
Thesis, Double BSc in Econometrics and Economics

Deep GMM with EUCovS: A layered approach on GMM with hierarchical latent variable concepts

Name Student: Cem Sirin

Student ID: 500707

Thesis Supervisor: dr. C. Cavicchia

Second Assessor: N.W. Koning

Date final version: 3rd of July, 2022

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.



Deep GMM with EUCovS: A layered approach on GMM with

hierarchical latent variable concepts

Cem Şirin
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Abstract

In recent years, there have been numerous new research regarding cluster analysis. This paper

combines two existing novel methodologies to form a new class of GMM models: Deep GMMEU-

CovS. The existing models under scrutiny are Deep GMM (Viroli and McLachlan, 2019) (a layered

approach to GMMs) and GMMEUCovS (Cavicchia et al., 2022) (forms GMMs with hierarchical la-

tent variables). Deep GMMEUCovS strives to incorporate these two qualities while exploring other

statistical concepts such as multiple cluster structures. The models are applied to popular datasets

such as coffee, olive and wine, and later results are compared. A cluster analysis performed on devel-

opment measures of countries as an exemplary study to highlight the new model’s capabilities and

shortcomings.
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1 Introduction

Cluster analysis aims to group data with similar properties into clusters. There are many popular

clustering techniques available that are based on Partition (K-means and variants), Density, Graph

Theory and more (Xu and Tian, 2015). In recent years, there have been many advancements in model-

based approaches. Amongst those approaches, Mixture Models attract attention due to their performance

and statistical interpretation advantages.

This paper focuses on two particular recent developments concerning Gaussian Mixture Models

(GMM). The first one is GMMs with Extended Ultrametric Covariance Structures (EUCovS) (Cav-

icchia et al., 2022), which offers a novel approach on covariance parametrization that reduces model

complexity and tailored towards hierarchical latent structures. The second one is Deep GMMs (Viroli

and McLachlan, 2019), that implements the multi-layered structures of deep learning models to GMMs.

GMMs assume that an observation is generated by one of the many Gaussian distributions. In

mathematical terms, let xi be the i’th observation of a p-dimensional variable for i = 1, ..., n. Then, xi

belongs to a finite Gaussian Mixture Model (GMM) if

f(xi;θ) =

G∑
g=1

πgϕ
(
xi;µg,Σg

)
, (1)

where index g = 1, ..., G denotes the g’th cluster. θ is the set of all parameters containing the [p × 1]

mean vector µg and the [p × p] covariance matrix Σg. ϕ(·) denotes the Gaussian distribution, πg is the

probability of an observation appearing in cluster g. A general linear notation for GMM is

xi = µg +Agzi + ϵi with prob. πg, (2)

where Ag is a [p × r] transformation matrix, zi represents an r-dimensional multivariate normal latent

variable, and ϵi ıs the error term which also follows a multivariate normal distribution..

In the following sections, GMMs with EUCovS and Deep GMMs will be introduced and minor adap-

tations. Onwards, a combination of the two will be introduced and its estimation algorithm. The paper

follows up with an application study and insights into the results. Lastly, we will discuss limitations and

further areas of research.

2 Notation and theoretical framework

Before introducing the models, it is worth mentioning the challenges of using GMMs, and how previous

models have dealt with them. First of all, model complexity is an important issue to address. An typical

GMM with G cluster contains G− 1 +Gp+Gp(p+ 1)/2 parameter estimations. Namely, G− 1 mixing

proportion, Gp mean vector, Gp(p + 1)/2 covariance matrix estimates. As it stands, the number of

parameter estimates that belong to the covariance matrices increases polynomially with the number of

parameters. GMMs are not known to perform well in high dimensions, therefore many have suggested

alternative ways of modelling which leads to reducing number of parameter estimates.

