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Abstract. Using traditional methods, it is often difficult to outperform the historical average

forecast when forecasting stock returns. However, H. Zhang et al. (2020) use an average window

estimation method with shrinkage to account for parameter instability and model uncertainty when

forecasting stock returns. After applying this method on seven different sophisticated models, they

find that all of the models outperform the historical average benchmark model. In this paper, we

expand upon their method by setting negative return forecasts to zero, inspired by the truncation

method from Campbell and Thompson (2008). Using the data from Welch and Goyal (2008), we

show that it in some cases leads to increased forecasting accuracy as well as utility gains for the

mean-variance investor. We consider truncation at three separate stages of the method from H.

Zhang et al. (2020), and using the Clark and West (2007) test statistic we find that overall, the

difference between the benchmark model and sophisticated models becomes more significant after

implementing the restrictions. Lastly, we find that during the COVID-19 pandemic, the gains in

predictive accuracy from applying truncation are even larger.
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1 Introduction

The worldwide COVID-19 pandemic has been a very turbulent period for investors and those

interested in the stock market. All over the world there were unprecedented increases in volatility

(Basuony et al. 2021), for some countries resulting in a fall of their stock indices of more than 50%

(Ganie et al. 2022). Recently, H. Zhang et al. (2020) devised a method that improves the out of

sample predictive accuracy for several popular forecasting models by introducing methods that

takes into account parameter instability and model uncertainty, as well as introducing shrinkage,

based on previous research from Welch and Goyal (2008) and Pesaran and Timmermann (2007).

Their methods improved on the existing methods in the periods of a stock market crash, as

well as during times of economic growth. Additionally, Campbell and Thompson (2008) used

economic reasoning to improve forecasting accuracy from Welch and Goyal (2008), by imposing

restrictions on the forecasted returns to be positive. This leads to the main research question of

our study:

RQ.1: How does imposing the restrictions from Campbell and Thompson (2008) affect

the methods from H. Zhang et al. (2020)?

Our research uses the ideas from Campbell and Thompson (2008) to truncate negative forecast

returns, estimated using the methods and models from H. Zhang et al. (2020). We conclude that

often gains in forecasting accuracy can be achieved, especially when only considering recent data.

Moreover, both studies note that in periods of extreme economic downturn, their methods tend

achieve better results than in less volatile times. As the COVID-19 crisis saw some unprecedented

negative returns, we pose the second research question:

RQ.2: How do the results of applying truncation to the methods from H. Zhang et al.

(2020) differ during the COVID-19 pandemic compared to pre-COVID19 times?

Using an out-of-sample period of [2020:02-2021:12] to denote the COVID-19 crisis, we find that

applying truncation leads to more gains in terms of out-of-sample prediction accuracy and utility

during the COVID-19 outbreak compared to the pre-COVID-19 period.

In Section 2, we further elaborate on the research questions. Additionally, we will examine

the main findings of the existing research on this topic, highlight the most important results, and

outline what this paper will contribute to the literature. Subsequently, in Section 3, we describe

how we obtain the data as well as how we construct the variables. In Section 4, we explain which

methods and models we use to forecast the returns, as well as how we evaluate the the forecasts.

A discussion of the results will be given in Section 5. Lastly, in Section 6, we will discuss our

conclusions, the limitations to our research, and suggestions for further research.
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2 Literature Review

In this section we will examine the existing literature on the estimation of stock returns and

the methods most commonly used. Then, we will outline what our research contributes to the

existing literature on this topic. Lastly, we will consider how this research can be of use in

practise.

The first important paper which we will consider as a foundation of our research is the paper

by Welch and Goyal (2008). They examined and summarized the performance of the predic-

tors that had been deemed the most effective at predicting stock returns, as determined by the

historical academic literature. Using simple linear regressions, they conclude that the variables

have poor predictive power out-of-sample. They continue by implementing the restrictions pro-

posed by Campbell and Thompson (2008). Two types of restrictions were suggested. Firstly,

they considered a sign restriction on the simple regression coefficient. In the case the sign of

an estimated coefficient was not consistent with the theoretical relation between the variable

and stock returns, they used the historical average to forecast the returns. Additionally, they

considered a restriction on the sign of the forecasted returns. Since they defined stock returns as

the difference between the index returns and the risk free rate, a negative stock return forecast

would imply that the risky asset is expected to have smaller returns than the risk-free asset.

In that case, any rational investor would invest in the risk-free asset as opposed to the risky

asset, resulting in an excess return of zero. Therefore, they imposed a so-called equity premium

restriction by setting all negative returns forecasts to 0. Both of these restrictions combined lead

to improvements in forecasting accuracy.

Next, we consider the paper by H. Zhang et al. (2020), who use the variables from Welch

and Goyal (2008) in several different sophisticated models, estimated using the average window

method devised by Pesaran and Timmermann (2007) to account for parameter instability and

model uncertainty. Subsequently, they shrink the model using the historical average forecast, by

forecasting with an equal weighted combination of the sophisticated model with the historical

average. Campbell and Thompson (2008), Welch and Goyal (2008), and H. Zhang et al. (2020)

evaluate the models based on their out of sample R2, which compares the MSFE or the com-

bination model with that of the benchmark model, which is defined as the historical average.

Since the out-of-sample (OS) R2 is almost always lower compared the in-sample R2, as stated

by Copas (1983), sometimes it is desirable to introduce shrinkage to decrease the out-of-sample

Mean Squared Forecast Error (MSFE). This exchange between an increase in bias for a reduction

in the variance is known as the bias-variance trade-off.
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However, from simply looking at the R2
OS it is unclear how someone might benefit from these

improved forecasts. A naive view would be to look at how these affect the expected returns, and

therefore utility, using some investment strategy. However, in reality maximizing the expected

returns is not the only goal of an investor in general. It is well known that there are factors

outside of expected return that influence how an individual perceives utility, which is at the core

of behavioural economics. Real phenomena such as risk aversion and loss aversion (Godoi et al.

2005; Morin and Suarez 1983) have to be taken into account when determining utility. Still, the

question remains, to what extent do individuals maximize their own utility?

While it does not account for all of the above, Welch and Goyal (2008) and H. Zhang et

al. (2020) consider utility to be a function of both the mean and the variance of the realized

returns. The measure they use for utility is the annualized difference between the certainty

equivalent returns (CER) between the benchmark model and the model that is to be evaluated.

This measure takes into account the mean and the variance of the realized returns, as well

as a variable risk factor γ. As no two individuals are alike, including this risk factor makes it

such that we can account for indivdual differences with regards to risk preferences. Moreover,

they use the Sharpe (1966) ratio of the constructed realized returns, which defined as the ratio

between the mean and the standard deviation of the excess returns, to further account for the

risk associated of the portfolio.

