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Abstract

In this paper, I use Bitcoin price data from January 2015 till April 2022 to assess whether

the Bitcoin volatility predictions by the heterogeneous autoregressive model for realized

volatility including jumps (HARRVJ) can be improved by adding variables or translating the

model to a neural network. Better predictions of the Bitcoin volatility enable participants to

make better risk assessments in the highly volatile cryptomarket. To my knowledge, Bitcoin

volatility has not yet been predicted with a neural network fed by HARRVJ-components,

and newer data is used. The out-of-sample predictions are compared using six loss functions,

and Diebold Mariano and Clark West test statistics. I find that including a leverage effect by

means of the negative realized semivariance improves the in- and out-of-sample performance

when forecasting Bitcoin volatility, but that the comparison with the neural network did

not give significant results. This indicates that negative and positive returns influence the

volatility of Bitcoin differently.

1 Introduction

Online payments have been dependent on financial institutions as trusted parties for handling

transactions. Nakamoto (2008) proposed Bitcoin as a network where two parties can exchange

electronic cash without needing a financial institution. Since then, other cryptocurrencies like

Ethereum, XRP and Ripple have been set up. Most research on cryptocurrencies focuses on

Bitcoin however, since it has the biggest market capitalization of all cryptocurrencies.1 The last

years, the cryptomarket has been rapidly growing. A significant aspect of the cryptomarket,

when comparing it with the stock market, is its high volatility.

Especially in this highly volatile market, proper risk assessments are of interest to the par-

ticipants. To construct these risk assessments, good predictions of the volatility are crucial. In

traditional research, the benefit of working with realized volatility (RV) when modeling volatility

is recognized (Andersen et al.,2000). These can be implemented by using a heterogeneous au-

toregressive (HAR) model. Expansions, like the heterogeneous autoregressive model for realized

volatility including jumps (HARRVJ), as developed by Andersen et al. (2007) implement the

possibility of structural breaks. Pichl and Kaizoji (2017) use the HARRVJ model on Bitcoin

volatility, and find that it applies reasonably well. Shen et al. (2020) implement even more

heterogeneous autoregressive realized volatility (HARRV) models to study the volatility of Bit-

coin and find that modelling jumps ‘significantly improves the accuracy of volatility forecasts of

Bitcoin through popular HARRV models’.
1On the 30th of June 2022, the market capitalization of Bitcoin is 363 billion dollars, whereas the total

cryptocurrency market capitalization is 863 billion dollar.
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I am interested in the in-sample and out-of-sample performance of the HARRVJ model on

more recent Bitcoin data. Therefore, I want to consider the following research question: Can the

(predictive) performance of the heterogeneous autoregressive model for realized volatility including

jumps (HARRVJ) on Bitcoin volatility be improved? I assess the results of adding other linear

components to the HARRVJ model, like the realised semivariance (Patton and Sheppard,2015)

or realized quarticity (Bollerslev et al.,2016). This results in 8 HARRV-models, of which I

compare the in-sample and predictive performance. Bitcoin volatility forecasts have also been

constructed combining GARCH-models with neural networks (Seo and Kim,2020). I implement

a machine learning approach, using the HARRVJ model, and verify whether this improves the

linear HARRVJ model.

The data used is historical price data from the Bitstamp exchange market, ranging from 1

January 2015 till 30 April 2022, thus consisting of 2677 days. Following Andersen and Boller-

slev (1998), realized measures are calculated using 5-minute frequency logarithmic returns. To

construct these over the full sample, 770976 price observations were used.

To compare linear HARRV models, a general model is introduced that includes realized

volatility variables, negative semivariance variables, jump components and realized quarticity

components. Leaving out combinations of these components generates 8 nested models. These

models are named HARRV, HARRSV, HARRVJ, HARRSVJ, HARRVQ, HARRSVQ, HAR-

RVJQ and HARRSVJQ. Their in-sample performance is measured by AIC, BIC and adjusted

R2 measures, and their predictive performance by loss functions proposed by Hansen and Lunde

(2005). To determine whether combinations of non-nested model outperform each other sig-

nificantly, the Diebold Mariano (DM) test is used (Diebold and Mariano,1995), whereas the

adjustment of Clark and West (2007) to the DM test is used for nested models.

To test a non-linear approach, a neural network containing two hidden layers is introduced.

It takes the same input as a HARRVJ model, and is trained with the first two-third of the

sample to predict the realized volatility. Its predictive performance is compared with the linear

HARRVJ model, using the loss functions of Hansen and Lunde (2005) and the mentioned DB

and CW tests.

Regressing the linear HAR-models over the full sample, I find that including realized semi-

variance and realized quarticity increased the in-sample fit. The HARRSVQ had the lowest BIC

value, whereas the HARRSVJQ model had the lowest AIC and highest adjusted R2 value. I

also compare one-day-ahead predictions using a moving window of 1 year, and find that both the

HARRSV and HARRSVJ, which both include negative semivariance, have the lowest loss func-

tion value for three of the six loss functions. The results of the CW and DB test also show that
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models including negative semivariance often outperform other models. Out of the models that

do not include negative semivariance, the HARRVJQ model which includes jump components

and realized quarticity performs significantly better.

For the neural network, I find that it had lower loss function values for 5 of the 6 loss function

values when compared to the HARRVJ model. Although a negative DM test statistic indicates

better predictive performance of the neural network, it is not significant.

In sum, including a leverage effect by means of the negative realized semivariance to a

HARRVJ model improves its in-sample and out-of-sample performance when forecasting Bit-

coin volatility. Feeding a neural network with the variables of a HARRVJ model seemed to give

better predictive performance, but this improvement was not significant.

Section 2 discusses the existing literature on linear and non-linear volatility forecasts for

Bitcoin, and section 3 describes the used data. Section 4 describes the used HAR-models and

the used neural network, and how their in- and out-of-sample performance is measured. Section 5

5 presents the results of both the in- and out-of-sample setting. Section 6 interprets the findings

and concludes with some suggestions for further research.

2 Literature

This section discusses the existing literature on volatility forecasts, specifically for Bitcoin.

Volatility forecasts based on linear models are discussed in section 2.1. The use of non-linear

forecasts like neural networks for volatility is discussed in section 2.2.

2.1 Linear models for volatility forecasting

It is a well-known concept in the financial world that returns of assets are hard to predict, whereas

their volatility is more predictable. The problem is however that the conditional variance can

only be estimated, but is not observed. A well-known model for the variance of time series is the

(generalized) autoregressive conditional heteroskedasticity (GARCH) model (Bollerslev, 1986).

