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Abstract

The yield curve could be used to determine what investors feel about the stock market and

it could be used to predict recessions. Thus being able to accurately predict the yield curve

is important. We investigate whether the addition of an extra factor, the addition of a lower

bound and accounting for non-stationarity improves forecasting accuracy of the yields. For

this, we use yield data from CRSP and Consumer Price Index data and Industrial Production

data from FRED. We find that accounting for non-stationarity and adding a zero lower bound

to the yield curve structure improves forecasting accuracy, however the addition of an extra

factor does not.
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1 Introduction

Forecasting the term structure of government bond yields is important, because yields could be

used to determine what investors feel about the stock market and the economy in general. The

yield curve could also be used to predict recessions, because an inverted yield curve is mostly

an indicator for a recession. The behaviour of yields has changed. As an example, after the

great recession and during the coronavirus pandemic, the yields were close to 0%, thus close to

a lower bound. We might also need to account for potential non-stationarity of the yields which

is addressed by Van Dijk et al. (2014). We thus need to apply new methods compared to the

traditional methods. Therefore we are going to investigate how the yields could be forecasted

in the most accurate way and our research question thus is:

Does the addition of an extra factor, accounting for non-stationarity and imposing the

zero lower bound improve forecasting accuracy of the U.S. government bond yields?

We use annualized continuously compounded U.S. bond yields from June 1961 till December

2021 and we use Consumer Price Index and Industrial Production data. We apply the Dynamic

Nelson-Siegel model and the Dynamic Nelson-Siegel-Svensson model with shifting endpoints,

so time-varying unconditional means, and a zero lower bound to forecast the term structure

of U.S. bond yields and then we compare the forecasting accuracy of these models. We find

that imposing shifting endpoints improves forecasting accuracy compared to having constant

endpoints. But in general, the Random Walk specification provides the most accurate forecasts.

Furthermore, we find that imposing a zero lower bound generally improves forecasting accuracy,

but the models with the zero lower bound do not generally give a better performance during

the lower bound periods compared to periods where the yields are higher. And furthermore we

find that models based on the Dynamic Nelson-Siegel framework perform better compared to

models based on the Dynamic Nelson-Siegel-Svensson framework. This could help researchers

to analyse and to build the most appropriate model to forecast the term structure of the U.S.

government bond yields or yields of another country of region.

The remaninder of this paper is as follows. In Section 2, we review previous work related to

this topic. In Section 3, we discuss the data we use and in Section 4, we explain the methods.

In Section 5, we present our main results and in Section 6, we conclude our paper.

2 Literature Review

To account for non-stationarity of the yields and inflation, Van Dijk et al. (2014) and Kozicki and

Tinsley (2012) use shifting endpoints to forecast the yields and inflation respectively. Van Dijk
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et al. (2014) find that forecasting performance improves with the shifting endpoints compared

to the models of Diebold and Li (2006) where they do not use shifting endpoints to account

for non-stationarity of the yields. Kozicki and Tinsley (2012) find that an AR model based

on shifting endpoints performs better than models with constant endpoints. That is why we

introduce the subquestion:

Does a model with shifting endpoints deliver more accurate forecasts of the yield curve

compared to models with constant endpoints?

We expect that imposing shifting endpoints improves forecasting accuracy compared to models

without those shifting endpoints, as previous research finds.

As discussed earlier, the behaviour of the yields has changed, in the sense that during the

coronavirus pandemic and after the Great Recession, yields have taken values which came close to

0. To address this problem, Opschoor and van der Wel (2022) and Christensen and Rudebusch

(2016) apply a zero lower bound while forecasting the U.S. bond yields. They find that the

models they use with the zero lower bound incorporated in it perform better compared to the

models witout the zero lower bound, especially during the periods where the interest rates are

close to 0%. Therefore we introduce the subquestion:

Does a model with a zero lower bound provide more accurate forecasts of the yield

curve compared to a model without the zero lower bound?

We expect that models with the zero lower bound will perform better while forecasting, especially

for the zero lower bound periods, as earlier research suggested. Several extensions have been

considered with respect to the Nelson-Siegel model proposed by Nelson and Siegel (1987). As an

example, Svensson (1995) proposed to add another factor to the Nelson-Siegel model to improve

the fit of the model. Muvingi and Kwinjo (2014) use the Nelson-Siegel-Svensson model proposed

by Svensson and the Nelson-Siegel model to fit the term structure of a Zimbabwean bank. They

find that the Nelson-Siegel-Svensson model provides a better fit of the yield curve structure

of the bank than the Nelson-Siegel model and they find that both models provide excellent

forecasting abilities. Therefore we introduce the following subquestion:

Does a method based on the Nelson-Siegel-Svensson model provide more accurate

forecasts compared to a method based on the Nelson-Siegel model?

