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Abstract

Principal component regression (PCR) combines principal component analysis (PCA) with a
regression. This is useful for forecasting with a high-dimensional dataset which is an increasingly
demanded task. However, Classical PCR cannot deal with missing values and is sensitive to
outliers. Therefore, a new PCR method is introduced in this paper called MacroPCLR. This
method is based on the MacroPCA method introduced in Hubert et al. (2019). MacroPCA
is a new PCA method that can deal with missing values and is robust to rowwise as well as
cellwise outliers. By using this method as a basis, MacroPCLR also inherits these features. This
new MacroPCLR method is compared to other PCR methods for several contaminated datasets.
The comparison is performed by making use of the mean squared error (MSE). Additionally, the
PCA methods that these PCR methods inherit were also compared by the MSE. Results show
that of the PCA methods, MacroPCA performs the best when any outliers are present. If only
missing values are present, it is slightly better to use Iterative Classical PCA. Concerning the
PCR methods, it was shown that MacroPCLR outperforms other PCR method, regardless of

the contamination structure of the data.
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1 Introduction
The Linear regression (LR) model is one of the cornerstones of machine learning and is applicable
in many disciplines. These models are used to measure the linear relationship between one
dependent variable and one or more explanatory variables. The standard notation of the LR
model can be seen below:
k
yi=pB+ Y Bjjit+efori=1,.n. (1)
=2

Here, every 7 represents a single observation. The dependent variable is denoted by y and the
explanatory variables are denoted by the x;. 3; denotes the coefficient of the j-th explanatory
variable and € represents the error terms. n is the number of observations and k is the number of
explanatory variables. For a more in depth explanation consult Heij et al. (2004) (Section 3.1).

The more simple matrix form of this model is as follows:
y=Xp+e. (2)

The resulting output of a LR model can be used for forecasting. Well constructed LR mod-
els can thus have numerous practical applications. For instance, the LR model developed in
Ramanathan (2012) is able to forecast the demand for soda drinks. This model allows soda
drink companies to make better managerial decisions and potentially increases company profits.
However, present day databases are often high-dimensional according to Agarwal et al. (2021).
There are two main problems with high-dimensional data in the LR framework according to
Abdi (2010). The first problem is that this makes it more likely that the number of explanatory
variables exceeds the number of observations. The second problem is that it increases the chance
that different explanatory variables are correlated, which would result in multicollinearity. Both
problems cause the methods used to estimate the model in equation (2), to break down.

A solution to these problems is to first apply principal component analysis (PCA) to the matrix
of explanatory variables X before performing the actual regression. This solution is suggested
by Perez (2017) as well as Abdi (2010). PCA is a dimension reduction method that constructs
new variables, principal components (PCs), from the original data. These PCs are linear combi-
nations of the original variables and are constructed in such a way that they are orthogonal to
each other. They are also constructed with the objective to explain as much variance as possible,
while limiting the number of PCs. This means that applying PCA on a high-dimensional dataset
will result in a small number of uncorrelated variables that still instantiate much variability of
the original data. For a more in depth explanation and some examples see Abdi and Williams

(2010).



Applying PCA on the data matrix X and consequently performing a linear regression is called
principal component regression (PCR). The most simple version of PCR is called Classical Prin-
cipal Component Regression (CPCR), which combines Classical Principal Component Analysis
(CPCA) with a LR. CPCR is neatly described in Agarwal et al. (2021). In CPCR, the PCA
stage and the regression stage are not interconnected; for this reason Hubert and Verboven (2003)
identify two stages within PCR. Namely, the PCA stage and the regression stage.

While CPCR is an elegant and simple procedure, there are some drawbacks to it. For the major-
ity, these drawbacks are located in the PCA stage due to the use of CPCA. According to Hubert
et al. (2019), the drawbacks of CPCA are its inability to handle missing values and its sensitivity
to outliers. The latter drawback means that the method is not robust. More precisely, if you
want to apply strictly CPCA on a dataset containing missing values and outliers this has the
following consequences. First, all rows containing at least one missing value have to be removed.
This will likely leave the user with either an insufficient sample size, or a biased sample. Second,
the sensitivity to outliers means that even a single outlier will cause large biases. In theory,
these drawbacks can thus be fixed by replacing CPCA in the PCA stage of CPCR with a PCA
method that does account for missing values and outliers. The goal of this research is to find
out if this premise holds in practice. The seemingly best candidate for replacing CPCA is the
MacroPCA method from Hubert et al. (2019) as it accounts for missing values as well as rowwise
and cellwise outliers. The new method that is created by embodying this combination will be
called MacroPCLR.

Therefore, the main research question of this paper is the following: How does the forecasting
accuracy of MacroPCLR perform compared to other PCR methods in the presence of outliers and
missing values?

The answer to this question should be of interest to anyone trying to implement PCR or a LR
on a high-dimensional dataset. To help answer the main research question two sub-questions are
introduced and discussed.

The first sub-question is: How can outliers and missing values be appropriately dealt with within
PCR? As mentioned earlier, the presence of outliers and missing values creates certain drawbacks
for PCR. Therefore, it is useful to investigate how one can deal with these problems appropri-
ately.

The second sub-question is: Which evaluation criteria most accurately assesses the forecasting
performance of PCR models in the presence of outliers and missing values?

The aim of this research is to compare several PCR models, where the PCA stage of each model

differs. To make this comparison one or more evaluation criteria have to be selected. The best



evaluation criterion to use will most accurately translate the results of comparing these different
methods.

To answer the research question, some other PCA methods in the literature will be selected.
This way, the difference in forecasting performance when implementing MacroPCA can be as-
sessed. However, it is preferable that these PCA methods fix at least one of the drawbacks of
CPCA. This is because these methods might perform better in certain contamination structures.
A contamination structure is a certain combination of missing values and outliers. After these
methods have been deduced from the literature, they have to be appropriately compared. To
do this, one or more evaluation criteria have to be selected. These criteria will be based on a
discussion of existing evaluation criteria in the literature. The chosen PCA methods are the
Iterative Classical Principal Component Analysis (ICPCA) and Robust Principal Component
Analysis accounting for Missing values (MROBPCA). The selected evaluation criterion is the
mean squared error (MSE).

After other PCA methods have been chosen and the evaluation criteria have been found, a sim-
ulation will be executed to create the data that will be used to compare the PCA methods and
the newly developed PCR methods.

We found that MacroPCA is the best PCA method to use in all scenarios where outliers are
present, however if only missing values are present in the data one should use Iterative Classical
Principal Component Analysis. We also found that the newly developed MacroPCLR, method
trumps other PCR methods in the presence of missing values as well as rowwise and cellwise
outliers.

