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Abstract 

Participating life insurance contracts are characterized by a minimum interest rate guarantee 

and pay dividends to its policyholder based on how well the issuing company is doing. These 

contracts are endowments that contain implicit options-like features such as minimum interest 

rate guarantees, stochastic annual surplus participation, terminal bonus and a surrender option. 

The stable returns are obtained through the combination of guaranteed benefits and non-

guaranteed bonuses that are paid to the policyholders. In the existing literature the options are 

priced under strong assumptions, such as constant interest rates, and only take univariate risk 

factors, such as stochastic stock prices, into account. In this thesis, we investigate the impact of 

the term structure, the long-term investment, the price inflation, the mortality, the surrender 

behavior and the implication of multivariate risk on the fair pricing of the single premium life 

insurance policy. The fair contract can be priced by applying risk-neutral valuation methods and 

Monte Carlo simulation.  

 

Keywords: Participating life insurance contract; Risk-neutral valuation; Embedded option, Bonus 

distribution; Interest rate risk; Inflation risk; Lee-Carter mortality model; Surrender option; 

Multivariate risk; Monte Carlo simulation. 
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1. Introduction 

In a number of European countries, life insurance policies with profit-sharing are designed to 

provide the policyholder the right to either receive at retirement an assured accumulated fund or 

a life annuity with a series of regular payments. These products are appealing to the policyholders, 

not only because they are tax-deferred, but in particular because they offer a certain minimum 

interest rate guarantee to the insured’s account in each policy year. The financial guarantees 

found in these contracts can be viewed as embedded options. Their popularity along with the 

recent market turmoil has highlighted the importance of adequately pricing these complex 

contracts. 

The purpose of this work is to get insight into the pricing of minimum rate of return 

guarantees (MRRGs) embedded in a participating (or profit-sharing) life insurance policy such as 

described above. In these policies, the benefits credited to the policyholder are dependent on the 

performance of a specified investment portfolio, a so-called segregated fund. In practice, the 

benefits provided by the life insurance providers is usually the guaranteed rate of interest plus 

some bonus participation (i.e. dividends) entitled to beneficiaries at every policy year. Interest 

rate guarantees, ancillary bonus features and the possibility of early withdrawals of the contract 

(i.e. the surrender option) are common examples of implicit option elements. These implicit 

options can be very valuable and can thus represent a significant risk to the insurance companies 

issuing these contracts in case of insufficient risk management.  

As a result of the significant downturn of the stock market and the decline of interest rates in 

the 1990’s, the issued interest rate guarantees have moved from being far out of the money to 

being very much in the money. Several life insurance companies, such as Equitable Life Assurance 

Society (ELAS) in UK and Nissan Mutual Life in Japan, have gone into bankruptcy because they 

were unable to fulfill the liabilities imposed by minimum rate of return guarantees [see, e.g., Briys 

and de Varenne (1997)]. The concern over embedded options is also reflected in recent regulatory 

regimes. Moves towards harmonized accounting standards and more coherent solvency 

requirements on capital management, financial reporting now requires an evaluation of the 

market value of insurance liabilities, and thus embedded options, at fair value.1 With a fair 

contract we mean a contract for which the premium paid by the policyholder is equal to the value 

of the contract. As opposed to the shortcomings of traditional deterministic actuarial pricing 

methods, initiatives such as the Financial Assessment Framework (Financieel Toetsingskader - 

FTK) for pension funds in the Netherlands and the Solvency II for (re)insurance companies in the 

                                                      
1
 Further research into this subject is deemed of common interest to the calculation of Market Consistent 

Embedded Value (MCEV), Economic Capital (EC), Asset Liability Management (ALM) and Product Pricing & 
Development. 
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European Union (Swiss Solvency Test in Switzerland) have been introduced. It is now clear that, 

in striving for higher returns, not enough adequate attention was paid to the underlying risks 

embedded in many life insurance products. The weak financial position of many insurance 

companies and the rise of new accounting and solvency regimes have highlighted the need to 

secure financial resources and improve risk management practices to meet retirement needs.  