Based on the findings of Muvingi and Kwinjo (2014), we expect that a forecasting method

based on the Dynamic Nelson-Siegel-Svensson model provides more accurate forecasts of the

U.S. yields.
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3 Data

We use yield data which is also used by Liu and Wu (2021). They have obtained the data from

CRSP. The dataset contains the annualized continuously compounded zero coupon yields in

percentage points with maturities ranging from 1 month till 360 months. The dataset covers the

period between June 1961 and December 2021, thus 727 months in total. We have listed some

descriptive statistics for the yields with the maturities we use in our research in months in Table

1. Based on the means of the yields for every maturity, we observe that the average yield curve

is upward sloping, as the means generally increase when the maturity increases. But we also

observe that the degree in which the average yields increase declines. This is thus in line with

the stylized fact that the average yield curve is upward sloping and concanve. Furthermore we

observe that the standard deviation generally declines when the maturity increases. Thus, that

the yields are more volatile when the maturity is shorter, which is also in line with the stylized

fact that the yields become less volatile as the maturity increases. For some of the maturities,

our dataset does not contain information about the yields for the whole period, thus the number

of observations for those maturities is lower than 727.

Table 1: Summary statistics for the US Yields between June 1961 and December 2021

Maturity Mean Min. Max. St.dev. Obs.

3 4.50 0.01 15.95 3.26 727

6 4.66 0.03 16.13 3.31 727

9 4.77 0.04 16.11 3.33 727

12 4.84 0.06 15.96 3.33 727

18 4.97 0.11 15.94 3.32 727

24 5.06 0.12 15.72 3.29 727

36 5.24 0.12 15.57 3.22 727

48 5.40 0.17 15.48 3.16 727

60 5.51 0.23 15.20 3.08 727

84 5.72 0.38 14.95 2.98 727

96 5.94 0.44 14.94 3.15 605

108 6.01 0.49 14.94 3.11 605

120 6.07 0.53 14.94 3.04 605

180 6.39 0.73 14.91 3.00 602

240 6.09 1.05 14.78 3.00 486

360 5.28 1.29 9.48 2.01 434

4



For our research, we also need data containing information about inflation and industrial

production growth. For that purpose, we use datasets provided by FRED, where we use the

total index of the consumer price index (CPI) as a measure of inflation and the total index

of industrial production (IP). For both datasets, we have monthly observations. For the CPI

dataset, there are observations available from February 1947 till May 2022 at the time of writing

and for the IP data we have observations between February 1919 and March 2022 at the time

of writing. However, for our research, we use monthly growth rates of the two variables. We

calculate the monthly growth rates according to the following equation: growthi = ln(xit/xit−1),

where i = CPI, IP and xit is the value of i in period t.

4 Methodology

4.1 Model specification

The first model we consider is the Dynamic Nelson Siegel-Model (DNS). The Dynamic Nelson-

Siegel Model is proposed by Nelson and Siegel (1987) and Diebold and Li (2006) and is defined

as

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ ϵt(τ), (1)

where yt(τ) is the yield to maturity of a bond with maturity of τ months at time t. β1t, β2t and

β3t are the latent factors we need to estimate. The loading on β1t is equal to 1 for every maturity,

so β1t is a long-term factor and could thus be interpreted as a level factor. The loading on β2t

starts at 1 when τ = 0 and then declines monotonically as the maturity increases, thus β2t can

be interpreted as a slope factor as it is a short term factor. The loading on β3t first increases

when the maturity increases and then it attains its maximum value for a certain maturity, after

that, the loading decreases. The factor β3t is thus a curvature factor as it is more a medium term

factor. Furthermore we have an error term ϵt(τ), for which we assume that it has mean zero

and variance σ2
t , which does not depend on time and maturity. Diebold and Li (2006) propose

a constant value of 0.0609 for λt, because when λt is set on 0.0609, it maximizes the curvature

factor loading at a maturity of 30 months. We also apply this value for λt in our estimation and

forecasting procedures.

The second model we use is based on the model proposed by Svensson (1995), where he adds

another curvature factor to the Nelson-Siegel model to increase the flexibility and improve the

fit of the model. We use a dynamic version of the model as Diebold and Li (2006) did with the

Nelson-Siegel model. The model is defined as
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yt(τ) = β1t + β2t

(
1− e−λ1tτ

λ1tτ

)
+ β3t

(
1− e−λ1tτ

λ1tτ
− e−λ1tτ

)
+

β4t

(
1− e−λ2tτ

λ2tτ
− e−λ2tτ

)
+ υt(τ), (2)

where β4t is an extra curvature factor and the other factors could be explained with the same

reasoning as above. We name this model the Dynamic Nelson-Siegel-Svensson (DNSS) model.

