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Abstract

Companies invest increasing amounts of money in online marketing and this needs to be divided

between a vast array of different online marketing channels. Therefore, information about the

contribution of every channel to a possible conversion is crucial for companies. In the attribution

modelling literature different models for estimating the consumer paths and the contribution

of the different channels in those paths are proposed. This research combines higher-order

Markov models with Shapley values to solve the attribution problem and adds new insights into

attribution in a higher-order Markovian framework.

In order to do this, the “PathData” dataset from the “ChannelAttribution” package is used.

Then, the consumers paths in this dataset are estimated by different order Markov graphs. It is

found that higher-order Markov outperform normal Markov graphs in predicting a conversion.

Finally the attribution of the channels to a possible conversion is measured using Shapley values,

the Removal effect and some heuristic. Heuristics are found to be very inconsistent attribution

measures compared to both Shapley values and the Removal effect. Furthermore, the Removal

effect assigns less attribution to channels which are more frequent in the dataset compared to

the Shapley value for every order Markov graph. Finally, attribution in higher-order Markov

graphs seem to better capture the carry- and spillover effects between different channels.
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1 Introduction

Due to the increased usage of smartphones, tablets and other mobile devices the number of potential

interactions between consumers and service providers has grown massively (Gartner Research, 2019).

An interaction between a consumer and a company is called a touchpoint. Businesses have reacted to

this by increasing investments in online marketing over the last years (Kannan, Reinartz, & Verhoef,

2016). In the United States for example, spending on display advertisements alone grew from $39.4

billion to $49.8 billion between 2017 and 2018 according to IAB (2019). Display advertisement,

however, is not the only marketing channel available for companies to reach out to consumers.

Tueanrat, Papagiannidis, and Alamanos (2021) state there exist a vast array of different channels,

which can exist either in the physical or the online world. Examples include social media advertising

or search engine advertising, where a company pays the search engine to have a higher rank on the

search engine results. These are also widely used by companies to reach out to consumers.

Companies invest in these different promotional channels to improve the chance of a consumer

making a conversion, that is a sign-up, subscription or purchase. Consumers can visit various

different channels on their way to a possible conversion. Because these different channels may

influence the probability to visit another channel or in the end lead to a conversion indirectly, the

attribution of every channel to a possible conversion can be unclear. However, this information can

be of critical importance for managers making decisions on how to distribute the marketing budget

between different channels (Kannan et al., 2016).

To better measure the attribution of different channels to a conversion, various solutions exist in

the industry, known as attribution models. The first attribution models to be developed were the

rule-based or heuristic models. These assign attribution to different channels following some prede-

termined assumptions. One of these is the last-click model. This model assigns all the attribution

for a conversion to the channel of the last touchpoint of a consumer before the conversion. Other

widely used rule-based model consist of models that evenly assign the attribution to the channel of

the first touchpoint or assign the attribution to the different channels of all the touchpoints.

However, these heuristics are outperformed by more sophisticated data-driven attribution mod-

els. These include a bagged logistic regression model proposed by Shao and Li (2011), a probabilistic

model using hazard and survival functions and time elements proposed by Ji, Wang, and Zhang

(2016), a Naive Bayes approach proposed by Li and Kannan (2014) and a Deep Neural Network

approach by Arava, Dong, Yan, Pani, et al. (2018).
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In this research a graph-based Markovian approach will be adopted. Archak, Mirrokni, and Muthukr-

ishnan (2010) first used a first-order Markovian approach to model customer behaviour, when cus-

tomers were exposed to different channels. Furthermore, six different measures of attribution called

ad factors are proposed to measure attribution of the different channels in a Markov graph, one of

them being the Removal effect. Anderl, Becker, Von Wangenheim, and Schumann (2016) extended

this paper by adopting a higher-order Markovian approach to model the customer paths. To deter-

mine the attribution of the different channels the Removal effect was used. Higher-order Markov

graphs were found to outperform normal Markov graphs for modelling the consumer paths and at-

tribution based on heuristics was shown to be incorrect compared to the attribution measured in the

Markov graphs. Abhishek, Fader, and Hosanagar (2012) propose a Hidden Markov Model, where

one state reflects the interest level of a user in the product. Note that this method, where states

are assumed to be latent unobserved engagement levels, is different from the method in Anderl et

al. (2016), where the states are the channels of the touchpoints along the consumer journey.

To better measure attribution in a multi-touch environment and in a data-driven way, Dalessan-

dro, Perlich, Stitelman, and Provost (2012) propose Shapley Values to estimate the attribution.

Shapley Values are widely used in Cooperative Game Theory to fairly distribute value or credit

between different players in a game. Singal, Besbes, Desir, Goyal, and Iyengar (2022) implement

Shapley Values for Markovian approaches and compare the attribution measured by Shapley Values

to attribution measured by the last-click heuristic and by the Removal Effect. It was found that

Shapley values correct flaws of both the last-click heuristic and the Removal effect.

However, Shapley values are not compared to other attribution measures for higher-order Markov

graphs. As higher-order Markov models are also defined in this framework, further research can

be done to compare attribution measured by Shapley Values to other attribution measures for a

higher-order Markovian approach. Therefore the research question of this paper is

“How do different attribution measurements compare for different higher-order Markov models and

between higher-order Markov models and normal Markov models?”

