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Abstract

Recommender systems help optimize the purchasing process of E-Commerce. However,

there are questions about the accuracy and efficiency of these techniques. This paper aims to

recreate and confirm the results in the original paper about the Collaborative Filtering Rec-

ommender System by applying recency to enhance the standard recommendation system.

The replicate outcomes agree with the original ones that popularity is a strong baseline, and

the proposed recency-based model showed efficient performance as well as solutions to mul-

tiple existing problems such as cold-start or repetition and loyalty behaviors. However, as

the difference in dataset size, the accuracy among distinguished best top-k recommendations

might slightly differ. As an extension, this paper also aims to enhance the recommender

system and extend the methodology with the contribution of Product Categories appearing

as a new hyper-parameter in the formula. This new approach is promising in generalizing

the shopping process and increasing the accuracy of the recommendations for a better cus-

tomer journey.

The views stated in this thesis are those of the author and not necessarily those of the super-

visor, second assessor, Erasmus School of Economics, or Erasmus University Rotterdam.
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1 Introduction

E-commerce has significantly risen in the past decades due to the substantial growth of internet

usage and modern technology. The increase in internet access has led to the overload of data

and information (Isinkaye et al., 2015). This situation not only hinders the customer journey

(such as time-consuming to get access to online shopping) but also creates multiple challenges

for the business to optimize their profit (Isinkaye et al., 2015; Costa and Macedo, 2013; Lu

et al., 2015). Without prior knowledge and reliable reviews, for example, it is difficult and time-

consuming for users to pick one among 17,000 movies on Netflix (Bennett et al., 2007), or even

more challenging, 410,000 titles on Kindle only, not to mention the whole Amazon platform

(Ekstrand et al., 2011). Information retrieval systems such as Google or DevilFinder could help

solve parts of the problems; nevertheless, they did not prioritize and personalize the users’ data

to give the most appropriate suggestion (Isinkaye et al., 2015).

Researchers defined recommender systems as the agents of the personalized (recorded and

processed) information to make recommendations based on users’ preferences (Burke, 2007).

They also assessed recommender systems as a program giving the most suitable suggestion

for specific users by anticipating or “guessing” thanks to the information about their interest

(Lu et al., 2015; Bobadilla et al., 2013). With this mechanism, it is believed to be the most

valuable equipment to optimize the buying process in E-Commerce. Among all the innovative

technologies, the Collaborative Filtering (CF) algorithm in recommender systems is the most

successful and widely used (Deshpande and Karypis, 2004; Konstan et al., 1997). Ranging from

such “IT big guys” (Netflix, Spotify, Amazon...) to small retail platforms, most commercial

businesses nowadays have proceeded with the application of recommender systems. By and

large, recommender systems bring advantages for service providers and users (Isinkaye et al.,

2015; Pu et al., 2011).

CF algorithm in recommender systems appreciates each user’s personalization and priority

feature. This means that no matter how the user’s profile and buying behavior are, the algorithm

could offer the most suitable suggestions for him. For such a long time, buyers have mainly

depended on and spent much time on unverified and uncertain “recommendations” such as

word-of-mouth or recommendation letter (Resnick and Varian, 1997), meanwhile the scientific-

based recommendation system is a personal and time-saving source for the users to consider

and make the final decision when shopping online (Faggioli et al., 2020; Isinkaye et al., 2015).

Moreover, the new item recommendations that the customer has never purchased before could

bring diversity to each basket and help enhance their taste as well as the buying experience.

With all these user benefits, a recommender system could be a potential solution for a user’s
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repetitive and loyal behavior, yet all users’ unique and changeable behavior. More ideally, if a

model works better than the other, a company could maximize its profit and do better than

the other competitors in the same area (Palmatier and Sridhar, 2020).

Besides the advantages, there are also certain backwards of the recommender systems. These

problems might come from the matter of information histories such as cold-start or a lack of

fairness when recommending the popular items (Kumar and Sharma, 2016; Ricci et al., 2015).

Without careful data processing, the insufficiency in dataset and item-user-order information

would lead to the poor performance of the recommender systems. For details and reasons behind

these factors that could degrade the recommender systems, we will explain and provide more

in the section Literature Review. To overcome these obstacles, researchers have tried to apply

various factors as implementation on the traditional recommender system, and some could be

named as time, product taxonomy, sentiment analysis, or even social platform interactions of

the users (Ziani et al., 2017; Hung, 2005; Ben-Shimon et al., 2007).

One in-depth research about top-k popular recommendation with a time limit (recency) that

we would look into is the paper of Faggioli et al. (2020) “Recency Aware Collaborative Filtering

for Next Basket Recommendation”. This research aims to build a baseline model with popularity

and apply recency in the collaborative filtering process. This is a leap from the standard method

since it helps overcome the multiple challenges mentioned earlier of recommender systems. Here,

our paper is an effort to recreate and solidify this study by inheriting different proposed methods

to suggest items for the consumers, except for the FPMC* and T2V+Ada. As for the extension

part, we target to extend the methodology to cover the product type of customers’ baskets.

Therefore, the main research question of this paper is “How would a Recommender System

change when including the product type of items in the process of calculating

similarity?”.

We have found out that for the replication part, the recency has been a great contributor

to the performance of the enhanced algorithm. Even though our paper has slight differences

with the accuracy value of top-k recommendation due to the different sizes of the dataset, the

general conclusion stays the same as the paper of Faggioli et al. (2020). For the extension part,

the product categories also positively contribute to the recommendation process. We introduce

a new hyper parameter to represent the contribution of product type and aim at finding the

optimal value; however, it is not yet certain which value of the hyper parameter would optimize

the accuracy.

The paper is organized as follows. In the next section Literature Review, we will discuss

studies of similar approaches in adding recency and product categories to the recommender
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system. The following section is Data, which gives complete information about the dataset

being used. Following is the Methodology - the rebuild from the original paper of Faggioli et al.

(2020) and the extension with a contribution of product type. The next section is Application,

explaining the evaluation method and detailed results of different methodologies performed with

Python on Colab Research Google Notebooks. The last main section is the Conclusion, where

we will summarize, self-evaluate the paper, and suggest future approaches and extensions.

2 Literature Review

2.1 Collaborative Filtering

As Herlocker et al. (2000) explained, the collaborative filtering (CF) systems suggest an indi-

vidual by matching the information and recorded interests of that one to a group of people

having the same behavior (“like-minded”). This helps confirm that the operation of recom-

mender systems focuses more on the personal experience side of a customer journey (Mulvenna

et al., 2000; Hung, 2005). To handle the enormous data of users, items, and the orders between

them, CF does not analyze further into details and features of products but generates matrices

to represent the relevance between users and items and to predict which items should be rec-

ommended (Wei et al., 2017). There are two main types of collaborative filtering: user-based

and item-based. In user-based CF, recommendations are obtained by considering their ratings

on items to calculate pairwise similarities of two arbitrary users. Meanwhile, item-based CF is

the duality method of user-based, as it targets calculating the similarities of two arbitrary items

instead of obtaining the suggestions (Tso-Sutter et al., 2008). These two classical and standard

approaches for recommender systems CF are also the base of the original paper of Faggioli

et al.. More details and mathematical notation of the methodology used could be found in the

Methodology section.