Christensen et al. (2009) estimate the values of λ1t and λ2t by using the Kalman filter on the data

of the U.S. yields between January 1987 and December 2002. They find the values of 0.8379 and

0.09653 for λ1t and λ2t respectively. As we use U.S. bond yields as Christensen et al. (2009), we

apply these values for λ1t and λ2t as well. Christensen et al. (2009) find these values for λ1t and

λ2t by using maturities of 3, 6, 9, 12, 18, 24, 36, 48, 60, 84, 96, 108, 120, 180, 240 and 360 months.

Thus, for esimation and forecasting of the yields with a model based on the DNSS framework,

we use the same maturities as Christensen et al. (2009). Because when doing so, the factors have

their inteded meanings, so with the combination of these values for λ1t and λ2t and the selected

maturities, we make sure that β1t is a level factor, β2t is a slope factor and that β3t and β4t are

two curvature factors. With the loading on β3t attaining its maximum near the 2-year maturity

according to Christensen et al. (2009) and the loading on β4t reaching its maximum near the

19-year maturity. To make the estimation and forecasting methods more comparable between

the DNS framework and the DNSS framework, we use the same maturities as described for our

estimation and forecasting for the DNS models. The difference however is, that Christensen

et al. (2009) estimated their λ1t and λ2t by taking the maturities in years, thus we also do that

when using the DNSS framework to make sure that the factors attain their intended meanings

by computing the loadings based on maturities in years. For the DNS framework, we take the

maturities in months to make sure that the factors have their intended meanings, as Van Dijk

et al. (2014) do.

4.2 Zero Lower Bound

To address the problem of the zero lower bound (ZLB), which occured after the financial crisis of

2008 and the recent coronavirus pandemic, we impose the yield curve structure used by Opschoor

and van der Wel (2022). The curve is defined as

y
t
(τ) = rLB + γf

(
yt(τ)− rLB

γ

)
, (3)

where rLB is the lower bound for the yields. We use a lower bound of 0% as proposed by

Christensen and Rudebusch (2016). And yt(τ) is the yield curve expression as in Equation (1)
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and (2). y
t
(τ) is called the ZLB yield curve. Here, γ is a smoothness parameter which makes

sure that the transition of the yields from the ZLB state to a state with a higher interest occurs

smoothly and vice versa. For the sake of simplicity, we pre-specify γ to a value of 1. In this

setup, f(x) = xΦ(x) + ϕ(x), where Φ(·) and ϕ(·) are the cumulative density function and the

probability density function of the standard normal distribution. For every model we consider,

we forecast the yields with the ZLB restriction and without the ZLB restriction. By doing so,

we are able to compare the forecasting accuracy of every model with and without the zero lower

bound restriction.

4.3 Estimation

Because we fix λ1t for the DNS model and λ1t and λ2t for the DNSS model, we can estimate

the latent factors by using cross-sectional ordinary least squares at each timepoint t as Van Dijk

et al. (2014). Instead of fixing those parameters, we could let them be time-varying and estimate

the factors by means of nonlinear least squares, but Diebold and Li (2006) recommend the use

of ordinary least squares, not only for simplicity, but also for numerical trustworthiness. As

Equation (3) is a nonlinear equation, we are not able to estimate the latent factors by means

of cross-sectional ordinary least squares. When we impose the zero lower bound yield curve

structure on our models, we make us of nonlinear least squares (NLS) for estimation. However,

y
t
(τ) is unknown when we do in-sample estimation, so for estimation, we plug the realised yields

on the left hand side of the equation. And on the right hand side of the equation we plug in the

DNS(S) yield curve expression instead of yt(τ).

4.4 Forecasting

To use the Dynamic Nelson-Siegel model for forecasting, Diebold and Li (2006) define the factors

as univariate AR(1) processes defined as

βj,t+1 = µj + ϕj(βjt − µj) + ηj,t+1. (4)

We first forecast the factors seperately by means of Equation (4) and then plug the estimates of

the factors in our models to obtain forecasts of the yields. For the DNS model, j ranges between

1 and 3, as we do have three factors. For the DNSS model, we have an extra factor, so j takes

values between 1 and 4 for that model.

4.5 Shifting Endpoints

After estimating the factors for the DNS model, Van Dijk et al. (2014) find that it is not

appropriate to regard the conditional mean as specified in Equation (4) to be constant. That is
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why they introduce a time-varying mean to account for this problem. The AR(1) process of the

factors now changes to

βj,t+1 = µj,t+1 + ϕj(βj,t − µj,t) + ηj,t+1. (5)

This model is called the shifting endpoint model, where we now have a time-variant specification

for the conditional mean which is labelled as µj,t in Equation (5). Van Dijk et al. (2014) propose

various ways to estimate the means. We use the estimations by means of exponential smoothing

and realised measures.

