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Abstract

Principal component regression (PCR) combines principal component analysis (PCA) with a

regression. This is useful for forecasting with a high-dimensional dataset which is an increasingly

demanded task. However, Classical PCR cannot deal with missing values and is sensitive to

outliers. Therefore, a new PCR method is introduced in this paper called MacroPCLR. This

method is based on the MacroPCA method introduced in Hubert et al. (2019). MacroPCA

is a new PCA method that can deal with missing values and is robust to rowwise as well as

cellwise outliers. By using this method as a basis, MacroPCLR also inherits these features. This

new MacroPCLR method is compared to other PCR methods for several contaminated datasets.

The comparison is performed by making use of the mean squared error (MSE). Additionally, the

PCA methods that these PCR methods inherit were also compared by the MSE. Results show

that of the PCA methods, MacroPCA performs the best when any outliers are present. If only

missing values are present, it is slightly better to use Iterative Classical PCA. Concerning the

PCR methods, it was shown that MacroPCLR outperforms other PCR method, regardless of

the contamination structure of the data.
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1 Introduction
The Linear regression (LR) model is one of the cornerstones of machine learning and is applicable

in many disciplines. These models are used to measure the linear relationship between one

dependent variable and one or more explanatory variables. The standard notation of the LR

model can be seen below:

yi = β1 +

k∑
j=2

βjxji + ϵi for i = 1, ..., n. (1)

Here, every i represents a single observation. The dependent variable is denoted by y and the

explanatory variables are denoted by the xj . βj denotes the coefficient of the j-th explanatory

variable and ϵ represents the error terms. n is the number of observations and k is the number of

explanatory variables. For a more in depth explanation consult Heij et al. (2004) (Section 3.1).

The more simple matrix form of this model is as follows:

y = Xβ + ϵ. (2)

The resulting output of a LR model can be used for forecasting. Well constructed LR mod-

els can thus have numerous practical applications. For instance, the LR model developed in

Ramanathan (2012) is able to forecast the demand for soda drinks. This model allows soda

drink companies to make better managerial decisions and potentially increases company profits.

However, present day databases are often high-dimensional according to Agarwal et al. (2021).

There are two main problems with high-dimensional data in the LR framework according to

Abdi (2010). The first problem is that this makes it more likely that the number of explanatory

variables exceeds the number of observations. The second problem is that it increases the chance

that different explanatory variables are correlated, which would result in multicollinearity. Both

problems cause the methods used to estimate the model in equation (2), to break down.

A solution to these problems is to first apply principal component analysis (PCA) to the matrix

of explanatory variables X before performing the actual regression. This solution is suggested

by Perez (2017) as well as Abdi (2010). PCA is a dimension reduction method that constructs

new variables, principal components (PCs), from the original data. These PCs are linear combi-

nations of the original variables and are constructed in such a way that they are orthogonal to

each other. They are also constructed with the objective to explain as much variance as possible,

while limiting the number of PCs. This means that applying PCA on a high-dimensional dataset

will result in a small number of uncorrelated variables that still instantiate much variability of

the original data. For a more in depth explanation and some examples see Abdi and Williams

(2010).
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Applying PCA on the data matrix X and consequently performing a linear regression is called

principal component regression (PCR). The most simple version of PCR is called Classical Prin-

cipal Component Regression (CPCR), which combines Classical Principal Component Analysis

(CPCA) with a LR. CPCR is neatly described in Agarwal et al. (2021). In CPCR, the PCA

stage and the regression stage are not interconnected; for this reason Hubert and Verboven (2003)

identify two stages within PCR. Namely, the PCA stage and the regression stage.

While CPCR is an elegant and simple procedure, there are some drawbacks to it. For the major-

ity, these drawbacks are located in the PCA stage due to the use of CPCA. According to Hubert

et al. (2019), the drawbacks of CPCA are its inability to handle missing values and its sensitivity

to outliers. The latter drawback means that the method is not robust. More precisely, if you

want to apply strictly CPCA on a dataset containing missing values and outliers this has the

following consequences. First, all rows containing at least one missing value have to be removed.

This will likely leave the user with either an insufficient sample size, or a biased sample. Second,

the sensitivity to outliers means that even a single outlier will cause large biases. In theory,

these drawbacks can thus be fixed by replacing CPCA in the PCA stage of CPCR with a PCA

method that does account for missing values and outliers. The goal of this research is to find

out if this premise holds in practice. The seemingly best candidate for replacing CPCA is the

MacroPCA method from Hubert et al. (2019) as it accounts for missing values as well as rowwise

and cellwise outliers. The new method that is created by embodying this combination will be

called MacroPCLR.

Therefore, the main research question of this paper is the following: How does the forecasting

accuracy of MacroPCLR perform compared to other PCR methods in the presence of outliers and

missing values?

The answer to this question should be of interest to anyone trying to implement PCR or a LR

on a high-dimensional dataset. To help answer the main research question two sub-questions are

introduced and discussed.

The first sub-question is: How can outliers and missing values be appropriately dealt with within

PCR? As mentioned earlier, the presence of outliers and missing values creates certain drawbacks

for PCR. Therefore, it is useful to investigate how one can deal with these problems appropri-

ately.

The second sub-question is: Which evaluation criteria most accurately assesses the forecasting

performance of PCR models in the presence of outliers and missing values?

The aim of this research is to compare several PCR models, where the PCA stage of each model

differs. To make this comparison one or more evaluation criteria have to be selected. The best
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evaluation criterion to use will most accurately translate the results of comparing these different

methods.

To answer the research question, some other PCA methods in the literature will be selected.

This way, the difference in forecasting performance when implementing MacroPCA can be as-

sessed. However, it is preferable that these PCA methods fix at least one of the drawbacks of

CPCA. This is because these methods might perform better in certain contamination structures.

A contamination structure is a certain combination of missing values and outliers. After these

methods have been deduced from the literature, they have to be appropriately compared. To

do this, one or more evaluation criteria have to be selected. These criteria will be based on a

discussion of existing evaluation criteria in the literature. The chosen PCA methods are the

Iterative Classical Principal Component Analysis (ICPCA) and Robust Principal Component

Analysis accounting for Missing values (MROBPCA). The selected evaluation criterion is the

mean squared error (MSE).

After other PCA methods have been chosen and the evaluation criteria have been found, a sim-

ulation will be executed to create the data that will be used to compare the PCA methods and

the newly developed PCR methods.

We found that MacroPCA is the best PCA method to use in all scenarios where outliers are

present, however if only missing values are present in the data one should use Iterative Classical

Principal Component Analysis. We also found that the newly developed MacroPCLR method

trumps other PCR methods in the presence of missing values as well as rowwise and cellwise

outliers.