Empirically, it has been shown that most latent volatility models do not manage to replicate

all stylized facts of financial returns (McAleer and Medeiros,2008). Squared returns have for

example low, slowly decreasing autocorrelations, which are not described satisfactory by most

standard models. As a result, standardized residuals are often non-normal (Carnero et al., 2004).

This decreases the accuracy of the volatility forecasts. Using realized volatility could reduce

this problem. Andersen et al. (2000) mention the benefits of using realized volatility when

working with exchange data. They conclude that a return distribution standardized by realized

volatilites approaches the normal distribution better then using GARCH-estimated volatilities
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to standardize.

This lead to the introduction of the heterogeneous autoregressive model for realized volatil-

ity (HARRV) by Corsi (2009). This simple AR-type model only uses realized volatilities, but

reproduces many of the main stylized facts of financial data. About the construction of realized

volatility variables, Andersen and Bollerslev (1998) point out that increasing the price observa-

tion frequency to an infinitely small interval theoretically makes the latent volatility observable.

However, this is not possible because of micro-structure features, like bid-ask spreads and infre-

quent trading. Therefore, they conclude that the ex post volatility is best measured using a 5

minute return data frequency.

There has also been growing interest in the importance of jumps in financial time series.

Barndorff-Nielsen and Shephard (2004) developed tests for detecting jumps in high-frequency

data. They measure variance with two components: One captures the effect of the jumps,

while the other component is robust to the effect of the jumps. Andersen et al. (2007) builds

further upon this, by introducing the heterogeneous autoregressive model for realized volatility

including jumps (HARRVJ). It estimates the return volatility by using a number of past realized

volatilities and ‘jump components’. These jumps are found to be highly important as they give

out-of-sample volatility forecast improvement.

Bergsli et al. (2022) stress that HAR models in general outperform GARCH models when

it comes to modelling Bitcoin volatility. They assign this to the fact that realized variance has

a higher autocorrelation than squared returns. The HARRVJ model is implemented on Bitcoin

price data by Pichl and Kaizoji (2017), who find significant lag and jump coefficients. Shen et al.

(2020) research 18 HAR-models on high-frequency Bitcoin data. They find that including jumps

gives more in-sample explanatory power, and improves the predictive value as well.

I assess whether jump components are still improving the in- and out-of-sample performance

when forecasting Bitcoin volatility, using new Bitcoin price data. Furthermore, I add other

variables to the HARRV model to assess whether these result in a better in-sample fit and

predictive performance as well.

2.2 Non-linear models for volatility forecasting

Apart from the linear models mentioned in section 2.1, plenty of non-linear models have been

proposed to predict volatility. The advantage is that these non-linear models are more flexible,

and might have greater forecast predictability. The drawbacks of these non-linear models however

is that they might be hard to compute, are not easily interpretable and can overfit the data

(White,2006). A neural network is an example of a model formulation that supports highly
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nonlinear approximation. These models have found plenty of applications in finance, for example

in predicting bankruptcy of firms, trading of bonds and the construction of stock market volatility

forecasts (Wong and Selvi,1998).

Kristjanpoller et al. (2014) use a neural network to forecast volatility of three Latin-American

stock exchange indexes. Amongst other variables, they feed this neural network with realized

volatility and GARCH(1,1) output. They find that this neural network has better predictive

performance than a GARCH(1,1) model. Donaldson and Kamstra (1997) use neural networks

to forecast the stock return volatility in New York and London. They find that the neural

network outperforms GARCH, EGARCH and GJR models, since the neural network is better

able to capture asymmetric effects of returns. This shows that predicting volatility with neural

networks has shown satisfactory results.

When it comes to neural network implementations on Bitcoin, the focus is mostly on forecast-

ing returns rather than volatility. Pichl and Kaizoji (2017) implement a two-layer feed-forward

neural network on Bitcoin return data, and find that extreme event clustering is approximated

quite well. McNally et al. (2018) compare even more advanced deep learning methods using

Bitcoin price data, and find that the autoregressive integrated moving average (ARIMA) model

is clearly outperformed by the non-linear deep learning methods.

Seo and Kim (2020) are one of the few researchers that use a neural network to analyse

Bitcoin’s volatility. They use advanced neural networks, fed by GARCH output and some other

variables, like the volatility index (VIX). They find that these models are appropriate for fore-

casting Bitcoin volatility, and show good predictive results.

I use the HARRVJ input to train a neural network, and assess whether the predictive results

of the neural network are better than the HARRVJ results. This has not yet been done, and

sheds further light on the use of neural networks on Bitcoin volatility.

3 Data

The data are retrieved from the crypto-datadownload web2. I use historical price data from

the Bitstamp exchange market, expressing the value of Bitcoin in US Dollars (BTCUSD). The

sample ranges from 1 January 2015 till 30 April 2022, therefore consisting of 2677 days. The

data is exported daily, which generates 2677 observations.

This data is also needed at a 5 minute frequency, to construct observed realized volatilities,

which generates 770976 observations. The data originally is provided at a 1 minute frequency,

the sets of observations are created by leaving out the unnecessary observations. The original
2This data can be assessed via https://www.cryptodatadownload.com/data/bitstamp/
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data had 9 missing observations, namely the price observation of the first minute of every year,

and the price level at 23-6-2016, 12:36:00. To still get 5 minute-frequency data, only the closing

prices at 00:04, 00:09, etc. are taken.

The logarithmic returns are then defined as Rt = log
(

Bt
Bt−1

)
. Here, Bt stands for the Bitcoin

price level at time step t.

Table 1 and figure 1 show that the logarithmic returns of both the 5 minute and the daily

returns are not normally distributed. The skewness is negative for both return frequencies,

meaning that large negative outliers are more common than large positive outliers. The low

minima and high maxima, together with the high kurtosis, show that the observations contain

outliers. It is noticeable that the median of the 5-minute log returns is exactly 0. This is

because quite some 5 minute intraperiods showed no change in price level, especially in the

earlier observations in 2015 and 2016. Both return observations have a positive mean, meaning

that Bitcoin has increased in price level over the past 7 years.