For the purpose of this research, the “PathData” dataset from the “ChannelAttribution” package in

R is used, consisting of 88387 consumer paths. These paths are used to estimate a Markov model for

the consumer journey. Using AUC and BIC values as model fit measures, the ideal specification for

the Markov models is found. Then, attribution of the different channels is computed using heurstics,

the Removal effect and Shapley values. The results of this research are that higher-order Markov
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models are found to better estimate the consumer paths and also have a representative performance

in estimating the consumer paths compared to non-Markovian models. Furthermore, Shapley values

are found to assign more attribution to channels that are more common in the dataset compared

to the Removal effect. The attribtion assigned by the Shapley values is more consistent than from

the different heuristics. Finally the attributions of higher-order Markov models better capture the

interconnectivity of the different channels than attribution in a normal Markov framework.

This research contributes to the literature by evaluating the Shapley values in a higher-order

Markov framework and comparing them to other attribution measures. While higher-order Markov

graphs have been used to model the consumer journey (Anderl et al., 2016) and Shapley values

have been used to measure attribution in different frameworks (Berman, 2018; Dalessandro et al.,

2012; Singal et al., 2022), this researh combines both of these methods to bring new insights to the

attribution problem.

The remainder of this paper is structered as follows: section 2 divides the research question in

multiple sub-questions and provides an overview of the relevant literature. Section 3 describes the

data used in this research. Section 4 describes how the Markov models are estimated and how the

different attribution measures are computed. Section 5 evaluates the results of this research and

uses the findings of the sub-questions to answer the research question. Finally, section 6 summarises

the main findings of this research and states several limitations of it.

2 Theory

To analyse the research question, the attribution values in the models need to be evaluated. How-

ever, before attribution values can be computed, first a model for the consumer path needs to be

estimated. There are many different approaches in attribution literature for modelling the consumer

path (Arava et al., 2018; Ji et al., 2016; Li & Kannan, 2014; Shao & Li, 2011). However, this research

will focus on an attribution framework based on Markov graphs. Markov graphs were first proposed

to model attribution by Archak et al. (2010). They stated that the heuristic attribution models,

which were the industry standard at that time for measuring the effectiveness of an ad-campaign,

didn’t account enough for the interconnected channel-dependencies. Therefore they propose to use

Markov graphs to model the effect of different marketing channels on consumers.

Adopting this, Abhishek et al. (2012) propose a Hidden Markov model to estimate the consumer

journey through to conversion funnel. The different states of the Markov graph are the unobserved
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levels of interest the consumer has. It is found that different marketing channels have different

impacts on an possible conversion depending on where in the conversion funnel the consumer is

exposed to the channel. Anderl et al. (2016) extend the work of Archak et al. (2010) by proposing

higher-order Markov graphs to model the attribution problem. They state that these higher-order

Markov graphs better estimate the carryover and spillover effects. These are the effects of a previous

visit influencing the consumer to visit the company again via the same or different channels respec-

tively. Because of this property of higher-order Markov graphs, this research will adopt a Markov

model with channels as states and higher-order Markovian effects instead of a Hidden Markov graph.

As a good model for the consumer path is needed before estimating the attribution of different

channels, the Markov model and it’s order need to be correctly specified. Furthermore, the Markov

models need to have a representative performance compared to other models for modelling consumer

paths. Therefore the first sub-question is

“What is the best specification for the Markov model and how does it compare against other

models?”

Although attribution models are build to measure the effect that different channels had on the way

to a conversion in the past, Shao and Li (2011) state that attribution models should be able to

accurately predict a conversion. Thus, to select the order that is the best fit for the Markov model

and to compare the Markov models to other attribution models, predictive performance can be used.

However, when comparing predictive performance of different models, generalization should also be

taken into account. While more complex models may perform better on the data these models are

trained on, simpler models often outperform the more complex models on new data. Therefore, the

better generalizability of simpler models should be considered with predictive performance.

Considering the predictive performance of the models, Anderl et al. (2016) find that higher-

order Markov models outperform the normal Markov models. Furthermore, the robustness of the

attribution measure is low for the second and third order Markov models implying that these

results should be generalizable. Furthermore, Anderl et al. (2016) use a 4th order logit model as

a benchmark for the performance of modelling the consumer path. It is found that the higher-

order Markov models outperform this logit model. As their results are consistent over four different

datasets, these results should also hold up in this research. Therefore, the hypothesis for this

research is that higher-order Markov model will better estimate the consumer path than normal

Markov model and that Markov models will have a representative performance.
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To improve on the heuristic attribution models, Archak et al. (2010) propose six different ad factors

to measure the attribution of different channels in Markov graphs. One of these ad factors is the

Removal effect, which is also used by Anderl et al. (2016) to compute the attribution in higher-order

Markov graphs. The Removal effect for a channel is the change in the probability of a path leading

to a conversion when removing that channel from the model.