Thus, this paper contributes to the existing literature by developing a new PCR method called

MacroPCLR which accounts for missing values as well as rowwise and cellwise outliers. Ad-

ditionally, MacroPCLR is compared to other PCR methods which gives more insight into its

capabilities.

This paper consist of 6 sections and an appendix. In section 2 several PCA methods in the

literature that deal with missing values and outliers are mentioned. Additionally, potential eval-

uation criteria that can be found in the literature are discussed. In section 3, the methods used to

conduct our research are explained and the setup of our research is specified further. In section

4, the results of our research are presented. In section 5 we draw some conclusions from our

research and explain them. Finally, in section 6 we present a short discussion of results and its

implications.
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2 Literature Review
In this section, a review of the existing literature based on PCR with the presence of outliers

and missing values takes place, by focusing on the PCA stage of PCR.

2.1 Outliers and Missing Values

Outliers and missing values both have an undesirable impact on the outcome of PCR. However,

as the nature of their impact differs they should be treated in a slightly different manner.

Missing Values

The property that defines missing values is binary, a measurement is either missing or not.

However, there are several classifications that can be assigned to missing values. An overview of

these classifications is given in Acock (2005). As MacroPCA was developed under the assumption

of Missingness Completely At Random (MCAR), we will focus on this type of missing value as

well. MCAR means that the missing values present in the data are randomly distributed. More

precisely, if one were to assign a certain number of missing values to the data, each cell would

be equally likely to be selected.

If one insists on using CPCA in the presence of missing values, all rows with at least one missing

value require removal according to Nelson et al. (1996). Therefore, other methods had to be

developed to deal with missing values. The most simple method, which even allows the use of

CPCA is called mean imputation. Here missing values are imputed by the mean of the variable

they belong to. However, this method will likely give biased results according to Severson et al.

(2017) and is thus undesirable. To overcome this bias Nelson et al. (1996) and Kiers (1997)

developed an iterative procedure to deal with missing values called ICPCA. The method proposed

in Grung and Manne (1998), deals with missing values by using least-squares to minimize a loss

function. Oba et al. (2003) uses Bayesian statistics to account for overfitting of missing value

estimations.

In conclusion, there is an abundance of methods that deal with missing values within PCA.

Therefore, Severson et al. (2017) suggests to consider the type of missing values before choosing

which PCA method to use. Since this will affect which method will yield the most accurate

results.

Outliers

Grubbs (1969) defines an outlier as "An observation that deviates markedly from other members

of the sample in which it occurs." According to Hubert et al. (2019), one can identify two types

of outliers; rowwise and cellwise outliers. A cellwise outlier is a cell which holds a value that is

considered outlying within the corresponding column. A rowwise outlier is a row that contains
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many cellwise outliers. While rowwise outliers have been under investigation since the 1960s

according to Maronna et al. (2019a), cellwise outliers were first properly considered in Alqallaf

et al. (2009). Therefore, many PCA methods that are robust to rowwise outliers have been de-

veloped, while PCA methods robust to cellwise outliers are lacking. Following are some instances

of PCA methods that are robust to rowwise outliers. Croux and Haesbroeck (2000) proposed

to use the eigenvectors and eigenvalues of robust estimates of the covariance matrix of the data.

However, according to Hubert et al. (2005) this method cannot deal with high-dimensional data.

Li and Chen (1985) introduced a robust PCA method that can deal with high-dimensional by

incorporating projection pursuits. A disadvantage of the projection-pursuit method is its inac-

curacy for high-dimensional data. Therefore, Hubert et al. (2005) combined the methods from

Croux and Haesbroeck (2000) and Li and Chen (1985) to develop the ROBPCA method. This

method can deal with high-dimensional data while remaining accurate. However, in the light

of missing values, this method faces the same problems as CPCA. Consequently, Serneels and

Verdonck (2008) developed an algorithm which inherits a robust PCA method and uses robust

location and scale estimators to handle missing values. This method is called MROBPCA.

All aforementioned robust PCA methods are only robust to rowwise outliers and might break

down in the presence of cellwise outliers. PCA methods that are also robust to cellwise outliers

are scarce due to its late habitation in the literature. One such method is MacroPCA, which

was introduced in Hubert et al. (2019) and also accounts for missing values and rowwise outliers.

This method uses one-step M-estimators to identify and impute cellwise outliers.

In conclusion, PCA methods that are robust to rowwise outliers have received significantly more

attention than PCA methods robust to cellwise outliers. Therefore, these methods are more

optimised and come in many forms. Nonetheless, MacroPCA is an excellent PCA method that

accounts for cellwise outliers, rowwise outliers and missing values.

2.2 Evaluation Criteria

As this paper follows the research of Hubert et al. (2019) for a large part, it makes sense to

inherit their evaluation criterion. This is a variation of the mean squared error (MSE), the pre-

cise definition will be covered in the next chapter. This criterion is used in several papers where

multiple regression models are compared such as Al-Nasser (2014) and Torabi et al. (2009). This

criterion is also used in Heij et al. (2007), where PCR is compared with another model, which

motivates the use of the MSE for this research.

There are several evaluation criteria that closely resemble the MSE. Some instances are discussed

in Klimberg et al. (2010). Such as the root mean squared error (RMSE), which is the square root
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of the MSE and the mean absolute error (MAE). Which is a more robust evaluation measure.

They also mention the mean absolute percentage error (MAPE) developed in Lewis (1982). The

MAPE can be used to evaluate the forecasting performance of a model by comparing estimated

values with actual values.

To summarise, there are many evaluation criteria to be found in the literature. A certain group

of these closely resemble the MSE. However, there are some small differences within this group,

with some criteria being more robust for instance. The choice of which evaluation measure to

use also comes down to preference.

2.3 Research Setup

In this section, the setup of our research will be explained.

In the previous sections, many different PCA methods and evaluation criteria were presented.

However, as this paper is an extension of the paper Hubert et al. (2019), it is logical to follow

their suggestions. Therefore, the following methods will be combined with a linear regression to

create new PCR methods.

The first method is ICPCA from Nelson et al. (1996) and Kiers (1997). This method accounts

for missing values but is not robust to outliers of any form. The second method is Serneels and

Verdonck (2008) where the robust PCA method used is ROBPCA from Hubert et al. (2005).

This method can deal with missing values and is robust to rowwise outliers. The final method

is the MacroPCA method from Hubert et al. (2019), which is robust to rowwise and cellwise

outliers and can handle missing values.

In Hubert et al. (2019), these methods are evaluated using a derivation of the MSE. Therefore,

the MSE will also be used to compare the PCR models in this paper.