H. Zhang et al. (2020) consider several sophisticated models, starting off with a multiple

linear regression, where the dependent variable, excess stock returns, is regressed on the set of

independent variables from Welch and Goyal (2008). Additionally, they consider six more elab-

orate models. Firstly, they consider least absolute shrinkage and selection operator (LASSO),

devised by Tibshirani (1996), which is a self regularization method that performs variable se-

lection as to reduce the effect of overfitting. Next, they applied the elastic net method which

is an extension of LASSO introduced by Zou and Hastie (2005). The next three models are

all model averaging methods, namely Bayesian Model Averaging, Mallows Model Averaging

(Hansen 2007; Wan et al. 2010), and Jacknife Model Averaging (Hansen and Racine 2012; X.

Zhang et al. 2013). Instead of only considering one specification, these methods use a weighted

combination of different models, based on different selection criteria. Lastly, they use a new

model averaging method, named weighted-average least squares, first introduced by Magnus,

Powell, et al. (2010). These models will be covered in more detail in Section 4.

Even though the out-of-sample R2 values often do not exceed 2%, H. Zhang et al. (2020)

conclude that the proposed methods can lead to utility gains for the rational mean-variance

investor. However, as discussed previously, this does not necessarily lead to welfare gains. On
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the other hand, the relevance of these methods are not limited to the stock market, as they can

also be applied in other areas of economics, such as in health economics (Jackson et al. 2009),

or when forecasting inflation (Koop and Korobilis 2012). Moreover, some of these methods are

used in non-economic settings as well. For instance, model averaging is also used in weather

forecasts (Raftery, Gneiting, et al. 2005; Sloughter et al. 2010). Furthermore, the elastic net

regressions are extensively used in the studying of genetics (Amini and Hu 2021; Hughey and

Butte 2015; Ogutu et al. 2012), industrial data (Yu and Zhao 2019), or when forecasting solar

and wind energy production (Nikodinoska et al. 2022). As these models are widely applicable,

researching and improving them could be of importance in many different fields.

3 Data

As this research builds upon the research done by H. Zhang et al. (2020), we use updated

data from Welch and Goyal (2008) over the period [1926:12-2021:12]. From the data set, several

economic variables can be constructed, of which we will use 12 as independent variables, similar

to the previous research. These variables include log dividend-price ratio (DP) and log dividend

yield (DY), which can be constructed by taking the difference between the log of the dividend

from the log of prices, or the log of the lag of the prices, respectively. The log earnings-price

ratio (EP) is obtained by subtracting the log of prices from the log of earnings. The term spread

(TMS) is given by the difference between the long term yield (LTY) on government bonds and

the Treasury-bill (TBL). The final variables that need to be constructed are the default yield

spread (DFY), which can be constructed from the AAA and BAA rated corporate bond yield,

and the default return spread (DFR), which can be obtained by substracting the government

long-term bond returns from the corporate long-term bond returns. The remaining independent

variables, stock variance (SVAR), book-to-market ratio (BM), net equity expansion (NTIS),

long-term return (LTR) and inflation (INFL) are all given in the data set. We do not include

LTY as a variable, as it is a linear combination of TBL and TMS. The dependent variable, stock

returns, is constructed by taking the log difference between the CRSP value weighted index

including dividends and the risk-free rate. The value weighted CRSP index is an index for the

US stock market that is covers approximately 26,500 stocks (Center for Research in Security

Prices 2022). We use this as our dependent variable to be in line with the previous literature

from Campbell and Thompson (2008) and Welch and Goyal (2008). However, H. Zhang et al.

(2020) use a different dependent variable, namely an index for the S&P500. Therefore, the

results will differ slightly from their paper. Nonetheless, the results should be comparable, as

the CRSP value weighted index moves similarly to the S&P500 index, as the latter makes up
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Table 1: Summary statistics.

Variable Mean St. Dev. Min Max

Returns 0.005 0.054 −0.339 0.346
BM 0.554 0.269 0.121 2.028
TBL 0.033 0.031 0.0001 0.163
NTIS 0.016 0.026 −0.056 0.177
INFL 0.002 0.005 −0.021 0.059
LTR 0.005 0.025 −0.112 0.152
SVAR 0.003 0.006 0.0001 0.073
DP −3.401 0.473 −4.524 −1.873
DY −3.396 0.470 −4.531 −1.913
EP −2.758 0.421 −4.836 −1.775
TMS 0.017 0.013 −0.037 0.046
DFY 0.011 0.007 0.003 0.056
DFR 0.0004 0.014 −0.098 0.074

a large portion of the former. Following previous research, we divide the data in an in-sample

period [1926:12-1956:12] and an out-of-sample period [1957:01-2016:12]. We also consider a more

recent dataset, as the stock market has changed drastically since the digital revolution. For the

evaluation of this period, as well as the performance of the models during recessions, as indicated

by NBER (2022), we use an in-sample period of [1960:01-1979:12] and an out-of-sample period of

[1980:01-2021:12]. Using this data we will also analyse the performance of the models during the

COVID-19 crisis, which we define as [2020:02-2021:12] following Azar II (2020). The summary

statistics are given in Table 1. We consider a wide range of returns, as implied by the difference

between the minimum and maximum. Furthermore, all variables are within their theoretical

range, for instance the log dividend and yield ratios are strictly negative, and TBL and BM are

strictly greater than 0.

4 Methodology

Firstly, we will give a short summary of the methods from H. Zhang et al. (2020). Afterwards

we will explain how we apply the restrictions from Campbell and Thompson (2008) to the

aforementioned methods. Finally, we will cover how we will evaluate the performance of the

models.

4.1 Sophisticated Models

For our analysis we consider seven different models. The first model we consider is the stan-

dard multiple regression model using all 12 explanatory variables with a constant. One of the
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downsides of this method is that it susceptible to overfitting, as it is unclear whether all vari-

ables should be included. A solution to this problem is included in the next two models we

consider, namely, least absolute shrinkage and selection operator (LASSO), developed by Tib-

shirani (1996), and elastic net, an extension of LASSO devised by Zou and Hastie (2005). Where

ordinary least squares is designed to minimize the squared residuals, elastic net and LASSO in-

troduce the a penalty term to the squared residuals to be minimized such that,

β̂EN = arg min
β∈RN

(
1

T

T−1∑
t=0

(rt+1 −Xtβ)
2 + λ

N∑
i=1

(
1− α

2
β2
i + α|βi|

))
. (1)

In order to get estimates for the elastic net method we set α = 0.5, whereas for LASSO we

use α = 1. Lambda is determined by 5-fold cross-validation using the glmnet package in R by

Friedman et al. (2010).