Dalessandro et al. (2012) use Cooperative Game Theory to causally motivate a new attribution

measure and show this can be approximated using the Shapley values, motivating them as “fair”,

“data-driven” and “interpretable”. The Shapley value uniquely distribute the attribution generated

by all channels between the different channels. The attribution of a channel assigned by the Shapley

values is a weighted average over all coalitions with that channel of the value that would be lost

if that channel dropped out of the coalitions. Berman (2018) showed in a stylized example that

Shapley values can be considered a more fair attribution measure than the last click heuristic. Singal

et al. (2022) apply the Shapley values to measure attribution in a Markov graph.

The Removal effect and the Shapley value are similar in that both measures assign attribution

to a channel by evaluating how much is lost without that channel. The difference is that the

Removal effect evaluates this loss by the difference in probability of a path reaching conversion

and the Shapley value evaluates the loss by the difference in total value generated by coalitions

with and without the channel. This notion of using loss to evaluate the attribution of a channel is

similar to the lift measure often used in data mining as an association measure. The lift, however,

measures the gain between the response of a target variable compared to a baseline variable (Vu

et al., 2019), instead of measuring the loss. Both the Removal effect and the Shapley value are

proposed in literature as attribution measures in a Markov graph. To compare these attribution

measures, together with the heuristic attribution measures, the second sub-question is

“What are the differences between the different attribution measures and how are they explained?”

Anderl et al. (2016) found the the attribution as measured by the heuristic is less consistent for

higher-order Markov graphs and that the heuristics consistently over- or undervalue certain channels.

Furthermore, Singal et al. (2022) showed in a framework with a hidden Markov model that also the

Removal effect has limitations. It was found that the Removal effect overestimates the attribution

for channels with more touchpoints and found that the Shapley value corrects this. Finally, Anderl

et al. (2016) found that higher-order Markov graphs better measure the carry- and spillover effects

between the different channels. It is expected that this will be reflected in the attributions of

higher-order Markov graphs.
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3 Data

The data used in this research is the “PathData” dataset contained in the R package “ChannelAttri-

bution”. This dataset contains 10,000 path instances. These paths can be observed multiple times,

so one instance can count as multiple observations, and every instance has 4 attributes. “path”

contains the sequence of channels the path visits, “total conversions” contains the number of users

that followed the path and made a conversion, “total null” contains the number of users that didn’t

make a conversion and “total conversion value” is the total value of all conversions that consumers

following this path made. It should be noted that the “total conversion value” attribute is not used

during this research and that the “path” attribute contains several duplicate paths.

Path data like this is often collected using cookie tracking, meaning the different touchpoints

from a device with the site of the service provider can be tracked and stored. However, using cookie

data has several disadvantages. Examples are the inability of cookies to track one consumer using

multiple devices or a device, where the consumer blocks cookies (Flosi, Fulgoni, & Vollman, 2013).

The total number of channels in the dataset is 12. All channels in the dataset have the names of

Greek letter and the original marketing channel can therefore not be recovered. As a consequence

for this research, the attribution of the different channels will not be put into a marketing context.

However, as this paper is a technical evaluation of the different attribution measures in a Markov

model, this does not limit this research.

Table 1: Descriptive data of the PathData dataset

Channel name every alpha beta gamma delta epsilon zeta eta theta iota kappa lambda mi

Percentage of clicks - 0.4219 0.1085 0.0047 0.0001 0.0164 0.0115 0.1147 0.0604 0.2014 0.0078 0.0526 0.00004

Average clicks per path 4.2790 1.8052 0.4641 0.0202 0.0005 0.0704 0.0493 0.4908 0.2583 0.8617 0.0335 0.2249 0.0002

Rank - 1 4 10 11 7 8 3 5 2 9 6 12

The total number of observed consumer paths in the dataset is 88387, of which 22.38% (19785

paths) lead to conversions and 77.62% (68602 paths) don’t lead to a conversion. Table 1 shows the

descriptive statistics of the different channels in the PathData dataset. There are large differences

in frequency between the different channels. alpha is by far the most visited channel, with more

then 40% of the total of interactions. iota (20%), eta (11%) and beta (11%) are also very prevalent

in the dataset. gamma (0.5%), delta (0.01%) and mi (0.004%) are almost non-existent. The length

of the average consumer journey is 4.27 channels.

8



4 Methodology

In this section, firstly, different models are introduced to explain the customer journey paths.

Additionally, the different measures for model fit are described. Then, different attribution measures

are proposed to measure the attribution of the different channels.

4.1 Modelling the customer journey path

To compute the attribution of different marketing channels, first a good estimation of the consumer

journey is needed. For this research, as proposed by Anderl et al. (2016) and Archak et al. (2010),

Markov and higher-order Markov graphs are adapted to model the customer journey path. Following

Anderl et al. (2016), a logit regression model using order effects is proposed as a benchmark to

compare the predictive performance of the Markov graphs against. By doing this the model fit

of the Markov graphs can be evaluated (Shao & Li, 2011). The Markov graphs are compared to

each other using the Bayesian information criterion (BIC) and the receiver operating characteristic

(ROC) curves with the area under the curve (AUC) values to compare the predictive performance

of the Markov graphs to the predictive performance of the logit regression model.

