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Abstract 

In a globalized world there is a large number of car accidents involving people visiting a country 

instead of being resident of the country. Driver insurance multilateral agreements such as the Green 

Card System in Europe functions to cover these situations, so that third party victims are 

compensated for loss caused both in material damage and in bodily injury. These cross-border 

arrangements encompass an entire new array of challenges when compared to local arrangements, 

as they must deal with different laws and regulations, protocols, prices, currencies, languages, and 

more. Because of its complexity, it is important for insurance companies in this context to make 

accurate prediction of costs ahead of payment dates. Consequently, Artificial Intelligence and 

supervised Machine Learning become very useful tools. However, there is a vast amount of data 

generated before, during, and after the car accident. Some of the data relates to the ´who´, ´what´, 

´when´, ´where´, and ´why´ of the car accident. This study dives into big data in order to 

investigate, through Global Interpretation Methods applied to black-box models in the form of 

Random Forest and CatBoost algorithms, which type of predictors are more important and how 

when predicting a driver´s insurance claim cost. It finds that some of the most relevant predictors 

are not directly related to the car or object damaged, but to the context such as time, location, 

parties involved, and cause of the accident. Additionally, this study configures a setting in which 

AI is used in collaboration with human expert claim handlers to achieve better predictive 

performance than either AI or human experts by themselves. The increase in predictive 

performance when including human expert input into the trained models is remarkable. This sheds 

new light into the currently discussed topic of AI versus Human Expert and suggests a successful 

implementation of a synergy between the two into insurance claim handling. Finally, it investigates 

how the progressive inflow of information about the car accident during the lifecycle of a claim 

changes the relative importance of AI versus human expert input for the model to make an output 

of the cost.  

Keywords: Artificial Intelligence, Machine Learning, Random Forest, CatBoost, Driver´s 

Insurance, Green Card System, Claim Handling, Insurance Claim Predicting, AI + Human Expert 

Collaboration 
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I. INTRODUCTION 
 

The growth of the insurance industry seems to have regained pace after slowing down during the 

Covid-19 pandemic in 2020 and 2021, as analyzed by The Global Insurance Report from 

McKinsey & Company (Bernard, P.I. et al., 2022). Even more so, the global growth was larger 

from the period of 2020 to 2021 than from the period of 2018 to 2019, pre-pandemic times. This 

rebound has been more pronounced in the American continent, followed by Europe, Middle East, 

and Africa, with Asia and Asia Pacific at the end. Similarly, according to the Insurance Industry 

Outlook from Deloitte (Shaw, 2021), the insurance industry will have an accelerated growth from 

2022 onwards. This suggests that it will be a key player in the global markets in the following 

years. From the same Deloitte study, it is estimated that the largest increase in spending within the 

specific industry, when it comes to emerging technologies, will be destined to Artificial 

Intelligence (AI), followed by Cloud Computing and Storage, Data Privacy, Data Acquisition and 

Processing, and Cybersecurity. The larger increase in spending is expected to be in AI and thus in 

Machine Learning, which constitutes a key aspect of AI. The Covid-19 pandemic has been 

stimulating the digital transformation of the economy (Levantesi & Piscopo, 2021). Companies 

have been forced to invest in technology to satisfy consumer needs in a remote manner. This has 

brought a hastened modernization of the industry. Within this modernization, AI has the potential 

to improve processes and results. This might happen for example in the form of automation, such 

as AI chatbots, as well as in the form of predictions, such as claim cost predictions. The former is 

one of the key motivations behind this study. Lots of data is generated within insurance. For 

instance, a car accident and a subsequent insurance claim involves data about the insured, such as 

demographic information and behavioral patterns; data on the other parties involved, such as 

victims, lawyers and law makers, the police, Governmental Authorities, and more; data on the 

location of the accident, such as country, city, the type and condition of the road; data on the time 

of the accident, such as month and season, time of the day, weather; data on the accident itself, 

such as the cause of the accident, the vehicle brand, the objects involved; data on the insurance 

company, such as how many claims it handles every year, the type of coverage; and a lot more. 
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These are just a handful of examples. It is well known that there is a lot of data, but it is not clear 

which data is more important when trying to predict a driver’s insurance claim cost. 

That being said, not all types of insurance products are the same. For example, there is a 

considerable difference between driver’s insurance and life insurance. For the same reason, the 

study zooms in the driver’s insurance Green Card System, which is a multilateral agreement 

between 47 countries which stipulates that a person driving to a foreign participating country must 

be insured so that if the person causes or is involved in a car accident, any third party victims are 

not negatively affected by the fact that the driver was from a foreign country and not from the 

country in which the accident took place. This facilitates the crossing of borders, and also the loss 

settlement for both material damages and bodily injuries for the victims. Every year, more than 

400.000 car accident in Europe fall under the Green Card category (Council of Bureaux, 2022). 

Furthermore, it is a hot topic in data science the discussion about how AI works either against or 

in synergy with humans. Against in the sense that it might displace workers by taking over their 

tasks. However, this study experiments with Machine Learning settings and showcases how a 

configuration in which AI is used in collaboration with human expertise delivers better results 

when predicting driver’s insurance Green Card claims. AI should not be focused on competing 

against years of know-how but on complementing and improving it. These is another key 

motivation behind the study. 

In brief, the scope of study is important because the insurance industry is revitalizing itself; it is 

current because it analyzes how to implement AI and ML in the insurance context which is 

precisely what a lot of insurance companies are venturing on at this moment in time; and it is 

innovative by experimenting and suggesting a new take on how to establish a beneficial 

collaboration between AI and Human Experts with improved results compared to how some 

insurance companies are estimating costs at present. 

 

II. LITERATURE REVIEW  
 

THE CURRENT STATE OF AI AND ML APPLICATIONS 
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From the past decades, Artificial Intelligence (AI) and Machine Learning (ML) have been in 

constant development as fields of study, with constant new techniques and algorithms being 

engineered, but also as applications to real life problems and business settings with an increasing 

number of industries and companies implementing data-driven solutions beyond calculations done 

by humans and shifting towards less linear calculation done by computers. According to a study 

done by McKinsey (Chui et al., 2021) about the “State of AI”, 56% of all respondent organizations 

affirm that they have implemented AI in at least one of their activities. The adoption of AI seems 

to be more predominant in the areas of service operations, product and/or service development, 

and marketing and sales, in that order. AI is no longer a futuristic vision, but something that is 

happening at this moment in time, and is making an impact on the world today. AI is increasing in 

importance in a variety of sectors because of the possibilities it brings in regards to integrating 

information that is in constant genesis and in continuous update, analyzing big and unstructured 

data, and utilizing its outputs to improve decision-making (West & Allen, 2018). 

As gathered and summarized by Sarker (2021), some of the ML applications that have gained a 

lot of attention in recent times are the following: predictive analytics and intelligent decision-

making, which is commonly applied in determining an unknown outcome such as identifying 

criminal suspects, detecting credit card fraud, avoiding out-of-stock situations, and anticipating 

sales (Adewumi & Akinyelu, 2017); cybersecurity and threat intelligence, which involves 

protecting networks, systems, hardware, and data from digital attacks (Dasgupta et al., 2022); 

internet of things and smart cities, which focuses on turning everyday objects into smart objects 

through data transmission and task automation, an example being smart industrial robots in 

warehouses (Souza et al., 2019); traffic prediction and transportation, which consists of managing 

traffic through future traffic prediction and optimization of elements such as traffic lights and 

parking spots (Boukerche & Wang, 2020); healthcare and the Covid-19 pandemic, which serves 

as a tool to assist in practices such as diagnosis based on symptomatology and patient management 

(Shailaja et al., 2018), and in the Covid-19 context, in practices such as patient risk classification 

and forecasting where the virus is likely to spread and potential peaks in cases, hospitalizations, 

and mortality (Islam et al., 2020); e-commerce and product recommendation, which is one of the 

most predominant aspects of any e-commerce website nowadays and uses consumer’s previous 

behavior and previous purchases to predict future behavior and future purchases as well as to 

personalize preferences and experiences (Micol Policarpo et al., 2021); natural language 
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processing (NLP) and sentiment analysis, which covers a broad spectrum of language analysis and 

language processing by computers through text and speech, in order to read, understand, interpret, 

adjust, and respond, some examples being chatbots, machine language translations, and the 

analysis of emotions in product reviews (Mehta & Pandya, 2020); image, speech and pattern 

recognition, which uses less structured data in the form of images for applications such as facial 

recognition, landmark identification, and social media tagging recommendation (Pak & Kim, 

2017); sustainable agriculture, which seeks to optimize the resources obtained from agricultural 

practices while reducing the negative impact to the environment (Sharma et al., 2020); and user 

behavior analytics and context-aware smartphone applications, which bases on gathering 

information of the surrounding, often in real-time, to provide a context-sensitive output such as 

geolocated advertisement (Al-Saedi et al., 2022). With all of these applications, it is no wonder 

that this technological surge (with ML at its core) is commonly being referred to as the fourth 

industrial revolution (4IR, Industry 4.0).  