To perform our research the following is done. First, each PCA method is combined with the

linear regression estimation such that we obtain three different PCR models. Then, a training

dataset of clean data is simulated as a benchmark. Consequently, a test dataset is generated for

model evaluation. Next, the data is contaminated in several ways. After that, the three models

will be separately trained for each scenario and trained using the training dataset. Finally, fore-

casts are computed for the test dataset and the MSE is computed to compare the models.

This paper will provide valuable contributions to the existing literature for the following rea-

sons. First, to our knowledge there does not yet exist a PCR method that accounts for missing
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values as well as rowwise and cellwise outliers. Therfore, the MacroPCLR method introduced in

this paper is brand new and a valuable addition to the literature. Secondly, this method will be

compared to other PCR methods and will give insight into which PCR model to use for different

contamination structures of data.

3 Methodology
In this section the methods used in this research are explained. The main method that of focus

is called Principal Component Regression (PCR). PCR entails combining Principal Component

Analysis (PCA) with a regression. Our implementation of PCR entails first performing a PCA

method on the data and then using the acquired principal components to perform a linear

regression (LR). To that end, the different PCA methods used are explained first after which the

details of the LR are discussed.

3.1 Notation

Let X be an n×k data matrix where the rows represent individual observations and the columns

represent various explanatory variables. An assumption is made that k is large. The element on

the i-th row and the j-th column of X is denoted by xij . Let y be a vector of n observations of

some dependent variable.

3.2 Principal Component Analysis

The goal of PCA when applied to a multivariate dataset is to drastically decrease the number of

dimensions while retaining as much information or variability as possible according to Jolliffe and

Cadima (2016). PCA accomplishes this by creating new variables called principal components

(PCs). PCs are linear combinations of the original variables and are constructed such that they

are uncorrelated. There are numerous PCA methods of which Classical PCA (CPCA) is the

most simple, yet most impressionable method. This method is neatly described in Abdi and

Williams (2010) and is shortly summarised here. After that, more advanced PCA methods are

introduced.

3.2.1 Classical Principal Component Analysis

CPCA constructs the PCs by performing a singular value decomposition. This is a factorization

on X̃, which is the centered version of X, thus X̃ = X − 1nµ
′. To be precise; X̃ = ADPT.

The PCs can now be extracted from the loading matrix P , based on a specified condition that

determines the appropriate number of PCs, this number is denoted by τ . The scores T , which

are the observed values of each PC, are then calculated by multiplying X̃ with the columns of the

selected PCs in P . Hubert et al. (2019) summarises CPCA (or any PCA method) as estimating

the model:

X = 1nµ
′ + T (P)′ + E . (3)
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Where µ is the center, T is the score matrix, P is the loading matrix and E represents the

residuals. Estimates for these vectors and matrices are respectively denoted by m, T and P .

However, CPCA is very sensitive to outliers and cannot deal with missing values. Therefore this

method is undesirable.

3.2.2 MacroPCA

The first PCA method that will be combined with a linear regression is MacroPCA. This method

was introduced in Hubert et al. (2019) and is the first PCA method that accounts for missing

values as well as rowwise and cellwise outliers. MacroPCA is performed in two different stages,

the first stage is the Detecting Deviating Cells (DDC) stage and the second stage is the PCA

stage. Therefore, the DDC stage will be explained first and after that the PCA stage will be

discussed.

Detecting Deviating Cells: Computing Initial Imputations for Missing Values and

Cellwise Outliers

The DDC stage consists of performing the DetectDeviatingCells algorithm. The goal of this

algorithm is to make initial imputations for cellwise outliers and missing values. This algorithm

was developed in Rousseeuw and Bossche (2018) and is the first algorithm of its nature to take

the correlation between variables into account. The DDC algorithm can be broken down into

eight steps. The entire DDC algorithm can be found in the appendix A.1. DDC outputs the

sets Ic,DDC and Ir,DDC which respectively hold the indices of the cellwise outliers and the initial

rowwise outlier. DDC also outputs the matrices
◦
X and

.
X which respectively represent the

NA-imputed matrix and the NA-imputed and cell-imputed matrix.

The PCA Stage

The PCA stage of MacroPCA consists of six steps and uses
◦
X,

.
X, Ir,DDC and Ic,DDC from the

DDC stage.

Step 1: Using Projection Pursuit To Construct a Robust Basis

The aim of this step is to get an initial assessment on which rows are the least outlying. More

precisely, the algorithm will select h < n rows to be the least outlying. h is conditioned by the

constant α which is defined as follows: 0.5 ≤ α = h/n < 1. In this paper α = 0.5 is used.

Since the goal of this step is to get an initial assessment on outlying rows, outlying cells must

be accounted for first. However, using the fully imputed matrix
.
X might mask outlying rows as

outlying cells in these rows have been imputed. In other words, using the cell imputed matrix

makes rows that hold outlying cells seem less outlying than they really are. For these reasons,
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a new matrix
.
X(0) is constructed from the original data matrix X in the following way. First,

all missing values in X are imputed by the values of the corresponding cells in
◦
X. Then, the h

rows of X that are not in Ir,DDC and have the smallest number of cells in Ic,DDC are selected.

These selected rows are replaced by the corresponding rows of the fully imputed matrix
.
X. Thus

.
x
(0)
i =

.
xi.

After
.
X(0) has been obtained, the outlyingness outl(.) of each row is computed. Where the

outlyingness is equal to:

outl( .x(0)i ) = max
v∈B

|v′ .x(0)i −mMCD(v
′ .x(0)j )|

sMCD(v′
.
x
(0)
j )

. (4)

Here mMCD and sMCD are minimum covariance determinant (MCD) location and scale estimates.

For more information on MCD estimators see Rousseeuw and Leroy (2005). The set B is a set

of directions. Directions are the difference between two rows. The number of directions in B

is equal to min(T,min(250, T )) where T = (n(n − 1))/2 is the maximum number of directions

possible.

Based on the outlyingness of each row, the h rows that are not in Ir,DDC with the lowest outly-

ingness are put in a new set called H0. This set represents the robust basis.

Step 2: Determining the Number of Principal Components

From this point onward, dimensions are provided below or after in parentheses of matrices and

vectors when deemed appropriate. The goal of this step is to determine the number of prin-

cipal components τ . To accomplish this, a new cell-imputed matrix
.
X(1) is constructed. It is

constructed in the following way for rows i = 1, ..., n:

.
x
(1)
i =


.
xi if i ∈ H0

◦
xi if i ̸∈ H0.

(5)

After that, the rows in H0 are selected from the newly constructed matrix
.
X(1) and CPCA is

applied on these rows exclusively. This results in the mean m(1) (k× 1), the loading matrix P (1)

(k × k) and a diagonal matrix of the sorted eigenvalues L(1) (k × k). From these eigenvalues an

appropriate τ can be chosen in multiple ways. In this paper, the default method is used unless

stated differently, which chooses a τ such that 80% of the explained variance is retained. There

is also an upper bound to τ called τmax, which is set to 10 in this paper.

