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Abstract

This paper investigates the relative importance of economic and political variables in

modelling carbon dioxide emission growth. Three different approaches to a Shapley-based

decomposition of the R2 are employed using a global panel of 115 or 119 countries covering

the years 1970 to 2018. Next to the regular Shapley decomposition of the R2 suggested

by Lipovetsky and Conklin (2001), the joint importance of grouped variables are assessed

using the Owen decomposition approach (Shorrocks, 2013) and the Nested Shapley appraoch

(Chantreuil & Trannoy, 2011). Overall, the results suggest a higher importance of economic

than political variables to explaining cross-country and time variations in carbon emission

growth rates, but indicate an increase in the importance of political variables over time. In

particular, measures of globalization are shown to be increasingly important determinants of

carbon emission growth. Still, in historical datasets, energy consumption and GDP growth

remain the main drivers of emission growth. Next to these topical findings, the applicability

of a Shapley-based decomposition of the R2 in quantifying explanatory variables’ importance

is demonstrated. Shapley values are found to offer a more robust alternative to assessing

importance via t-statistics of regression coefficients. In grouped models, the Nested Shapley

approach is found to be much preferred to the Owen approach, due to better computational

performance and ease of application. Further research is recommended to apply Shapley

decomposition to a broader set of explanatory variables and to incorporate the information

from Shapley values in standard regression coefficient significance tests.
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1 Introduction

While efforts to bring down carbon emissions have increased substantially over the past years

and the list of countries with a proclaimed goal of carbon neutrality keeps expanding, there

are still striking disparities across national CO2 emission growth rates. For example, in 2014

Chile reduced its national carbon emissions by 7.4% compared to the previous year, while its

neighbour Bolivia saw an increase in emissions by 8.0% in the same year. What political and

economic factors can explain such cross-country variation in carbon emissions? And what is the

relative importance of these factors?

Understanding the influences and mechanisms of economic and political structures in curb-

ing carbon emission growth is of crucial importance in global efforts to limit climate change.

Numerous studies have thus attempted to answer the first question above, employing regression

analysis and focusing on establishing significance of point estimates in order to prove impor-

tance of a certain explanatory variable. However, simple significance tests do not necessarily

allow for a comparison of relative importance across variables and, therefore, cannot provide

a clear answer to the second question. Moreover, multicollinearity of regressors may inflate

standard errors and therefore lead to non-rejection of a false null hypothesis of ineffectiveness

of the regressor. This paper therefore takes a novel approach and compares the contributions

of different political and economic variables to explained variance of carbon emission growth

using Shapley-based decomposition approaches. In doing so, it extends existing environmental

economics literature on cross-country drivers of carbon emission growth beyond the use of sim-

ple regression analysis. Additionally, this paper contributes to the scientific literature on the

applicability of Shapley-based decompositions of the R2.

The main research question thus reads as follows:

What is the relative contribution of different economic and political variables to ex-

plaining carbon emission growth in a cross-country dataset?

To answer this question, regression models will be estimated in a smaller, balanced 20-year

panel of 115 countries and in a larger, unbalanced 48-year panel of 119 countries. Subsequently,

weighted averages of the models’ R2 will be taken and allocated to the explanatory variables,

following a Shapley-based decomposition approach as presented by Lipovetsky and Conklin

(2001). Moreover, changes over time and across countries in the relative importance of different

variables will be considered. Finally, parts of the analysis will be repeated using hierarchical

models. In these models, related variables are grouped together and both the importance of

variable groups and individual variables is assessed. To this end, the Owen decomposition and

Nested Shapley decomposition will be employed. The comparative study of these approaches

does not only allow for a more complete picture of the relative contribution of different variables

to carbon emission growth, but also gives insight into the respective merits of the two approaches.

The analysis leads to the following main results. First, the relative contribution of economic
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variables significantly outweighs the contribution of political variables. Depending on the speci-

fications, economic variables account for 52% to 80% of the explained variance of the dependent

variable. GDP growth and electric power consumption growth bear the greatest explanatory

importance in all model specifications, but are followed by measures of economic, social, and po-

litical globalization. Population growth and indicators of the degree of democracy bear limited

importance in explaining cross-country variations in carbon emissions, while the share of indus-

try and manufacturing in national GDP as well as human capital growth bear no explanatory

power.

Second, estimations in sub-periods reveal an increase in the importance of political variables.

Measures of globalization in particular gained importance between 1995 and 2005, while the

contribution of electric power consumption growth has declined over the same period. This

observation may reflect the ongoing decarbonization of electricity generation in many economies,

as well as the increasing number of international agreements and intergovernmental cooperations

to reduce global greehouse gas emissions.

Third, the analysis of hierarchical models highlights the usefulness of a grouped analysis, and

the superiority of the Nested Shapley approach over the Owen approach. Grouping explanatory

variables greatly saves computation time, however, only the Nested Shapley approach offers

computational gains which are large enough to render computation feasible.

The main contribution of this paper is to demonstrate the applicability of Shapley-based

decomposition of the R2 in regression analysis, as well as to highlight the growing importance

of political variables in explaining cross-country variation in carbon emission growth. Despite

great differences across country and time period subsamples, the neglect of political covariates

in modelling carbon emission growth substantially decreases goodness of fit.

The remainder of the paper is structured as follows. Section 2 summarizes the relevant

literature, focusing on political and economic covariates of carbon emissions. Next, Section

3 presents the employed data and summary statistics. Sections 4 and 5 provide background

and mathematical details of the employed decomposition approaches and outline the general

methodology. Section 6 presents the results of the analysis, which are further discussed in

Section 7. Section 8 concludes.

2 Literature review

The decomposition of carbon emissions has been studied abundantly by previous scholars. How-

ever, different groups of scholars have applied vastly different econometric techniques in decom-

posing emissions and attributed differing levels of importance to economic, political, and social

factors in explaining emissions.

A large strand of the literature is concerned with the connection between economic growth

and carbon emissions. This association is widely uncontested and has been confirmed for both

cross-country studies (e.g Doda, 2014; Kammerlander & Schulze, 2020; Sharma, 2011) and
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intertemporal studies (e.g. Friedl & Getzner, 2003; Heutel, 2012; Shahiduzzaman & Layton,

2015). The seminal work of Grossman and Krueger (1995) has raised the important question of

linearity in this relationship, forming the idea of an “Environmental Kuznets Curve” (EKC). This

idea posits that the relationship between environmental degradation and income is characterized

by an inverted U-shape, meaning that pollution initially increases with rising income but declines

again beyond some point. However, empirical evidence for the case of carbon emissions is mixed.

Using a global sample of 111 nations, Dietz and Rosa (1997) show that overall CO2 emissions

decline with further economic growth. Dutt (2009) confirm this result for a global panel of 125

nations spanning the years 1984-2002, but point out that only few nations have been experiencing

sufficient economic growth to move beyond the turning point where emissions are falling again.

Other scholars (e.g. Cole et al., 1997; Shafik, 1994) have found no turning point at all, but rather

a monotonous relationship between economic growth and carbon emissions.

In attempts to explain tight association of national income and carbon emission, energy use

has been paid considerable attention as a mitigating factor. Energy is a key input factor of

economic activity and carbon emissions are an important by-product in most energy-generating

processes (Sharma, 2011). Including energy use in regression models of carbon emissions is

therefore common practice. However, some authors argue that the high correlation of energy

use and carbon emissions requires instrumentalizing this variable (Joshi & Beck, 2018) or using

decomposition analysis (Hamilton & Turton, 2002). A popular technique is to separate changes

in carbon emissions (CE) into changes in carbon intensity of energy consumption (CE/EC), en-

ergy intensity of production (EC/GDP), GDP per capita (GDP/P), and population growth (P).

First introduced by Kaya (1989), this ”Kaya identity” has been studied for numerous regional

and cross-country panels. In a study of OECD countries, Hamilton and Turton (2002) make

use of a refined Kaya decomposition analysis, additionally accounting for fossil fuel-intensity of

energy, in identifying the main drivers of CO2 emission growth between 1982 and 1997. Overall,

their findings suggest that increases in population and GDP per capita are primarily responsible

for the observed growth in carbon emissions. This result is contested by Albrecht et al. (2002),

who use a Shapley decomposition technique for 4 developed countries to show that the effect of

economic growth on carbon emissions in the Kaya identity is frequently overestimated, due to

large residuals.

Compared to measures of macroeconomic performance, the role of political factors in explain-

ing environmental outcomes is less intuitive and conspicuous. Focusing on broader definitions

of environmental quality, the question whether democracies are inherently ”cleaner” has mo-

tivated several empirical studies (e.g. Li & Reuveny, 2006; Payne, 1995; Schultz & Crockett,

1990). Coining the ”clean democracy hypothesis”, these studies argue that the greater concern

for citizens’ freedoms and well-being, respect for international agreements, and the sparsity of

corruption lead to stricter enforcement of environmental protection policies in democracies. For

carbon emissions, this hypothesis is supported by Dutt (2009) and Farzin and Bond (2006),

who find negative significant associations between measures of political freedom and carbon
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emissions in cross-country studies. By contrast, Kammerlander and Schulze (2020) fail to find a

robust evidence of the clean democracy hypothesis when considering a wider set of air pollutants,

including CO2.

Unifying frameworks of economic and political covariates of carbon emissions, a few stud-

ies examine the role of globalization and economic freedom in explaining carbon emissions and

come to dissimilar conclusions. Most prominently, the Pollution Haven Hypothesis (PHH) posits

that emission-intensive production processes will be outsourced to jurisdictions with lax envi-

ronmental regulation, implying that openness to trade will reduce emissions in countries with

tight regulation but increase them in open economies with little regulation (Copeland & Taylor,

1994). However, empirical evidence of this hypothesis is inconclusive for the case of carbon

emissions. Contradicting the PHH, Carlsson and Lundström (2001) find that economic freedom

increases emissions in high-income countries but reduces them in low-income countries. Joshi

and Beck (2018) find that the effect of economic freedom in emissions is dependent on the type

of government but that the emission-enhancing effects of increased business prevail.