2.2 Challenges in recommender systems

Theoretically, collaborative filtering (CF) in recommender systems has shown outstanding per-

formance and high accuracy in suggesting items for users. However, in practical application,

various factors would limit the quality of the recommendation framework. As mentioned before,

we will take a closer look into other studies about the problems of recommender systems.
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2.2.1 Cold-start

Collaborative filtering (CF) is the most popular approach to recommender systems that could

utilize a large amount of history of purchases. However, it is also known for suffering from

cold-start problems (Wei et al., 2017). Cold-start came when the distribution of recorded

information and ratings from other users over all the items was not equal (Wei et al., 2017).

In other words, “for all pairwise distance or similarity metrics, the item-based CF is unable to

explore similarities between the items that have never been co-purchased but share the same

neighborhoods nevertheless” (Deshpande and Karypis, 2004; Huynh, 2019). When a new user

or a new item enters the data system, cold-start will occur as there is no information recorded in

the data to support the recommendation process. For example, suppose that a new-added item

is the most suitable choice for a user; the recommender has no confidence in suggesting that

one. Consequently, the standard recommender system would not work correctly and accurately

in this case.

2.2.2 Popularity bias

Besides the accuracy, there are also considerations for the fairness of recommender systems,

specifically, the unfairness of popularity bias (Abdollahpouri, 2019). The popular items get

recommender frequently to some specific users; meanwhile, multiple other choices are more

related and relevant, yet being neglected by the recommender (Abdollahpouri, 2019; Huynh,

2019). Usually, a buyer has already decided and determined which item would best fit him.

Hence they are unlikely to buy a popular yet irrelevant item. Moreover, the ignorance of long-

tail (less popular) items might lose the businesses a chance to (1) get a fuller understanding of

their users and, more important, (2) optimize their profit via the increase in purchases.

2.3 Time and Recency-based Collaborative Filtering Recommender System

Time has been a common factor to consider when implementing recommender systems. This

is assessed as a “key aspect” of grocery recommendations since the purchases of a user could

reveal the feature of seasonality (concept drifts) or even the changes in the taste of users (Faggioli

et al., 2020). Usually, the standard recommender systems would treat any rating of a user for

an item equally when calculating similarities without considering the real-time of those reviews.

Meanwhile, it is the other case in reality: as one could change their taste over time, the most-

recent rating would give the most valuable contribution when making a recommendation. Being

aware of this, Ding et al. (2006) proposed the new framework that focused on the impact of time

(in specific, recency) by applying weights for items based on their future preferences to calculate
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expected accuracy. Another model from Nitu et al. (2021) also concerned a user’s most recent

traveling interest (via tweets and social platforms) and applied time-sensitive recency weight

into the model. It outperforms most of the existing personalized recommendation systems in the

area of travel suggestions. At this time of the decade, we have seen a boom in social networks

and social media activities, most recency-based studies currently focus on the time, and users’

activities on multiple social platforms as Larrain et al. (2015); Logesh and Subramaniyaswamy

(2017); Huang et al. (2014).

Though including the time-sensitivity (recency) in the model shows significant efficiency,

there has been little research on this area to update the recommendation system (Balloccu

et al., 2022). The paper of Balloccu et al. (2022) specifically focuses on a single and detailed

explanation for recommendation (such as the interaction of a user with an actress/actor profile

on a movie website) instead of generally considering a metric with the combination of all ex-

planatory factors (such as interaction with a movie having some actors/actresses). This, to some

extent, agrees with the idea of the original paper by Faggioli et al. (2020) as considering only the

most r recent basket (similar to the idea of considering the most recent interacted actor/actress

by Balloccu et al. (2022)). Both of these experiments with time sensitivity included have shown

the enhancement and increase in the quality of recommendations. Recency not only plays a role

in the phase of consideration and purchase in the customer journey, but it could also appear

in the phase of advocacy when customers give reviews and feedback. The CF algorithm with

the inclusion of negative feedback (detected by negative meaning words and machine learning)

was proved to have higher accuracy than the baseline method and out-perform both classic

and state-of-the-art algorithms (Vinagre et al., 2015). With a similar mindset to concern about

the online reviews and feedback, the inclusion of time (when) and time-decay (how) of social

tagging in the CF algorithm has also shown a “substantial effect on accuracy” (Larrain et al.,

2015). In general, most of the research on CF based on recency and time size limit has shown

a significant improvement from the existing models.

2.4 Products type, Product Taxonomy, and Recommendation System

A few decades ago, the technological backward led to limited choices for the customers when

shopping. However, the current situation is entirely upside-down; with a wide range of brands,

sizes, colors, and prices, the customer might have difficulties making a final decision. As Cho

and Kim (2004) have stated, the recommender system is a promising technology to overcome

this headache for the customer. To enhance the model, researchers have taken a closer look at

different perspectives of the products, such as product categories. Mild and Reutterer (2003)
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came up with the extension of current CF to consider a multi-dimensional vector with a binary

value representing users’ choices when shopping (1 means bought and 0 means no). With

this setting of notations, not only one but multiple purchased product categories could be

assessed and considered. Other studies about recommender systems take product categories and

types into account, such as papers of Albadvi and Shahbazi (2009); Lee and Hosanagar (2019).

Besides categories, there is also research on the brand reputation of the products such as Hung

(2005) took “brand name” characteristics into the model to highlight the “brand-sensitivity” in

customer behavior.

The other approach is based on Product Taxonomy. This structure is viewed in the form of a

tree to present the hierarchy. Hung (2005) explained the root node of the tree as all the products

sold on the platform, with all the nodes connected to the root as the type of the products (such

as clothes, cosmetics,...). Each product type has a bunch of lead nodes that contain further

details: brands, sizes, prices, or even color. Even though it has a similar meaning to product

type, the product taxonomy application is more complicated and has the feature of hierarchy

to be applied to the data-mining method. From these simple explanations, we could observe

that Product Type is a part of the Product Taxonomy, and together with the CF algorithm,

we would only care about the type of product (first classification of the Product Taxonomy).

Concerning product type, it is often an area for investigating the marketing variables: from a

tangible perspective such as promotion, price sensitivity, or quality of brands (Boyle et al., 2018)

to hidden features such as choice behavior (Ainslie and Rossi, 1998). At first glance, it seems

that the product categories are already unique and independent from each other, especially

when thinking about the shopping behaviour; each consumer might already plan for their meal

preparation and the needed groceries. However, it is not the case in the real world. There

are correlations among product categories when analyzing user ratings; multiple studies have

researched this assumption (Boyle et al., 2018).