Step 3: Iteratively Applying CPCA on Non-Outlying Rows

The goal of this step is to estimate the τ PCs that fit our original data. To accomplish this, an

iterative process takes place which is described below. Our starting input is
.
X(1) and the output

of the CPCA performed in step 2.
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convergence ← FALSE.

s← 1.

while s < 20 and convergence = FALSE do
.
T (s−1)

n×τ
= (

.
X(s−1)

n×k
− 1n(m

(s−1)

k×1
)′)P (s−1)

k×τ
.

X̂(s) = 1n(m
(s−1))′ +

.
T (s−1)(P (s−1))′.

for i = 1 to n do

for j = 1 to k do

◦
xij =


x̂
(s)
ij if xij is NA

◦
xij otherwise.

.
x
(s)
ij =


x̂
(s)
ij if ((i, j) ∈ Ic,DDC and i ∈ H0) or xij is NA

.
x
(s−1)
ij otherwise.

end for

end for

Apply CPCA to the rows of
.
X(s) for which holds that i ∈ H0.

This results in the updated m(s) (k × 1) and P (s) (k × τ).

Retrieve the smallest eigenvalue λ from the matrix (P (s))′P (s−1)(P (s−1))′P (s).

if arccos (
√
λ) < tol then

convergence ← TRUE.

end if

s = s+ 1.

end while

Where tol = 0.005 is used in this paper. After this procedure the matrices
◦
X,

.
X(s), m(s) and

P (s) are retrieved. Where
◦
X is the NA-imputed matrix,

.
X(s) is the cell-imputed matrix, m(s) is

the new estimated center and P (s) is the new loading matrix.

Step 4: Improving the Statistical Efficiency

The goal of this step is to improve the statistical efficiency for a low computational cost. See

Rousseeuw and Leroy (2005) and Engelen et al. (2005) for more information about this topic.

To accomplish this, the orthogonal distance to the current PCA subspace is calculated for each

row .
x
(s)
i in

.
X(s). The orthogonal distance od is calculated in the following way:

odi = ||
.
x
(s)
i −

.̂
x
(s)
i || = ||

.
x
(s)
i − (m(s) + (

.
x
(s)
i −m(s))P (s)(P (s))′)||. (6)

Where ||.|| is defined as:

||p− q|| =

√√√√ n∑
i=1

(pi − qi)2. (7)

for vectors p (n × 1) and q (n × 1). According to Hubert et al. (2005) the distribution of the

orthogonal distances without the outliers to the power of 2/3 are roughly normal. Due to this
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property, the cutoff value can be computed and new non-outlying rows can be selected. The

cutoff value is computed as follows:

cod := (mMCD(od
∗) + sMCD(od

∗)Φ−1(0.99))3/2. (8)

Where od∗ is the vector of all (odi)2/3.

Each row for which holds that odi ≤ cod is marked as non-outlying with respect to the PCA

subspace. The index of each non-outlying row for which also holds that this index is not in Ir,DDC

is stored in a new set called H∗. The number of rows in H∗ is equal to n∗. The reweighted

NA-imputed and cell-imputed matrix
.
X is then computed in the following way:

.
xij =


.̂
x
(s)
ij if (i, j) ∈ Ic,DDC and i ∈ H∗

◦
xij otherwise.

(9)

Finally, CPCA is applied to the n∗ rows .
xi for which holds that i ∈ H∗. This results in a new

center m∗ (k × 1) and a new loading matrix P ∗ (k × τ).

Step 5: Computing a Robust Basis for the Final PCA Subspace

The goal of this step is to develop a robust basis of the final estimated subspace. To accomplish

this a new scores matrix has to be computed first:

.
T

n∗×τ
= (

.
X

n∗×k
− 1n∗m∗

k×1

′)P ∗
k×τ

. (10)

After this, the DetMCD method developed in Hubert et al. (2012) is applied to
.
T . The goal

of applying this method is to obtain robust location and scatter estimators in a multivariate

setting. In this setting this will result in the robust location estimate mMCD (τ × 1) and the

robust scatter estimate SMCD (τ × τ). Next, the spectral decomposition of SMCD is performed

to retrieve a new loading matrix PMCD (τ × τ). Finally, the final center m = m∗+P ∗mMCD and

the final loading matrix P = P ∗PMCD are computed.

Step 6: Calculating the Final Scores and Predicted Values

The goal of this step is to calculate the final output. To do this, new score matrices are computed

first:
◦
T = (

◦
X − 1nm

′)P and
.
T = (

.
X − 1nm

′)P. (11)

These score matrices are then used to compute the final predictions for X:

◦̂
X = 1nm+

◦
T (P )′ and

.̂
X = 1nm+

.
T (P )′. (12)

This concludes the MacroPCA method. In the Linear Regression section
.
T will be used as the

score matrix TM that the MacroPCA method outputs.
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3.2.3 ICPCA and MROBPCA

The ICPCA and MROBPCA methods will be shortly described in this section.

ICPCA

Iterative CPCA (ICPCA) is a PCA method developed by Nelson et al. (1996) and Kiers (1997)

that can deal with missing values. The method initially imputes missing values by the column

means of non-missing values. After that, an iterative procedure is initiated until a certain

convergence condition is met or after a certain amount of iterations. The procedure starts

by applying CPCA. Then using the obtained estimates for the center, scores and loadings, an

estimate for X is calculated called X̂. The cells of X that originally contained missing values

are replaced by the corresponding values in X̂ and the other cells remain unaffected. Finally the

termination conditions are checked and the procedure is repeated until these are satisfied.

MROBPCA

MROBPCA combines the methods of Serneels and Verdonck (2008) and Hubert et al. (2005)

and is a PCA method that can also deal with missing values. Additionally, this method is robust

to rowwise outliers. It works similar to ICPCA with two key differences. The first difference is

that the initial imputations of missing values are not equal to the column mean. Instead, they

are imputed using robust location and scale estimates. Secondly, MROBPCA first calculates a

certain number of least outlying rows and then applies CPCA on only these rows.

Each of the aforementioned PCA methods result in separate scores, loadings and centers. For

the MacroPCA method these matrices will be denoted by TM, PM and mM. For the ICPCA

method these matrices will be denoted by TI, PI and mI. For the MROBPCA method these

matrices will be denoted by TR, PR and mR.

3.3 Linear Regression

In this section the LR stage of PCR will be discussed. We first consider an arbitrary PCA

method where T (n× τ) denotes the score matrix, P (k × τ) the loading matrix and m (k × 1)

the center. Later, the model will be specified for each method.