Thus, this paper contributes to the existing literature by developing a new PCR method called
MacroPCLR, which accounts for missing values as well as rowwise and cellwise outliers. Ad-
ditionally, MacroPCLR is compared to other PCR methods which gives more insight into its

capabilities.

This paper consist of 6 sections and an appendix. In section 2 several PCA methods in the
literature that deal with missing values and outliers are mentioned. Additionally, potential eval-
uation criteria that can be found in the literature are discussed. In section 3, the methods used to
conduct our research are explained and the setup of our research is specified further. In section
4, the results of our research are presented. In section 5 we draw some conclusions from our
research and explain them. Finally, in section 6 we present a short discussion of results and its

implications.



2 Literature Review

In this section, a review of the existing literature based on PCR with the presence of outliers
and missing values takes place, by focusing on the PCA stage of PCR.

2.1 Outliers and Missing Values

Outliers and missing values both have an undesirable impact on the outcome of PCR. However,

as the nature of their impact differs they should be treated in a slightly different manner.

Missing Values

The property that defines missing values is binary, a measurement is either missing or not.
However, there are several classifications that can be assigned to missing values. An overview of
these classifications is given in Acock (2005). As MacroPCA was developed under the assumption
of Missingness Completely At Random (MCAR), we will focus on this type of missing value as
well. MCAR means that the missing values present in the data are randomly distributed. More
precisely, if one were to assign a certain number of missing values to the data, each cell would
be equally likely to be selected.

If one insists on using CPCA in the presence of missing values, all rows with at least one missing
value require removal according to Nelson et al. (1996). Therefore, other methods had to be
developed to deal with missing values. The most simple method, which even allows the use of
CPCA is called mean imputation. Here missing values are imputed by the mean of the variable
they belong to. However, this method will likely give biased results according to Severson et al.
(2017) and is thus undesirable. To overcome this bias Nelson et al. (1996) and Kiers (1997)
developed an iterative procedure to deal with missing values called ICPCA. The method proposed
in Grung and Manne (1998), deals with missing values by using least-squares to minimize a loss
function. Oba et al. (2003) uses Bayesian statistics to account for overfitting of missing value
estimations.

In conclusion, there is an abundance of methods that deal with missing values within PCA.
Therefore, Severson et al. (2017) suggests to consider the type of missing values before choosing
which PCA method to use. Since this will affect which method will yield the most accurate

results.

Outliers

Grubbs (1969) defines an outlier as "An observation that deviates markedly from other members
of the sample in which it occurs." According to Hubert et al. (2019), one can identify two types
of outliers; rowwise and cellwise outliers. A cellwise outlier is a cell which holds a value that is

considered outlying within the corresponding column. A rowwise outlier is a row that contains
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many cellwise outliers. While rowwise outliers have been under investigation since the 1960s
according to Maronna et al. (2019a), cellwise outliers were first properly considered in Alqallaf
et al. (2009). Therefore, many PCA methods that are robust to rowwise outliers have been de-
veloped, while PCA methods robust to cellwise outliers are lacking. Following are some instances
of PCA methods that are robust to rowwise outliers. Croux and Haesbroeck (2000) proposed
to use the eigenvectors and eigenvalues of robust estimates of the covariance matrix of the data.
However, according to Hubert et al. (2005) this method cannot deal with high-dimensional data.
Li and Chen (1985) introduced a robust PCA method that can deal with high-dimensional by
incorporating projection pursuits. A disadvantage of the projection-pursuit method is its inac-
curacy for high-dimensional data. Therefore, Hubert et al. (2005) combined the methods from
Croux and Haesbroeck (2000) and Li and Chen (1985) to develop the ROBPCA method. This
method can deal with high-dimensional data while remaining accurate. However, in the light
of missing values, this method faces the same problems as CPCA. Consequently, Serneels and
Verdonck (2008) developed an algorithm which inherits a robust PCA method and uses robust
location and scale estimators to handle missing values. This method is called MROBPCA.

All aforementioned robust PCA methods are only robust to rowwise outliers and might break
down in the presence of cellwise outliers. PCA methods that are also robust to cellwise outliers
are scarce due to its late habitation in the literature. One such method is MacroPCA, which
was introduced in Hubert et al. (2019) and also accounts for missing values and rowwise outliers.

This method uses one-step M-estimators to identify and impute cellwise outliers.

In conclusion, PCA methods that are robust to rowwise outliers have received significantly more
attention than PCA methods robust to cellwise outliers. Therefore, these methods are more
optimised and come in many forms. Nonetheless, MacroPCA is an excellent PCA method that
accounts for cellwise outliers, rowwise outliers and missing values.

2.2 Evaluation Criteria

As this paper follows the research of Hubert et al. (2019) for a large part, it makes sense to
inherit their evaluation criterion. This is a variation of the mean squared error (MSE), the pre-
cise definition will be covered in the next chapter. This criterion is used in several papers where
multiple regression models are compared such as Al-Nasser (2014) and Torabi et al. (2009). This
criterion is also used in Heij et al. (2007), where PCR is compared with another model, which
motivates the use of the MSE for this research.

There are several evaluation criteria that closely resemble the MSE. Some instances are discussed

in Klimberg et al. (2010). Such as the root mean squared error (RMSE), which is the square root



of the MSE and the mean absolute error (MAE). Which is a more robust evaluation measure.
They also mention the mean absolute percentage error (MAPE) developed in Lewis (1982). The
MAPE can be used to evaluate the forecasting performance of a model by comparing estimated

values with actual values.

To summarise, there are many evaluation criteria to be found in the literature. A certain group
of these closely resemble the MSE. However, there are some small differences within this group,
with some criteria being more robust for instance. The choice of which evaluation measure to
use also comes down to preference.

2.3 Research Setup

In this section, the setup of our research will be explained.

In the previous sections, many different PCA methods and evaluation criteria were presented.
However, as this paper is an extension of the paper Hubert et al. (2019), it is logical to follow
their suggestions. Therefore, the following methods will be combined with a linear regression to
create new PCR methods.

The first method is ICPCA from Nelson et al. (1996) and Kiers (1997). This method accounts
for missing values but is not robust to outliers of any form. The second method is Serneels and
Verdonck (2008) where the robust PCA method used is ROBPCA from Hubert et al. (2005).
This method can deal with missing values and is robust to rowwise outliers. The final method
is the MacroPCA method from Hubert et al. (2019), which is robust to rowwise and cellwise
outliers and can handle missing values.