 

AI AND ML IN INSURANCE 
 

The insurance industry is no exception to the mentioned trend, as ML algorithms are being applied 

to fraud prevention, risk management, claims processing, and others (Nevins, 2021). An example 

of a relevant application is Severino & Peng  (2021) study which compared nine different statistical 

methods and Machine Learning algorithms to detect fraudulent claims in a Brazilian insurance 

company. In their study, the most accurate models turned out to be a Random Forest and a Gradient 

Boosting algorithm, even more so than a Neural Network. However, they only included 8 variables 

in their analysis. Similarly, Levantesi et al. (2020) applied ML to longevity calculations in life 

insurance and compared the accuracy of the ML predictions with the predictions made with more 

traditional methods used in the life insurance industry since many decades ago, such as the Lee-

Carter and the Renshaw-Haberman models. The ML methods proved to be more accurate in all of 

their tests.  

In regard to the claim handling application, the studies are mostly focused on automation. Oza et 

al. (2020) studied the implementation of Robotic Process Automation (RPA) so that an AI 

performs business tasks in a similar manner to human users, with the purpose of reducing costs, 
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handling times, and errors. Other studies have been focused on predictive analysis. Blier-Wong et 

al., (2021) recompiled 77 publications that have used some type of ML in property & causality 

insurance. They mention how linear models have predominated in the field during the past decades 

but at the same time how they may be too simple to reflect reality, as relationships between the 

variables that compromise insurance activities are seldom just linear relationships. Thus, the 

overdue implementation of ML algorithms in insurance has been an important milestone. 

According to the recompilation, the number of ML publications in the mentioned field in 2018 

alone is larger than in the entire interval of 2000-2014. Moreover, the largest proportion of 

supervised ML has been focused on the prediction of pricing (the price of the prime for the 

insured), and a smaller portion has been focused on the prediction of reserves1 or insurance claim 

costs. This is so, first, because reserve data is usually unstructured since the number of payments 

and the time until a clam is settled are unknown at the time of registering a claim for the first time; 

second, because data is often aggregated either by group such as portfolio level or by time such as 

quarterly; and third, because some variables are dynamic and may change over time during the 

claim handle process (Blier-Wong et al., 2021).  Overall, AI and ML is blossoming in the insurance 

industry, and the majority of the studies carried out seem to suggest that the implementation of 

these methods tend to lead to more precise predictions and more efficient operations.  

 

STUDIES AND ML IN DRIVER’S INSURANCE 
 

As seen, plenty of research has been done in the insurance industry, which is very wide. However, 

the findings for one type of insurance product are not necessarily applicable to other types of 

insurance products because, even though they have in common the purpose of mitigating a risk, 

they involve very different activities and processes. Some examples can be seen; life insurance is 

projected for the long term, while travel insurance is projected for the short term; health is a human 

right; natural disasters are a rare occurrence: most insurance products are optional; the Green Card 

System is compulsory in order to drive in the participating states. Therefore, it is important to look 

at previous studies in the relevant subtype of insurance product.  

 
1 A claim reserve is defined by the International Risk Management Institute as “an amount of money set aside to 

meet future payments associated with claims incurred but not yet settled at the time of a given date” (2022) 



11 
 

Motor car or driver’s insurance has been studied since many decades ago. For instance, already in 

1978, Zehnwirth proposed a hierarchical model for the estimation of claim rates in a motor car 

insurance portfolio. Further studies have also been focused on examining factors that increase the 

frequency of road accidents and the consequential number of claims. Braver & Trempel (2004) 

studied the relationship between the occurrence of claims and the age of the driver and found out 

that older drivers tend to be involved in more road accidents than younger drivers, and that they 

are more often than average liable for the collision. Nonetheless, Twisk & Stacey (2007) 

discovered that that young driver’s relative risk to road accidents has been consistently increasing 

in Europe, especially in men when compared to women, due to attitudes such as driving at night, 

at high speed, under the influence of alcohol/drugs, and negligence with the use of the seatbelt. 

Furthermore, they also investigated this increase in risk across countries in the EU. More recent 

studies have been conducted on driver’s behavior and on proposed Pay-how-you-drive (PHYD) 

insurance approaches instead of Pay-as-you-drive (PAYD) (Tselentis et al., 2017). 

When it comes to ML, a large proportion of the studies seem to be focused on binary classification, 

such as detecting if a claim is fraudulent or not. For instance, Wang & Xu (2018) used text analytics 

and deep learning to detect automobile insurance fraud with 91.4% out-of-sample accuracy. Yet, 

the study does not go into explaining which characteristics of the text tend to lead more often than 

not to a fraudulent claim. Moreover, Explainable Machine Learning focuses on the accuracy of the 

predictions but also on the interpretability of the effects of the independent variables on the 

dependent variable. Maillart (2021) used Global Interpretability Methods on a Random Forest to 

explain the predicted occurrence of driver’s insurance claims in Belgium which incorporated 

telematics that capture the driving behavior of the insured with information such as the distance 

driven during the ensured period, the number of trips, the road type, and the different regions 

within Belgium. Maillart’s study already finds differences in claims across different regions in 

Belgium. However, this study was aimed at predicting claim occurrence and not claim cost. 

Guelman's (2012) study uses a set of predictors classified as either characteristics of the driver, 

characteristics of the policy, characteristics of the vehicle, or accident/conviction history to predict 

insurance loss cost, with loss cost being the multiplication of claim frequency and claim severity. 

Using Gradient Boosting (GB), it finds that the most important variables for predicting the severity 

of a claim are characteristics of the vehicle, such as vehicle age and vehicle price; characteristics 

of the driver, such as years licensed; and only one characteristic of the policy, this being collision 
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deductible. This study provides an interesting classification of features which is expanded upon. 

Yet, the algorithm used (GB) is currently considered somewhat outdated and usually outperformed 

after the emergence of other more developed forms of Gradient Boosting such as Extreme Gradient 

Boosting (XGBoost) and Categorical Boosting (CatBoost), as tested in claim predictions within 

the driver’s insurance industry (Fauzan & Murfi, 2018). Additionally, because of the difficulty of 

obtaining consistent (comparable) and sufficient (large enough sample size) data about car 

accidents and subsequent insurance claims, some studies have used simulated data to test 

theoretical hypotheses that are expected to hold true in real life. An example is Baudry & Robert's 

(2019) study on the prediction of reserve costs to showcase the use of individual and not aggregate 

data for claim analysis.  

 

AI + HUMAN COLLABORATION 
 

 As AI develops into a more complex tool, and as it becomes more entwined in business 

activities, the questions about how and to what extent will it displace human tasks and human labor 

becomes more relevant. Evidence in the service sector seems to suggest that AI has progressively 

developed key characteristics needed in order to potentially replace human intelligence in service 

tasks, these being mechanical, analytical, intuitive, and empathic intelligence characteristics 

(Huang & Rust, 2018). According to the authors, intuitive AI (or strong AI) is being developed by 

ambitious projects from large companies, and it involves the machine’s ability to adjust to 

unexpected situations, to learn from previous experiences, to perform with imperfect information, 

and maybe even to be self-conscious, aware of its own limitations, and more importantly aware of 

what it needs in order to overcome its own limitations. It can be said that AI is evolving; however, 

the discussion about whether AI can develop empathic intelligence, at least in a practical (being 

able to read emotions from others and adjust as in ‘what is the socially correct response to this 

display of emotion’) and not organic (actually being able to feel emotions) manner is an ongoing 

discussion. For this very same reason, some scholars argue that AI can never replace humans when 

empathy is required for the task in question. Montemayor et al. (2021) divides empathy into 

emotional empathy, cognitive empathy, and motivational empathy. Emotional empathy is defined 

by viscerally or biologically experiencing emotions and is followed by motivational empathy 

(drive to help others) in the form of a genuine concern due to the similar emotions that others might 
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be experiencing. On the other hand, cognitive empathy is based not on experiencing but on 

recognizing emotions or cues of emotions which produces a far more dissociated type of empathy. 

As such, the motivational empathy that follows after a cognitive empathy might be based on 

different reasons, including non-altruistic ones such as self-interest and manipulation. A chatbot 

AI trained to read and respond to the emotions of others ultimately is also trained with an outcome 

in mind, such as to improve customer satisfaction or to get better service quality reviews. 