3 Data

For replication part, we follow the original paper to use the “Instacart” dataset (Instacart.com,

2017). This originated from the Instacart website, which provides daily grocery delivery in the

USA. This contains over 3 million observations as grocery orders from over 200 thousand users

on the website. There is no specific date and time for each order, yet the baskets purchased

sequence is provided. We would also keep using this data set for the Extension part to make a

fair comparison concerning the performance of the original and extended methodology.

In this section, we would like to provide summary statistics for the data, together with steps
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for the data cleaning. The Table 1 is the summary from original paper (Faggioli et al., 2020).

Table 1: Summary statistics of the full dataset

Dataset #Users #Items Items selected Baskets min basket min item avg. baskets/user

Instacart 206209 49685 49685 3346083 2 10 16.22

We consider including the product categories as the Department in the dataset for the

extension part. Below is the bar graph as the summary of the department with the number of

items in a subset of the full dataset; the horizontal axis x is the Department ID, meanwhile

for the vertical axis is y is the number of items for the corresponding index of the Department.

The size of the subset considered here is 5% of the original dataset. The full explanation for

the Department ID is in Section Appendix A.

This is the figure for the total number of items for each product category for comparison. As

we can see, the product category as Department ID 16, which contains Diary products and eggs,

shows the domination in the dataset with more than 500 products. Meanwhile, the department

with the fewest items is Department 10 - Bulk. We observe that this data sparsity does not

show balance and equal distribution. There is indeed a specific hierarchy in the number of

items.

Figure 1: The departments in supermarket with corresponding number of items
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4 Methodology

All the methods with terms, definitions, and formulas discussed below are inherited and ex-

tended from the original paper of Faggioli et al. (2020).

Let us denote that U is the set of n users and I is the set of m items. For each user u, the

term for transactions as bt
u where t indicates the ordinal position of the basket; hence b1

u would

be the first basket (or transaction, interchangeably used) while bBu
u would be the last one. We

could also define Bu = {bt
u|t ∈ 1, ..., Bu} as the set covering those baskets for a specific user u.

Moreover, to verify the set of baskets of such user u containing a specific item i, we defined

Bi
u = {bt

u|bt
u ∈ Bu ∧ i ∈ bt

u} ⊆ Bu, |Bi
u| = Bi

u. The user-wise popularity for a given item i is

formulated as:

πu
i = Bi

u

Bu
. (1)

Hence, the global popularity which does not depend on any individual user could be defined

as:

πi =
∑

u∈U Bi
u∑

u∈U Bu
. (2)

4.1 Recency

This section provides more details and insights into the role of recency in the process. From

the online lecture in UMAP ’20: 28th ACM Conference by Faggioli (2020), recency could be

informally understood as the “last time the consumer bought that item” or, in other words, as the

number of most recent baskets bought by users. Faggioli et al. also pointed out that typically

when buying groceries, there would be seasonality (the specific time of the year that the majority

of customers buy specific product categories, for example, Christmas time and decorations

products or Thanksgiving with turkey) and availability (whether those items are available or

not). Without the recency, those could create drifts and outliers in the recommendation process.

Therefore, by using the time frame limit, we could theoretically avoid the difficulties and give

a better performance. The recency-involved user-wise popularity is defined as:

πu
i @r =

∑Bu

t=[Bu−r]+Ji ∈ bt
uK

min(r, Bu) , (3)

with r is the recency window size, JxK is the indicator function taking value 1 when x is true

and 0 otherwise, and [x]+ indicate the maximum between x and 0.
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4.2 Popularity-based CF:

The standard popularity-based CF combines the weighted ratings from all users, and this mech-

anism works the same for both user-based and item-based CF. We have already introduced the

way user-based and item-based CF work in Literature Review. While standard user-based CF

would suggest items for user u depending on the ratings of a similar user, the proposed model

of Faggioli et al. (2020) makes suggestions based on the popularity (either with recency or not)

to replace the ratings. According to Faggioli et al. (2020), popularity, especially user-wise, is

the most important and reliable indicator for grocery shopping. This could represent an item’s

level of needs and importance to a user. We inherited the build of the original paper for both

user-based and item-based popularity-based CF.

4.3 Item popularity-based CF: IP-CF

This part will investigate the formation of methodologies for item-based CF with popularity.

The formula for asymmetric cosine similarity is given in the paper of Faggioli et al. (2020).

However, there is a small mistake in the original paper, as the coefficient for the probability

needs to be switched. We performed and confirmed this based on the formula of conditional

probability:

s(i, j) = |Bi ∩ Bj |
|Bi|α|Bj |1−α

= p(i|j)1−αp(j|i)α, (4)

with Bi denoted the basket containing item i; the asymmetry coefficient α, working as the

trade-off parameter to help the importance of the two probabilities, takes value in the range

[0, 1] (Faggioli et al., 2020). From this, we calculate the score for prediction as:

r̂u
i =

∑
j∈J

s(i, j)qπu
j , (5)

with user-wise popularity πu
i mentioned before implemented. In this formula, the locality

coefficient q refers to the amount of nearest users/items really matter in the computation of

similarity (Aiolli, 2013; Faggioli et al., 2020). Since the value of similarity s(i, j) is in [0, 1], with

higher value of locality, the similarity would be lower (Faggioli et al., 2020). In asymptotic case,

when q approaches infinity (q → ∞), s(i, j) > 0 if and only if item i is item j or two items (i ̸=

j) are always bought together (Faggioli et al., 2020).

In the original paper, the authors Faggioli et al. set the expectation that this method

outperforms the standard user-wise popularity. There are two main reasons stated that: first,

it could help adding diversity in recommendation, and secondly, there is the chance to increase
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profits when the users buy suggested items from the recommender systems.

4.4 User popularity-based CF: UP-CF

As mentioned in Literature Review, user-based and item-based are the two duality cases in CF

algorithm. In this section, we would investigate the formation of user-popularity-based. Firstly,

the calculation of similarity between two users u and v which is also based on the conditional

probability formula, is denoted as:

w(u, v) = |Iu ∩ Iv|
|Iu|α|Iv|1−α

, (6)

with I denoted the set of items being bought by specific user (u and v in the formula),

asymmetry coefficient α, and a locality coefficient q with the same definition given in the IP-CF

similarity formula explanation.

Based on this similarity calculation and the same definition for the locality, we hereby give

the definition of the prediction by Faggioli et al. (2020):

r̂u
i =

∑
v∈U

w(u, v)qπv
i , (7)

with the same definition for locality coefficient q and the user-wise popularity πu
i as mentioned

before.

4.5 Recency-aware CF: UP-CF@r and IP-CF@r

Faggioli et al. (2020) new proposed model also implemented recency into the CF process via

the popularity formula mentioned in Recency. The calculation for similarities based on the

conditional probability formula of two users and two items stays the same as in the no-recency

case. However, instead of the normal user-wise popularity πu
i , we would apply the recency-based

user-wise popularity πi
u@r from Recency. Therefore, we would expect an improvement in the

prediction score due to the recency-based popularity.