The following three models we consider are all model averaging methods. Instead of consider-

ing only one model specification, model averaging methods consider several models and weight

them based on a certain criterion. In general, a model averaging forecast with m candidate

models is calculated as follows,

r̂MA
T+1 =

m∑
i=1

λir̂
i
T+1 = XT β̂(λ). (2)

r̂iT+1 in Eq. 2 denote the estimated returns of model specification i for time T + 1, and is

appointed weight λi, where
∑m

i=1 λi = 1. β̂(λ) denotes an averaging estimator for β weighted

by λ = (λ1, ..., λm). The methods we consider differ in the way λ is determined. For Bayesian

model averaging (BMA) (Raftery, Madigan, et al. 1997), the weight for model i is calculated

using the Bayes Information Criterion, BICi = T log(σ̂2
i ) + Ni log(T ) (Priestley 1981). Here,

σ̂2
i denotes the estimate of the variance of the errors for model i, and Ni denotes the number

of predictors. We assume that the model errors are identically and independently distributed

according to a normal distribution and that the derivative of the log likelihood with respect to

the true variance of the errors is equal to 0. Buckland et al. (1997) then give an approximation

for the model weights,

λBMA
i =

exp(−1
2BICi)∑m

j=1 exp(−
1
2BICj)

(3)

For Mallow’s model averaging (Hansen 2007; Wan et al. 2010) the Mallows Criterion is used,

which is defined as:

Cp(λ) =
(
R−XT β̂(λ)

)′ (
R−XT β̂(λ)

)
+ 2σ2λK. (4)
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Here, K = (K1, ...,KM ) where Ki denotes the number of explanatory variables is model i. The

vector of model weights λ is then determined as follows,

λMMA = arg min
λ∈H

Cp(λ), (5)

where H = {λ ∈ Rm : λi ≥ 0,
∑m

i=1 λi = 1}.

The final model averaging method we consider is jackknife model averaging (Hansen and

Racine 2012; X. Zhang et al. 2013), where a leave-one-out cross-validation criterion is used to

determine the model weights. Let R̃i = r̃
(i)
1 , ..., r̃

(i)
T denote the estimated returns R,

r̃
(i)
t = Xtβ̂−t, (6)

where β̂−t denotes the OLS estimator of the model coefficients with the t-th observations deleted.

The jackknife returns are then estimated using R̃(λ) =
∑m

i=1 λiR̃
(i). The leave-one-out cross-

validation criterion is then defined as follows,

CVT (λ) =
1

T
ẽ(λ)′ẽ(λ), (7)

where ẽ(λ) = R− R̃(λ) denotes the vector containing the residuals of the jackknife returns. The

vector of model weights is determined as follows,

λJMA = arg min
λ∈H

CVT (λ), (8)

where H is the same as defined in Eq. 5.

Lastly, we consider weighted-average least squares (WALS), developed by Magnus, Powell,

et al. (2010), which has the advantage over BMA that it is computationally easier to solve,

and it uses either Laplace, Subbotin, or in this case Weibull priors, which result in bounded

prediction variance, as opposed to the Normal priors in BMA. The intuition behind WALS is

that the variables are seperated into two sets X1 and X2, where X1 contains a constant and any

variables that must be included in the regression based on prior theoretical knowledge, and X2

contains the set variables that may or may not be included. The return forecasts are given by

the following formula,

r̂WALS
T+1 = X1,T β̂1 +X∗

2,T β̂
∗
2 , (9)

here, X∗
2,T is a transformation of X2,T such that (X1, X

∗
2 ) becomes a semi-orthogonal matrix.

β̂∗
2 is an estimate for the coefficient of X∗

2 that incorporates Weibull priors to determine vari-
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able weights. For this paper, we consider X1 to only consist of the constant. More detailed

explanations and derivations of these methods can be found in their respective papers.

4.2 The Average Window Method

We estimate forecasts for each of the six models using the average window method, from Pesaran

and Timmermann (2007). Firstly we construct m estimation windows Wi = {rt+1, Xt}T−1
t=T−wi

,

where i = 1, ...,m. wi is determined as follows,

wi = wmin +
i− 1

m− 1
(T − wmin). (10)

Here, wmin is a pre-specified minimum window size. Following H. Zhang et al. (2020), we will

use m = 10 and wmin = 240. For each of the estimation windows we make a single forecast by

applying one of the models using the given estimation window. For a given window, we apply

one of the specified models. For illustration, the multiple linear regression would be applied as

follows,

rt+1 = Xtβ + et+1, t = T − wi, ..., T − 1. (11)

Here Xt is a vector of explanatory variables with a constant as the first variable, β denotes the

parameter vector and et+1 denotes the error term. Given the returns for each window, we can

compute r̂AveW
T+1 using,

r̂AveW
T+1 =

1

m

m∑
i=1

r̂T+1(Wi), (12)

where r̂T+1(Wi) denotes the forecast of a specified model using estimation window Wi. Following

H. Zhang et al. (2020), using the results from the average window method we construct model

C for the returns which we will use for forecasting.

r̂CT+1 = (1− δ)r̂HA
T+1 + δr̂AveW

T+1 , (13)

The model is a linear combination of the shrinkage target, in this case historical average returns,

r̂HA
T+1 =

1
T

∑T
i=1 ri, and the forecasted returns as per one of the average window method, r̂AveW

T+1 .

Here, δ denotes the shrinkage factor, which we set to 0.5 for equal weights.

4.3 Truncation of Negative Returns

Note that the estimated returns can be either positive or negative. However, as Campbell and

Thompson (2008) point out, when the expected excess returns are negative, an investor will only
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invest in the risk free asset. Therefore, they propose that negative expected returns should be set

to zero. In this paper we will implement this truncation approach to the methods average window

methods from H. Zhang et al. (2020). Firstly, we apply the truncation to estimates obtained using

expanding windows. Then, we consider the average window methods. Note that truncation can

be applied at three separate stages in the procedure. Firstly, it can be applied before averaging

(BA) the estimates, i.e. before Eq. 12. Next, we consider truncation after averaging (AA), i.e.

after Eq. 12, but before applying shrinkage in Eq. 13. Lastly, it can be applied after shrinkage

(AS), in Eq. 13. As the historical average forecast is strictly positive in the dataset we consider,

each of these truncation methods will result in strictly non negative estimates of the returns,

and separate truncation of the historical average forecasts has no effect. As the results are likely

to differ depending on when truncation is applied, we will consider all three cases.