The Parsimonious GMM family later reclassified as the expanded Parsiomious GMM (EPGMM)

family (McNicholas and Murphy, 2010) is an important standard in the field and is also used in Deep

GMM. Briefly, it assumes zi ∼ N (0, Ir) which effectively turns equation 2 into a Factor Analysis (FA)
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model. Therefore the primary goal here is to fit independent distributed standard normal distributions

to describe the observations as best as possible. The GMM with EUCovS, on the other hand, groups

variables into latent variables such that they fit an hierarchical structure, functionally laying out the

hierarchical structure of the variables. Not all sets of variables have latent hierarchical structures, and

the GMMEUCovS is meant to be used in such situations. Thus, one of the focuses of this study is to

compare the applications of Deep GMMs by using FA vs EUCovS. We will be inspecting the situations

where EUCovS is better and what are its implications.

Another focus of our study is to compare Deep GMMEUCovS with GMMEUCovS. We want to

investigate the effects of the extra flexibility given to the estimation process (by being able to extra

layers). Finally, there is another concept which is not very popular that this paper would like to address.

Multiple cluster structure is the existence of multiple sets of clusters to which an observation can belong.

To illustrate, say we have data on the chemical composition. Clusters can form depending on their species

(Arabica, Robusta) or depending on where it is produced based on their continent or altitude. We define

the strength of a cluster set depending on how well it can characterize the data. It is reasonable to

expect models that allow multiple cluster structures to fit better when there are cluster sets that are

similar in strength. Naively, we may hope that every layer in a Deep GMM can represent a different

cluster set, thus allowing for multiple cluster structures. This idea will be followed up in the discussion

section explaining what is obtained in our models and could be done to better discover multiple cluster

structures.

2.1 GMM with EUCovS

This section introduces the work of Cavicchia et al. (2022), explaining the advantages of GMM with

EUCovS, and adapting the model into a linear form. An EUCovS must obey two sets of rules. The first

is the properties of a covariance matrix, and the second is the properties of ultrametric matrices laid out

by Dellacherie et al. (2014). Given that Σ is a covariance matrix of order p, the following must hold:

(i) Symmetry: σij = σji for i, j = 1, ..., p,

(ii) Non-negative diagonals: σii ≥ 0 for i = 1, ..., p,

(iii) Positive semidefiniteness: x′Σx ≥ 0 for ∀x ∈ Rp.

Furthermore for matrix Σ to be considered ultrametric, the following must hold:

(iv) Ultrametric inequality: σij ≥ min {σik, σjk} for i, j, k = 1, ..., p,

(v) Column pointwise diagonal dominance: σii ≥ max {|σij | , j = 1, ..., p} for i = 1, ..., p.

To achieve such structure, every variable is partitioned into groups q = 1, . . . , Q. V is a [p × Q] binary

membership matrix. Each row is a vector that has a value of 1 on the q’th column representing the

relative variable’s membership. Cavicchia et al. (2022) presents the following structure to achieve an

ultrametric covariance matrix,

Σu = V (ΣW +ΣB)V
′ − diag (VΣWV′) + diag (VΣVV′) , (3)

where ΣV is a [Q × Q] diagonal matrix where diagonal value q represents the variable group q, ΣW a

[Q × Q] diagonal matrix where diagonal value q represents the covariance of variable group q, and ΣB
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a [Q × Q] off-diagonal matrix where off-diagonal value q1, q2 represents the covariance between variable

groups q1 and q2. The following constraints makes sure that Σu is an ultrametrıc covariance matrix:

Bσqh ≥ min {Bσqs,Bσhs} q, h, s = 1, . . . , Q, q ̸= h ̸= s (4)

min {Wσqq : q = 1, . . . , Q} ≥ max {Bσqh : q, h = 1, . . . , Q, h ̸= q} (5)

V σqq ≥ max { |W σqq|, |Bσqh |, h = 1, . . . , Q, h ̸= q} q = 1, . . . , Q (6)

Σu = Σu + aIp, with a > 0, and such that Σu is positive definite, (7)

A linear formulation of a GMMEUCovS can be achieved when,

xi = µg +Vgzi + ϵi with prob. πg, (8)

where Var(zi) = ΣW +ΣB and Var(ϵi) = diag (V(ΣV −ΣW)V′).

