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Abstract

We compare two different models that allow for a time-varying volatility of volatility against
each other and three benchmark models. The models, ART-GARCH from Ding (2021b)
and (A)SHARV from Ding (2021a), are simple to implement and able to now- and forecast
volatility and volatility of volatility simultaneously. We show that both models have a bet-
ter fit as well as better now- and forecasting performance than other GARCH-type models.
We find no evidence that the ART-GARCH type models have a better goodness-of-fit than
ASHARV. We also find no empirical evidence that (A)SHARV is outperformed by the ART-
GARCH type models in nowcasting nor in forecasting.
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1 Introduction

In this paper we compare two models that both allow for conditional heteroskedasticity in the
volatility. The first one, from Ding (2021a), is called the stochastic heteroskedastic autoregres-
sive volatility (SHARV) model and the asymmetric extension of SHARV is called ASHARV. We
use (A)SHARV to refer to both SHARV and ASHARV. Second, we use the model proposed in
Ding (2021b) called augmented real-time generalized autoregressive conditional heteroskedas-
ticity (ART-GARCH). We also compare these models to other GARCH-type models. We are
interested to see if the ART-GARCH model is able to outperform (A)SHARV.

Volatility is widely used in finance. It is used as a proxy for risk and therefore useful risk
management, derivative pricing and hedging, market making, market timing, portfolio selection
and many other financial activities. Obtaining reliable and estimations and forecasts is crucial.
Almost all the financial uses of volatility models entail forecasting aspects of future returns. The
two main methods for modelling volatility are GARCH-type models and stochastic volatility
(SV) models. The main difference lies in their information set. Namely, whether the volatil-
ity is a random process itself. Breitung and Hafner (2016) and Politis (2007) state that most
GARCH-type and SV models ignore crucial information from the current observation and there-
fore inefficiently now- and forecast the volatility. Breitung and Hafner (2016) propose a model
where they do use the current return to estimate the volatility, but for this reason the model is
only able to nowcast.

Smetanina (2017) proposes a new model where she attempts to link the GARCH-type and
SV models into a hybrid: Real-Time GARCH. This model includes the lagged squared return
and current squared return innovation in the volatility process, i.e,

σ2t = α+ βσ2t−1 +
2
t−1 +ψε

2
t−1, (1)

where εt ≡ rt/σt are i.i.d(0, 1) with Eε4t <∞. The RT-GARCH model aims to use all available
information efficiently. She states that this model is able to obtain better volatility forecasts
than the standard GARCH-type models.

All these models assume that the volatility of volatility is constant over time. However,
Corsi et al. (2008) find empirical evidence of volatility clustering in realized variance and that
accounting for this clustering improves the accuracy of point forecasts. True volatility should
also exhibit time-variation and clustering as realised measures are consistent estimators of the
implied volatility. In the GARCH and SV literature, Ding (2021a) is the first to propose a model
with conditional heteroskedasticity in the volatility. The model is based upon the idea of RT-
GARCH, but allowing for time-varying volatility of volatility. This model is called SHARV. He
find empirical evidence that his model has a better fit, a more efficient parameter estimator as
well as more accurate volatility and VaR forecasts than other common GARCH-type models.

Nowadays there is an abundance of high frequency data, due to the rise of automated trading.
Because of that a new approach to volatility modelling has arisen, which focuses on modelling
daily realised measures (RM). Volatility is no longer treated as a latent variable, but can be
consistently estimated using intraday data. Nevertheless, GARCH and SV models are still widely
used by researchers and practitioners for several reasons. First, Hansen and Lunde (2006) state
that high frequency data are contaminated by microstructure noise. Also, these RM-based
models rely on the availability of high frequency data, which is not also available for illiquid
assets. Third, they have no direct continuous time analogues, which makes them not ideal for
purposes as derivative pricing.

Ding (2021a) proposes a simple model for returns, volatility and volatility of volatility, called
(A)SHARV. This model is a simplification of his earlier proposed model the Augmented RT-
GARCH (Ding (2021b)). The ART-GARCH model includes a constant term and the squared
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lagged return. Ding (2021a) argued that these terms were unnecessary. The ART-GARCH
model is more extensive and potentially superior to the simplified (A)SHARV. Our main research
question is: “Can ART-GARCH beat (A)SHARV? ”.

We compare (A)SHARV against the ART-GARCH models and three benchmark models:
GARCH, GJR-GARCH and RT-GARCH. We compare the different models and perform an
empirical analysis. We perform in-sample analysis, where we look at QQ-plots of the standardised
residuals and also nowcast the volatility and compare the performance through MSE and the
model confidence set as proposed by Hansen et al. (2011). Second, we analyse the models out-
of-sample by comparing forecasting performance. Again, we compare the models by means of
MSE and the 95% MCS. We use the realized variance as a proxy for volatility. We use daily
open-to-close (log) returns of the SP500, DJIA and AEX from 3 January 2000 to 31 December
2019.