The growing interest in the field of an accurate valuation of embedded options in life 

insurance contracts is witnessed by the very large number of papers devoted to this issue. To our 

knowledge, however, a comparatively large portion of the academic literature in this area has 

been analyzing unit-linked or equity-linked guarantees, i.e. policies where the interest rate 

credited to the insured’s account is linked directly and without lags to the return on some 

reference (equity) portfolio. Since the pioneering work by Brennan and Schwartz (1976) and Boyle 

and Schwartz (1977) using contingent claims theory, a great prominence has been given in the 

financial and actuarial literature to the issues of pricing and hedging equity-linked life insurance 

contracts.2 Other papers that deal with guaranteed equity-linked contract are Boyle and Hardy 

(1997), Nielsen and Sandmann (1995, 1996a,b, 2002b), Bacinello and Persson (2002), Schrager and 

Pelsser (2004), Vellekoop, Vd Kamp and Post (2006) and Castellani et al. (2007). In equity-linked 

contracts, the minimum return guarantee can be identified as a European put option, and hence 

the classical Black and Scholes (1973) option pricing formula can be used to determine the value 

of the financial guarantee.  

Participating life insurance contracts are far more complicated than equity-linked contracts. It 

is the bonus account and associated distribution mechanism which distinguishes what is 

commonly termed participating contracts from equity-linked contracts. The existence of a bonus 

account can be visualized as a buffer account on the liability side of the insurer’s balance sheet, 

where investment surplus is set aside in years with good investment performance to be used to 

cover the annual guarantee in years when the investment return is lower than the guarantee. 

There are several ways in which this profit-sharing is realized. The interest rate crediting 

mechanism applied is often referred to as a portfolio average method or an average interest 

principle [see Grosen and Jørgensen (2000)], combined with a minimum guarantee.  

The valuation of embedded options in insurance products focuses on participating products 

has been studied by Hipp (1996), Briys and de Varenne (1997), Grosen and Jørgensen (2000, 2002), 

Miltersen and Persson (2000, 2003), Lindset (2003), Kling, Richter, and Ruß (2006) and Plat and 

Pelsser (2008). One of closed to ours is the study by Grosen and Jørgensen (2000), who analyze a 

single premium participating policy in the Black and Scholes (1973) framework, and price by 

                                                      
2
 Extensions of their empirical works are made by Aase and Persson (1997) and Miltersen and Persson (1999) who 

analyze guarantees lasting for only two periods with stochastic interest rates respectively in a Vasicek (1977) and Heath-
Jarrow-Morton (1992) framework. 
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means of Monte Carlo simulation and binomial lattice approach. The authors show that the 

typical participating policy can be decomposed into a risk free bond element, a bonus option, and 

a surrender option.  A surrender option is an American-style option that entitles its owner to sell 

back the contract to the issuer at the surrender value. In case that the investor ‘walks away’, 

he/she obtains the account value whereas the reserves remain with the company. Further 

contributions regarding the fair premium evaluating problem with surrender option is given by 

Bacinello (2001, 2003a,b), Tanskanen and Lukkarinen (2003), Andreatta and Corradin (2003), 

Shen and Xu (2005), Bacinello, Biffis and Millossovich (2008).  

The value of the embedded option is subject to a wide spectrum of risks, running from pure 

financial risk such as random interest rates, inflation rates and equity risk at one end to pure 

actuarial risk − the risk that the assumptions that actuaries (insurance statisticians) used to price 

a specific insurance policy may turn out wrong or inaccurate − such as mortality risk and 

surrender risk. From the literature provided here, very few, if any, of these papers have considered 

the valuation of participating policies under both actuarial and financial risks and its dependence 

structure. The downfall of the stock market and interest rates recently has proved to be 

particularly dangerous for the pricing of insurance contracts. This unrest, also fed by ageing 

discussion, i.e. the increase of life expectancy and the decline in mortality rates at adult-old ages, 

encouraged a broadly conducted debate on the pricing and hedging of embedded options and 

pension guarantees. In the insurance industry, unexpected improvements in life expectancy, the 

so-called longevity risk, may lead to low-frequency and high-severity losses in businesses which 

involve cash flows that are contingent on survival, e.g. life annuities. According to Koissi et al. 

(2006), past mortality projections have consistently underestimated actual improvements in 

mortality rates and life expectancy at both birth and age 65. Moreover, it should be realized that 

the existence of any financial incentives to surrender implies that there is an explicit risk of 

discontinuance. The possibility that clients may choose to exit the contract prematurely may 

adversely impact the company’s financial position. The value of the guarantee contracts is also 

subject to price inflation. Generally, only inflation-proof pensions can protect pension 

beneficiaries from financial insufficiency after retirement. Furthermore, multivariate risks 

involved in stochastic time-series are often neglected when pricing embedded options.  