4.4 Model Evaluation

The performance of the models will be determined based on their R2, which is defined as:

R2
OS = 1−

1
p

∑T+p
t=T+1(rt − r̂Ct )

1
p

∑T+p
t=T+1(rt − r̄t)

= 1− MSFEC

MSFEbmk
. (14)

Here, r̄t denote the returns estimated using the benchmark model, which we define as the

historical average of the returns. MSFEC and MSFEbmk denote the mean squared forecast error

for the combined model C and the benchmark model, respectively. A negative R2 indicates that

the benchmark model outperforms model C, whereas a positive value indicates that the model

C performs better. We expect that applying the truncation methods will result in a higher R2
OS

compared to the models without truncation, as a result of a decrease in variance. The significance

of the models will be estimated using the Clark and West (2007) test statistic which tests the

null-hypothesis, H0, that R
2
OS < 0, with the alternative hypothesis, H1, stating R2

OS ≥ 0.

Additionally, we evaluate the models based on their utility in an investment setting, as the

R2 measure does not account for the risk element of an investment for the investor. Following

Rapach et al. (2010), Campbell and Thompson (2008) and H. Zhang et al. (2020), we assume

that a mean-variance investor assigns a portfolio weight of 0% ≤ wC
T ≤ 150% to equities and

invests the rest in the risk free asset, such that the realized returns from the portfolio constructed

from model C amount to,

RC
p = wC

T rT+1 + rfT+1, (15)

10



Table 2: R2 of simple methods with and without truncation.

Methods R2
EW R2

EW,TR R2
AveW R2

AveW,BA R2
AveW,AA

Kitchen Sink -7.73 -2.26 -2.99∗ -0.41∗∗ -0.24∗∗∗

MMA -3.80 -1.35 -0.62∗ 0.02∗ 0.17∗∗

JMA -1.12 -0.85 -0.25∗ 0.05∗ 0.27∗

BMA -2.26 -1.73 -1.30 -0.54 -0.07

LASSO -0.78 -0.73 0.72∗∗ 0.68∗∗ 0.97∗∗

Elastic Net -0.27 -0.15 0.91∗∗ 0.58∗∗ 0.77∗∗

WALS -4.07 -1.46 0.15∗∗ 0.17∗∗ 0.32∗∗

Note: This table denotes the out-of-sample forecasting accuracy, R2
OS , of the simple models without a historical

average shrinkage factor, compared to the benchmark model, HA, using an out-of-sample evaluation period of

[1957:01-2016:12]. The second and third column denote the results obtained using an expanding window,

whereas the last three columns apply the average window method by Pesaran and Timmermann (2007). For

R2
EW,TR, R

2
AveW,BA and R2

AveW,AA, negative excess return forecasts are set to 0, similar to the truncation

method proposed by Campbell and Thompson (2008). For the average window method we consider both

truncation before averaging (BA), and after averaging (AA). For each model, the method that obtains the

largest R2
OS is written in boldface, and for each method, the model with the largest R2

OS is underlined.

Significance codes: ∗: 0.1; ∗∗: 0.05; ∗∗∗: 0.01, obtained using the test statistic from Clark and West (2007), which

tests H0 : R2
OS < 0, with H1 : R2

OS ≥ 0.

where rT+1 denote the stock returns at time T + 1, and rfT+1 denote the returns of the risk

free asset. The weights are determined as follows,

wC
T =

1

γ

(
r̂CT+1

σ̂2
T+1

)
, (16)

where γ denotes the risk aversion parameter, which we set to 3. σ̂2
T+1 denotes the 5-year rolling

window estimate of the variance of the stock returns, following H. Zhang et al. (2020). Negative

weights are set to 0%, and weights greater than 150% are set to 150%. Using the realized returns,

we can calculate utility, in this case the certainty equivalent return (CER), of the portfolio,

CERC = µ̂C − γ

2

(
σ̂2
C

)
. (17)

Here, µ̂C and σ̂2
C denote the sample mean and variance for the out of sample realized portfolio

returns. As we use monthly data, the annualized utility gains with respect to the benchmark

model can be calculated as follows,

∆(ann%) = 100 ∗ 12 ∗ (CERC − CERbmk) . (18)
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Lastly, we consider the Sharpe ratio which is defined as the mean of the excess portfolio returns

divided by the standard deviation.

5 Results

We obtained the results using the following programmes and packages. Most of the models were

implemented using R version 4.1.3, in RStudio with version 2022.02.0+443. Additionally, the

following packages were used; readxl (Wickham and Bryan 2022) for importing the data, and

glmnet (Friedman et al. 2010) for LASSO and elastic net forecasting. Furthermore, the packages

MAMI (Schomaker and Heumann 2014) and BMA (Raftery, Hoeting, et al. 2022) were used

for the model averaging methods. To export the results to LaTeX, we use the package xtable

(Dahl 2013), and stargazer (Hlavac 2022), and the Clark and West (2007) statistic were obtained

using the tsm package (Kotze 2020). Lastly, the WALS forecasts were estimated using MATLAB

version 9.12.0.1956245 Update 2, using the code provided by Magnus and De Luca (2013).

Table 3: R2 of average window method with shrinkage with and without truncation.

Methods R2
AveW R2

AveW,BA R2
AveW,AA R2

AveW,AS

Kitchen Sink + HA 0.47∗ 0.60∗∗ 0.72∗∗ 0.83∗∗∗

MMA + HA 0.78∗∗ 0.40∗∗ 0.52∗∗ 0.60∗∗

JMA + HA 0.61∗ 0.28∗ 0.43∗∗ 0.45∗

BMA + HA -0.03 -0.01 0.26 0.21

LASSO + HA 1.01∗∗ 0.56∗∗ 0.76∗∗∗ 0.82∗∗

Elastic Net + HA 1.09∗∗ 0.50∗∗ 0.65∗∗ 0.76∗∗

WALS + HA 1.24∗∗ 0.57∗∗ 0.69∗∗ 0.82∗∗

Note: This table denotes the out-of-sample forecasting accuracy, R2
OS , of a combination of the sophisticated

model forecasts, estimated using the average window method by Pesaran and Timmermann (2007), and

historical average (HA), with shrinkage factor δ = 0.5, compared to the benchmark model, HA. The

out-of-sample evaluation period is [1957:01-2016:12]. For R2
AveW,BA, R

2
AveW,AA, and R2

AveW,AS , negative return

forecasts are set to 0, similar to the truncation method proposed by Campbell and Thompson (2008), before

averaging (BA), after averaging (AA), and after applying shrinkage (AS), respectively. For each model, the

method that obtains the largest R2
OS is written in boldface, and for each method, the model with the largest

R2
OS is underlined. Significance codes: ∗: 0.1; ∗∗: 0.05; ∗∗∗: 0.01, obtained using the test statistic from Clark and

West (2007), which tests H0 : R2
OS < 0, with H1 : R2

OS ≥ 0.
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5.1 Replication

In this subsection we will examine the results from H. Zhang et al. (2020) as well as the results

obtained after implementing our new truncation methods. We use the same evaluation period,

[1926:12-2016:12], such that we can compare the results of our methods those from the previous

research.

