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Abstract

As personalization might cause unintended discrimination in targeting policies, several

methods have been proposed that mitigate algorithmic bias. Ascarza and Israeli (2022)

propose the Bias-Eliminating Adapted Trees (BEAT) method that ensures fair personal-

ization policies, while leveraging differences between individuals. Extensive analysis on the

performance of BEAT is relevant for decision makers designing fair targeting policies and con-

tributes to current academic literature on practical effectiveness of bias mitigating methods.

This paper extends the research of Ascarza and Israeli (2022) with analysis on the Equalised

Odds metric and implementation of Equalised Odds Post Processing method, introduced

by Hardt et al. (2016), to provide more insights on the performance of BEAT. Experiment

data of a Domino’s Pizza promotion and Portuguese Bank marketing campaign is used to

estimate targetability scores and design targeting policies accordingly. The methods used

for estimation build on the Generalised Random Forest framework, designed to efficiently

estimate heterogeneity. In addition, the Equalised Odds Post Processing (EOPP) method

is implemented, which adjusts derived targeting policies to achieve Equalised Odds. This

results in the comparison of several methods on performance and fairness. Following this

analysis it can be confirmed that BEAT is an effective method in removing bias in prac-

tice while leveraging differences between individuals. BEAT combined with EOPP results

in additional bias mitigation and performs well in both marketing applications. Therefore,

BEAT-EOPP is a strong bias mitigating method that is effective in practice and can be used

by policy makers to design fair marketing personalization policies.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

The increased availability and collection of data in a wide variety of domains and for many appli-

cations has initiated the beginning of a new trend in decision making. Namely, decision makers

nowadays use the seemingly endless source of information obtained from data for personalization

of their policies with the aim to optimally target affected individuals. We are confronted with

these targeted interventions on a daily basis through for instance pricing (tickets, insurance,

renting), advertising (online ads, emails, personal promotions), medical treatments (organ al-

location or Covid-19 Intensive Care availability), admissions (college, university, jobs) or news

publication (social media). In arguably many cases these personalised policies offer the benefit

of confronting an individual with their specific preferences, improving user experience and, if

applicable, possibly profits. On the contrary, this algorithmic innovation appears to cause un-

intended discrimination, based on so called protective attributes (e.g., race, gender or age), in

the allocation of resources through hidden correlation or relations between predictive variables.

Numerous methods have been developed that aim to mitigate this bias. Recently, Ascarza and

Israeli (2022) proposed the Bias-Eliminating Adapted Trees (BEAT) method that removes bias

while preserving the benefits from leveraging differences in individual preferences. Their results

show that BEAT performs well in removing bias according to the fairness metrics used in the

paper, but this effectiveness might not be consistent for different metrics or applications. The

Imbalance metric for group fairness in Ascarza and Israeli (2022) illustrates differences in dis-

tribution of protected attributes over treated and non-treated groups, leaving space for bias

in the prediction errors across protected groups. Moreover, the performance of BEAT is not

significantly better than the method where protected variables are removed from the data.

In this paper the research on BEAT is extended with analysis on the Equalised Odds (EO)

fairness metric. EO is a well known metric for group fairness proposed by Hardt et al. (2016).

EO requires equality in prediction errors and through this extension provides a new perspective

on its performance. In addition, this paper implements the Equalised Odds Post Processing

(EOPP) method that is introduced by Hardt et al. (2016) as well, which aims to optimise a

targeting policy with respect to Equalised Odds. Moreover, the effectiveness of BEAT is val-

idated with an additional marketing experiment. This extension is relevant to examine the

general effectiveness of BEAT, providing more insights on its applicability. Providing additional

evidence for a well performing practical bias mitigation method is of great relevance for decision

makers that design policies with different objectives with regard to achieving fair personaliza-

tion. This research also contributes to the academic field of algorithmic bias. The majority of

previous literature focused on the theoretical background of algorithmic bias, whereas this paper
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investigates practical use of bias mitigating methods. The aim of this research is thus to reveal

algorithmic bias in practice and solve discrimination issues in targeting policies with practical

solutions in a marketing context.

Therefore, the research question of this paper is: “Is the BEAT method effective in mitigating

bias defined by the Equalised Odds metric?”. To answer this question, experiment data of a

Domino’s Pizza promotion and Portuguese Bank marketing campaign, both including sensitive

and non-sensitive attributes, is used to derive targeting policies using both causal inference

and prediction forests. For the Domino’s Pizza experiment causal inference is used to estimate

treatment effects (CATE) of individuals, conditional on a set of explanatory variables. For the

Portuguese Bank campaign prediction forests estimate targetability scores based on the outcome

variable directly. The implemented methods are based on Generalised Random Forests (GRF),

which are designed to efficiently estimate heterogeneous outcomes. Using different methods in

these marketing applications, targeting policies are derived according to estimated targetability

scores. The designed targeting policies for each method are then used to analyse and compare

methods on efficiency and fairness, including the Equalised Odds metric. The EOPP method

adjusts derived targeting policies from other methods by solving a linear program to achieve

Equalised Odds.

The BEAT-EOPP method, that estimates targetability scores with BEAT to derive targeting

policies and adjusts these with EOPP to achieve EO, performs best of all methods. In addition,

the results show that BEAT is not only powerful in reducing imbalance while preserving a com-

petitive performance, but reduces disparity in Equalised Odds as well. This finding confirms

the capability of BEAT to remove algorithmic bias defined by different metrics and provides

conclusive evidence on superior performance in practice compared with the other methods.

In Section 2 previous literature on algorithmic bias, mitigation methods and fairness is sum-

marised. Section 3 describes the data for both marketing experiments. Next, the methodology

of personalization methods and evaluation metrics is explained in Section 4. The results are

given in Section 5 and finally in Section 6 and 7 the conclusion and discussion are given.