In Hubert et al. (2019), these methods are evaluated using a derivation of the MSE. Therefore,

the MSE will also be used to compare the PCR models in this paper.

To perform our research the following is done. First, each PCA method is combined with the
linear regression estimation such that we obtain three different PCR models. Then, a training
dataset of clean data is simulated as a benchmark. Consequently, a test dataset is generated for
model evaluation. Next, the data is contaminated in several ways. After that, the three models
will be separately trained for each scenario and trained using the training dataset. Finally, fore-

casts are computed for the test dataset and the MSE is computed to compare the models.

This paper will provide valuable contributions to the existing literature for the following rea-

sons. First, to our knowledge there does not yet exist a PCR method that accounts for missing



values as well as rowwise and cellwise outliers. Therfore, the MacroPCLR method introduced in
this paper is brand new and a valuable addition to the literature. Secondly, this method will be
compared to other PCR methods and will give insight into which PCR model to use for different

contamination structures of data.

3 Methodology

In this section the methods used in this research are explained. The main method that of focus
is called Principal Component Regression (PCR). PCR entails combining Principal Component
Analysis (PCA) with a regression. Our implementation of PCR entails first performing a PCA
method on the data and then using the acquired principal components to perform a linear
regression (LR). To that end, the different PCA methods used are explained first after which the
details of the LR are discussed.
3.1 Notation
Let X be an n x k data matrix where the rows represent individual observations and the columns
represent various explanatory variables. An assumption is made that k is large. The element on
the i-th row and the j-th column of X is denoted by x;;. Let y be a vector of n observations of
some dependent variable.
3.2 Principal Component Analysis
The goal of PCA when applied to a multivariate dataset is to drastically decrease the number of
dimensions while retaining as much information or variability as possible according to Jolliffe and
Cadima (2016). PCA accomplishes this by creating new variables called principal components
(PCs). PCs are linear combinations of the original variables and are constructed such that they
are uncorrelated. There are numerous PCA methods of which Classical PCA (CPCA) is the
most simple, yet most impressionable method. This method is neatly described in Abdi and
Williams (2010) and is shortly summarised here. After that, more advanced PCA methods are
introduced.
3.2.1 Classical Principal Component Analysis
CPCA constructs the PCs by performing a singular value decomposition. This is a factorization
on X, which is the centered version of X, thus X = X — 1,1’ To be precise; X = ADPT.
The PCs can now be extracted from the loading matrix P, based on a specified condition that
determines the appropriate number of PCs, this number is denoted by 7. The scores T', which
are the observed values of each PC, are then calculated by multiplying X with the columns of the
selected PCs in P. Hubert et al. (2019) summarises CPCA (or any PCA method) as estimating
the model:

X =1, +T(P) +E. (3)



Where p is the center, 7 is the score matrix, P is the loading matrix and &£ represents the
residuals. Estimates for these vectors and matrices are respectively denoted by m, T and P.
However, CPCA is very sensitive to outliers and cannot deal with missing values. Therefore this
method is undesirable.

3.2.2 MacroPCA

The first PCA method that will be combined with a linear regression is MacroPCA. This method
was introduced in Hubert et al. (2019) and is the first PCA method that accounts for missing
values as well as rowwise and cellwise outliers. MacroPCA is performed in two different stages,
the first stage is the Detecting Deviating Cells (DDC) stage and the second stage is the PCA
stage. Therefore, the DDC stage will be explained first and after that the PCA stage will be

discussed.

Detecting Deviating Cells: Computing Initial Imputations for Missing Values and
Cellwise Outliers

The DDC stage consists of performing the DetectDeviatingCells algorithm. The goal of this
algorithm is to make initial imputations for cellwise outliers and missing values. This algorithm
was developed in Rousseeuw and Bossche (2018) and is the first algorithm of its nature to take
the correlation between variables into account. The DDC algorithm can be broken down into
eight steps. The entire DDC algorithm can be found in the appendix A.1. DDC outputs the
sets I, ppc and I, ppc which respectively hold the indices of the cellwise outliers and the initial
rowwise outlier. DDC also outputs the matrices X and X which respectively represent the

NA-imputed matrix and the NA-imputed and cell-imputed matrix.

The PCA Stage
The PCA stage of MacroPCA consists of six steps and uses X , X , I, ppc and I.ppc from the
DDC stage.

Step 1: Using Projection Pursuit To Construct a Robust Basis

The aim of this step is to get an initial assessment on which rows are the least outlying. More
precisely, the algorithm will select h < n rows to be the least outlying. h is conditioned by the
constant o which is defined as follows: 0.5 < o = h/n < 1. In this paper a = 0.5 is used.

Since the goal of this step is to get an initial assessment on outlying rows, outlying cells must
be accounted for first. However, using the fully imputed matrix X might mask outlying rows as
outlying cells in these rows have been imputed. In other words, using the cell imputed matrix

makes rows that hold outlying cells seem less outlying than they really are. For these reasons,



a new matrix X© is constructed from the original data matrix X in the following way. First,
all missing values in X are imputed by the values of the corresponding cells in X. Then, the h
rows of X that are not in I, ppc and have the smallest number of cells in I, ppc are selected.

These selected rows are replaced by the corresponding rows of the fully imputed matrix X. Thus

#0 = ;.

After X has been obtained, the outlyingness outl(.) of each row is computed. Where the
outlyingness is equal to:

. (0 . (0
0 — g = D] ()
! veB SMCD (v’a'cg-o))

outl(&

Here myicp and syep are minimum covariance determinant (MCD) location and scale estimates.
For more information on MCD estimators see Rousseeuw and Leroy (2005). The set B is a set
of directions. Directions are the difference between two rows. The number of directions in B
is equal to min(7, min(250,7")) where T' = (n(n — 1))/2 is the maximum number of directions
possible.
Based on the outlyingness of each row, the h rows that are not in I, ppc with the lowest outly-
ingness are put in a new set called Hp. This set represents the robust basis.
Step 2: Determining the Number of Principal Components
From this point onward, dimensions are provided below or after in parentheses of matrices and
vectors when deemed appropriate. The goal of this step is to determine the number of prin-
cipal components 7. To accomplish this, a new cell-imputed matrix XM is constructed. It is
constructed in the following way for rows i = 1,...,n:

i‘gl) _ i; if i € Hy )

x; if i & Hy.