Even though a few studies (e.g. Albrecht et al., 2002; Henriques & Borowiecki, 2017) have

used decomposition analysis to analyse the contribution of Kaya identity factors in explaining

carbon emissions, the vast majority of empirical studies in this field focus on simple regression

analysis to assess the relative importance of different variables. While economic and statistical

significance of variables is usually established by comparing sign, magnitude, and t-statistics of

regression coefficients, these figures do not necessarily allow for a ranking of the explanatory

variables in order of importance (Israeli, 2007). Additionally, when explanatory variables are

highly correlated, statements based on variable significance may be misleading, as standard

errors are inflated. Scholars have therefore developed a strategic approach to allocating the

overall goodness of fit of a regression model to its explanatory variables. This technique follows

Shapley’s (1953) approach of allocating utility to players in cooperative game theory. Technical

details of this approach will be described in Section 4. Gaining popularity in decomposition

analyses, Shapley-based decomposition has been employed to disentangle the contribution of

various income sources to income inequality (e.g. Chantreuil & Trannoy, 2011; Sastre & Trannoy,

2002; Shorrocks, 2013). More recently, Shapley-based decompositions have also been employed

to assess the contribution of the four Kaya identity factors to carbon emissions. Emphasising the

attractiveness of a residual-free decomposition of carbon emissions, Albrecht et al. (2002) use a

Shapley-based approach in a study of 4 European countries to show that the effect of economic

growth on emissions is overestimated in conventional decomposition studies. Henriques and

Borowiecki (2017) equally apply a Shapley decomposition to an extended Kaya identity and use

historical data to show that changes in the energy mix account for rising carbon emissions in

low-income countries and recently falling emissions in high-income countries.

While these applications of a Shapley-based decomposition help to shed light on the relative

importance of Kaya identity factors in carbon emissions, the rigid focus on a perfect identity

does not allow for an inclusion of more granular factors. In particular, the Kaya identity is
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inappropriate for the inclusion of political factors in a model of carbon emission. This paper

therefore seeks to combine the benefits of a Shapley-based decomposition approach with the

richness of political and economic variables found in conventional regression analysis studies.

Using Shapley decomposition additionally allows for a grouping of variables and determining

their joint importance, whereas no such exercise is possible in conventional regression analysis.

3 Data

This paper aims to study the relative importance of various political and economic factors in

explaining cross-country and time variations in carbon emissions. Cross-sectional panel data on

national carbon dioxide (CO2) emissions is obtained from the Emissions Database for Global

Atmospheric Research (EDGAR), which covers 215 countries for the period 1970-2018. EDGAR

provides CO2 emissions separately including and excluding short-cycle organic carbon emissions,

like forest fires and biomass burning. Since organic emissions are frequently caused by external

weather or climate conditions, they are assumed to be beyond regulatory control and therefore

excluded from the study. To account for country-specific trends in carbon emissions and to

normalize across countries, the CO2 growth rate will be considered. The use of growth rates,

rather than levels, is further corroborated by a Levin-Lin-Chu (LLC) test. For results, refer to

Table 1 in the Appendix, which indicates the presence of unit root for national carbon emission

levels, but not for growth rates.

Various political and economic variables are considered to explain time-varying differences

in national carbon emission growth. As outlined in Section 2, GDP is an important predictor of

carbon emissions and is therefore included in this study. As the dependent variable represents

growth rates, the annual percentage growth rate of GDP as reported by the World Bank is used.

Stationarity of this variable is again confirmed by an LLC test.

Many studies in the literature that analyse carbon emissions include measures of national

population to capture the pollution arising from human non-industrial activities and to control

for the size of a national economy. I therefore include population growth as a second dependent

variable, which is calculated based on World Bank annual population figures.

Electric power consumption in kWh per capita is included, to capture the considerable

impact of energy consumption on national emissions. This is in accordance with the literature,

which frequently finds support for the role of changes in energy intensity in explaining changes

in carbon emissions (e.g Kammerlander & Schulze, 2020; Kasman & Duman, 2015). Again,

percentage growth rates are calculated based on level data reported by the World Bank.

Next, measures of size and output of national economies, variables capturing the sectoral

structure of the economy help to explain cross-country differences in carbon emissions. I there-

fore include a human capital index as reported by the Penn World Tables (Feenstra et al., 2015),

which combines information on average years of schooling and returns on education. The hu-

man capital index helps to proxy for the relative importance of the tertiary sector in a given
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country, which has been shown to reduce emissions in advanced economies (Friedl & Getzner,

2003). Moreover, I include the relative size of a country’s industrial sector, which is retrieved

from the World Bank. This indicator is reported as percentage of GDP and measures the value

added from mining, manufacturing, construction, electricity, water, and gas. Combined, these

variables paint a broader picture of an economy’s structure and help to capture a potential focus

on pollution-intensive production in capital-intensive and highly industrial economies.

A second group of variables is concerned with the political state of a country. Following

the analysis of Kammerlander and Schulze (2021), who found a significant and robust effect of

globalization measures on environmental performance, the KOF Globalization Index (KOFGI) is

included in the model to account for trade and import effects on emissions and the national econ-

omy. The KOFGI is compiled by the Swiss Economic Institute at the ETH Zürich and quantifies

the susceptibility of a country for economic, social, and political globalization on a scale from 0

(autarky) to 100 (fully globalized). Economic globalization measures the a country’s openness

to trade and the connectedness to the global financial market. Social globalization describes

the existence of personal contacts, information flows, and cultural links. Political globalization

describes a country’s participation in treaties and organisations. The overall globalization index

is the average of the three named subindices. In this paper, models using the overall index and

models using the subindices are considered.

Additionally, a variable for democratic freedom in a country is included. I use the polity2

score of the PolityIV project. The PolityIV dataset has been commonly used in political sci-

ence studies (e.g. Epstein et al., 2006); its polity2 indicator measures the competitiveness and

openness of national elections and quantifies the degree of democracy on a scale from +10 (fully

democratic) to -10 (fully autocratic). Following Kammerlander and Schulze (2020), I construct

dummies for autocracies (polity2 value -10 to 0), partial democracies (+1 to +7), and full

democracies (+8 to +10), which are included as independent variables in the regression model.

Using cross-country data from four sources results in a large number of missing values for

several variables. This is particularly the case when considering political variables, due to

changing national borders and jurisdictions in the course of the late 20th century. To avoid

sample selection bias, which may arise if there are commonalities among countries with missing

values, two subsamples will be considered in comparison. First, a balanced yearly panel of 115

countries is constructed, which covers the time period from 1995 to 2014. The World Bank

classifies 46 of these countries as high-income states, 41 as upper or lower middle income states,

and 28 as lower income states. A full list of countries and a detailed description of the sample

construction can be found in Appendix A.

Second, an unbalanced panel will be considered, where all country-year observations are

included for which no variable has a missing value. This resulting sample contains 4,413 ob-

servations of 119 countries (that is, the same 114 countries of the balanced sample with Iraq,

Ethiopia, Niger, Serbia, and Sudan). The number of observations per country varies between 8

and 44, with an average of 37 observations per country. A list with the number of observations
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per year can be found in Table A.3 in the Appendix.

Table 1. Summary statistics in strongly balanced and unbalanced panel

Variable Mean Std. Dev. Min Max Observations

Strongly balanced panel

CO2 emissions* 0.312 0.105 -0.352 2.117 2,300

GDP* 0.0390 0.041 -0.263 0.262 2,300

population* 0.014 0.017 -0.044 0.191 2,300

electric power consumption* 0.044 0.084 -0.395 1.271 2,300

industry share 0.295 0.113 0.093 0.748 2,300

human capital* 0.009 0.006 -0.007 0.038 2,300

Globalization 61.923 14.769 23.563 90.440 2,300

Economic glob. 57.915 16.013 17.683 94.960 2,300

Social glob. 56.595 19.873 9.074 91.996 2,300

Political glob. 71.177 16.898 22.861 98.144 2,300

Polity2 4.734 6.062 -10 10 2,300

Full democracy 0.507 0.500 0 1 2,300

Partial democracy 0.239 0.427 0 1 2,300

Autocracy 0.243 0.429 0 1 2,300

Unbalanced panel

CO2 emissions* 0.328 0.118 -0.677 3.524 4,343

GDP* 0.0373 0.052 -0.640 0.578 4,343

population* 0.017 0.016 -0.044 0.191 4,343

electric power consumption* 0.037 0.094 -0.558 1.738 4,343

industry share 0.297 0.112 0.062 0.848 4,343

human capital* 0.010 0.007 -0.009 0.044 4,343

Globalization 54.850 16.709 14.885 90.440 4,343

Economic glob. 50.816 17.545 10.828 94.960 4,343

Social glob. 49.007 21.328 6.265 91.996 4,343

Political glob. 64.621 18.521 13.711 98.144 4,343

Polity2 2.936 7.162 -10 10 4,343

Full democracy 0.438 0.496 0 1 4,343

Partial democracy 0.196 0.397 0 1 4,343

Autocracy 0.356 0.478 0 1 4,343

Note. Variables marked with an asterisk (*) represent growth rates.
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4 Introduction to Shapley values

To study the relative role of political and economic factors in explaining carbon emissions, a

sequence of linear regression models is estimated and the R2 is decomposed into the relative

contributions of each explanatory variable. This is done by evaluating the R2 for all possible

deletion sequences of explanatory variables and taking a weighted average of each variables’

contribution to the R2. I consider three approaches to the weighing and sequential deletion of

variables, which will be presented in sections 4.1-4.3. Thereafter, the models considered in this

study will be presented.

4.1 Shapley decomposition

Initially referring to the allocation of utility to players in cooperative game theory (Shapley,

1953), the concept of “Shapley values” has found applications in numerous fields of mathematics,

statistics, and economics. Its power lies in the fulfillment of the three axioms of symmetry,

additivity, and efficiency of allocation. Moreover, Shapley values provide a methodologically

simple and easily interpretable measure of the relative contribution of decomposition factors to

an outcome measure.