2.2 Deep GMM

Deep GMMs (Viroli and McLachlan, 2019) and extending the GMM with additional layers. Following

Equation 2, an H-layer Deep GMM is as follows:

xi = µ(1)
g +A(1)

g z
(1)
i + ϵ

(1)
i with prob. π(1)

g1

z
(1)
i = µ(2)

g +A(2)
g z

(2)
i + ϵ

(2)
i with prob. π(2)

g2

...

z
(H−1)
i = µ(H)

g +A(H)
g z

(H)
i + ϵ

(H)
i with prob. π(H)

gH .

(9)

with clusters gh = 1, . . . , Gh for layer h = 1, . . . ,H. To further clarify the properties of the model, in total

there are
∑H

h=1

∑Gh

gh=1 gh clusters in the entire system. Observation xi is characterised by H clusters its

latent variables belong to. In total, there are
∏H

h=1 Gh unique cluster combinations or routes which is

visualized in Figure X. For ease of notation, we will assume that xi = z
(0)
i .

The distribution of variable z
(h)
i depends on the latent variables that are deeper in the model, i.e.,

z
(h+1)
i , . . . , z

(H)
i . Like aforementioned, the variable z

(h)
i has

∏h
l=1 Gl combinations or routes that char-

acterises itself. We will use the symbol s
(h)
h = 1, . . . , Sh to to index these combinations for layer h, and

Sh =
∏h

l=1 Gl. We can alternatively write the pdf as

f(z
(h)
i ;Θ) =

Sh∑
sh=1

πshϕ
(
z
(h+1)
i ;µsh

,Σsh

)
(10)
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3 Deep GMM with EUCovS

After all the prep work, combining the two model is pretty straight forward. A Deep GMMEUCovS with

H layers can be formulized simply by joining equations 8 and 9:

xi = µ(1)
g1 +V(1)

g1 z
(1)
i + ϵ

(1)
i with prob. π(1)

g1

z
(1)
i = µ(2)

g2 +V(2)
g2 z

(2)
i + ϵ

(2)
i with prob. π(2)

g2

...

z
(H−1)
i = µ(H)

gH +V(H)
gH z

(H)
i + ϵ

(H)
i with prob. π(H)

gH .

(11)

where the numerical superscripts signify the index of the layer. For ease of notation, we will assume that

xi = z0i . In given layer h, we iteratively replace the latent variables until we get to the final layer H,

z
(h−1)
i = µ(h)

gh
+V(h)

gh
z
(h)
i + ϵ

(h)
i with prob. π(h)

gh

z
(h−1)
i = µ(h)

gh
+V(h)

gh

(
µ(h+1)

gh+1
+V(h+1)

gh+1
z
(h+1)
i + ϵ

(h+1)
i

)
+ ϵ

(h)
i with prob. π(h)

gh
× π(h+1)

gh+1

...

z
(h−1)
i = µ(h)

gh
+

H∑
k=h+1

(
H∏
l=k

V(l)
gl

)
µ(l)

gl
+

(
H∏
l=h

V(l)
gl

)
z(H)
gH + ϵ

(h)
i +

H∑
k=h+1

(
H∏
l=k

V(l)
gl

)
ϵ
(l)
i with prob.

H∏
l=h

π(l)
gl

z
(h−1)
i = µ̃(h)

sh
+ Ṽ(h)

sh
z(H)
gH + ϵ̃

(h)
i with prob. π̃(h)

sl
.

