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Abstract

This paper investigates the use of binary probit models for predicting the direction of the US

stock market. Specifically, the setup of Nyberg (2011) is extended by implementing Ridge,

LASSO and Elastic Net versions of the probit models. Monthly S&P500 index data from

January 1986 to December 2021 is used to model the US stock market and several explanatory

variables are considered. From which the recession forecast, introduced by Nyberg (2011),

improves the forecasts the most. The results show that it is possible to improve the forecasting

abilities of the models in-sample by implementing the Ridge, LASSO and Elastic Net

techniques, when looking at the number of correctly forecasted periods and return on

investment. However, out-of-sample it is found that the models without the machine learning

techniques have the best forecasting ability.
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1 Introduction

Investors on the stock markets tend to have one main goal, namely maximizing their overall

returns. Consequently, this aim has therefore over the years led to a numerous amount of

research on modeling and -perhaps more importantly- forecasting of returns. However, papers

such as Welch and Goyal (2008) show that the overall level of excess return on stocks is not

significantly predictable. Fortunately, it is possible to predict the sign of excess stock returns to

some extend (see, Christoffersen and Diebold (2006) and Breen et al. (1989)). That the sign is

predictable offers an opportunity to assess whether an investor needs to allocate their resources

into stocks or Treasury Bills for the following period.

This research aims at improving upon the results found in the paper of Nyberg (2011) by

incorporating machine learning techniques, which would lead to models more capable of suc-

cessfully predicting the direction of the stock market. Throughout this paper, models which

do not incorporate machine learning techniques are referred to as standard models. In his

paper, Nyberg extends the dynamic autoregressive probit model introduced by Kauppi and

Saikkonen (2008) by imposing a restriction based on the efficient market theory. This results

in the new ’error correction model’, which has better out-of-sample performance concerning

forecasting the direction of the US stock market than other standard probit models. Adding to

this, Nyberg also investigates the use of a recession forecast as explanatory variable. The use

of this variable in return improves his forecasts.

To improve the results, three machine learning techniques are used both to make the fore-

casts of the recession variable as well as the direction of the US stock market. These are the

so-called Ridge, LASSO and Elasitc Net probit model. Iworiso and Vrontos (2020) and Vron-

tos et al. (2021) find that machine learning techniques yields superior forecasts of recession

periods and the direction of the US stock market, when compared to the standard static and

dynamic probit model also used in Nyberg (2011). This is due to the regularization term which

the Ridge, LASSO and Elastic Net techniques add. These terms penalize the parameters in

the models, leading to lower coefficient values(in absolute sense) and therefore avoiding over-

fitting. However, Iworiso and Vrontos (2020) and Vrontos et al. (2021) only use two out of the

five probit models of Nyberg (2011). Therefore, this paper investigates the following question:

”Can machine learning techniques improve the forecasting ability of standard probit models

for predicting the direction of the US stock market?”

To formulate an answer to this question, financial and economic data are used. The US

stock market as a whole is investigated as closely as possible by using the S&P 500 index, but

also small and large size firm are used. Various often used explanatory variables are explored,

such as the interest rates or volatility measures. Using these data, an in-sample analysis is

conducted to see the performances of the models and determine explanatory variables and

tunning parameters which would be used out-of-sample. In the out-of-sample part one-month

ahead forecasts are made using an expanding window.

The in-sample analysis shows that using the Ridge, LASSO or Elastic Net probit models

it is possible to improve the performances of all the standard models used in Nyberg (2011).

However, these improvements are not transmitted into the out-of-sample forecasts. Out-of-
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sample show the Ridge, LASSO and Elastic Net probit models similar or worse forecasting

abilities. Only in the case of large size firms is a LASSO probit model able to outperform the

standard probit models. The worse performance of the extended models could be caused by

not optimizing their tunning parameter for every forecast, due to time limitations.

The remainder of this paper is structured in the following manner. Section 2 provides an

overview of the literature related to this research. Section 3 gives the precise sources of the

used data and all variable used. Section 4 explains the methodology used in this research,

consisting of all the models and evaluation tools. Section 5 shows the results. Finally, Section 6

is dedicated to the conclusions which can be drawn following this research.

2 Literature

A reason why the overall level of stock returns may not be predictable is that observed returns

contain too much noise for accurate forecasting of the total amount of excess return, as is ar-

gued by Nyberg (2011) among others. However, the amount of research which is conducted

concerning predicting the direction of stock markets is sparse when compared to the amount

on the overall level of excess return. This Section provides the most important findings so far.

As mentioned in the introduction, research shows that the sign of excess stock return is to

some extend predictable and that the results can be of economic significance (see, among others,

Pönkä (2017), Chevapatrakul (2013)). The previously done research mostly employed different

econometric methods, but papers by Christoffersen and Diebold (2006) and Christoffersen et al.

(2006) show some theoretical frameworks. They investigate the relation between asset return

volatility and the predictability of the asset return sign. In their papers they show that volatility

indeed has explanatory powers. However, most commonly used are binary dependent time

series models such as the logit and probit models. Leung et al. (2000) used in their paper a

simple static logit and probit model, whereas for instance Anatolyev and Gospodinov (2010a)

used an autologistic model specification.

The paper of Nyberg (2011) is an extension of the research done by Kauppi and Saikkonen

(2008). They introduce the dynamic autoregressive probit model and Nyberg (2011) extends

this model by including a restriction and including a recession forecast as explanatory vari-

able. The idea of incorporating the recession forecast comes from previously done research.

For instance, Fama and French (1989) indicate that business conditions have a high level of in-

dication for future stock returns. Because of that result, incorporating the recession forecast as

an explanatory variable is very useful as the results show in Nyberg (2011). The introduction

of the restriction is based on the efficient market theory and led to the new ’error correction

model’. The complete model specifications are shown in the methodology section. Nyberg

(2011) found that the ’error correction model’ performs better in forecasting the direction of the

US stock market than the previously found probit models.

Over the past years, researchers have more and more found their way into using machine

learning techniques. Ridge regression, LASSO and Elastic Net, introduced by Hoerl and Ken-

nard (1970),Tibshirani (1996) and Zou and Hastie (2005) respectively, are three of the most fa-

mous examples of machine learning techniques. Iworiso and Vrontos (2020) and Vrontos et al.
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(2021) show that using these methods improves the predictability of recessions and the direc-

tion of stock markets, when compared to the standard static and dynamic binary probit models

also used by Nyberg (2011).

3 Data

This section indicates how the data is collected. By using similar data to Nyberg (2011), this

paper aims at having the results best suited for comparing to his newly introduced models.

The data used is provided by the Federal Reserve Economic Data (FRED), Wharton Research

Data Service (WRDS), or the Kenneth R. French library. The data has a monthly frequency

starting from January 1968 until December 2021. Table 1 shows the used variables and their

description. The Standard&Poor’s 500 US stock index1 is used to model the US stock market.