The goal of the LR stage is to construct and estimate a LR model using the output of the

PCA stage. To this end, the retrieved score matrix will represent the matrix of explanatory

variables. This results in the following model:

y = Tβ + ϵ. (13)

12



The estimator b of β, is then computed by performing the LR. The LR method used is the QR

method. This method is further explained in Ansley (1985), but is not relevant for this research.

Also note that an intercept is not included in the regression. This choice was made after a review

of existing PCR methods, of which the majority did not include an intercept. See for instance,

Agarwal et al. (2021), Faber and Kowalski (1997) and Xie and Kalivas (1997). This means that

the PCR models that will be compared in the results section are the following. ICPCLR, which

combines ICPCA with the LR model. MROBPCLR, which combines MROBPCA with the LR

model. MacroPCLR, which combines MacroPCA with the LR model.

3.4 Simulation

To compare these PCR methods, two simulated datasets are created by combining the simulation

methods of Artigue and Smith (2019) and Hubert et al. (2019). These datasets represent the

training dataset and the testing dataset. The training dataset is used to train the PCR models

and the testing dataset is used to evaluate them. This is a standard practice in econometrics

that is applied to properly evaluate the performance of models without bias. To this end, we

first describe how the clean datasets are generated. Next, we explain how these clean datasets

are contaminated.

3.4.1 Clean Data

To simulate the entire training dataset, the clean data matrix X0
Train has to be created first.

X0
Train will then be used to construct yTrain. X0

Train is an (n × k) matrix with n = 100 and

k = 200 that is generated by a multivariate normal distribution (N) with mean µ = 0 and

covariance matrix Σ. Σ is created from a correlation matrix called A09. Each element aij in

A09 is computed by aij = (−0.9)|i−j|. The spectral decomposition of A09 is then performed

yielding the matrices E (k × k) which contains the ordered eigenvalues of A09 and P (k × k)

which contains the eigenvectors corresponding to the eigenvalues in E. The diagonal matrix

L = diag(30, 25, 20, 15, 10, 5, v6, ..., vk) is then constructed where vi = 0.098 − 0.0005(i − 6) for

i = 6, ..., k. The number of PCs in each method is manually specified to be equal to τ = 6.

Finally, the covariance matrix is computed by Σ = PLP ′.

The generated matrix X0
Train can now be used to construct yTrain. To this end, five random

columns of X0
Train are selected denoted by xj , five coefficients cj ∼ UNIFORM(2, 4) are gener-

ated and a noise vector ε
n×1
∼ N(0, 1) is generated. If for instance, columns 5, 17, 69, 134 and

189 are selected the generated coefficients will be denoted by c5, c17, c69, c134 and c189. yTrain is

then computed in the following way:

yi =
5∑

j=1

cjxij + εi. (14)
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X0
Test and yTest are generated in the same way, except that for X0

Test 50 rows denoted by n′ are

generated instead of 100.

3.4.2 Contamination

To asses the performance of ICPCLR, MROBPCLR and MacroPCLR with the presence of miss-

ing values as well as rowwise and cellwise outliers, the clean data, so both the training and the

test data, are contaminated in four different ways, resulting in four different scenarios. These

scenarios are directly taken from Hubert et al. (2019). Note that the training data and test data

are contaminated separately.

Scenario 1: n ∗ k ∗ pt cells are randomly selected and imputed by NAs.

With p = (0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The resulting data is denoted by X1
Train.

Scenario 2: First n ∗ k ∗ 0.2 cells are randomly selected and imputed by missing values. Of

the remaining n ∗ k ∗ 0.8 cells, n ∗ k ∗ 0.2 cells are randomly selected and imputed with cellwise

outliers. If xij is selected to be an outlier, it is imputed by γtσj where σ2
j is the j-th diagonal

element of Σ and γ = (0, 1, ..., 20). The resulting data is denoted by X2
Train.

Scenario 3: First n ∗ 0.2 rows are replaced by rows generated from N(γteτ+1,Σ) with γ =

(0, 1, ..., 50) and where eτ+1 represents the (τ +1)-th column of P . After that, n∗d∗0.2 random

cells are imputed with NAs. The resulting data is denoted by X3
Train.

Scenario 4: First n ∗ k ∗ 0.2 cells are randomly selected and stored in the set CNA. Then of the

remaining n∗k ∗0.8 cells, n∗k ∗0.1 cells are randomly selected and stored in the set Cout. Next,

n ∗ 0.1 rows are randomly selected and stored in the set Rout. Then in the following order the

data is contaminated. First the cells in Cout are imputed in the same fashion the cellwise outliers

in scenario 2 are imputed. Next, the rows in Rout are imputed in the same way as in scenario 3.

Finally, the cells in CNA are imputed by missing values. The resulting data is denoted by X4
Train.

The above scenarios specify how the training data is contaminated. To contaminate the test

data, simply replace n by n′ and apply the procedures.

It is important to note that in this research the choice was made to compute both yTrain and

yTest before any contamination takes place. The reason for this choice is the way that each

PCA method handles outliers. Namely, they are replaced for non-outlying values. Introducing

contamination to our dependent variable would thus lead to contradictory results. However,

this also means that the proposed methods cannot appropriately deal with outlying dependent

variables.
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3.5 Evaluation

The generated explanatory data, both contaminated and uncontamined, as well as the generated

dependent variables are then used to evaluate ICPCLR, MROBPCLR and MacroPCLR in several

ways.

First, the accuracy of the different PCA methods is measured as is done in Hubert et al. (2019).

To accomplish this, a new matrix is created for each scenario called XR
Train (r×k) which is equal

to the matrix XTrain, but with rows selected to be contaminated removed, thus rows in Rout.

Next, CPCA is applied on XR
Train and the resulting output is used to compute predictions for

XR
Train denoted by x̂Rij . After that, the PCA methods ICPCA, MROBPCA and MacroPCA are

applied to Xs
Train with s = 1, 2, 3, 4 and the resulting predictions are denoted by x̂ij . Finally, the

mean squared error (MSE) is calculated to compare the methods:

MSEPCA =
1

rk

∑
i∈Rout

k∑
j=1

(x̂ij − x̂Rij)
2. (15)

This procedure was repeated 100 times and the MSE was averaged over these repetitions. For

this part, the data was also simulated and evaluated using the ALYZ correlation matrix devel-

oped in Agostinelli et al. (2015).

Next, the performance of the full PCR methods was assessed. To accomplish this for each

scenario, the following LR models were estimated first:

yTrain = T s
I β + ϵ, yTrain = T s

Rβ + ϵ and yTrain = T s
Mβ + ϵ. (16)

Where T s
I represents the score matrix retrieved from applying the PCA method specified in the

subscript (See the end of section 3.4) on Xs
Train and where s = 1, 2, 3, 4 indicates the scenario

number. These regressions will result in the estimators bsI for the first model, bsR for the second

model and bsM for the third model. These estimators will then be used in cooperation with Xs
Test

to make predictions ŷ for yTest.