(12)

where Ṽ
(h)
sh =

(∏H
l=h V

(l)
gl

)
, µ̃(h)

sh
= µ

(h)
gh +

∑H
l=h+1 Ṽ

(l−1)
sl−1 µ

(l)
gl , ϵ̃

(h)
i = ϵ

(h)
i +

∑H
l=h+1 Ṽ

(l−1)
sl−1 ϵ

(l)
i , and

π̃
(h)
sl =

∏H
l=h π

(l)
gl . Thus we can write it as:

f(z
(h−1)
i ;Θ) =

Sh∑
sh=1

π(h)
sh

ϕ

(
z
(H)
i ; µ̃(h)

sh
, Σ̃

(h)

sh

)
(13)

where Σ̃
(h)

sh
= Ṽ

(h)
sh Σ(H)

gH Ṽ
(h)
sh +

∑H
l=h+1 Ṽ

(l−1)
sl−1

(
Σ

(l)
V,gl

−Σ
(l)
W,gl

)
Ṽ

(l−1)
sl−1 +

(
Σ

(h)
V,gh

−Σ
(h)
W,gh

)
.

4 Estimation

Expectation Maximization (EM) is a common method of estimation of GMMs. Our case requires fitting

parameters based on the distribution of the latent variables. Therefore to tackle the analytical and

computational complexity of dealing with the distribution of the latent variables, a common approach is

to use Stochastic EM (SEM) (Nielsen, 2000). SEM can be summarized in 2 steps. The Expactation Step

in EM is replaced with the Stochastic Expectation Step. In this step we, simulate the latent variables given

the estimated parameters. Next, we perform the Maximization Step, where we update the parameters

given the observed data and the simulated latent variables. To estimate Deep GMMEUCovS, we maximize

the following likelihood function.

ℓ(Ψ) =

H∑
h=1

n∑
i=1

log

(
Gh∑

gh=1

πghϕ
(
z
(h−1)
i | z(h)i ;Θ

))
(14)
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4.1 Stochastic Expectation Step

SEM uses the conditional distribution to estimate the expected value of the latent variables. Since we

know z(0), we start by simulating the first set of latent variables z(1), then continue simulating the next

set of latent variables using the previous. From equation (X), by using some simple matrix algebra we

get

z
(h)
i =

(
V(h)

gh

′
V(h)

gh

)−1

V(h)
gh

′ (
z
(h−1)
i − µ(h)

gh
− ϵ

(h)
i

)
. (15)

Let T̂
(h)
gh =

(
V̂

(h)
gh

′V̂
(h)
gh

)−1

V̂
(h)
gh

′, then conditional expected value and variance can be written as the

following

E
(
z
(h)
i | z(h−1)

i

)
= E

(
Gh∑

gh=1

E
(
z
(h)
i | z(h−1)

i , gh

)
P
(
gh | z(h−1)

i

))

=

Gh∑
gh=1

ŵi,ghT̂
(h)
gh

(
z
(h−1)
i − µ̂(h)

gh

) (16)

Var
(
z
(h)
i | z(h−1)

i

)
= E

(
Gh∑

gh=1

Var
(
z
(h)
i | z(h−1)

i , gh

)
P
(
gh | z(h−1)

i

))

=

Gh∑
gh=1

ŵi,ghT̂
(h)
gh

(
Σ̂

(h)

V,gh
− Σ̂

(h)

W,gh

)
T̂(h)

gh
′

(17)

Since the linear combination of independent normal distributions is also a normal distribution, f
(
z
(h)
i | z(h−1)

i

)
is also a normal distribution with mean and variance given in equations 16 and 17 respectively. Since

z
(0)
i (i.e., the observed data xi) is known, we start by simulating values z̃

(1)
i,m and continue deeper into the

model up until z̃
(H)
i,m for m = 1, . . . ,M where M is the number of simulations per variable. We use

E
[
z
(h)
i | z(h−1)

i , s; Θ′
]
∼=
∑M

m=1 z
(h)
i,m

M
, (18)

which the average of M simulations.

4.2 Maximization Step

We start by estimating the posterior probabilities w
(h)
i,gh

.