2 Literature review

Algorithmic Bias Bias in algorithms can be interpreted as systematic disproportionate tar-

geting of individuals from different groups in a protected variable. Algorithmic bias has been

extensively examined in previous literature. Earlier researches aimed to detect biases in data or

algorithms and examine its consequences, whereas more recent literature also developed meth-

ods that eliminate algorithmic bias or unfairness. In order to remove discriminating bias, an
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intuitive adaption by companies and organisations is removing protected variables from their

data, assuming that discrimination by their algorithm is resolved. The problem that arises after

the elimination of these protected variables is that it is very likely and frequently observed that

the protected variables affect the predicted value through other unprotected variables that were

not eliminated, in essence thus creating omitted variable bias (Pope and Sydnor, 2011). As long

as the variables correlated with the protected attributes are not removed as well, the bias can

not be (completely) eliminated. On the other hand, if one decides to remove these variables

the resulting model would lose predictive power and becomes inefficient. This trade off between

predictive accuracy and removing bias is crucial in the development of methods that eliminate

bias while also capturing value from the predictions that lead to targeted interventions.

Bias mitigation methods In general, there are three stages in the process of personalization

where methods attempt to mitigate algorithmic bias. These stages are related to the prepara-

tion, prediction and allocation phases of designing personalization policies. First, data can be

subject to pre-processing methods such that biased data is transformed before being used. For

instance, Feldman et al. (2015) propose such a method with the aim to change only the unpro-

tected variables so that the ability to classify can be preserved as much as possible and Johndrow

and Lum (2019) similarly describe a generally applicable method for creating an adjusted set

of covariates that are independent of protected characteristics. Lohia et al. (2019) argue that

these methods are generally only successful in removing bias defined according to group fairness

rather than both group and individual fairness. Secondly, rather than removing bias within the

data, methods have been proposed that eliminate bias in the allocation stage using constraints

in optimisation problems. Goh et al. (2016) and Agarwal et al. (2018) describe how constraint

optimisation removes bias defined according to different notions of fairness. These methods

however do not seem to work well in the case of classification algorithms where multiple pro-

tected variables are being used, i.e. high dimensionality (Ascarza and Israeli, 2022). A third

category of bias mitigating methods focuses on the prediction stage, rather than pre- (data

transformation) or post-processing (allocation constraints). Kamishima et al. (2012) propose

a technique to reduce indirect prejudice, meaning statistical dependency between sensitive and

non sensitive variables, that is applicable to various prediction algorithms with probabilistic dis-

criminating models. Recently, Ascarza and Israeli (2022) propose the Bias-Eliminating Adapted

Trees (BEAT) method that removes bias, by ensuring a balanced allocation of resources across

individuals while preserving the benefits from heterogeneity in individuals.

The methods used and proposed in Ascarza and Israeli (2022) build on the General Random For-

est (GRF) framework. The technicalities of the GRF are carefully explained in detail by Athey
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et al. (2019) and its adaption for causal inference, Causal Forests, by Wager and Athey (2018).

In addition to the Equalised Odds criterion, Hardt et al. (2016) propose a Post Processing

method that achieves Equalised Odds by solving a linear program. This method is implemented

in this research to achieve fair targeting policies in marketing applications, in addition to the

methods from Ascarza and Israeli (2022).

Fairness definitions Defining bias and unfairness in more detail is of crucial importance as

different fairness metrics could imply different results and might be used in specific applications,

depending on the objective of a decision maker. Group and individual fairness have therefore

been thoroughly discussed in literature resulting in many different, but also somewhat identical

fairness metrics. First of all, within the context of group fairness the defined metrics can be

organised in three categories: Independence, separation and sufficiency, as given by Castelnovo

et al. (2022). The criterion of independence states that the decisions should be independent of

any protected attributes (Barocas et al., 2019). This group fairness definition is also known as

demographic or statistical parity. Adjustments to this criterion can be made by conditioning on

additional information, obtaining conditional demographic parity. These independence criteria

do not utilise any information on the true target, but solely use the distribution of features and

decisions. Therefore, Barocas et al. (2019) describe the concept of separation to define group

fairness where the probability is also conditioned on the true target. Hardt et al. (2016) intro-

duced equalised odds, where fairness is measured with differences in prediction errors between

protected groups. In addition, a relaxation of this equalised odds is the equal opportunity defi-

nition that only requires equal true positive rates. Furthermore, sufficiency is described as third

category by Castelnovo et al. (2022) and takes the perspective of people that are given the same

model decision. More specifically, it requires parity among the treated groups irrespective of

sensitive features (Barocas et al., 2019).

However, Dwork et al. (2012) explain that statistical parity could indicate fairness, while from

the point of view of an individual, the outcome is seen as unfair. Castelnovo et al. (2022) add

to this and states that since group fairness requires to satisfy conditions only on average among

groups, it leaves room to bias discrimination inside the groups. Therefore, defining individual

fairness has been addressed in literature as well. For example, Dwork et al. (2012) define in-

dividual fairness as two individuals who are similar with respect to the unprotected variables

at hand should be classified similarly. Analysis on mitigating bias is thus dependent on the

definitions of fairness used.
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3 Data

For this research two data sets related to marketing experiments are analysed. The first data

set that is used is obtained from a Domino’s Pizza experiment conducted in 2022 by Ascarza

and Israeli (2022) via MTurk. The experiment consisted of an A/B Test where individuals

in the control condition were offered a choice between $5 gift cards to Panera Bread and to

Domino’s Pizza. In the treatment condition, participants were given a similar choice, but the

Domino’s Pizza gift card had a value of $10, representing the idea of a $5 coupon promotion.

The experimental data of this treatment is publicly available on the Harvard Business School

Dataverse (Ascarza and Israeli). The data describes 3,146 individuals with 206 variables. The

data set contains two experiment variables, corresponding to the treatment allocation and final

responses to the promotion, and 204 explanatory variables. These explanatory variables con-

sist of 190 unprotected variables and 14 variables on three protected attributes: Age, race and

gender. Descriptive statistics (mean and standard deviation) of these sensitive attributes and

Table 1: Descriptive statistics of experiment variables and protected attributes from the

Domino’s Pizza experiment data.