# observations Minimum Maximum Median Mean Std. dev. Kurtosis Skewness

5-minute log-returns 770976 -0.208 0.085 0.000 5.910 ∗ 10−6 0.0027 122.4 -1.274

Daily log returns 2676 -0.491 0.218 0.0019 0.0017 0.040 15.00 -0.856

Table 1: Summary statistics of the logarithmic returns of Bitcoin, from 1 January 2015 till 30

April 2022

(a) 5 minute log returns (b) Daily log returns

Figure 1: Histograms of the 5 minute log returns, and the daily log returns for Bitcoin from 1

January 2015 till 30 April 2022

4 Methodology

Section 4.1 describes how the realized volatility is constructed and forecast with linear HARRV

models, and section 4.2 works out the used neural network. Section 4.3 describes how the

in-sample performance of models is compared, and section 4.4 describes how the predictive

performance is compared.
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4.1 Modelling and forecasting realized volatility

The heterogeneous autoregressive model for realized volatility including jumps is worked out in

section 4.1.1. Section 4.1.2 provides a more general HAR-model to forecast the realized variance.

4.1.1 The HARRVJ model

For each day t in the sample, realized volatility can be constructed by using high-frequency

return data:

RVt =

nt∑
i=1

r2t,i, (4.1)

where in this case and from here forward, nt denotes the amount of observations on day t, and

rt,i denotes the ith intraperiod return of day t.

To differentiate between a continuous component of the realized variance and jumps, the

realized bi-power variation (RBPV) measure proposed by Barndorff-Nielsen and Shephard (2004),

is necessary as well. It is given by

RBPVt = δ1

nt∑
i=3

|rt,i||rt,i−1|. (4.2)

As mentioned, nt denotes the amount of observations on day t, and rt,i denotes the ith intraperiod

return of day t from here forward. δ1 denotes the mean of the absolute value of the standard

normal random variable Z, which is given by π/2.

To test whether certain jumps are significant, the realized tripower quarticity (RTQ) is used,

which is studied by Barndorff-Nielsen and Shephard (2004). It is denoted by:

RTQt = ntδ
3
4/3

nt∑
i=3

|rt,i|
4
3 |rt,i−1|

4
3 |rt,i−2|

4
3 , (4.3)

where δ 4
3

denotes the mean of the absolute value of the standard normal random variable Z4/3.

The jumps at day t with significance level α are defined by Andersen et al. (2007), as

Jt,α = (RVt −RBPVt) ∗ 1(ZJRBPV (t) > Φα), (4.4)

where RVt and RBPVt are respectively given by functions 4.1 and 4.2. The significance level

α is taken as 0.05, and Φα is its critical value from the normal distribution. ZJBPV (t) is the

adjusted jump ratio statistic at day t from Huang and Tauchen (2005), which has test statistic

ZJRBPV (t) =
(RVt −RBPVt)RV −1

t(
θmax{1, RTQtRBPV −2

t }
) 1

2

, (4.5)

where RVt, RBPVt and RTQ are given by functions 4.1, 4.2 and 4.3 respectively, and θ =

π2

4 + π − 5.
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Replicating Pichl and Kaizoji (2017), the heterogeneous autoregressive model for realized

volatility including jumps (HARRVJ) constructed by Andersen et al. (2007) is used to forecast

Realized Variance. It is defined as

√
RVt+1 = β0+β1

√
RVt+β2

√
RVt−4+β3

√
RVt−9+β4

√
Jt+β5

√
Jt−4+β6

√
Jt−9+ϵt+1, (4.6)

where the sample horizons are chosen to be daily, 5 days back and 10 days back. The (1,5,10)-day

parameter selection, which deviates from the suggestion of Andersen et al. (2007), is motivated

by the finding of Pichl and Kaizoji (2017) that β3 becomes significant when choosing 10 days

rather than 22 for Bitcoin data. Here, RVt−i stands for the average realized variance between

day t− i and t and is therefore defined by

RVt−i =

∑i
j=0RVt−j

i+ 1
. (4.7)

Jt−i stands for the average jump between day t− i and t, and is therefore defined by

Jt−i =

∑i
j=0 Jt−j

i+ 1
, (4.8)

where the daily jumps are defined by formula 4.4. ϵt−1 denotes the error term for the square root

of the realized variance at day t+ 1. This regression is implemented by using the highfrequency

R-package from Boudt et al. (2021). It is regressed by using ordinary least squares, and makes

use of Newey-West standard errors.

4.1.2 Alternative RV forecasting models

Pichl and Kaizoji (2017) suggest the use of a square root transformation on the HARRVJ model.

Alternatives to the model in equation 4.6 are excluding the jump components, including realized

quarticities and including a leverage effect on the realized variance component. The alternatives

will be discussed in section 4.1.2.1 till 4.1.2.3. A general model is presented in 4.1.2.4.

4.1.2.1 Leaving out the jump components To verify that the jump components improve

the model, the HARRVJ model as defined in formula 4.6 can be compared with the heterogeneous

autoregressive realized variance (HARRV), as proposed by Corsi (2009). In spite of the simplicity

of the model, it gives good forecasting results for exchange rates and stock market indices.

4.1.2.2 Including realized quarticity Some HAR-model implement the realized quarticity,

which is given by

RQt =
nt

3

nt∑
i=1

r4t,i. (4.9)
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Again, the average of this measure can be taken over the past i days, resulting in RQt−i which

is given by

RQt−i =

∑i
j=0RQt−j

i+ 1
. (4.10)

Adding RQ, RQt−4 and RQt−9 to the model results in a HARQFJ model, proposed by Shen

et al. (2020). They compare the performance of 18 HAR-models on Bitcoin, and find that the

HARQFJ performs very well. It outperforms almost all other HAR-models significantly for the

in-sample analysis. It also has the best out-of-sample performance.

4.1.2.3 Including a leverage effect Another variation on the HARRVJ model, is including

a leverage effect by splitting up the realised variance into negative realized variance and positive

realized variance, as suggested by Barndorff-Nielsen et al. (2008). The negative daily realized

variance and positive daily realized variance are respectively given by

RSV −
t =

nt∑
i=1

(
r2t,i ∗ 1|rt,i<0|

)
, (4.11) RSV +

t =

nt∑
i=1

(
r2t,i ∗ 1|rt,i≥0|

)
. (4.12)

Note that RVt = RSV −
t + RSV +

t . Shen et al. (2020) find that the decomposition of the RV

into a positive and negative component for Bitcoin leads to significant components for multiple

HAR-models. This indicates that negative and positive Bitcoin returns indeed have different

impacts on volatility.

Implementing these semivariances as an extension to the HARRVJ model, results in the

heterogeneous autoregressive realized semi-variance model including jumps (HARRSVJ), pro-

posed by Chen and Ghysels (2011). They claim that models featuring asymmetries have better

forecasting abilities than models that do not.