ŵ
(h)
igh

=
π̂
(h)
gh ϕ

(
z
(h−1)
i | z(h)i ; θ̂gh

)
∑Gh

gl=1 π̂
(h)
gl ϕ

(
z
(h−1)
i | z(h)i ; θ̂gl

) (19)

We continue with updating the prior probabilities

π̂(h)
gh

=

∑n
i=1 ŵ

(h)
igh

n
(20)

We estimate the mean starting from the deepest layer, iteratively plugging the values in as the following:
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µ̂(H)
gH =

∑n
i=1 ŵigHz

(H−1)
i

ngH

...

µ̂(h)
gh

=

∑n
i=1 ŵighz

(h−1)
i

ngh

−
Gh+1∑
gl=1

ρ̂(h)gh,gl
V̂ghµ̂

(h+1)
gl

(21)

where ρ̂
(h)
gh,gl =

∑n
i=1 ŵ

(h)
igh

ŵ
(h+1)
igl

/ngh , namely, the probability of an observation belonging to cluster gl

given that it belongs to gh. For given V, we estimate the covariance matrices. We start with estimating

the covariance matrices of the very final layer H. This part is exactly same as Cavicchia et al. (2022).

Σ̂
(H)
VgH

=
(
V̂(H)′

gH V̂(H)
gh

)−1

V̂(H)′
gH diag

(
S(H)
gH

)
V̂(H)

gH gH = 1, . . . , GH (22)

where S
(H)
gH is the sample covariance obtained from the simulated latent variables. We estimate covariance

within variable groups Σ̂WgH
and covariance across variable groups Σ̂BgH

as

Σ̂
(H)

WgH
=

[(
V̂(H)′

gH V̂(H)
gH

)2
− V̂(H)′

gH V̂(H)
gH

]−1

diag
[
V̂(H)

gH
′ (SgH − diag (SgH )) V̂(H)

gH

]
(23)

Σ̃B
(H)
gH = V̂(H)

gH
+SgH

(
V̂(H)

gH
′
)+

(24)

where then we calculate Σ̂BgH
by finding the closest matrix to Σ̃BgH

in terms of Frobenius distance

such that it satisfies equation (3). We then check if Σ̂
(H)

WgH
and Σ̂

(H)
VgH

meet the constraints 2 and 3, and

increase the values that does not fit. Now we have all the ingredient to form the ultrametric covariance

matrix:

Σ̂
(H)

gH = V̂(H)
gH

(
Σ̂WgH + Σ̂BgH

)
V̂(H)′

gH + diag
(
V̂(H)

gH

(
ΣV

(H)
gH −ΣW

(H)
gH

)
V̂(H)′

gH

)
(25)

Now that we have calculated the variance matrixes for the deepest layer, we can use them to calculate

the variance matrixes the layer that is one step shallower and iteratively continute till we reach the first

layer.

Σ̂
(h)
Vgh

=
(
V̂(h)′

gh
V̂(h)

gh

)−1

V̂(h)′
gh

diag
(
S(h)
gh

)
V̂(h)

gh

Σ̂
(h)

Wgh
=

[(
V̂(h)′

gh
V̂(h)

gh

)2
− V̂(h)′

gh
V̂(h)

gh

]−1

diag

[
V̂(h)′

gh

(
Σ̂

(h+1)

gh
− diag

(
Σ̂

(h+1)

gh

))
V̂(h)

gh

]
Σ̃B

(h)
gh

= V̂(h)
gh

+Σ̂
(h+1)

gh

(
V̂(h)

gh
′
)+

,

(26)

where Σ̂
(h+1)

gh
=
∑Gh+1

gl
ρ̂
(h)
gh,glΣ̂

(h+1)

gl
.

4.3 Algorithm

- Step 0: Initialize W by k-means and V randomly such that every variable group has at least one

variable. Estimate all the parameters.

- Step 1: Simulate z.
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- Step 2: Calculate posterior probability W for each layer.

- Step 3: Estimate parameters. If likelihood function (equation 14) has not increased stop, else go back

to step 1.

It is important to note that the algorithm does not produce a monotonically increasing likelihood

function at every iteration. The function increases sharply in the early iterations, but after it plateaus

you may encounter small decreases in the likelihood function. Due to introducing randomness in the

generation of the latent variables, there is a chance of having slightly worse model fit after later iterations.