4.1.1 Markov Graphs

A Markov graph is defined by a set of states, S = {s1, s2, . . . , sn}, and a transition matrix, P ,

which consists of a transition probability pi,j for going from state si to sj . Here, 0 ≤ pi,j ≤ 1 for

every i and j and
∑n

j=1 pi,j = 1 for every i. In this study, the states of the Markov graphs are the

(combination of) channels the consumer is last exposed to combined with two absorbing states for

conversion, cc, and no conversion, cn.

This implies that for the estimated first order Markov graph the set of states S is the set with

all channels combined with the absorbing states and the transition probabilities are

pi,j = P (Xt = sj | Xt−1 = si), (1)

where Xt is a random variable of the state of the Markov graph at time t and si, sj ∈ S.

For a k th order Markov graph the transition probability of going to state j is

P (Xt = sj | Xt−1 = si, . . . , Xt−k = sl), (2)

where Xt is again a random variable of the state of the Markov graph at time and t, si, sj , sl ∈ C,

where C is the set of all channels and C = C ∪ cc ∪ cn. These higher-order Markov graphs are
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equivalent to first order graphs where S = (×k
i=1{C, ∅}) ∪ cc ∪ cn, in which the empty set ∅ is used

when the order of the graph exceeds the number of channels already visited before channel t at the

start of a path and cc and cn are again the absorbing states, and using the transition probabilities

in equation 1. As the order of the Markov graph goes up, the number of states rises exponentially.

Therefore, the number of transition probabilities to be estimated goes up rapidly and the model

quickly gets more complex for higher-orders.

4.1.2 Logit model

The logit model proposed in Anderl et al. (2016) is

logit(Yi) = α+
n∑

i=1

β(4i−3)di1 + β(4i−2)di2 + β(4i−1)di3 + β(4i)di4, (3)

where di,t is a dummy variable, which is 1 if channel i is in position t of the customer path. Here the

position is counted from the end of the path. This means the last four contacts of every journey are

used to predict if the journey leads to a conversion. Therefore, this logit model is most comparable

to a 4th order Markov model, which also uses the last four contacts to predict the next interaction.

However, it is still comparable with the other order Markov models.

The α is the intercept and the βi’s are the coefficients for the different dummies. As there

is always at least one channel in every path and exactly one channel can be in the final position

of a path, it always holds that
∑n

i=1 di1 = 1. Therefore α and β1, β5, . . . , β45 are not separately

identifiable and α is forced to 0. The interpretation of the different β coefficients in a logit model

is complex an therefore these are not used to compute attribution.

4.1.3 Model fit measures

Shao and Li (2011) state that to compare the model fit of Markov graphs to other models for

modelling the customer journey, the accuracy of predicting a conversion can be used. As measure

for predictive accuracy the AUC value under the ROC curve will be used. Gonçalves, Subtil,

Oliveira, and de Zea Bermudez (2014) give formal definitions of the ROC curve and the AUC value.

Summarised, the ROC curve plots the True Positive (TP) rate of a classifier against the False

Positive (FP) rate and the AUC value is the area under this curve. A straight 45◦ angle line gives

the performance of a completely random classifier. A better classifier has a ROC curve that rises

above this line and thus has a higher AUC value. According to Bradley (1997), the AUC values have
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a few desirable properties compared to the overall accuracy. Of these properties the independence

of prior class distribution is the most important for this research.

As a second measure for model fit, the BIC is used. The BIC widely used in literature to compare

different models. Katz (1981) proved that the BIC is consistent for estimating the order of a Markov

graph. The BIC is computed as

BIC = k ∗ ln(n)− 2ln(L), (4)

where k is the number of variables that are estimated, n is the number of observations and L is

the likelihood of the Msrkov model. For a Markov model the likelihood can be computed by the

accuracy of predicting every step in the path from every user. Then L depends on every step in the

path and for a k’th order Markov model is computed as

L = Πn
i=1Π

pi
t=1Πs∈SP (Xt = s | Xt−1 = xi,t−1, . . . , Xt−k = xi,t−k)

1xi,t=s (5)

= Πn
i=1Π

pi
t=1P (Xt = xi,t | Xt−1 = xi,t−1, . . . , Xt−k = xi,t−k), (6)

where Xt is a random variable of the state of a Markov graph, xi,t is the state of path i in position

t, S is the set of states, o is the order of the Markov graph and pi is the amount of channels in path

i. Because the likelihood consists of the product of the probabilities of making a step, the number

of observations is the sum of the number of steps from every consumer path. While comparing BIC

values, a lower value of the criterion indicates the preferred model. Compared to the AUC values,

the BIC also takes generalizibility in account by penalising models that use more parameters.

4.2 Attribution measures

Attribution measures assign attribution to the different channels. Several different attribution

measures that assign attribution to different channels in a Markov graph are used in this research.

Firstly the heuristic attribution measures will be introduced, then the Removal Effect and finally

the Shapley values. Dalessandro et al. (2012) gives three criteria for a good attribution measure.