Data concerning size-sorted CRSP indices2 are used to compare the predictive abilities of the

models for small and large size firms. The domestic and foreign interest rates3are used as

explanatory variables. The nominal stock return of the S&P500 index is used in two ways,

namely as an explanatory variable and to use in investment simulations. This nominal return

is a simple return. The term spreads used are defined as the difference between the short-term

interest rate and the long-term interest rate. Finally, the dividend and earnings data4 are used

as explanatory variables.

Variable Description
Pt Standard&Poor’s 500 US stock index
Pt

S CRSP small size firms index, first decile
Pt

L CRSP large size firms index, tenth decile
rt, rt

S, rt
L One-month excess return over the risk-free return (see Section 4.1)

rt
n One-month nominal stock return from the S&P500 index

yt US recession periods (NBER)
it Three-month US Treasury Bill rate, secondary market
Rt 10-year US Treasury Bond rate, constant maturity
∆it, ∆Rt First differences of it and Rt
SPT

US US term spread between Rt and it
SPt

GE German term spread between German long- and short-term interest rates
σt Sum of squared daily stock returns in the S&P500 index within one month
DPt Dividends over the past year divided by the current stock index value, DPt = Dt/Pt
EPt Earnings over the past year divided by the current stock index value, EPt = Et/Pt
N = 648

Table 1: Dependent and explanatory variables

1Retrieved from WRDS: https://wrds-www.wharton.upenn.edu/
2Retrieved from the Kenneth R. French library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html
3Retrieved form the FRED: https://fred.stlouisfed.org/
4Retrieved from the homepage of Robert Shiller’s book Irrational exuberance:http://www.econ.yale.edu/

~shiller/data.htm
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Figure 1 shows the excess stock returns from January 1968 until December 2021 together with

the recession periods. The graph shows that in times of recession, as indicated by the National

Bureau of Economic research, the excess returns firstly often are negative. When the recession

period comes to an end, excess stock returns typically are more often positive.

Figure 1: US excess stock returns rt (%) and the NBER recession periods yt (small areas between the blue lines)
for the sample period from 1968M1 to 2021M12

4 Methodology

This Section provides an overview of the econometric models and methods. Firstly, the meth-

ods used by Nyberg (2011) are explained in detail. Thereafter the added machine learning

techniques are provided and a description of how the recession forecast is made. Finally, sta-

tistical and economic measures are provided that give insights in the predictive ability of the

models in the research.

4.1 Standard probit models

One of the characteristics of probit models is that the dependent variable is binary. Therefore,

define rt = 100 log
(

Pt
Pt−1

)
− r ft as the continuously compounded excess stock return over the

risk-free interest rate and let It be a sign indicator:

It =

{
1, if rt > 0

0, if rt ≤ 0
(1)

This indicator takes on value one if the excess stock return is positive and zero otherwise. This

means that It is a binary stochastic process. Then conditional on the information available up

to t − 1, Ωt−1, the sign indicator has a Bernoulli distribution with probability pI
t . Meaning

It | Ωt−1 ∼ B
(

pI
t
)
. Define Et−1 as the conditional expectation given the information set Ωt−1.
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Then the conditional probability of a positive excess stock return (It = 1) in a probit model

needs to satisfy the condition:

pI
t = Et−1 (It) = Pt−1 (It = 1) = Pt−1 (rt > 0) = Φ

(
π I

t

)
, (2)

where Φ(.) is the standard normal cumulative distribution function. This choice of Φ(.) de-

fines a probit model, to implement a logit model this function should be changed to a logistic

distribution function. Following equation (2), the conditional probability then is modeled by

introducing a function of π I
t which includes explanatory variables included in the information

set. The benchmark forecasting model is defined as:

π I
t = ω + x′t−1β, (3)

where xt−1 is a vector containing the explanatory variables, ω is the constant and β is a vector

containing the parameters of the p explanatory variables. This model is called static as it does

not contain any lagged value of It. This model might be adequate as the literature indicates that

there is not much correlation between two successive excess stock returns. The specification in

equation (3) is extended to a dynamic model by including the lagged value of the sign indicator:

π I
t = ω + δ1 It−1 + x′t−1β. (4)

When the value of δ1 turns out statistically significant it indicates that, although there may not

be much correlation, the lagged value still has useful predictive powers.

Kauppi and Saikkonen (2008) introduced a new variant of the static and dynamic probit models

by including the lagged value π I
t−1. This in return made the models autoregressive. The origi-

nal static and dynamic models in equations (3) and (4) therefore now become an autoregressive

model:

π I
t = ω + α1π I

t−1 + x′t−1β, (5)

and a dynamic autoregressive model:

π I
t = ω + α1π I

t−1 + δ1 It−1 + x′t−1β. (6)

As Nyberg (2011) notes in his paper, by recursive substitution and assuming |α1| < 1 the model

in equation (6) can be rewritten as:

π I
t =

∞

∑
i=1

αi−1
1 ω + δ1

∞

∑
i=1

αi−1
1 It−i +

∞

∑
i=1

αi−1
1 x′t−iβ. (7)

Meaning that when several lagged values of the sign indicator or of the explanatory variable

in xt have meaningful predictive abilities, the two specifications in equations (5) and (6) are

parsimonious forecast models.

The following step is to estimate the parameters of the probit models in equations (3)-(6). This

is done by means of maximum likelihood estimation as described in Kauppi and Saikkonen

(2008), de Jong and Woutersen (2011) and Pesaran (2016). The maximum likelihood estimator

of θ, including all unknown parameters, is defined as follows:

θ̂ML = argmaxθ l(θ), (8)
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where the log-likelihood function is defined as:

l(θ) =
T

∑
t=1

lt(θ) =
T

∑
t=1

[It log Φ (πt(θ)) + (1 − It) log (1 − Φ (πt(θ)))] . (9)

The parameter estimates are found by maximizing the log-likelihood function using Matlab

and the fmincon or fminunc function, which incorporates Quasi-Newton. More details on the

code can be found in the appendix.

4.2 Error correction model

Nyberg (2011) extends the number of available models by incorporating the restriction δ1 =

1 − α1 and the assumption of |α1| < 1 in equation (6). This leads to the new “restricted”

dynamic autoregressive model:

π I
t = ω + α1π I

t−1 + (1 − α1) It−1 + x′t−1β. (10)

The idea of restricting δ1 derives its origin from the efficient market theory. The theory implies

that lagged values of stock indicators should not help forecasting the direction the market takes

in the future. This model is called an error correction model by Nyberg, as adding −π I
t−1 to

both sides of equation (10) leads to an error correction form. A more detailed description of the

model can be found in Section 2.2 of Nyberg (2011).

4.3 Ridge, LASSO and Elastic Net probit models

By incorporating the structures of Ridge regression, LASSO and Elastic Net into the probit

models, they are transformed into so called penalized likelihood binary probit models. The

main effect of these structures is that they try shrinking the coefficients estimates towards zero.

This can result in smaller variances and therefore lower prediction errors. The papers of Iworiso

and Vrontos (2020) and Vrontos et al. (2021) provide a more detailed description of the extended

models.