This thesis takes a fundamentally different approach from those studies discussed above. The 

main contribution with respect to the existing literature is that we consider the embedded 

options under a more realistic framework. In particularly, we introduce a new approach that 

investigate the impact of financial risk factors such as interest rate risk, inflation risk, equity risk, 

and actuarial risk (including mortality risk and surrender risk), on the fair pricing of pension 

guarantees. In addition, we study the various sources of uncertainty under the presence of 

multivariate risks. Therefore, our results will give annuity writers better indications on the costs 
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of profit-sharing life insurance contract, which makes our setup more realistic and robust to other 

studies. 

To better understand how fair valuation is feasible, we construct a model for valuation of 

participating life insurance contracts, by extending the work of Miltersen and Persson (2003). 

According to Miltersen and Persson (2003), a profit-sharing policy account can be divided into 

three portions: the insured’s account, the insurer’s account and a reserve (bonus) account. The 

authors present closed-form expressions and Monte Carlo simulations to price the option values. 

In their model, any positive balance on the bonus account at the maturity of the guarantee 

contract, so-called terminals bonus, is rewarded to the policy owner, whereas the negative balance 

of the bonus account is covered by the insurance provider. However, in the paper proposed by 

Miltersen and Persson (2003), there has been little focus on the quantification of risks and in 

particular of the correlation of risks with each other. For instance, an assumption of their model is 

that the short-term interest rate is known and constant over the lifetime of the contract.  Pension 

liabilities are of a long duration and changes in the short-rate may occur. Because of this, 

stochastic interest rates may be more appropriate than a constant rate. Furthermore, also 

mortality risk is not considered in their paper. Since mortality risk has significant financial impact 

on insurance policies and pension plans, it is now well-accepted fact that stochastic approaches 

shall be adopted to model mortality risk. Moreover, the authors only consider a single premium 

policy contract of European-style, whereas policies with surrender option of American-style are 

more appropriate from a practical perspective. The American type contract has an extra feature 

compared to the European type contract in that it can be terminated at the investor’s discretion at 

the end of each year. In order to fill this gap, we concentrate on both European and American 

participating contract with single premium endowment. Additionally, both financial and actuarial 

risks are incorporated into the empirical study of embedded options. It is worth noting that these 

two classes of uncertainty can be analyzed separately since we have assumed that financial and 

demographic factors are independent. We also show how such contracts can be valued using 

stochastic modeling and Monte Carlo simulation. 

Different numerical methods are presented to deal with various risk factors existing in the 

participating contract. The values of the embedded options in this thesis are measured using 

arbitrage-free option pricing techniques and assuming complete markets. We start by modeling 

the term structure of interest as a stochastic process using the one-factor Vasicek model (1977). 

The short inflation rate is assumed to follow an Ornstein–Ulhenbeck process. Provided that the 

underlying investment portfolio contains additional non-fixed income assets, the equity returns 

process is modeled by a standard geometric Brownian motion (GBM). Furthermore, the mortality 

intensity is modeled according to the Lee-Carter mortality model (1992) using Dutch population 

data with an extension in old-age modeling. With respect to the surrender risk, we perform the 
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powerful Least Square Monte Carlo simulation in order to construct efficient estimator for 

American-style contract. We also show how to incorporate the multivariate risk into these pricing 

methods. The methodologies proposed here to value embedded option are all carried out by 

Monte Carlo simulations. 

The analysis of numerical results led to several conclusions. Our numerical studies showed 

that the insurance company is mainly exposed to the equity risk, interest rate risk and the 

mortality risk. In particular, it turns out that the risk-neutral value of an insurance contract with 

stochastic short rates mostly exceeds the value of a contract with a constant or deterministic short 

rate for a comparable parameter choice. The reason why interest rate risk modeling is essential to 

insurance companies is because they reflect the expected future returns and at the same time 

interest rates are also used to discount future cash flows (pension benefits). We also found that 

the effect of the inflation rate risk on the contract value is relatively small due to the strong mean-

reversion characteristic of the inflation process. In other words, the tendency to revert to its long-

term inflation rate weakens the impact of inflation rate variability. Moreover, we argue that the 