Firstly, an attribution measure should be fair, meaning that it should reflect the contributions

of every channel to a possible conversion. Secondly, attribution measures should be data-driven,

that is it should be tailored to campaign specific properties of every ad campaign. Finally, a good

attribution measure should be interpretable, thus both understandable and based on statistical

foundations. The different attribution measures are evaluated on these properties.
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4.2.1 Heuristic attribution measures

The first group of methods to assign attribution to different channels were the rule-based or heuris-

tic attribution measures. In this paper the last-touch (LTA), first-touch (FTA) and linear (LIN)

heuristics are used. LTA and FTA values for channel r are computed as

πLTA
r =

lr
n
, (7)

πFTA
r =

fr
n
, (8)

where channel fr is the number of paths that converge with r as first channel after the start, lr is

the number of paths paths that converge with r as last channel before the conversion and n is the

number of paths. These attribution measures assign all the attribution to the last and first channel

on the path respectively.

LIN for channel r is computed as

πLIN
r =

1

n

∑
i∈V

ni,r

pi
, (9)

where V is the set of all paths that converge, ni,r is the number of times channel r is present in path

i, pi is the number of channels in path i and n is the number of paths. This attribution measure

divides the attribution of a path equally between the channels of every touchpoint of the path.

These heuristic attribution measure are shown to be outperformed by more sophisticated at-

tribution measure in both practical settings (Anderl et al., 2016; Dalessandro et al., 2012; Singal

et al., 2022) and in a theoretical setting (Berman, 2018). The heuristics lack fairness as channels

get assigned a attribution value without trying to find the actual contribution of the channel to

the conversion. They also are not data-driven as the different properties of each ad campaign are

not considered, but are assumed to be equal by assuming the same rules for every campaign. The

heuristics are however very easily understandable, but lack statistical foundation.

4.2.2 Removal effect

The Removal effect was first proposed by Archak et al. (2010) as attribution measure in Markov

graphs and were adapted by Anderl et al. (2016) in higher-order Markov graphs. The removal effect

of state si is the change in probability of reaching a conversion if state si is removed from the graph.

The removal effect can be computed as

RE(si) = Visit(si)× Conversion(si), (10)
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where Visit(si) is the probability of a path passing through state si and Conversion(si) is the

probability that a path at state si reaches conversion. As states resemble channels in first-order

Markov graphs, the Removal effect of a channel is the is the Removal effect of the state resembling

the channel. The Removal effects are computed by sampling 100000 paths from the Markov graph

and computing the Removal effects for those paths.

Singal et al. (2022) state several reasons why the Removal effect can be unfair in certain situa-

tions. However, the Removal effect is still a lot fairer than the heuristics (Anderl et al., 2016). The

Removal effect is also data-driven as it uses the Markov graph that is estimated and is therefore

developed specifically for this ad campaign. The Removal effect is also fairly interpretable as it has

a clear meaning and is based on statistical properties.

4.2.3 Shapley values

The Shapley value is first proposed in the attribution framework by Dalessandro et al. (2012). It is

a well known solution concept in game theory introduced by Shapley (1953). The Shapley value can

very broadly be seen as the average marginal contribution of a channel to a coalition. The Shapley

value of channel r is computed as

πShapley
r =

∑
χ∈C\{r}

|χ|!
(
|C| −|χ| − 1

)
!

|C|!
× (v(χ ∪ {r})− v(χ)), (11)

where C is the set of all channels and v(K) is the value, in this case conversions, that is generated

by set K. The generated value is by set K ⊆ C is the number of paths that converge only passing

through channels in set K. Singal et al. (2022) prove that πShapley
r = EP∼M (1P∈V ∗ 1

uP
), where

P is a path in Markov graph M , V is the set of all the converted paths and uP is the amount of

unique channels in path P . This means the Shapley value of channel r can be estimated as

πShapley
r = EP∼M (1P∈ ∗ 1

up
) (12)

≈ 1

|W |
∑
P∈W

1p∈V ∗ 1

uP
, (13)

where W is the set of all paths. It should be noted that in this way the Shapley values have a strong

correlation with the LIN heuristic. The difference is that the LIN heuristic gives the attribution

of one path multiple times to a channel if it occurs multiple times in the path, while the Shapley

values only give the attribution once. The Shapley values are acquired by sampling 100000 paths

from the Markov graph and computing the Shapley values from this sample.
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Shapley values are widely considered as a fair manner to distribute attribution. Firstly Da-

lessandro et al. (2012) showed that there is a causal motivation to use Shapley values as a measure

for attribution. Furthermore, Shapley values have four desirable probabilities:

• Efficiency:
∑

r∈C πShapley
r = v(C). This property says that all value that is generated is

exactly distributed over all channels,

• Symmetry: if r, r′ ∈ C, χ ⊆ C/{r, r′} and v(χ ∪ r) = v(χ ∪ r′) then πShapley
r = πShapley

r′ . This

property says that if two channels are identical in that the same value is generated with either

of them, then the Shapley values of both of them will be equal,

• Linearity: if v1(·) and v2(·) are value generating functions for two games then πShapley
r (v1 +

v2) = πShapley
r (v1) + πShapley

r (v2) and πShapley
r (αv1) = απShapley

r (v1). This property says that

for different value generating functions the shapley values are linear.