The maximum likelihood estimator of the Ridge probit model is defined as follows:

θ̂R = argmaxθ

{
T

∑
t=1

[It log Φ (πt(θ)) + (1 − It) log (1 − Φ (πt(θ)))]− λR

p

∑
j=1

θ2
j

}
. (11)

Equation (11) is in essence an extension on equation (9), where the shrinkage penalty ℓ2-norm

of θ and ridge tuning parameter λR, with λR > 0, are added.

The maximum likelihood estimator of the LASSO probit model is defined as follows:

θ̂L = argmaxθ

{
T

∑
t=1

[It log Φ (πt(θ)) + (1 − It) log (1 − Φ (πt(θ)))]− λL

p

∑
j=1

|θj|
}

. (12)

Again, is equation (12) in essence an extension on equation (9), where the shrinkage penalty ℓ1-

norm of θ and LASSO tuning parameter λL, with λL > 0, are added. One of the characteristics

of the LASSO probit model is that the ℓ1-norm can force some parameters towards zero when

the λL is large enough. This is because the constraint region of the LASSO model is shaped in
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the form of a diamond and therefore has "corners", compared to the round constraint region of

Ridge due to its quadratic form. When the optimization process reaches one of these corners

on the axis, it shrinks that parameter to zero. This is explained in more detail in Hastie et al.

(2020).

The maximum likelihood estimator of the Elatic Net probit model is defined as follows:

θ̂EN = argmaxθ

{
∑T

t=1 [It log Φ (πt(θ)) + (1 − It) log (1 − Φ (πt(θ)))]− λL

[
(1 − α)∑

p
j=1

θ2
j

2 + α ∑
p
j=1

∣∣θj
∣∣]} .(13)

Again, is equation (13) in essence an extension on equation (9), where the shrinkage penalties

ℓ1-norm and ℓ2-norm of θ and Elastic Net tuning parameters λEN , with λEN > 0, and α = 0.5

are added.

The use of Ridge, LASSO and Elastic Net requires a value of λ for the machine learning tech-

niques, which needs to be chosen beforehand. Iworiso and Vrontos (2020) optimizes this λ

specifically for every forecast they make out-of-sample. However, this process needs a lot of

computing time which was not possible given the available time. Therefore, the λ is only op-

timized ones using the in-sample period, and used for all out-of-sample forecasts. The choice

of λ is made based on the CR value, meaning that the λ which provides the best CR value in-

sample is used. The choice of using the CR value as the criteria is made because it measures the

accuracy of the models. For all models and the recession forecast, λ’s in the range of 10−5 up

to 10−1 are investigated, where the steps are of magnitude 10−4 as also done by Vrontos et al.

(2021).

4.4 Recession forecast

The second innovation Nyberg introduced was the implementation of a recession forecast as

one of the explanatory variables. Nyberg (2011) used the recession indicator of the NBER. This

indicator is defined as follows:

yt =

{
1, if the economy is in a recession at month t;

0, if the economy is in an expansion at month t.
(14)

As this is a binary variable, it is possible to model it by means of a probit model and has the

same structure as described in Section 5.1. The forecast which will be used is a six-month

ahead forecast of the recession indicator. The conditional probability of the recession indicator

in period t + 5, based on the information up to t − 1, is defined as follows:

Et−1 (yt+5) = Pt−1 (yt+5 = 1) = Φ
(
π

y
t+5

)
= py

t+5. (15)

To forecast py
t+5, the autoregressive probit model as defined in Nyberg (2011) is used:

π
y
t+5 = c + ϕπ

y
t+4 + z′t−1b (16)

where zt−1 = (SPUS
t−1 rn

t−1 SPGE
t−1)

′ is a vector containing the lagged term spread of the US and

Germany and the nominal stock market return.
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4.5 Forecast evaluation

When the different models are estimated and the forecasts are made, they can be evaluated

using various goodness-of-fit and statistical predictability measures. The first measure is the

pseudo-R2 of Estrella (1998): psR2 = 1 − (l̂u/l̂c)
−(2/T)l̂c . This formula contains the maximum

values of the estimated log-likelihood functions l̂u and l̂c, where the unconstrained model and

a constrained model with only a constant term are used. Using the maximum value of the

log-likelihood function of the unconstrained model, it is also possible to compute the Bayesian

information criterion of Schwarz (1978): BIC= −2l̂u + k log(n). Here the k is the number of

parameters in the used model and n is the number of observations.

The models in this research aim at forecasting the direction of the US stock market, a first

measure which focuses on the number of correctly made forecasts is the CR. This measure

provides the ratio of correctly made predictions (i.e., when the realized excess stock return

was positive or negative and the model predicted a positive or negative excess return respec-

tively). The value of this ratio is then compared to a threshold value to examine how the model

performs. As the dependent variable is the excess stock return sign, the hypothesis of no pre-

dictability leads to a threshold value of 0.5. Therefore, this value of 0.5 is used.

To put the forecasts in an economical context, it is important to compute the return on

investment which these models would have. Here the same trading strategy is used as in

Nyberg (2011). This strategy consists of the following rules. Firstly, the investor has two options

to invest in: risk-free Treasury Bills or stocks(in this case the S&P500 index). At the start of each

month an investor makes their choice based on the made forecast. When pI
t ≤ 0.5 the investor

choices the Treasury Bills, when pI
t > 0.5 they choice to invest in stocks. Whenever an investor

decides to change their investment from Treasury Bills to stocks or the other way around, they

must pay transaction costs as found by Granger and Pesaran (2000). The "low-cost scenario"

of Pesaran and Timmermann (1995) is used as in Nyberg (2011). Meaning that the transaction

costs are ζs = 0.5% of the total investment when moving from Treasury Bills to stocks and

ζb = 0.1% vice versa.

Following this trading strategy, the overall return on investment can be calculated. This re-

turn is denoted as the average annualized return RET. Next to the overall return on investment,

it is also notable to look at the Sharpe ratio of a specific model found by Sharpe (1994). As this

ratio takes the risk into account. The formula of this ratio is : SR= RETk−RETr f

σ̂k , where RETk is

the average portfolio return of the used model, RETr f is the average Treasury Bill return, and

σ̂k is the sample standard deviation of portfolio returns RETk. Portfolios with a high Scharpe

ratio are preferred to portfolios with low values.

Finally, some statistical measures are used to compare the models. When looking at the

CR, it cannot easily be seen if the value is significantly different from 0.5. In which case the

predictions do not perform better than a random prediction. Therefore, a test proposed by Pe-

saran and Timmermann (1992) is used. Granger and Pesaran (2000) show that the test statistic

is defined as follows:

PT =

√
mKS(

P̄I(1−P̄I)
Ī(1− Ī)

)1/2 . (17)
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Where KS = HR − FR is the Kuipers score between the "hit rate" HR = Îuu

Îuu+ Îdu and the "false

rate" FR = Îud

Îud+ Îdd , where the forecast classification is denoted by Îuu = ∑m
t=1 1

(
I f
t = 1, It = 1

)
;

Îud = ∑m
t=1 1

(
I f
t = 1, It = 0

)
; Îdu = ∑m

t=1 1
(

I f
t = 0, It = 1

)
; Îdd = ∑m

t=1 1
(

I f
t = 0, It = 0

)
.