After that, the rows in Hy are selected from the newly constructed matrix X® and CPCA is
applied on these rows exclusively. This results in the mean m(?) (k x 1), the loading matrix P()
(k x k) and a diagonal matrix of the sorted eigenvalues L(!) (k x k). From these eigenvalues an
appropriate 7 can be chosen in multiple ways. In this paper, the default method is used unless
stated differently, which chooses a 7 such that 80% of the explained variance is retained. There
is also an upper bound to 7 called T4z, Which is set to 10 in this paper.
Step 3: Iteratively Applying CPCA on Non-Outlying Rows
The goal of this step is to estimate the 7 PCs that fit our original data. To accomplish this, an
iterative process takes place which is described below. Our starting input is X® and the output

of the CPCA performed in step 2.



convergence < FALSE.
s+ 1.
while s < 20 and convergence = FALSE do
T(s=1) — (X(s—l) _ 1n(m(8_1))’)P(5_1).
nXT nxk kx1 kxT
X = 1n(m(5_1))’ + T(s—l)(p(s—l))q

for i =1 ton do

for j =1to k do

. 8 if @y is NA -0 2 if ((i,4) € L.ppc and i € Hy) or x5 is NA
. (s—1)

:%ij otherwise. T;; otherwise.
end for
end for
Apply CPCA to the rows of X() for which holds that i € Hy.
This results in the updated m®) (k x 1) and P®) (k x 7).
Retrieve the smallest eigenvalue A from the matrix (P)) Ps=1D(ps=1)y pls),
if arccos (V/A) < tol then
convergence < TRUE.
end if
s=s+1.
end while
Where tol = 0.005 is used in this paper. After this procedure the matrices X , X ) m() and
P®) are retrieved. Where X is the NA-imputed matrix, X ) is the cell-imputed matrix, m(®) is
the new estimated center and P is the new loading matrix.
Step 4: Improving the Statistical Efficiency
The goal of this step is to improve the statistical efficiency for a low computational cost. See
Rousseeuw and Leroy (2005) and Engelen et al. (2005) for more information about this topic.
To accomplish this, the orthogonal distance to the current PCA subspace is calculated for each

row :EZ(-S) in X). The orthogonal distance od is calculated in the following way:
od; = [l&” — 7| = 12" — (") + (@ — m) PO (6)
Where |[|.|| is defined as:

lp—qll = (7)

for vectors p (n x 1) and ¢ (n x 1). According to Hubert et al. (2005) the distribution of the

orthogonal distances without the outliers to the power of 2/3 are roughly normal. Due to this
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property, the cutoff value can be computed and new non-outlying rows can be selected. The

cutoff value is computed as follows:
Cod = (maicp (od*) + sycp(od*)®~1(0.99))3/2, (8)

Where od* is the vector of all (od;)?/3.
Each row for which holds that od; < ¢, is marked as non-outlying with respect to the PCA
subspace. The index of each non-outlying row for which also holds that this index is not in /. ppc
is stored in a new set called H*. The number of rows in H* is equal to n*. The reweighted
NA-imputed and cell-imputed matrix X is then computed in the following way:

. 2 i (4,4) € Lppc and i € H*

Tij = (9)

T;; otherwise.

Finally, CPCA is applied to the n* rows &; for which holds that ¢ € H*. This results in a new
center m* (k x 1) and a new loading matrix P* (k x 7).
Step 5: Computing a Robust Basis for the Final PCA Subspace
The goal of this step is to develop a robust basis of the final estimated subspace. To accomplish
this a new scores matrix has to be computed first:

T =(X —1pm")P*. (10)

n* Xt n*xk kx1 " kxT

After this, the DetMCD method developed in Hubert et al. (2012) is applied to T. The goal
of applying this method is to obtain robust location and scatter estimators in a multivariate
setting. In this setting this will result in the robust location estimate mycp (7 x 1) and the
robust scatter estimate Syicp (7 X 7). Next, the spectral decomposition of Syep is performed
to retrieve a new loading matrix Pyicp (7 x 7). Finally, the final center m = m* + P*mycp and
the final loading matrix P = P*Pyicp are computed.

Step 6: Calculating the Final Scores and Predicted Values

The goal of this step is to calculate the final output. To do this, new score matrices are computed
first:

o o

T=(X—1,m)Pand T = (X — 1,m')P. (11)

These score matrices are then used to compute the final predictions for X:

O

X = 1,m+T(P) and X = 1,m + T(P). (12)

This concludes the MacroPCA method. In the Linear Regression section T will be used as the

score matrix Ty that the MacroPCA method outputs.
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3.2.3 ICPCA and MROBPCA
The ICPCA and MROBPCA methods will be shortly described in this section.

ICPCA

Iterative CPCA (ICPCA) is a PCA method developed by Nelson et al. (1996) and Kiers (1997)
that can deal with missing values. The method initially imputes missing values by the column
means of non-missing values. After that, an iterative procedure is initiated until a certain
convergence condition is met or after a certain amount of iterations. The procedure starts
by applying CPCA. Then using the obtained estimates for the center, scores and loadings, an
estimate for X is calculated called X. The cells of X that originally contained missing values
are replaced by the corresponding values in X and the other cells remain unaffected. Finally the

termination conditions are checked and the procedure is repeated until these are satisfied.

MROBPCA

MROBPCA combines the methods of Serneels and Verdonck (2008) and Hubert et al. (2005)
and is a PCA method that can also deal with missing values. Additionally, this method is robust
to rowwise outliers. It works similar to ICPCA with two key differences. The first difference is
that the initial imputations of missing values are not equal to the column mean. Instead, they
are imputed using robust location and scale estimates. Secondly, MROBPCA first calculates a

certain number of least outlying rows and then applies CPCA on only these rows.

Each of the aforementioned PCA methods result in separate scores, loadings and centers. For
the MacroPCA method these matrices will be denoted by Ty, Py and my. For the ICPCA
method these matrices will be denoted by Ti, P; and mj. For the MROBPCA method these
matrices will be denoted by Tg, Pr and mg.

3.3 Linear Regression

In this section the LR stage of PCR will be discussed. We first consider an arbitrary PCA
method where T' (n x 7) denotes the score matrix, P (k x 7) the loading matrix and m (k x 1)

the center. Later, the model will be specified for each method.

The goal of the LR stage is to construct and estimate a LR model using the output of the
PCA stage. To this end, the retrieved score matrix will represent the matrix of explanatory

variables. This results in the following model:

y=Tp+e. (13)
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The estimator b of 3, is then computed by performing the LR. The LR method used is the QR
method. This method is further explained in Ansley (1985), but is not relevant for this research.
Also note that an intercept is not included in the regression. This choice was made after a review
of existing PCR methods, of which the majority did not include an intercept. See for instance,
Agarwal et al. (2021), Faber and Kowalski (1997) and Xie and Kalivas (1997). This means that
the PCR models that will be compared in the results section are the following. ICPCLR, which
combines ICPCA with the LR model. MROBPCLR, which combines MROBPCA with the LR
model. MacroPCLR, which combines MacroPCA with the LR model.