• Null player: if r ∈ C and for every χ ∈ C/r v(χ ∪ r) = v(χ), then πShapley
r =0. This property

says that a player that doesn’t add any value to a coalition, the player doesn’t get any

attribution.

Shapley values are the only attribution measure to combine all four of these probabilities and can

therefore be considered a fair attribution measure. As the Shapley values are computed using the

Markov graph, just like the Removal effect, they are also data-driven. Finally Shapley values have

very strong statistical foundations and therefore have good interpretability.

5 Results

In this section firstly the results for model fit are discussed using the measures introduced in section

4. Then, the different attribution are computed and the differences between these attribution

measures for the different Markov models are discussed.

5.1 Model fit

For evaluating the model fit Markov graphs from order 1 to order 8 are considered together with

the Logit mode of section 4. These models are compared using the BIC values and the AUC values.

Table 2 gives the AUC and BIC values for these models. ROC curves and thus AUC values are

computed using 10-fold cross-validation. The Markov models and the AUC values are estimated

using the “ChannelAttribution” package.
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Table 2: AUC values and BIC values of the different Markov models and of the Logit model

Markov order 1 2 3 4 5 6 7 8 Logit

AUC 0.5087 0.5174 0.5278 0.5428 0.5538 0.5589 0.5619 0.5632 0.5091

BIC 1523503 1407676 1555712 1637678 1788343 1883650 1942508 1989616 -

Firstly, it is observed that all higher-order Markov models outperform the Logit model in predicting

a conversion measured by the AUC values. Even a 2nd order Markov model outperforms the Logit

model, which takes 4th order information in consideration. This means that higher-order Markov

models seem an appropriate way to mode the consumer paths as they outperform the benchmark

model. This finding agrees with the hypothesis that higher-order Markov models outperform other

attribution models in predicting conversions and thus have a representative performance. However,

it should be noted that the predictive accuracy of all models is low. The AUC values barely reach

above 0.5, which is the AUC value of a completely random prediction.

Finally, it can be seen that the AUC values increase when the order of the model goes up. This

is to be expected as more information is used. However due to the increasing number of parameters

needing to be estimated, higher-order Markov models are more prone to overfitting and are therefore

less generalizable. Therefore the Markov model with order 4 is chosen based on the AUC values, as

the increase in AUC values after this is small compared to the increase in parameters.

Looking at the BIC values, the Markov model with order 2 is the best performing model in predicting

the consumer path. From the 3rd order onwards the BIC values again rise above the score of the 1st

order model and these BIC values keep increasing when the order of the models go up. As 2nd order

Markov models are found to be optimal, this finding agrees with our hypothesis that higher-order

Markov models better estimate the consumer journey. However, the 1st order Markov model still

outperforms every other higher-order Markov model.

Comparing the outcomes from the AUC measure to the BIC measure, different conclusions are

found for the optimal order of the Markov model, as for the AUC values the results keep improving

for a higher-order, while for the BIC values the result decrease. This is, however, expected, as the

BIC values also consider the generazibility of the models while, the AUC values do not.

Overall it can be concluded that higher-order Markov models outperform normal Markov models and

that Markov models have a representative performance in estimating the consumer path compared

to other models. These findings agree with the hypotheses of the first sub-question. The different
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measures for model fit, however, choose different specifications of the model as optimal, because

these measure weigh predictive accuracy and generalizibility differently. Therefore, the attributions

in both 2nd and 4th order Markov models will be further inspected in the following subsection.

5.2 Attribution

Now the different attribution measures are compared. In order to do this, firstly a global image of

the attribution will be made by looking at all the different attribution values. Then the differences

between the Removal effect, the Shapley values and the heuristics will be compared in a higher-

order Markov model. For this a 4th order Markov graph will be used, as this was found to be the

optimal specification of the model with AUC values as measure for model fit. Finally the difference

in attribution between the normal Markov graph, the 2nd order Markov model, as was found to be

optimal by the BIC values, and the 4th order Markov model is investigated.

To make the attribution measures more comparable, all attribution results are scaled as per-

centages by dividing them by the sum of the respective attribution measure. Both Removal effect

and Shapley values are computed by simulating 100000 runs through the estimated Markov graphs

and are computed from that sample. It should be noted the “ChannelAttribution” package was not

used to simulate the Removal effects as there is an error in the package in computing these. This

error comprises that the package does not allow transitions from a channel to itself while simulating.

As the package can estimate the transition matrices with these transitions, the transition matrices

Table 3: Attribution measured by the different attribution measures in percentages

Attribution measure LTA FTA LIN
Removal effect

(1st order)

Shapley

(1st order)

Removal effect

(2nd order)

Shapley

(2nd order)

Removal effect

(4th order)

Shapley

(4th order)

alpha 31.88 42.69 38.29 27.09 34.18 28.21 36.38 28.91 38.13

beta 14.31 5.00 10.53 12.70 10.24 12.16 10.30 9.04 9.77

gamma 0.83 0.47 0.62 0.85 0.63 0.89 0.70 0.92 0.71

delta 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.03 0.02

epsilon 0.5 2.68 1.38 3.01 2.03 3.25 2.03 3.25 1.95

zeta 0.14 0.54 0.69 1.97 1.06 1.79 1.02 1.89 1.03

eta 15.99 21.06 17.89 17.10 18.14 17.33 18.08 17.52 18.32

theta 8.12 3.3 5.17 10.11 7.74 9.65 6.74 9.04 6.00

iota 23.28 16.96 19.50 19.41 19.45 19.35 18.54 19.68 18.00

kappa 0.37 1.16 0.70 1.42 0.96 1.30 0.83 1.34 0.84

lambda 4.56 6.1 5.23 6.34 5.55 6.05 5.38 5.57 5.21

mi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
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estimated by the package can still be used while simulating the Removal effect.