In these cases, the f indicates that these are forecasts. Then finally to compute the PT statistic

some other values are needed. The sample average Ī of the indicator function It over the m-

month sample period and P̄I = ĪHR + (1 − Ī)FR, where the statistic PT has an asymptotic

standard normal distribution. The last evaluation tool is the test of Diebold and Mariano (1995).

This test is used to statistically compare the investment returns between different models. As

Nyberg (2011) notes, because the time-horizon is one month the statistic is as follows:

DM =

√
md̄√

var(d̄)
(18)

and has a asymptotic standard normal distribution. In this formula the d̄ is the average differ-

ence between the predicted excess stock returns. All models are then compared to a normal

buy-and-hold strategy.

5 Results

This section provides the results and their interpretation. Firstly, the performance of the mod-

els is shown in-sample and thereafter the out-of-sample. Finally, the results are extended by

comparing the best performing probit models to ARMAX models and investigating how the

probit models perform when only small or large companies are considered.

5.1 In-sample

Investigating the results of the in-sample period is done in two steps. Firstly, only the standard

probit models found in Nyberg (2011) are used and compared. Then in Section 5.1.2 the in-

sample results of the extended models using machine learning techniques are shown.

5.1.1 Standard probit models

The in-sample period is the same as used in Nyberg (2011) (i.e., January 1969 until December

1988). This period is chosen because this provides an even comparison between results. The

first twelve observations from 1968 are used as initial values. The objective of investigating

the in-sample performance of the models is mainly to find the best performing explanatory

variables to use in the out-of-sample research and to compare the findings to the paper of

Nyberg (2011).

All variables in Table 1 from the three-month US Treasury Bill rate downwards (except the

German term spread) are used as explanatory variables in the models, as well as the recession

forecast. When the models with a single explanatory variable are compared based on the values

of the psR2, CR and the returns on investment, it is shown that the first differences of the

short-term interest rate and the recession forecast have the best predictive ability. The first

difference of the long-term interest rate and the dividend-price ratio also seem to have some
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predictive power, but the dividend-price ratio does not perform well when used in the static

or autoregressive static model. The term-spread also does perform well when looking at the

psR2 and the CR but has a low return on investment and therefore would not be useful to

use in practice. When two explanatory variables are incorporated in the model, it can be seen

that a model with the recession forecast and the first difference of the short-term interest rate

performs the best. As more parsimonious models are easier to use in practice, this model will

be used for the out-of-sample part and no more variables are added.

Table 2 shows the estimation results of the different standard probit models when the re-

cession forecast and first-difference of the interest rate are used as explanatory variables. In

general, are the results found in-sample similar to those found in Nyberg (2011), with some

exceptions such as RET, the sharpe ratio’s, BIC and overall a little higher p-values which could

be caused by using a slightly different data source. An important note to make is that the re-

sults in Table 2 show that the ECM model has the best return on investment in-sample, instead

of the worst which was found by Nyberg (2011). Although that the ECM again has the lowest

Sharpe ratio and the worst p-values for the statistical tests, the high RET could indicate better

in-sample performance than is found by Nyberg (2011).

Table 2: Estimation results of in-sample standard probit models
Static model Dynamic model Static auto. model Dynamic auto. model ECM model

Constant 0.059 0.015 0.056 0.014 -0.065
(0.096) (0.135) (0.091) (0.139) (0.034)

π I
t−1 0.061 -0.016 0.868

(0.393) (0.365) (0.066)
It−1 0.078 0.083

(0.172) (0.189)
∆it−1 -0.304 -0.291 -0.298 -0.291 -0.153

(0.129) (0.132) (0.134) (0.133) (0.065)
py

t+5 -0.497 -0.468 -0.470 -0.474 -0.015
(0.255) (0.263) (0.297) (0.297) (0.048)

Log-L -161.49 -161.38 -161.48 -161.38 -162.64
psR2 0.039 0.040 0.039 0.040 0.030
BIC 339.43 344.69 344.88 350.17 347.20
CR 0.579 0.583 0.579 0.579 0.575
RET 8.8% 9.7% 8.8% 9.7% 9.8%
SR 0.163 0.158 0.131 0.158 0.086
PT 0.013 0.009 0.014 0.013 0.022
DM 0.025 0.017 0.017 0.018 0.038
DMra 0.004 0.003 0.003 0.003 0.022
DM It=0 0.000 0.000 0.000 0.000 0.000
DM It=0

ra 0.000 0.000 0.000 0.000 0.000

Notes: Standard errors are given in parentheses. The p-values of the PT and Diebold and Mariano (1995) tests are
given. Finally, ra implies risk-adjusted returns, meaning that average return is standardized by the standard

deviation of returns. And It = 0 implies that only periods with negative excess stock returns are investigated.

5.1.2 Ridge, LASSO and Elatic Net probit models

Firstly, only the recession forecasts are estimated using Ridge, LASSO or Elastic Net probit. The

explanatory variables used are the recession forecast and the first difference of the short-term

interest rate, as these are found to have the best predictive power in the standard models. Table

3 shows that using the more advanced recession forecasts causes the CR-value, psR2 and the
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RET to be generally similar for the models, and sometimes higher.

Table 3: psR2, CR and RET values of models using standard, Ridge, LASSO or Elasitc Net
computed recession forecasts

standard Ridge LASSO EN
Model xt−1 psR2 CR RET psR2 CR RET psR2 CR RET psR2 CR RET
Static py

t+5, ∆it−1 0.039 0.579 8.8% 0.040 0.575 9.2% 0.040 0.575 9.2% 0.040 0.575 9.2%
Dynamic py

t+5, ∆it−1 0.040 0.583 9.7% 0.041 0.583 9.6% 0.041 0.579 9.4% 0.041 0.583 9.6%
Static A. py

t+5, ∆it−1 0.039 0.579 8.8% 0.040 0.579 9.4% 0.040 0.583 9.7% 0.040 0.583 9.7%
Dynamic A. py

t+5, ∆it−1 0.040 0.579 9.7% 0.041 0.583 9.6% 0.041 0.579 9.4% 0.041 0.583 9.6%
ECM py

t+5, ∆it−1 0.030 0.575 9.8% 0.030 0.579 10% 0.030 0.579 10% 0.030 0.579 10%

Secondly, only the models are estimated using Ridge, LASSO or Elastic Net probit. Table 4

shows that these more advanced probit models provide higher CR and RET values compared

to the standard probit models. This means that these models are better at indicating the sign of

the excess stock returns in-sample, although having lower pseudo-R2 values due to the regu-

larization terms in their likelihood functions.