We find no empirical evidence that ART-GARCH can beat (A)SHARV. The ART-GARCH
models have similar forecasting performance as (A)SHARV. In nowcasting it performs slightly
worse. In terms of BIC, ASHARV outperforms the other models. The QQ-plots show that
ASHARV has the best goodness-of-fit. We do find that both ART-GARCH and (A)SHARV
outperform the benchmark models. Comparing QQ-plots, we see that both models have a better
goodness-of-fit than the benchmark models. Also in terms of BIC and log likelihood the models
are favoured over the benchmark models. Lastly, we find that both models have a better now-
and forecasting performance than the other GARCH-type models.

2 Augmented RT-GARCH

2.1 Importance of the volatility of volatility

Ding (2021a) showed why the volatility of volatility should be incorporated in a volatility model
as following. Suppose that the true data generating process is defined as in, Andersen (1994), by

rt = f(Kt)t, (2)
Kt = ω + βKt−1 + (α+ γKt−1)ut, (3)

where ut − 1 are i.i.d.(0,1) white noise and f(.) is a positive measurable function of Kt. Also
we assume that E[εtut] = 0. Here, Kt has conditional heteroskedasticity in the volatility. Most
SV models assume γ = 0 which means constant volatility of volatility and most GARCH models
use γr2t−1 instead of the stochastic term. This results in a measurement error in Kt. Nelson
(1992) and Nelson and Foster (1995) showed that as the time between observations goes to zero,
misspecified GARCH models can still consistently now- and forecast the true volatility. However,
the measurement errors are not negligible for fixed time intervals. To show this, suppose we
estimate a GARCH model on the sample, which follows

K̃t = (ω + α) + βK̃t−1 + γr2t−1. (4)

If K̃t = Kt, then K̃t has a measurement error vt = α(ut−1)+γ(Kt−1ut−r2t−1). The measurement
error can be large as, Evt = 0, but the conditional mean, E[vt|Ft−1] = γ(Kt−1−r2t−1), is generally
not zero, where Ft−1 is σ generated by all known returns at time t− 1.

Ding (2021a) stated that the main reason to incorporate time-varying volatility of volatility
into the model is that even when the DGP in (3) is misspecified, the average measurement error
should still be smaller than those of models with constant volatility of volatility. To clarify this,
suppose τt is the true volatility of volatility and Kt−1 = K̃t−1 such that the measurement error is
given by vt = (τt−α−γKt−1)(ut−1) with conditional mean zero. Usually when volatility is small
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the volatility of volatility is also small and vice versa. Therefore, |τt − α− γKt−1| should be on
average smaller than |τt − c|. This still holds even if the innovation term of Kt is misspecified as
long as it is positively correlated with ut and shares similar first two moments. So, for GARCH,
we need that ρ(ut, ε2t−1) > 0 to make |τtut − γr2t−1| small. This is hard to proof empirically, but
it is reasonable to assume that ρ(ut, ε2t ) > 0. Therefore, we use ε2t to approximate ut.

2.2 Augmented RT-GARCH models

We use the ART-GARCH models as in Ding (2021b). Let the joint process (rt, σ2t ) satisfy

rt = σtεt, (5)

σ2t = α+ βσ2t−1 + γr2t−1 + ϕ(r−t−1)
2 + (ψ1 + ψ2σ

2
t−1)ε

2
t + η(ε−t )

2, (6)

where εt ≡ rt/σt are i.i.d. random variables symmetric around zero with the first two moments
equal to 0 and 1, respectively and Eε4 < ∞. Also x− = min(0, x). To ensure σ2t > 0 with
probability one, we require the parameter vector (α, β, γ, ϕ, ψ1, ψ2, η)

′ ≥ 0 with at least one of
the inequalities being strict. We specify three different ART-GARCH models. First, the full
specification with no additional restrictions is called the ART-GJR-GARCH-F model. Leverage
effects come both from current and lagged negative returns. Second the ART-GJR-GARCH
with leverage effect only from current negative return, i.e., ϕ = 0. And last, the symmetric
model, ART-GARCH with ϕ = η = 0. The model nests RT-GARCH from Smetanina (2017)
and GARCH. Setting ψ2 = ϕ = η = 0 makes the joint process a RT-GARCH model. By addi-
tionally setting ψ1 = 0, RT-GARCH becomes GARCH. Because all models are nested we can
perform the specification tests for model selection.

This model specification allows us to model the volatility and volatility of volatility simulta-
neously. To see this we express (6) as an AR(1) process with stochastic coefficient,

σ2t = Φ0 +Φ1,t−1σ
2
t−1 + zt, (7)

where

Φ0 = α+ ψ1 + 0.5η, (8)

Φ1,t−1 = β + ψ2 + γε2t−1 + ϕ(ε−t−1)
2, (9)

and

zt = (ψ1 + ψ2σ
2
t−1)

2(ε2t − 1) + η((ε−t )
2 − 0.5), (10)

is a martingale difference sequence (MDS) with conditional variance

E[z2t |Ft−1] = κ(ψ1 + ψ2σ
2
t−1)

2 + κη(ψ1 + ψ2σ
2
t−1) + (0.5κ+ 0.25)η2, (11)

where κ = Eε4t − 1. By definition, E[z2t |Ft−1] is the conditional variance of σ2t at time t − 1. It
is a quadratic function of the volatility. Therefore, the volatility and volatility of volatility can
be estimated through one filter even though E[z2t |Ft−1] is stochastic.