The formula to calculate score of prediction for recency-involved item-popularity-based CF

(IP-CF) is:

r̂u
i @r =

∑
j∈J

s(i, j)qπu
j @r, (8)

and score of prediction of recency-involved user-popularity-based CF (UP-CF) is denoted

as:
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r̂u
i @r =

∑
v∈U

w(u, v)qπv
i @r. (9)

4.6 Evaluation method

In this paper, we followed the evaluation method of the original paper for both the replication

result and the extension by using normalized Discounted Cumulative Gain (nDCG). The length

of the test basket is denoted by Tu. The evaluation measurement is based on the ranking,

which would appreciate the results with a higher level of relevance. For example, to apply the

measurement on top-k recommendations denoted as:

nDCG@k = 1
IDCG@k

k∑
i=1

rel(Riu)
log(i + 1) , (10)

with

IDCG@k =
min(k,Tu)∑

i=1

1
log(i + 1) . (11)

The rel(Riu) denoted graded relevance of the result at position i. The higher the relevance

score, the more relevant the result to the user. The sum of graded relevance is called Cumulative

Gain (CG), denoted as ∑
p reliu with p as the position/rank of the result. The order of results

would not change the final values of this CG value since it does not consider the rank (position) of

the result yet. Next step, when calculating the full evaluation value of nDCG, each contributing

value’s order (rank) would be of great importance to the final result. There is a change from

the original paper in the iDCG formula. Instead of taking the sum to k, the summation now is

from the minimum value between k and the test set length. This could be seen as one of the

small errors from the original paper, even though the author is already concerned about this

problem in the recency-aware user-wise popularity formula. This might not cause a significant

impact on the final result.

For our research and replication, we make use of the standard nDCG package with formula

from sklearn.metrics (Järvelin and Kekäläinen, 2002; Wang et al., 2013; McSherry and Na-

jork, 2008) for Python.

4.7 Product type enhancement Methodology

This paper focuses on the similarity affected by the product types of the items. The items might

differ from each other. However, if they are of the same type, they share a certain similarity.

From this perspective, we would like to implement the formula of the original cosine similarity

in the paper of Faggioli et al. (2020). Denote the set T as the set of all the product types t
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(or Departments as in the dataset Instacart). We also let ti denote the product type of item

i. We will also introduce a new parameter β to represent the similarity multiplier in case two

items are from the same type.

The proposed formula for similarity including the product type becomes

s∗(i, j) = |Bi ∩ Bj |
|Bi|α|Bj |1−α

× β1{ti=tj} = p(i|j)1−αp(j|i)α × β1{ti=tj}, (12)

with s(i, j) as the enhanced similarity, β is the new parameter represents the level of contri-

bution of product type, the indicator function (1{ti = tj}) in the exponential of β is to check

whether two arbitrary items are in the same department.

*Including Aisles of the products: Knowing that if two products are in the same aisle,

they must be in the same department, but not the other way around. We would denote hyper-

parameter γ represent the contribution of aisle to the similarity between two item i and j:

s∗(i, j) = |Bi ∩ Bj |
|Bi|α|Bj |1−α

×(β+γ1{ai=aj})1{ti=tj} = p(i|j)1−αp(j|i)α×(β+γ1{ai=aj})1{ti=tj}, (13)

1{ti = jj} =


0, if ti ̸= tj

1, if ti = tj .

The similar setup for indicator function of aisles, value 1 when two items are in the same aisle,

0 otherwise. If the indicator function for aisle takes 1 as the value, the indicator function for the

department must take 1 as well. However, for the similarity value, we would like to normalize

them into the range of [0,1] where 0 represents the extreme case that there is no similarity and 1

represents the case that the two items are identical. Adding β requires the normalization step for

the new similarity. The normalization formula for similarity with department implementation

is:

s∗(i, j)normalized =
s∗

( i, j) − s∗(i, j)min

s∗(i, j)max − s∗(i, j)min
,

and knowing that the maximum value for new similarity (s∗) between two items is β while

the minimum value is 0, we could simplify the formula to:

s∗(i, j)normalized department aisle = s∗(i, j)
(β + γ) . (14)
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5 Application

5.1 Data preparation

The total observations of the Instacart dataset is 3,000,000 (million) orders, which is enormous

for a personal laptop. For a better performance without losing any generalization, the paper

will only use 5% of the dataset. Half of the last basket (nth basket) is for the validation, and

the other half is for the testing process; the remaining baskets are for training. Below is the

figure that illustrates the data split for the training-testing-validating process.

Figure 2: This figure illustrates the
training, evaluation, and test set.

Black baskets denote the training set;
the green baskets are for validation,

and the red ones are the test set. This
follows the guidance to use the orders
from 1 up to (n-1). For the last order,

we split half-half. (Faggioli et al.,
2020)

5.2 Recency-aware result

We run the code with different k for top-k recommended products to the user, with k= 5, 10, and

B (the length of the test set). To obtain these findings below, we use Python with environment

of Google Colab Notebook 12GB RAM on 64-bit PC with Intel(R) Core(TM) i5-7200U.

There is a set of hyper-parameters with different values (taken from the original paper for

a fair comparison) for testing:

• Recency window: r ∈ {1, 5, 25, 100, ∞};

• Locality: q ∈ {1, 5, 10, 50, 100, 1000, ∞};

• Asymmetry: α ∈ {0, 0.25, 0.5, 0.75, 1}.

For the model evaluation, we perform on the test set and compare the three enhanced

recency-aware with four baseline models: GPop (global population k best items), IP-CF, UP-

CF, and UW-Pop. Each of these models is explained with details in Methodology. The obtained
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outcomes for comparison would be the level of accuracy and relevance when recommending 5,

10, or B products for the user. Those are calculated based on the nDCG@k also explained

in the Methodology. The following table only reports the highest outcome over all the above

combinations of hyper-parameter values with three values of k being considered.

Table 2: Result from Faggioli et al.
(2020) on Instacart’s dataset.

Algorithm nDCG@5 nDCG@10 nDCG@B

gPop 0.098 0.109 0.081
UWPop 0.406 0.387 0.327
IP-CF 0.256 0.256 0.206
UP-CF 0.166 0.147 0.123
UWPopr 0.415 0.395 0.336
IP-CFr 0.427 0.408 0.346
UP-CFr 0.429 0.411 0.349

Table 3: Replication result on 5%
subset of Instacart’s dataset.

Algorithm nDCG@5 nDCG@10 nDCG@B

gPop 0.213 0.215 0.165
UWPop 0.629 0.639 0.605
IP-CF 0.629 0.6406 0.574
UP-CF 0.633 0.646 0.575
UWPopr 0.634 0.645 0.614
IP-CFr 0.636 0.648 0.576
UP-CFr 0.6409 0.659 0.578

5.2.1 Comparison with baseline models

This section will compare the proposed models against baseline ones, based on the results when

considering different values of k, in turn, 5, 10, and length of test size B. These values for

evaluation represent the “available space” of different devices. The top 5 items would represent

a phone screen, the top 10 as a laptop screen, while the top B items are the extreme case to

print all the total number items equal to the length test set if known (Faggioli et al., 2020). The

higher the results in the table, the more accurate and relevant the suggestions for the users.