multivariate risk modeling is important regarding the pricing of life insurance contracts and 

embedded options. The way how it affects the contract value crucially depends on the value of the 

correlation parameter. Furthermore, we show that the mortality risk influences the contract value 

considerably. This can be attributed to the uncertainty surrounding future mortality rates and life 

expectancy outcomes. With respect to the surrender option, it is unclear whether the possibility 

of early withdrawals of the contract positively or negatively impacts the risk-neutral value. It is 

shown that the surrender effect depends on the parameters used in the model. Additionally, the 

implication of asset allocation is investigated. We found that the fair values derived from the 

diversified portfolio are significantly lower when compared to the undiversified portfolio.  

The remainder of the thesis is organized as follows. In Chapter 2, we provide an overview of 

the pension system prevailing in the Netherlands and explain the main principles of the new 

minimum supervisory requirements laid down in the FTK and Solvency II. We then describe the 

structure of the insurance contract in a complete market setting and introduce the general pricing 

framework for single premium policies with guaranteed return embedded in segregated funds in 

Chapter 3. In Chapter 4, we present the model setup and analyze the impact of financial risks on 

the fair value of minimum rate of return guarantees in a stochastic framework. This chapter also 

includes the formulation of the methodology of multivariate risk. In Chapter 5, we provide a 

detailed empirical study of mortality risk using the original Lee-Carter model. Chapter 6 is 

devoted to the pricing of surrender options and describes the LSMC methodology. In the final 

chapter, we summarize our results and give prosperous directions for future research. 
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2. Public Pension System and Regulatory Rules 

In this chapter, we present a brief outline of the Dutch pension system and discuss the current 

developments in the area of pension reforms in the Netherlands.  Furthermore, we motivate the 

use of market-consistent valuation of pension liabilities. Solvency requirement by regulators are 

one major reason for it. We end the chapter by providing an overview of various participants and 

their role with respect to the insurance contract that will be analyzed throughout the thesis.    

2.1. Brief overview of the Dutch pension system 

As in most developed countries, the Dutch pension system may be characterized in terms of 

three pillars, namely a flat-rate state pension related to minimum wages, occupational pension 

schemes which are capital-funded, and individual saving plans.  

The first pillar is based on two acts: the General Old Age Pensions Act (Algemene 

Ouderdomswet - AOW) for all residents living in the Netherlands aged 65 and over and the 

National Survivor Benefits Act (Algemene Nabestaandenwet - ANW) for people whose partner has 

passed away. The AOW is an anti-poverty pillar that is non-contributory, guarantees a decent 

minimum income at old age, and is primarily dependent on government funding. The AOW 

contribution is financed by everyone younger than 65 years with a taxable income and is based on 

a pay-as-you-go (PAYG) framework.3  

The second pillar (occupational pension) plays a crucial role in the Netherlands and is 

considered as supplementary to the AOW state pension. More than 90% of the Dutch labor force 

is covered by an employer-sponsored funded pension plan. The Netherlands’ supplementary 

pension system mainly consists of funded defined benefit (DB) plans. These plans are organized 

in one of three ways: by company-specific (Ondernemingspensioenfonds - OPF), by industry-wide 

(Bedrijfstakpensioenfonds - BPF) or by group pension agreements with insurance companies.4 OPF 

are funds set up for the use of accumulating funds only for the purpose of one company or a 

group of companies, whereas BPF are funds set up for a specific sector of industry, e.g., the Dutch 

ABP pension fund who covers the pension scheme of government and education workers. The 

general aim of occupational pension scheme is to supplement employee’s future AOW pension to 

around 70% of the salary. In contrast to the first pillar, the benefits from the second pillar are not 

flat, but are related in some way to contributions.  

                                                      
3
 In this setup, the total contributions paid by employees are used to pay pensions to current pensioners and no 

pension capital is set aside for future pension payments. 
4
 According to the research of the Dutch Central Bank (De Nederlandse Bank - DNB) in 2006 [see Bikker et al. 

(2009)], two-thirds of the system’s total assets and 85% of the plan participants is hold by industry-wide funds. 
Company-specific funds encompass 30% of the remaining assets and 15% of the plan participants. The market size of 
group pension agreements is mostly very small. 
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The third pillar is considered a voluntary savings pillar, available to anyone who is not 

satisfied with the mandatory state pension system and is willing to supplement the retirement 

income provided by the first two pillars. Contributions paid into private plans are invested in 

some way to obtain endowment insurance (lump sum) at retirement or a predetermined periodic 

payout until the death of the client (life annuity). This third pillar of the Dutch pension system is 

relatively small. 