Also the model can capture multiple lags. Specifically,

σ2t = α+

p∑
j=1

βjσ
2
t−j +

q∑
j=1

(γj + ϕjIt−j)r
2
t−j + ε2t

l∑
j=1

(ϕ1 + ϕj+1σ
2
t−j + ηIt), (12)

where It is an indicator function that equals 1 if rt < 0. However, in this paper we focus on the
class of ART-GARCH(1,1,1) models.
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3 (Asymmetric) SHARV

Ding (2021a) argues that the ART-GARCH models can be simplified. First, he showed empirical
evidence that the quasi-maximum likelihood estimates of the constant term are close to zero for
all models which include the current squared return innovation. Also he stated that you do not
need to include the squared lagged return in the volatility process. This because of two reasons.
First, he showed that σ2t in (12) can be approximated by,

σ2t ≈
∞∑
j=0

βj
at−1−j

bt−1−j
r2t−j , (13)

where bt−1 = βσ2t−1 and at−1 = ψ1+ψ2σ
2
t−1. This shows that even though the SHARV specifica-

tion does not include the squared lagged return, it implicitly assigns time-varying weights to all
past squared returns. Second, σ2t−1ε

2
t is a more accurate measure of σ2t than r2t−1. Which corre-

sponds with Hansen et al. (2012) where they find that r2t−1 becomes insignificant after including
realized measures of the volatility in the process. Removing the constant term and squared
lagged return from the ART-GARCH specification results in a new simplified model, called the
(A)SHARV model.

3.1 SHARV model

We use the SHARV model as in Ding (2021a). Let the joint process (rt, σ2t ) satisfy

rt = σtεt, (14)

σ2t = βσ2t−1 + (ψ1 + ψ2σ
2
t−1)ε

2
t , (15)

where εt, ψ1, ψ2 and β > 0 are the same as in ART-GARCH. SHARV is fully nested in the
ART-GARCH model. The main innovation of the SHARV model, as well as the ART-GARCH
models, is the term ψ2σ

2
t−1ε

2
t which accounts for the conditional heteroskedasticity in σ2t . The

main drawback here is that the model cannot allow for skewness in εt and E[rt|Ft−1] = 0
simultaneously. However, in 2.3 we show that SHARV can be extended to an asymmetric SHARV
that allows for skewness in the error term while rt is really close to an MDS.

SHARV can also include multiple lags. SHARV(p,q,l) is given by

σ2t =

p∑
j=1

βjσ
2
t−j +

q∑
j=1

(ψ1j +

l∑
k=1

ψ2j,kσ
2
t+1−j−k)ε

2
t+1−j . (16)

We focus on SHARV(1,1,1) for the remainder of this paper.

3.2 Asymmetric SHARV model

We use the ASHARV as in Ding (2021a). This because SHARV does not capture the well
documented leverage effect between asset returns and their volatility. The ASHARV is defined
as follows

rt = µσt−1 + σtεt, (17)

σ2t = βσ2t−1 + (ψ1 + ψ2σ
2
t−1)ε

2
t + (η + ωσ2t−1)(ε

−
t )

2, (18)

where x− = min(x, 0) and εt satisfy the same conditions as in SHARV. ASHARV is not nested
in the ART-GARCH model as µ and ω are added. This model includes a drift term µσt−1. This
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because σtεt is no longer an odd function of εt and thus not an MDS. Ding (2021a) showed that
without the drift term, E[rt|Ft−1] is always negative, which is not a desired feature.

Different as in other asymmetric GARCH models, the leverage effect is not lagged. The
conditional variance of σ2t is given by

Var(σ2t |Ft−1) = κ(ψ1 + ψ2σ
2
t−1)

2 + (0.5κ+ 0.25)(η + ωσ2t−1)
2 + κ(ψ1 + ψ2σ

2
t−1)(η + ωσ2t−1),

where κ = Eε4t − 1. We can easily see that σt is weakly stationary when β + ψ2 + ω/2 < 1 and
the unconditional volatility is defined as follows, Eσ2t = (ψ1 + η/2)/(1− β − ψ2 − ω/2).

4 Properties of ART-GARCH and (A)SHARV

We state some assumptions and theorems needed for model estimation and forecasting. These
assumptions and theorems are obtained from Ding (2021b) and Ding (2021a).

Assumption 2.1. Let εt be i.i.d. random variables symmetric around zero with Eεt = 0,
Eε2t = 1 and Eε4t <∞.