Variable Mean SD

Experiment variables Gift card choice 0.563 0.496

Treatment group 0.499 0.500

Protected attributes Age 41.49 13.00

Race American Indian / Alaska Native 0.012 0.112

Asian 0.090 0.286

Black / African American 0.097 0.297

Hispanic / Latino 0.056 0.233

Native Hawaiian / Pacific Islander 0.004 0.060

Middle Eastern 0.007 0.082

North African 0.001 0.030

White 0.774 0.421

Other 0.007 0.085

Gender Male 0.435 0.496

Female 0.556 0.497

Nonbinary 0.006 0.080

Other 0.002 0.047
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experiment variables are shown in Table 1. As the shown features are dummy variables, the

mean values represent the fraction of individuals belonging to the corresponding group. More-

over, the unprotected variables describe brand preferences, consumption behaviour and personal

information of the participated individuals. For example, participants were asked to rate their

preferences on brands in various categories such as sportswear, apparel, restaurants and tech-

nology/social media on a three-point scale (dislike, indifferent or like). In addition, individual

behaviour is measured on a six-point scale, ranging from ’never’ to ’on a daily basis’. This

consumer behaviour of the participant describes activity related variables such as social media

activity, food delivery frequency, exercise frequency and coupon usage. Furthermore, personal

information such as education, income, spending and environmental consciousness is included

in the unprotected variables.

The second data set that is analysed in this research is related to a telephone marketing cam-

paign of a Portuguese banking institution. The campaign consisted of phone calls to a list of

clients to sell a term deposit between 2008 en 2010. Hence, the outcome of the campaign is a

binary list indicating unsuccessful or successful contacts, with a success rate of approximately

11% as can be seen from Table 2. The data of this experiment is made publicly available by

Moro et al. (2014). The full data set provided consist of 41,188 observations, but for compu-

tational purposes a stratified subset is used in this paper, resulting in 4,119 observations with

45 variables. The 44 explanatory variables consist of 5 protected and 39 unprotected variables.

The protected variables in this data describe age and marital status. Descriptive statistics of

the outcome variable and protected variables are shown in Table 2. The unprotected variables

describe each individual with categorical variables type of job, education level, existing credit

in default, housing/personal loans and numeric variables employment variation rate, consumer

Table 2: Descriptive statistics of experiment variables and protected attributes from the

Portuguese Bank experiment data.

Variable Mean SD

Experiment variable Term deposit decision 0.11 0.31

Protected attributes Age 40.11 10.31

Marital Status Married 0.609 0.488

Divorced 0.108 0.311

Single 0.280 0.449

Other 0.003 0.052

7



price index, consumer confidence index, number of employees and information on outcomes of

previous campaigns.

For both experiments, the protected variable Age is split into two equal quantiles. This is nec-

essary for the determination of privileged and unprivileged subgroups in the Equalised Odds

computation explained in Section 4. This split results in two age categories for both data sets,

depending on the quantile for Age in each data. For the Domino’s Pizza experiment, causal

inference is used to estimate treatment effects based on the available data and targeting poli-

cies are designed according to a decision rule. In the Portuguese Bank experiment, prediction

forests directly estimate targetability scores based on the outcome variable, similarly resulting

in targeting policies based on a specified targeting rule. This is explained in more detail in the

next Section.

4 Methodology

In this Section, the methods used for deriving targeting policies and corresponding evaluation

metrics are explained. First, the methods used in Ascarza and Israeli (2022) and the Equalised

Odds Post Processing method implemented in this paper are described. Thereafter, the evalua-

tion metrics from Ascarza and Israeli (2022) and the Equalised Odds metric are explained. More

specifically, as illustrated in Ascarza and Israeli (2022), three types of models are used being

Causal Forest, Debiasing method and the proposed BEAT method. All methods are evaluated

with three metrics that reflect model performance, group fairness and individual fairness. This

analysis is thus extended with the Equalised Odds metric and Equalised Odds Post Processing

method.

For convenience, first the notation is introduced that is used throughout the paper. Suppose

we have n observations, corresponding to the number of experiment participants, given by

i = 1, .., n. Each observation consists of a feature vector, where xi denotes the vector of unpro-

tected features and zi the vector of protected features of individual i, respectively. Yi ∈ {0, 1}

denotes the outcome variable and Wi ∈ {0, 1} is the treatment indicator from the actual data

for individual i. Throughout the paper the designed targeting policy indicator, obtained by one

of the methods, for individual i is denoted with Ŵi. Note that this is not a treatment predic-

tion, but targeting decision based on a decision rule using predicted targetability scores which

is explained next.
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4.1 Personalization methods

Personalization is obtained by designing targeting policies, i.e. the allocation of treatments over

a set of individuals, that maximise the goal or outcome of a policy (e.g., maximising profits or

response rates). In order to maximise that outcome, the main objective when designing targeting

policies is to identify heterogeneity in the object of interest, which is treatment effect for causal

inference and the outcome variable for prediction forests. This paper derives targeting policies

using both causal inference (Domino’s Pizza experiment) and prediction forests (Portuguese

Bank experiment). Identifying the individuals on whom a treatment would have the most

predicted effect could result in better performing targeting policies, where performance depends

on the policy objective. For the application of causal inference, the object of interest is thus

treatment effect, which is also known as the Conditional Average Treatment Effect (CATE). For

individual i this is given by

τi(x) = E
[
Yi

(1) − Yi
(0)|xi = x

]
. (1)

Here Yi
(1) and Yi

(0) denote the potential outcomes individual i would have experienced with

and without the treatment, conditional on covariates xi that can include both protected and

unprotected variables. Heterogeneous treatment effects can be estimated with Causal Forests

(CF), which build on the Generalised Random Forest (GRF) framework, discussed by Athey

et al. (2019). The concept of Causal Forest is explained in detail by Wager and Athey (2018)

and a brief explanation is included in the Appendix A. Based on the identified heterogeneity

in treatment effect across individuals, the method estimates a targetability score τ̂i(x) for each

individual, indicating the potential effect of assigning a treatment to the corresponding indi-

vidual. These scores can be used to design the targeting policy, by assigning treatments to the

individuals with the highest predicted targetability scores. If for instance the target rate of a

personalization policy is 50%, one would assign treatments to the individuals corresponding with

the 50% highest scores. In the paper of Ascarza and Israeli (2022) three different methods are

implemented to obtain these targetability scores. These method respectively are Causal Forest,

Debiasing and the proposed BEAT method.

For the application of prediction forests, where the object of interest is the outcome variable, the

expected outcome variable µi is predicted rather than the treatment effect τi. The estimation is

done with a regression forest instead of a causal forest, resulting in targetability scores based on

the outcome variable. For the Portuguese Bank data, where no treatment allocation in the data

is applicable, this outcome variable is the individual’s decision of subscribing a term deposit.