4.1.2.4 A general model A general, new model, combining the existing models as given in

sections 4.1.2.1 till 4.1.2.3, is now given by:

√
RVt+1 =β0 + β11

√
RVt + β12

√
RSV −

t + β21
√

RVt−4 + β22

√
RSV −

t−4+

β31
√
RVt−9 + β32

√
RSV −

t−9 + β4
√
Jt + β5

√
Jt−4 + β6

√
Jt−9+

β7
√
RQt + β8

√
RQt−4 + β9

√
RQt−9 + ϵt+1, (4.13)

where the realized variance component of the past i days RVt−i is given by equation 4.7 and the

realized negative semivariance RSV −
t is given by equation 4.11. RSV −

t−i is then given by the

average of the realized negative semivariance of the past i days. The jump components of the

past i days is given by equation 4.9, and the quarticity components of the past i days is given

by equation 4.10. ϵt−1 denotes the error term for the square root of the realized variance at day

t+ 1.
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In total, I consider including or excluding jump components, including or excluding realized

quarticity, and including or excluding a leverage effect. This generates 8 models, which are spec-

ified in table 2. They are presented as restricted forms of the general HARRSVJQ formulation

in equation 4.13.

Model Restrictions Reference

HARRV β12 = β22 = β32 = β4 = β5 = β6 = β7 = β8 = β9 = 0 Corsi (2009)

HARRSV β4 = β5 = β6 = β7 = β8 = β9 = 0 Patton and Sheppard (2015)

HARRVJ β12 = β22 = β32 = β7 = β8 = β9 = 0 Andersen et al. (2007)

HARRSVJ β7 = β8 = β9 = 0 Chen and Ghysels (2011)

HARRVQ β12 = β22 = β32 = β4 = β5 = β6 = 0 Bollerslev et al. (2016)

HARRSVQ β4 = β5 = β6 = 0 New

HARRVJQ β12 = β22 = β32 = 0 Shen et al. (2020)

HARRSVJQ none New

Table 2: 8 HARRV model specifications, presented as specific cases of the newly introduced

HARRSVJQ model, by restricting the parameters of this model.

Restricting β12 = β22 = β32 = 0 excludes the leverage effect, restricting β4 = β5 = β6 = 0

excludes jump components and restricting β7 = β8 = β9 = 0 excludes quarticity components.

4.2 Neural networks

Neural networks are able to use and capture unknown information in data (Svozil et al.,1997).

Neural networks consist of ‘neurons’ grouped in layers. Data enters the network in the input

layer, the last layer is the output layer, and between those layers there is at least 1 hidden layer.

Figure 2 displays a neural network that consists of 2 hidden layers, containing 4 neurons each.

Figure 2: A multi-layered neural network

The output value of neuron i is determined by 4.14 and 4.15. These formulations are taken

from Svozil et al. (1997). It holds that neuron i has output value xi given by

xi = f

υi +
∑

j∈Γ−1
i

wijxj

 , (4.14)
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with the transfer function f given by

f(x) =
1

1 + exp(−x)
. (4.15)

Here, subset Γ−1
i ⊆ V is constructed to contain all predecessing neurons of neuron i. Each neuron

in a layer is connected with all neurons in the next layer. The connection between neuron i and j

is given by the weight coefficient wij . The ith neuron is characterized by its threshold coefficient

υi, which is also called the bias of neuron i. The higher the weight coefficient between two

neurons, the more importance that connection has in the neural network.

By changing the biases and weight coefficients, the objective function E given by Svozil et al.

(1997) is minimized. It is denoted as

E =
∑
o

1

2
(xo − x̂o)

2, (4.16)

where xo and x̂o are vectors with the actual and computed values respectively. The summation

runs over all output neurons o.

I implement a two-layerend neural network, using the neuralnet package of R. The algorithm

used to minimize the objective function in equation 4.16, is the rprop+ algorithm. This algo-

rithm by Igel and Hüsken (2003) is a modification of the resilient backpropagation (RPROP)

algorithm, suggested by Riedmiller and Braun (1993). Igel and Hüsken (2003) conclude that

this modification gave such good results, that it should be the first choice when training neural

networks. The key factor of this algorithm is that it uses different learning rates based on the

sign of the partial derivative of the error function on the weights, δE
δwij

, in consecutive steps. In

the neural network I use, the step size is increased by a factor 1.2 if the sign stays the same after

a step of the algorithm. If the sign changes, the step size is decreased with a factor 0.5.

Initializing the neural network at random, it is trained by the first two third of the HARRVJ

variables. This means that the input layer consists of 6 neurons, namely RVt, RVt−4, RVt−9, Jt,

Jt−4 and Jt−9. Following Pichl and Kaizoji (2017), I use a neural network with 2 hidden layers.

Sheela and Deepa (2013) find that taking 4n2+3
n2−8

as a rule for the optimal amount of neurons

in a hidden layer, where n is the amount of neurons in the input layer, gives the best results.

Given that n = 6 for my neural network, I choose the hidden layers to consist of 5 neurons. The

stopping criteria is a treshold value for δE
δwij

, which is set at 0.01.

Since the model stops running once the stop criterion is reached, it can stop at local minima

rather than the global minimum of the error function. Since the model is initialized randomly,

each training of the neural network might give different weights and biases. Therefore, I train

the model in 30 repetitions, and select the model that has the lowest BIC value. The neural
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network belonging to this repetition is used for testing the out-of-sample performance. This is

done by forecasting the last third of the sample using this neural network.

4.3 Comparing the in-sample performance

The eight selected models in 4.1.2.4 have different numbers of variables. Including more variables

to a model will increase its in-sample fit, but may also result in overfitting. This would decrease

the out-of-sample performance of such a model. To examine which model has the best trade-off

between model fit and number of variables, I use the Akaike information criterion (AIC), the

Bayesian information criterion and the adjusted R2:

AIC = 2k − 2 ln(L̂) ; (4.17)

BIC = k ln(n)− 2 ln(L̂) ; (4.18)

Adjusted R2 = 1− (1−R2)(n− 1)

n− k − 1
. (4.19)

Here, k denotes the number of estimated parameters, n denotes the total sample size and L̂

denotes the maximum value of the likelihood function of the model. R2 is a statistical measure

that describes which proportion of the variance is explained by the variables of the regression.

Models that fit the same sample can be compared. A lower AIC and BIC value and a higher

adjusted R2 means a better in-sample performance.