Therefore, the question remains: is a self-interest driven empathic response really empathy? But 

on the other hand: is empathy really ever totally and completely altruistic? Even for humans? There 

are no objective answer for these questions. Thus, the most composed response to the AI and 

human relationship dilemma is not to replace humans with AI or to neglect AI entirely, it is to 

establish a collaboration between AI and Human Experts to harness the strengths of each side and 

adjust depending on the specifics of the task in question. 

 

III. CONCEPTUAL FRAMEWORK 
 

OVERVIEW 
 

Leveraging the data that was made available, this study seeks to build on previous research and 

overcome some of the common limitations by applying predictive and interpretable Machine 

Learning to real life data that is sufficient and consistent across countries in Europe.  

Moreover, the objective is to predict Green Card System driver’s insurance claim costs ahead of 

payment dates and compare the predictive performance of models that rely solely on AI versus 

models that establish a collaboration between AI and Human Experts with different degrees of 

knowledge about the car accident and the subsequent insurance claim. This sheds new light into 

how AI can be implemented successfully into the driver’s insurance industry. It also puts into 

perspective how AI and Human Experts can work in synergy. Finally, it establishes a pathway in 

time about how claim cost calculations in insurance progress from a solely AI estimation to a 

solely Human estimation as knowledge about the claim (from the expert claim handler) increases 

from very limited at Stage 1 (only the most basic information about the accident is known to the 

claim handler), to low at Stage 2 (some more early details about the accident arrived and a rough 
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reserve estimate is modified by the claim handler accordingly), to high at Stage 4 (costs about the 

damages or injuries are confirmed to the claim handler, reserve estimate is modified accordingly 

again, and payments are ready to be wired). The setting is a case of imperfect information versus 

perfect information, and all the partial information instances in between.  

 

FIGURE 1. CLAIM COST ESTIMATION PROGRESSION WITH INCREASING DEGREE OF HUMAN KNOWLEDGE 

 

  

THE AI SIDE OF THE COLLABORATION  
 

 To predict driver’s insurance claim costs ahead of the payment date, AI input was used in 

the form of Machine Learning algorithms. These algorithms were trained on the data available. 

The data will be discussed more thoroughly in Section IV. The task of the study falls under the 

category of Supervised Machine Learning, which constructs algorithms that are capable of finding 

and reproducing patterns by using externally supplied instances to predict future instances (Singh 

et al., 2016). Moreover, the data was analyzed in a predictive and interpretative manner using 

algorithms that were fit for the type of data, these being LASSO Regression, Random Forest, and 
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Boosting though Categorical Boosting (CatBoost)2. Furthermore, an out-of-sample test was carried 

out, in which 60% of the data was used to train the models and 40% of the data was used to test 

the performance of the models. The models were used to solve a regression problem, more 

specifically to predict the numeric cost of a driver’s insurance claim, and as such the main 

performance metrics considered were the Root Mean Square Error (RMSE) and the Mean Absolute 

Error (MAE), which are the most commonly used performance metrics for ML regressions. The 

predictive performance of the various models was compared and a best performing model (or the 

one with the smallest error in this train-test setting) was selected. Finally, the interpretative aspect 

of the analysis was carried out using Global Interpretation Methods, specifically Permutation 

Feature Importance and Partial Dependence Plots (PDP). The former measures the increase in the 

prediction error of the model when the features are iteratively permuted, as in to break any 

relationship between the values of the feature and the outcome. The latter depicts the marginal 

effect that one or two variables have on the predictions of a trained model; this relationship 

between the variables and the predictions can be linear, monotonic, or more complex (Molnar, 

2020). In brief, the first provides interpretation on the impact of each variable on the predictions, 

taking into consideration that the impression is about the model (which has an error term) and not 

directly about reality (Is the fact that the car involved in the accident was a Ferrari important when 

predicting the claim cost?). And the second provides interpretation on the direction that a variable 

has on the predictions (Do Ferraris on average lead to lower cost claim predictions or higher cost 

claim predictions?). The summary data analysis process workflow from querying the data to 

elaborating visualizations and results can be observed in Figure 2.  

 

 
2 Regular linear regression models were not used due to there being too many variables – “The curse of dimensionality”. Neural 

networks were not used due to the fact that dozens of models were trained and the significant increase in complexity and 

training/tuning times for neural networks was not justified by a possible but not certain increase in performance in tabular data.   
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FIGURE 2. DATA SCIENCE PROCESS WORKFLOW 

 

 

LASSO REGRESSION 
 

Least Absolute Shrinkage and Selection Operator or LASSO is a type of linear regression model 

in which a penalization term is added in order to prevent overfitting when many independent 

variables are included in the analysis. Overfitting can lead to overestimating the predictive 

performance of the model as it performs particularly well on its training dataset but poor on the 

testing dataset and beyond. LASSO achieves variable selection by identifying the regression 

coefficients associated to features that minimize the prediction error and shrinks the coefficients 

of less relevant variables to a value very close to 0 or even 0 (Ranstam & Cook, 2018). Variables 

whose coefficient are shrunken to 0 are excluded from the model. As defined by Tibshirani (1996) 

and seen in equation (1), LASSO solves a minimization problem between the real outcomes and 

the predicted outcomes in an OLS setting constrained by a fixed value (𝜆), which limits the sum 

of the absolute values of all the coefficients. Thus, coefficients are shrunken in order to reach an 

optimal solution.  
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𝑗

)

2

}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑  

𝑝

𝑗=1

|𝛽𝑗| ≤ 𝜆          (1) 

 

From the equation (1), 𝑦 is the real value of the dependent variable, 𝛽0 is the coefficient of the 

intercept,  𝛽𝑗 is the array of coefficients for all independent variables 𝑥𝑗, where 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑗, 

and 𝜆 is a tuning parameter that regulates the shrinkage of the coefficients. When 𝜆 = 0 , the 

results are the same as in a linear regression. When 𝜆 increases, coefficients are shrunken in a 

greater degree, and more coefficients are shrunken to 0.  

LASSO served as a good starting point in this analysis due to the large number of independent 

variables available. More so, many of the variables were categorical variables with numerous 

subcategories, and in a linear regression context each subcategory (excluding the base 

subcategory) is given a coefficient. A regular Multiple Regression or a Ridge Regression would 

have resulted in too many variables. The LASSO Regression model also served the purpose of a 

benchmark model to compare to the more advanced Machine Learning algorithms discussed 

further.  

 

RANDOM FOREST 
 

The Random Forest algorithm (Breiman, 2001) builds on Bootstrap Aggregation (Bagging) and 

Classification and Regression Trees (CART). Depending on the purpose of the task, it can be used 

to solve either a regression or a classification problem. It follows the logic of an ensemble method, 

a technique that uses multiple models instead of a single model to obtain better results. In the case 

of the Random Forest, multiple decision trees are trained creating a forest of decision trees. Each 

tree is trained and evaluated on different subsets of the data by implementing Bootstrapping. For 

each tree in the forest, a portion (usually two thirds) of the dataset is used to train the tree and the 

remaining portion of the dataset (the remaining one third) is used to evaluate the performance of 

the tree. This leads to an internal metric of error called the out-of-bag (OOB) error. Bagging uses 
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a random selection of observations on the tree growing process, the Random Forest algorithm 

expands on that by additionally using a random selection of features to decide on the splits of the 

nodes. This helps in building trees that are less correlated between each other. Other benefits of a 

random selection of features and consequently of the Random Forest algorithm are, according to 

Breiman (2001), an accuracy as good or even better than Adaboost; robustness to outliers and 

noise; computational speeds faster than bagging or boosting; useful internal estimates of error, 

strength, correlation and variable importance; and easy parallelization. After the decision trees in 

the Random Forest are trained, the definitive output of the model is given by either the majority 

of votes (tree one votes for outcome A, tree two votes for outcome A, and tree three votes for 

outcome B, thus through a majority of votes, the output is determined to be A) or the mean of the 

outcomes (tree one estimates 4, tree two estimates 7, and tree three estimates 3, thus by calculating 

the mean, the outcome is 4.66). This of course depends on whether it was a classification or a 

regression problem.  

A decision tree has nodes and splits. In order to select the variables that determine these nodes and 

splits, a Random Forest applied to a classification task frequently uses the Gini impurity metric. 

The logic behind is that some variables are more polarizing, in the sense that they lead to certain 

outcomes more than other variables, or in a more determinant or consistent manner. Intuitively, 

Gini impurity across variables is heterogeneous. The variables with the lowest impurity are 

selected for the splits. The formula for Gini impurity (Daniya et al., 2020) is shown in Equation 

(2), where 𝑖 is the number of classification labels from i to 𝑛 and 𝑝𝑖 is the probability that the data 

point belongs to classification label 𝑖. 