With the resulting vector of expected outcome predictions µ, targeting policies can be designed
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in the same manner as for the causal inference. Given a target rate t, treatments can be assigned

to the individuals corresponding to the t% highest targetability scores.

Targeting methods In this research different methods are used to derive targeting policies

from targetability scores. For the analysis on the Domino’s Pizza experiment causal inference

is used and hence the methods estimate targetability scores with Causal Forests (CF). For the

analysis on the Portuguese Bank experiment prediction forests are used and hence the methods

estimate targetability scores with Regression Forests (RF). Both the CF and RF are applications

of the GRF and hence RF operate equivalently to CF, but estimate targetability scores based on

the outcome variable and not on treatment effects. In other words, no data on actual treatment

allocation is available for prediction forests and hence treatment effects can not be estimated.

The various methods used in this research are explained next.

First, a CF with the full data (CF-FD), including both protected and unprotected variables,

is used to predict the targetability scores for the Domino’s Pizza experiment. In addition,

CF without protected variables (CF-NP), thus including unprotected variables only, is used

as well. These two methods hence differ only in the data used for estimation. CF-FD is the

benchmark model where no intervention with respect to bias mitigation is implemented and CF-

NP represents the naive approach of removing protected variables from the data as a solution for

bias mitigation. For the Portuguese Bank experiment this is equivalent to implementing both a

regression forest with full data (RF-FD) and without protected variables (RF-NP), where the

difference with CF is that no treatment vector w is available for estimation and is hence omitted

in the input data.

Secondly, for both experiments a Debiasing method is implemented which aims to debias the

unprotected variables with a random forest where the protected variables Z are the features

and the unprotected variables X the outcome. The predicted values from the random forest

are subtracted from the original X variables. In other words, the predictive information of Z

on X is removed from X with the aim to make it unrelated with respect to Z. Mathematically

this is given by XDebiased = XOriginal − fx(Z), where X and XDebiased denote the matrices of

original and debiased unprotected variables respectively and Z denotes the matrix of protected

variables. Next, the debiased unprotected variables are used in a CF along with the original

outcome and treatment vectors y and w resulting in the CF-DB method. Again, the debiasing

method using regression forests (RF-DB) for the Portuguese Bank experiment operates similarly,

but estimates targetability scores based on XDebiased and y and hence no treatment vector w.

Finally, the BEAT method proposed by Ascarza and Israeli (2022) is implemented. The goal

of this method is to, similar to the GRF, identify heterogeneity across individuals. However,
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BEAT aims to estimate heterogeneity that is unrelated to the protected attributes. For that

reason, BEAT build on the GRF framework but differs from GRF in the way splits in the forest

are determined. GRF determines the split based on the divergence in the outcome of interest

and BEAT adjusts this splitting criterion by adding a penalty term that penalises differences in

the protected attributes between the split nodes. The resulting split criterion is called Balanced

Divergence (BD) and maximising it when searching for splits ensures that all resulting trees

are balanced with respect to the protected attributes (Ascarza and Israeli, 2022). The resulting

split criterion is given by

BD(C1, C2) = ∆̂(C1, C2)︸ ︷︷ ︸
GRF split criterion

− γDist

(
−→
Z C1

∣∣∣∣Xk,s,
−→
Z C2

∣∣∣∣Xk,s

)
︸ ︷︷ ︸

BEAT added penalty

, (2)

where C1 and C2 denote the child nodes, γ is the penalty parameter and Xk,s is the splitting

point for C1 and C2 at dimension k ∈ K. As equation (2) shows, maximising the BD criterion

implies minimising the penalty term and thus ensures a balance with respected to protected

variables in the child nodes, given by ZC1 and ZC2 . The value for the γ parameter can be

adjusted and determines the weight given to the balance in the protected attributes. Increasing

γ reduces the imbalance, but at the cost of efficiency. BEAT is implemented in this research

with three different values for γ: γ ∈ {3, 5, 8}. Once this maximisation procedure has been

completed for all splitting points and trees are fully grown, the complete forest is obtained.

BEAT proceeds the same as GRF once the full forest is obtained. Hence, targetability scores are

predicted for each individual. Given the balanced divergence criterion these scores are referred

to as Conditional Balanced Targetability (CBT) scores (Ascarza and Israeli, 2022). CBT thus

measures the adjusted treatment effect predictions, conditional on a set of unprotected variables

such that there is balance with regard to the protected attributes. Finally, after BEAT estimates

CBT scores for each individual, these can be used to determine the optimal targeting allocation

by selecting the individuals belonging to the top t% of CBT scores, given a target rate of t.

Note that BEAT similarly predicts heterogeneity unrelated to protected variables in outcome

variable µi rather than τi, for the Portuguese Bank experiment.

Equalised Odds Post Processing This paper extends the analysis on BEAT with the bias

mitigation method Equalised Odds Post Processing (EOPP), introduced by Hardt et al. (2016).

The Equalised Odds (EO) metric is defined in more detail in the next Section, but for better

understanding of the method the EO criterion is defined as:

Pr[Ŵ = 1|Z = a,W = y] = Pr[Ŵ = 1|Z = b,W = y]. (3)
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Note that Ŵ is a derived targeting policy obtained by the implemented methods, a, b ∈ Z are

the classes or groups in a protected variable and y = {0, 1} is the true treatment allocation. For

y = 1, the criterion requires that W has equal True Positive Rates (TPR) with respect to the

protected attribute Z and y = 0 corresponds with equal False Positive Rates (FPR). Equalised

Odds Post Processing solves a linear program, based on TPR and FPR, to find probabilities with

which to change output labels from a previous obtained (binary) targeting policy to optimise

Equalised Odds (Bellamy et al., 2019).

For the marketing experiments studied in this research, this amounts to changing the the ob-

tained labels Ŵ , i.e. the derived targeting policy. The resulting new targeting policy W̃p is

given by a set of parameters, corresponding with probabilities of changing labels, given by

p = (p00, p01, p10, p11), where pwa = Pr[W̃ = 1|Ŵ = w,A = a] with W̃ and Ŵ the new and

original targeting vectors. Now, define

γ0(W̃ ) =
(
Pr{W̃ = 1|A = 0,W = 0},Pr{Ŵ = 1|A = 0,W = 1}

)
and

γ1(W̃ ) =
(
Pr{W̃ = 1|A = 1,W = 0},Pr{Ŵ = 1|A = 1,W = 1}

)
and

Then, the Equalised Odds criterion is defined to be satisfied if γ0(W̃ ) = γ1(W̃ ).