In the case of regression analysis, explanatory variables may be seen as ”players” who can

form a ”coalition” to improve model outcomes. That is, a regression model including all variables

may lead to a different outcome in terms of explanatory power of the dependent variable than the

sum of individual outcomes in regression models with one variable. This article focuses on the

explained variance or R2 as outcome measure to be decomposed. How much the joint outcome

(that is, the R2 in a model with all explanatory variables) differs from the sum of individual

outcomes (that is, the sum of R2 in models with just one explanatory variable) depends on the

correlation of variables (Lipovetsky & Conklin, 2001). When regressors are highly correlated,

the additional information from adding another variable to the model is limited and the R2

only mildly increases in a joint model. At the same time, combinations of moderately correlated

regressors may additionally inform the model and therefore result in a much higher R2 for a

joint model.

Measuring the contribution of an individual explanatory variable to the explanatory power

of the model therefore requires careful weighting of all its contributions in combination with

other variables. Shorrocks (2013) develops a generalized decomposition technique which draws

upon the desirable features of the Shapley value and involves sequential elimination of “players”

in all possible orders and averaging outcomes over all sequences. With k explanatory variables

x1, x2, ..., xk, there are 2
k possible model specifications. For general introduction, an example of

k = 3 will be presented first. The regression equation therefore reads as:

y = α+ β1x1 + β2x2 + β3x3 + ϵ (1)
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To evaluate the contribution of x1 according to its Shapley value, 2k = 23 = 8 models

need to be estimated. The R2 of each model including x1 is compared with the same model

but excluding x1, and a weight is assigned to this difference. The weight depends on the total

number of possible elimination sequences k! (in this case 3! = 6) and the number of elimination

sequences leading to a certain model. For example, the model containing only x1 can be obtained

by first eliminating x2 and then x3, or vice versa. Thus, when comparing the model containing

only x1 with the model containing no variable at all, the difference of R2 receives the weight
2
6 = 1

3 , since there are two possible elimination sequences. By contrast, the model containing

x2 and x3 can only be obtained by eliminating x1 first, so the difference of R2 receives weight
1
6 . Denoting the R2 of a model containing variables xi and xj by R2(xi, xj), the Shapley value

SH1 of x1 in the model of equation 1 is thus

SH1 =
1
3R

2(x1) +
1
6 [R

2(x1, x2)−R2(x2)] +
1
6 [R

2(x1, x3)−R2(x3)]

+1
3 [R

2(x1, x2, x3)−R2(x2, x3)]
(2)

To formalize for a general set K of k explantory variables, K = x1, x2, ..., xk, and following the

notation of Chantreuil and Trannoy (1999), the Shapley value SHj of explanatory variable xj

to the R2 can be described as

SHj =
∑
S⊆K
j∈S

(s− 1)! (k − s)!

k!

[
R2 (S)−R2 (S\{j})

]
(3)

where R2(S) is the R2 of a regression model with all explanatory variables in a set S ⊆ K.

Dividing the Shapley values SHj , j = 1, ...,K, by the R2 of the complete model allows for an

easily interpretable percentage figure indicating the relative contribution of explanatory variables

to the overall explanatory power of the model.

But when is an explanatory variable ”important” for model, as judged by its Shapley value?

Lipovetsky and Conklin (2001) offer a formal approach of assessing ”importance” for Shapley

values of explanatory variables in regression analysis by deriving a lower threshold for Shapley

values. Variables whose Shapley values surpasses this Lipovetsky threshold are then considered

”important” to the modelling of the dependent variable.

Let N denote the sample size, K the number of considered explanatory variables, α the

desired level of significance, and tγ/2 the two-tailed t-statistic corresponding to γ. Then, the

Lipovetsky lower threshold δ2 for Shapley values can be expressed as follows:

δ2 = 1−R2

(N−K−1)R2 t
2
γ/2

with γ = 1− (1− α)
1
K

(4)

The intuition behind the expression for γ derives from the assumption of independence and

equal importance of all explanatory variables in the regression model, assigning probability

1− γ to each of them such that the joint probability 1− α can be expressed as the product of
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all observations’ probabilities, (1 − γ)K . While the Lipovetsky threshold provides an easy tool

to asssess the ”significance” of a Shapley value, it also suffers from some structural drawbacks.

Most importantly, it does not have an upper bound of 1. When the sample size N is small and the

R2 is low, the expression in Equation 4 may yield a threshold above 100%, which would declare

all explanatory variables to be redundant by construction. Even when the Lipovetsky threshold

does not exceed 100%, it may lead to inappropriately high threshold values in small samples, as

a small divisor of (N-K-1) inflates the threshold value. To grasp whether the Lipovetsky value

is inflated, one may compare it to the theoretical Shapley value of SHj =
1
K , which results in a

model of K explanatory variables where all explanatory variables are of equal importance and

perfectly uncorrelated.

One significant advantage of the Shapley approach over other decomposition techniques is

the Shapley value’s ability to deal with interactions. When the regression model contains inter-

action terms, it may be unclear how the additional explanatory power of the interaction should

be divided among the interacted variables. The Shapley value always divides this additional

contribution symmetrically among the components. Take, for example, the following linear

regression with k = 2 and one interaction:

y = α+ β1x̄1 + β2x̄2 + β3x̄1x̄2 + ϵ (5)

where x̄1 and x̄2 are the demeaned transformations of x1 and x2, respectively. Then, following

the standard Shapley approach, eliminating x1 from the regression equation involves eliminating

both x1 and x1x2. In this case,

SH1 =
1
2 [R

2(x̄1, x̄2, x̄1x̄2)−R2(x̄2)] +
1
2 [R

2(x̄1)]

SH2 =
1
2 [R

2(x̄1, x̄2, x̄1x̄2)−R2(x̄1)] +
1
2 [R

2(x̄2)]
(6)

In this fashion, the contribution of the interaction term is divided equally between x1 and x2, due

to the symmetry of the Shapley decomposition. Other approaches are, however, possible, and can

be advantageous in cases where there is a hierarchy between interacted variables. The Owen

decomposition (Shorrocks, 2013) and the Nested Shapley decomposition (Sastre & Trannoy,

2002) offer two such approaches and will be presented below.

4.2 Owen decomposition

For simplicity, this section begins with a simple example of a a hierarchical model with three

variables, K = {x1, x2, x3}, which can be partitioned into a set of two primary factors, P =

{S1, S2}. For illustration, let x1 and x2 constitute the first primary factor, S1 = {x1, x2}, and
x3 constitute the second primary factor, S2 = {x3}. The decomposition of the R2 into the two

primary factors then simply follows the Shapley approach described above, but using just two

factors.
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SHS1 = 1
2R

2(S1) +
1
2 [R

2(S1, S2)−R2(S2)]

= 1
2R

2(x1, x2) +
1
2 [R

2(x1, x2, x3)−R2(x3)]

SHS2 = 1
2R

2(S2) +
1
2 [R

2(S1, S2)−R2(S1)]

= 1
2R

2(x3) +
1
2 [R

2(x1, x2, x3)−R2(x1, x2)]

(7)

Note that the contribution of primary factor S2 differs from the contribution of x3 in a non-

hierarchical model. Next, the primary factors are decomposed into the contribution of secondary

factors. It is in this second step where the Owen approach and the Nested Shapley approach

differ: the Owen decomposition uses both primary and secondary factors, whereas the Nested

Shapley decomposition only uses secondary factors. The merit of these two procedures, rather

than a simple Shapley decomposition into secondary factors only, is that the decomposition is

aggregation-consistent. Aggregation consistency describes the property of the sum of contribu-

tions of the secondary factors to perfectly add up to the contribution of their primary factor.

This does not necessarily hold for the regular Shapley decomposition, and therefore complicates

the assessment of the importance of variable groups when using the regular Shapley decompo-

sition. Note, however, that the sum of regular Shapley values may equal the value assigned to

the primary factor if the secondary factors are uncorrelated.

For the above-mentioned example with three variables x1, x2, and x3, partitioned into two

sets S1 = {x1, x2} and S2 = {x3}, the Owen decomposition yields the following Shapley values

for the secondary factors x1 and x2.

OW1 = 1
4R

2(x1) +
1
4 [R

2(x1, x3)−R2(x3)] +
1
4 [R

2(x1, x2)−R2(x2)]+
1
4 [R

2(x1, x2, x3)−R2(x2, x3)]

OW2 = 1
4R

2(x2) +
1
4 [R

2(x2, x3)−R2(x3)] +
1
4 [R

2(x1, x2)−R2(x1)]+
1
4 [R

2(x1, x2, x3)−R2(x1, x3)]

(8)

Note that this expression is very similar to the Shapley decomposition in Equation 2, but that

the respective weights of each difference vary. This is to ensure aggregation-consistency of the

Owen decomposition, which does not hold for the expression in Equation 3. Generalizing the

notation and following Chantreuil and Trannoy (1999), let P = {S1, S2, ..., Sm} be a partition

of K = {x1, x2, ..., xk}. Each set Sj ∈ P contains sj secondary factors. Then the Owen R2

decomposition for each secondary factor xj ∈ Sl can be expressed as

OWj =
∑
C⊆P
Sl /∈C

∑
S∈Sl
j /∈S

c!(m− c− 1)!s!(sl − s− 1)!

m!s!
[R2(C ∪ S ∪ {j})−R2(C ∪ S)] (9)

where c, sl, s, and m denote the cardinality of C, Sl, S, and P , respectively.
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4.3 Nested Shapley decomposition

As mentioned above, the Nested Shapley decomposition and the Owen decomposition do not

differ in the decomposition of primary factors, but in allocating the contribution of the primary

factors to the secondary factors. Specifically, the Owen decomposition uses both primary and

secondary factors in this second step, while the Nested Shapley decomposition only uses sec-

ondary factors. Using a hierarchical three-variable model with primary factors S1 = {x1, x2}
and S2 = {x3} for illustration, the Nested Shapley approach yields the following decompositions:

NSH1 = 1
2R

2(x1) +
1
4 [R

2(x1, x2, x3)−R2(x3)−R2(x2)]+
1
4 [R

2(x1, x2)−R2(x2)]

NSH2 = 1
2R

2(x2) +
1
4 [R

2(x1, x2, x3)−R2(x3)−R2(x1)]+
1
4 [R

2(x1, x2)−R2(x1)]

(10)

Note that the main difference between the Owen decomposition in Equation 8 and the Nested

Shapley decomposition in Equation 10 concerns the elimination of the variable of interest from

the full model. While the Owen decomposition simply treats the other primary factor as a

secondary one and subtracts the model containing both primary and secondary factors, the

Nested Shapley decomposition does not allow for such a mixture of primary and secondary

factors after elimination of the variable of interest. Specifically, when eliminating x1 from the

model, the Owen decomposition evaluates the difference to R2(x2, x3) while the Nested Shapley

decomposition considers the difference to R2(x2) +R2(x3). Generalizing the notation, let xj be

a secondary factor belonging to some primary factor Sl and let sl denote the dimension of Sl.