5.1.1 Simple Methods

The R2
OS values of for the replication of the simple models from H. Zhang et al. (2020) are

given in Table 2. Note that the values are slightly different from those in the original paper, this

could be due to the different dependent variable, as we use the CRSP value weighted index as

opposed to the S&P500 index. Furthermore, as the folds are determined randomly for LASSO

and elastic net, for those models results may vary depending on the seed. The forecasts using an

expanding window have poor predictive accuracy, as can be seen from their R2
OS . The negative

values indicate that all models are outperformed by the historical average forecast.

Table 4: Annualized utility gain and Sharpe ratios of average window methods with truncation
using historical data with risk factor γ = 3

Methods AveW(AS) AveWBA AveWAA

∆(ann%) Sharpe ∆(ann%) Sharpe ∆(ann%) Sharpe

Kitchen Sink + HA 2.39 0.13 1.54 0.12 2.20 0.13

MMA + HA 2.17 0.12 1.38 0.12 1.99 0.12

JMA + HA 1.38 0.11 1.20 0.11 1.54 0.11

BMA + HA 0.99 0.10 0.65 0.09 1.32 0.11

LASSO + HA 2.20 0.13 1.50 0.13 2.11 0.12

Elastic Net + HA 2.19 0.12 1.31 0.12 1.91 0.12

WALS + HA 2.49 0.13 1.63 0.13 2.13 0.12

Note: This table denotes the annualized utility gains for the combinations of the sophisticated models with the

historical average (HA) forecast, with shrinkage factor δ = 0.5. It is expressed as a difference in Certainty

Equivalent Return (CER) between the combination and the benchmark model, HA. Furthermore it denotes the

Sharpe ratio, which is defined as the mean of the realized returns in excess of the risk-free rate, divided by the

standard deviation of the excess returns. Negative excess return forecasts are set to 0, similar to the truncation

method proposed by Campbell and Thompson (2008). We implement the truncation at three different stages,

before averaging (BA), after averaging (AA), and after shrinkage (AS). By construction, implementing

truncation after shrinkage and no truncation give the same results, as negative returns are assigned weight

w = 0 in Eq. 16. For each model, the method with the largest ∆(ann%) is written in boldface, and for each

method, the model with the largest ∆(ann%) is underlined. The weights are determined using a five year rolling

window variance estimate σ̂2, and risk factor γ = 3. The out-of-sample evaluation period is [1957:01-2016:12].
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Using the average window method as opposed to an expanding window improves results, as

LASSO, elastic net and WALS now achieve a positive R2
OS . After truncating the negative return

forecasts, most of the results improve even further, as can be seen from the last two columns.

When comparing the methods, it would seem as if applying truncation after averaging achieves

better results compared to the case where the returns are truncated before averaging. However,

note that for elastic net results slightly worsen after truncation. As the R2 of LASSO does

improve after truncation, it even overtakes elastic net as the best performing method. Notably,

of all the model averaging methods, BMA consistently has the lowest R2
OS . As BMA relies on

the assumption of equal model priors it could be that this assumption causes the forecasts to

be less accurate compared to JMA and MMA, which solely rely on the data to determine the

model weights.

5.1.2 Applying Truncation to the Average Window Models with Shrinkage

Next, we consider the results obtained from an equal weighted combination of the average window

method with the historical average forecast. The R2
OS values are given in Table 3. Note that the

linear combinations without truncation strictly outperform the corresponding models given in

Table 2. Notably, even the kitchen sink model outperforms the historical average forecast after

applying shrinkage. Applying truncation once again gives mixed results. Imposing the return

restrictions before averaging over the windows gives the worst results. While for the kitchen sink

model and for BMA it does lead to a slight improvement, the gains are larger when truncating at

a different stage, and for the other models forecasting accuracy worsens compared no truncation.

Imposing the restrictions after averaging gives results in the highest R2
OS for BMA. While the

other models do achieve a higher R2
OS compared to the results from the third column, they do not

outperform the models without truncation or AveWAS , which applies truncation after combining

the models with the historical average forecast. In this case, the kitchen sink model achieves its

best results, outperforming all other models. However, as MMA, JMA, LASSO, elastic net, and

WALS get better results without truncation, it is unclear whether truncation improves results

in general. However, in general, truncation does seem to improve the significance of the Clark

and West (2007) test statistic, even for JMA and LASSO. Notably, once more BMA has the

worst performance of all the model averaging models. We assume this is the case due to similar

reasons as discussed in Section 5.1.1. Additionally, LASSO and elastic net likely benefit from

the built-in additional shrinkage as a result of the self-regularization that is present in those

models, which is not present in any of the model averaging methods.
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We continue our examination by investigating the annualized utility gains, based on the

difference in CER compared to the benchmark model, as well as the Sharpe ratio’s. These

results are given in Table 4. Upon first glance, each estimation method leads to utility gains

compared to the benchmark model, the historical average forecast. Upon further investigation,

it becomes clear that there are differences in utility gains depending on when the returns are

truncated. For JMA and BMA truncation after averaging leads to the greatest utility gain,

whereas for the other models truncation after shrinkage leads to the greatest utility.

Lastly we will consider the difference in cumulative squared forecast errors (DCSFE) be-

tween the benchmark model and the sophisticated models, estimated using the different AveW

methods. These results are given in Fig. 1. For all models, the highest peak values are attained

using the average window method with shrinkage without truncation, as can be seen from Fig.

1a. Note that all types of truncation reduces the difference in DCSFE between the different

methods. This is likely a result of greater correlation between the estimates of different methods

as a result of the truncation of negative return forecasts. The shape of the plots in Fig. 1b and

Fig. 1c are similar, whereas Fig. 1a resembles Fig. 1d more closely.

Table 5: R2 of average window method with shrinkage methods with and without truncation
using recent data.