Faggioli et al. have mentioned these results as the satisfaction level of the customers. However,

this might not be the correct way to interpret it. For example, when a recommender system gave

three (3) items as suggestions for the users, and they bought two (2) out of them, the buying

rate is higher than 60%; meanwhile, with ten (10) items, if they bought 4 out of them, the rate

is only 40%. Nevertheless, we could not assume that giving three (3) items is more satisfying for

customers since they bought more items in quantity in the second case. This is why from our

perspective, the nDCG@k with corresponding values only represents the algorithm’s relevance

and accuracy, not the users’ personal experience.

These findings agree with the original paper that the extreme case with B items brought

the least matching and relevant experience for the user. The methodology could explain the

reason behind this, as with B items, iDCG is maximum and makes the guessing process harder

since most of the items are penalized. Regarding the best performance of how many k items to

print, Faggioli et al. stated that nDCG@5 with printing on phone screen performed the best

out of three options. However, we found that printing ten items gain the highest accuracy and
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relevance, except for the global popularity baseline method.

From the result of the original paper, UP-CF@r saw the stability of giving the highest

results highlighted in the table 2. Following this method, the other two proposed models of

Faggioli et al. also give potential outcomes. These promising findings have been explained by

the “high performances” of user-wise popularity (Faggioli et al., 2020). From our research result,

we also observed the same situation. Our replicated UP-CF@r also obtained the highest value

of nDCG@k, followed by the other two proposed recreated models: IP-CF@r and UWPop@r.

Another remarkable finding is that recency contributes to and improves the recommendation

process. The proposed models outperform and increase the accuracy compared to the baseline

and standard models.

5.2.2 Hyper-parameter evaluation

In the original paper, Faggioli et al. performed the test on two different datasets, which led to

the different values of hyper-parameters for the optimal final result. In this paper, we only test

on the Instacart’s dataset. The two following tables give an overview of results when changing

the recency values to run the UWPop@r method.

Figure 3: nDCG@B of UWPop@r
with r=5
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Figure 4: nDCG@B of UWPop@r
with r=0
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In terms of hyper-parameter values validation, for the non-recency (r = 0) case, the overall

highest values are obtained when α = 1 and q = 1 while if considering recency, the best to get

is from (recency) r = 5, α = 1, and q = 5. Both cases with and without recency show that the

locality is preferred to have low value. Without a limit on the number of time-sensitive baskets

when shopping (r=0), q=1 worked best. Meanwhile, when recency is set to optimal value 5,
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the locality 5 works best. This also agrees with the original paper’s results since Faggioli et al.

also concluded the system preference of low q since most of the algorithms preferred q = 5 or

q = 10 in the original paper. When testing on the dataset Instacart, Faggioli et al. assessed

that it showed fairly stable results. This is true for asymmetry value α since in all cases α = 1

gives the best outcomes. For recency, of all the values mentioned above in the parameter setup,

the best outcomes are obtained with recency equals 5, which means when recommending items,

recommender systems work best to consider the latest five baskets of a user.

We would like to add a side-note to explain the minor difference in results between the

original paper and ours. For the evaluation method nDCG and even the consine similarity

calculation, the authors build up the formula quite differently from the existing and standard

formula of packages used when we replicate the codes. Moreover, with the limitation in technol-

ogy and skills, we entirely use the packages. Details, references, and authors of these, such as

package similaripy or nDCG score from Sci-kit learning could be found in the Appendix with

the coding summary.

5.3 Product type and aisle involved result

We have included a hyper parameter for product type in the similarity of IP-CF (with and

without recency) from the extension methodology. The extension experiments’ steps required

creating a huge matrix as the indicator matrix for parameter β representing the product cate-

gories. Due to computer storage and RAM capacity, we would consider only a total subset of

0.005, which is ten times less than the replication part dataset. However, this is expected not to

affect the generality of the experiment. We are aware that we could obtain more reliable results

with more products and users. We have tried to approach with top 5000 popular products

as well. However, since there is a mismatch in matrix multiplication, we will attach it to the

Appendix but not analyze the full results of that effort. For a fair comparison, we would also

re-run the testing models ( such as UWPop@r, IP-CF(@r), and UP-CF(@r)) on a new subset

of data.

The product type in this the data set Instacart is the Department with specific DepartmentID

in the file about all products. We could also extend to another level with aisles; details are al-

ready discussed in the Methodology section. Due to the limitations of time and capacity, we

will only analyze the implementation with departments of the products. For the aisle imple-

mentation, which could be potential future research, we could denote the hyper-parameter γ to

represent aisles with suitable values to test.

For the experiments on Departments (Product types) now, we will perform on testing set.
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The setup for hyper parameters is as follows: we keep testing with the mentioned values of

recency, locality, and asymmetry. For the new product type level - β, we propose a set of value:

β ∈ {1, 2, 5, 8, 10, 15}.

Table 4: Extension result with the product types (department) including

Algorithm nDCG@5 nDCG@10 nDCG@B

GPop 0.2405 0.2378 0.177
UWPop 0.495 0.496 0.477
IP-CF 0.389 0.498 0.479
IP-CF new 0.530 0.583 0.593
UWPop@r 0.466 0.471 0.441
IP-CF@r 0.554 0.595 0.613
IP-CF@r new 0.403 0.561 0.583

Table 4 reports both the original models’ results and enhanced ones with a subset of 0.005

for a fair comparison. The values are the highest when using different values of β for testing. We

chose such set of values for β to compare the level of impact between the department (product

type) and the other hyper-parameters such as recency or locality. Within the same scope, the

values for testing are reasonable. After all the combinations of different values, the outcomes

with β = 5 show the highest score for recommendations to the user.

The enhanced algorithms generally show slightly better performance than the original ones,

so they also outperform the baseline model. Since we do not test on UP-CF because of the

irrelevance with the department, the IP-CF with and without recency has the best performance.

The enhanced algorithm IP-CF (without recency) make an improvement from old IP-CF with

the gap of, respectively, 0.141 for k=5, 0.085 for k=10, and 0.114 for k = B (length of the

test set). Nevertheless, it is not the case when we also consider recency. When including both

product types and recency, the accuracy decreases from the original ones. Another remarkable

observation is that nDCG@B shows the highest accuracy and relevance, which is completely

different from the originally proposed models. We assessed this as a sign of the lack of relia-

bility in these results as it shows an upgrade in some perspectives, yet the imbalance in values

between testing and validating set because of sample size might cause serious mistakes in the re-

sults. Normally, the results between the test set and the validation set should show similarities.

Meanwhile, in this study case, it shows a huge gap between the two values each iteration.

In terms of parameter value validation, the findings also agree with ones from the experi-

ments in the replication part, as α = 1 and q =5 with recency = 5 are still preferred the most.