The attributions computed for all the attribution measures are shown in table 3. It shows that

channel alpha is considered as most influential channel by all attribution measures. This however is

not surprising as almost half of the touchpoints (42.19%, see table 1) in the dataset are with alpha.

However, for most attribution measures alpha earns around 37% of the total attribution, with the

Removal effect dropping even to around 28%. The eta and iota channels are the second and third

most influential channels, both having around 18% attribution on most attribution measure. This

is notable because iota has almost twice as many touchpoint in the dataset as eta. Then beta, theta

and lambda (around 10,8 and 6% respectively) contribute most to a conversion. The attribution of

beta is around its total percentage of touchpoints and theta and lambda are slightly above theirs.

Finally the epsilon, zeta, kappa, gamma, delta and mi (around 2, 1, 1, 0.8, 0.02 and 0.01%) channels

barely have any contribution. However all also had very low percentages of the total touchpoints.

All of them actually seem to attribute a little more then would be expected only based on the

percentage of touchpoints in the dataset with these channel.

Overall, the attributions of every channel seem to resemble their respective percentage of touch-

points in the dataset. This could possibly be explained by the results about the model fit. It was

found there that the predictive accuracy of the models was barely better then a random predictor.

This means that the estimated ad campaign didn’t have a huge influence on the possible conversion

and therefore could implicate that the ad campaign wasn’t all that effective. This means that the

marketing channels didn’t have a large impact on the conversion and therefore none of the channels

should have attribution scores that far exceed their appearance rate.

Figure 1: Attribution of the different attribution measures of the 4th order Markov graph (left) and

comparison of Removal effects and Shapley values for 1st, 2nd and 4th order Markov graph and the percentage

of total clicks (right)

In the left side of figure 1 a visualization of table 3 for the attribution measures in the 4th order
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Markov graph is given, together with the percentage of clicks for every channel from table 1. This

will be used to compare the different attribution measures in a higher-order Markov graph. Firstly, it

is noted the the LIN heuristic has a very close resemblance to the Shapley value heuristic. This could

again be explained by the ad campaign not having a huge influence on the eventual conversion. As

the computation of the two measures is similar, the expected difference between the simple heuristic

and the more Sophisticated Shapley value should be caused by the influence of the ad campaign.

And because the influence of the ad campaign is very small the difference between the LIN heuristic

and the Shapley value also is.

The LTA and FTA heuristics are very inconsistent attribution measures, as was expected based

on Anderl et al. (2016). For almost all channels there seems to be no correlation between having

a high attribution score on these heuristics compared to both the overall appearance and having

a high score on the other attribution scores. This means that whether a channel is often the first

or last channel on a consumer path doesn’t seem to have an important influence on the overall

attribution. The only noteable exception to this is eta. This channel has both a higher LTA (16%)

and FTA (21%) attribution than it has touchpoints (11%) and this could explain that eta was the

channel with the most significant difference between it’s attribution and it’s percentage of clicks.

When comparing the Removal effect and the Shapley values it stands out the the Removal effect

often differs more from the percentage of touchpoints than the Shapley values. Singal et al. (2022)

found that Removal effects favoured channels that had a higher appearance rate. Here it is found

that the Removal effect for alpha, the channel that appears most in the dataset, is far lower (29%)

than both the Shapley value for that channel (38%) and its percentage of touchpoints (42%). For

the second biggest channel, iota, the Removal effect also is lower than its percentage of touchpoint

(19% against 20%) but the Removal effect is higher than the Shapley value (18%). Furthermore,

eta and beta, the 3rd and 4th biggest channels, also have a higher attribution measured by Shapley

values than Removal effect, while almost all the smaller channels (gamma, delta, epsilon, zeta,

kappa and lambda) get more attribution from the Removal effect than from the Shapley values.

This is opposite to the hypothesis that Removal effect would be higher for the channels that appear

more frequent in the paths.

The right side of figure 1 gives a visualization of the Removal effects and the Shapley values of the

1st, 2nd and 4th order Markov graphs from table 3. Comparing the attribution results from the

the different order graphs, it can be seen that as the order of the graphs goes up, the attribution

values change for the Removal effect and the Shapley value. For all of the channels, the direction of
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change of an attribution measure is constant between going from a 1st to 2nd order graph as going

from a 2nd to a 4th order graph. Furthermore, the direction of this change is also almost always

the same for the Removal effect and the Shapley value. To illustrate, the alpha channel gets more

attribution from a 2nd order graph than from a 1st order graph and more from a 4th order graph

than from a 2nd order graph. Further, these directions are the same for the Shapley value. The

iota channel is a notable example from this as the Removal effect for this channel goes sligtly up for

higher-order graphs, but the Shapley values decreases. The direction of the change in attribution

seems to be independent from the percentage of total clicks, as the attribution measures seem to

converge to the percentage of clicks for some channels (alpha, theta, lamda), but diverge from the

percentage of clicks for other channels (gamma, epsilon).