3.4 Simulation

To compare these PCR methods, two simulated datasets are created by combining the simulation
methods of Artigue and Smith (2019) and Hubert et al. (2019). These datasets represent the
training dataset and the testing dataset. The training dataset is used to train the PCR models
and the testing dataset is used to evaluate them. This is a standard practice in econometrics
that is applied to properly evaluate the performance of models without bias. To this end, we
first describe how the clean datasets are generated. Next, we explain how these clean datasets
are contaminated.

3.4.1 Clean Data

To simulate the entire training dataset, the clean data matrix X’?‘rain has to be created first.

XO

Drain is an (n x k) matrix with n = 100 and

will then be used to construct yrvain- X%ain
k = 200 that is generated by a multivariate normal distribution (N) with mean g = 0 and
covariance matrix ¥. X is created from a correlation matrix called A09. Each element a;; in
A09 is computed by a;; = (—0.9)l=7l. The spectral decomposition of A09 is then performed
yielding the matrices E (k X k) which contains the ordered eigenvalues of A09 and P (k x k)
which contains the eigenvectors corresponding to the eigenvalues in E. The diagonal matrix
L = diag(30, 25,20, 15,10, 5, vg, ..., v) is then constructed where v; = 0.098 — 0.0005(i — 6) for
i = 6,...,k. The number of PCs in each method is manually specified to be equal to 7 = 6.
Finally, the covariance matrix is computed by ¥ = PLP’.

The generated matrix X% can now be used to construct yrvain. 1o this end, five random

rain

columns of X% . are selected denoted by z;, five coefficients ¢; ~ UNIFORM(2,4) are gener-

ated and a noise vector e~ N(0,1) is generated. If for instance, columns 5,17,69,134 and
nx

189 are selected the generated coeflicients will be denoted by cs5, c17, cg9, €134 and c189. YTvain 1S

then computed in the following way:
5

Yi = Z CjTij + Ei- (14)
j=1
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Xt

st aNd YTest are generated in the same way, except that for X%est 50 rows denoted by n’ are

generated instead of 100.
3.4.2 Contamination
To asses the performance of ICPCLR, MROBPCLR, and MacroPCLR with the presence of miss-
ing values as well as rowwise and cellwise outliers, the clean data, so both the training and the
test data, are contaminated in four different ways, resulting in four different scenarios. These
scenarios are directly taken from Hubert et al. (2019). Note that the training data and test data

are contaminated separately.

Scenario 1: n x k % p; cells are randomly selected and imputed by NAs.

With p = (0.05,0.1,0.15,0.2,0.25,0.3). The resulting data is denoted by X%\rain.
Scenario 2: First n % k % 0.2 cells are randomly selected and imputed by missing values. Of
the remaining n *x k * 0.8 cells, n x k % 0.2 cells are randomly selected and imputed with cellwise
outliers. If z;; is selected to be an outlier, it is imputed by 7;0; where O'j2~ is the j-th diagonal
element of ¥ and v = (0,1, ...,20). The resulting data is denoted by X2 _. .
Scenario 3: First n * 0.2 rows are replaced by rows generated from N(ye,y1,%) with v =
(0,1, ...,50) and where e,41 represents the (7 + 1)-th column of P. After that, n*d+0.2 random
cells are imputed with NAs. The resulting data is denoted by X%rain.
Scenario 4: First nx k% 0.2 cells are randomly selected and stored in the set Cxa. Then of the
remaining n x k% 0.8 cells, nxk*0.1 cells are randomly selected and stored in the set Cyyt. Next,
n * 0.1 rows are randomly selected and stored in the set Roy. Then in the following order the
data is contaminated. First the cells in Cyyt are imputed in the same fashion the cellwise outliers
in scenario 2 are imputed. Next, the rows in Ry are imputed in the same way as in scenario 3.
Finally, the cells in Cya are imputed by missing values. The resulting data is denoted by Xﬁiﬂram.
The above scenarios specify how the training data is contaminated. To contaminate the test

data, simply replace n by n’ and apply the procedures.

It is important to note that in this research the choice was made to compute both yry., and
YTest Defore any contamination takes place. The reason for this choice is the way that each
PCA method handles outliers. Namely, they are replaced for non-outlying values. Introducing
contamination to our dependent variable would thus lead to contradictory results. However,
this also means that the proposed methods cannot appropriately deal with outlying dependent

variables.
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3.5 Evaluation

The generated explanatory data, both contaminated and uncontamined, as well as the generated
dependent variables are then used to evaluate ICPCLR, MROBPCLR and MacroPCLR in several
ways.

First, the accuracy of the different PCA methods is measured as is done in Hubert et al. (2019).
To accomplish this, a new matrix is created for each scenario called X%ain (r x k) which is equal
to the matrix Xy, but with rows selected to be contaminated removed, thus rows in Rgyt.
Next, CPCA is applied on X%ain
X%ain denoted by :%5 After that, the PCA methods ICPCA, MROBPCA and MacroPCA are

and the resulting output is used to compute predictions for

s
Train

applied to X with s = 1,2,3,4 and the resulting predictions are denoted by #;;. Finally, the

mean squared error (MSE) is calculated to compare the methods:

k
1 .
MSEpca = — S (i — 2l (15)

iGRout ]:1
This procedure was repeated 100 times and the MSE was averaged over these repetitions. For
this part, the data was also simulated and evaluated using the ALYZ correlation matrix devel-

oped in Agostinelli et al. (2015).

Next, the performance of the full PCR methods was assessed. To accomplish this for each

scenario, the following LR models were estimated first:
YTrain = TISB + ¢, YTrain = T}S{B +e and YTrain = Tf/[ﬁ + €. (16)

Where T} represents the score matrix retrieved from applying the PCA method specified in the
subscript (See the end of section 3.4) on X7,.., and where s = 1,2, 3,4 indicates the scenario
number. These regressions will result in the estimators 0f for the first model, bf; for the second
model and b3, for the third model. These estimators will then be used in cooperation with X7
to make predictions g for yrest-

To compute ¢, the scores matrix is needed first. If there were no missing values in each X7, one
could simply project this matrix onto the existing PCA subspaces to retrieve the predictions.
However, missing values are present in each X7, and therefore, these have to be imputed
first. For ICPCLR missing values in X7, are imputed by the column mean. For MROBPCLR
missing values are imputed by equation (23). For MacroPCLR the MacroPCApredict function

from Hubert et al. (2019) is used to immediately project each X7, onto the existing PCA

est

subspace computed for each X7, , this results in the scores matrices Tf/{

ain’

For ICPCLR and MROBPCLR the scores matrices are computed in the following way after
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imputation:

TIS = (X%est - 1n’m/I)PI and Tli = (X’%est - 1n’m/R)PR (17)

The obtained score matrices are then used to compute g for each scenario and method:
g5 = Tebs for F=1, R, Mand s = 1,2,3,4. (18)

The predictions are then evaluated by the MSE:

,nl

1 Test ~\2

This procedure was repeated 50 times and the MSE was averaged over these repetitions.