The objective function of the linear program is a loss function E
[
ℓ(W̃p,W )

]
, which takes a pair

of labels and returns a value indicating the loss of predicting W̃ when the correct label is W . An

optimal targeting policy satisfying the Equalised Odds criterion is now derived by the following

optimisation problem:

minp E
[
ℓ(W̃p,W )

]
s.t. γ0

(
W̃p

)
= γ1

(
W̃p

)
∀w,a0 ⩽ pwa ⩽ 1.

(4)

Finally, as an unprocessed targeting policy Ŵ one can choose any method (predicting targetabil-

ity scores) that derive a targeting policy. In this paper, the resulting targeting policies from

GRF without protected variables (CF-NP/RF-NP) and BEAT (γ = 8) are post processed by

the EOPP method, given the effectiveness of the two methods shown by Ascarza and Israeli

(2022).

The Equalised Odds Post Processing method is implemented in Python with the package from

Bellamy et al. (2018).

4.2 Evaluation metrics

The explained methods are evaluated with evaluation metrics that reflect performance and

fairness, including the Efficiency, Imbalance and Delta-Policy metrics from Ascarza and Israeli

(2022) and the Equalised Odds metric implemented as an extension in this paper.
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Efficiency For the analysis on model performance, the efficiency metric is used. Efficiency is

defined as the proportion of users choosing the discounted product (i.e., market share) if the

firm was to target 50% of the population (Ascarza and Israeli, 2022). Hence, this metric depends

on the outcome Yi, a binary indicator of whether participants chose the Domino’s gift card, the

actual treatment value Wi and the derived targeting assignment Ŵi (based on τi prediction)

from a method. To compute efficiency, for each individual the Inverse Probability Score (IPS)

is computed. This score is a well-known metric in the field of causal inference as unbiased

estimates of CATE can be obtained with IPS using propensity scores (Austin and Stuart, 2015).

Normally, this IPS can be computed as

IPSi =

 1
ê(x if Wi = 1,

1
1−ê(x) if Wi = 0.

However, for the comparison of the various methods that are implemented in the analysis, the

Efficiency metric is normalised such that 0% correspond to the case where no targeting interven-

tions are made. Hence, by including an additional term in the IPS computation, which excludes

individuals that are targeted (non-targeted) while in fact are not (are) in the treatment group,

the Efficiency metric denotes the percentage increase in the final outcome Yi as a consequence

of implementing the targeting policy. With this adjustment, the IPS score for individual i can

be computed as

IPSi =

 1
ê(x if Wi = Ŵi,Wi = 1,

1
1−ê(x) if Wi = Ŵi,Wi = 0.

Propensity score ê(x) is the proportion of targeted individuals in the actual data, computed

as ê(x) = 1
N

∑N
i=1 E [Wi|xi = x] and hence the probability of receiving a treatment. Using the

notation introduced in the beginning of this Section, the formula for efficiency can finally be

written as

Efficiency =
1

N

N∑
i=1

Yi ∗ IPSi.

Imbalance Imbalance is used in Ascarza and Israeli (2022) as a metric for group fairness and

is defined as the average distance between standardised protected attributes of targeted and

non-targeted individuals in the test data. To allow for comparison of the imbalance between

different protected variables, standardised values are used in the computation. For protected

variable Zk this standardisation is given by Z̃k,i =
Zk,i−Zk

SZk
. Here, Zk,i, Zk and SZk

denote the

value of observation i, the mean and standard deviation of protected variable k ∈ K, the set of

protected variables. Imbalance is computed as

Imbalance =
K∑
k=1

(
1

N

N∑
i=1

1{Targeted}Z̃k,i −
1

N

N∑
i=1

1{Non−targeted}Z̃k,i

)2

,
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where 1{Targeted} is an indicator function taking the value 1 when individual i is assigned in the

targeting policy and 0 otherwise. Similarly, 1{Non−targeted} is an indicator function taking the

value 1 when individual i is not targeted and 0 otherwise.

Delta-Policy In Ascarza and Israeli (2022) individual fairness is indicated with a metric called

Delta-Policy. This metric is measured as the percentage of individuals for whom the outcome

would change if their most important protected attribute was different. This change depends

on the type of protected attribute. For binary attributes, this change in Zk is accomplished by

using 1 − Zk. For continuous attributes, the data is standardised and then moved by ±1 SD,

according to Ascarza and Israeli (2022). In the experiment setting this paper replicates, age is

the most important feature and due to continuity is thus changed by ±1 SD for each customer.

Let the protected variable for age be denoted with Z1. More specifically, 1 SD is added if the

value in the vector of standardised values for Z1 is negative and 1 SD is subtracted if that value

is non-negative. Mathematically, the age adjustment for individual i is given by

Z1,i,New =


Z1,i−Z1

SZ1
− SZ1 if

Z1,i−Z1

SZ1
≥ 0

Z1,i−Z1

SZ
+ SZ1 if

Z1,i−Z1

SZ1
< 0

where Z1,i is the age observation for individual i, Z1,i,New the corresponding adjusted standard-

ised age attribute and SZ1 the standard deviation of the protected variable Age. Next, for each

individual the given adjustment is made and these changes are collected in a new protected

variable vector Z1,New, which replaces the old vector in the test data. With this adjusted set

of protected variables Z the targetability scores τ or µ are estimated again. Using these ad-

justed vector of targetability scores, a new targeting policy is designed and finally the value for

Delta-Policy can be obtained by computing the percentage of individuals for whom the outcome

changes due to the adjusted protected variable.

Equalised Odds The concept of Equalised Odds is introduced by Hardt et al. (2016) and

requires the positive outcome to be independent of a protected class, conditional on the actual

outcome. This is mathematically given by

Pr[Ŵ = 1|Zk = a,W = y] = Pr[Ŵ = 1|Zk = b,W = y]. (5)

Here Ŵ is the derived targeting vector as explained in the previous Section. The classes or

groups in protected variable Zk are given by a and b, but the criterion can be generalised for

∀{a, b} ∈ K. Finally, W = {0, 1} is the true treatment allocation from the experiment data.