Therefore, we could prove that the recency with value 5 is the optimal value for the hyper-
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parameter. However, the efficiency when combining recency and product type does not live up

to our expectations. We aim to enhance the proposed models, but these results suggest that it

is better to choose either limit in most recent basket quantities or the history and categories of

customers’ buying information.

6 Conclusion

In this paper, we have rebuilt the existing Collaborative Filtering Recommender System based

on the original paper, with popularity as a baseline and recency in shopping behavior as the new

approach. Moreover, we have come up with the extension about product type to implement the

existing models with the main research question: “How would a Recommender System

change when including the product type of items in calculating similarity?”. Our

findings from the recreation part agree with most of the crucial outcomes of the original paper.

Although there are some minor differences between the two papers’ results, it does not affect the

main general conclusion from the studies that recency-based with popularity proposed models

outperform the baseline models, show a significant improvement from the standard recommender

systems and achieve an “state-of-the-art” performance. Among all the proposed models, UP-

CF with and without recency shows the best performance. Following with the two proposed

models, IP-CF(@r) and UWPop(@r).

For the extension part, we propose two new models to enhance the recommender system with

the department and aisle of the items, which belongs to the product type and taxonomy area.

There is already research about the hierarchy of products (from general to specific items), yet

our contribution and effort to include different department types is to update and improve the

current recommender system. We have achieved promising results when including only product

types with a noticeable increase in accuracy and score. However, the results are not as expected

when trying to integrate both recency and the product type. This could be a suggestion to

use either recency with popularity or product type with the popularity of an item to get the

optimal results.

A few limitations of this study include that we did not manage to make a proper and optimal

data processing for the extension part. The insufficiency of data subsets has led to the reliability

problems of results, even though they are promising to apply in reality. Specifically, the matter

of reliability here stays in the imbalance between testing and validation test results and the

inconsistency of nDCG@k ordering. Another minor limitation is that using only one data set

could not capture the generality of the research. We only observe the potential on one data

set, not a wide range of different datasets. Lastly, the lack of replication for FMPC and Ada
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approach is a missing link to observing how such proposed models improve from the current

advanced models.

Further research on this research could address the aforementioned limitations. Regarding

the data processing, we have already made an effort to take only top popular products with

their corresponding users and baskets. With this approach, not only is the sample size assured

sufficiency, but it could also prioritize the popularity of the recommendation process. As the

popularity is one of the essential criteria in this study, the top-popular subset could be the

promising and correct direction. An additional suggestion is to inherit the methodology built

with aisle and extend to see the correlation of department and aisle among items. This could

be an interesting topic that can be applied to multiple datasets. IF further research could

adapt those methodologies and expand with more advanced ensemble methods, it could be a

promising tool and solution for existing recommender systems.
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Appendix A

Table 5: Details of product type of the dataset

Department ID Meaning of the department number
Department 1 Frozen products (frozen)
Department 2 Other products
Department 3 Bakery
Department 4 Produce
Department 5 Alcohol
Department 6 International
Department 7 Beverages
Department 8 Pets
Department 9 Dry goods pasta
Department 10 Bulk
Department 11 Personal care
Department 12 Meat, seafood
Department 13 Pantry
Department 14 Breakfast
Department 15 Canned goods
Department 16 Dairy eggs
Department 17 Household
Department 18 Babies
Department 19 Snacks
Department 20 Deli
Department 21 Missing / Other

Appendix B

Packages and Initialization

!pip install similaripy

# Imports

import os

import time

import numpy as np
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import pandas as pd

# In order to deal with large sparse matrix we need to compresse them using

# the sparse sub_module of scipy lib

from scipy import sparse

import scipy.sparse as sps

from sklearn.metrics import ndcg_score

import similaripy as sim

Data processing in one function

def instacartProcess(dataPath, item_threshold=10, basket_threshold=2,

subdata=subdata):

# Read products.csv

df_products = pd.read_csv(os.path.join(dataPath,"products.csv"))

df_products.columns = [’PID’, ’description’, ’categoryId’, ’departmentId’] #name

the columns

# Read departments.csv and merge

tmp = pd.read_csv(os.path.join(dataPath,"departments.csv"))

tmp.columns = [’departmentId’, ’department’]

df_products = pd.merge(df_products, tmp, on=’departmentId’)

# Read aisles.csv and merge

tmp = pd.read_csv(os.path.join(dataPath,’aisles.csv’))

tmp.columns = [’categoryId’, ’category’]

df_products = pd.merge(df_products, tmp, on=’categoryId’)[[’PID’,

’description’,’department’,’category’]]

del tmp

# preprocessing

df_order_products_prior =

pd.read_csv(os.path.join(dataPath,"order_products__prior.csv"))

df_order_products_train =

pd.read_csv(os.path.join(dataPath,"order_products__train.csv"))

df_order_products = pd.concat([df_order_products_prior,

df_order_products_train])[[’order_id’, ’product_id’]]

df_order_products.columns= [’BID’,’PID’]

del df_order_products_prior, df_order_products_train,
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# Removing all items that appears in less than item_threshold baskets

products_count = df_order_products[’PID’].value_counts()

df_order_products=

df_order_products.loc[df_order_products[’PID’].isin(products_count[products_count

>= item_threshold].index)]

del products_count

# Updating production list

pd.merge(df_products,df_order_products[’PID’],on=’PID’)

df_orders = pd.read_csv(os.path.join(dataPath,"orders.csv"))[[’order_id’,

’user_id’, ’order_number’, ’eval_set’]]

df_orders.columns = [’BID’,’UID’,’order’, ’set’]

# User filtring

# Removing users with less than basket_threshold baskets

user_count = df_orders[’UID’].value_counts()

user_filter = user_count[(user_count >= basket_threshold) &

(np.random.rand(len(user_count))< subdata)] #choose a subset of the user

del user_count

df_orders = df_orders[df_orders[’UID’].isin(user_filter.index)] #choose all the

baskets of the user

del user_filter

user_dict = dict(zip(df_orders[’UID’].unique(),

range(len(df_orders[’UID’].unique()))))

df_orders[’UID’] = df_orders[’UID’].map(user_dict)

del user_dict

# reset product index

df_order_products =

df_order_products.loc[df_order_products[’BID’].isin(df_orders[’BID’].unique())]

df_products =

df_products[df_products[’PID’].isin(df_order_products[’PID’].unique())]

product_dict =

dict(zip(df_order_products[’PID’].unique(),range(len(df_order_products[’PID’].unique()))))

df_products[’PID’] = df_products[’PID’].map(product_dict)

df_order_products[’PID’] = df_order_products[’PID’].map(product_dict)

del product_dict
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# Join Tables

df_data = pd.merge(df_orders, df_order_products, on= ’BID’)

del df_orders, df_order_products

# Setting last baskets as dev/test sets

last_basket_indexes =

df_data.iloc[df_data.groupby([’UID’])[’order’].idxmax()][’BID’].values

df_data.loc[df_data[’BID’].isin(last_basket_indexes),’set’]=’test’

df_data.loc[df_data[’set’]==’prior’, ’set’] = ’train’

del last_basket_indexes

# train test split data

df_split =

df_data[df_data[’set’]==’test’].groupby(by=[’UID’])[’PID’].apply(list).reset_index(name=’articles’)

msk = (np.random.rand(len(df_split))<0.5)

df_dev, df_test = df_split[msk], df_split[˜msk]

del df_split

df_train = df_data[df_data[’set’]==’train’][[’UID’,’BID’,’order’,’PID’]]

dev_set = dict(zip(df_dev[’UID’],df_dev[’articles’]))

test_set = dict(zip(df_test[’UID’],df_test[’articles’]))

del msk, df_test, df_dev, df_data

return df_train, dev_set, test_set, df_products

Top-n, prediction, evaluation function

def top_n(row, n): #this is for the top-n recommendations, we would plug in k later