Wang and Liu (2006) mention that AIC tends to select a too conservative model with too

many variables, such that the model is not parsimonious anymore. BIC gives a higher penalty

to additional variables, and is more likely to select a parsimonious model.

4.4 Comparing the out-of-sample performance

This section discusses how the out-of-sample performance is measured and compared. The used

loss functions are given in 4.4.1, and the tests for comparison are given in 4.4.2.

4.4.1 Used loss functions

Bollerslev et al. (1994) mentions that there is no obvious loss function for the evaluation of

volatility models. Therefore, Hansen and Lunde (2005) suggests using six loss functions rather

than one, namely MSE1, MSE2, QLIKE, R2LOG, MAE1 and MAE2. The loss functions are

given in the appendix, section 7.1, equation 7.1 till 7.6.

Hansen and Lunde (2005) notes that the MAE1 and MAE2 measures are more robust to

outliers then for example the MSE2 measure. Bollerslev et al. (1994) mentions the QLIKE and

R2LOG measures to be more natural than the MSE2 loss function.
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4.4.2 Test statistics

To test whether a better predictive performance of a model lucky or caused by a difference in

population, predictive accuracy tests are necessary (Diebold,2015). Therefore, I use the Diebold

Mariano test, introduced by Diebold and Mariano (1995). It tests the null hypothesis of equal

predictive performance, H0: E(dt) = 0, versus H1: E(dt) ̸= 0, Here, dt is the loss differential of

model 1 and 2. The DM-statistic is defined as follows:

DM =
d√
σ2

T

∼ N(0, 1), (4.20)

where d is the average of vector d, σ2 the variance of the loss differentials and T the number of

elements in d. I use a modification of this test, proposed by Harvey et al. (1997). This modified

DM-test does not rely on an assumption of forecast unbiasedness, and it rectifies the fact that

the original DM-test can be quite oversized for sample of moderate size.

This test cannot be used when comparing nested models. When comparing a parsimonious

null model with a larger model that nests the null model, the larger model will introduce noise

since the population average of the extra estimated parameters will be zero. This is corrected for

by the Clark and West adjustment to the DM-test (Clark and West,2007). This test is also used

alongside the DM-test by Corsi and Renò (2012) and Shen et al. (2020), who also compare the

predictive performance of HAR-models. The CW-test uses an adjusted mean square prediction

for observation t+ 1 given by

f̂t+1 = (ê1|t+1)
2 − (ê2|t+1)

2 + (ŷ1|t+1 − ŷ2|t+1)
2, (4.21)

where ê1|t+1 are the 1-day ahead forecast errors of the null model, ê2|t+1 are the 1-day ahead

forecast errors of the alternative model, and ŷ1|t+1 and ŷ2|t+1 are the null and alternative model

forecast values respectively. The test statistic is given by

CW =

√
Nf1√

V ar(f̂t+1 − f1)
∼ N(0, 1), (4.22)

where N is the number of forecasts, f1 stands for the average of the adjusted mean square

prediction errors, and f̂t+1−f1 is a vector of all forecasts. Both tests are asymptotically standard

normal under the null. Significant positive DM or CW statistics indicate that the alternative

model has a better predictive performance, significant negative statistics indicate that the null

model is preferred.

13



5 Results

This section gives the in and out-of-sample results of the linear HARRV models in 5.1, and the

neural network forecasts in section 5.2.

5.1 Comparing realized volatility forecast models

Section 5.1.1 gives the in-sample results of the square root transformed HARRVJ model. Section

5.1.2 discusses the coefficient estimates of the 8 HARRV models mentioned in section 4.1.2.

Section 5.1.3 compares the in-sample performance of the HARRV models, and section 5.1.4

discusses the out-of-sample results of the HARRV models.

5.1.1 The HARRVJ model

The results of the HARRVJ regression on the full dataset are presented in table 3.

Variable β St. error t-value P-value

Intercept 0.009* 0.0009 9.969 0.000
√
RVt 0.523* 0.052 9.979 0.000

√
RVt−4 0.137 0.075 1.821 0.069

√
RVt−9 0.201* 0.048 4.159 0.000

√
Jt -0.101 0.092 -1.103 0.270

√
Jt−4 -0.072 0.195 -0.370 0.712

√
Jt−9 -0.150 0.149 -1.006 0.315

Table 3: Full sample (1 January 2015 till 30 April 2022) HARRVJ regression results for Bitcoin

price

*: Significant on a 5% level

As table 3 shows, the only variables with significant coefficients are the intercept,
√
RVt

and
√
RVt−9. This deviates from the findings of Pichl and Kaizoji (2017), who only have an

insignificant coefficient for
√
Jt. The coefficient of

√
RVt is positive, just as in the results of Pichl

and Kaizoji (2017). Their value for β1 is 0.345 however, which is lower than the reported value

of 0.523. This means that the realized variance at day t had a lower impact on the realized

variance of day t+ 1 during their period of 2013/2/8 till 2017/4/7. The other significant value,

for
√
RVt−9, even has a different sign. Pichl and Kaizoji (2017) report a value of -0.227. This

means that they found that a longer period of higher realized volatility tends to be followed by

a lower daily realized volatility and vice versa. My findings however show a positive effect of

a higher realized variance in the past 10 days on the realized variance of tomorrow. The most

likely explanation for the differences is that Pichl and Kaizoji (2017) research a different period.
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A possible explanation for the insignificant jumps, might be multicollinearity. Pichl and

Kaizoji (2017) report negative coefficients for
√
Jt and

√
Jt−4, and a positive coefficient for

√
Jt−9. The three jump components in my regression are all negative however, increasing the

risk of multicollinearity and thereby insignificant parameters.

5.1.2 Comparing the HARRV-model coefficients

The coefficients of the 8 models presented in section 4.1.2.4 are given in table 4.

Model β0 β11 β12 β21 β22 β31 β32 β4 β5 β6 β7 β8 β9

HARRV 0.008* 0.498* 0.126* 0.165*

HARRSV 0.008* 0.381* -0.162* 0.159* -0.068 0.240* 0.222*

HARRVJ 0.008* 0.517* 0.144 0.200* -0.095 -0.081 -0.147

HARRSVJ 0.009* 0.406* -0.163* 0.161* -0.067 0.280* 0.201* -0.118 -0.030 -0.186

HARRVQ 0.001 0.590* 0.263* 0.108 -0.703* -1.204* -0.195

HARRSVQ 0.002 0.459* -0.153* 0.306* -0.087 0.163* 0.219* -0.596* -1.353* 0.104

HARRVJQ 0.005* 0.519* 0.197* 0.115* 0.880 3.326 -0.979 -0.449 -1.547 -0.366

HARRSVJQ 0.005* 0.404* -0.161* 0.221* -0.107* 0.192* 0.246* -0.002 5.305 -2.090 -0.353 -1.972 -0.027

Table 4: Full sample (1 January 2015 till 30 April 2022) regression results for 8 HARRV models

*: Significant on a 5% level

The coefficients for
√
RVt,

√
RVt−4 and

√
RVt−9 are all positive and significant, except for

β21 in the HARRVJ model and β31 in the HARRVQ model. This shows that higher realized

variance over both shorter and longer time-spans have a positive effect on the realized variance

of tomorrow.