Let NSHSl
be the Shapley value belonging to the primary factor Sl as derived above. Then,

the Nested Shapley value of xj can be described as

NSHj =
∑
S⊆Sl
j∈S

(s− 1)! (sl − s)!

sl!

[
R2 (S)−R2 (S\{j})

]
+

1

sl

[
NSHSl

−R2 (Sl)
]

(11)

Note that this expression of the Nested Shapley closely ressembles the regular, non-hierarchical

Shapley value expression in Equation 3. In colloquial terms, the Nested Shapley approach

computes the regular Shapley value of Equation 3 considering only variables in the same group

of secondary factors, and adds the weighted difference of the primary factor value and the

primary factor R2 to ensure aggregation consistency. The computation of Nested Shapley values

can therefore be described as a two-step procedure: first, the values for primary factors are

computed, using all possible combinations of primary factors. Second, the values for secondary

factors are computed using all possible combinations of secondary factors within the same group.

The Nested Shapley approach requires much less computations than the Owen approach.

Additionally, Sastre and Trannoy (2002) raise concerns about the interpretation of mixed subsets

of primary and secondary factors, which may be doubtful in certain economic contexts. At

the same time, the Nested Shapley approach has the important disadvantage of being able to
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produce negative values. This complicates interpretation, as it seems illogical to state that an

explanatory variable ”takes away” explanatory power. The application on both approaches in

this study therefore aims to shed light on their relative performance in practice. An important

drawback of both approaches, however, is the lack of a ”critical value” for Shapley values, like

the Lipovetsky threshold in a simple non-hierarchical model. Since both the number of primary

and secondary factors can be considered as the number of explanatory variables K, different

Lipovetsky threshold values would arise. This may lead to different conclusions for individual

variables and the variable group they belong to.

5 Empirical strategy

This paper aims to study the relative contributions of economic and political factors to carbon

emission growth through a Shapley-based decomposition of the R2. To ensure sound model

specifications, the stationarity of all variables in the balanced panel is tested using a panel unit

root test as proposed by Levin et al. (2002). This test is particularly useful for cross-country

econometric studies using moderately sized panels and is therefore considered appropriate for the

setting of this study. The results of these tests can be found in Table C.1 in the Appendix. Using

growth rates, rather than levels, removes non-stationarity from the variables capturing carbon

emissions, electric power consumption, and human capital. For all other variables, including

GDP growth, the Levin-Lin-Chu test does not indicate the existence of a unit root.

The first part of the analysis focuses on two general models, which gives equal weight to

all considered variables. The smaller model only uses the aggregated KOF globalization index

and the polity2 index, while the larger model uses the KOF sub-indices and the democracy

dummies constructed from the polity2 index. These general models will be considered for both

the balanced and unbalanced sample.

Given the use of a global panel, an important consideration in standard regression analysis

would be to use two-way fixed effects to account for non-time-varying differences of countries

and period-specific effects. However, simply including 20 year-specific or 115 country-specific

fixed effects would increase the number of regressions’ R2 that need to be calculated from 211 =

2,048 in the larger model to 231 = 2.147× 109 or even 2126 = 8.507× 1037 calculations. Clearly,

including fixed effects is thus not feasible using standard computing tools, which usually have a

limited memory space of 231− 1. A grouping of variables may however provide a remedy to this

problem and will further be elaborated on below.

The second part of the analysis investigates heterogeneity in Shapley values across time

and country groups. To evaluate changes in importance of variables across time, year-by-year

analyses will be conducted. While no time-varying unobserved variables risk to flaw the analysis

in this approach, using yearly subsamples significantly reduces the sample size. To find middle

grounds in this trade-off, the panel will be sampled using a moving window approach. A window

size of 3 years is chosen to ensure a sufficiently large number of observations per subsample
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while allowing year-specific conditions to influence the results. The robustness of these results is

further verified by analysing non-overlapping 5-year windows. Comparing Shapley values across

these windows will shed light on possible changes over time in the relative importance of various

factors of carbon emissions.

Next to changes across time, there may be substantial differences in the relative importances

of explanatory variables in different country groups. For example, electric power consumption

growth is less likely to contribute to carbon emissions in a country that derives a large share

of its electricity from renewable sources. Moreover, GDP growth is more likely to contribute to

carbon emissions in countries with a large secondary sector. Two approaches are considered to

deal with these potential heterogeneities. First, following the methodology of Sharma (2011),

the set of countries will be split into three groups according to income classification by the World

Bank. Upper middle income countries and lower middle income countries are hereby considered

as one group. The second approach does not split the sample but adds interaction terms to the

model. In particular, interactions between GDP growth and industry share, as well as between

democratic status dummies and electric power consumption.

Finally, the contribution of different variable groups will be studied, using the Nested Shap-

ley and Owen approach. Variables will be split in economic and political factors (see Table 1).

Moreover, sub-indices of globalization and dummies indicating democratic status will be con-

sidered as separate groups. To improve overall model fit, two-way fixed effect will be added to

the general model and considered as one group. In all hierarchical models, the Nested Shapley

and Owen decomposition values will be compared. Next to painting a more complete picture of

the relative contribution of different variables, this comparison will also help to illuminate the

respective merits of the two decomposition approaches.

6 Results

Table 2 presents the results of a simple Shapley decomposition using two sets of explanatory

models and the two subsamples described in Section 3. It is worth noting first that the total R2 of

the models is relatively low: only around 20% of the variance in carbon emissions in the balanced

panel can be explained by the employed independent variables. For the unbalanced panel, this

number even falls to approximately 15%. The lower explanatory power in the unbalanced panel

is, however, no surprise when considering that this sample spans a time period from 1970 to

2018 and the model does not contain country- or time-specific intercepts. Moreover, while a

low R2 indicates poor model fit and should therefore raise some concerns with regards to the

selection of explanatory variables, a Shapley value decomposition is a suitable approach to such

models (Israeli, 2007).

Overall, the results in Table 2 suggest that economic variables explain a much larger share

of the cross-country and cross-time variance in carbon emission growth than political variables.

In the balanced panel, electric power consumption shows the largest Shapley value, with 46.46%
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Table 2. Shapley values (in percent) of economic and political variables in non-hierarchical model
of carbon emission.

balanced panel unbalanced panel
(1) (2) (1) (2)

Economic
GDP* 29.31 27.60 54.30 53.39
population* 7.50 6.60 8.52 7.36
electric power consumption* 46.46 43.47 27.83 27.03
industry share 0.57 0.46 0.40 0.34
human capital 0.69 0.48 0.55 0.38

Political
KOF Globalization index 13.47 6.36
Economic glob. 4.70 2.22
Social glob. 6.59 3.67
Political glob. 3.61 1.78
Polity2 1.99 2.04
Full democracy 2.84 2.00
Partial democracy 2.86 0.94
Autocracy 0.78 0.88

total R2 0.202 0.205 0.148 0.149
observations 2,300 2,300 4,343 4,343
Lipovetsky threshold 1.24 1.36 0.96 1.06

Note. Variables marked with an asterisk (*) represent growth rates. Percentages may not add up to 100% due
to rounding. Lipovetsky threshold values are based on a significance level of α = 0.05, resulting in γ = 0.0073 for
the small model and γ = 0.0047 for the large model.

in the small model and 43.47% in the large model. The second largest contribution is made

by GDP growth, which accounts for 29.31% (27.6%) of the R2 in the small (large) model. For

the unbalanced panel, this ranking reverses, with GDP growth and electric power consumption

growth contributing around 54% and 27%, respectively. Other variables show comparatively

low Shapley values. The contribution of industry share and human capital growth are close

to negligible and consistently fall below the Lipovetsky threshold, which fluctuates around 1%,

depending on the sample size and number of regressors. With contributions between 6% and

13%, depending on the size of the model, the KOF Globalization Index and population growth

show Shapley values well above the threshold and can therefore be considered to be of significant

importance to the model of carbon emission growth. Notably, social globalization has the largest

contribution among the globalization sub-indices for both samples.

Turning towards the yearly analysis, the low number of observations in each yearly subsample

needs to be emphasized. Large differences between estimation results of different years are

therefore to be expected. Figure 6.1 plots the Shapley values in percentages for each yearly

subsample of the balanced panel dataset. The corresponding values can be found in Table C.3
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in the Appendix. There are great fluctuations in the Shapley values of all variables, and no

variable seems to follow a clear trend across the considered time period. With the exception

of 2005 and 2014, the largest share of explained variance is always allocated to electric power

consumption growth or GDP growth. The share of GDP growth mainly fluctuates between

20% and 40%, while values for electric power consumption growth are highly volatile across

years and range from 5.03% in 1996 to 80.22% in 1995. The contributions of human capital

growth, industry share, and polity2 are consistently low and mainly fluctuate between 0% and

10%. This further confirms the previous finding of relatively low importance of these variables in

explaining carbon emissions. Finally, Shapley values for globalization generally seem to increase

in the second half of the considered time period, with the highest five values of this variable

being reached after 2004. However, the high volatility of Shapley values for globalization in this

time period does not warrant a definite conclusion here.

Due to the small sample size of 115 observations per yearly subsample and a low R2 in most

of the samples, the Lipovetsky threshold for importance of regressors is inflated. Assuming

equal importance of all regressors, a Lipovetsky threshold of approximately 100% divided by the

number of regressors seems reasonable. With 7 regressors, this would correspond to a threshold

of around 14%. However, as Table C.3 indicates, the Lipovetsky threshold exceeds this value

in 14 out of the 20 yearly subsamples, and even surpasses the logical upper bound of 100% in

2002. Using Lipovetsky thresholds in the yearly analysis to make binary judgements on the

importance of explanatory variables thus seems inappropriate.