Overall, it can be concluded that the order of the Markov graph has a significant effect on the

attribution as measured by both the Shapley values as the Removal effect. Because the effect on

attribution is present for both attribution measures, is bigger for higher-order Markov graphs and

seems to be independent of the percentage of clicks a channel has, this effect could be explained

by the higher-order Markov graphs better estimating the carry- and spillover effects. The channels

with high carry- and spillover effects get more attribution assigned to them in higher-order models

and the channels with low carry- and spillover effects get assigned less.

Now the findings of this research about attributions are summarised. Firstly the attributions of

every channel resembles the percentage of touchpoints of each channel. This could be caused by

the low predictive power of the models. Furthermore the FTA and LTA heuristics seem very

inconsistent, which is in line with the hypothesis based on the findings of Anderl et al. (2016).

Furthermre, the LIN heuristic closely resembles the Shapley values which can be explained by their

similar computation. The attribution given to channel by the Removal effect is to higher for the

channels that appear less frequent in the dataset. This finding contradicts the finding of Singal

et al. (2022) that the Removal effect is higher for channels that appear more often in the dataset.

Finally, the direction in the change of the Removal effect and the Shapley values is the same when

the order of Markov mode goes up. This seems to resemble the higher-order Markov models ability

to better capture the carry- and spillover effects.
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6 Conclusion

This research investigated the research question “how do different attribution measurements com-

pare for higher-order Markov models and between higher-order Markov models and normal Markov

models?” In order to do this, Markov models for the consumer paths with different order speci-

fications were computed and compared to a benchmark logit model. Higher-order Markov models

were found to be a better model for the consumer paths than normal Markov models and also had

a representative performance compared against the logit model.

After the Markov models were specified, attribution was computed in the Markov model. The

Removal effect and Shapley value were used as data-driven attribution measures and were compared

to some heuristic attribution models. It was found that the attribution assigned to the channels by

the heuristic models is very inconsistent. Furthermore, the Removal effect assigns less attribution to

the channels most frequently present in the consumer paths compared to the Shapley values. This

is in contrast with earlier findings from the existing literature. Finally, attribution in higher-order

Markov models was found to better reflect the carry- and spillover effects between the different

channels.

This research has several limitations. The information about the consumer paths is probably not

complete for multiple reasons. The consumer path data is only collected from online marketing

channels. Therefore, possible interactions with offline marketing channels and the influence of

these to a possible conversion, are ignored. Furthermore, the data used is collected using cookie

tracking. This means that the consumer paths comprise the sequence of contacts a user had with a

company on one device. However, many people have multiple devices and thus the consumer paths

of one person can be split up between different devices. Consumer paths can also be broken by a

consumer deleting their cookie information. Because of these reasons incorrect consumer paths can

be recorded.

Secondly, the ability of the models to explain the consumer paths on this dataset was poor.

The attribution of the different channels only reflects the part of the total conversions that can be

explained by the Markov model. Therefore, the total part of the conversions that is explained and

distributed between the different channels by the attribution measures is very small. Thus, further

research on more impactful ad campaigns is needed to verify the results.

Another limitation of this research is that the findings are company or even campaign specific.

Before the attribution is measured, managers have already made decisions on how the budget is
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allocated between the different channels. This could have an important effect on the effectiveness

of the different marketing channels on consumers and therefore affect the measured attribution.

Furthermore, also decisions about which consumers are targeted by the the campaign, are made

beforehand. The decision between targeting recurring or new customers heavily impacts which

channels are most effective, and thus get the most attribution. Overall, endogeneity is by definition

a property of the attribution problem. Therefore, further research could be made to verify the

findings of this research for other companies or campaigns.

Finally, further research could also use time elements to account for the time difference

between different touchpoints. Ji et al. (2016) previously used time elements in attribution

modelling. Extending the Markov model framework using time elements could help to better

estimate the consumer journey.
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A Description programming files

The file “thesis r descriptive statistics” is used to compute the descriptive statistics in table 1.

The file “thesis r auc values” is used to compute the AUC values in table 2. The AUC values for

the markov graphs are computed using the “ChannelAttribution” package and are in the

markov auc object, while the AUC value for the logit model is printed with the last line. The BIC

values for table 2 are computed using the file “thesis r bic values”. The maximum order for which

the BIC values are computed can be selected and all values are storing in the BIC object. The 1st

number in the vector belongs to the 1st order Markov graph, the 2nd number to the 2nd order

Markov graph, etc. The attributions in table 3 are computed using “thesis r file attributions”.

The attributions for Shapley values and the Removal effect are in the percentage shapley and

percentage removal objects respectively. The places in the vector don’t resemble the alphabetical

order of the channels, but the order is printed (line 84) right before the percentage shapley and

percentage removal are computed.
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