For y = 1, the criterion requires that W has equal True Positive Rates (TPR) with respect to

the the protected attribute Zk. For y = 0, the criterion equals False Positive Rates (FPR). In
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Figure 1: Confusion Matrix

words, TPR is the ratio of correctly positive predictions (TP) and actual positives, which is the

sum of false negatives (FN) and true positives (TP). In a similar way, FPR is defined as the

ratio of falsely positive predictions (FP) and actual negatives, the sum of true negatives (TN)

and false positives (FP). TPR and FPR are based on the so called Confusion Matrix shown in

Figure 1. The TPR and FPR with respect to a protected variable Zk can be computed as

TPRk =
TPk

FNk + TPk
and FPRk =

FPk

TNk + FPk
,

where all individual statistics are obtained with respect to protected variable k ∈ K, with K

the set of protected variables.

To determine the Equalised Odds criterion specified in equation (5) it is hence required to

compute the TPR and FPR rates with respect to the different protected variables for each

method. Let the Equalised Odds (EO) denote the metric implemented in this paper. The

EO metric measures the average of absolute differences in TPR and FPR for unprivileged and

privileged groups, across the protected variables in the data.

For simplicity, this research examines Equalised Odds between two subgroups in a protected

variable, hence one subgroup is defined as the privileged group and one as the unprivileged

group. More specifically, for each protected variable k ∈ K, the TPR and FPR is computed for

every subgroup (i.e., the privileged and unprivileged groups). The EO metric then takes the

average of the absolute differences between the TPR and FPR of both subgroups. Next, the

average of this absolute difference for all protected variables is taken. This procedure is repeated

100 times and the average value of these repetitions results in the final EO metric. Hence, the

final EO metric can be computed as

EO =
1

K

K∑
1

|FPRk,unprivileged−FPRk,privileged|+|TPRk,unprivileged−TPRk,privileged|
2 . (6)
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Table 3: Replication results of Table 2 from Ascarza and Israeli (2022), where results are average

values of 1,000 iterations.

Method Efficiency Imbalance Delta-Policy (in %)

CF-FD 0.578 (0.050) 0.155 (0.063) 16.7 (3.9)

CF-NP 0.576 (0.048) 0.056 (0.022) 0 (-)

Debiased 0.568 (0.049) 0.242 (0.088) 42.3 (3.7)

BEAT (γ = 3) 0.572 (0.050) 0.041 (0.017) 0 (-)

BEAT (γ = 5) 0.574 (0.051) 0.042 (0.018) 0 (-)

BEAT (γ = 8) 0.561 (0.048) 0.040 (0.017) 0 (-)

The perfect scenario where all subgroups in all protected variables have equal TPR and FPR

would imply that this EO metric is zero (or is close to zero if some small difference is allowed).

For the Domino’s Pizza experiment the privileged groups in race, gender and age are white,

male and young (Age < 40) and hence the unprivileged groups are non-white, non-male and old

(Age >= 40). For the Portuguese Bank experiment the privileged groups in marital status and

age are married and young (Age < 39) and hence the unprivileged groups are non-married and

old (Age >= 39).

The Equalised Odds metric for the privileged and unprivileged subgroups in a protected variable

are computed in R by implementing the package from Kozodoi and V. Varga (2021).

5 Results

To illustrate the performance of BEAT in removing algorithmic bias, first the obtained results

for the Domino’s Pizza experiment in Ascarza and Israeli (2022) are replicated and shown in Ta-

ble 3. The results are average values of 1,000 iterations. In each iteration, the data is randomly

split into a train and test sample. Implementing a 90/10 splitting ratio results in train and

test samples of 2,831 and 315 observations, respectively. In particular, the estimated mean and

standard deviation (in parentheses) of Efficiency, Imbalance and Delta-Policy are given. The

rows in Table 3 correspond with the different methods used for estimation. Columns indicate the

computed metrics Efficiency, Imbalance and Delta-Policy. The values shown for Delta-Policy are

given as percentages and by construction, CF-NP and the BEAT models have zero Delta-Policy,

given the elimination of Age.

From the results follow that BEAT is capable of removing a significant part of the Imbalance.

However, the causal forest without protected attributes (CF-NP) does not perform significantly
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worse in mitigating the bias compared to BEAT. Moreover, as can be seen from Table 3, compar-

ing the methods on the achieved Efficiency does not yield much differences, providing evidence

for effectiveness of these bias eliminating methods in practice. However, the values obtained for

Efficiency raise the question whether imposing a personalised policy, i.e. any of the models from

the table, is preferred over a random or uniform allocation, given the insignificant or little ben-

efit from personalization. This follows from the results shown in Table S4 from the Appendix

of Ascarza and Israeli (2022), where the random and uniform policy achieve an Efficiency of

0.564 and 0.661 with Imbalance 0.039 and 0.000, respectively. Note that for a uniform targeting

policies also increased costs are involved.

In order to assess the flexibility of BEAT in ensuring fair targeting policies with respect to

different metrics, the analysis for Table 3 is extended with the Equalised Odds (EO) fairness

metric and corresponding Equalised Odds Post Processing (EOPP) method. The results ob-

tained by implementing these extension in the analysis are shown in Table 4, where the results

are average values of 100 iterations. In each iteration, the data is randomly split into a train

and test sample. Implementing a 70/30 splitting ratio results in a train and test sample of 2,202

and 944 observations. The first column in Table 4 correspond with the different methods used

for estimation, including the Equalised Odds Post Processing methods. The estimated mean

and standard deviation (in parentheses) of Efficiency, Imbalance and Equalised Odds are given

in the next three columns. The fifth column shows the percentages increase or decrease in the

EO metric using the Causal Forest with full data (CF-FD) as the benchmark model, for which

Equalised Odds is set to 100% for that purpose. Hence, the value in Table 4 in row 2, column 5

should be read: CF-NP generates only 44.2% of the disparity in Equalised Odds across protected

Table 4: Extension results on Domino’s Pizza experiment data including the Equalised Odds

(EO) metric and Equalised Odds Post Processing methods (EOPP), where results are average

values of 100 iterations.