 

𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 −  ∑ 𝑝𝑖
2

𝑛

𝑖=1

          (2) 

 

For a regression task, a Random Forest determines its splits by selecting the variables that reduces 

the variance using the Mean Square Error or the Mean Absolute Error.  

Furthermore, there are some hyperparameters in a Random Forest that can be tuned in order to 

improve its performance. The ones tuned in this study are the following:  
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1. The number of trees in the Forest (ntree).  

2. The number of features to be randomly sampled at each split (mtry).  

The motivation to use a Random Forest algorithm in the study comes from its versatility when 

handling different types of variables, its ability to grow diverse trees using a random selection of 

features and observations, and its robustness against noise variables and overfitting (Hastie et al., 

2009). Additionally, since a large number of models were trained and tested (at numerous points 

in time during the claim handling process), its superior computational efficiency was 

advantageous. On top of that, Random Forest algorithms tend to have high predictive performance. 

Hastie et al. (2009) compared the performance of Bayesian Neural Networks, boosted trees, 

boosted Neural Networks, Random Forests, and bagged Neural Networks using five datasets of 

different dimensions and from a variety of domains. The Random Forest algorithm was 

outperformed only by the Bayesian Neural Network. However, the average computation time ratio 

of the Bayesian Neural Network versus the Random Forest was of 202 to 1. Then, in the sense of 

performance per time, it can be said that the Random Forest was the evident winner.  

 

CATBOOST 
 

 CatBoost (Prokhorenkova et al., 2019) stands for Categorical Boosting and it is a type of 

gradient boosting algorithm based on decision trees. Like the Random Forest, it is an ensemble 

method that uses an 𝑛 number of models together to obtain better results. The key difference with 

bagging is that the models are trained not independently from one another, but sequentially one 

after the other by also implementing a learning rate. The individual models are weak learners that 

are improved progressively at every stage. The model trained at 𝑛 + 1 focuses on improving on 

the mistakes made by the model trained at 𝑛. The algorithm seeks to minimize the error term 

through gradient descend. Gradient descend, briefly put, iteratively finds global or local minimums 

by means of first-order optimization. As seen in Figure 3, there are random initial points, then a 

gradient is calculated and a step is taken into the opposite direction of the gradient (since the 

objective is to find a minimum), and these steps are repeated until a minimum is reached. It must 

be taken into account that the procedure can lead to local minimums instead of global minimums, 

that is the reason and importance behind the numerous iterative random initial points.  
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FIGURE 3. GRADIENT DESCEND 

 

  

Other gradient boosting algorithms based on decision trees exist, such as XGBoost, which is quite 

popular. However, CatBoost has comparable performance and is optimized for categorical 

variables. It is especially useful for sparse data or data that has categorical variables with high 

cardinality. XGBoost and other algorithms handle categorical variables through One-hot Encoding 

which greatly increases the dimensionality of the data and its sparsity, especially when there are 

categorical variables with high cardinality. Alternatively, CatBoost uses an innovative manner to 

handle categorical variables through Ordered Target Statistics which relies on permutations and 

ends up converting the categorical variables into numerical variables. Hancock & Khoshgoftaar 

(2020) reviewed 403 records of articles using CatBoost, XGBoost and/or LightGBM in diverse 

fields such as biology, medicine, cyber-security, finance, marketing, astronomy, and others and 

concluded that CatBoost is indeed a very good candidate for ML choice of algorithm and in various 

applications outperformed other algorithms particularly in the mentioned circumstances, when 

there are many categorical variables each with many subcategories. However, the algorithm seems 

to be quite sensitive to hyperparameter tuning, highlighting the importance of being meticulous in 

this stage of the model building process.  

For this reason, the hyperparameters that were tuned for this study where various: 

1. The maximum tree depth for each individual tree (depth). 
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2. The learning rate which determines how large should the change to the model in 𝑛 + 1 

be as a response to the error of the previous model in 𝑛 (learning_rate). 

3. The number of random initial points (iterations). 

4. L2 regularization that penalizes less important features similar to a Ridge regression 

(l2_leaf_reg). 

5. An additional random parameter in the determination of the splits to help against 

overfitting. (random_strenght). 

Due to the high predictive accuracy of gradient boosting algorithms, it made sense to train a 

boosting model together with the Random Forest to compare their performances and ultimately 

select a best performing model. The CatBoost algorithm was preferred over XGBoost or 

LightGBM due to the fact that the data used for the study has a major number of categorical 

variables of which several have high cardinality.  

 

THE HUMAN EXPERT SIDE OF THE COLLABORATION  
 

 When an insurance claim is first registered following a car accident, a reserve monetary 

value is set by the insurance company or in this case by Van Ameyde across its offices in the 

countries in which it operates (Van Ameyde is the Company that provided the data for the analysis. 

More about this will be discussed in Section IV.). The idea is for the reserve to be as exact as 

possible to the cost of the claim once valuations of the damages and other expenses are made 

throughout the entire duration of a claim handling process. The lapse in time between a claim first 

being registered and it being settled varies greatly across types of insurance products. In the context 

of the Green Card System driver’s insurance, claims are open for longer than average intervals of 

time due to the fact that they encompass cross-border procedures, the potential involvement of 

several parties including Governmental Authorities, and different laws and regulations. During 

this interval of time, the reserve value must be set with the information available and adjusted as 

information is updated. For Van Ameyde, information is constantly arriving in the form of phone 

conversations with the client (the insurance company), the insured (insured with the client, 

involved in the accident, and many times liable of the accident), or the third party (no relationship 

with the client, but involved in the accident, and many times a non-liable victim); emails; photos 
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of the accident or objects damaged; expert valuation of the damage; medical information in the 

case of bodily injuries; progress on the medical treatment; second medical opinions (SMO); 

progress on trials; court rulings; updates on the loss of ability to work for the parties involved; 

return to work for the parties involved, and so on. Every case is different. Taking all of this into 

consideration, reserves are essentially predictions of how much claims will cost ahead of payment 

dates. Yet, these predictions or calculations have historically not been done by AI or Machine 

Learning algorithms but by Human Experts in the form of Claim Handlers, Risk Analysts, or 

similar. Therefore, using AI to predict the cost of a claim will potentially help the Human Experts 

in setting more accurate reserves. Both (Human Experts estimating reserves and AI predicting the 

cost of a claim) are different approaches to the same goal that can be used together. In summary, 

the reserve estimation of claim 𝑖 is a function of the information available 𝑥 for that claim 𝑖 in the 

stage 𝑘 of the claim handling process and of other unknown aspects 𝑧, plus an error term. 𝑧 is not 

necessarily specific to the claim in question, but it may be a set of attributes related to the Human 

Expert or the insurance company. 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑖 = 𝑓(𝑥𝑖
𝑘 , 𝑧) +  𝜀           (3) 

 

For a better depiction of what 𝑧 compromises, interviews to claim handlers were conducted with 

the purpose of getting insights on how they set claims without the use of any AI or ML, as well as 

to understand the logic behind their thought processes, the skills or tools they use, and/or the 

protocols they follow. These interviews were done to six claim handlers from the Van Ameyde 

offices in three different countries. The average duration of an interview was 30 minutes. Some of 

the questions that were asked to the claim handlers were “How would you define a reserve?”, 

“What aspects in a claim do you consider are more important when estimating a reserve?”, “How 

often in the claim handling process do you modify a reserve?”, “How does the information inflow 

from an average claim look like?”, “How often do you receive new information?”, “What are the 

usual sources of new information?”, “How difficult is it to estimate a reserve that ends up being 

close to the actual real cost of a claim?”, and “can you tell me the five most important aspects (in 

single words or short phrases) that describe how claim handlers determine the reserve values 

(these can be skills or tools or anything that comes into your mind)”. The answers to these 

questions provide some information about 𝑧. The Word Cloud in Figure 4 shows the responses 
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gathered from the last question. All respondents mention experience as a fundamental aspect that 

claim handlers rely on when estimating reserves. They also use similar claims as reference, vehicle 

market values, historical data, data mostly through the form of averages, their general idea about 

the industry, they differentiate claims by clients, by whether there was a bodily injury, sometimes 

provide rough estimates, and wait for the arrival of more information.  