Theorem 2.1 Ding If (rt, σ
2
t ) are generated by either (5) and (6) (ART-GARCH models),

(14) and (15) (SHARV) or (17) and (18) (ASHARV), εt satisfies Assumption 2.1 and θ =
(α, β, γ, ϕ, ψ1, ψ2, η, ω, µ)

′ ≥ 0, then the conditional density of the returns process is given by

fr(y|Ft−1) =


y

d1(y,σ2
t−1;θ)d2(y,σ

2
t−1;θ)

fε(d2(y, σ
2
t−1; θ)), for y ̸= 0,

1√
bt−1

fε(0), for y = 0,
(19)

where fε(.) is the pdf of εt,

d1(y, σ
2
t−1; θ) =

√
b2t−1 + 4at−1y2 + 4ct−1(y−)2, (20)

and

d2(y, σ
2
t−1; θ) =

sign(y)
√

d1(y,σ2
t−1;θ)−bt−1

2at−1+2ct−1I(y<0)
, if (ψ1, ψ2, η, ω)

′ ̸= 0,

y/
√
bt−1, if (ψ1, ψ2, η, ω)

′ = 0,

(21)

where

at−1 = ψ1 + ψ2σ
2
t−1, (22)

bt−1 = α+ βσ2t−1 + γr2t−1 + ϕ(rt−1)
2, (23)

ct−1 = η + ωσ2t . (24)

Theorem 2.2 Ding Let (rt, σ2t ) be generated by either (5) and (6) (ART-GARCH models), (14)
and (15) (SHARV) or (17) and (18) (ASHARV) and let εt satisfy Assumption 2.1 and Eε6t <∞.
Then, the quasi maximum likelihood estimator (QMLE) θ̂ of the true parameter θ0 is given by
θ̂ = argmaxθ∈Θ LT (θ), where LT (θ) is the quasi-log-likelihood function of r̃t = rt −µσt−1, given
by

LT (θ) =

T∑
t=1

lt(θ), (25)

where

lt(θ) = −1

2
log 2π − 1

2
d2(r̃t, σ

2
t−1; θ)

2 + log
r̃t

d1(r̃t, σ2t−1; θ)d2(r̃t, σ
2
t−1; θ)

, (26)

where d1 and d2 are given in (20) and (21).
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4.1 Now- and forecasting ART-GARCH

Next, we show the filters for volatility nowcasting and forecasting for the ART-GARCH models
as proposed by Ding (2021b). Note there are two different concepts of volatility. Namely,
instantaneous volatility σ2t and conditional variance Var[rt|Ft−1]. Since E[rt|Ft−1] is close to zero,
we approximate Var[rt|Ft−1] by E[r2t |Ft−1] which we regard as the conditional variance and call
σ2t just volatility. Note that the true conditional variance is E[(rt+n−E[rt+n|Ft]

2|Ft] ≈ E[r2t+n|Ft]
for all n ≥ 1. We define the volatility nowcast (27), one-step ahead volatility forecast (28), one-
step ahead conditional variance forecast (29), two-step ahead volatility forecast (30), two-step
ahead conditional variance forecast (31) and finally the multi-period ahead forecasts in Theorem
2.3.

σ2t =
1

2
bt−1 +

1

2

√
b2t−1 + 4at−1r2t + 4η(r−t )

2, (27)

E[σ2t+1|Ft] = α+ ψ1 +
1

2
η + (β + ψ2)σ

2
t + γr2t + ϕ(r−t )

2, (28)

E[r2t+1|Ft] = α+ (ψ1 +
1

2
η)Eε4t + (β + ψ2Eε

4
t )σ

2
t + γr2t + ϕ(r−t )

2, (29)

E[σ2t+2|Ft] = α+ ψ1 +
1

2
η +

1

4
ϕηEε4t + (β + ψ2)E[σ

2
t+1|Ft] + (γ +

1

2
ϕ)E[r2t+1|Ft], (30)

E[r2t+2|Ft] = α+ (ψ1 +
1

2
η +

1

4
ϕη)Eε4t + (β + ψ2Eε

4
t )E[σ

2
t+1|Ft] + (γ +

1

2
ϕ)E[r2t+1|Ft]. (31)

Theorem 2.3 Ding Let (rt, σ
2
t ) be generated by (5) and (6) and let εt satisfy Assumption

2.1. Then for n ≥ 3, n ∈Z+, the n-step ahead volatility forecast and conditional variance are
respectively given by

E[σ2t+n|Ft] = Eσ2t +Φ1(E[σ
2
t+n−1|Ft]− Eσ2t ) + Φ2(E[σ

2
t+n−2|Ft]− Eσ2t ), (32)

and

E[r2t+n|Ft] = Er2t +Φ1(E[r
2
t+n−1|Ft]− Er2t ) + Φ2(E[r

2
t+n−2|Ft]− Er2t ), (33)

where Φ1 = β + γ + ψ2 +
1
2ϕ and Φ2 = κψ2(γ + 1

2ϕ) with κ = Eε4t − 1.