Methods R2
AveW R2

AveW,BA R2
AveW,AA R2

AveW,AS

Kitchen Sink + HA -0.09∗ 1.65∗∗∗ 1.80∗∗∗ 1.75∗∗∗

MMA + HA 0.73∗ 1.23∗∗∗ 1.32∗∗∗ 1.24∗∗∗

JMA + HA 0.33 0.79∗∗ 0.87∗∗ 0.70∗∗

BMA + HA -1.19 0.60∗ 0.71∗∗ 0.68∗∗

LASSO + HA 0.07 0.96∗∗ 0.98∗∗ 0.90∗∗

Elastic Net + HA 0.27 1.03∗∗ 1.12∗∗∗ 0.94∗∗

WALS + HA 1.43∗∗ 1.70∗∗∗ 1.76∗∗∗ 1.75∗∗∗

Note: This table denotes the out-of-sample forecasting accuracy, R2
OS , of a combination of the sophisticated

model forecasts, estimated using the average window method by Pesaran and Timmermann (2007), and

historical average (HA), with shrinkage factor δ = 0.5, compared to the benchmark model, HA. The

out-of-sample evaluation period is [1980:01-2021:12]. For R2
AveW,BA, R

2
AveW,AA, and R2

AveW,AS , negative return

forecasts are set to 0, similar to the truncation method proposed by Campbell and Thompson (2008), before

averaging (BA), after averaging (AA), and after applying shrinkage (AS), respectively. For each model, the

method that obtains the largest R2
OS is written in boldface, and for each method, the model with the largest

R2
OS is underlined. Significance codes: ∗: 0.1; ∗∗: 0.05; ∗∗∗: 0.01, obtained using the test statistic from Clark and

West (2007), which tests H0 : R2
OS < 0, with H1 : R2

OS ≥ 0.
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For all methods, the kitchen sink achieves the highest peak DCSFE, but for Fig. 1a the

relative performance drops after the financial crisis 2007, whereas for the truncation methods

the drop in performance is less severe. The sharp drops in relative performance seem to be

attenuated by truncation. Additionally, BMA consistently has one of the lowest DCSFE for all

methods, which is in line with the results from Table 3 and Table 4.

5.2 Analysis Recent Data and COVID-19 Crisis

As a result of the digital revolution and other rapid technological advancements, there have been

large changes in the composition of the American stock market. New types of companies have

taken over the market, think of Amazon, Apple and Google. Therefore, in this subsection we

will analyse the performance of the models using data from [1960:01-1979:12] as our in-sample,

and using considering [1980:01-2021:12] for our out-of-sample analysis. Additionally, using this

data we will analyse the performance of the methods during the COVID-19 crisis, as it has been

an extremely volatile period.

5.2.1 Method and Model Performances Using Recent Data

The results of the analysis using only the data from 1960 and onward are given in table 5. In

contrast with the results in Table 3, for all of the sophisticated models, the largest R2
OS values are

obtained using a truncation method, more specifically, applying truncation after averaging. The

Clark and West (2007) test statistic further confirms this, as for AveWAA the test rejects the null

hypothesis of a negative R2
OS much more strongly compared to no truncation for every model

similar to Table 3. Additionally, this improvement in forecasting accuracy using the method

AveWAA is reflected in the annualized utility gains, given in Table A.2 in the Appendix, as the

utility gains are much higher compared to truncation after shrinkage.

Next, we examine the forecasting accuracy of the different models and methods using DCSFE,

given in Fig. 2. Similar to 1, the DCSFE peaks attained by the average window method without

shrinkage in Fig. 2a are much larger than those attained by any of the truncation methods,

for all models except BMA. However, once more large drops in DCSFE seem to be attenuated

by truncation. This is evident from the fact that for the models estimated using truncation,

the drops after the 2007 financial crisis and in the beginning of the COVID-19 crisis are much

smaller. Moreover, this is reflected in the R2
OS values of the different methods during NBER

dated recessions, given in Table 8 in the Appendix, as they see large increases after applying

any of the truncation methods.
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Table 6: R2
OS of average window method with shrinkage methods with and without truncation

during the COVID-19 crisis.

Methods R2
AveW R2

AveW,BA R2
AveW,AA R2

AveW,AS

Kitchen Sink -18.43 1.61 1.57 0.86

MMA + HA -13.51 1.19 1.20 0.50

JMA + HA -12.72 -0.61 -0.61 -1.32

BMA + HA -17.64 0.10 0.11 -0.60

LASSO + HA -9.08 -0.09 -0.46 -1.16

Elastic Net + HA -13.31 -0.19 -0.31 -1.01

WALS + HA -13.78 2.16 2.17 1.46

Note: This table details the out-of-sample forecasting accuracy, R2
OS , of a combination of the sophisticated

model forecasts, estimated using the average window method by Pesaran and Timmermann (2007), and

historical average (HA), with shrinkage factor δ = 0.5, compared to the benchmark model, HA. The

out-of-sample evaluation period is [2021:02-2022:12]. For R2
AveW,BA, R

2
AveW,AA, and R2

AveW,AS , negative return

forecasts are set to 0, similar to the truncation method proposed by Campbell and Thompson (2008), before

averaging (BA), after averaging (AA), and after applying shrinkage (AS), respectively. For each model, the

method with the largest R2
OS is written in boldface, and for each method, the model with the largest R2

OS is

underlined. Significance codes: ∗: 0.1; ∗∗: 0.05; ∗∗∗: 0.01, obtained using the test statistic from Clark and West

(2007), which tests H0 : R2
OS < 0, with H1 : R2

OS ≥ 0.

Additionally, after truncation, Bayesian model averaging estimates see a relative increase in

DCSFE compared to the other model. Where in Fig. 1a it is clearly the worst performing model,

in Fig. 1b, 1c and 1d it achieves a similar difference in cumulative squared forecast errors as

jackknife model averaging. Furthermore, after truncation the kitchen sink model seem to get a

relative boost in performance, compared to the weighted-average least squares. These relative

increases in performance of the BMA and KS models are also reflected in Table 5, as the R2
OS

of both methods see a much larger increase after truncation compared to the other models.

5.2.2 Method and Model Performances During the COVID-19 Crisis

Lastly, we will evaluate the impact of the return restrictions based on its effect on the perfor-

mance of the models during the COVID-19 crisis. From the second column it is clear that the

average window method without truncation performs very poorly in this time-period. However,

it seems as if the overall the gains made by applying truncation are much larger compared to

the results using pre-COVID data. This supported by Fig. 2, as is the drop in DCSFE in the

beginning of 2020 is much larger in Fig. 2a than in Fig. 2b, 2c and 2d. Per Table 6, either

truncation before averaging or after averaging seems to lead to the largest gain in forecasting
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accuracy. While none of the R2
OS are significantly larger than 0, as per the Clark and West

(2007) test statistic, it does seem as if truncation leads to large gains in forecasting accuracy.