Table 4: In-sample values of psR2, CR and RET when only the model is estimated with stan-
dard, Ridge, LASSO or Elastic Net probit

standard Ridge LASSO EN
Model xt−1 psR2 CR RET psR2 CR RET psR2 CR RET psR2 CR RET
Static py

t+5, ∆it−1 0.039 0.579 8.8% 0.031 0.608 10.6% 0.026 0.608 10.6% 0.025 0.608 10.6%
Dynamic py

t+5, ∆it−1 0.040 0.583 9.7% 0.017 0.596 9.7% neg. 0.608 10.6% 0.010 0.583 10%
Static A. py

t+5, ∆it−1 0.039 0.579 8.8% 0.028 0.608 10.4% 0.026 0.608 10.6% 0.025 0.608 10.6%
Dynamic A. py

t+5, ∆it−1 0.040 0.579 9.7% 0.017 0.604 10.4% 0.021 0.596 10.7% 0.010 0.592 10%
ECM py

t+5, ∆it−1 0.030 0.575 9.8% neg. 0.592 10.7% neg. 0.592 10.8% neg. 0.592 10.7%

Notes: "neg." indicates that the pseudo-R2 is negative in that model.

As the results show that using the Ridge, LASSO or Elastic Net probit models to forecast the

recession variable leads to similar and sometimes better forecasts of the sign of the excess stock

returns, these will continue to be used. Using Ridge, LASSO or Elastic Net probit when only

estimating the model itself, also shows promising results. When both the recession forecast

and the model are computed using the Ridge, LASSO or Elastic Net probit models, the results

of Tables 5-7 are found. As these models put a penalty on the parameters, in general are the

parameters closer to zero than in the models estimated using the standard probit model.

Comparing the values of the CR and RET between the models using standard probit and the

ones using Ridge probit, LASSO probit or Elastic Net probit, shows that all values of the mod-

els using machine learning techniques are higher. This result indicates that using the Ridge,

LASSO and Elastic Net probit models it is possible to increase the in-sample predictive perfor-

mance of all models, as these models can correctly predict the direction of the US stock market

in more periods. This result may be unanticipated at first glance, as in most cases models which

use regularization terms such as Ridge, LASSO and Elastic Net perform worse in-sample com-

pared to their normal specification. However, the reason for this result is that the λ of these

models are chosen based on the CR value, meaning that the models are partly optimized to

provide good CR values while in the standard probit models this is not necessarily the case.

That the Ridge, LASSO and Elastic Net probit models normally perform worse in-sample is

also shown by the pseudo-R2. The values of the models using machine learning techniques are

lower in all cases, as these models are prevented from over-fitting and therefore explain less of
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the variance of the dependent variable. The results of the statistical measures show a very even

picture between the techniques used, with nearly all models being significant at the 1% level.

The ECM model has the highest p-values in general, but the differences are marginal.

Lastly, Table 6 shows sparsity results for the autoregressive variable π I
t−1 and the recession

forecast in the ECM model. The variables already were insignificant in the models using the

standard probit technique and the ℓ1-norm then consequently eliminated them from the model.

Table 5: Estimation results of in-sample Ridge probit models
Static model Dynamic model Static auto. model Dynamic auto. model ECM model

Constant 0.024 -0.05 0.013 -0.049 -0.109
(0.091) (0.098) (0.083) (0.103) (0.062)

π I
t−1 0.072 0.019 0.774

(0.224) (0.155) (0.122)
It−1 0.067 0.076

(0.1020) (0.116)
∆it−1 -0.261 -0.147 -0.234 -0.176 -0.154

(0.118) (0.089) (0.111) (0.098) (0.071)
py

t+5 -0.319 -0.098 -0.248 -0.136 -0.038
(0.203) (0.116) (0.172) (0.137) (0.073)

Log-L -162.53 -164.14 -162.96 -163.66 -168.18
psR2 0.031 0.017 0.027 0.021 neg.
BIC 341.50 350.19 347.85 354.73 358.28
CR 0.604 0.600 0.604 0.604 0.596
RET 10.5% 9.9% 10.2% 10.5% 10.8%
SR 0.175 0.155 0.159 0.180 0.119
PT 0.001 0.002 0.001 0.001 0.003
DM 0.009 0.017 0.017 0.025 0.023
DMra 0.000 0.002 0.002 0.005 0.016
DM It=0 0.000 0.000 0.000 0.000 0.000
DM It=0

ra 0.000 0.000 0.000 0.000 0.000
λR 0.01961 0.12421 0.03411 0.08071 0.03221

Notes: λR > 0.1 because this gave the optimal CR-value and is only just larger than 0.1

Table 6: Estimation results of in-sample LASSO probit models
Static model Dynamic model Static auto. model Dynamic auto. model ECM model

Constant 0.027 0.001 0.026 0.031 -0.134
(0.096) (0.135) (0.096) (0.140) (0.130)

π I
t−1 0.000 0.000 0.739

(0.408) (0.416) (0.242)
It−1 0.027 0.045

(0.171) (0.194)
∆it−1 -0.258 -0.010 -0.254 -0.267 -0.091

(0.127) (0.122) (0.128) (0.131) (0.096)
py

t+5 -0.338 -0.011 -0.337 -0.435 0.000
(0.259) (0.262) (0.264) (0.289) (0.076)

Log-L -163.31 -166.50 -162.63 -163.35 -175.02
psR2 0.026 neg. 0.026 0.032 neg.
BIC 343.05 354.93 348.62 352.67 371.96
CR 0.608 0.600 0.608 0.588 0.588
RET 10.6% 9.8% 10.6% 9.7% 10.8%
SR 0.176 0.150 0.176 0.160 0.115
PT 0.001 0.002 0.001 0.006 0.008
DM 0.009 0.014 0.014 0.015 0.014
DMra 0.000 0.001 0.001 0.002 0.006
DM It=0 0.000 0.000 0.000 0.000 0.000
DM It=0

ra 0.000 0.000 0.000 0.000 0.000
λL 0.01131 0.08451 0.01161 0.00711 0.05301
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Table 7: Estimation results of in-sample Elastic Net probit models
Static model Dynamic model Static auto. model Dynamic auto. model ECM model

Constant 0.029 -0.022 0.027 -0.022 -0.098
(0.094) (0.126) (0.091) (0.128) (0.059)

π I
t−1 0.000 0.000 0.807

(0.160) (0.004) (0.112)
It−1 0.020 0.020

(0.160) (0.145)
∆it−1 -0.262 -0.201 -0.258 -0.202 -0.132

(0.125) (0.123) (0.125) (0.131) (0.056)
py

t+5 -0.345 -0.141 -0.339 -0.141 0.008
(0.244) (0.229) (0.245) (0.230) (0.060)

Log-L -163.03 -164.53 -163.09 -164.53 -170.89
psR2 0.027 0.014 0.026 0.014 neg.
BIC 342.49 350.99 348.11 356.47 363.70
CR 0.608 0.583 0.608 0.583 0.592
RET 10.6% 10.1% 10.6% 9.8% 10.7%
SR 0.176 0.142 0.176 0.147 0.110
PT 0.001 0.010 0.001 0.007 0.005
DM 0.009 0.004 0.004 0.004 0.003
DMra 0.000 0.000 0.000 0.000 0.001
DM It=0 0.000 0.000 0.000 0.000 0.000
DM It=0

ra 0.000 0.000 0.000 0.000 0.000
λEN 0.01631 0.04011 0.01711 0.04011 0.05021

5.2 Out-of-sample

The most important part of evaluating the forecasting abilities of the models, is the out-of-

sample forecasting. The performance out-of-sample indicates whether a model can be useful

in practice. Previously done research finds that although models can have good in-sample per-

formance, this does not imply good out-of sample performance as found by Han (2007). How-

ever, even if the predictive ability is small out-of-sample, Anatolyev and Gospodinov (2010b)

still mention that using these models can lead to economically good performance.