4.5.1 Exponential Smoothing

We generate the estimation of the time-varying means by means of the equation

µj,t+1 = αβjt + (1− α)µj,t, (6)

where α is a decay parameter which takes the values between 0 and 1. Here, we set α to a value

of 0.1. From t = 1, we first iteratively compute the time-varying mean for every month. We start

by setting µj1 equal to βj1 for every factor. Then, we combine Equation (6) with Equation (5)

to obtain h month ahead forecasts by iterating the process h times. We exponentially smooth

all the factors in our models when we forecast based on exponential smoothing of the factors.

Thus for models based on the DNS framework, we exponentially smooth the level, slope and

curvature factor and for models based on the DNSS framework, we exponentially smooth the

level slope and the two curvature factors.

4.5.2 Realized Measures

Diebold and Li (2006) argue that there is a correlation between inflation and the level factor and

also between economic activity and the slope factor. We thus also make use of macroeconomic

variables to forecast the term structure of the yields. For that purpose, we use inflation as

measured by the consumer price index (CPI) and industrial production (IP). We use the monthly

growth rates of the CPI and the IP as described in the Data Section. We first make use of

exponential smoothing on the CPI and IP growth rates. We denote the exponentially smoothed

CPI and IP as πES
t and δES

t respectively. We follow Van Dijk et al. (2014) by setting α equal to

0.01 when we exponentially smooth our macroeconomic variables, as Van Dijk et al. (2014) argue

that inflation and growth are noisy. To estimate µ1t, we use the equation µ1t = θ0,1 + θ1,1π
ES
t .

For µ2t, we apply the equation µ2t = θ0,2 + θ1,2δ
ES
t . The estimates of the θ variables could be
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obtained by applying the regressions

β1t = θ0,1 + θ1,1π
ES
t + ζ1t (7)

and

β2t = θ0,2 + θ1,2δ
ES
t + ζ2t. (8)

To forecast the level and slope factors and thus the yields, we apply Equation (5) on each factor

iteratively with the asssumption that µ1t and µ2t are constant at their values we obtain at the

end of the sample. For every model we consider, we forecast the remaining factors via Equation

(4). Thus for models based on the DNS framework, we forecast the curvature factor via Equation

(4) and for models based on the DNSS framework, we forecast the two curvature factors via

Equation (4).

4.6 Forecasting Methods

In Table 2 we have listed the forecasting methods we use in our research. Besides the methods

with the lower bounds and the shifting endpoints incorporated, we consider a Random Walk

based on the DNS and DNSS framework and the DNS and DNSS forecasting methods based on

Equation (4). Table 2 only lists the methods and their acronyms without the ZLB incorporated.

The acronyms of the methods with the ZLB are simply the same acronyms we use for the

methods without the ZLB, but in the end we add ‘LB’ to them.

Table 2: Description of the methods and their acronyms

Method Description

DNS Dynamic Nelson-Siegel model without shifting endpoints

RW-DNS Random walk approach with factor estimation according to DNS method

ESLSC-DNS DNS method with exponential smoothing of all the factors

RZIG-DNS DNS method with exponentially smoothed inflation and industrial production growth

DNSS Dynamic Nelson-Siegel-Svensson model without shifting endpoints

RW-DNSS Random walk approach with factor estimation according to DNSS method

ESLSC-DNSS DNSS method with exponential smoothing of all the factors

RZIG-DNSS DNSS method with exponentially smoothed inflation and industrial production growth

5 Results

In this Section, we present the results we have obtained. We consider two different forecasting

periods. For every forecasting period, we first discuss the forecasting implementation. Then we
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present the results for the methods based on the DNS and DNSS frameworks seperately. And

thereafter, we make a comparison between the results.

5.1 Forecasting Implementation

We use an expanding window to forecast the term structure of the interest rates. Because Chris-

tensen et al. (2009) considered the period from January 1987 to December 2002 to estimate their

parameters, we use that time period as our first sample, because the λ’s we use for estimation

of the factors and forecasting with methods based on the DNSS methods will be close to the λ’s

Christensen et al. (2009) find if we start with the exact period Christensen et al. (2009) use to

estimate those λ’s. We forecast for all the maturities we have given in the previous Section and

we forecast for three horizons ahead: 6 months, 12 months and 24 months. For all three horizons,

our first forecast is made for January 2003 and the last forecast is made for December 2021.