# Get user indices to sort the given row

top_indices = row.argsort()[-n:][::-1] #return the top n of the indices

# Use the top_indices to get top_values score

top_values = row[top_indices] #return the corresponding idea

return top_values, top_indices

def prediction(predMat, k): #this is to give the value for the prediction
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’’’

In :

predMat : the prediction matrix

{UWPop, UB-CF, IB-CF or gpop}with/out recency (@r)

Out :

score, pred : ndarray of shape =(n_users, k)

retun the top-k score and prediction matrix

’’’

n_users = predMat.shape[0]

score = np.zeros((n_users, k))

pred = np.zeros((n_users, k))

for i in range(n_users):

score[i], pred[i] = top_n(predMat[i],k)

return score.astype(’float64’), pred.astype(’int64’)

def evaluation(score, pred, test_set, dev_set, k):

# Get the test and dev set User IDs

test_keys = test_set.keys()

dev_keys = dev_set.keys()

# Construct the True_relecvance and score vectors

true_relevance_test = np.asarray([np.isin(pred[key],test_set[key]).astype(int)

for key in test_keys])

true_relevance_dev = np.asarray([np.isin(pred[key],dev_set[key]).astype(int) for

key in dev_keys])

score_test = score[list(test_keys)]

score_dev = score[list(dev_keys)]

# Calculate the ndgc@k evaluation metric

test_ndcg_score = ndcg_score(true_relevance_test, score_test, k=k)

dev_ndcg_score = ndcg_score(true_relevance_dev, score_dev, k=k)

return test_ndcg_score, dev_ndcg_score

def evaluationGlobal(pred, test_set, dev_set, k):

# Get the test and dev set User IDs

test_keys = test_set.keys()

dev_keys = dev_set.keys()

# Construct the True_relecvance and score vectors

true_relevance_test = np.asarray([np.isin(pred[key],test_set[key]).astype(int)

for key in test_keys])
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true_relevance_dev = np.asarray([np.isin(pred[key],dev_set[key]).astype(int) for

key in dev_keys])

pred_test = pred[list(test_keys)]

pred_dev = pred[list(dev_keys)]

# Calculate the ndgc@k evaluation metric

test_ndcg_score = ndcg_score(true_relevance_test, pred_test, k=k)

dev_ndcg_score = ndcg_score(true_relevance_dev, pred_dev, k=k)

return test_ndcg_score, dev_ndcg_score

Baseline model:

Evaluation of GPop:

n_items = df_products[’PID’].unique().shape[0]

predMat = GPopMat(df_train, n_items, k)

score, pred = prediction(predMat.toarray(), k)

test_ndcg, dev_ndcg = evaluationGlobal(pred, test_set, dev_set, k)

print("test score:",test_ndcg,"\n dev score:",dev_ndcg)

UWPop

def uwPopMat(df_train, n_items, recency=recency):

’’’

Calculate the user popularity matrix with the given recency window

’’’

n_users = df_train.UID.unique().shape[0]

if (recency>0):

# Get the number of user baskets Bu

BUCount = df_train.groupby([’UID’])[’order’].max().reset_index(name=’Bu’)

# Calculate the denominator which equal to Min(recency,Bu) for each user

BUCount[’denominator’] = np.minimum(BUCount[’Bu’],recency)

# Calculater the order index, form where we start counting item appearance in

recent orders

BUCount[’startindex’] = np.maximum(BUCount[’Bu’]-recency,0)

# Calcualte item appearance in recent orders

tmp = pd.merge(BUCount, df_train,on=’UID’)[[’UID’,’PID’,’order’,’startindex’]]

tmp =

tmp.loc[(tmp[’order’]>=tmp[’startindex’])==True].groupby([’UID’,’PID’])[’order’].count().reset_index(name=’numerator’)
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tmp = pd.merge(BUCount[[’UID’,’denominator’]],tmp,on=’UID’)

# finally calculate the recency aware user-wise popularity

tmp[’Score’] = tmp[’numerator’]/tmp[’denominator’]

else :

# Calculate user-wise popularity for each item

BUCount = df_train.groupby([’UID’])[’order’].max().reset_index(name=’Bu’)

BUICount = df_train.groupby([’UID’,’PID’])[’BID’].count().reset_index(name=’Bui’)

tmp = pd.merge(BUICount, BUCount, on=’UID’)

del BUICount

tmp[’Score’] = tmp[’Bui’]/tmp[’Bu’]

del BUCount

# get the 3 columns needed to construct our user-wise Popularity matrix

df_UWpop = tmp[[’UID’,’PID’,’Score’]]

del tmp

# Generate user-wise popularity matrix in COOrdinate format

UWP_mat = sparse.coo_matrix((df_UWpop.Score.values, (df_UWpop.UID.values,

df_UWpop.PID.values)), shape=(n_users,n_items))

del df_UWpop

return sparse.csr_matrix(UWP_mat)

IP-CF:

def ipcf(df_train, UWP_sparse, n_items,alpha, q, k):

# Construct the item-basket sparse matrix

idMax_basket = df_train.BID.max()+1

item_basket_mat = sparse.coo_matrix((np.ones((df_train.shape[0]),dtype=int),

(df_train.PID.values, df_train.BID.values)), shape=(n_items,idMax_basket))

# Convert it to Compressed Sparse Row format to exploit its efficiency in

arithmetic operations

sparse_mat = sparse.csr_matrix(item_basket_mat)

# Caculate the Asymetric Cosine Similarity matrix

itemSimMat = sim.asymmetric_cosine(sparse_mat, None, alpha, k)

# recommend k items to users

UWP_sparse.shape, itemSimMat.shape

user_recommendations = sim.dot_product(UWP_sparse, itemSimMat.power(q), k)

return user_recommendations
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n_items = df_products[’PID’].unique().shape[0]

UWP_mat = uwPopMat(df_train, n_items, recency=recency)