 

FIGURE 4. WORD CLOUD: MOST COMMON WORDS OR PHRASES IN DESCRIPTION ABOUT HOW CLAIM HANDLERS 

ESTIMATE RESERVES 

 

  

 These are not results of the research questions of the study. Instead, they provide evidence 

that reserve history, their values and modifications, can serve the purpose of a proxy variable for 

Human Expert input in the prediction of claim costs ahead of payment dates. When a claim is 

registered for the first time into the platform used by Van Ameyde (called ECHO), a default value 

of the reserve is set automatically by the system. This default value is configured by a very general 

calculation of the averages of previous claim costs. The default values may vary across clients as 

there are individual arrangements with some. However, as soon as new information on the claim 

arrives, the default values of the reserves are modified at the discretion of the claim handlers; this 

is exemplified further by a quote that stood out from one of the claim handler interviews: “If an 

identical claim is handled by ten different claim handlers, there will be ten different reserve 

values”. Another aspect to consider is the duration time a claim takes to be handled from the 

moment it is registered to the moment it is settled. Within the driver’s insurance Green Card 
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System, claims are usually open for around 9 months, being the minimum time of 1 day and the 

maximum time of 132 months (some very few claims can be open for longer but the cutoff point 

in the dataset used for the analysis was 2010). The time unit used in the study was months. AI + 

Human Expert models were trained using the reserve values at every month from when a claim is 

first registered for a timeframe of 3 years. Thus, there were models trained for month 1, 2, 3, 4, 5, 

6 and all the way to month 36, which is the last month analyzed3 (example: for a claim a reserve 

was initially set at month 1, then modified at months 2, 3, 6, and 7. The claim was ultimately 

settled and closed at month 7. At month 1, the claim handler had very few information about the 

claim but at month 7 it had all the confirmed invoices, therefore the modification of the reserve at 

month 7 made it so that the reserve became equal to the actual cost. A model trained at month 2 

uses this claim as an observation, but the variable Reserve takes the value that was modified at 

month 2, so it does not use the initial reserve value of month 1 nor the perfect reserve value of 

month 7). In conclusion, the human side of the collaboration is captured by including a variable 

Reserve in the models mentioned previously (except on the model that uses solely AI input).  

 

RESEARCH QUESTIONS  
 

 After defining AI and Human Expert inputs in the context of this study, the research 

questions to be explored are the following: 

 RQ1: How does the predictive performance of models that rely solely on AI compare to 

models that integrate a collaboration of AI + Human Expert input when predicting Green Card 

driver’s insurance claim costs? 

 RQ2: How does the progression from low information to high information change the 

relative importance of AI versus Human Expert input when predicting claim costs. (What is the 

 
3 The starting point of time for each claim is the registration date of that claim. This is different for every claim. If 

claim X was registered in February 2018, then the reserve value at month 3 for that claim is the reserve that was 

currently in place in the system in April 2018 for that claim. In the same manner, if claim Y was registered in July 

2014, the reserve value at month 3 is the one that was currently in place in the system in September 2014 for that 

claim. Since time is analyzed, it is important to understand that time is time passed for a claim since that claim was 

first registered. 
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moment in time in which AI > Human Expert becomes AI < Human Expert with regards to variable 

importance).  

 RQ3: Which variables have the largest importance when predicting a Green Card System 

driver’s insurance claim cost? 

 

IV. DATA 
 

The data for the analysis was provided by Van Ameyde International, one of the leading Third 

Party Administrator (TPA) companies in Europe. A TPA is a company that provides an operational 

service such as claim handling to another company. This is often a common practice within the 

insurance industry. Van Ameyde is present in 30 countries and works with over 1000 business 

clients including large international insurance companies. They handle around 750.000 insurance 

claims every year across most type of insurance products except life and health insurance. The 

study was focused on their operations of the Green Card System driver’s insurance product, for 

which they handle claims on behalf of over 500 insurance companies. Since for this specific 

insurance product they represent the insurance companies, it is Van Ameyde who has direct contact 

with the insured, receives the information, handles the payment, and records the data in their 

system. Thus, even if the data is from insurance policies of different insurance companies, it 

follows the same structure. This type of data is difficult to come by, since in other settings it is 

usually handled by different insurance companies, hence the data is gathered in dissimilar manners, 

the variables are defined differently, they are inconsistent, and problematic to compare.  On the 

other hand, the data for this study is in the ideal setting because the Green Card System is a 

European agreement and thus is standardized. 

The data was queried directly from Van Ameyde’s data warehouse. Datasets about accidents, 

claims, costs, damages, objects involved, parties involved, and reserves history were used. Some 

additional steps on the data that are worth mentioning are the following: 

• Only ‘closed’ claims were used to train the model. This means claims that are fully 

settled and are not expected to be modified anymore. 
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• Claims from 2015 to 2022 were included. However, the dataset is very unbalanced. 

Naturally, there are a lot more low-cost claims or medium-cost claims than high-

cost claims. This was addressed by manual upsampling of high-cost claims. This 

means that only for high cost, the sample included claims from 2010 to 2022. This 

solution was implemented because it adds not only more observations of high-cost 

claims, but it adds more diversity on the dataset.4 

• Claim costs that were not in euros were converted to euros using the monthly 

average conversion rate of the month-year in which the claim was registered for the 

first time in the system. 

• Missing values were imputed using the missRanger function of the missRanger 

package (Wright et al., 2022) in R. This means that missing values were replaced 

by predictions from a Random Forest using the feature with missing values as 

dependent variable and all of the other features as independent variables, iteratively 

until all features had no missing values.  

• The outcome variable ‘Cost’ is the aggregate of all the costs Van Ameyde incurred 

for the settlement of the claim both for material damages and body injuries except 

the handling fee, which is not exogenous but is established by the company and 

thus did not make sense to include.  

After the mentioned steps that were taken together the rest of the data-preprocessing, the data that 

was used to train the models consisted of 341.669 observations across the list of variables referred 

to in Table 1.  

 

TABLE 1. INDEPENDENT VARIABLES 

Variable Description 

ClientName The insurance company for which Van Ameyde provides the claim 

handling service. The insured has its policy with the client. 

Product The type of Green Card insurance product. 

Branch The subtype of the insurance product. 

 
4 In order to not overestimate the importance of year on high-cost claim predictions, since an additional sample of 

older claims was included in the analysis only for high-cost claims, the information for the year of these 

observations was deleted and treated as a missing value, which was later imputed like all other missing values.  
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DamageType Either Material Damage ir Bodily Injury. 

Coverage The general type of coverage the insured ha with the client. 

EventDateYear The number of years since the accident took place. 

EventDateMonth The month of the year in which the accident took place. 

AccidenCauseCategory The general category of the cause of the accident. 

AccidentCause The more specific cause of the accident. 

PolicyStatus The policy status of the insured at the time of the accident. 

LiabilityStatus The status concerning the determination of liability for the accident. 

LiabilityPercentage The percentage of liability of the insured. 

ClaimedObjectType The general type of object corresponding to the claim. 

ClaimedObjectSubType The more specific type of object corresponding to the claim. 

ClaimedObjectBelongsToClient If the object corresponding to the claim belongs to the client or not. 

EventCountry The country where the accident took place. 

FirstNoification The person or institution that made the first notification about the claim. 

BusinessDaysUntilNotification How many business days passed between the accident and it being 

notified. 

OwnDamage If the object damaged belongs to the insured or not. 

ThirdPartyDamage If the object damaged belongs to a third party or not. 

OwnInjury If the injury was sustained by the insured or not. 

ThirdPartyInjury If the injury was sustained by a third party or not. 

VehicleMake The vehicle corresponding to the claim main's brand. 

VehicleTotalLoss If the vehicle corresponding to the claim was totally lost or not. 

IsAssesor If an assessor got involved in the claim or not. 

IsBroker If a broker got involved in the claim or not. 

IsCourt If the claim went to court or not. 

IsHealthInsurance If a health insurance covered (totally or partially) the cost of the injury 

or not. 

IsIntermediary If an intermediary got involved in the claim or not. 

IsJuridicalExpert If a juridical expert got involved in the claim or not. 

IsMedicalExpert If a medical expert got involved in the claim or not. 

IsHospital If a hospital got involved in the claim or not. 

IsPolice If the police got involved in the claim or not. 

IsRepresentative If a representative got involved in the claim or not. 

IsSolicitor If a solicitor got involved in the claim or not. 

IsVA_Agent If a veteran assistance agent got involved in the claim or not. 
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ClientName_Freq The number of claims handled with a client. 

Reserve The reserve set ahead of time to cover the costs of a claim.  