Method Efficiency Imbalance EO EO (relative, in %)

CF-FD 0.576 (0.025) 0.118 (0.078) 0.129 (0.044) 100.0

CF-NP 0.570 (0.024) 0.033 (0.015) 0.057 (0.015) 44.2

CF-DB 0.567 (0.028) 0.226 (0.114) 0.194 (0.056) 150.7

BEAT (γ = 3) 0.575 (0.025) 0.020 (0.008) 0.046 (0.012) 36.0

BEAT (γ = 5) 0.573 (0.025) 0.019 (0.008) 0.047 (0.013) 36.4

BEAT (γ = 8) 0.566 (0.025) 0.019 (0.009) 0.046 (0.014) 36.0

CF-EOPP 0.571 (0.027) 0.020 (0.009) 0.041 (0.013) 31.6

BEAT-EOPP (γ = 8) 0.574 (0.024) 0.014 (0.006) 0.032 (0.012) 25.0
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groups obtained when using CF-FD.

Similar to the decrease in Imbalance, also the disparity in Equalised Odds can be decreased

with both a Causal Forest without protected variables and BEAT. The results of the EO met-

ric confirm capability of these methods in removing bias, by ensuring not only less Imbalance

but better Equalised Odds across protected groups as well, compared to the CF-FD. Given the

values for Efficiency, which are not significantly different across the methods, Equalised Odds

thus gives additional evidence for the effectiveness of BEAT in capturing value from personal-

ization, while ensuring a more balanced treatment allocation. Note that again the Debiasing

method CF-DB is not capable of removing bias and significantly increases EO disparity as well

as Imbalance, which is in line with the findings in Table 3. The results from the inclusion of EO

in the analysis provides managers with the evidence that BEAT is able to mitigate bias with

respect to multiple objectives and therefore effective in practice.

Furthermore, the extended research on BEAT also includes two methods, based on the Equalised

Odds Post Processing. The obtained results from these methods are shown in the seventh and

eight rows in Table 4. The results obtained by implementing the Equalised Odds Post Processing

methods on CF-NP and BEAT show that the proposed method by Hardt et al. (2016) is ex-

tremely efficient in removing bias. Both Imbalance is largely removed and better EO is achieved

with the EOPP extension. Both the CF-EOPP and BEAT-EOPP methods yield better results

compared to their regular method without EOPP. However, BEAT-EOPP performs best by

reducing disparity in EO with 10% compared to regular BEAT, achieving the lowest Imbalance

and relatively high Efficiency. Thus, for the Domino’s Pizza experiment BEAT performs well

according to the evaluation metrics including EO, but the hybrid method of BEAT and EOPP

achieves the best targeting policy in terms of Efficiency and fairness.

To validate the obtained results for the Domino’s Pizza experiment, the analysis is repeated

on a marketing campaign of a Portuguese Bank where targetability scores are estimated with

respect to the outcome variable and hence Regression Forests (RF) are used rather than CF as

in the Domino’s Pizza experiment. These results are shown in Table 5, where the results are

again average values of 100 iterations. The data is randomly split in each iteration, resulting in

train and test samples of 2,883 and 1,236 observations.

From the results in Table 5 it can be concluded that BEAT is more effective in removing bias

than other implemented methods, including the RF-NP that performed nearly as good as BEAT

in the Domino’s Pizza analysis. In addition, these results confirm effectiveness of the EOPP

methods in adjusting targeting policies obtained from RF-NP and BEAT to achieve better EO,

compared to the methods without EOPP. The fairness improvement of BEAT and EOPP does
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Table 5: Extension results on Portuguese Bank Marketing data including the Equalised Odds

(EO) metric and Equalised Odds Post Processing methods (EOPP), where results are average

values of 100 iterations.

Method Efficiency Imbalance EO EO (relative, in %)

RF-FD 0.778 (0.026) 0.052 (0.031) 0.082 (0.041) 100.0

RF-NP 0.778 (0.027) 0.015 (0.009) 0.061 (0.022) 74.6

RF-DB 0.780 (0.027) 0.105 (0.045) 0.108 (0.033) 132.0

BEAT (γ = 3) 0.748 (0.028) 0.007 (0.004) 0.040 (0.018) 49.6

BEAT (γ = 5) 0.727 (0.031) 0.006 (0.004) 0.042 (0.020) 51.3

BEAT (γ = 8) 0.728 (0.035) 0.005 (0.003) 0.042 (0.018) 51.9

RF-EOPP 0.752 (0.042) 0.005 (0.003) 0.029 (0.012) 35.9

BEAT-EOPP (γ = 8) 0.702 (0.048) 0.004 (0.003) 0.027 (0.011) 33.0

appear to come at the expense of some loss in Efficiency, although these losses are not signif-

icantly large. Hence, the Portuguese Bank experiment validates the effectiveness of BEAT in

different applications and provides additional evidence for the performance of EOPP extension

in designing fair targeting policies. Depending on the objective of a manager, these results show

how two effective bias mitigating methods can be applied in practice to ensure fair personaliza-

tion.

6 Conclusion

As the source of data used to design personalization policies keeps expanding, the hazard of

unintended discrimination in these targeting policies also increases. Therefore, research into

developing bias mitigation methods that are effective in practice are of great relevance. The

research in this paper further investigates the finding from Ascarza and Israeli (2022) that the

Bias-Eliminating Adapted Trees (BEAT) method performs well in mitigating algorithmic bias in

practical experiments. In order to provide additional insights and evidence on the effectiveness

of BEAT from different perspectives, this paper answers the following research question: “Is

the BEAT model effective in mitigating bias defined according to the Equalised Odds metric?”.

Extending the analysis on BEAT with the Equalised Odds metric, requiring equal true positive

rates (TPR) and false positive rates (FPR) across protected groups, and corresponding Equalised

Odds Post Processing method provides another perspective on the performance of BEAT. More

specifically, analysis of marketing experiments from Domino’s Pizza and Portuguese Bank show

that BEAT performs significantly better compared to other existing methods in achieving fair
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targeting policies with respect to Imbalance and Equalised Odds. Moreover, the BEAT-EOPP

method proposed in this paper outperforms the other methods, including BEAT, and results in

less Imbalance and better Equalised Odds with no severe Efficiency loss. Hence, BEAT-EOPP

not only ensures equality of treatment among groups and individual parity, but in addition

improves equal distribution of prediction errors across protected groups, both while capturing

value from personalised targeting policies. This hybrid method, that uses BEAT for estimating

balanced targetability scores to design targeting policies and solves a linear program to adjust

this targeting policy with the aim to achieve Equalised Odds, results in the best targeting policies

with respect to fairness. Hence, the findings in this research validate the effectiveness of BEAT

with the Equalised Odds criterion and propose an extension of BEAT, BEAT-EOPP, that allows

decision makers to further exploit fairness in their policies. In short, by revealing algorithmic

bias in marketing experiments and resolving these discrimination issues with practical methods

this research has provided decision makers with an effective bias mitigating method that is

proven to perform well in different practical marketing experiments.