Figure 6.1. Shapley values (in percent) in non-hierarchical model for yearly subsamples
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Figure 6.2. Shapley values (in percent) in non-hierarchical model for 3-year moving window

subsamples

As stated above, the yearly analysis suffers from small sample problems. To alleviate this

issue, a moving-window approach is considered. Figure 6.2 shows the Shapley values in percent-

ages for a 3-year moving window. Values are plotted on the left edge of the window. That is,

the value shown for year j is calculated using a subsample of the years j through j + 2. As the

entire sample only covers years up until 2014, the values for 2013 and 2014 represent values of a

2-year and 1-year subsample, respectively. In comparison with Figure 6.1, the values are much

smoother, and some broad trends can be observed. Confirming earlier indications, there seems

to be an increase in the relative importance of globalization over time, with Shapley values

showing an upward trend after 2005. Again, human capital growth, industry share, and the

polity2 index are consistently found to be of low importance. With two exceptions (for human

capital growth in 1998 and 1999), their Shapley values stay well below 5% for all years. With

Lipovetsky threshold values varying between 3% and 11%, human capital growth and industry

share can reasonably be called unimportant to the model of carbon emission growth. GDP

growth does not seem to follow a trend, but consistently exceeds the Lipovetsky threshold and

reaches particularly high Shapley values between 2006 and 2010. Finally, the importance of elec-

tric power consumption appears to be following a slight downward trend, falling from Shapley

values up to 60% for the 1995-1997 time window to around 16% in the most recent considered

windows.

These results are further corroborated by Table 3, which presents the Shapley values for the
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Table 3. Non-hierarchical Shapley values (in percent) of economic and political variables in 5-
year subsamples

Small model Large model
years 1995-99 2000-04 2005-10 2010-14 1995-99 2000-04 2005-10 2010-14

Economic
GDP* 15.85 38.44 44.07 38.23 15.48 34.28 41.83 34.22
population* 12.03 7.21 5.38 9.17 10.15 6.03 5.14 7.34
Electric power* 60.40 45.40 28.48 26.09 57.09 41.10 26.53 22.91
Industry share 0.76 0.56 1.31 0.81 0.50 0.61 1.20 0.67
Human capital* 0.56 2.50 0.59 1.30 0.50 2.05 0.54 0.80

Political
KOF Global. 9.37 4.27 14.73 22.03
Economic global. 3.13 1.73 5.35 6.70
Social. global. 5.48 2.59 7.55 13.29
Political global. 1.86 1.78 5.52 5.04
Polity2 1.02 1.62 5.43 2.38
Full democracy 1.83 3.50 3.43 4.33
Part. democracy 3.06 5.10 0.86 3.79
autocracy 0.91 1.22 2.05 0.91

total R2 0.229 0.159 0.238 0.299 0.236 0.167 0.239 0.302
observations 575 575 575 575 575 575 575 575
Lipovetsky threshold 4.30 6.77 4.10 3.00 4.64 7.16 4.56 3.31

Note. Variables marked with an asterisk (*) represent growth rates. Percentages may not add up to 100% due
to rounding. Lipovetsky threshold values are based on a significance level of α = 0.05, resulting in γ = 0.0073 for
the small model and γ = 0.0047 for the large model.

small and large model in 4 non-overlapping 5-year windows of the balanced panel. Consider-

ing the subindices of globalization and democratic status dummies, rather than the aggregate

variables, also sheds light on their changes in their relative importance over time. For all four

subsamples, social globalization is allocated the largest share of explanatory power among the

three subindices. However, there does not seem to be a clear ordering of economic and po-

litical globalization in terms of explanatory power. For the democratic status dummies, the

autocracy intercept has the lowest explanatory power in all subsamples, but there are no clear

differences between the full and partial democracy intercept. The dissection of the sample in 4

subsamples also highlights the previous finding of a downward trend in the explanatory power of

electric power consumption growth. Meanwhile, the picture is less clear for a potential upward

movement of globalization.

The relative importance of political and economic variables in explaining carbon emission

growth is likely to differ not only across time periods, but also across country groups. While 20

observations per country do not suffice for a country-by-country analysis, it is possible to split

the sample into subgroups of countries with similar characteristics. Following the methodology

of Sharma (2011), countries are grouped by income level, which serves as a proxy for a wider

array of socioeconomic and political characteristics. Analysing Shapley values in the three
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Table 4. Non-hierarchical Shapley values (in percent) of economic and political variables in
country subsamples

Model High income Middle income Low income All with
countries countries countries interactions

(1) (2) (3) (4)

Economic
GDP* 21.51 31.26 27.39 26.89
population* 4.55 9.25 8.65 6.40
electric power consumption* 52.60 45.09 44.37 42.97
industry share 4.13 2.54 0.33 0.90
human capital 0.76 0.19 0.69 0.45

Political
Economic glob. 1.65 2.18 3.60 4.35
Social glob. 3.89 4.17 2.40 6.06
Political glob. 5.83 1.52 0.48 3.29
Full democracy 2.32 1.11 - 3.24
Partial democracy 0.14 2.02 8.81 4.10
Autocracy 2.62 0.68 3.28 1.34

total R2 0.332 0.162 0.200 0.219
observations 920 1,220 160 2,300
Lipovetsky threshold 1.78 3.46 22.35 1.25
interactions ✓

Note. Variables marked with an asterisk (*) represent growth rates. Percentages may not add up to 100% due
to rounding. A dummy for full democracy is omitted in the sample of low income countries (column (3)) due
to the absence of full democracies in this subsample. Column (4) uses the entire set of countries and includes
the following four interaction terms: GDP growth * industry share, electric power consumption * full democracy,
electric power consumption * partial democracy, electric power consumption * autocracy. Interacted variables in
column (4) are demeaned.

subsamples of countries may therefore also improve the overall R2, since unobservables may

differ less between countries in the same income group.

The results of the country group analyses can be found in columns (1) through (3) of Table 4.

Analysing the contribution of the considered variables per group of countries reveals substantial

differences between high, middle, and low income countries. In all country subsamples, GDP

growth remains well above the Lipovetsky threshold but greatly loses in importance, which is

likely to be due to the greater homogeneity in GDP growth rates within the country groups.

Electric power consumption growth seems to have larger explanatory power in high income

countries than in the other country groups, whereas population growth is a much better predictor

in middle income countries than in other groups. Another interesting result is that while social

globalization contributes the most to the R2 in the global sample and in the subsample of middle

income countries, it is political and economic globalization that respectively contribute the most

in high and low income countries. Note, however, that with 22.35%, the Lipovetsky value in the
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sample of low income countries by far exceeds the equalized importance value of 1/K = 10%.

It is therefore unclear which variables in the low income countries subsample should be labelled

as ”important” or ”unimportant” in explaining carbon emission growth.

Column (4) of Table 4 shows the Shapley values of the large model in the strongly balanced

sample, but with the additional inclusion of four interaction terms. Interactions are between

GDP growth and industry share, as well as between all democratic status dummies and electric

power consumption growth. Since the additional explanatory power gained from the inclusion

of an interaction term is divided over the interacted variables, no separate Shapley values for

interaction terms are reported. However, regression coefficients of the model with interactions

can be found in column (5) of Table C.2 in the Appendix.

Comparing the interacted model with the regular model in column (2) of Table 2, the major-

ity of variables seems unaffected by the inclusion of interaction terms. The Shapley value of GDP

growth slightly reduces but remains high, while the value industry share slightly increases from

0.46% to 0.9%, thus remaining below the Lipovetsky threshold of 1.25%. Including an interac-

tion between industry share and GDP growth therefore did not increase the explanatory power

of industry share substantially, and the variable remains unimportant to the model of carbon

emission growth. By contrast, including interactions between democratic status dummies and

electric power consumption growth raises the Shapley values of all democratic status dummies

and causes the autocracy dummy to exceed the Lipovetsky threshold. Moreover, while full and

partial democracy seemed to be of comparable importance in the model without interactions,

the inclusion of interaction terms results in a higher gain in Shapley values for the partial democ-

racy dummy than for the full democracy dummy. This finding is also reflected in column (5)

of Table C.2, which presents the regression coefficients of the model with interactions. Though

both significant, the coefficient of the interaction with partial democracy is 30% higher than the

coefficient of the interaction with full democracy. This implies that an increase in electric power

consumption growth rates raises carbon emissions much more in partial democracies than in full

democracies. This may be a sign of higher carbon intensity of electricity production in partial

democracies.

Turning towards model results of a grouped analysis, Table 5 presents the Shapley values

of the hierarchical models using the Nested Shapley and Owen approach. Unlike the regular

Shapley approach used in above, the Nested Shapley and Owen decompositions allow for aggre-

gation consistency, meaning that the sum of values assigned to factors of one group equals the

value assigned to the entire group. Here, the two decomposition approaches were considered for

three divisions of variables. In Model (1), all economic and political variables were respectively

grouped together. In Model (2), political variables were further split into democracy variables

and globalization variables. In Model (3), all economic variables were additionally considered

as their own subgroup.

The results in columns 1 through 6 in Table 5 illustrate the properties of the Nested Shapley

and Owen decomposition as described in Sections 4.2 and 4.3. Both approaches assign equal
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values to primary factors (i.e. groups of variables), but typically lead to differing results for

secondary factors (i.e. individual variables). In the present case, these differences between values

of secondary factors are particularly apparent, due to the Nested Shapley approach’s ability of

producing negative values. The autocracy dummy and the variables capturing industry share and

human capital growth are all allocated a negative value by the Nested Shapley decomposition,

ranging from -0.77% for autocracy in the first model to -2.08% for industry share in the second

model. The Owen approach, on the other hand, only produces positive values by construction.

Owen values for industry share, human capital growth, and autocracy, are therefore positive but

very small in magnitude, ranging from 0.53% to 1.05%.