In the next section the results of our research will be presented.

4 Results

In the previous section, the methods that were implemented to conduct our research were ex-
plained. Additionally, we explained how the data was generated and which evaluation criteria
were used. In this section, the results of our research will be presented. First, the comparison
of the PCA methods will be presented. After that, the comparison of the PCR methods will be
presented. To acquire these results the programming language R (Version 4.1.2) and the compiler
Rstudio were used. A description of the code that was developed can be found in the appendix
A.3. Note that the code implements functions from the R packages cellWise and rrcov.

4.1 PCA Comparison

The comparison of the three PCA methods tries to replicate the simulation study conducted
in Hubert et al. (2019). While most functions and methods used in Hubert et al. (2019) were
convenient to implement, such as MacroPCA, other methods were unclear and made their results
harder to reproduce. For instance, the exact details of their implementation of the MROBPCA
method were missing which forces the reader to use their own MROBPCA method, as is done
in this research. Therefore, the results for the MROBPCA method will differ throughout all
contamination scenarios. Which leads to another point of critique. The setup of the simula-
tion in Hubert et al. (2019) is not completely evident. The order of contamination for some
of the scenarios was not completely clear either, for instance it was unclear if imputed rowwise
outliers could contain missing values. This also lead to some deviating results. Another speci-
fication left unspecified were the exact values of the parameters of ICPCA, MROBPCA, DDC
and MacroPCA. The results can be found below and will now be discussed for each scenario.

The first scenario, see Figure 1, only contaminated the data with missing values.
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Figure 1: PCA Comparison: Scenario 1

This is congruent with the fact that ICPCA has the lowest MSE for this scenario. There are no
outliers that cause this non-robust method to break down. The second scenario, see Figure 2

introduced cellwise outliers in addition to the missing values.

17



1.00

Method

0.75 — ICPCA
—— MROBPCA
—— MacroPCA

]
50'50
0.25
0.00
0 5 10 15 20
gamma
(a) A09
0.9 Method
— ICPCA
—— MROBPCA
—— MacroPCA
W 0.6
(%]
=
0.3
0.0
0 5 10 15 20
gamma
(b) ALYZ

Figure 2: PCA Comparison: Scenario 2

It is evident that both the ICPCA and MROBPCA methods diverge quickly, due to their inability
to handle cellwise outliers. The third scenario, see Figure 3, combined missing values with

rowwise outliers.
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Figure 3: PCA Comparison: Scenario 3

An interesting observation is the fact that the MSE of the ICPCA method seems to converge
to a certain upperbound in our implementation. This was not the case in Hubert et al. (2019).
There could be several reasons for this including a different contamination order and a wrong
implementation of the ICPCA method. Determining the exact reason lies beyond the scope of
this research. Despite that, the acquired results are logical. ICPCA has a significantly larger
MSE than the other methods as it is the only method that is not robust to rowwise outliers. The
results of the last scenario, see Figure 4 are again quite similar to the results of Hubert et al.

(2019), despite some minor differences.
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Figure 4: PCA Comparison: Scenario 4

The MSE of both ICPCA and MROBPCA grow very fast and the MSE of MacroPCA shrinks
to zero as the outliers become large enough to be picked up by the algorithm.

To conclude, if there are no outliers in the data one should use ICPCA. A combination of
rowwise outliers and missing values can be treated with MROBPCA or MacroPCA. Finally, in
the presence of cellwise outliers one should opt for MacroPCA.

4.2 PCR Comparison

In this section the PCR models ICPCLR, MROBPCLR and MacroPCLR will be compared. The

results of each scenario can be found below.

The first thing to note is that in each scenario, MacroPCLR has the lowest MSE. This is in
contrast to results of Hubert et al. (2019), in which ICPCA had the lowest MSE for the first

scenario, though by a small margin. This systematic superiority of the MacroPCLR method is
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most likely a result of the usage of MacroPCApredict. This function imputes missing values
and outliers in the test data over iterations, instead of once which is the case for ICPCLR and
MROBPCLR. From this can be concluded that a PCR method where missing values and outliers
in the test data are imputed in an iterative manner is preferable to a PCR method which imputes
these values just once. However, this also means that the results of the PCR methods compared

to each other might be biased.

The results of the first scenario can be seen in Figure 5.

Method
— ICPCLR
6.0] — MROBPCLR
— MacroPCLR
55
©5.0
=
45 -

0.1 0.2 03
P

Figure 5: PCR Comparison: Scenario 1

Interesting is the large growth of the MSE of ICPCLR and MROBPCLR, while MacroPCLR
grows much slower. However, this difference seems logical since the NAs in ICPCLR and
MROBPCLR are imputed once by a shrinking sample. This leads to increasingly larger bi-
ases of the imputed values. The slow increasing MSE of MacroPCLR is in line with the results
of Hubert et al. (2019) for the first scenario. This slow growth can be seen in Figure 9 in the
appendix.

The results of the second scenario can be seen in Figure 6 and are quite logical as MacroPCLR

is the only method equipped to deal with cellwise outliers.
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Figure 6: PCR Comparison: Scenario 2

The shape of the graph also resembles the results of the PCA comparison quite well. Interesting
is the case with v = 0, for this case MacroPCLR has a higher MSE. This is logical as the clean
data has mean 0 and thus the imputed outliers will not represent actual outliers.

The results of the third scenario can be seen in Figure 7 and display some interesting behaviour.

9.0

8.5

7.5

Method

— ICPCLR
— MROBPCLR

7.01 — MacroPCLR

0 10 20 30 40 50
gamma

Figure 7: PCR Comparison: Scenario 3

In contrast to the other scenarios, the MSE of ICPCLR and MROBPCLR do not rapidly grow as
~ increases. Additionally, the graphs are much less smooth than those of the other scenarios. The
reason for this is probably correlated with the fact that the estimated model is also contaminated
with rowwise outliers. However, to get a grasp of the exact reason an extensive analysis is needed,
which is beyond the scope of this research.