4.2 Now- and forecasting (A)SHARV

Last, we show the filters for volatility nowcasting and forecasting for (A)SHARV as in Ding
(2021a). We assume that Eε3t = 0 for the rest of the paper. The volatility nowcast is defined as

σ2t =
1

2
bt−1 +

1

2

√
b2t−1 + 4at−1r̃2t + 4ct−1(r̃

−
t )

2. (34)

The n-step ahead volatility forecast, for n ∈ Z+, is given by

E[σ2t+n|Ft] = ψ1 +
1

2
η + (β + ψ2 +

1

2
ω)E[σ2t+n−1|Ft]. (35)

The n-step ahead conditional variance forecast, for n ∈ Z+, is given by

E[r̃2t+n|Ft] = (ψ1 +
1

2
η)Eε4t + (β + (ψ2 +

1

2
ω)Eε4t )E[σ

2
t+n−1|Ft]. (36)
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5 Comparison to other volatility models

We compare the ART-GARCH models and (A)SHARV against GARCH, GJR-GARCH and
RT-GARCH. We consider the news impact curve (NIC) from Engle and Ng (1993) as in Ding
(2021b). For the ART-GARCH models, the NIC is given by

E[r2t+1|Ft] = α+ 0.5β

(
b+

√
b2 + 4ar2t + 4η(r−t )

2

)
+ γr2t + ϕ(r−t )

2, (37)

where we have set ε ∼ N(0, 1), α = α + 3(ψ1 + 0.5η1), β = β + 3ψ2, a = ψ1 + ψ2σ2 and
b = α + βσ2 + γr2 + ϕr−2 with σ2, r2 and r−2 being the unconditional levels of σ2t , r2t and (r−t )

2

given by

Eσ2t =
α+ ψ1 + 0.5η + 0.25ϕηEε4t + (γ + 0.5ϕ)(ψ1 + 0.5η)κ

1− (β + ψ2 + γ + 0.5ϕ+ κψ2(γ + 0.5ϕ))
, (38)

Er2t =
α+ (ψ1 + 0.5η + 0.25ϕη)Eε4t + κ(αψ2 − β(ψ1 + 0.5η) + 0.25ϕηψ2Eε

4
t )

1− (β + ψ2 + γ + 0.5ϕ+ κψ2(γ + 0.5ϕ))
, (39)

E(r−t )
2 = 0.5Er2t + 0.5ηEε4t . (40)

For (A)SHARV, the NIC as in Ding (2021a) is given by

Var(rt+1|F̃t) =3ψ1 + 1.5η + 0.5(β + 3ψ2 + 1.5ω)

(
b+

√
b
2
+ 4ar2t + 4c(r−t )

2

)
−
(
E[σt+1εt+ 1|F̃t]

)2
, (41)

where we have set ε ∼ N(0, 1), a = ψ1 + ψ2Eσ
2
t , b = βEσ2t and c = η + ωEσ2t . Eσ2t is defined in

section 3.2. The second order approximation of E[σt+1εt+1|F̃t] is given by

E[σt+1εt+1|F̃t] ≈ µσt−1 +
ct−1

2
√
bt−1

E(ε−t )
3 −

2at−1ct−1 + c2t−1

8b1t−1.5
E(ε−t )

5, (42)

where at = ψ1 + ψ2σ
2
t , bt = βσ2t and ct = η + ωσ2t .

We plot the news impact curves of the ART-GARCH models and (A)SHARV against the
benchmark models, to see how the conditional variance responds to different values of rt. The
NIC’s for DJIA returns are shown in Figure 1, for the other indices the NIC’s can be found
in Appendix A. Figure 1 shows that for small values of rt, ART-GARCH responds faster than
RT-GARCH and GARCH, but SHARV responds even slightly faster. While for large values of
rt, we see the opposite. Responses of SHARV are lowest and also ART-GARCH’s response is
smaller than RT-GARCH and GARCH. This feature is exactly what we want. Namely, we like
the volatility to respond rapidly to standard shocks but temper these abnormal shocks. Also for
the asymmetric models ASHARV seems to perform best. It reacts quickly at the small negative
returns but has a smaller respond to the large negative shocks. The volatility of volatility seems
to act like a scaling factor to temper the effect of abnormal shocks. These results are similar to
what Ding (2021a) and Ding (2021b) found.
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Figure 1: News impact curves for small and large values of rt. All models’ parameters are
estimated from DJIA index daily returns.

Finally, as discussed in Ding (2021a), ART-GARCH models and (A)SHARV have some advan-
tages over SV models. The main difference is that in our models, we include the current return
innovation directly in the volatility process, whereas the SV model as in Breitung and Hafner
(2016) do so in the log volatility specification. In general, for SV models, estimation is more
difficult. Also the conditional variance is not available in closed from, which makes comparative
statistics such as NIC’s complicated. Computation would need numerical methods.