The negative realized semivariance components of the past day, are all significantly negative.

This is interesting, since that means that volatility due to negative returns the day before lead to

less volatility of Bitcoin prices the next day than volatility due to positive returns. The effect of

the negative realized semivariance of the past 5 days is still negative, although only the coefficient

of the HARRSVJQ model is significant. The average negative realized semivariances component

of the past 10 days however is significantly positive for all models that include the variable.

No model has a significant jump component. The only significant realized quarticity com-

ponents are reported in models that do not include jump components. All of these significant

coefficients, β7 and β8 for HARRSVQ and HARRVJQ are negative.

5.1.3 Comparing the in-sample performance of the HARRV-models

The AIC, BIC and adjusted R2 values, as discussed in section 4.3, are given in table 5. The

HARRV-models are fitted over the entire period of 1 January 2015 till 30 April 2022. The

HARRSVJQ model has the lowest AIC and adjusted R2 value, and the HARRSVQ has the
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lowest BIC value. It therefore seems that the HARRSVJQ model has the best in-sample fit.

However, as mentioned in 4.3, a model selected with AIC often includes too many variables,

whereas using BIC is more likely to select a parsimonious model.

It is noticeable that adding the realized negative semivariance improves the in-sample fit of

all 4 models that do not have the component included. Adding realized quarticity also improves

all 4 models that do not have this component included. Adding jumps results in better AIC

and adjusted R2 values for all the 4 models that do not have these components included, but it

increases the BIC values. Compare for example the BIC value of the HARRV model, which is

−13790.57, to the HARRVJ BIC value. The BIC value has increased to −13784.88.

Model AIC BIC Adjusted R2

HARRV -13820.04 -13790.57 0.492

HARRSV -13917.61 -13870.46 0.511

HARRVJ -13832.03 -13784.88 0.495

HARRSVJ -13932.01 -13867.18 0.514

HARRVQ -13861.71 -13814.55 0.501

HARRSVQ -13953.05 -13888.22 0.518

HARRVJQ -13862.66 -13797.82 0.501

HARRSVJQ -13967.46 -13884.94 0.521

Table 5: AIC, BIC and adjusted R2 for the HARRV models from 1 January 2015 till 30 April

2022

5.1.4 Comparing the prediction performance of the HARRV-models

Given that Bitcoin was still relatively new in 2015, and is now known worldwide, it is likely that

its volatility behavior has changed over the years. Therefore, the forecasts are constructed with

a small moving window, namely a moving window of 365 days. This generates forecasts and loss

function values for 1 January 2016 till 30 March 2022. The models are refitted everyday.

The loss function values, discussed in section 4.4.1, are given in table 6. The HARRSVJ model

has the lowest MSE1, MSE2 and QLIKE value, the HARRSV model has the lowest R2LOG,

MAE1 and MAE2 value. It is noticeable that both models include the realized semivariance.

As mentioned in section 4.4.1, the MSE measures are less robust to outliers than the MAE

measures. Since the HARRSVJ model has the lowest loss function value for both MSE measures,

the HARRSVJ model seems to handle outliers better. Since both the HARRSV and HARRSVJ

model have the lowest value for three loss functions, and the second lowest for the other three

loss functions, these models seem to have the best predictive performance.

The results of the CW statistics for nested models and the DB statistics for non-nested
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Model MSE1 MSE2 QLike R2LOG MAE1 MAE2

HARRV 4, 168 ∗ 10−4 1.530 ∗ 10−5 -5.331 0.626 1.229 ∗ 10−2 1.333 ∗ 10−3

HARRSV 3.472 ∗ 10−4 1.379 ∗ 10−5 -5.418 0.503 1.068 ∗ 10−2 1.159 ∗ 10−3

HARRVJ 4.116 ∗ 10−4 1.508 ∗ 10−5 -5.345 0.626 1.234 ∗ 10−2 1.336 ∗ 10−3

HARRSVJ 3.461 ∗ 10−1 1.379 ∗ 10−5 -5.424 0.508 1.080 ∗ 10−2 1.168 ∗ 10−3

HARRVQ 4.143 ∗ 10−4 1.514 ∗ 10−5 -5.256 0.639 1.232 ∗ 10−2 1.338 ∗ 10−3

HARRSVQ 4.207 ∗ 10−4 1.584 ∗ 10−5 -5.250 0.652 1.229 ∗ 10−2 1.336 ∗ 10−3

HARRVJQ 3.681 ∗ 10−4 1.414 ∗ 10−5 -4.880 0.578 1.094 ∗ 10−2 1.186 ∗ 10−3

HARRSVJQ 3.803 ∗ 10−4 1.425 ∗ 10−5 -5.025 0.595 1.101 ∗ 10−2 1.189 ∗ 10−3

Table 6: The loss function values for the forecasts of the volatility of Bitcoin for 1 January 2016

till 30 April 2022, using 8 HARRV models

models, as discussed in section 4.4.2, are given in table 7. It shows that the HARRV model is

significantly outperformed by the HARRSV, HARRSVJ, HARRVJQ and HARRSVJQ model.

This indicates that the HARRV model might be underfitted. The HARRSV model significantly

outperforms the HARRV, HARRVJ and HARRVQ model, indicating that it has a good predictive

performance.

HARRV HARRSV HARRVJ HARRSVJ HARRVQ HARRSVQ HARRVJQ HARRSVJQ

HARRV 4.430* 1.662 4.440* 1.358 1.013 3.844* 3.877*

HARRSV -2.752* 1.416 -2.694* 1.567 -1.302 0.450

HARRVJ 5.238* -0.178 -0.700 4.833* 4.752*

HARRSVJ -2.730* -1.670 -1.420 -0.075

HARRVQ -0.382 3.338* 3.242*

HARRSVQ 1.394 1.757

HARRVJQ 0.803

HARRSVJQ

Table 7: This table presents CW-statistics (in italics) for nested models, and DB-statistics for

non-nested models, for the forecasting horizon of 1 day during 1 January 2016 till 30 April 2022.