Which thus means that for every combination of forecasting method and forecasting horizon, we

have in total 228 forecasts of the yields. As we make use of an expanding window, we use data

back to January 1987 for every forecast we make. We compare the forecasting accuracy of the

methods by computing their root mean square prediction errors (RMSPE’s). While discussing

the RMSPE’s, we consider the maturities of 3, 12, 36, 60 and 120 months. To compare the

forecasting performance of the methods with the zero lower bound to the methods without the

zero lower bound when interest rates are near the zero lower bound, we make use of forecasts

of the yields between January 2011 and December 2021. To estimate the parameters, we make

use of data from January 1995. We consider the same maturities in our subsample as in the full

sample and also the same forecasting horizons. For the subsample, we have 132 forecasts of the

yields for every combination of forecasting method and forecasting horizon.

5.2 Results by Using the Full Sample

In this subsection, we provide the results we have obtained by using the full sample where we

use data from 1987 to forecast the yields. First, we present the results we obtain by the methods

based on the DNS framework. Then, we present the results for the methods based on the DNSS

framework. After that, we compare the forecasting performance of the DNS methods with the

forecasting performance of the DNSS methods.

5.2.1 Results for the Dynamic Nelson-Siegel methods

We depict the RMSPE’s of the methods based on the DNS framework in Table 3. For the

methods based on the Dynamic Nelson-Siegel framework, we observe that in general, the Random
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Walk specification (RW-DNS) provides the smallest RMSPE’s, thus provides the best forecasting

accuracy when we do not take the lower bound into consideration. This is in line with what

Van Dijk et al. (2014) find. Furthermore, if we compare the accuracy of the DNS method with

the accuracy of the ESLSC-DNS method, we observe that in general the ESLSC-DNS method is

better able to predict the term structure of the yields. For the forecasting horizon of 24 months

and higher maturities, the ESLSC-DNS method provides RMSPE’s which are around 40% lower

compared to the RMSPE’s of the DNS method. By using macroeconomic variables by means of

the RZIG-DNS method, we observe that for lower forecasting horizons, its performance is worse

than the perfomance of the DNS method. However, for a forecasting horizon of 24 months and

especially for higher maturities when the forecasting horizon is 24 months, the RZIG method

gives lower RMSPE’s than the DNS method. If we compare the performance of the RZIG-DNS

method to the performance of the ESLSC-DNS method, we observe that in general, the ESLSC-

DNS method performs better than the RZIG-DNS method. For the horizon of 6 months, we

observe that the RZIG-DNS method yields to RMSPE’s which are around 20% higher compared

to the RMSPE’s of the ESLSC-DNS method. When imposing the lower bound on the methods,

we observe that the DNS-LB method generally performs better than its counterpart without

the lower bound. Sometimes, the DNS-LB method gives RMSPE’s which are around 5% lower

than the RMSPE’s of the DNS method. When using the Random Walk, we observe that

the performances of the methods with and without the lower bound are comparable to each

other. The ESLSC method with the lower bound generally gives a better performance than its

counterpart without the lower bound for lower maturities for every forecasting horizon. When

looking at the methods with the macroeconomic variables, we observe that the lower bound

method again gives more accurate forecasts in general. For the maturity of 3 months and the

forecasting horizon of 6 months, the RZIG-DNS-LB method gives an RMSPE which is around

10% lower than the RMSPE the RZIG-DNS method gives. When comparing all forecasting

methods in the DNS framework, we observe that the ESLSC-DNS-LB method is the method

which provides the most often the lowest forecasts of all the methods we consider.

5.2.2 Results for the Dynamic Nelson-Siegel-Svensson methods

In Table 4, we show the RMSPE’s for the methods based on the Dynamic Nelson-Siegel-Svensson

framework with the λ’s estimated by Christensen et al. (2009). For the methods based on the

Dynamic Nelson-Siegel-Svensson framework, we observe that generally for these methods, the

Random Walk specification, thus the RW-DNSS method yields lower RMSPE’s compared to

other methods based on this framework when we do not take the zero lower bound into consid-
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eration. When comparing the DNSS method to the RW-DNSS method in this case, we come to

the same conclusions as before. But here we note that the RMSPE’s of the DNSS method are

sometimes more than twice as high as the RMSPE’s of the RW-DNSS method. When forecast-

ing the yields while using the ESLSC-DNSS method, we find that the ESLSC-DNSS method

here also provides lower RMSPE’s, thus better forecasts compared to the DNSS method. As

in the RW-DNSS case, we also observe that the RMSPE’s of the DNSS method are around

twice as high compared to the ESLSC-DNSS method. Here, the RZIG-DNSS method performs

better than the DNSS method for every combination of forecasting horizon and maturity. When

comparing the RZIG-DNSS method to the ESLSC-DNSS method, we observe that especially

for a horizon of 24 months and the maturity of 120 months, the RZIG-DNSS method provides