The out-of-sample period in this research starts in January 1989 and ends in December

2021. The parameters are estimated using an expanding window, meaning that a one-month

ahead forecast is made for every month using parameters estimated with all data available up

to that month. The construction of the forecasts is done in two steps, namely first all recession

forecasts are computed and thereafter are the models estimated and the out-of-sample forecasts

computed. The computation of the pseudo-R2 out-of-sample is more complicated than in-

sample, the log-likelihood values out-of-sample are computed using the estimated parameters

of each one-month ahead forecast separately.

In-sample it is shown that using the Ridge, LASSO and Elastic Net probit models improves

the performance of the models, therefore these models are compared to the standard probit

models to see whether this improvement remains out of sample. In case of the Ridge, LASSO

and Elastic Net probit models, the recession forecast and the total model estimation is made

using these types of probit models and using the λ′s found in-sample while using the given set

of explanatory variables. The explanatory variables used are the recession forecast and the first-

differences of the interest rates. These are chosen following the in-sample results and because

Nyberg (2011) found these to have the best out-of-sample predictive ability. The results are

shown in Table 8.

Firstly, the results of the standard probit models are compared. The results show that it
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Table 8: Out-of-sample results of the standard, Ridge and LASSO probit models
standard Ridge LASSO EN

Model xt−1 psR2 CR RET psR2 CR RET psR2 CR RET psR2 CR RET
Static py

t+5 0.013 0.621 10.9% 0.011 0.624 10.9% neg. 0.624 9.4% neg. 0.614 8.9%
Static py

t+5, ∆Rt−1 0.015 0.619 5.1% 0.009 0.619 3.9% 0.009 0.619 4.1% 0.010 0.614 4.0%
Static py

t+5, ∆it−1 0.016 0.614 4.7% 0.010 0.611 3.9% 0.009 0.616 3.7% 0.012 0.611 3.9%

Dynamic py
t+5 0.013 0.614 10.0% 0.003 0.601 8.1% neg. 0.596 8.1% neg. 0.601 8.1%

Dynamic py
t+5, ∆Rt−1 0.017 0.621 10.6% 0.006 0.609 9.1% neg. 0.609 3.4% neg. 0.609 3.3%

Dynamic py
t+5, ∆it−1 0.018 0.621 10.6% 0.004 0.599 2.6% neg. 0.611 3.5% neg. 0.601 2.9%

Static A. py
t+5 0.018 0.626 10.7% 0.011 0.624 10.7% 0.005 0.604 9.2% 0.007 0.619 10.6%

Static A. py
t+5, ∆Rt−1 0.022 0.601 3.5% 0.009 0.619 3.9% 0.002 0.619 4.1% 0.005 0.614 4.0%

Static A. py
t+5, ∆it−1 0.017 0.609 4.0% 0.009 0.609 3.6% 0.004 0.614 3.2% 0.008 0.609 3.9%

Dynamic A. py
t+5 0.021 0.588 8.6% 0.003 0.601 8.1% neg. 0.593 8.1% neg. 0.601 8.0%

Dynamic A. py
t+5, ∆Rt−1 0.022 0.606 9.3% 0.007 0.611 9.2% neg. 0.596 2.3% neg. 0.596 2.4%

Dynamic A. py
t+5, ∆it−1 0.019 0.619 10.4% 0.006 0.609 3.2% 0.007 0.614 4.3% neg. 0.599 2.7%

ECM py
t+5 0.035 0.621 10.1% 0.004 0.599 9.3% 0.019 0.604 10.1% 0.001 0.596 9.4%

ECM py
t+5, ∆Rt−1 0.031 0.626 10.6% neg. 0.556 7.4% 0.007 0.596 10.1% 0.007 0.586 9.0%

ECM py
t+5, ∆it−1 0.015 0.609 4.5% 0.007 0.588 4.5% neg. 0.576 8.4% 0.011 0.583 4.3%

B&H 8.8% 0.139

indeed seems possible to predict the sign of the excess stock market returns and therefore yield

higher returns on investment than the B&H strategy, however it depends on the combination of

model and explanatory variables. The predictive ability of the standard probit models is lower

than in-sample, as is shown by the values of the pseudo-R2. All Sharpe ratios of the standard

probit models are higher than the ratio of the Buy-and-Hold strategy. A possible explanation

for this could be that the investment in the models is able to change between the stock index

and the risk-free interest rate, with the risk-free interest rate having a much smaller volatility.

Comparing the performances of the models, shows that on average the dynamic model has

the best predictive ability out-of-sample of the standard probit models. This result is similar

to what was found in-sample, but in-sample the ECM model has a little higher return on in-

vestment. When the results of the ECM model are investigated out-of-sample it still performs

well, but not as good as the dynamic model. The ECM model yields higher returns than the

B&H strategy two out of three times. The ECM model also seems to outperform the dynamic

autoregressive model, as Nyberg (2011) also found. Noting that Nyberg (2011) uses a smaller

out-of-sample period up to December 2006. The ECM model is in fact a dynamic autoregressive

model, but with a restriction put on the dynamic parameter (Section 4.2). The worst perform-

ing models out-of-sample seem to be the static and static autoregressive models when using the

recession forecast and another variable as explanatory variables. These models have especially

low RET values, but the CR an SR are not very low compared to the other models. These low

RET values over the entire period are caused by low returns in the beginning of the forecasting

period. The best performing models on the other hand are the static and static autoregressive

models using only the recession forecast as explanatory variable. These two models yield the

highest CR, RET and SR values of all standard probit models. Which type of standard probit

model performs the best is difficult to compare to the results found in Nyberg (2011) as the

dynamic type models on average outperform the static type models, but the best two models

are of the static type. Where Nyberg (2011) found that the static type models outperformed the

dynamic type models, excluding the ECM model.
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Investigating the results of the Ridge probit models out-of-sample shows a very different

picture compared to the results found in-sample. The only similarity is that the Ridge pro-

bit models have lower pseudo-R2 values. The improvements which the Ridge probit models

shows in-sample compared to the standard probit models completely disappeared. Only in the

case of the static autoregressive model using the recession forecast and the first-difference of

the long-term interest rate yields the Ridge probit model a higher return on investment. When

looking at the CR values of the Ridge probit models, the values are higher than the values of

the standard probit models when the RET values are similar. For instance, in the case of the

dynamic autoregressive model with the recession forecast as explanatory variable. This could

be the result of the fact that the λR tuning parameter is chosen based on the highest CR value

in-sample. This could imply that in-sample the higher CR value translates into higher returns

on investment, but out-of-sample this is not the case. This fact is nevertheless strange as it

therefore would be suspected that all CR values should be higher, but they are not. Although

the results are not better than the standard probit models, the Ridge probit models are still in

some models able to outperform the B&H strategy in terms of RET and the Sharpe ratios are

nearly always higher. The best performing Ridge probit models are the same as found using

the standard probit models, namely the static and static autoregressive model using only the

recession forecast as explanatory variable. Giving also very similar results.

