. The fifth factor can be linked to the High-Tech industry. For the third

and fourth RP-PCA factors, we can find no interpretation.

So, RP-PCA does well for the double-sorted and single-sorted anomaly portfolios. A model

with RP-PCA factors 1, 2, 4 and 5 is the best fit for industry portfolios as it results in the lowest

cross-sectional pricing errors and best explains the common time series variation. However, the

Fama-French five-factor model results in the highest Sharpe ratio. Also, applying RP-PCA and

PCA to industry portfolios results in similar factors and factor loadings, even when the RP-PCA

parameter is increased. The first RP-PCA factor can be interpreted as a market factor, the

second RP-PCA factor can be related to mining or the extraction of finite goods from the earth,

and the fifth RP-PCA factor can be linked to the High-Tech industry.

20



References

ArcelorMittal. Making steel. https://corporate.arcelormittal.com/about/making-steel,

2022. Accessed: 03-06-2022.

Bai and Ng . Rank Regularized Estimation of Approximate Factor Models. Journal of Econo-

metrics, 212(1):78–96, 2019.

Bro and Smilde. Principal component analysis. Analytical Methods, 6(9):2812–2831, 2014.

Cavaglia, Brightman, and Aked. The Increasing Importance of Industry Factors. Financial

Analysts Journal, 56(5):41–54, 2000.

Cavaglia, Hodrick, Vadim, and Zhang. Pricing the Global Industry Portfolios, 2002.

Elhadary. Using the Industry-Based Fama-French Model to Evaluate Industry Portfolios. Journal

of Accounting and Finance, 21(2):24–40, 2021.

Fama and French. Common Risk Factors in the Returns on Stocks and Bonds. Journal of

Financial Economics, 33(1):3–56, 1993.

Fan, Liao, and Wang. Projected Principal Component Analysis in Factor Models. Annals of

Statistics, 44(1):219, 2016.

Feng, Giglio, and Xi. Taming the Factor Zoo. Fama-Miller Working Paper, 24070, 2017.

French. Kenneth R. French Data Library, 2022. URL

mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html. Accessed:

10/05/2022.

Kelly, Pruitt, and Su. Instrumented Principal Component Analysis. Available at SSRN 2983919,

2020.

Kozak. Serhiy Kozak Data, 2013. URL https://sites.google.com/site/serhiykozak/data.

Accessed: 10/05/2022.

Kozak, Nagel, and Santosh. Shrinking the cross-section. Journal of Financial Economics, 135

(2):271–292, 2020.

Lettau and Pelger. Factors That Fit the Time Series and Cross-Section of Stock Returns. The

Review of Financial Studies, 33(5):2274–2325, 2020a.

Lettau and Pelger. Estimating Latent Asset-Pricing Factors. Journal of Econometrics, 218(1):

1–31, 2020b.

21



Ross. The Arbitrage Theory of Capital Asset Pricing. In Handbook of the Fundamentals of

Financial Decision Making: Part I, pages 11–30. World Scientific, 2013.

Stock and Watson. Forecasting Using Principal Components from a Large Number of Predictors.

Journal of the American Statistical Association, 97(460):1167–1179, 2002.

22



Appendix A. Double-Sorted Portfolios

Figure A.1: Out-of-sample performance as a function of γ

(a) SR (Out-of-sample) (b) SR (Out-of-sample)

(c) RMSα (Out-of-sample) (d) RMSα (Out-of-sample)

(e) σ̄2 (Out-of-sample) (f) σ̄2 (Out-of-sample)

Note. The left-sided figures show the results for the Size/Accrual portfolios. The right-sided figures show the

results for the Size/Short-Term Reversal portfolios. The sample ranges from November 1963 until December

2017 (T=650).
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Figure A.2: Heatmap of the first three factor loadings using RP-PCA and PCA for

Size/Accrual portfolios and Size/Short-term reversal portfolios.

(a) Size/Accrual: RP-PCA

(b) Size/Accrual: PCA

(c) Size/Short-Term Reversal: RP-PCA

(d) Size/Short-Term Reversal: PCA

Note. The Size/Accrual and Size/Short-Term Reversal portfolios are used. The sample ranges from November

1963 until December 2017 (T=650). RP-PCA parameter γ = 20.
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Appendix B. Single-Sorted Anomaly Portfolios

Table B.1: In- and Out-of-sample performance of RP-PCA, PCA, and Fama-French models.

Model(k) SR RMSα σ̄e SR RMSα σ̄e

In-sample Out-of-sample

Panel 1: 370 portfolios

RP-PCA(3) 0.24 0.17 12.77% 0.20 0.15 14.41%

PCA(3) 0.17 0.17 12.68% 0.13 0.15 14.49%

FF(3) 0.21 0.18 14.61% 0.15 0.16 14.89%

RP-PCA(5) 0.56 0.13 10.80% 0.47 0.12 12.72%

PCA(5) 0.25 0.14 10.68% 0.18 0.14 12.59%

FF(5) 0.32 0.16 13.60% 0.32 0.13 13.74%

Panel 2: 98 portfolios

RP-PCA(3) 0.36 0.22 13.56% 0.20 0.23 16.37%

PCA(3) 0.25 0.25 13.42% 0.14 0.24 16.60%

FF(3) 0.21 0.32 17.04% 0.15 0.26 17.67%

RP-PCA(5) 0.54 0.17 10.38% 0.42 0.15 13.06%

PCA(5) 0.33 0.20 10.27% 0.22 0.19 12.91%

FF(5) 0.34 0.23 15.27% 0.32 0.20 14.91%
Note. The sample of Panel 1 consists of 370 decile portfolios and ranges from November 1963 until December

2017 (T=650). The sample of Panel 2 consists of 98 extreme decile portfolios and ranges from November 1973

until December 2017 (T=530). RP-PCA parameter γ = 10. The best-performing models are marked in bold.
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Figure B.1: Maximum Sharpe ratios, root-mean-squared pricing errors, and unexplained

idiosyncratic variation for a different number of factors.