 

 

SUBCATEGORY SELECTION 
 

 15 variables are categorical, 18 are binary, and 5 are numeric, totaling 38 variables.  More 

so, some of the categorical variables have high cardinality. For example, the variable VehicleMake 

had 135 subcategories, as there are lots of car makes that are involved in accidents. Another 

example is the variable ClaimeObjectSubType which had 76 subcategories. Not all subcategories 

were included in the models as that would have made the training and the hyperparameter tuning 

very computationally heavy and the computation time would have been excessive. Also, some of 

the subcategories are only represented in a handful of observations which are not sufficient to 

assess the effect of that specific subcategory on the outcome variable. For these reasons, 

subcategory selection was carried out using a combination of criteria: the most frequent 

subcategories, the subcategories that have the highest and lowest claim cost mean, the 

subcategories that have the highest and lowest claim cost median, the subcategories that were the 

most significant according to the variable selection carried out by the LASSO model, and research-

oriented subcategories, such as the most expensive car brands according to Global Cars Brands 

(Vroom, 2021). Therefore, it can be summarized that the LASSO was trained under all of the 

subcategories, as its penalization term allows for it, but the Random Forest and the CatBoost 

models were trained after subcategory selection was performed. Tables on exploratory analysis 

between the variables with high cardinality and the outcome variable can be seen in Appendix A. 

 

V. RESULTS  
 

As mentioned previously, claims can remain open for many months until costs are confirmed and 

settled. During this period of time, reserves are updated to adjust for new information about the 

claim that was recently attained but was not previously known by the claim handler.   
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From the utilized dataset, claims were open on average for 8.95 months. 79.9% of the claims were 

closed within 1 year, and 96.9% within 3 years. The timeframe analyzed was of 3 years. 

This means that, for each ML algorithm (Radom Forest and CatBoost) the number of models 

trained was the following: 

• 1 only AI model without the variable Reserve. 

• 36 AI + Human Expert collaboration models with the variable Reserve being updated at 

every month for a timeframe of 3 years. 

Therefore, in total 74 models were trained in this subsection of the results to analyze first, the 

performances of the models as time goes by in the claim handling process, and second, the relative 

importance of the variable Reserve (which represents the Human Expert input) to the other 

variables (which represents AI input) in this setting. Furthermore, the hyperparameter of these 

models were not tuned as the purpose of this subsection was not to achieve a higher predictive 

performance but to assess how the models change across time. In the case of tuning, difference in 

results could have been attributed to differences in tuning. Instead, 500 trees/iterations and default 

parameters of the corresponding packages were used. In the case of the Random Forest, the ranger 

package (Wright et al., 2022) in R was used. The default mtry is the square root of the number of 

independent variables. For the CatBoost, the CatBoost package (Prokhorenkova et al., 2019) was 

used, and its default parameters are a depth of 6, a learning_rate of 0.095, a 12_leaf_reg of 3, and 

a random_strenght of 1.  

For all of the models ahead, the dataset was split, randomly and without repetition, into a 60% 

subset corresponding to the train dataset and a 40% subset corresponding to the test dataset. The 

metrics used to evaluate the performance of the models (RMSE and MAE) refer to the test dataset.  

 

SOLELY AI MODELS 
 

The first two models (one Random Forest algorithm and one CatBoost algorithm) were trained 

using 37 independent variables available at the early stages of the claim handling process, 

including information about the accident itself, such as the cause of the accident; information about 

the objects and parties involved, such as the vehicle brand and the possible involvement of juridical 
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or medical experts; and information about the location and time, such as the country and month of 

the year. However, estimations on the reserves made by expert claim handlers were not included 

as predictors. More specifically, these models used the variables mentioned in the Data section of 

this study, with the exception of the variable Reserve. 

When it comes to performance, the Random Forest yielded a Root Mean Square Error (RMSE) of 

16,704 and a Mean Absolute Error (MAE) of 2,603. The CatBoost had a RMSE of 17,030 and a 

MAE of 2,963. These numbers do not indicate much by themselves and thus will be compared 

later to the error terms of the models that did include the variable Reserve. Yet, the RMSE and 

MAE generated between the actual costs and the mean of the actual costs was used as a preliminary 

benchmark. This was found to be 18,006 and 3634 for the RMSE and the MAE respectively. Thus, 

even without the variable Reserve, the ML predictions do provide a decrease in the error when 

compared to this benchmark. 

  

AI + HUMAN EXPERT COLLABORATION MODELS 
 

Predictions were obtained for all the following models which did include the variable Reserve 

along with all the other variables (36 Random Forest algorithms and 36 CatBoost algorithms as 

this part of the analysis compromised 36 months). First, a comparison was gathered between the 

actual confirmed cost of the claims and the value of the reserves (at each given month) versus the 

actual cost of the claims and the predictions of the models (at each given month), to determine if 

using AI does improve predictions. To test this, the metrics used were the RMSE and the MAE. 

During the first month the RMSE of the actual costs and the reserves was of 18,334, while that of 

the actual costs and the predictions of the models trained for that month were of 14,791 for the 

Random Forest and 15,601 for the CatBoost. Similarly, for month 2 the RMSE values were 

respectively 17,832, 14,659 and 15,380, and for month 3 they were 16,666, 14,496 and 15,115. 

The values for all of the months within 3 years can be seen in Figure 5. 
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FIGURE 5. RMSE OF THE RESERVE AND MODELS AS TIME PROGRESSES 

 

 

In all the months, the error term was lower when implementing a ML algorithm, with the exception 

of month 7, 8, 9, 10, 11, 12, 13, 15, 16, and 17 when it comes to the CatBoost. The RMSE of the 

Random Forest was the smallest during all of the months. This denotes the resourcefulness of 

having a complex tool that takes in data and finds relationships between the variables in forms that 

are not evident to people, even to expert claim handlers with years of experience. Within the 3-

year timeframe, the RMSE of the reserves decreased until reaching a minimum of 14,074 at month 

17. After that, it increased again reaching a maximum of 19,706 at month 26. When it comes to 

claims, usually the longer it remains open the higher its cost, therefore reserves that are modified 

at the later months of the timeframe comprise high-cost claims. Since the RMSE metric punishes 

large error values, and error values are larger in high-cost claims, this might be a reason behind 

the increase of RMSE of the reserves at the later months.  

Regarding the MAE, it decreases both for the reserves and the predictions as months go by, new 

information about the claim arrives, and reserves are modified, as expected. The moment in time 

in which the error become smaller for human expert reserves versus model predictions occurred at 

month 8 for the Random Forest, point in which the MAE of the reserves was 1,544 and that of the 

predictions was slightly higher at 1,548; and at month 10 for the CatBoost, moment in which the 

MAE of the reserves was 1,438 and that of the predictions was 1,483. Hence, the CatBoost had a 

smaller MAE than the reserves for a longer duration within the timeframe than the Random Forest. 
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According to this error term, at month 9 it is better to use the reserves as an estimate of the cost 

than the predictions of the Random Forest, but it is still better to use the predictions of the CatBoost 

above the other two. Before these thresholds, the error was consistently smaller when 

implementing a ML algorithm. At month 1 the MAE of the actual cost and the reserves was 2,595, 

while that of the actual costs and the predictions of the model trained for that month was of 2,162 

for the Random Forest and of 1,976 for the CatBoost. At month 2, these values were 2,335, 2,002, 

and 1,886 respectively, and at month 3 they were 2.106, 1.867, and 1,748. At the last stage, in 

month 36, the MAE of the reserves was 878 while that of the predictions were 1,102 and 1,208 for 

the Random Forest and CatBoost. The values for all the months within 3 years are found in Figure 

6. 

 

FIGURE 6. MAE OF THE RESERVE AND MODELS AS TIME PROGRESSES 

 

 

Moreover, it can be seen that as time progresses, the distance between the ML algorithm lines and 

the reserves lines narrows down until they intercept at month 8 and 10, and then they widen out. 

The difference in the error between not having AI and implementing AI decreases as the reserves 

become more accurate representations of the final cost, and then the reserves actually become more 

accurate than the predictions, at least while using the MAE as the performance metric. Finally, it 

can also be noted that the error of the CatBoost was smaller than that of the Random Forest at the 

beginning, but then ended up the other way around. It was at month 10 that the performance of the 
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Random Forest caught that of the CatBoost and then it continued to perform with a smaller MAE 

until the end of the timeframe.  

Theoretically, it can be expected that at month 132 (when the last claim is settled), the error (both 

RMSE and MAE) of the actual costs and the reserves would be 0 (or very close to 0), as the 

reserves would be identical (or very close to identical) to the actual costs. In a similar manner, it 

can be understood that when the reserves are identical to the actual costs, all other independent 

variables become irrelevant. Of course, at this stage, using AI becomes pointless. Using AI at a 

late stage in the claim handling process would also be not recommended. Under the assumption 

that predictions are done early or relatively early, since that is the purpose of predicting in the first 

place, the results are consistent with the literature mentioned on the topic (Blier-Wong et al., 2021), 

(Levantesi et al., 2020), (Severino & Peng, 2021), (Wang & Wu, 2018) which indicates that AI 

improves results in insurance and insurance claim handling. During all of the early months, the 

reserves estimated by humans solely have a larger error than when AI is also implemented. 