The corresponding utility gains expressed in terms of changes in CER difference are given in

Table 7. As opposed to the utility changes in Tables 4 and A.2, some models are outperformed

by the benchmark model in terms of CER. On the other hand, the Sharpe ratios are larger than

those from the previous results. Another difference between the COVID-19 crisis and the other

out-of-sample evaluation period, is that applying truncation, before or after averaging, leads

to an increase in annualized utility gains for all models. Previously it lead to decreased utility

gains. Using risk factors γ = 2, 4, similar utility gains are found after truncation. These results

are given in Tables 9 and 10 in the Appendix.

Table 7: Annualized utility gain and Sharpe ratios of average window methods with truncation
during the COVID-19 crisis with riskfactor γ = 3

.

Methods AveW(AS) AveWBA AveWAA

∆(ann%) Sharpe ∆(ann%) Sharpe ∆(ann%) Sharpe

Kitchen Sink + HA 3.36 0.34 6.39 0.37 6.18 0.37

MMA + HA 1.87 0.32 4.63 0.36 4.67 0.36

JMA + HA -2.29 0.28 0.48 0.31 0.48 0.31

BMA + HA -1.41 0.33 1.30 0.38 1.34 0.38

LASSO + HA -5.57 0.24 -1.61 0.30 -2.84 0.28

Elastic Net + HA -4.72 0.25 -1.58 0.30 -1.99 0.30

WALS + HA 3.03 0.34 5.85 0.37 5.85 0.37

Note: This table denotes the annualized utility gains for the combinations of the sophisticated models with the

historical average (HA) forecast, with shrinkage factor δ = 0.5. It is expressed as a difference in Certainty

Equivalent Return (CER) between the combination and the benchmark model, HA. Furthermore it denotes the

Sharpe ratio, which is defined as the mean of the realized returns in excess of the risk-free rate, divided by the

standard deviation of the excess returns. We implement the truncation method by Pesaran and Timmermann

(2007) at three different stages, before averaging (BA), after averaging (AA), and after shrinkage (AS). By

construction, implementing truncation after shrinkage and no truncation give the same results, as negative

returns are assigned weight w = 0 in Eq. 16. The weights are determined using a five year rolling window

variance esitmate σ̂2, and risk factor γ = 3. For each model, the method with the largest ∆(ann%) is written in

boldface, and for each method, the model with the largest ∆(ann%) is underlined. The out-of-sample evaluation

period is [1957:01-2016:12].
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6 Conclusions

The main goal of this paper was to answer the following research question:

RQ.1 How does imposing the restrictions from Campbell and Thompson (2008) affect

the methods from H. Zhang et al. (2020)?

In order to answer this research question, we consider several methods to estimate 7 sophisticated

models. Firstly, for an expanding window approach or the average window method without

shrinkage, we find that setting negative excess forecast returns to 0 leads to an increase in

R2
OS for all models under consideration. For the average window method with shrinkage, we

find similar results. We impose restrictions on negative return forecasts at three separate stages

of the average window method, namely before averaging, after averaging and after shrinkage.

When considering a large sample, we find that only for some models truncation leads to an

improvement of the R2
OS . However, the Clark and West (2007) test statistic indicates that the

difference between the benchmark model and sophisticated models becomes more significant

after implementing the restrictions. Moreover, using a more recent dataset we do find that the

return restrictions improve forecasting accuracy as well as utility gains across the board, relative

to the benchmark model. This could be due to truncation being relatively more effective when

considering a smaller in-sample period. Additionally, it seems that during NBER dated recessions

restricting negative returns forecasts has a larger effect. In order to further solidify this suspicion,

we perform a case study on the performance of the methods during the COVID-19 crisis, using

the following research question:

RQ.2 How do the results of applying truncation to the methods from H. Zhang et al.

(2020) differ during the COVID-19 pandemic compared to pre-COVID19 times?

Applying the same methods, we find that during the COVID-19 crisis truncation improves the

out-of-sample prediction accuracy as well as our utility measure across the board. Compared to

the results from the other samples, the gains in forecasting accuracy and utility are estimated to

be much larger. However, using the Clark and West (2007) test statistic, none of the estimated

values for the out-of-sample R2 were found to be significantly larger than 0. This could be a

result of the out-of-sample size being too small.

For further research, one could examine how using a different measure for utility affects

the results, as the CER only takes into account the mean and variance of the returns. For

instance, one could add transaction costs such that it resembles a real life investment setting

more closely. Furthermore, Pettenuzzo et al. (2014) devised a new approach with respect to
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introducing economic constraints to the forecasting of stock returns, by using constraints on

equity premia and Sharpe ratio’s to modify the posterior distribution of the parameters. Perhaps,

combining this approach with the methods from H. Zhang et al. (2020) could improve on the

methods from this paper. Additionally, in this paper we consider only 7 sophisticated model,

however, there are other and newer models to consider, such as the SLOPE model by Kremer

et al. (2020), to see how they compare to the models used in this paper. One could also consider

using a different dataset, different explanatory variables or a different stock index as a robustness

check. Lastly, perhaps the combination of the average window method with truncation could

be applied in other fields where similar theoretical restrictions can be made for the dependent

variable.
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A Appendix

A.1 Description of R and Matlab code

In this section we will give a short explanation on the MATLAB and R code given in the

folder ’code thesis.zip’. Firstly, navigate to the main folder ’Code Thesis’ and run the script

’Variables.R’.

Then, to obtain the results from Section 5.1.1 and 5.1.2, firstly run the script ’WalsRep.m’

in the ’MATLAB’ subfolder, and afterwards run the script Replication.r in the main folder.

Next, to obtain the results from Section 5.2.1, firstly run the script ’WalsUpd.m’ in the

’MATLAB’ subfolder, and afterwards run the script Updated.r in the main folder.

Finally, to obtain the results from Section 5.2.2, firstly run the script ’WalsCov.m’ in the

’MATLAB’ subfolder, and afterwards run the script Covid.r in the main folder.

Using an HP ENVY 13-ba0750nd laptop, we found the total running time to be approxi-

mately 3 hours.