Due to aggregation consistency, the presence of variables with negative Nested Shapley val-

ues in a group requires an inflation of the other variables in the same group. Comparing Nested

Shapley and Owen values in groups where the Nested Shapley decomposition resulted in a few

negative values, it is therefore visible that the positive Nested Shapley values are larger in magni-

tude than the Owen values. In Models (1) and (2), all economic variables are grouped together,

and the Nested Shapley approach produces negative values for industry share and human capital

growth, resulting in a combined ”negative contribution” to the group’s explanatory power of

-3.09% and -3.83%, respectively. This negative contribution is offset by a larger contribution of

GDP growth and electric power consumption growth, whose values are approximately 1 and 4

percentage points larger than under the Owen decomposition. In the subgroup of democracy

variables, the negative Nested Shapley values for the autocracy dummy mainly benefit the full

democracy dummy, whose contribution is approximately 2 percentage points higher than under

the Owen approach. Finally, in the subgroup of globalization variables, the Nested Shapley

approach reduces the contribution of economic and political globalization in models (2) and (3),

and therefore inflates the contribution of social globalization. Compared to the Owen approach,

the Nested Shapley values of social globalization are approximately 2 percentage points higher.

Finally, the grouped analysis allows for an incorporation of two-way fixed effects in the model.

While the calculation of secondary factor Shapley values was computationally not possible,

with the number of possible permutations 2146 far exceeding the maximum memory of 231 − 1

of the employed statistical software, a convenient feature of the Owen and Nested Shapley

decomposition could be used. Retrieving the values of primary factors is relatively efficient

and by construction, the value of a primary factor equals the value of its secondary factor if it

consists of only one secondary factor. Columns 7 through 9 of Table 5 present the results of

a grouped analysis including an additional group capturing all country- and year-specific fixed

effects. Including these fixed effects clearly reduces the importance of economic and political

variables. Their respective Shapley values drop by approximately 27 and 8 percentage points,

meaning that fixed effects alone are responsible for more than a third of the explanatory power

of the model. Increasing the number of primary factors by decomposing the group of economic

and political variables further shows which specific variables lose importance upon the inclusion

of fixed effects. With the exception of the group of democratic status variables, industry share,
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Table 5. Hierarchical Shapley values (in percent) of economic and political variables

Nested Shapley Owen Nested Shapley/Owen
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Economic variables 80.49 78.63 80.49 78.63 53.21 52.45
GDP* 28.80 28.43 28.31 27.63 27.27 28.31 20.48
population* 6.95 6.58 7.26 7.22 6.55 7.26 4.37
Electric power* 47.83 47.45 45.02 44.54 43.84 45.02 30.95
Industry share -1.71 -2.08 0.52 0.54 0.53 0.52 0.27
Human capital* -1.38 -1.75 0.67 0.56 0.43 0.67 0.46

Political variables 19.51 19.51 11.21
Globalization variables 14.27 12.18 14.27 12.18 7.77 6.78

Economic globalization 3.63 2.87 2.18 4.00 4.16 3.85
Social globalization 8.52 8.59 7.89 6.13 6.50 5.47
Political globalization 4.00 2.81 2.11 3.48 3.61 2.87

Democracy variables 7.09 6.05 7.09 6.05 5.17 4.56
Full democracy 2.21 5.06 4.71 2.45 3.11 2.49
Part. democracy 1.93 2.88 2.53 2.66 2.94 2.71
autocracy -0.77 -0.84 -1.19 0.81 1.05 0.86

Two-way fixed effects 35.57 34.61 32.12

number of groups 2 3 7 2 3 7 3 4 8
variables 11 11 11 11 11 11 146 146 146
fixed effects ✓ ✓ ✓
computation time (in min.) 0.005 0.004 0.036 48.25 7.987 342.7

Note. Variables marked with an asterisk (*) represent growth rates. The hierarchical structure of variables is
indicated by indentation in the first column. In model (3), all variables of the group ”Economic variables” are
treated as a group consisting of one variable. Computation times represent average computation times of 10 runs.

and human capital growth, all variable groups considerably lose in importance. When comparing

the 7-group model in columns (3) and (6) with the 8-group model in column (9), electric power

consumption experiences the largest absolute drop in Shapley value, falling from 45.02% to

30.95%. Not considering industry share and human capital growth, whose contributions are

well below 1% in all models, the group of globalization variables shows the largest relative

drop in Shapley value with around 63%. GDP growth and electric power consumption growth

experience a drop of around 30%.

Including country- and year-specific fixed effects highlights the benefits of a grouped analysis,

which allows for the inclusion of a large number of additional explanatory variables. Even though

the group of two-way fixed effects largely reduces the relative importance of other variable groups,

it is reassuring that the ordering of variables in terms of their importance remains unaffected.

7 Discussion

Overall, the findings presented in the previous section give a clear account of the relative con-

tribution of economic and political factors to national carbon emissions. Additionally, these
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findings help to evaluate the performance of different decomposition techniques in practice. In

the following, the practical implications of the results will be discussed.

7.1 The importance of economic and political factors in predicting carbon emis-

sions

In the quest for lowering carbon emissions, it is important to understand what the main drivers

of national CO2 growth rates are and how these have developed over time. The analysis in this

paper has resulted in four main findings.

The first main finding is that economic variables are much more predictive of carbon emission

growth rates than political variables. In grouped models, economic variables account for around

80% of the explanatory power of the model, with electric power consumption growth and GDP

growth alone accounting for approximately 70%. While in the balanced panel datasets spanning

the years 1995 to 2014, electric power consumption growth clearly had a larger contribution than

GDP growth, the reverse is true for the dataset including observations from the period 1970 to

2018. It is therefore tempting to conclude that the importance of electric power consumption

growth in explaining carbon emission growth must have increased. However, these differences

can also partially be explained by the structural differences of the two samples. As the analysis

of income groups of countries reveals, electric power consumption bears more explanatory power

in high income countries. A comparison of income in the two panels results in average GDP

in mio. current US$ amounting to 422,546.3 in the balanced panel and to 289,738.0 in the

unbalanced panel. The large role of electric power consumption growth in the balanced panel

is therefore not necessarily due to differing time frames, but also due to differing underlying

characteristics of the units in the sample.

Additionally, an analysis of three-year subsets of the balanced panel data reveals a decline in

importance of electric power consumption over time. From 1995 to 2014, the share of explanatory

power of electric power consumption growth declined from well above 40% to less than 10%. A

possible explanation for this observation is the decline of fossil fuels and the growing importance

of renewable energies in electric power generation. In 2018, the combustion of fossil fuels was

responsible for about 60 % of global greenhouse gas emissions (IEA 2020). However, the share

of wind, solar, and other renewable energy sources in world electricity generation has risen from

18.3% in 1995 to 23% in 2015 (IEA 2021), indicating a clear trend in reducing the carbon

intensity of electricity. As a result, changes in electric power consumption have become less

susceptible to affect national carbon emissions.

Next to the prevalence of economic variables and the declining importance of electric power

consumption growth, the increasing importance of globalization in explaining carbon emission

growth constitutes an important finding. Even though the Shapley values for globalization seem

to have plummeted in the years of the great financial crisis, they seem to have risen sharply

after 2009, reaching a share of more than 20% for the 5-year subsample covering the period from

23



2010 to 2014. In particular, the importance of social globalization, measuring information flows,

cultural proximity, and personal contacts, seem to have risen over the period covered by the

sample. This result corroborates previous findings of Kammerlander and Schulze (2021), who

found that ”the mobility of ideas rather than the mobility of goods and investment matters for

environmental performance”.

An interesting side result is the reduced importance of globalization in explaining carbon

emissions between 2005 and 2009, as portrayed in Figure 6.2. This temporary decline in im-

portance seems to be accompanied by an increase in importance in GDP growth. Considering

the large impact of the Great Financial Crisis in this time period, which caused both GDP

growth and carbon emissions to plummet (Peters et al., 2012), it seems likely that the increase

in explanatory power of GDP growth reflects recession-related effects. But why is it globaliza-

tion then that is losing explanatory power? One possible explanation is that while globalization

generally has a negative effect on carbon emissions, as shown in Table 2 in the Appendix, highly

globalized countries’ economies and thus emissions were more negatively affected by the financial

crisis. Two opposing effects of globalization on carbon emissions may thus be at work during

global financial crises, reducing the overall explanatory power of the globalization variables.

The final main finding from the grouped analysis is that even though the importance of

different economic and political variables may be changing over time, GDP growth and electric

power consumption remain the main drivers of emission growth in historical data sets. The Kaya

identity thus remains an appropriate model of carbon emission growth, but may need adjustment

for political factors in more recent data sets. Specifically, factors measuring globalization and

ideational spillovers may help to inform models of carbon emissions in a world that is increasingly

marked by intergovernmental efforts to fight global warming.

7.2 Shapley value decomposition techniques

Next to topical implications for modelling carbon emission growth, this study bears some sci-

entific implications for the use of Shapley values in regression analysis. First, the utility of

Shapley values for evaluating the relative importance of explanatory variables in a regression

model was demonstrated. Even though a large number of explanatory variables was found to

be insignificant using OLS regression analysis, their relative contribution to the R2 of the model

could still amount to up to 9 %. Following the standard convention in regression analysis of

sequentially deleting insignificant variables from the model (”general-to-specific approach”) may

therefore lead to an important loss of information.

How can Shapley values then inform regression analysis and support variable selection?

This paper employed lower thresholds for Shapley values as presented by Lipovetsky and Con-

klin (2001), which provide a clear critical value for the Shapley value of explanatory variables.

However, two important considerations arise from this. First, there are cases where the Lipovet-

sky threshold may be inappropriate for judging the importance of explanatory variables. Most
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notably, the results in this paper have shown that the Lipovetsky threshold may yield inflated

values in small samples, and that application of the Lipovetsky threshold is ambiguous when a

hierarchical model of variables is employed. Second, even when the Lipovetsky threshold yields

reasonable values, should variables whose Shapley values fall below the threshold be deleted

from the model? As the Lipovetsky threshold classifies the explanatory variable according to

their percentage shares of the R2, which increase by construction as the number of variables

decreases, it is possible that a step-wise deletion of variables from the regression model results

in all variables being declared as ”unimportant”.