The results of the fourth scenario can be seen in Figure 8 and are logical again.
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Figure 8: PCR Comparison: Scenario 4

They closely resemble the graph of the PCA comparison of the fourth scenario except for the
seemingly upperbounded ICPCLR and MROBPCLR.

In the next section, the findings of this research will be summarised and discussed.

5 Conclusion

The main research question of this research is: How does the forecasting accuracy of MacroP-
CLR perform compared to other PCR methods in the presence of outliers and missing values?.
To answer this question, three new PCR methods were developed, ICPCLR, MROBPCLR and
MacroPCLR. These methods combine a LR with ICPCA, MROBPCA and MacroPCA respec-
tively. Of these PCA methods, MacroPCA is the most refined as it can deal with missing values
and is robust to rowwise as well as cellwise outliers. These PCA methods and the corresponding
PCR methods were compared in four different settings where missing values and outliers were
present. They were compared by first generating a clean training dataset of 100 observations
with 200 explanatory variables and one dependent variable y, also with 100 observations. The
PCA methods were compared by calculating a type of MSE for predictions of X. The results
of this comparison closely resembled the simulation study conducted in Hubert et al. (2019).
They showed that in a dataset with no outliers one should use ICPCA and MacroPCA other-
wise. Predictions for y were then made using the three PCR models, the trainig dataset and
the similarly generated test dataset. These predictions were evaluated by calculating the MSE.
This showed that using the MacroPCLR method should be used no matter the contamination
structure. However, this result is likely biased due to the fact that the MacroPCLR method
iteratively imputes missing values and cellwise outliers in the test dataset where as ICPCLR and
MROBPCLR impute missing values just once. Nonetheless, the forecasting accuracy of PCR. in

combination with MacroPCLR appears to perform better than other PCA methods combined
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with PCR.

This implies that anyone who has a high-dimensional dataset and wants to use a LR model for
forecasting; using the MacroPCLR method is an option worth considering. In further research
one could consider implementing [CPCA and MROBPCA versions of MacroPCApredict and then
comparing the PCR models. Additionally, one could compare these methods for a real dataset.

Finally, one could consider dropping insignificant PCs in the LR stage of the PCR methods.

During the course of our research, some underlying assumptions were made. It is important
to consider these assumptions when interpreting the results. The first assumption is that cells
are missing completely at random (MCAR). The next assumptions are the assumptions needed
for PCA, linearity, large variances have important structures and PCs are orthogonal. For more
details see Shlens (2014). Finally, to perform a linear regression Heij et al. (2004) lists seven
assumptions that must hold. Consequent of the design of the simulation, all seven assumptions
hold. However, this is not inherent for most datasets. In further research the violation of these

assumptions in light of the forecasting performance of MacroPCLR could be investigated.
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A Appendix

A.1 DDC

The DDC stage consists of performing the DetectDeviatingCells algorithm. The goal of this
algorithm is to make initial imputations for cellwise outliers and missing values. This algorithm
was developed in Rousseeuw and Bossche (2018) and is the first algorithm of its nature to take
the correlation between variables into account. The DDC algorithm can be broken down into

eight steps.

Step 1: Standardization

The goal of this step is to standardize each column j of X, denoted by x;, by using robust
estimators of location and scale.

To calculate these estimators, Tukey’s biweight function from Maronna et al. (2019b) is needed.

The formula of this function can be seen below:

2 2
W(t) = (1 - <Z> ) (] < o). (20)

Here ¢ > 0 is a constant. Its standard value is ¢ = 3, which is the value used in this research.

To now calculate the estimators set:
mjo = medi—(xi;), sjo = med;_q|xi; —mjo| and  sj1 = medi_;(|z]). (21)

Where med stands for the median. Then set:

wM:W(@%—mW», (22)

SjO

The estimate of the robust location of column z; is then computed as follows:

m; = robLoc(xj) = (Z; wij%‘j) / (Z; wij) . (23)

The estimate of the robust scale of z; is equal to:

1 & i
s; = robScale(xj) = sj 5n Z’y (ZEj) (24)

S
i=1 71

Where 6 = 0.845 and 7(t) = min(t?, a®) with a = 2.5.

These formulas are used to standardize the columns of X. The standardized version of X will

28



be denoted by Z and is calculated as z;; = (x5; — m;)/s;.
Step 2: Univariate Outlier Detection
The goal of this step is to make an initial assessment on which cells are outlying.
To accomplish this, a new matrix U is created. This matrix is identical to Z, but in this matrix
outlying cells will be replaced by missing values. It is constructed as follows:
2ij if |2i5] < ¢y

uij = (25)
NA if ‘Zij‘ > Cy-

Where ¢, = X%,p with p = 0.99. ¢, is called the cutoff value as it is the cutoff of what is
considered as an outlier.

Step 3: Bivariate Relations

The goal of this step is to find correlated variables to increase the accuracy of the imputations.
To find these variables, a robust correlation measure is calculated for each combination of two
different columns in U. As a demonstrative example, consider the columns [ and h with [ # h.
For columns w; and uy, all rows where at least one NA value is present, are dropped. This results
in columns u; and u; which have no missing values and the same number of elements as each

other. To now estimate the robust correlation measure set:
pin = ((robScale(u; + u}))? — (robScale(uj — u})?)/4. (26)

pin is then used to construct a tolerance ellipse around (0,0) for u; and uj. The coverage
probability of this ellipse is the same as the p used to calculate the cutoff value in (8). robCorr
is then defined as the standard correlation measure of all data points of the columns v; and uj
that are inside this ellipse. Thus, cory, = robCorr(u;j, uj ).
Columns j for which holds that |cor;;| > 0.5 for some column [ # j are labelled as connected
variables. Pairs of columns that satisfy this condition are called connected pairs. Variables that
are not connected are labelled as standalone variables.
As connected pairs are sufficiently correlated, they can be used to predict each other. This is
why for these pairs another measure called robSlope is calculated. To calculate this measure
assume that columns [ and h are a connected pair and set:

bip, = med;*, <z§) . (27)

ih

If there is an 7 for which uj;, = 0, then this ¢ is taken out of the equation. This means that m is
equal to the number of elements in u; that are not equal to 0. Next, compute 7y, = u}; — bjpuy,
for i = 1,...,m. Then, select the observations for which holds that: |r;;| < c,robScale(ry,) and

put these ¢ in the set G. Where ¢, is the cutoff value from Step 2 and rj, is the vector of all
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calculated ryy,. Finally, £y, = robSlope(uj|uf) is defined as the slope of the regression line of the
no-intercept least-squares regression on all observations ¢ in the set G.