A.2 Annualized Utility Gains and Sharpe Ratio’s Using Recent Data

Methods AveW(AS) AveWBA AveWAA

∆(ann%) Sharpe ∆(ann%) Sharpe ∆(ann%) Sharpe

Kitchen Sink + HA 3.48 0.18 3.20 0.17 3.77 0.18

MMA + HA 2.86 0.17 2.70 0.16 3.25 0.17

JMA + HA 1.70 0.14 1.94 0.15 2.50 0.16

BMA + HA 2.39 0.16 2.35 0.16 2.58 0.16

LASSO + HA 1.82 0.15 1.93 0.15 2.26 0.16

Elastic Net + HA 1.54 0.14 1.69 0.14 2.23 0.16

WALS + HA 3.37 0.18 3.16 0.17 3.57 0.18

Note: This table denotes the annualized utility gains for the combinations of the sophisticated models with the

historical average (HA) forecast, with shrinkage factor δ = 0.5. It is expressed as a difference in Certainty

Equivalent Return (CER) between the combination and the benchmark model, HA. Furthermore it denotes the

Sharpe ratio, which is defined as the mean of the realized returns in excess of the risk-free rate, divided by the

standard deviation of the excess returns. We implement the truncation method by Pesaran and Timmermann

(2007) at three different stages, before averaging (BA), after averaging (AA), and after shrinkage (AS). By

construction, implementing truncation after shrinkage and no truncation give the same results, as negative

returns are assigned weight w = 0 in Eq. 16. The weights are determined using a five year rolling window

variance esitmate σ̂2, and risk factor γ = 3. For each method, the model with the largest ∆(ann%) is written in

boldface. The out-of-sample evaluation period is [1980:01-2021:12].
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A.3 Out-of-Sample R2 Values During NBER dated Recessions

Table 8: R2
OS of average window method with shrinkage methods with and without truncation

during NBER dated recessions.

Methods R2
AveW R2

AveW,BA R2
AveW,AA R2

AveW,AS

Kitchen Sink + HA -9.37 -2.29 -1.81 -1.75

MMA + HA -4.86 -1.23 -0.94 -0.84

JMA + HA -4.71 -1.20 -0.81 -0.96

BMA + HA -5.53 -0.16 0.25 0.50

LASSO + HA -4.95 -0.28 0.04 0.16

Elastic Net + HA -3.96 0.28 0.72 0.68

WALS + HA -4.42 -0.95 -0.72 -0.58

Note: This table denotes the out-of-sample forecasting accuracy, R2
OS , of a combination of the sophisticated

model forecasts, estimated using the average window method by Pesaran and Timmermann (2007), and

historical average (HA), with shrinkage factor δ = 0.5, compared to the benchmark model, HA, during NBER

dated recessions. The out-of-sample evaluation period is [1980:01-2021:12]. For R2
AveW,BA, R

2
AveW,AA, and

R2
AveW,AS , negative return forecasts are set to 0, similar to the truncation method proposed by Campbell and

Thompson (2008), before averaging (BA), after averaging (AA), and after applying shrinkage (AS), respectively.

For each model, the method that obtains the largest R2
OS is written in boldface, and for each method, the model

with the largest R2
OS is underlined. Significance codes: ∗: 0.1; ∗∗: 0.05; ∗∗∗: 0.01, obtained using the test statistic

from Clark and West (2007), which tests H0 : R2
OS < 0, with H1 : R2

OS ≥ 0.
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A.4 Utility Gains and Sharpe Ratio’s Using Other Risk Factors

Table 9: Annualized utility gain and Sharpe ratios of average window methods with truncation
during the COVID-19 crisis with riskfactor γ = 2

.

Methods AveW(AS) AveWBA AveWAA

∆(ann%) Sharpe ∆(ann%) Sharpe ∆(ann%) Sharpe

Kitchen Sink + HA -0.77 0.36 2.91 0.40 3.40 0.41

MMA + HA -1.44 0.35 2.82 0.40 2.72 0.40

JMA + HA -1.34 0.35 2.82 0.40 2.82 0.40

BMA + HA -5.86 0.32 -1.79 0.37 -1.75 0.37

LASSO + HA -4.59 0.33 1.41 0.39 -0.46 0.38

Elastic Net + HA -4.32 0.33 0.42 0.38 -0.19 0.38

WALS + HA -1.01 0.36 2.85 0.40 3.15 0.40

Note: This table denotes the annualized utility gains for the combinations of the sophisticated models with the

historical average (HA) forecast, with shrinkage factor δ = 0.5. It is expressed as a difference in Certainty

Equivalent Return (CER) between the combination and the benchmark model, HA. Furthermore it denotes the

Sharpe ratio, which is defined as the mean of the realized returns in excess of the risk-free rate, divided by the

standard deviation of the excess returns. Negative excess return forecasts are set to 0, similar to the truncation

method proposed by Campbell and Thompson (2008). We implement the truncation at three different stages,

before averaging (BA), after averaging (AA), and after shrinkage (AS). By construction, implementing

truncation after shrinkage and no truncation give the same results, as negative returns are assigned weight

w = 0 in Eq. 16. The weights are determined using a five year rolling window variance esitmate σ̂2, and risk

factor γ = 2. For each method, the model with the largest ∆(ann%) is written in boldface. The out-of-sample

evaluation period is [1957:01-2016:12].
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Table 10: Annualized utility gain and Sharpe ratios of average window methods with truncation
during the COVID-19 crisis with riskfactor γ = 4

.

Methods AveW(AS) AveWBA AveWAA

∆(ann%) Sharpe ∆(ann%) Sharpe ∆(ann%) Sharpe

Kitchen Sink 1.40 0.30 3.69 0.33 3.53 0.33

MMA -0.83 0.27 1.25 0.30 1.28 0.30

JMA -6.46 0.19 -4.40 0.22 -4.40 0.22

BMA -1.05 0.33 0.98 0.38 1.01 0.38

LASSO -4.17 0.24 -1.20 0.30 -2.13 0.28

Elastic Net -3.54 0.25 -1.18 0.30 -1.49 0.30

WALS 1.26 0.30 3.38 0.33 3.38 0.33

Note: This table denotes the annualized utility gains for the combinations of the sophisticated models with the

historical average (HA) forecast, with shrinkage factor δ = 0.5. It is expressed as a difference in Certainty

Equivalent Return (CER) between the combination and the benchmark model, HA. Furthermore it denotes the

Sharpe ratio, which is defined as the mean of the realized returns in excess of the risk-free rate, divided by the

standard deviation of the excess returns. We implement the truncation method by Pesaran and Timmermann

(2007) at three different stages, before averaging (BA), after averaging (AA), and after shrinkage (AS). By

construction, implementing truncation after shrinkage and no truncation give the same results, as negative

returns are assigned weight w = 0 in Eq. 16. The weights are determined using a five year rolling window

variance esitmate σ̂2, and risk factor γ = 4. For each method, the model with the largest ∆(ann%) is written in

boldface. The out-of-sample evaluation period is [1957:01-2016:12].
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