RMSPE’s which are around 50% higher compared to the RMSPE’s the ESLSC-DNSS method

provides. Based on the results in Table 4, we observe that in this framework, imposing the lower

bound generally improves forecasting accuracy. We observe that the DNSS-LB method outper-

forms the DNSS method for every combination of forecasting horizon and maturity. Sometimes

the DNSS-LB method improves forecasting accuracy by almost 18% compared to the DNSS

method. The ESLSC-DNSS-LB method gives better forecasts than the ESLSC-DNSS method

for almost every combination of maturity and forecasting horizon. However, for a maturity of

36 months and forecasting horizons of 6 and 12 months, the ESLSC-DNSS method gives better

forecasts. The RZIG-DNSS-LB method also performs better than its counterpart without the

lower bound, especially for lower forecasting horizons and lower maturities. Just as in the DNS

case, the Random Walk specification with the lower bound gives RMSPE’s which are compara-

ble to the RMSPE’s of its counterpart without the lower bound. But we observe that there is

no other method which gives the lowest RMSPE’s more often than the RW-DNSS-LB method,

which makes this method the most accurate forecasting method when looking across all fore-

casting horizons and maturities in this framework, which is different to the DNS framework.

There, the ESLSC-DNS-LB method was most frequently the best forecasting method.

5.2.3 Comparing the forecasting ability of each framework

If we consider the method without shifting endpoints for all frameworks, we observe that the

DNS method in general yields to smaller RMSPE’s compared to the DNSS method. As an

example, the RMSPE of the DNSS method is 50% higher compared to the RMSPE of the

DNS method when the forecasting horizon is 6 months and the maturity is 36 months. When

looking at the Random Walk specification, we observe that the RMSPE’s of both frameworks

are comparable to each other for every combination of forecasting horizon and maturity. If there

12
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are differences between the RMSPE’s, they are not larger than 0.03. When comparing the

methods where we exponentially smooth the means of the factors, we observe that the ESLSC-

DNS method generally gives better forecasts. The ESLSC-DNSS method only gives better

forecasts when the maturity of the yields is 3 months and where we take a forecasting horizon of

24 months. The differences between the forecasting accuracies between these methods with the

shifting endpoints are however not as large as the differences between the methods without the

shifting endpoints. We also see that the ESLSC-DNS method is more often the best performing

method in its framework compared to the ESLSC-DNSS method. If we consider the approach

with the macroeconomic variables, we observe that for all combinations of forecasting horizons

and maturities, the RZIG-DNS method outperforms the RZIG-DNSS method. Especially for a

forecasting horizon of 24 months and the maturity of 120 months, we observe that the RMSPE

of the RZIG-DNSS method is 28% higher than the RMSPE of the RZIG-DNS method. When

comparing the DNS-LB method to the DNSS-LB method, we come to the same conclusions

as comparing these methods without the lower bounds, but the differences get smaller when

incorporating the lower bound. The gains in forecasting accuracy are sometimes around 20%

when imposing a lower bound on the DNSS method. But when using the DNS method, we

see that the gains in accuracy are around 5%. Incorporating the lower bound on the Random

Walk method does not seem to have an impact on forecasting accuracy for both frameworks,

so when we compare the RW-DNSS method with the RW-DNS method, we come to the same

conclusions as earlier when we compared the RW methods without the lower bound. And also

for the comparison between the ESLSC-DNS-LB and ESLSC-DNSS-LB methods we can conlude

the same as for the case without the lower bound, thus that the ESLSC-DNSS-LB method only

gives a better RMSPE when the horizon is 24 months and the maturity is 3 months. The RZIG-

DNS-LB method outperforms the RZIG-DNSS-LB method, especially for a combination of a

large maturity and a large forecasting horizon, so their relative performance is also comaparable

to their counterparts without the lower bound. We can conlude that in general, methods based

on the DNS framework give better forecasting accuracy than methods based on the DNSS

framework. The fact that generally the DNSS methods perform worse could be explained by the

fact that in our forecasting framework, we forecast all the factors seperately and after forecasting

those factors seperately, we plug those forecasted values for the factors in Equation (1) or (2) to

obtain the forecasted yields. For the methods based on the DNS framework, we have in total 3

factors to forecast. For the DNSS methods, we need to forecast 4 factors to obtain forecasts of

the yields. So for every forecasted value of the yields, we need to estimate an extra factor when

forecasting with methods based on the DNSS framework, which could result in extra noise and

14
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less accurate forecasts of the yields and thus higher values for the RMSPE’s.

5.3 Results by Using the Subsample

In this subsection, we present the results we obtain when using a subsample. We choose the

subsample in such a way, that the yields for which we give forecasts are near the zero lower

bound. So that means, that in our forecasting period, the period after the Great Recession and

the period of the COVID-19 pandemic are primarily incorporated, as the yields are near the

zero lower bound in those periods. First, we present the results of the DNS methods. Then,

we do the same for the DNSS methods. Thereafter, we compare the performance of the lower

bound methods in the subsample with the performance of the lower bound methods in the full

sample to observe how the lower bound methods perform in the lower bound periods.