Moreover, this paper demonstrated the usefulness of grouped analysis in the presence of a

large number of variables. Since the number of possible elimination sequences grows exponen-

tially as the number of explanatory variables increases, including a full set of two-way fixed

effects is usually not computationally feasible. However, grouping fixed effects together and us-

ing the first step of the Owen and Nested Shapley decomposition allowed for the computation of

”fixed effects adjusted” Shapley values of other explanatory variables. To this end, explanatory

variables were considered as their own one-element group. The computation of secondary factor

Shapley values was, however, not computationally feasible, due to insufficient memory in the

employed statistical software.

When comparing the Owen and Nested Shapley approach, a striking result is the vast dif-

ference in computation time. While the Nested Shapley approach only requires the evaluation

of elimination sequences across groups or across variables within the same group, the Owen ap-

proach considers all possible elimination sequences across groups and individual variables. The

Nested Shapley decomposition therefore by far outperforms the Owen decomposition when the

number of variables and variable groups is large. Even though the Nested Shapley decomposition

has the structural weakness of possibly assigning negative values to explanatory variables, which

renders interpretation dubious, the negative values obtained in this study were rather small in

magnitude. Other values were thus only mildly inflated in comparison to the Owen decompo-

sition, and overall results did not seem to suffer from this structural weakness. The Nested

Shapley approach therefore seems to be preferential to the Owen approach when analysing the

contribution of explanatory variables to the R2 in a regression model.

8 Conclusion

This paper investigated the relative contributions of political and economic variables to the

overall R2 in a regression model of carbon emission growth. To this end, the R2 was allocated to

the explanatory variables using three Shapley-based decomposition approach. Next to a regular

Shapley decomposition of the R2 following Lipovetsky and Conklin (2001), explanatory variables

were grouped together and evaluated with the Owen approach (Shorrocks, 2013) or the Nested

Shapley approach (Chantreuil & Trannoy, 2011). Analyses were conducted using yearly data

from 1995 to 2014 in a global panel of 115 states.
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Overall, a much higher contribution of economic variables was found, ranging from 52% to

80% of the R2 depending on the inclusion of fixed effects. Political variables showed a contri-

bution of ranging from 11% to 20%. Looking at individual variables, GDP growth and electric

power consumption growth were found to be the main drivers of carbon emission growth. An

interesting result was that the group of variables measuring economic, social, and political global-

ization was the third-largest contributor, contributing between 12% and 14% of the explanatory

power of the model. Especially social globalization, which measures ideational spillovers and cul-

tural connectedness, had a surprisingly high importance in explaining cross-country variations

in carbon emissions.

Using Shapley-based decomposition of the R2 to judge the importance of variables, rather

than evaluating their individual significance level, bore some important advantages. Even though

a large number of variables were found to be insignificant using standard t-tests of coefficients,

their relative contribution as judged by the Shapley value still amounted to up to 9%. Eliminat-

ing these variables from the model, following a classic general-to-specific modelling approach,

would therefore imply a considerable loss of information. Shapley values should be considered

as important additional tool to judge a variable’s importance, and further theoretical research

is encouraged to develop a formal approach for combining t-statistics of regressors with their

Shapley values.

The comparative use of the Nested Shapley and Owen decomposition approaches highlighted

the superiority of the Nested Shapley approach. Even though this approach has the inconvenient

feature that it may assign negative contributions to individual variables, which leads to dubious

interpretations, its computational performance outperforms the Owen approach by far. This is

due the fact that in the Nested Shapley approach, the contribution to the R2 of an individual

variable is independent of the disaggregation of other variable groups. While the Owen approach

considers all possible elimination sequences across different variable groups, the Nested Shapley

approach does not mix subsets of individual variables and variable groups.

Due to the use of a global sample of 115 countries in the balanced panel and 119 countries in

the unbalanced panel, this study exhibits great external validity. In other words, it is likely that

the obtained Shapley values indeed represent global trends in variable contributions to carbon

emission growth. However, the great external validity comes at the expense of internal validity.

In all considered (sub-)samples and models, the overall R2 reached a value of 0.302 at most,

and usually fluctuated around 0.2. Re-estimating the model for subsamples of 5 years somewhat

increased the overall fit of the model, but still left a large share of variation in the dependent

variable unexplained. In an attempt to address this issue, Shapley values were studied separately

for high, middle, and low income countries. However, a focus on other important subsamples

may offer further insights and is therefore recommended for further research. Moreover, the

inclusion of additional economic variables may improve goodness of fit of the model, but comes

at the expense of much higher computation times for the Shapley values.

A second important limitation concerns the possibility of measurement errors. In particular,
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statistics on growth rates of national GDP growth, carbon emissions, electric power consumption,

and population may only be observed with a substantial error margin. While use of growth

rates cancels out constant measurement errors (like strategic over- or underreporting), it is

likely that in a sample covering 20 years, random measurement errors occur. Reassurance is,

however, offered by the fact that such measurement errors in the explanatory variables lead

to underestimation of the R2 (Meijer et al., 2021). This means that in the case of random

measurement errors in an explanatory variable, its Shapley value will be underestimated, as

including the variable with measurement error does not substantially raise the R2.

Finally, while measures of globalization and democratic status somewhat reflect the political

state of a country, they do not fully embody all political dimensions which may affect envi-

ronmental policy-making. For example, the prevalence of corruption and lobbying, political

stability, or the government’s political orientation may significantly affect companies’ ability to

pollute, but have not been included in the models of this paper due to data availability and

the requirement of a parsimonious model for computation efficiency. Further research is thus

recommended to derive a parsimonious model of carbon emission growth which incorporate a

larger array of political elements. Principal component analysis may be a useful tool for this

purpose, allowing to condense the information of a large number of political variables into a

smaller number of covariates.
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Appendix

A Data and sample selection

The data employed in this study is obtained from five open-source datasets: the Emission

Database for Global Atmospheric Research (Crippa et al., 2021), the World Bank Open Data,

the Penn World Tables (Feenstra et al., 2015), the Polity5 project (polity5), and the KOF

Globalization Index (Gygli et al., 2019). For all datasets, the latest version as of May 2022 was

used. Table 1 shows the original names of retrieved variables in the respective dataset. In a

first step, all observations before 1970 and after 2018 were deleted from the datasets. Then,

each dataset’s country codes were adjusted to enable merging. All datasets, with the exception

of the Polity5 dataset, were merged sequentially according to year and ISO 3166 A3 country

code. The ISO 3166 A3 is a country identifier code consisting of three capital letters. However,

changes in countries’ jurisdictions throughout the time frame of the data led to inconsistencies

in the identifiers. In the World Bank, Penn World Tables, and KOFGI Globalization Index

datasets, observations with ISO code ”SRB”, representing Serbia, were changed to ”SCG”, to

match observations from the EDGAR dataset. In the same way, observations with code ”ROU”

(representing Romania) and ”COD” (representing the Democratic Republic of Congo, formerly

Zaire) were changed to ”ROM” and ”ZAR” in the KOF dataset, respectively.

As the Polity5 dataset uses a different country coding system than ISO 3166, its observations

were merged to the aggregate dataset using the countries’ string name, rather than identifier

code. As expected, this led to a large number of mismatches, which were resolved manually.

Specifically, observations were recoded to have the same country name as the World Bank

dataset. Table 2 shows the matching of country names from the Polity5 dataset with the

World Bank dataset. All observations in the Polity5 dataset that could not be merged to the

other datasets in this way were dropped. These 243 (out of 7,520) observations either describe

jurisdictions that do not exist at present, such as Czechoslovakia, or that are not contained in

the World Bank’s dataset for political reasons, such as Taiwan.

After merging the datasets, the two considered subsamples are created. The first subsample

is a strongly balanced panel of 115 countries capturing the years 1995 to 2014, thus resulting in

2,300 observations. In a first step, all relevant final variables are calculated using the raw data

from the merged datasets. That is, growth rates of CO2 emissions, electric power consumption,

human capital, and population levels are calculated. Since data on electric power consumption

is retrieved as per capita variable, it is first multiplied with population levels. Then, to unify

the scale of variables, GDP growth and industry share are divided by 100, since these variables

were retrieved as percentages.

Second, missing values are addressed. Here, a strategic decision is made to infer values for

certain variables to avoid a large loss of observations. Specifically, missing values for GDP growth

are proxied by the self-derived growth rate in real GDP, which is provided in the Penn World
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Tables (variable name: rgdpna). Missing values for the year 1995 in electric power consumption

growth are replaced with their lead value. Missing values for industry share are replaced with

the country mean of the variable. The scope of all these alterations is relatively small when

comparing it to the size of the final panel. Of the final 2,300 observations, 16 observations

previously had a missing value in GDP growth, 2 in electric power consumption, and 77 in

industry share. These adjustments are therefore unlikely to result in bias, but help avoiding

a large loss of countries from the dataset in the subsequent step, which involves deleting ob-

servations with missing values. All observations missing GDP growth, the globalization index,

human capital, electric power consumption growth, or the Polity2 index, are deleted from the

sample. Then, all observations from years earlier than 1995 or after 2014 are deleted from the

sample. The resulting panel is verified for balanced, and countries with less than 20 observations

are deleted. These include Ethiopia, Serbia, Niger, Sudan, and Iraq. Finally, all non-essential

variables are deleted from the dataset. An overview of summary statistics with all essential

variables can be found in Table ??. The 115 countries contained in this panel are: Albania,

Algeria, Angola, Argentina, Armenia, Australia, Austria, Bahrain, Bangladesh, Belgium, Benin,

Bolivia, Botswana, Brazil, Bulgaria, Cambodia, Cameroon, Canada, Chile, China, Colombia,

Democratic Republic Congo, Republic of Congo, Costa Rica, Cote d’Ivoire, Croatia, Cyprus,

Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Fin-

land, France, Gabon, Germany, Ghana, Greece, Guatemala, Haiti, Honduras, Hungary, India,

Indonesia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyr-

gyz Republic, Latvia, Lithuania, Luxemburg, Malaysia, Mauritius, Mexico, Moldova, Mongolia,

Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Nige-

ria, North Korea, Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal,

Qatar, Romania, Russia, Saudi Arabia, Senegal, Singapore, Slovakia, Slovenia, South Africa,

Spain, Sri Lanka, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Trinidad

and Tobago, Tunisia, Turkey, Ukraine, United Arab Emirates, United Kingdom, United States,

Uruguay, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe.