Step 4: Predicted Values

The goal of this step is to make a new matrix Z which contains predictions for the outliers
and missing values in Z. The calculation of these predictions differ for standalone variables and
connected variables. For standalone variables, predictions for outlying z;; are set to 0 and are
thus predicted by m; when destandardizing Z back to X. Predictions for non-outlying z;; are
equal to z;;.

Calculating the predictions for connected variables is more complicated. Consider the connected
variable [. Then predictions for the variable [ are calculated as follows.

The set C) consists of all variables h that make a connected pair with [ and [ itself. Then the

predictions for the connected variables are calculated as follows:
Y winBinuin
hECj

> Wi

hGCj

A

Zij = fori=1,...,nand j=1,..., k. (28)
Where wj; = corjl. Standalone variables are skipped as well as combinations of ¢ and j for which
u;; = NA. If there remain missing values in Z these are replaced by 0.

Step 5: Deshrinkage

According to Rousseeuw and Bossche (2018), the predictions made in (11) tend to be larger
than the actual values z;;. To account for this, the following computation are made. First set
a; = robSlope(z;f\éj) then replace Z;; with a;2;;. Where z7 and ?3; represent the columns of the
matrix (zj,Z;) where all rows with at least one NA value are removed.

Step 6: Flagging Cellwise Outliers

The goal of this step is to use the predictions in Z to flag cellwise outliers. To accomplish this,
the standardized cell residuals are calculated as follows:

i = Zij — Zij
L/ * 5%\’
robScale(z] — 27)

(29)

Then, all cells which satisfy the condition |n;;| > ¢, are flagged as a cellwise outlier. The positions
of these cells are stored in the set I. ppc. If for instance, the cell that intersects row a and column
b is flagged as an outlier, the pair (a,b) is stored in the set I, ppc.

Step 7: Flagging Rowwise Outliers

The goal of this step is to use the standardized residuals in (13) to flag rowwise outliers. To

accomplish this, first calculate T; for each row as follows:
1 &
Ti=— > F (()?). (30)
1 ]:1
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Where d; is the number of 7;; that were able to be calculated for row i. F"is the cdf of x?. Next,
the T; are robustly standardized in the same fashion as the columns of X in step 1. The rows
i for which the standardized T; is bigger than ¢2 are flagged as rowwise outliers. The indices of
these rows are stored in the set I, ppc.
Step 8: Impute and Destandardize
This is the final step of the DDC algorithm and its goal is to use everything calculated so far to
produce new versions of the data matrix X. These versions consist of X with only the missing
values imputed and of X with the missing values and cellwise outliers imputed. These new
matrices will be denoted by X and X respectively.
To retrieve these matrices, the predictions from Z have to be used first. To this end, 7 is
retrieved by imputing the NA-values in Z with the corresponding cells in Z. 7 is retrieved by
both imputing missing values and cells that were flagged as outlying. To be precise:

Zi; if (4,7) € I.,ppc or zj; is NA

Zij = (31)

z;j  otherwise.
Then, X and X are retrieved from Z and Z by destandardizing. Thus, Z;; = %;s; + m; and
Tij = Zijsj +mj.

A.2 PCR Comparison Graphs Zoomed In
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Figure 9: PCR Comparison: Scenario 1 Zoomed in

A.3 Code Description

In this section follows a short description of the created code used to conduct this research.

aux_functions.R: A file that stores auxiliary functions from the cellWise and rrcov packages.

This file is called upon to create the MROBPCA2 function.
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Extension.R: This file performs the PCR comparison and stores all calculated MSE values in
four different dataframes, one for each scenario. These dataframes are saved as RDS files, which

allows data to be stored more compactly.

extension _graphs.R: This file loads the dataframes computed in Extension.R and uses the gg-

plot2 package to graph the calculated MSEs.

MROBPCA.R: This file stores our implementation of the MROBPCA algorithm. Note that
this function is called MROBPCA2. The MROBPCA function is present for reference.

MSE.R: This file holds a function that computes the MSE for the PCA comparison.
Replication.R: This file performs the PCA comparison and stores all calculated MSE values
in four different dataframes, one for each scenario. These dataframes are saved as RDS files,

which allows data to be stored more compactly.

replication graphs.R: This file loads the dataframes computed in Replication.R and uses the

ggplot2 package to graph the calculated MSEs.

robust _estimator.R: This file holds the function that calculates the One-Step M-estimators.
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A.4 Abbreviations and Notations

Table 1: Table of Abbreviations

CPCA
CPCR
DDC
ICPCA
ICPCLR

LR
MacroPCA

MacroPCLR

MCAR
MROBPCA
MROBPCLR

MSE
PCA
PCR

pPC
ROBPCA

Classical Principal Component Analysis.

Classical Principal Component Regression.

Detecting Deviating Cells.

Iterative Classical Principal Component Analysis.

Principal Component Regression which inherits ICPCA and
the LR model.

Linear Regression.

Principal Component Analysis Accounting for Missing values
And Rowwise as well as Cellwise Outliers.

Principal Component Regression which inherits MacroPCA
and the LR model.

Missingness Completely At Random.

A ROBPCA method that can deal with missing values.
Principal Component Regression which inherits MacroPCA
and the LR model.

Mean Squared Error.

Principal Component Analysis.

Principal Component Regression.

Principal Component.

Robust Principal Component Analysis.
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Table 2: Table of Notations

N Ne N w

N

The number of rows.

The number of columns.

The number of PCs selected.

The set of outlying cells flagged by DDC.
The set of outlying rows flagged by DDC.

k x 1) The estimated center of X.

(

(k x 7) The estimated loading matrix of X.

(n x 7) The estimated score matrix of X.

(n x k) The original data matrix of explanatory variables.
(n x k) The NA-imputed version of X.

(n x k) The NA-imputed and cell-imputed version of X.
(n x 1) The dependent variable.

(n x k) The standardized version of X.

(n x k) The NA-imputed version of Z.

(n x k) The NA-imputed and cell-imputed version of Z.
(n x k) A matrix with predicted values for Z.

34



	Introduction
	Literature Review
	Outliers and Missing Values
	Evaluation Criteria
	Research Setup

	Methodology
	Notation
	Principal Component Analysis
	Classical Principal Component Analysis
	MacroPCA
	ICPCA and MROBPCA

	Linear Regression
	Simulation
	Clean Data
	Contamination

	Evaluation

	Results
	PCA Comparison
	PCR Comparison

	Conclusion
	Appendix
	DDC
	PCR Comparison Graphs Zoomed In
	Code Description
	Abbreviations and Notations