6 Empirical analysis

The aim of our empirical analysis is to compare the two different model specifications of Ding
(2021b) and Ding (2021a) to each other and the three benchmarks models: GARCH, GJR-
GARCH and RT-GARCH. We compare the goodness-of-fit using QQ-plots. We compare now-
and forecasting ability of the volatility through MSE comparison and the MCS of Hansen et al.
(2011). Realized variance (RV) is used as a proxy for the volatility. We compare 1-, 2-, 5,-
and 10-step ahead volatility forecasts. Where we make use of an expanding window and update
estimation every 50 observations.

6.1 Data description

We use daily open-to-close (log) returns of the S&P 500, Dow Jones Industrial Average (DJIA)
and the Amsterdam Exchange Index (AEX) from 3 January 2000 to 31 December 2019. Realized
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variance is computed using 5-min intraday returns. All data is obtained from Oxford-Man
Institute of Quantitative Finance.

Table 1: Parameter estimates of all models.

α β γ ψ1 ψ2 η ϕ ω µ BIC LogL

S&P 500
ASHARV 0.8893 0.0062 0.0001 0.0120 0.2037 0.0911 12310 -6129
SHARV 0.8833 0.0088 0.1093 12578 -6276
ART-GJR-GARCH-F 0.0000 0.8785 0.0000 0.0027 0.0188 0.0426 0.1337 12396 -6168
ART-GJR-GARCH 0.0000 0.8757 0.0330 0.0000 0.0472 0.0578 12489 -6219
ART-GARCH 0.0000 0.8760 0.0207 0.0100 0.0895 12592 -6275
RT-GARCH 0.0000 0.8680 0.1027 0.0208 12650 -6309
GJR-GARCH 0.0167 0.8864 0.0000 0.1923 12615 -6290
GARCH 0.0134 0.8775 0.1122 12813 -6394

DJIA
ASHARV 0.8942 0.0068 0.0028 0.0105 0.1872 0.0957 12243 -6096
SHARV 0.8812 0.0090 0.1076 12475 -6225
ART-GJR-GARCH-F 0.0000 0.8817 0.0000 0.0036 0.0248 0.0366 0.1248 12319 -6130
ART-GJR-GARCH 0.0000 0.8816 0.0235 0.0000 0.0562 0.0524 12398 -6174
ART-GARCH 0.0000 0.8756 0.0158 0.0100 0.0954 12490 -6224
RT-GARCH 0.0000 0.8670 0.1023 0.0213 12555 -6260
GJR-GARCH 0.0160 0.8891 0.0000 0.1928 12513 -6239
GARCH 0.0131 0.8763 0.1139 12709 -6342

AEX
ASHARV 0.9207 0.0050 0.0047 0.0063 0.1359 0.0221 12751 -6350
SHARV 0.8987 0.0082 0.0925 12896 -6435
ART-GJR-GARCH-F 0.0002 0.9013 0.0000 0.0000 0.0356 0.0313 0.0721 12800 -6370
ART-GJR-GARCH 0.0000 0.8980 0.0110 0.0000 0.0630 0.0363 12846 -6397
ART-GARCH 0.0051 0.8880 0.0028 0.0029 0.1006 12912 -6434
RT-GARCH 0.0000 0.8774 0.0907 0.0226 12991 -6478
GJR-GARCH 0.0104 0.9188 0.0000 0.1326 12936 -6451
GARCH 0.0116 0.8941 0.0965 13110 -6542

6.2 In-sample analysis

Table 1 shows the parameter estimates, BIC and log likelihood for all models and benchmark
models. It does not include standard errors as there are multiple parameters at the boundary of
the parameter space. The significance of the parameters can be checked through the difference in
log likelihood. We clearly see an improved log likelihood after adding parameters and therefore
these parameters are significant. For all ART-GARCH models the constant term α equals zero.
Also for GJR-GARCH γ equals zero for all three indices. As expected, lagged volatility β is
most influential in volatility estimation. In terms of BIC, we see that all ART-GARCH models
as well as (A)SHARV are preferred over the benchmark models. ASHARV seems favorite with
ART-GJR-GARCH-F and ART-GJR-GARCH right behind it.

Figure 2 shows the QQ-plots of the standardised residuals of the 8 different models for DJIA
returns. The QQ-plots for the other indices can be found in Appendix A. It is clearly visi-
ble that GARCH has the worst goodness-of-fit. GJR-GARCH, RT-GARCH are also quite far
off, especially in the left bottom corner. SHARV and ART-GARCH have significantly better
goodness-of-fit then the benchmark models. However, ASHARV, ART-GJR-GARCH and ART-
GJR-GARCH-F perform even better, especially in the extremes. These three models have almost
standard normal quantiles. The plots indicate that the efficiency of our QMLE approaches that
of MLE since εt ∼ N(0, 1) seems a reasonable assumption.
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Figure 2: QQ plots of the standardised residuals of DJIA index returns.
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Table 2 shows the MSE and 95% MCS. Evaluating the models we use the sample from 04
January 2010 to 31 December 2019. We see that for all indices, the ART-GJR-GARCH-F and
ASHARV are in the 95% MCS with probability one. In the benchmark models we see that
GJR-GARCH is in the MCS for the AEX index with a p-value of 1. GARCH is never included
in the MCS. In terms of MSE, we see that, espcially for the S&P500 and DJIA, the three
benchmark models are outperformed by the other models. The MSE is lowest for ASHARV and
ART-GJR-GARCH-F. Therefore, we draw the same conclusion as from the MCS, and ART-
GJR-GARCH-F and ASHARV seem superior to the other models in nowcasting the volatility,
with a slight advantage for ASHARV in terms of MSE.