To compute ŷ, the scores matrix is needed first. If there were no missing values in each Xs
Test, one

could simply project this matrix onto the existing PCA subspaces to retrieve the predictions.

However, missing values are present in each Xs
Test and therefore, these have to be imputed

first. For ICPCLR missing values in Xs
Test are imputed by the column mean. For MROBPCLR

missing values are imputed by equation (23). For MacroPCLR the MacroPCApredict function

from Hubert et al. (2019) is used to immediately project each Xs
Test onto the existing PCA

subspace computed for each Xs
Train, this results in the scores matrices T̂ s

M.

For ICPCLR and MROBPCLR the scores matrices are computed in the following way after
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imputation:

T̂ s
I = (Xs

Test − 1n′m′
I)PI and T̂ s

R = (Xs
Test − 1n′m′

R)PR. (17)

The obtained score matrices are then used to compute ŷ for each scenario and method:

ŷsF = T̂ s
Fb

s
F for F = I, R, M and s = 1, 2, 3, 4. (18)

The predictions are then evaluated by the MSE:

MSEPCR =
1

n′

n′∑
i=1

(yTest
i − ŷi)

2. (19)

This procedure was repeated 50 times and the MSE was averaged over these repetitions.

In the next section the results of our research will be presented.

4 Results
In the previous section, the methods that were implemented to conduct our research were ex-

plained. Additionally, we explained how the data was generated and which evaluation criteria

were used. In this section, the results of our research will be presented. First, the comparison

of the PCA methods will be presented. After that, the comparison of the PCR methods will be

presented. To acquire these results the programming language R (Version 4.1.2) and the compiler

Rstudio were used. A description of the code that was developed can be found in the appendix

A.3. Note that the code implements functions from the R packages cellWise and rrcov.

4.1 PCA Comparison

The comparison of the three PCA methods tries to replicate the simulation study conducted

in Hubert et al. (2019). While most functions and methods used in Hubert et al. (2019) were

convenient to implement, such as MacroPCA, other methods were unclear and made their results

harder to reproduce. For instance, the exact details of their implementation of the MROBPCA

method were missing which forces the reader to use their own MROBPCA method, as is done

in this research. Therefore, the results for the MROBPCA method will differ throughout all

contamination scenarios. Which leads to another point of critique. The setup of the simula-

tion in Hubert et al. (2019) is not completely evident. The order of contamination for some

of the scenarios was not completely clear either, for instance it was unclear if imputed rowwise

outliers could contain missing values. This also lead to some deviating results. Another speci-

fication left unspecified were the exact values of the parameters of ICPCA, MROBPCA, DDC

and MacroPCA. The results can be found below and will now be discussed for each scenario.

The first scenario, see Figure 1, only contaminated the data with missing values.
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(a) A09

(b) ALYZ

Figure 1: PCA Comparison: Scenario 1

This is congruent with the fact that ICPCA has the lowest MSE for this scenario. There are no

outliers that cause this non-robust method to break down. The second scenario, see Figure 2

introduced cellwise outliers in addition to the missing values.
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(a) A09

(b) ALYZ

Figure 2: PCA Comparison: Scenario 2

It is evident that both the ICPCA and MROBPCA methods diverge quickly, due to their inability

to handle cellwise outliers. The third scenario, see Figure 3, combined missing values with

rowwise outliers.
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(a) A09

(b) ALYZ

Figure 3: PCA Comparison: Scenario 3

An interesting observation is the fact that the MSE of the ICPCA method seems to converge

to a certain upperbound in our implementation. This was not the case in Hubert et al. (2019).

There could be several reasons for this including a different contamination order and a wrong

implementation of the ICPCA method. Determining the exact reason lies beyond the scope of

this research. Despite that, the acquired results are logical. ICPCA has a significantly larger

MSE than the other methods as it is the only method that is not robust to rowwise outliers. The

results of the last scenario, see Figure 4 are again quite similar to the results of Hubert et al.

(2019), despite some minor differences.
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(a) A09

(b) ALYZ

Figure 4: PCA Comparison: Scenario 4

The MSE of both ICPCA and MROBPCA grow very fast and the MSE of MacroPCA shrinks

to zero as the outliers become large enough to be picked up by the algorithm.

To conclude, if there are no outliers in the data one should use ICPCA. A combination of

rowwise outliers and missing values can be treated with MROBPCA or MacroPCA. Finally, in

the presence of cellwise outliers one should opt for MacroPCA.

4.2 PCR Comparison

In this section the PCR models ICPCLR, MROBPCLR and MacroPCLR will be compared. The

results of each scenario can be found below.

The first thing to note is that in each scenario, MacroPCLR has the lowest MSE. This is in

contrast to results of Hubert et al. (2019), in which ICPCA had the lowest MSE for the first

scenario, though by a small margin. This systematic superiority of the MacroPCLR method is
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most likely a result of the usage of MacroPCApredict. This function imputes missing values

and outliers in the test data over iterations, instead of once which is the case for ICPCLR and

MROBPCLR. From this can be concluded that a PCR method where missing values and outliers

in the test data are imputed in an iterative manner is preferable to a PCR method which imputes

these values just once. However, this also means that the results of the PCR methods compared

to each other might be biased.

The results of the first scenario can be seen in Figure 5.

Figure 5: PCR Comparison: Scenario 1

Interesting is the large growth of the MSE of ICPCLR and MROBPCLR, while MacroPCLR

grows much slower. However, this difference seems logical since the NAs in ICPCLR and

MROBPCLR are imputed once by a shrinking sample. This leads to increasingly larger bi-

ases of the imputed values. The slow increasing MSE of MacroPCLR is in line with the results

of Hubert et al. (2019) for the first scenario. This slow growth can be seen in Figure 9 in the

appendix.

The results of the second scenario can be seen in Figure 6 and are quite logical as MacroPCLR

is the only method equipped to deal with cellwise outliers.
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Figure 6: PCR Comparison: Scenario 2

The shape of the graph also resembles the results of the PCA comparison quite well. Interesting

is the case with γ = 0, for this case MacroPCLR has a higher MSE. This is logical as the clean

data has mean 0 and thus the imputed outliers will not represent actual outliers.

The results of the third scenario can be seen in Figure 7 and display some interesting behaviour.