The unbalanced panel contains 4,343 observations of 119 countries. These contain the pre-

viously listed 115 countries, and additionally Ethiopia, Iraq, Niger, Serbia, and Sudan. The

process to obtain this panel follows the same steps as the first (strongly balanced) panel, with

the exception of two steps: only missing values for industry share are proxied, and no observa-

tions of specific countries or years are deleted. Summary statistics of the resulting panel can be

found in Table 1.
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A.1. Overview of variable names in original and final data

variable original dataset original name final variable name

Carbon emissions* EDGAR CO2 excl short-cycle org C CO2gr
Electric power consumption WB eg use elec kh pc electric gr

Industry share WB nv ind totl zs industry share
Population WB sp pop totl pop gr

GDP per cap. WB ny gdp pcap cd gdp gr
Human capital PWT hc hc gr
Globalization KOFGI KOFGI KOFGI

Economic Globalization KOFGI KOFEcGI KOFEcGI
Social Globalization KOFGI KOFSoGI KOFSoGI

Political Globalization KOFGI KOFPoGI KOFPoGI
Polity2 Polity5 polity2 polity2

A.2. Matching of country names across datasets

Polity5 World Bank Polity5 World Bank

Congo-Kinshasa Congo, Dem Rep Swaziland Eswatini
Congo Brazzaville Congo, Rep Macedonia North Macedonia
Congo-Brazzaville Congo, Rep Cote D’Ivoire Cote d’Ivoire

Egypt Egypt, Arab Rep Ivory Coast Cote d’Ivoire
Kyrgyzstan Kyrgyz Republic UAE United Arab Emirates

United States* United States Yemen Yemen, Rep
Korea South Korea, Rep Laos Lao PDR
Venezuela Venezuela, RB Iran Iran, Islamic Rep

Timor Leste Timor-Leste Gambia Gambia, The
Syria Syrian Arab Republic Russia Russian Federation

Myanmar (Burma) Myanmar

A.3. Number of observations per year in unbalanced panel

Year Observations Year Observations Year Observations

1971 20 1987 92 2003 117
1972 78 1988 93 2004 117
1973 79 1989 94 2005 117
1974 79 1990 93 2006 117
1975 79 1991 96 2007 118
1976 81 1992 103 2008 118
1977 82 1993 104 2009 118
1978 82 1994 108 2010 119
1979 83 1995 108 2011 119
1980 83 1996 117 2012 118
1981 88 1997 117 2013 118
1982 89 1998 117 2014 118
1983 89 1999 117 2015 1
1984 89 2000 117 2016 1
1985 90 2001 118 2017 1
1986 92 2002 118 2018 1
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A.4. Summary statistics in raw data set

Variable Mean Std. Dev. Min Max Observations

CO2 emissions*† 5,331.7 11,919.5 < 0.1 204,334.4 9,847

Economic
GDP*† 9,493.6 17,681.7 20.0 189,432.4 8,634
electric power consumption*† 3,192.8 4,513.6 5.8 54,799.2 5,644
industry share 26.97 12.65 3.15 90.51 7,103
human capital 2.18 0.72 1.01 4.15 6,786

Political
Globalization 49.26 16.35 14.15 90.73 9,422
Economic glob. 49.10 16.41 10.59 94.96 9,091
Social glob. 49.74 21.41 4.75 91.99 9,703
Political glob. 49.16 24.90 1.19 98.14 9,703
Polity2 1.30 7.32 -10 10 7,494
Full democracy 0.34 0.47 0 1 7,494
Partial democracy 0.20 0.40 0 1 7,494
Autocracy 0.43 0.49 0 1 7,494

Note. Variables marked with an asterisk (*) represent growth rates.
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B Statistical software use

The creation of final datasets from the primary data, computation of summary statistics, and

the conduct of panel unit root tests was performed using STATA. All further analyses were

performed using R Statistical Software (v4.0.4; R Core Team 2021). The ”shapley” package by

Elbers (2019) was used to compute simply Shapley values and the Owen decomposition values.

Alterations were made to the functions in this package to compute percentages corresponding

to individual values, to report the Lipovetsky threshold corresponding to a regular Shapley

calculation, and to separately report aggregate Shapley values in case of a hierarchical structure

in the variables. The computation of Nested and Interacted Shapley values was implemented

by the author of this paper, but based losely on the code of the ”shapley” package.

C Additional material

C.1. Levin-Lin-Chu panel unit root tests

Variable LLC test statistic adjusted t* p-value

levels

CO2 emissions -0.6724 6.1757 1.0000

electric power consumption 3.8198 9.7058 1.0000

population 1.9484 3.5201 0.9998

industry share -13.2177 -4.3026 0.0000

human capital -0.5790 1.5944 0.9446

KOFGI -16.8547 -12.7378 0.0000

polity2 -15.9947 -2.8150 0.0024

growth rates

CO2 emissions -36.0776 -16.9060 0.0000

GDP -29.9371 -15.9872 0.0000

population -23.4758 -18.6123 0.000

electric power consumption -30.6155 -14.5959 0.0000

human capital -14.4643 -2.3381 0.0097

null hypothesis panels contain unit root

panels 115

number of periods 20

Note. The Levin-Lin-Chu (LLC) unit root tests may be viewed as a pooled Augmented Dickey-Fuller (ADF)

test, where the null hypothesis assumes that the time series of each unit in the panel contains a unit root. In

this study, the LLC unit root test was conducted in the balanced panel dataset, consisting of 115 panels and 20

periods, using 1 lag and the Bartlett kernel.
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C.2. Regression results of economic and political variables in non-hierarchical model of carbon
emission.

Variable balanced panel unbalanced panel balanced panel
(1) (2) (1) (2) (3)

GDP† 0.472*** 0.467*** 0.594*** 0.593*** 0.513***
(0.052) (0.052) (0.034) (0.034) (0.053)

population† 0.530*** 0.532*** 0.740*** 0.730*** 0.586***
(0.139) (0.140) (0.133) (0.134) (0.140)

electric power consumption† 0.335*** 0.333*** 0.202*** 0.202*** -0.138
(0.026) (0.026) (0.019) (0.019) (0.123)

industry share -0.037 -0.041 -0.030 -0.030 -0.027
(0.021) (0.021) (0.016) (0.016) (0.021)

human capital† -0.937 -0.141 -0.032 -0.080 -0.109
(0.330) (0.335) (0.262) (0.263) (0.332)

Globalization -0.009*** -0.006***
(0.002) (0.001)

Economic globalization -0.004* -0.002 -0.005*
(0.002) (0.002) (0.002)

Social globalization -0.002 -0.002 -0.001
(0.002) (0.002) 0.002

Political globalization -0.002 0.000 -0.002
(0.001) (0.001) (0.001)

Polity2 0.001 0.001
(0.000) (0.000)

Full democracy 0.028 -0.005 0.023
(0.020) (0.017) (0.020)

Partial democracy 0.037 0.004 0.030
(0.020) (0.016) (0.019)

Autocracy 0.022 -0.009 0.019
(0.020) (0.016) (0.019)

GDP#industry share -0.750*
(0.349)

electric power#full democracy 0.447***
(0.133)

electric power#partial democracy 0.582***
(0.127)

electric power#autocracy 0.309*
(0.133)

constant 0.057*** 0.027 0.030*** 0.028 0.048*
(0.012) (0.022) (0.009) (0.018) (0.021)

total R2 0.202 0.205 0.148 0.149 0.219
observations 2,300 2,300 4,343 4,343 2,300

Note. Significance of coefficients is indicated at *5% level, **1% level, or ***0.1% level. Standard errors are
reported in brackets. Variables marked with a dagger (†) represent growth rates. Globalization variables are scaled
by factor 10−1 and range between 0 and 10. In column 5, the variables GDP growth, electric power consumption,
and industry share are demeaned.
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C.3. Year by year results

Year GDP* population* Elec. power* industry HC* Global. Polity2 Lipovetsky

1995 7.48 3.13 80.22 0.90 0.72 6.94 0.62 4.74

1996 16.89 56.74 5.03 11.97 2.11 4.26 3.01 47.18

1997 11.47 13.17 44.84 2.18 12.79 13.11 2.45 14.40

1998 50.42 21.20 7.88 1.03 1.13 15.27 3.07 25.50

1999 14.08 6.32 65.25 0.85 10.13 1.94 1.41 13.29

2000 42.28 6.67 34.41 2.46 10.21 2.11 1.87 9.71

2001 19.10 15.89 51.95 0.50 1.56 2.79 8.21 27.90

2002 22.83 27.84 9.69 11.74 10.09 8.50 9.30 125.32

2003 48.75 0.78 38.47 3.10 0.24 6.30 2.37 16.75

2004 15.65 5.45 61.81 1.02 2.11 7.41 6.56 34.83

2005 18.17 7.60 17.68 4.19 1.34 32.48 18.53 31.14

2006 32.05 7.92 37.64 5.41 7.53 5.51 3.95 52.95

2007 39.03 2.36 17.84 4.07 1.01 31.04 4.64 27.36

2008 28.98 12.44 29.95 6.56 1.65 7.69 12.73 22.31

2009 32.06 7.70 31.57 1.22 2.82 18.31 6.32 14.76

2010 40.65 2.55 48.48 1.71 4.04 1.09 1.47 21.66

2011 46.35 2.54 26.46 0.53 1.58 19.74 2.81 9.38

2012 36.59 13.01 12.97 3.08 8.62 22.32 3.41 21.16

2013 17.03 27.89 37.25 5.37 0.95 9.53 1.99 6.93

2014 31.59 9.02 4.15 1.43 0.84 48.78 4.20 7.05

Note. Variables marked with an asterisk (*) represent growth rates.
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