Predictions are constructed using a moving window of 1 year. Positive results in a cell denote

that the model in the first column performs better than the model in the first row, and vice

versa. The standard errors are computed using Newey and West (1987).

*: Significant on a 5% level

The HARRVJ model is significantly outperformed by 4 other models, one of which is the

HARRSVJ model. This HARRSVJ model outperforms 3 models, all of which do not include

the realized semivariance. This shows that adding realized semivariance to the model improves

the predictive performance. This is also observed for the HARRVQ model, which is significantly

outperformed by the HARRSV, HARRSVJ, HARRVJQ and HARRSVJQ model. Three of these
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models include realized semivariance. Out of the models that do not include realized semivari-

ance, the HARRVJQ performs the best, since it significantly outperforms HARRV, HARRVJ

and HARRVQ. These three models are also outperformed by the HARRSVJQ model.

The results show that the HARRVJQ and HARRSVJQ model perform well, but might

be slightly overfitted. The smaller models that include realized semivariance, HARRSV and

HARRSVJ, significantly outperform some competitors and seem to have the best predictive

performance.

5.2 Neural network forecasts

As mentioned in section 4.2, the neural network is trained with the first two-thirds of the data.

The training observations range from 12 January 2015 till 23 November 2019, and the forecasts

are constructed from 24 November 2019 till 30 April 2022. The training is done with 30 repe-

titions, their in-sample measures are given in appendix 7.2. The weights of the repetition with

the best BIC value, which is repetition 28, are given in appendix 7.3. To properly compare the

neural network with the HARRVJ model, the HARRVJ forecasts are constructed in the same

way. This is done by using the coefficients from regressing the model over the observations from

1 January 2015 till 23 November 2019 to forecast the realized volatilities of 24 November till 30

April 2022.

The variance forecasts are presented in figure 3. It can be seen that both the neural network

and the HARRVJ model predict the actual variance quite good. However, certain outliers like

the high peaks in March 2020, January and May 2021 are poorly forecast by both models. 13

March 2020 for example, the actual variance is 0.314, whereas the neural network predicts 0.132

and the HARRVJ model predicts 0.136.

The loss function values of the realized volatility forecasts are presented in Table 8. The neural

network has lower loss values for the MSE1, MSE2, R2LOG, MAE1 and MASE2 measures.

The only value in favor of the HARRVJ model are the QLIKE loss function values. The results

therefore seem to indicate that the neural network has a better predictive performance.

Model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Neural network 3.005 ∗ 10−4 1.553 ∗ 10−5 -5.528 0.426 1.008 ∗ 10−2 1.093 ∗ 10−3

HARRVJ 3.136 ∗ 10−4 1.744 ∗ 10−5 -5.531 0.429 1.021 ∗ 10−2 1.123 ∗ 10−3

Table 8: Loss function values of the realized volatility forecasts for the neural network and the

HARRVJ model, both trained on data from 01/01/2015 till 23/11/2019, forecasting 24/11/2019

till 30/04/2022 with a 1 day forecasting horizon.

To test whether the neural network signficantly outperforms the HARRVJ model, a Diebold
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Figure 3: Actual values of the Bitcoin variance, forecasts from the HARRVJ model and neural

network, from 24 November 2019 till 30 April 2022

Mariano test is performed, as discussed in section 4.4.2. Taking the neural network as the null

model, and HARRVJ as the alternative model, the test statistic is −0.995. This indicates that

the neural network has a better predictive performance. However, since it is not a significant

value, no conclusions can be drawn.

6 Discussion and conclusion

In sum, I see that the models that exclude realized quarticity but include the negative semivari-

ance, namely HARRSV and HARRSVJ, have a significantly better predictive performance than

the HARRVJ model. The HARRSV and HARRSVJ model also show a better in-sample fit. This

indicates that the HARRVJ model overlooks the different impact positive and negative Bitcoin

have on its volatility. Feeding a neural network with the variables of the HARRVJ model gives

lower loss function values than HARRVJ for 5 of the 6 loss functions, but a Diebold Mariano

test can not conclude that the performance of the neural network was significantly better than

that of the linear HARRVJ model.

In general, the addition of realized quarticity, jump components and a leverage effect through

realized negative semivariance, increases the in-sample fit of the linear HARRV-models. None

of the jump components in one of the eight models is significant however, and quarticity coeffi-

cients are only significant in models that do not include jump components. The HARRSVQ and

HARRSVJQ have the best in-sample fit. These models seem overfitted however, since they have

higher loss function values than the HARRSV and HARRSVJ models that do not include the re-

alized quarticity. From the models that do not include the realized semivariance, the HARRVJQ

model that includes jumps and realized quarticity has the best out-of-sample performance.
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As already mentioned, the HARRVJ model overlooks the leverage effect, and is therefore

outperformed by the HARRSV and HARRSVJ model. It is noticeable that the in-sample results

show that for Bitcoin, a leverage effect means that negative returns have less impact on the

volatility than positive returns. Volatility due to negative returns the day before lead to less

volatility of Bitcoin prices the next day than volatility due to positive returns. This may be due

to the central role of public attention for cryptocurrencies, which is often reported (for example

by Kristoufek,2013). Positive returns might generate more public attention and thus increase

the Bitcoin trades, which generates more volatility. The average negative realized semivariance

of the past 10 days had a positive effect on the volatility of the next day however. Longer periods

of negative returns might lead to panic amongst Bitcoin holders, generating higher volatility.

It is also interesting to see that the HARRSVJ model has lower loss function values for the

two MSE measures, whereas the HARRSV model has lower loss function values for the MAE

measures. Hansen and Lunde (2005) mention that the MAE are more robust to outliers than

MSE2. Given that the HARRSVJ model has the lowest loss function value for a measure that

is not robust to outliers, it seems that the HARRSVJ model handles outliers better than the

HARRSV model. Modelling discontinuities by jump components thus seems to be beneficial

when it comes to handling outliers. I conclude that a HARRSVJ model is an improvement of

the HARRVJ model when predicting Bitcoin volatility, as it accounts for the leverage effect of

the returns.

In further research, the effect of the square root transfortmation can be investigated by

comparing it with an untransformed HARRVJ model and a logarithmically transformed HARRVJ

model. The 8 linear HARRV models that are considered all use a square root transformation.