Table 2: Volatility nowcast comparison using RV as proxy for volatility.

S&P 500 DJIA AEX
MSE pMCS MSE pMCS MSE pMCS

GARCH 1.3487 0.0000 2.1941 0.0000 0.7323 0.0280
GJR-GARCH 1.2752 0.3296 2.0980 0.1102 0.6780 1.0000
RT-GARCH 1.2138 0.0000 2.1141 0.0000 0.7060 0.2102
ART-GARCH 1.1909 0.0698 2.0489 0.1644 0.7228 0.5814
ART-GJR-GARCH 1.1524 0.0792 2.0168 0.9950 0.7127 0.8686
ART-GJR-GARCH-F 1.1198 1.0000 1.9665 1.0000 0.6525 1.0000
SHARV 1.1926 0.0918 2.0505 0.1754 0.7292 0.2102
ASHARV 1.0372 1.0000 1.8978 1.0000 0.6707 1.0000

6.3 Out-of-sample analysis

Finally, we compare the forecasting performance of the models. Table 3 shows that for the 1-step
ahead volatility forecasts, ART-GJR-GARCH-F and ASHARV are always in the MCS with a
probability equal to 1. Looking at the MSE of the 1-step ahead forecasts, we see that ART-GJR-
GARCH-F outperforms the other models for all three indices. For 2-step ahead forecasts the
results are more close and also ART-GJR-GARCH is in the 95% MCS with probability one for all
indices. Also in terms of MSE, ASHARV, ART-GJR-GARCH and ART-GJR-GARCH-F perform
best. In the 5-step ahead forecasts we see a shift towards SHARV and ART-GJR-GARCH. This
change continues in the 10-step ahead forecasts. Here we see that SHARV is the only model that
is always in the MCS with a p-value of one. The MSE confirms that SHARV outperforms the
other models for the 10-step ahead volatility forecasts. But, differences to ART-GJR-GARCH
and ASHARV are very small. Where ASHARV continues to perform well in the 5- and 10-step
ahead forecasts, ART-GJR-GARCH-F is almost the worst performing model in terms of MSE
and MCS p-values.

ART-GARCH models and (A)SHARV are always together in the MCS and also differ not much
in terms of MSE. To see if ART-GARCH has better forecasting performance than (A)SHARV
we perform the superior predictive ability (SPA) test from Hansen (2005). We compare the best
performing ART-GARCH model, in terms of MSE, against (A)SHARV for 1-,2-,5-,10-step ahead
forecasts. We see that the ART-GARCH models are not able to reject the null hypothesis that
the benchmark models, (A)SHARV, are not inferior to the new models. These results suggest
that the ART-GARCH model has no better forecasting performance than (A)SHARV.
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Table 3: Out-of-sample volatility forecasts comparison using RV as proxy for volatility.

S&P 500 DJIA AEX
MSE pMCS MSE pMCS MSE pMCS

1-step
GARCH 1.2241 0.0000 2.7425 0.0000 0.6767 0.3798
GJR-GARCH 1.1390 0.0316 2.6260 1.0000 0.6588 1.0000
RT-GARCH 1.1907 0.0320 2.7045 0.2192 0.6744 0.8754
ART-GARCH 1.2212 0.1908 2.7581 0.2594 0.6839 0.1014
ART-GJR-GARCH 1.1659 1.0000 2.6879 0.7428 0.6705 1.0000
ART-GJR-GARCH-F 1.1093 1.0000 2.6009 1.0000 0.6524 1.0000
SHARV 1.2306 0.1908 2.7694 0.2594 0.6876 0.1348
ASHARV 1.1361 1.0000 2.6618 1.0000 0.6582 1.0000

2-step
GARCH 1.3190 0.0000 2.8794 0.0000 0.7154 0.3746
GJR-GARCH 1.2884 0.0404 2.8518 0.0400 0.7032 1.0000
RT-GARCH 1.2839 0.0368 2.8332 0.3056 0.7147 0.4642
ART-GARCH 1.2851 0.2594 2.8459 0.5756 0.7117 0.1960
ART-GJR-GARCH 1.2482 1.0000 2.7960 1.0000 0.7003 1.0000
ART-GJR-GARCH-F 1.2455 1.0000 2.7879 1.0000 0.6937 1.0000
SHARV 1.2928 0.2594 2.8547 0.5756 0.7133 0.3122
ASHARV 1.2330 1.0000 2.7931 1.0000 0.6903 1.0000