5.3.1 Results for the Dynamic Nelson-Siegel methods in the Subsample

We present the results we obtain while using the DNS based methods on our subsample in Table

5. For this sample, we again observe that when we do not consider the zero lower bound, the

RW-DNS method in general provides the best forecasting results, especially for lower maturities.

When comparing the RW-DNS method with the DNS method, we observe that the RW-DNS

method gives lower RMSPE’s for every combination of forecasting horizon and maturity, espe-

cially for the forecasting horizon of 24 months. In this sample, the ESLSC-DNS method gives

RMSPE’s which are generally higher when the maturities are low. But for higher maturities

and especially in combination with a forecasting horizon of 24 months, the ESLSC-DNS method

tends to give better results. If we compare the DNS method with the ELSC-DNS method, we

see that the ESLSC-DNS method performs better for every combination of forecasting horizon

and maturity, thus accounting for non-stationarity by means of shifting endpoints improves fore-

casting accuracy in this sample as well. The RZIG-DNS method generally performs better than

the DNS method, especially for higher maturities and a higher forecasting horizon, thus the

inclusion of shifting endpoints by means of macroeconomic variables also improves forecasting

accuracy in this set-up. Imposing the lower bound on the DNS method generally improves fore-

casting accuracy, sometimes by even 30%. The performances of the DNS and DNS-LB methods

are only comparable when the maturity is 120 months. In this sample, the performance of the

RW-DNS-LB method also seems to be comparable to the performance of the RW-DNS method,

with the differences in RMSPE’s not exceeding 0.03. The ESLSC-DNS-LB method gives RM-

SPE’s which are comparable to its counterpart without the lower bound, except for the maturity

of 3 months. For every forecasting horizon, the RMSPE of the ELSC-DNS-LB method is around
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10% lower compared to the RMSPE of the ESLSC-DNS method when the maturity is 3 months.

For lower maturities, the RZIG-DNS-LB method tends to perform better than the RZIG-DNS

method with the gain in forecasting accuracy also to be around 10%. In our subsample, we see

that the RW-DNS-LB method is the method which gives the most accurate forecasts the most

often. However, in our full sample, the ESLSC-DNS-LB method provides forecasts which are

the best the most often. It thus seems that the performance of the methods is sensitive to the

sample one chooses.

5.3.2 Results for the Dynamic Nelson-Siegel-Svensson methods in the Subsample

We show the RMSPE’s obtained for the methods based on the DNSS framework in our subsample

in Table 6. As is the case for other samples and frameworks, the method based on the Random

Walk approach generally is the best performing method without the lower bound. However, in

this set-up, the RW-DNSS method is also the method which provides the lowest RMSPE’s of all

methods the most frequently. Imposing shifting endpoints by means of exponential smoothing

does reduce the RMSPE’s in this set-up as well, with the RMSPE’s of the ESLSC-DNSS method

often being around twice as low as the RMSPE’s of the DNS method. Generally, we do observe

that the ESLSC-DNSS method gives a better forecasting accuracy than the RZIG-DNSS method,

where the differences are sometimes around 10%. Only for the maturity of 3 months and the

horizon of 24 months, the RZIG-DNSS method provides a smaller RMSPE. When we compare

the DNS method with the DNS-LB method, we see that forecasting performance improves when

incorporating the lower bound, especially for the maturity of 3 months. When the maturity

is 3 months and the window is 6 months, the accuracy gain is almost 39% when adding the

lower bound to the DNSS method. When adding the lower bound to the RW-DNSS method, we

again observe that the lower bound generally does not change the forecasting performance. The

differences between the RMSPE’s stay within the margin of 0.03. The ESLSC-DNSS-LB method

generally gives better forecasts than the ESLSC-DNSS method, but the differences are however

never larger than 10%. For a maturity of 36 months, the ESLSC-DNSS method even outperforms

the ESLSC-DNSS-LB method. Incorporating the lower bound to the RZIG-DNSS method in

this subsample improves forecasting accuracy for maturities of 3 months and 12 months, but for

the other maturities, the method without the lower bound gives better RMSPE’s. Thus, adding

the lower bound to the RZIG-DNSS method does not necessarily improve forecasting accuracy

in the subsample.
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5.4 Comparison of the Performance of the Lower Bound Methods Between

the Samples

In this subsection, we use the Tables 3,4,5 and 6 to compare how the lower bound methods

perform relative to their counterparts between the samples. In our full sample, the DNS-LB

method generally improves forecasting accuracy relative to its counterpart, but the accuracy

again is at most 10%. When we compare the forecasting performance between the DNS-LB

method and the DNS method in our subsample, we generally see that the relative gain in

forecasting accuracy is higher. As an example, for the maturity of 3 months and the horizon of