The results using the LASSO probit model are similar to those using the Ridge probit model.

The LASSO probit model is also not able to outperform the standard probit model out-of-

sample, while this was the case in-sample. The LASSO probit model is only able to yield

higher return on investment using the static autoregressive model with the recession forecast

and the long-term interest rate and in case of the ECM model with the recession forecast and

the short-term interest rate. The LASSO probit model also seems to have the same characteristic

concerning the CR values as the Ridge probit model when the RET values are similar with the

standard probit model. Finally, the LASSO probit model seems to be the only technique which

is able to yield relatively high RET values for all ECM models. The best performing models

using LASSO Probit are therefore the ECM models using only the recession forecast or also

using the first-difference of the long-term interest rate.

The last model to investigate is the Elastic Net probit. The regularization term of this model

is a combination of the ones used by Ridge and LASSO probit and the results also show this.

The out-of-sample performance of the Elastic Net probit model is nearly always worse than

at least one of the other two models using machine learning techniques. Therefore, performs

the Elastic Net probit model in general the worst out of the four probit models considered.

However, the Elastic Net probit model is still sometimes able to outperform the B&H strategy

and the best performing model of the Elastic Net type is the static autoregressive model using

only the recession forecast as an explanatory variable.

Figure 2 shows the out-of-sample probability forecasts of the best performing standard,

Ridge, LASSO and Elastic Net model. An enlarged version can be found in the Appendix. The

graph shows that the static autoregressive Elastic Net model (green line) and static Ridge model

(red line) provide almost the same probabilities. The standard static model differs slightly from

those two models as the standard static model does not include the regularization terms. This
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fact is visible as the probabilities of the static Ridge and static autoregressive Elastic Net model

are less extreme since their parameters are closer to zero. A very visible difference between the

use of the static models and the ECM model is the volatility of the probabilities over time. The

ECM model shows very large spikes and changes aggressively between investing in stocks or

the risk-free interest rate, while the static model moves very "static" and only during economi-

cal bad times falls below the 0.5 threshold. For instance, during the dot-com bubble 2001-2003,

the economic crisis in 2008 or at the beginning of the COVID-19 pandemic in 2020. It should

also be noted that all models are above the 0.5 threshold most of the time, meaning that in most

periods the investment in stocks is chosen. These characteristics are model specific and not

caused by using the Ridge or LASSO probit, as Nyberg (2011) also describes these behaviors

on the shorter forecasting period.

Figure 2: Out-of-sample probability forecasts of the static model with py
t+5(blue), static Ridge model with

py
t+5(red), ECM LASSO model with py

t+5 and ∆Rt−1(black) and the Elastic Net model with py
t+5(green)

Table 9 shows the results of the statistical tests belonging to the best performing standard,

Ridge, LASSO and Elastic Net model. As the standard static and static Ridge model are similar,

they also give similar results. The only difference is that when only periods of negative excess

returns and normalized returns are considered, the returns of the standard static model are

at a 5% significantly different than those of the B&H strategy. Where the returns of the static

Ridge model are significantly different at a 10% level. The difference between the p-values of

the static Ridge and static autoregressive Elastic Net model is remarkable. These two models

provide nearly equal probability forecast, shown in Table 2, but the test results are not. The

static autoregressive Elastic Net model performs worse and is not significant at the 10% level

in the case of the PT and DMIt=0
ra tests, while the static Ridge model is. This indicates that the

static autoregressive Elastic Net model is not able to significantly predict the sign of the excess

stock return. When the results of the ECM LASSO model are investigated, it is outperformed

by the static (autoregressive) models. Only in the case of DMIt=0
ra does it have a better p-value.
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Table 9: Statistical test for the best performing standard, Ridge, LASSO and Elastic Net probit
model

Model xt−1 CR RET SR PT DM DMra DM It=0 DM It=0
ra

Static py
t+5 0.621 10.9% 0.199 0.096 0.154 0.017 0.000 0.029

Static Ridge py
t+5 0.624 10.9% 0.195 0.092 0.141 0.019 0.000 0.088

ECM LASSO py
t+5, ∆Rt−1 0.596 10.1% 0.186 0.503 0.381 0.071 0.000 0.002

Static Auto. EN py
t+5 0.619 10.6% 0.189 0.189 0.231 0.040 0.000 0.111

Notes: The p-values of the PT and DM tests are shown, where the base trading strategy is the Buy-and-Hold
strategy

5.3 Comparison probit and ARMAX models

Up to this point, only probit models have been investigated and compared. This Section in-

troduces the ARMAX model and compares the out-of-sample performances of the previous

probit models and ARMAX type models. It is possible to compare the models, as both have

the excess stock return as their dependent variable. Noting that in the probit models the excess

stock return is made binary, meaning a value of 1 if the excess stock return is positive and o

otherwise. The ARMAX models used to compare to the probit models are the same as used in

Section 4.4 of Nyberg (2011), but now run on a longer time period. These models were chosen

based on their BIC. The results of these models are shown in Table 10.

Table 10: Out-of-sample results of ARMAX models
Model xt−1 CR RET SR
B&H 8.8% 0.139
ARMAX(1,0) py

t+5 0.586 9.6% 0.184
ARMAX(1,0) py

t+5, SPUS
t−1 0.576 4.2% 0.168

ARMAX(1,0) py
t+5, ∆Rt−1 0.576 3.7% 0.138

ARMAX(1,0) py
t+5, ∆it−1 0.583 4.2% 0.164

ARMAX(2,0) py
t+5 0.588 8.9% 0.169

ARMAX(2,0) py
t+5, SPUS

t−1 0.578 8.7% 0.170
ARMAX(2,0) py

t+5, ∆Rt−1 0.571 8.2% 0.152
ARMAX(2,0) py

t+5, ∆it−1 0.588 9.4% 0.173

Notes: The ARMAX(p,0) models used are defined as follows: rt = a + ∑
p
i=1 birt−i+ x′t−1d. To estimate the ARMAX

models in Matlab, The Oxford MFE Toolbox is used.

Investigating the results in Table 3 shows that nearly all probit models are able to give

higher CR values than the ARMAX models, as the ARMAX give values around the 0.58 and

the probit models are more around the 0.60 and above. When the returns on investment are

compared it shows that the ARMAX(2,0) models are performing well and in two out of four

times give higher returns than the 8.8% of the B&H strategy. However, the best performing

model of the ARMAX type is the ARMAX(1,0) model using only the recession forecast as an

explanatory variable. The predicted excess stock returns of the best performing ARMAX(1,0)

and ARMAX(2,0) model are shown in Figure 3. When this best performing ARMAX model is

compared to the probit models, it has lower CR, RET and SR values than the best performing

standard, Ridge, LASSO and Elastic Net probit models. The fact that the probit models outper-

form the ARMAX models is in line with the results found on the shorter time period by Nyberg
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(2011).