5 Applications

To run the algorithms, we have implemented GMMEUCovS and Deep GMMEUCovS on MATLAB (2022).

We have decided to only implement a 2-layered Deep GMMEUCovS, due computational difficulties. We

used the package Deep GMM (Viroli and McLachlan, 2020) which is available on the software R (R Core

Team, 2022). We have used QGIS (QGIS.org, 2022) to map the results on Figures 1 and 3.

5.1 Coffee, Wine, and Olive data sets

Three data sets were chosen to investigate how the models perform with varying amounts of observations

and variables.

Table 1: Performance indicators on real data application: Average Rand Index (ARI) and miss-
classification rate (m.r.)

Deep GMM GMMEUCovS Deep GMMEUCovS
#obs #vars classes ARI m.r. ARI m.r. ARI m.r.

Coffee 43 12 Species, 1 0 1 0 1 0
Continent - - - - 0.294 0.372

Olive 572 8 Region, 0.997 0.002 0.720 0.091 0.640 0.125
Area - - - - 0.131 0.437

Wine 178 27 Type 0.983 0.006 0.930 0.022 0.911 0.034

The first issue which we want to address is multiple cluster structures. In our applications in the coffee

and olive data sets we attempted to identify a secondary cluster structure using the Deep GMMEUCovS.

The coffee data set had better results than olive, however both of them are far from indicating whether

the current state of the model is able to identify multiple cluster structures or whether there even is

multiple clusters in the data sets.

In our coffee data set application, according the to Bayesian Information Criterion (BIC), the best

model specifications are G1 = 3, G2 = 2, Q1 = 3 and Q2 = 2. The second layer perfectly captures the

species of the coffee as so the other models. The first layer has 3 clusters, considering the information at

hand, it may be reflecting the continent of origin (Americas, Africa, Asia) of the coffee. If this assumption

is true, the model is able to classify 26 observations out of 43, constituting a classification rate of 0.628.

Applying the models to the olive data set, we see that Deep GMM performs best in classifying the

region, following GMMEUCovS, and Deep GMMEUCovS. Based on this ranking, we can speculate that,

perhaps, the olive data set does not contain a hierarchical latent variable structure. GMMEUCovS obtains

the highest BIC score with G = 3, Q = 4. Unfortunately, it was not feasible to run Deep GMMEUCovS
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with varying specifications due to high computation time, thus we opted use G1 = 3, G2 = 9, Q1 = 3

and Q2 = 2. We attempted to capture the Region via the first layer, and the area with the second one.

The current state of the Deep GMMEUCovS is not a good way of classifying coffee samples amongst

continents, or olives amongst regions, however, with the correct modifications, it is a sign that multiple

cluster structures can be modelled via multi-layered GMMs. We expected worse results for the olive data

set, as Areas are only sub divisions of the Region classification. Therefore, it is very likely that the two

cluster sets will have similar underlying factors that differentiate the clusters (e.g., altitude, rainfall, etc.).

Models performed similarly in the wine data set. One key takeaway is that the GMMEUCovS per-

formed better in clustering the primary class in both olive and wine datasets compared to Deep GM-

MEUCovS. We observe that there may be a trade off of clustering the primary class while generating

information on a secondary cluster. Again, the specifications that gave the best fit for Deep GMMEU-

CovS were G1 = 3, G2 = 9, Q1 = 3 and Q2 = 2. Due to increased number of parameters as a result

of adding an extra layer, the model compensates it by decreasing the dimensions of the latent variables,

i.e., Q1 and Qw.