6 months, the DNS-LB method gives a RMSPE which is almost 28% lower than the RMSPE

of the DNS method. For the DNSS and DNSS-LB methods, we can give the same conclusions

as for the DNS case, thus the performance of the DNSS-LB method relative to its counterpart

improves in the subsample. For the case where we impose shifting endpoints by means of

exponential smoothing, we observe that in general the lower bound methods do better than

their counterparts for both samples, however the performance of the lower bound method does

not seem to improve when we consider the subsample instead of the full sample. For the

ESLSC-DNSS and the ESLC-DNSS-LB methods, we generally come to the same conclusions if

we compare the relative performances of the lower bound methods across samples as for the DNS

case. For the methods where we use shifting endpoints by means of macroeconomic variables,

we observe, as in the DNS case and the DNSS case, that the relative performance of the lower

bound methods does not seem to improve when we consider the subsample relative to the full

sample. We generally observe that the lower bound methods do not seem to perform better

in the subsample relative to the full sample when we account for the non-stationarity of the

yields. However, for the DNS and DNSS methods, where we use constant means, the lower

bound methods improve forecasting accuracy in the subsample relative to the full sample, which

is in line with what Opschoor and van der Wel (2022) and Christensen and Rudebusch (2016)

find.
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6 Conclusions

For our reseach, we try to answer the question: “Does the addition of an extra factor, accounting

for non-stationarity and imposing the zero lower bound improve forecasting accuracy of the U.S.

government bond yields?”. We observe that in general, the methods where we account for non-

stationarity of the yields give a better forecasting accuracy of the yields compared to methods

where we do not account for the non-stationarity of the yields, so the DNS and DNSS methods.

However, the Random Walk specifications tend to give the best forecasting results. These

findings also answer our first subquestion whether the addition of shifting endpoints improves

forecasting accuracy.

Furthermore, we use the zero lower bound yield curve structure proposed by Opschoor and

van der Wel (2022) to consider whether the addition of the lower bound improves forecasting

accuracy. We conclude that imposing a lower bound improves the overall forecasting accuracy.

But for methods where we already account for the non-stationarity of the yields, we observe

that after the addition of the lower bound, the forecasting performance does not improve during

the lower bound periods compared to periods where the yields are generally higher. This also

answers our second subquestion whether the addition of the lower bound structure improves

forecasting accuracy or not.

To answer our third subquestion whether a method based on the DNSS framework gives

a better forecasting performance than a method based on the DNS framework, we consider

methods based on the DNSS framework relative to the DNS methods to see whether the addition

of an extra factor improves forecasting accuracy. Generally we find that methods based on the

DNS framework yield to better forecasts of the U.S. bond yields compared to methods based on

the DNSS framework, so the addition of an extra factor does not improve forecasting accuracy,

which is not in line with what we expected. But this result could be explained by the fact that

more factors need to be forecasted seperately when using the DNSS method, which could result

in more noise and less accurate forecasts. This also answers our research question. The addition

of a lower bound and accounting for non-stationarity improves forecasting accuracy, but the

addition of another factor does not.

For further research we could use different estimation techniques of the yield curve structure

for forecasting purposes. We could perhaps estimate the yields by means of the Kalman filter as

done by Opschoor and van der Wel (2022) and Christensen et al. (2009). We could also perhaps

compare the forecasting performance of the methods we consider by using the yields of other

countries, such as European countries.
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A Appendix

A.1 Code Description

To obtain our results, we use R version 4.2.0 and the programme RStudio with version 2022.02.2+485.

In total, we use 4 files for our analysis. In the file “DNS DNSS”, we forecast the yields using

our full sample starting from January 1987 by making use of the DNS(S),RW-DNS(S),ESLSC-

DNS(S) and RZIG-DNS(S) methods. In the file “DNSZLB DNSSZLB”, we also make use of

the full sample starting from January 1987 and we use the methods described above with the

lower bound to forecast the yields. Here, we make use of nonlinear least squares to estimate the

factors. For estimation, we make use of starting values in our nonlinear estimation which are

equal to 1 for all the factors. We forecast the yields for the period between January 2003 and

December 2021.

To forecast the yields in our subsample without the lower bound incorporated, we make use

of the file “DNS DNSS GR COVID”. We again consider the methods we have mentioned above,

but this time our estimation starts from January 1995. and the yields are forecasted for the pe-

riod between January 2011 and December 2021. In the file “DNSZLB DNSSZLB GR COVID”,

we consider the same methods with the zero lower bound. Our estimation and forecasting

samples are same as for the “DNS DNSS GR COVID” file. Because we make use of the zero

lower bound, we estimate the factors by means nonlinear squares. When doing so, we again use

starting values equal to 1 for all the factors.
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