Figure 3: Out-of-sample excess stock return forecasts of the ARMAX(1,0) model with py
t+5(black) and of the

ARMAX(2,0) model with py
t+5 and ∆it−1(red)

5.4 Small and large size firms

In the final part of this research, the forecasting abilities of the best performing models are

investigated using data concerning small or large size firms separately instead of the US stock

market as a whole. Research has shown that small size firms can react differently to market

news than large size firms, as for example was shown by Chan and Chen (1991).

For the out-of-sample forecasting the best standard, Ridge, LASSO and Elatic Net model are

used to calculate the one-month ahead forecasts of the small and large size firms in the same

manner as done in Section 5.2. The excess stock returns of the small and large size firms rt
S and

rt
L are made using the size-sorted CRSP decile portfolios, where the small size firms belong to

the first decile and the large size firms are the tenth decile. As Nyberg (2011) also mentioned

concerning the shorter time period, there is a large similarity between the values of the excess

stock return indicator of the S&P 500 index and the indicators of the small and large size firms.

The large size firms have in 96.8% of the months the same value and the small size firms in

79.8% of the months. The results of the out-of-sample forecasts of the small and large size firms

are shown in Table 11.

Table 11: Out-of-sample results of small and large size firms’ returns
Firm size Model xt−1 psR2 CR RET SR PT DM DMra DM It=0 DM It=0

ra

Small B&H 11.3% 0.141
Static py

t+5 0.011 0.596 13.2% 0.174 0.247 0.360 0.104 0.002 0.491
Static Ridge py

t+5 0.006 0.599 12.5% 0.158 0.207 0.168 0.093 0.024 0.030
ECM LASSO py

t+5, ∆Rt−1 0.008 0.583 11.0% 0.209 0.030 0.624 0.052 0.000 0.000
Static Auto. EN py

t+5 0.002 0.591 11.5% 0.146 0.679 0.996 0.674 0.030 0.030
Large B&H 11.3% 0.182

Static py
t+5 0.015 0.644 13.0% 0.232 0.013 0.190 0.020 0.000 0.023

Static Ridge py
t+5 0.005 0.634 11.3% 0.181 0.190 0.317 0.301 0.315 0.000

ECM LASSO py
t+5, ∆Rt−1 0.020 0.636 13.3% 0.242 0.020 0.275 0.019 0.000 0.001

Static Auto. EN py
t+5 neg. 0.631 11.3% 0.181 0.699 0.334 0.324 0.359 0.000
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The results of the small size firms show that only the ECM LASSO model is able to provide

a p-value below the 5% level for the PT test, showing that it is able to predict the sign of the

excess stock returns. However, all models have low pseudo-R2 values. Furthermore, the DM

tests indicate that the static Ridge and ECM model are able to provide significantly different

returns to the Buy-and-Hold strategy when there is adjusted for the risk, at the 10% level for

all returns and at the 5% or even 1% level in case of only months with negative excess stock

returns. Investigating the CR values shows that these are all lower than when forecasts are

made for the S&P 500 index. Lastly, only the ECM LASSO model is not able to yield higher

RET values than the B&H strategy, but all returns were higher than those found for the S&P

500 index.

When the large size firms are used, the models are able to give higher CR values than for

small firms and the S&P 500 index. The B&H strategy yields the same RET as for the small firms

but has a larger Sharpe ratio due to the fact that large firms tend to have less volatile returns.

This is also shown by the Sharpe ratios of the models, which are higher than those in case of

the small firms. While even having lower returns on investment in two out of three models.

The results of the statistical tests show again that the ECM LASSO model has many significant

p-values, as well as the static model this time. Only the normal DM test is not significant at the

5% level. Lastly, the ECM LASSO model provides the best return on investment of all models.

Figure 4 shows the probability forecasts of the best model when the small or large size firms

are investigated. The characteristics of the static and ECM type model are again very visible.

Figure 4: Out-of-sample probability forecasts of the static model with py
t+5 for small firms(black) and of the ECM

LASSO model with py
t+5 and ∆Rt−1 for large firms(red)
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6 Conclusion

This paper investigates the possibility of improving the standard probit models for predicting

the direction of the US stock markets, following the general setup of Nyberg (2011). This is

done by implementing the machine learning techniques Ridge, LASSO and Elastic Net. There-

fore, the following research question is considered: ”Can machine learning techniques improve

the forecasting ability of standard probit models for predicting the direction of the US stock

market?”

The results of the Ridge, LASSO and Elastic Net probit models show that it is possible to

improve the performance of the standard probit models in-sample, as they yield higher returns

on investment and have higher CR values which indicate the amount of correctly forecasted

periods. However, the Ridge, LASSO and Elastic Net probit models do not improve the per-

formance of forecasting the direction of the US stock market out-of-sample as a whole or when

only small size firms are considered. Only an ECM LASSO model was able to outperform

the standard probit model, when only large size firms were considered. The results show that

the best Ridge, LASSO and Elastic Net probit models compare favorably against sign forecasts

made by ARMAX models.

The results found in this paper show that it is possible to improve the forecasting ability

of standard probit models in-sample, but not out-of-sample. This is shown by out-of-sample

analysis when the tunning parameter of the machine learning technique is optimized once,

based on the in-sample period. Repeatedly re-optimizing the tunning parameter every time

period before making a new forecast was not possible due to time limitations. This perhaps

leads to the worse out-of-sample performance, as forecasts made in 2020 are using a parameter

optimized for data more than 30 years before. Therefore, an interesting extension on this paper

would be an out-of-sample analysis where the tunning parameter is repeatedly re-optimized

every time period. Another part of the analysis which could be extended, is the number of

machine learning techniques used. As more advanced methods are available.
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Appendix

Code description:

All code and data used in for paper can be found in the zip-file Code&Data\_BachelorThesis\

_RubenSchorno\_545096.zip . The sources of the data are described in the data Section of

this paper. The code is programmed and run in version 9.9 of Matlab. The ReadMe.txt file

in the zip-file explains how to run the code in order to find the results of this paper. The

most important part of the code is the optimization process of the log-likelihood functions

to find the maximum likelihood estimates. This is done by programming the log-likelihood

functions as separate files, which returns the log-likelihood value with a (-) sign in front. The

transformation is made to make it a minimization problem instead of a maximization problem,

because Matlab is better at minimizing. Then the fmincon or fminunc function of Matlab is used

to solve the minimization problem and return the MLE parameters, together with other results

such as the maximum likelihood value and hessian. The fmincon is used when the model

considered has an autoregressive parameter or a constraint such as the ECM model. Using the

parameter estimates, the forecasts can be made. The results are then used to compute all tests

and performances measures using mostly simple for-loops.

Figure 5: Out-of-sample probability forecasts of the static model with py
t+5(blue), static Ridge model with

py
t+5(red), ECM LASSO model with py

t+5 and ∆Rt−1(black) and the Elastic Net model with py
t+5(green)

24