Figure 7: PCR Comparison: Scenario 3

In contrast to the other scenarios, the MSE of ICPCLR and MROBPCLR do not rapidly grow as

γ increases. Additionally, the graphs are much less smooth than those of the other scenarios. The

reason for this is probably correlated with the fact that the estimated model is also contaminated

with rowwise outliers. However, to get a grasp of the exact reason an extensive analysis is needed,

which is beyond the scope of this research.

The results of the fourth scenario can be seen in Figure 8 and are logical again.
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Figure 8: PCR Comparison: Scenario 4

They closely resemble the graph of the PCA comparison of the fourth scenario except for the

seemingly upperbounded ICPCLR and MROBPCLR.

In the next section, the findings of this research will be summarised and discussed.

5 Conclusion
The main research question of this research is: How does the forecasting accuracy of MacroP-

CLR perform compared to other PCR methods in the presence of outliers and missing values?.

To answer this question, three new PCR methods were developed, ICPCLR, MROBPCLR and

MacroPCLR. These methods combine a LR with ICPCA, MROBPCA and MacroPCA respec-

tively. Of these PCA methods, MacroPCA is the most refined as it can deal with missing values

and is robust to rowwise as well as cellwise outliers. These PCA methods and the corresponding

PCR methods were compared in four different settings where missing values and outliers were

present. They were compared by first generating a clean training dataset of 100 observations

with 200 explanatory variables and one dependent variable y, also with 100 observations. The

PCA methods were compared by calculating a type of MSE for predictions of X. The results

of this comparison closely resembled the simulation study conducted in Hubert et al. (2019).

They showed that in a dataset with no outliers one should use ICPCA and MacroPCA other-

wise. Predictions for y were then made using the three PCR models, the trainig dataset and

the similarly generated test dataset. These predictions were evaluated by calculating the MSE.

This showed that using the MacroPCLR method should be used no matter the contamination

structure. However, this result is likely biased due to the fact that the MacroPCLR method

iteratively imputes missing values and cellwise outliers in the test dataset where as ICPCLR and

MROBPCLR impute missing values just once. Nonetheless, the forecasting accuracy of PCR in

combination with MacroPCLR appears to perform better than other PCA methods combined
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with PCR.

This implies that anyone who has a high-dimensional dataset and wants to use a LR model for

forecasting; using the MacroPCLR method is an option worth considering. In further research

one could consider implementing ICPCA and MROBPCA versions of MacroPCApredict and then

comparing the PCR models. Additionally, one could compare these methods for a real dataset.

Finally, one could consider dropping insignificant PCs in the LR stage of the PCR methods.

During the course of our research, some underlying assumptions were made. It is important

to consider these assumptions when interpreting the results. The first assumption is that cells

are missing completely at random (MCAR). The next assumptions are the assumptions needed

for PCA, linearity, large variances have important structures and PCs are orthogonal. For more

details see Shlens (2014). Finally, to perform a linear regression Heij et al. (2004) lists seven

assumptions that must hold. Consequent of the design of the simulation, all seven assumptions

hold. However, this is not inherent for most datasets. In further research the violation of these

assumptions in light of the forecasting performance of MacroPCLR could be investigated.
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A Appendix

A.1 DDC

The DDC stage consists of performing the DetectDeviatingCells algorithm. The goal of this

algorithm is to make initial imputations for cellwise outliers and missing values. This algorithm

was developed in Rousseeuw and Bossche (2018) and is the first algorithm of its nature to take

the correlation between variables into account. The DDC algorithm can be broken down into

eight steps.

Step 1: Standardization

The goal of this step is to standardize each column j of X, denoted by xj , by using robust

estimators of location and scale.

To calculate these estimators, Tukey’s biweight function from Maronna et al. (2019b) is needed.

The formula of this function can be seen below:

W (t) =

(
1−

(
t

c

)2
)2

I(|t| ≤ c). (20)

Here c > 0 is a constant. Its standard value is c = 3, which is the value used in this research.

To now calculate the estimators set:

mj0 = medni=1(xij), sj0 = medni=1|xij −mj0| and sj1 = medni=1(|xij |). (21)

Where med stands for the median. Then set:

wij = W

(
(xij −mj0)

sj0

)
. (22)

The estimate of the robust location of column xj is then computed as follows:

mj = robLoc(xj) =

(
n∑

i=1

wijxij

)/(
n∑

i=1

wij

)
. (23)

The estimate of the robust scale of xj is equal to:

sj = robScale(xj) = sj1

√√√√ 1

δn

n∑
i=1

γ

(
xij
sj1

)
. (24)

Where δ = 0.845 and γ(t) = min(t2, a2) with a = 2.5.

These formulas are used to standardize the columns of X. The standardized version of X will
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be denoted by Z and is calculated as zij = (xij −mj)/sj .

Step 2: Univariate Outlier Detection

The goal of this step is to make an initial assessment on which cells are outlying.

To accomplish this, a new matrix U is created. This matrix is identical to Z, but in this matrix

outlying cells will be replaced by missing values. It is constructed as follows:

uij =


zij if |zij | ≤ cu

NA if |zij | > cu.

(25)

Where cu =
√

χ2
1,p with p = 0.99. cu is called the cutoff value as it is the cutoff of what is

considered as an outlier.

Step 3: Bivariate Relations

The goal of this step is to find correlated variables to increase the accuracy of the imputations.

To find these variables, a robust correlation measure is calculated for each combination of two

different columns in U . As a demonstrative example, consider the columns l and h with l ̸= h.

For columns ul and uh, all rows where at least one NA value is present, are dropped. This results

in columns u∗l and u∗h which have no missing values and the same number of elements as each

other. To now estimate the robust correlation measure set:

ρ̂lh = ((robScale(u∗l + u∗h))
2 − (robScale(u∗l − u∗h)

2)/4. (26)

ρ̂lh is then used to construct a tolerance ellipse around (0, 0) for u∗l and u∗h. The coverage

probability of this ellipse is the same as the p used to calculate the cutoff value in (8). robCorr

is then defined as the standard correlation measure of all data points of the columns u∗l and u∗h

that are inside this ellipse. Thus, corlh = robCorr(u∗l , u
∗
h).

Columns j for which holds that |corjl| ≥ 0.5 for some column l ̸= j are labelled as connected

variables. Pairs of columns that satisfy this condition are called connected pairs. Variables that

are not connected are labelled as standalone variables.

As connected pairs are sufficiently correlated, they can be used to predict each other. This is

why for these pairs another measure called robSlope is calculated. To calculate this measure

assume that columns l and h are a connected pair and set:

blh = medmi=1

(
u∗il
u∗ih

)
. (27)

If there is an i for which u∗ih = 0, then this i is taken out of the equation. This means that m is

equal to the number of elements in u∗h that are not equal to 0. Next, compute rilh = u∗il − blhu
∗
ih

for i = 1, ...,m. Then, select the observations for which holds that: |rilh| ≤ curobScale(rlh) and

put these i in the set G. Where cu is the cutoff value from Step 2 and rlh is the vector of all
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calculated rilh. Finally, βlh = robSlope(u∗l |u∗h) is defined as the slope of the regression line of the

no-intercept least-squares regression on all observations i in the set G.