Moreover, if Human Expert contribution to the predictions is represented by the variable Reserve, 

then AI contribution to the predictions is represented by all other independent variables. If 

predictions are done early, while human experts have low knowledge about the claim, then 

naturally AI predictors become comparatively more relevant. On the other hand, if predictions are 

done late, when human experts have significantly more knowledge about the claim including 

information about actual costs, then the opposite happens, and the predictor Reserve becomes 

comparatively more relevant. These values can be observed in Figures 7 and 8. At month 1 the 

variable Reserve accounts for 24% of the total variable importance for the Random Forest, and 

22% for the CatBoost. For both algorithms, this relative importance continues to grow. Although 

the growth is more pronounced in the Random Forest. Moreover, at what month does Human 

Expert contribution become larger than AI contribution when predicting? The threshold occurs at 

month 25 for the Random Forest, in which the variable importance for the variable Reserve 

becomes larger than half of the total for the first time in the timeframe, with a value of 50.4%. This 

means that from month 25, the estimations done by the expert claim handlers contribute more to 

the prediction of the costs than all the other variables combined. Yet, this never happens for the 

CatBoost algorithm within the 3-year timeframe. Even though, Reserve is still the most important 
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variable for the CatBoost, its importance, as percentage of the total importance, never reaches 

50%. The highest value occurs at month 31 and 36 with 40.9%. 

 

FIGURE 7. RANDOM FOREST: RELATIVE IMPORTANCE OF THE VARIABLE RESERVE VERSUS ALL THE OTHER 

VARIABLES ACROSS TIME 
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FIGURE 8. CATBOOST: RELATIVE IMPORTANCE OF THE VARIABLE RESERVE VERSUS ALL THE OTHER VARIABLES 

ACROSS TIME 

 

 

IN-DEPTH ANALYSIS OF THE MODELS AT MONTH 1 
 

Continuing with the analysis, the idea of a predictive analysis in this setting is to make predictions 

at an early stage of the claim handling process. Therefore, the analysis was expanded at month 1 

to find first, the best performing model and second, to interpret the independent variables used and 

their relationship with the outcome variable cost5.  

 

LASSO 
 

A LASSO regression was used as a first model. An optimal lambda (λ) of 15 was determined 

through 10-fold cross validation. With this setting, the model conserved 308 variables with a non-

zero β coefficient from 636 possible variables. This means that it shrank to zero the coefficient of 

 
5 The hyperparameters of the models in this subsection were carefully tuned using the grid search technique, as 

compared to the 72 models of the previous subsection which were not tune, as mentioned. 
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328 variables, from which a large proportion were binary corresponding to different insurance 

company clients, from the ClientName variable; different insurance coverages, from the Coverage 

variable; different accident causes, from the AccidentCause variable, different objects claimed in 

the accident, from the ClaimedObjectSubType variable, different vehicle brands from the 

VehicleMake variable, and different countries from the EventCountry variable. The shrinkage can 

be observed in Figure 9. 

 

FIGURE 9. LASSO COEFFICIENT SHRINKAGE 

 

 

Interesting insights from the LASSO can be obtained from some of the variables with the largest 

coefficients. Among these are when there is a juridical expert involved (12,805), when the accident 

involves an Aston Martin (5,426) or a Donkervoort (9,131) car, when the accident takes place in 

Ireland (8,122), when the object claimed is a train (19,806), when the accident is caused by a staff 

member (15,053), when it is a robbery (-12,682), when the accident is caused by uncommon forces 

of nature (9,925), when the cause of the accident is an overturn (10,503), when the cause of the 

accident is the condition of the road (12,917), when the accident is a collision with an animal (-

7828), when the insurance coverage is Third Party Liability (31,127), and when the insurance 

coverage is Comprehensive Cover Extra (30,712).  
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The performance of the LASSO was also assessed with an out-of-sample test using the RMSE and 

MAE as performance metrics. These were found to be 14,946 and 3,106 respectively.  

 

RANDOM FOREST 
 

Next, the analysis moved into black-box Machine Learning algorithms. The first black-box model 

used was a Random Forest. The Random Forest hyperparameters were determined. As seen in 

Figure 10, the Out-of-bag error decreases very steeply just before 125 trees; however, it also 

decreases slightly just before 500 trees. Thus, the number of trees used was 500. Additionally, the 

number of variables to be randomly selected for each split (mtry) was 6. The square root of the 

Out-of-bag error was 13,594.  

 

FIGURE 10. RANDOM FOREST: OUT-OF-BAG ERROR ACROSS NUMBER OF TREES 

 

 

The RMSE of the Random Forest was 13,735, which is very similar to the Out-of-bag error. This 

indicates a good fit to the data. The MAE was 1,885. It can be seen that the Random Forest 

outperforms the LASSO.  
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CATBOOST  
 

The second black-box Machine Learning algorithm used was a CatBoost algorithm. Boosting 

algorithms like this one allow for more hyperparameter tuning (but also depend more on it). Due 

to this process being computationally heavy and time consuming, the grid search carried out to 

find the optimal hyperparameters followed a two-step consecutive zoomed in grid search: first a 

random grid search with a broader range of hyperparameters to test iteratively; and second a 

zoomed in grid search with a narrower range of hyperparameters to test iteratively based on the 

results of the random grid search. The results can be seen in Table 2. 

 

TABLE 2. CATBOOST: TWO-STEP CONSECUTIVE GRID SEARCH RESULTS FOR HYPERPARAMETERS 

depth 11 

12_leaf_reg 9 

iterations 700 

random_strength 0.5 

learning_rate 0.12 

 

After considerable hyperparameter tuning, the performance of the CatBoost improved notoriously 

with regards to the MAE, but not as much with regards to the RMSE. The resulting error terms 

were a MAE of 1,699 and a RMSE of 15,711. 

Table 3 ranks the performance of the three models used based on three criteria: first, the lowest 

RMSE; second, the lowest MAE; and third, the lowest computational resources and time to train 

and tune. The RMSE of the LASSO is slightly lower than that of the CatBoost but its MAE is 

significantly higher compared to both the Random Forest and the CatBoost, yet it is the fastest to 

train and tune. The CatBoost is by far the one that takes the longest time to tune. The Random 

Forest ranks number 1 on the lowest RMSE, while the CatBoost ranks number 1 on the lowest 

MAE. However, the CatBoost ranks last on both the RMSE and the training time. Thus, it is the 

Random Forest that is selected as the best performing model in the analysis. It must also be noted 

though that all of these models perform better than the solely AI models discussed in the beginning 
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of the Results section, except for the MAE of the LASSO. Undoubtedly, including the variable 

Reserve into the ML algorithms improves their performance.  

 

TABLE 3. RANKING OF THE ALGORITHMS USED BASED ON RMSE, MAE, AND TRAINING/TUNNING TIME 
 

RMSE MAE Training and 

tuning time 

LASSO 14,946 (2) 3,106 (3) 1 

Random 

Forest 

13,735 (1) 1,885 (2) 2 

CatBoost 15, 711 (3) 1,699 (1) 3 

 

 

INTERPRETATION OF THE VARIABLES IN THE BEST PERFORMING MODEL 
 

Once a best performing model was selected, in this case the Random Forest from the previous 

subsection, interpretation on the effects of the independent variables on the dependent variable 

cost was done. 

From the Variable Importance Plot (Figure 11) below, it can be observed that besides from the 

variable Reserve, which was already discussed about previously, other variables are the top ten 

most relevant for the model to make predictions on the cost. These are the business days until an 

accident is notified from the moment it occurred, the number of years passed since the accident 

took place, the number of claims of the insurance companies that are clients of Van Ameyde, the 

country, the month of the year, the cause of the accident, the possible involvement of a juridical 

expert in the accident claim, the insurance company (highlighting that the costs are not uniform 

across insurance companies), the source from which the first notification arrives, and the type of 

insurance product. On the other hand, variables that are not relevant for the model include whether 

the vehicle was a total loss (this specific variable had the highest number of missing values which 

explain the lowest position in the variable importance plot when actually it could have been a 

rather important variable since it gives information on the severity of the accident), if the claimed 

object that was damaged was owned by the insured or by the third party, the policy status, the 
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possible involvement of agents specialized in assisting veterans, and if the injury was sustained by 

the insured or by the third party. It is important to mention as well that the effect of some variables 

may be captured by other similar variables, which is something a Random Forest is capable of 

handling when making predictions, but still must be considered when making interpretations. 