5.2 Measures of Development

The following application of Deep GMMEUCovS is exemplary of its capabilities. The data set under

investigation contains 15 variables which indicate development on 194 countries (CIA, 2012) . Namely,

those are region, population density, coastline (coast/land ratio), net migration, infant mortality (per 1000

births), GDP per capita, literacy, phone ownership, percentage of arable, permanent crops, remaining

land (other), birthrate, deathrate, and sector distribution of agriculture, industry, and service. We ran

Deep GMMEUCovS with specifications ranging G1 = 1, . . . , 10, G2 = 1, . . . , 10, Q1 = j + 1, . . . , 8, and

Q2 = 1, . . . , j where j = 2, . . . , 7. The best model G1 = 3, G2 = 4, Q1 = 3, and Q2 = 2.

Figure 1: Clustering of countries by development indicators, results produced by layer 1

Figure 1 shows the most likely cluster assignments of the countries in the first layer. Note that
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G1 = 3, i.e., there are three different Gaussian functions to which a country can belong. It seems that the

countries are partitioned into three categories decreasing levels of development, from 1 to 3. Interesting

enough, New Zealand and Southern European countries such as Spain, Italy, and Portugal, which are

widely considered developed countries, seem to be assigned to the second tier of countries. In contrast,

the Baltic countries Lithuania and Latvia have made the cut to join the first tier of countries.

Figure 2: Hierarchical latent variable structure of development indicators, results produced by layer 1.

Figure 2 lays out the hierarchical structure of the variables. The within variable group variances

are retrieved from matrix Σ̂W
(1)
g1 and the across variable group variances are retrieved from Σ̂B

(1)
g1 . For

instance, in the first cluster, which represents the most developed countries, the population density,

coastline to land ratio, net migration, and the percentage of remaining land left from agriculture forms

the variable group that is at the top of the hierarchy. The variable on the top of the hierarchy has the

highest amount of within-group covariance. In the case of the developed countries, population density and

coastline ratio are highly correlated since coastal regions are more densely populated1. We may speculate

that developed countries that receive net migration are also more densely populated, and coasts are more

attractive destinations for migrants. Lastly, the land remaining from agriculture may have to increase

since land allocated for urban development increases with population. A similar interpretation could be

done to the remaining variable groups.

In application, let’s assume a policy maker in an underdeveloped country (cluster 3) aims to improve

the literacy level of her country. The variable group of which literacy is a part additionally contains the

percentage of arable land, percentage of land devoted to permanent crops and share of agriculture. This

information implies that agriculture and food-related policies have a strong relationship with literacy

levels. Then, the policy maker can further zoom into topics such as food insecurity and distribution, and

later the effect on primary education.

Figure 3 shows the most likely cluster assignments of the countries in the second layer. As a reminder,

the model specification has G2 = 5, representing five different clusters. It is quite hard to understand the

underlying concepts this map represents. Orange countries seem to be fossil fuel-rich counties, and dark

green countries are richer in social democracy. However, it is near impossible to say anything coherent

1More than 85 per cent of Australians live within 50 kilometres of the sea. (Clark and Johnston, 2017)

10



with our current tools.

Figure 3: Clustering of countries by development indicators, results produced by layer 2

5.3 Future Development

One downside of the current state of the model is the computation time that it takes to find the best

model. There are a lot of combinations of number clusters at every layer (G1, . . . , GH) and number

of dimensions at every layer (Q1, . . . , QH). Moreover, since it is also initialization sensitive, we run it

multiple times per given specification. A way to overcome this issue is to set a target number of clusters

per layer with some cheap clustering algorithm (such as K-means). Afterwards, search the immediate

specifications and continue towards a direction based on some criteria.

An area of improvement, which was not implemented, is to maximize values of within variable group

covariance ΣW. The covariance within the group is direction sensitive and there is no immediate reason

to preserve the original direction of the variable. This idea relates to the concept of hierarchical latent

variable structures, and how to construct the covariance matrix. Since EUCovS is pretty recent, we still

need more applications and trials to have a better idea of what the latent variables conceptualize.

Deep GMMEUCovS prematurely attempted to identify multiple cluster structures. However, the

scientific community has not dedicated much attention to the concept of multiple cluster structures.

Ideally, we would like to have statistical approaches to measure the existence of multiple cluster structures,

and their strength.
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