# prediction

score, pred = prediction(user_recommendations.toarray(), k)

del user_recommendations

# Evaluation

test_ndcg, dev_ndcg = evaluation(score, pred, test_set, dev_set, k)

print("test score:", dev_ndcg)

del score,pred

UP-CF:

def upcf(df_train, UWP_sparse, n_items, alpha = alpha ,q=q, k=k):

n_users = df_train[’UID’].unique().shape[0]

df_user_item =

df_train.groupby([’UID’,’PID’]).size().reset_index(name="bool")[[’UID’,’PID’]]

# Generate the User_item matrix using the parse matrix COOrdinate format.

userItem_mat = sparse.coo_matrix((np.ones((df_user_item.shape[0])),

(df_user_item.UID.values, df_user_item.PID.values)), shape=(n_users,n_items))

# Calculate the asymmetric similarity cosine matrix

userSim = sim.asymmetric_cosine(sparse.csr_matrix(userItem_mat), alpha=alpha, k=k)

# recommend k items to users

user_recommendations = sim.dot_product(userSim.power(q), UWP_sparse, k=k) #rˆu_i in

the paper

return user_recommendations

Extension with product type

New data processing:

def instacartExtendProcessing(dataPath, item_threshold=10, basket_threshold=2,

subdata=subdata):

’’’

IN:

dataPath : os path to instacart data

item_threshold : (default = 10 basket)
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basket_threshold : (default = 2 basket)

subdata : (default: 5% of data)

verbose: Boolean, (default:True)

OUT:

df_train : DataFrame where columns = [BID, UID, order,articles]

dev_set, test_set : user-baskets items dict like {UID -> [PID,...], UID ->

[PID,...], ...}

df_products: DataFrame where columns = [PID, description, department, category]

’’’

# Read products.csv

# Read products.csv

df_products = pd.read_csv(os.path.join(dataPath,"products.csv"))

df_products.columns = [’PID’, ’description’, ’categoryID’, ’departmentID’] #name

the columns

# Read departments.csv and merge

tmp = pd.read_csv(os.path.join(dataPath,"departments.csv"))

tmp.columns = [’departmentID’, ’department’]

df_products = pd.merge(df_products, tmp, on=’departmentID’)

tmp2 = pd.read_csv(os.path.join(dataPath,’aisles.csv’))

tmp2.columns = [’categoryID’, ’category’]

df_products = pd.merge(df_products, tmp2, on=’categoryID’)

del tmp, tmp2

# preprocessing

df_order_products_prior =

pd.read_csv(os.path.join(dataPath,"order_products__prior.csv"))

df_order_products_train =

pd.read_csv(os.path.join(dataPath,"order_products__train.csv"))

df_order_products = pd.concat([df_order_products_prior,

df_order_products_train])[[’order_id’, ’product_id’]]

df_order_products.columns= [’BID’,’PID’]

del df_order_products_prior, df_order_products_train,

# Removing all items that appears in less than item_threshold baskets

products_count = df_order_products[’PID’].value_counts()

df_order_products=

df_order_products.loc[df_order_products[’PID’].isin(products_count[products_count

>= item_threshold].index)]

del products_count
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df_orders = pd.read_csv(os.path.join(dataPath,"orders.csv"))[[’order_id’,

’user_id’, ’order_number’, ’eval_set’]]

df_orders.columns = [’BID’,’UID’,’order’, ’set’]

# User filtring

# Removing users with less than basket_threshold baskets

user_count = df_orders[’UID’].value_counts()

user_filter = user_count[(user_count>=basket_threshold) &

(np.random.rand(len(user_count))< subdata)]

del user_count

df_orders = df_orders[df_orders[’UID’].isin(user_filter.index)]

del user_filter

user_dict = dict(zip(df_orders[’UID’].unique(),

range(len(df_orders[’UID’].unique()))))

df_orders[’UID’] = df_orders[’UID’].map(user_dict)

del user_dict

# reset product index

df_order_products =

df_order_products.loc[df_order_products[’BID’].isin(df_orders[’BID’].unique())]

df_products =

df_products[df_products[’PID’].isin(df_order_products[’PID’].unique())]

product_dict =

dict(zip(df_order_products[’PID’].unique(),range(len(df_order_products[’PID’].unique()))))

df_products[’PID’] = df_products[’PID’].map(product_dict)

df_order_products[’PID’] = df_order_products[’PID’].map(product_dict)

del product_dict

# Join Tables

df_data = pd.merge(df_orders, df_order_products, on= ’BID’)

del df_order_products

# Setting last baskets as dev/test sets

last_basket_indexes =

df_data.iloc[df_data.groupby([’UID’])[’order’].idxmax()][’BID’].values

df_data.loc[df_data[’BID’].isin(last_basket_indexes),’set’]=’test’
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df_data.loc[df_data[’set’]==’prior’, ’set’] = ’train’

del last_basket_indexes

# train test split data

df_split =

df_data[df_data[’set’]==’test’].groupby(by=[’UID’])[’PID’].apply(list).reset_index(name=’articles’)

msk = (np.random.rand(len(df_split))<0.5)

df_dev, df_test = df_split[msk], df_split[˜msk]

del df_split

df_train = df_data[df_data[’set’]==’train’][[’UID’,’BID’,’order’,’PID’]]

dev_set = dict(zip(df_dev[’UID’],df_dev[’articles’]))

test_set = dict(zip(df_test[’UID’],df_test[’articles’]))

del msk, df_dev, df_test

return df_train, dev_set, test_set, df_products, df_data

DepartmentID one-hot coded matrix

df_OneHot = pd.get_dummies(df_products[’departmentID’])

print(’The shape of the one-hot encoded matrix is : ’, df_OneHot.shape)

df_OneHot

beta=5

array = df_OneHot.to_numpy()

arrayT = np.transpose(array)

finalArray = np.dot(array, arrayT)

new = np.array([1,beta])[finalArray]

csr_sparse_OneHot = sparse.csr_matrix(new)

new_matrix_test = csr_sparse_OneHot.multiply(csr_sparse_OneHot.T)

Testing

n_items = df_products[’PID’].unique().shape[0]

UWP_mat = uwPopMat(df_train, n_items, recency=recency)

idMax_basket = df_train.BID.max()+1
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item_basket_mat = sparse.coo_matrix((np.ones((df_train.shape[0]),dtype=int),

(df_train.PID.values, df_train.BID.values)), shape=(n_items,idMax_basket))

# Convert it to Compressed Sparse Row format to exploit its efficiency in arithmetic

operations

sparse_mat = sparse.csr_matrix(item_basket_mat)

# Caculate the Asymetric Cosine Similarity matrix

itemSimMat = sim.asymmetric_cosine(sparse_mat, None, alpha, k)

q=1

alpha = 1

k=5

user_recommendations = sim.dot_product(UWP_mat, itemSimMat_enhance.power(q), k)

# prediction

score, pred = prediction(user_recommendations.toarray(), k)

del user_recommendations

# Evaluation

test_ndcg, dev_ndcg = evaluation(score, pred, test_set, dev_set, k)

print("test score:", dev_ndcg)

del score,pred
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