Some examples may be the variables IsMedicalExpert and DamageType, it is expected that 

medical experts only get involved when the damage type is an injury. Another example is the 

LiabilityStatus and LiabilityPercentage. LiabilityStatus indicates the stage in the process of 

determining liability, whether liability has been acknowledged or not, or whether it is in dispute, 

etc. LiabilityPercentage, thus, depends on LiabilityStatus. Nonetheless, calculating variable 

importance does provide useful markers to understand better how the model makes predictions. 

FIGURE 11. RANDOM FOREST: VARIABLE IMPORTANCE PLOT 
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Compared to Guelman´s (2012) study in which the variables related to the vehicle were among the 

most important, the results of this study point into a different direction as the variables related to 

the vehicle or the object involved in the accident such as VehicleMake or ClaimedObjectSubType 

are shadowed by other more important variables. These other variables were not included in 

Guelman´s study. However, other variables such as the vehicle age were not included in this study. 

While a one-on-one comparison cannot be drawn, findings suggests that some of the most relevant 

information is not necessarily related to the vehicle itself but to settings about the accident or 

surrounding the accident, such as the timing, location, and parties involved. Variables related to 

the policy or coverage have a medium importance in both studies. Maillart´s (2021) study found 

that location is an important variable in driver´s insurance claims. This study provides similar 

results as the variable EventCountry is among the top five most important. That being said, the 

variable importance plot does not indicate the direction of the effect of the variables on the cost. 

This can be assessed with a Partial Dependence Plot (PDP). PDPs of some important or interesting 

variables were drawn ahead. 

 

FIGURE 12. PDP: EVENTDATEYEAR (LEFT) & PDP: CLIENTNAME_FREQ (RIGHT) 

 

The PDP plot about EventDateYear (left) indicates how the prediction of the costs vary as the 

number of years since the accident occurred increase. There is not a large difference on the cost of 

claims when the accident took place between 1 and 4 years ago. However, there is a sharp rise at 

around 9 years which stabilizes at around 25 years. If a claim is open for so long then most likely 

there is some type of disability and/or loss of the ability to work, which first is an ongoing cost 

and second it significatively increases the cost of the claim.  The PDP on the right suggests that 

the cost from claims of infrequent clients (insurance companies that have only handled a handful 
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of claims with Van Ameyde) are notoriously higher than those of frequent clients (that have 

handled thousands of claims).  

 

FIGURE 13. PDP: ISJURIDICALEXPERT (LEFT) & PDP: ISMEDICALEXPERT (RIGHT) 

 

 

The two PDPs above (Figure 13) are very similar to each other. Both, when there is a juridical 

expert or a medical expert involved in the claim, the average predicted cost increases in a similar 

proportion. 
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FIGURE 14. PDP: EVENTCOUNTRY 

 

 

The countries that on average lead to higher cost predictions are the United Kingdom, Ukraine, 

Norway, Turkey, Sweden, and Switzerland. On the other hand, Greece, Germany, Italy, Latvia, 

and Malta tend to generate lower cost predictions. The Netherlands is also positioned in the bottom 

half of the graph.  
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FIGURE 15. PDP: EVENTDATEMONTH 

 

 

Accidents that occur towards the beginning/end of a year, between December and January seem 

to lead to higher cost claims. Moreover, the costs seem to progressively decrease reaching a 

minimum in summer around July and the progressively increase again.  
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FIGURE 16. PDP: VEHICLEMAKE 

 

 

When it comes to vehicle make, there are two brands that are clearly above the rest. These are 

Aston Martin and Aprilia. These results are interesting since, while an Aston Martin is among the 

most expensive cars in the world and hence its repair is expected to be expensive, Aprilia is mostly 

a scooter and motorcycle brand. The reason why an Aprilia might be so high in the charts is 

because of potential bodily injuries. These can be expected to be more severe when there is a 

scooter or motorcycle involved instead of a car.  
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FIGURE 17. PDP: ACCIDENTCAUSE 

 

The accident leads to a higher cost claim when the cause is being on the wrong side of the road or 

when encroaching the opposite traffic lane, which possibly leads to a frontal impact between 

vehicles. A windshield damage possibly causes limited visibility and also generates a high-cost 

claim on average. Lower cost claim accident causes include stationary vehicles and similar, such 

as an accident when reversing or opening a door. 

To summarize, these are some of the results gathered about the performance of the different 

algorithms used when predicting Green Card System driver’s insurance claims as well as how 

aspects such as variable importance vary across time when knowledge of the claim increases. It 

also goes into interpreting how other variables related to the what (DamageType, 

ClaimedObjectSubType), where (EventCountry), why (AccidentCause), when (EventDateYear, 

EventDateMonth), and who (ClientName, IsJuridicalExpert) of the accident have an effect on the 

final cost. 

 



47 
 

VI. CONCLUSION, LIMITATIONS, AND FUTURE RESEARCH 
 

This study sought to make use of very interesting and difficult to come by data to analyze aspects 

relevant within insurance, more specifically Green Card System driver’s insurance. It also has a 

broader relevance since it analyzed potential manners in which AI can collaborate with Human 

Experts and how this collaboration leads to better results. Additionally, it investigates how the 

interaction between the two parts (AI and Human Experts) is dynamic and might vary across time 

as knowledge or information is updated.  

When Human Experts are given the task to predict an outcome based on their experience, or 

previous knowledge, or instinct, or calculations they make, etc. It is a good idea to use this as an 

additional predictor in a Machine Learning algorithm along with other variables to potentially 

obtain better predictions.  

While this study initially had the idea of ‘seeing how AI predictions are better than claim handler 

estimation of reserves’ it was soon after the start of the study that the focus shifted and became 

‘how can AI be used along claim handler estimation of reserves to better predict ahead of time the 

cost of a claim.’ This shift from AI versus Human Expert to AI plus Human Expert was a 

breakthrough in the study and ultimately allowed for very interesting insight. This can certainly be 

replicated in lots of setting, even in different industries and fields.  

Moreover, regarding the predictions, the best performing model turned out to be a Random Forest 

algorithm above a LASSO regression or a Boosting algorithm in the form of Categorical Boosting 

(CatBoost). Global Interpretation Methods allowed to determine pointers within the variables that 

usually lead to higher or lower cost claims. As an illustrative example, one of the most expensively 

possible claims for Van Ameyde (according to the model) would be from an accident involving an 

Aston Martin (even more so than a Lamborghini or Rolls Royce) cause by encroaching the 

opposite traffic lane, in the United Kingdom, in July, in which a lawyer was involved, there was 

bodily injury and a medical expert was involved, in which there was a delay between the accident 

taking place and the claim being notified, and it came from an infrequent client. Of course, other 

variables also come into scene, and there are also interaction effects between the variables, but 

having some elements of interpretability do help especially in a business context.  
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The study also faced some important limitations. Even though the models provide improved 

predictions, they did lack information within the training dataset. For instance, no variable 

captured information about the severity of an injury. There was a variable that determined if there 

was an injury or not, but it was not known if the injury referred to a broken finger or a pierced 

lung. Other variables that could have been very useful such as VehicleTotalLoss were not 

consistently recorded in the system by the claim handlers. This highlights the importance of 

establishing a stringent data recording process. If some box fields in the system are optional when 

registering a claim, most claim handlers will leave that box field empty. It is recommended to 

make all fields compulsory to register in the system.  

Other limitations included the vast number of subcategories within the categorical variables. Any 

form of subcategory selection implicates some degree of loss of information. With more 

computational resources, maybe more subcategories could have been included to find more 

specific insights. Further research can test different criteria of subcategory selection or variable 

encoding. Further research could also expand the timeframe of 3 years.  

Other studies can expand on the Human Expert information and include variables about the Human 

Expert such as years of experience of the claim handler, approach taken (optimistic approach, 

conservative approach, best estimate). Maybe the Human Expert proxy variable improves the 

model under certain characteristics, or in a greater/lesser degree.  

To conclude, predicting insurance claim costs is a complex topic and thus any collaboration 

between AI and Human Experts is welcome in a business context (for a company such as Van 

Ameyde), but also in an academic context, since the world is still discovering how AI will work 

with humans and how does the outlook of a fourth industrial revolution or a technological 

revolution look and what implications it will bring.  
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APPENDIX A: EXPLORATORY PLOTS – BEFORE MODELING 
 

FIGURE 18. EXPLORATORY BOXPLOT BETWEEN EVENTCOUNTRY & COST 
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FIGURE 19. EXPLORATORY BOXPLOT BETWEEN CLAIMEDOBJECTSUBTYPE & COST 
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FIGURE 20. EXPLORATORY BOXPLOT BETWEEN VEHICLEMAKE & COST 
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FIGURE 21. EXPLORATORY BOXPLOT BETWEEN ACCIDENTCAUSE & COST 

 

 