The present outline focuses in particular on the second pillar since it is closely related to the 

valuation of interest rate guarantees. We shall later explain the corresponding economic meaning 

and motivation that leads to market-based values for these products. 

2.2. Pension Agreements 

Within the second pillar, the nature of pension arrangements agreed between the employer 

and the employee may be classified as defined-benefit (DB) or defined-contribution (DC) 

according to how the benefits are determined. The majority of Dutch pension contracts are DB 

contracts, where the benefit payments upon retirement are predetermined by a fixed formula 

which usually depends on the member’s salary and the number of years of service. In DB 

agreements, financial or longevity risks − a change in value caused by the actual mortality rate 

being lower than the one expected − are typically borne by the scheme sponsor. In contrast, a DC 

plan will provide a payout at retirement that is dependent upon the amount of money 

contributed and the performance of the investment vehicles utilized. The investment risks during 

the accrual stage are therefore borne by the individual. 

Retirement arrangements have been predominately DB pension plans, but over the past 

decade, there has been a shift toward DC arrangements. There are number of factors which have 

been used to explain the decline of DB schemes. The main motivation behind most DC proposals 

is to enhance the managing of employees’ costs. In such a plan most of the funding responsibility 

is shifted from sponsors to employees, reductions in fund values due to stock market crashes are 

contributed to employees only. In contrast, this will not be possible under a DB scheme where the 

employer is required to maintain the agreed levels of benefit irrespective of how well the 

investments are performing. Furthermore, the extra burden related to increased longevity and 

lower interest rates makes DB plans expensive to maintain. This development, together with 

increased emphasis on market-consistent valuation in regulatory and accounting rules, has lead 

to a switch of DB plans to DC plans throughout the world.  

Although DC is becoming more fashionable, there are still concerns remaining. A major 

concern with DC plans is whether all employees have the ability to invest their funds wisely in 

order to maintain an adequate pension income for future retirement. The credit crisis has dealt a 
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heavy blow to the global financial sector and has highlighted once again that this might not be a 

socially desirable outcome. To mitigate this problem, insurance companies usually insert into the 

contract a minimum guarantee that assures the policyholder to receive at maturity at least a 

predetermined sum [Bodie and Crane (1999)]. For such contracts, realistic valuation techniques 

and an implementable risk management methodology must be available.  

2.3. Regulatory regimes 

2.3.1. Financial Assessment Framework (FTK) for pension funds 

Since 1 January 2007 the new Dutch Financial Assessment Framework (Financieel 

Toetsingskader - FTK) relating to pension funds has been in place. The FTK is the part of the 

Pension Act (replacing the old Pension and Savings Funds Act, which goes back to 1952) that lays 

down the statutory financial requirements for pension funds. This regulation states that it is 

intended to improve the insight of both the supervised institution as well as the supervisory 

authority into the institution’s financial position and its possible development over the short and 

medium term. The FTK is built around the principles of mark-to-market valuation, risk-based 

financial requirements and transparency. The goal behind these initiatives is to protect the 

policyholder from the consequences of an insolvency of a pension fund. Below, we will outline 

these principles in more details. 

First, according to the new regulatory rules the valuation of liabilities of pension funds should 

be implemented in a market-consistent way. In the past, assets are mostly valued at market 

prices; liabilities − as far as they relate to contractual obligations to the insurance client − are 

measured by established actuarial methods such as a fixed discount rate rather than market-based 

one. The use of deterministic methods allowed life insurance companies to ignore the sources of 

variability, and in particular the occurrence of extreme events. For the valuation of the pension 

liabilities FTK promotes the use of the current nominal term structure of interest rates. More 

specifically, the FTK prescribes the use of an interest rate swap curve. Second, the FTK manages 

the risks trough consistent strengthening of the solvency requirements. The pension funds are 

subject to a series of stress tests that are expected to encourage more investments in fixed income 

(see Appendix A).5 Third, the FTK is driven by a growing awareness of the need for transparency, 

corporate governance and the safe guaranteeing of the assets in the pension fund.  