5-step
GARCH 1.4498 0.0368 3.0431 0.1144 0.7650 0.6842
GJR-GARCH 1.4755 0.1252 3.0970 0.1984 0.7638 0.4702
RT-GARCH 1.4353 0.0287 3.0110 0.0608 0.7771 0.0702
ART-GARCH 1.3994 0.9882 2.9767 1.0000 0.7555 0.9982
ART-GJR-GARCH 1.3810 1.0000 2.9483 1.0000 0.7481 1.0000
ART-GJR-GARCH-F 1.4622 0.2020 3.0772 0.2292 0.7756 0.3998
SHARV 1.3871 0.9882 2.9682 1.0000 0.7501 0.9982
ASHARV 1.3782 1.0000 2.9629 1.0000 0.7427 1.0000

10-step
GARCH 1.4990 0.0560 3.0961 0.1832 0.8167 0.4112
GJR-GARCH 1.5217 0.8528 3.1592 0.1634 0.8169 0.2342
RT-GARCH 1.5030 0.0478 3.0619 0.1524 0.8544 0.3708
ART-GARCH 1.5772 0.5976 3.0621 0.8512 0.8305 0.9936
ART-GJR-GARCH 1.4402 1.0000 3.0000 1.0000 0.8755 0.9936
ART-GJR-GARCH-F 1.6001 0.1524 3.3547 0.1606 1.2323 0.3592
SHARV 1.4238 1.0000 3.0058 1.0000 0.7873 1.0000
ASHARV 1.4386 0.8528 3.0265 0.8512 0.7956 0.9936

Table 4: SPA test p-values of ART-GJR-GARCH-F against (A)SHARV

S&P 500 DJIA AEX
1-step 2-step 1-step 2-step 1-step 2-step

SHARV 0.1140 0.2140 0.1100 0.2130 0.0880 0.1910
ASHARV 0.2650 1.0000 0.1860 0.4130 0.2190 1.0000
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Table 5: SPA test p-values of ART-GJR-GARCH against (A)SHARV

S&P 500 DJIA AEX
5-step 10-step 5-step 10-step 5-step 10-step

SHARV 0.2930 1.0000 0.1000 0.4090 0.4260 1.0000
ASHARV 1.0000 1.0000 0.1850 0.1620 1.0000 1.0000

7 Conclusion

In this paper, we aimed to answer the following research question: “Can ART-GARCH beat
(A)SHARV? ”. We find no evidence that the ART-GARCH models outperform (A)SHARV. In
terms of forecasting performance, (A)SHARV is always inside the 95% MCS of Hansen et al.
(2011) with probability one. We find similar results for nowcasting performance. Also the QQ-
plots showed that ASHARV has at least the same goodness-of-fit as the ART-GARCH models.
Looking at the BIC, ASHARV is again preferred over the ART-GARCH models. The news
impact curves also suggest that (A)SHARV has the best features.

We did find empirical evidence that the ART-GARCH models and (A)SHARV have a better
fit as well as a better now- and forecasting performance than the benchmark models. These
findings are in line with Ding (2021a) and Ding (2021b).

It has to be noted that we only tested our model on indices. We did not use our models on
singular stocks or an exchange rate. Also, due to the absence of high-frequency data, we were
unable to compare the realized quarticity to the filtered volatility of volatility.

We end with some suggestions for further research. It is interesting to investigate if the
performance of both models could be improved by incorporating some realized measures as in
Hansen et al. (2012). Also ASHARV not only differs from the ART-GARCH models in volatility
dynamics but also in the mean dynamics. It is of interest to see what part of performance
difference is caused by the difference in volatility dynamics and what part due to the different
mean dynamics of the models.
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Appendix A. Additional figures

Figure 4 - Figure 7 show the news impact curves for S&P 500 and AEX, as well as the QQ-plots
for these indices.

14



Figure 4: News impact curves for small and large values of rt. All models’ parameters are
estimated from S&P 500 index daily returns.

Figure 5: News impact curves for small and large values of rt. All models’ parameters are
estimated from AEX index daily returns.
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Figure 6: QQ plots of the standardised residuals of S&P 500 index returns.
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Figure 7: QQ plots of the standardised residuals of AEX index returns.
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Appendix B. Code

Attached to this paper is a zip-file that contains all data and code used to construct estimates,
nowcasts, forecasts, tests and figures. It contains four folders. The first, Data Excel, contains all
data used in excel format.

The second folder, MATLAB, contains all code used and the data in MATLAB format. The
MATLAB code consists of 7 chapters. A1 is a script to load the data. All A2 scripts are for
model estimation. The scripts that start with A3 are to construct NIC’s. The A4 script is for
the QQ-plot generation. A5 scripts estimate the MSE and losses that are later used for the 95%
MCS from Hansen et al. (2011). N-step ahead forecasts can be computed using the eight A6
scripts, corresponding to the eight different models. A7 scripts are for the MCS and SPA test.
Then there are the functions which are used in the scripts.

The third folder, R, contains the data and code used in R to compute the p-values for the 95%
model confidence set. We use the MCSprocedure from package ’MCS’. The last folder contains
all constructed figures for this paper.
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