(a) SR (In-sample) (b) SR (Out-of-sample)

(c) RMSα (In-sample) (d) RMSα (Out-of-sample)

(e) σ̄2 (In-sample) (f) σ̄2 (Out-of-sample)

Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10. The number of used factors can be found on the x-axis.
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Figure B.2: Successive eigenvalue differences for different values of γ

(a) N=74 (b) N=370

Note. Consecutive eigenvalue differences of 1
T
XTX + γXX

T for different values of γ. The sample consists of 74

extreme decile portfolios. The sample ranges from November 1963 until December 2017 (T=650).

Figure B.3: In- and out-of-sample mean-squared cross-sectional pricing errors of RP-PCA and

PCA.

(a) In-sample

(b) Out-of-sample

Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10. Both RP-PCA and PCA use five factors. The portfolios

are ranked based on their Sharpe ratio.
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Figure B.4: Portfolio weights in the RP-PCA and PCA SDF.

(a) RP-PCA

(b) PCA

Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10. Both RP-PCA and PCA use five factors. The portfolios

are ranked based on their Sharpe ratio.
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Figure B.5: SDF weights plotted against the average returns (in % per month)

(a) RP-PCA. Corr = 0.89

(b) PCA. Corr = 0.56

Note. The sample consists of 74 extreme decile portfolios. The sample ranges from November 1963 until

December 2017 (T=650). RP-PCA parameter γ = 10. Both RP-PCA and PCA use five factors. Blue dots

correspond to the first decile portfolios. Red dots correspond to the last decile portfolios.
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Appendix C. Industry Portfolios

Table C.1: The 48 different industry portfolios and the category they belong to.

Portfolio Category Portfolio Category

1 Agric 1 25 Coal 2

2 Food 1 26 Oil 2

3 Soda 1 27 Util 2

4 Beer 1 28 Paper 2

5 Smoke 1 39 Boxes 2

6 Toys 1 30 Telcom 3

7 Books 1 31 Comps 3

8 Hshld 1 32 Chips 3

9 Clths 1 33 Labeq 3

10 Txtls 1 34 Hlth 4

11 Whlsl 1 35 MedEq 4

12 Rtail 1 36 Drugs 4

13 Meals 1 37 Fun 5

14 Chems 2 38 Cnstr 5

15 Rubbr 2 39 Gold 5

16 BldMt 2 40 Mines 5

17 Steel 2 41 PerSv 5

18 FabPr 2 42 BusSv 5

19 Mach 2 43 Trans 5

20 ElcEq 2 44 Banks 5

21 Autos 2 45 Insur 5

22 Aero 2 46 RlEst 5

23 Ships 2 37 Fin 5

24 Guns 2 48 Other 5
Note. The industry portfolios can be divided into five categories: 1. Consumer goods, 2. Manufacturing, 3.

High-Tech, 4. Health and 5. Other. All industry portfolios are assigned to a category based on their SIC code.

A more detailed explanation of the industry portfolios can be found in the Kenneth R. French Data Library

[French, 2022].
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Table C.2: Individual factors obtained by RP-PCA for different values of γ.

γ = 50 γ = 100

Factor Mean Variance SR Mean Rank Mean Variance SR Mean Rank

1 4.57 1187.13 0.13 1 4.61 1161.24 0.14 1

2 0.01 146.52 0.00 5 0.02 146.50 0.00 5

3 0.74 86.39 0.08 2 0.52 106.59 0.05 2

4 0.16 84.29 0.02 4 0.07 85.54 0.01 4

5 0.17 67.66 0.02 3 0.08 69.10 0.01 3
Note. The sample consists of 48 industry portfolios. The Sample ranges from January 1970 until April 2022

(T=628).
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Figure C.1: Maximum Sharpe ratios, root-mean-squared pricing errors, and unexplained

idiosyncratic variation for a different number of factors.

(a) SR (In-sample) (b) SR (Out-of-sample)

(c) RMSα (In-sample) (d) RMSα (Out-of-sample)

(e) σ̄2 (In-sample) (f) σ̄2 (Out-of-sample)

Note. The sample consists of 48 industry portfolios. The sample ranges from January 1970 until April 2022

(T=628). RP-PCA parameter γ = 10. The number of factors can be found on the x-axis.
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Figure C.2: The out-of-sample expected return minus the risk-free rate and the out-of-sample

standard deviation of the expected return (volatility) for the RP-PCA model.

(a) Expected return minus risk-free rate (b) Volatility

Note. The sample consists of 48 industry portfolios. The sample ranges from January 1970 until April 2022

(T=628). RP-PCA parameter γ = 10. Number of factors can be found on the x-axis.
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Figure C.3: Heatmaps of the first five factors obtained by RP-PCA and PCA.

(a) RP-PCA factor 1 (b) PCA factor 1

(c) RP-PCA factor 2 (d) PCA factor 2

(e) RP-PCA factor 3 (f) PCA factor 3

(g) RP-PCA factor 4 (h) PCA factor 4
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(i) RP-PCA factor 5 (j) PCA factor 5

Note. The sample consists of 48 industry portfolios. The sample ranges from January 1970 until April 2022

(T=628). RP-PCA parameter γ = 10. Positive loadings are shown in red and negative loadings are shown in

blue.
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