Step 4: Predicted Values

The goal of this step is to make a new matrix Ẑ which contains predictions for the outliers

and missing values in Z. The calculation of these predictions differ for standalone variables and

connected variables. For standalone variables, predictions for outlying zij are set to 0 and are

thus predicted by mj when destandardizing Z back to X. Predictions for non-outlying zij are

equal to zij .

Calculating the predictions for connected variables is more complicated. Consider the connected

variable l. Then predictions for the variable l are calculated as follows.

The set Cl consists of all variables h that make a connected pair with l and l itself. Then the

predictions for the connected variables are calculated as follows:

ẑij =

∑
h∈Cj

wjhβjhuih∑
h∈Cj

wjh
for i = 1, ..., n and j = 1, ..., k. (28)

Where wjl = corjl. Standalone variables are skipped as well as combinations of i and j for which

uij = NA. If there remain missing values in Ẑ these are replaced by 0.

Step 5: Deshrinkage

According to Rousseeuw and Bossche (2018), the predictions made in (11) tend to be larger

than the actual values zij . To account for this, the following computation are made. First set

aj = robSlope(z∗j |ẑ∗j ) then replace ẑij with aj ẑij . Where z∗j and ẑ∗j represent the columns of the

matrix (zj , ẑj) where all rows with at least one NA value are removed.

Step 6: Flagging Cellwise Outliers

The goal of this step is to use the predictions in Ẑ to flag cellwise outliers. To accomplish this,

the standardized cell residuals are calculated as follows:

ηij =
zij − ẑij

robScale(z∗j − ẑ∗j )
. (29)

Then, all cells which satisfy the condition |ηij | > cu are flagged as a cellwise outlier. The positions

of these cells are stored in the set Ic,DDC. If for instance, the cell that intersects row a and column

b is flagged as an outlier, the pair (a, b) is stored in the set Ic,DDC.

Step 7: Flagging Rowwise Outliers

The goal of this step is to use the standardized residuals in (13) to flag rowwise outliers. To

accomplish this, first calculate Ti for each row as follows:

Ti =
1

di

di∑
j=1

F
(
(ηij)

2
)
. (30)
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Where di is the number of ηij that were able to be calculated for row i. F is the cdf of χ2
1. Next,

the Ti are robustly standardized in the same fashion as the columns of X in step 1. The rows

i for which the standardized Ti is bigger than c2u are flagged as rowwise outliers. The indices of

these rows are stored in the set Ir,DDC.

Step 8: Impute and Destandardize

This is the final step of the DDC algorithm and its goal is to use everything calculated so far to

produce new versions of the data matrix X. These versions consist of X with only the missing

values imputed and of X with the missing values and cellwise outliers imputed. These new

matrices will be denoted by
◦
X and

.
X respectively.

To retrieve these matrices, the predictions from Ẑ have to be used first. To this end,
◦
Z is

retrieved by imputing the NA-values in Z with the corresponding cells in Ẑ.
.
Z is retrieved by

both imputing missing values and cells that were flagged as outlying. To be precise:

.
zij =


ẑij if (i, j) ∈ Ic,DDC or zij is NA

zij otherwise.
(31)

Then,
◦
X and

.
X are retrieved from

◦
Z and

.
Z by destandardizing. Thus, ◦

xij =
◦
zijsj + mj and

.
xij =

.
zijsj +mj .

A.2 PCR Comparison Graphs Zoomed In

Figure 9: PCR Comparison: Scenario 1 Zoomed in

A.3 Code Description

In this section follows a short description of the created code used to conduct this research.

aux_functions.R: A file that stores auxiliary functions from the cellWise and rrcov packages.

This file is called upon to create the MROBPCA2 function.

31



Extension.R: This file performs the PCR comparison and stores all calculated MSE values in

four different dataframes, one for each scenario. These dataframes are saved as RDS files, which

allows data to be stored more compactly.

extension_graphs.R: This file loads the dataframes computed in Extension.R and uses the gg-

plot2 package to graph the calculated MSEs.

MROBPCA.R: This file stores our implementation of the MROBPCA algorithm. Note that

this function is called MROBPCA2. The MROBPCA function is present for reference.

MSE.R: This file holds a function that computes the MSE for the PCA comparison.

Replication.R: This file performs the PCA comparison and stores all calculated MSE values

in four different dataframes, one for each scenario. These dataframes are saved as RDS files,

which allows data to be stored more compactly.

replication_graphs.R: This file loads the dataframes computed in Replication.R and uses the

ggplot2 package to graph the calculated MSEs.

robust_estimator.R: This file holds the function that calculates the One-Step M-estimators.
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A.4 Abbreviations and Notations

Table 1: Table of Abbreviations

CPCA = Classical Principal Component Analysis.

CPCR = Classical Principal Component Regression.

DDC = Detecting Deviating Cells.

ICPCA = Iterative Classical Principal Component Analysis.

ICPCLR = Principal Component Regression which inherits ICPCA and

the LR model.

LR = Linear Regression.

MacroPCA = Principal Component Analysis Accounting for Missing values

And Rowwise as well as Cellwise Outliers.

MacroPCLR = Principal Component Regression which inherits MacroPCA

and the LR model.

MCAR = Missingness Completely At Random.

MROBPCA = A ROBPCA method that can deal with missing values.

MROBPCLR = Principal Component Regression which inherits MacroPCA

and the LR model.

MSE = Mean Squared Error.

PCA = Principal Component Analysis.

PCR = Principal Component Regression.

PC = Principal Component.

ROBPCA = Robust Principal Component Analysis.
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Table 2: Table of Notations

n := The number of rows.

k := The number of columns.

τ := The number of PCs selected.

Ic,DDC := The set of outlying cells flagged by DDC.

Ir,DDC := The set of outlying rows flagged by DDC.

m := (k × 1) The estimated center of X.

P := (k × τ) The estimated loading matrix of X.

T := (n× τ) The estimated score matrix of X.

X := (n× k) The original data matrix of explanatory variables.
◦
X := (n× k) The NA-imputed version of X.
.
X := (n× k) The NA-imputed and cell-imputed version of X.

y := (n× 1) The dependent variable.

Z := (n× k) The standardized version of X.
◦
Z := (n× k) The NA-imputed version of Z.
.
Z := (n× k) The NA-imputed and cell-imputed version of Z.

Ẑ := (n× k) A matrix with predicted values for Z.
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