7 Discussion

Mitigation of algorithmic bias is closely related with defining fairness in the first place. Since no

general applicable definition of fairness is available yet, generalisation of the obtained results to

fairness measures outside of the scope in this paper is not possible. Also, this research strictly

applied the implemented methods on marketing experiments with binary outcome variables.

The findings therefore might not be consistent with applications that have different objectives.

While being an extension of the research by Ascarza and Israeli (2022), it should be noted

that also the research in this paper provides suggestions for further research. The analysis on

Equalised Odds (EO) implied only one privileged and unprivileged group within a protected vari-

able. Future research could examine effectiveness of BEAT and Equalised Odds Post Processing

(EOPP) in achieving Equalised Odds when multiple subgroups are considered. In addition, this

research focused on the application of a binary predictor and hence the Equalised Odds Post

Processing (EOPP) methods were designed accordingly. Further examination of this method

could provide additional insights on the applicability and effectiveness in different applications.

Furthermore, BEAT(-EOPP) has been strictly compared to different methods that are based

on the framework of Generalised Random Forests. Research into different methods, for ex-

ample Neural Networks, would provide an interesting comparison of different machine learning

methods.
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Appendices

A Causal Forest

CF are a version of General Random Forest (GRF), which are designed to efficiently estimate

heterogeneous outcomes, and thus an extension of the Random Forest (RF) concept explained

by Breiman (2001). The key differences between GRF and RF are the way splits are determined

and how a final estimate is obtained.

In a RF, splits are created by minimising the in-sample prediction error of the node. However,

in a CF this split is based on the divergence in the outcome of interest. As specified in Ascarza

and Israeli (2022), the GRF split criterion as proposed by Athey et al. (2019), can be formulated

as

∆(C1, C2) =
nC1nC2

nP

(
θ̂C1(J )− θ̂C2(J )

)2
, (7)

where nC1 , nC2 and nP denote the number of observations in the children nodes C1, C2 and parent

node P . θ̂Ci(J ) denotes the solution to the estimating equation computed in the children node

i, as specified in equation (4) by Athey et al. (2019).

The final estimate θ̂(x) of a CF is calculated by combining similarity weights α̃i(x) and the local

CATE estimate τ̂i, given by

θ̂(x) =
N∑
i=1

α̃i(x)τ̂i.

Here α̃i(x) is computed as α̃i(x) =
1
B

∑B
b=1 α̃bi(x) with B the number of trees. Moreover, α̃bi(x)

is the frequency with which observation i falls into the same leaf as x and is computed as

α̃bi(x) =
1({Xi∈Lb(x)})

|Lb(x)| . Here, Lb(x) denotes the leaf in tree b containing x.

B Programming code

For the implementation of the explained methods and evaluation methods, a hybrid of program-

ming in R and Python is used. The initiation of the estimation is done in R, where both data

sets are prepared and formatted according to the input for the GRF methods. Next, the esti-

mation of targetability scores with the Causal Forests, Regression Forests, Debiasing and BEAT

methods is done in R. The corresponding optimal targeting policies, based on explained deci-

sion rule, are derived in R as well. To implement the Equalised Odds Post Processing method,

the created train and test subsets and derived targeting policies (in each iteration) from GRF

without protected variables and BEAT are exported as CSV files to Python. In Python, the

original targeting policies are adjusted to achieve Equalised Odds and these are exported back
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to R, where the final computation of different evaluation metrics is performed. A brief overview

of the code resulting in Table 4 and 5 is given below.

1. First, the data is imported and formatted according to the GRF inputs

2. Protected variable Age is split into two categories based on quantiles, needed for Equalised

Odds

3. Parameters are initiated (target rate, train/test split, BEAT penalties, random seed etc)

4. The following process is repeated 100 iterations to obtain the average values shown in

Table 4 and 5

(a) Random train/test split is made

(b) The six methods (GRF-FD/GRF-NP/GRF-DB/BEAT3/BEAT5/BEAT8) are trained

on the training sample

(c) For each method, targetability scores (mu) are predicted for each individual

(d) Targeting policies are derived from predicted scores using a decision rule (target rate)

(e) For individual fairness, the Age attribute is adjusted for each individual

(f) Evaluation metrics are computed: Efficiency, Imbalance and Delta-Policy

(g) CSV with the random train/test split and targeting policies of GRF-NP and BEAT8

exported for Python implementation of Equalised Odds Post Processing method

(h) For each method, Equalised Odds metric is computed with respect to each protected

variable

5. Finally, from the obtained matrices including all results from the 100 iterations, means can

be computed resulting in the final values for the six ’replication’ methods given in Table

4 and 5

6. The code in ”Thesis Extension EOPP method Otto Haanappel.ipynb” implements the Equalised

Odds Post Processing method from Hardt et al. in Python. This codes executes the fol-

lowing process 100 times

(a) Import CSV files containing the train/test splits from R and get correct formats

(b) Create dataset classes, which will be the input for the EOPP method

(c) Define the derived targeting policies from R and add to the previously obtained classes

(d) Define the privileged and unprivileged groups in a protected variable
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(e) Implement the Equalised Odds Post Processing algorithm and obtain adjusted tar-

geting

(f) Compute the evaluation metrics, containing the Equalised Odds metric

(g) Repeat the computation of Equalised Odds with respect to the other protected vari-

ables

7. Finally, export the obtained adjusted targeting policies and computed EO metrics in each

iteration in CSV files to R

8. In R, import the created CSV files from Python to evaluate the adjusted policies with the

evaluation metrics. This results in the final values for the EOPP methods in Table 4 and

5
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