Andersen et al. (2007) mention that transforming realized volatilities logarithmically resulted in

an approximately normal distribution, which might motivate investigating this transformation.

The results of the neural network look promising, but no significant improvement in predictive

performance has been found. Maybe more advanced machine learning (ML) methods would show

better out-of-sample results. Seo and Kim (2020) for example compares a neural network with a

higher order neural network (HONN) when forecasting the volatility of Bitcoin. These HONNs

generally have a better predictive performance than the neural networks. Further research could

assess whether more advanced ML applications fed by the variables of HARRV-models generate

better volatility forecasts.
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7 Appendix

7.1 Loss functions

MSE1 = n−1
n∑

t=1

(√
RVt −

√
R̂V t

)2

, (7.1)

MSE2 = n−1
n∑

t=1

(
RVt − R̂V t

)2
, (7.2)

QLIKE = n−1
n∑

t=1

(
log(R̂Vt) +

RVt

R̂Vt

)
, (7.3)

R2LOG = n−1
n∑

t=1

[
log

(
RVt

R̂Vt

)]2
, (7.4)

MAE1 = n−1
n∑

t=1

∣∣∣∣√RVt −
√

R̂Vt

∣∣∣∣ , (7.5)

MAE2 = n−1
n∑

t=1

∣∣∣RVt − R̂Vt

∣∣∣ . (7.6)

Here, RVt stands for the actual realized volatility at day t, R̂Vt stands for the forecasted value

of the realized variance, and n is the total number of days for which a volatility forecast is

constructed. These formulations are taken from Hansen and Lunde (2005).
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7.2 Neural network selection

Iteration AIC BIC

1 142.611 531.922

2 142.611 531.922

3 142.611 531.921

4 142.609 531.920

5 142.613 531.924

6 142.609 531.919

7 142.611 531.922

8 142.612 531.922

9 142.608 531.918

10 142.616 531.926

11 142.611 531.921

12 142.612 531.922

13 142.610 531.920

14 142.612 531.922

15 142.609 531.920

16 142.611 531.921

17 142.610 531.920

18 142.617 531.927

19 142.617 531.928

20 142.612 531.923

21 142.611 531.921

22 142.605 531.915

23 142.613 531.923

24 142.611 531.921

25 142.607 531.917

26 142.617 531.927

27 142.616 531.927

28 142.604 531.914

29 142.609 531.919

30 142.611 531.921

Table 9: AIC and BIC values of 30 iterations of the neural network
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7.3 Weights of the selected neural network

Neuron 1

layer 1

Neuron 2

layer 1

Neuron 3

layer 1

Neuron 4

layer 1

Neuron 5

layer 1

Intercept 0.521 -1.836 0.194 -1.700 0.270

RV1 -0.735 -2.723 4.643 3.365 6.524

RV5 -7.986 -0.479 6.630 0.113 0.306

RV10 -4.159 -0.297 1.301 1.666 0.962

J1 5.888 2.185 -1.653 0.001 -4.908

J5 -2.917 7.189 -1.059 1.436 1.424

J10 -1.186 5.863 0.965 0.842 0.535

Table 10: Weights between the input layer and the first hidden layer of the neural network of

repetion 28

Neuron 1

layer 2

Neuron 2

layer 2

Neuron 3

layer 2

Neuron 4

layer 2

Neuron 5

layer 2

Intercept -2.451 -0.393 0.505 0.845 0.258

Neuron 1 layer 1 -2.807 0.103 0.694 1.915 1.617

Neuron 2 layer 1 -0.810 -0.575 -1.223 -0.058 -0.910

Neuron 3 layer 1 -0.368 1.590 1.401 -2.334 0.411

Neuron 4 layer 1 2.178 0.241 -1.633 -0.787 0.849

Neuron 5 layer 1 0.138 -1.222 -0.335 0.194 0.935

Table 11: Weights between the first hidden layer and the second hidden layer of the neural

network of iteration 28

RV prediction

Intercept -0.793

Neuron 1 layer 2 -0.443

Neuron 2 layer 2 -0.301

Neuron 3 layer 2 -0.062

Neuron 4 layer 2 -0.423

Neuron 5 layer 2 1.416

Table 12: Weights between the second hidden layer and the output layer of the neural network

of iteration 28
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7.4 Code files

One programming file is used, which is named ‘Thesis_Bitcoin.R’. This file combines all data

analysis done to receive the result mentioned in this thesis. It contains 596 lines of code.

Lines 1-45 are used to install certain packages and write them into the library of R. The most

important packages used are the highfrequency and neuralnet package, which are used for con-

structing HARRV models and neural networks respectively. Lines 47-56 write Excel files contain-

ing Bitcoin price data, downloaded from https://www.cryptodatadownload.com/data/bitstamp.

Lines 57-79 create a function that deletes every nth element, such that 5 minute frequency price

data and daily price data are created.

The logarithmic returns of this price data are calculated in lines 80-101, which also plots a

graph of the daily data and calculates some descriptive statistics. Lines 102-142 calculates real-

ized volatility, realized bipower variance and jump statistics for each day in the sample. Lines 143-

278 calculate the coefficients of 8 HAR-models over the full sample. These models are HARRV,

HARRSV, HARRVJ, HARRSVJ, HARRVQ, HARRSVQ, HARRVJQ, and HARRSVJQ. Lines

279-418 calculates forecasts with these 8 models, using a moving window.

The loss functions of these forecasts are calculated in lines 419-444. DM-statistics and CW-

statistics are calculated in lines 445-465. Forecasts can be plotted with the true values using

lines 466-475.

Line 476-558 reruns the HARRVJ model and runs a neural network over the first two thirds

of the data. These predictions are plotted with the actual values in lines 559-567. Loss functions

of both predictions are calculated in lines 568-593. DM-statistics and CW-statistics for these

predictions are calculated in lines 593-596.

27


	Introduction
	Literature
	Linear models for volatility forecasting
	Non-linear models for volatility forecasting

	Data
	Methodology
	Modelling and forecasting realized volatility
	The HARRVJ model
	Alternative RV forecasting models

	Neural networks
	Comparing the in-sample performance
	Comparing the out-of-sample performance
	Used loss functions
	Test statistics


	Results
	Comparing realized volatility forecast models
	The HARRVJ model
	Comparing the HARRV-model coefficients
	Comparing the in-sample performance of the HARRV-models
	Comparing the prediction performance of the HARRV-models

	Neural network forecasts

	Discussion and conclusion
	Appendix
	Loss functions
	Neural network selection
	Weights of the selected neural network
	Code files