                                                      
5 As aforementioned, a pension fund must have sufficient own funds to meet its obligations. The FTK compromises 

two conditions on the solvency. First, the solvency should be at least 5% of the liabilities. If not, a recovery period of one 
year is allowed. Second, a confidence of 97.5% that the value of the fund’s investments will not less than the level of the 
technical provisions within a period of a year is required. A recovery period of 15 years is allowed to meet the 
requirement. 
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The financial crisis that broke out in September 2008 has unfavorable consequences for the 

Dutch pension funds. Many pension funds faced a funding ratio deficit, as their portfolio was not 

build to protect against extreme shocks. The required coverage ratios imposed by the FTK came 

under pressure. Pension liabilities (e.g. pension guarantees) which are valued on a mark-to-

market basis have been severely influenced by the low interest rates. Together with the poor 

investment performances, the matching of asset and liabilities becomes more complicated and is 

likely to drive pension funds to favor fixed income over corporate equities. The fear of falling 

behind the 105% ratio is expected to push Dutch pension funds to increase pension contributions 

and (or) to reduce pension benefits. From these perspectives, it is thus crucial that risk 

management must be secured more tightly in the governance structure of the enterprise. 

2.3.2. Solvency II for (re)insurance companies 

In the past few years, we have observed several failures of financial companies, for instance 

Barings Bank (1995), HIH Insurance Australia (2001) and Lehman Brothers (2008). It is therefore 

essential that risks are known, specified and controlled by the management.  

New European regulations for insurance companies, known as the Solvency II guidelines, will 

govern the capital requirements of (re)insurance companies in the European Union. The aim of 

Solvency II is to improve insurance regulation and supervision by introducing a more advanced 

risk based economic approach. Solvency II bases supervision more on the concept of ‘exposure to 

risk’ and therefore offers more securities and a more intelligent system than the old regime, i.e. 

Solvency I.6  

The new regulatory rules show strong affinity with the Basel II of the banking sector and local 

initiatives like the Swish Solvency Test. Similar to the banking supervisory system, Basel II, The 

European Union Solvency II system is based on a three-pillar approach. The first pillar includes 

quantitative requirements such as assets, liabilities and capital valuation. The second pillar 

focuses on the supervisors and their review process such as risk management as well as company’s 

internal control. The third pillar addresses supervisory reporting and public disclosure of financial 

and other information by insurance companies. The latter case will promote the market discipline 

and greater transparency, which will help to ensure the stability of insurers and reinsurers. For a 

complete overview and discussions of Solvency II we refer to Sandström (2007). 

                                                      
6
 Solvency II should solve a number of serious shortcomings of the current Solvency I regulations. For example, 

under Solvency I, only liability-driven risk is taken into account and also in a rather simplified way. No distinction has 
been made between different levels of asset allocation regarding the solvability buffer: the required capital for a 70% 
equities and 30% bonds asset allocation is the same as for a 30% equities and 70% bonds asset allocation, while the 
corresponding balance sheet risks are obviously completely different. 
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2.4. Outlook, pension scheme reform and policy debates 

Like other countries, the Netherlands has adapted and reformed its pension system during the 

last few decades. In this subsection we review some the most remarkable pension reforms 

observed in the Netherlands: (i) shift from final to average earnings contracts; (ii) absence of 

complete indexation; (iii) potential increment of the AOW retirement age.7 

As already stated, many companies in the United States, Europe and Japan have shifted from 

defined-benefit (DB) to defined-contribution (DC) schemes. In contrast, Dutch pension plans 

have mainly preserved their DB character in recent years, although they have switched from 

‘final-pay’ to ‘average-wage’ schemes. The average-wage plans may be better viewed as hybrid DB-

DC schemes. In the postwar period, workers are in general eligible for a pension covering 70% of 

the last earned income after 35-40 years of paid work (final-pay scheme). Nowadays, this standard 

has been modified. A total pension based on average-wage scheme is considered sufficient. In the 

case of an average-wage scheme, individuals accrue pension rights annually based on the salary 

earned in each year of their pensionable service (rather than the final salary scheme). According 

to a survey of the Dutch Central Bank (DNB), the majority of the contracts (56.1%) were final-pay 

contracts in 2001, whereas in 2005 the percentage of active participants with a final-pay and an 

average-wage scheme are respectively 10.6 and 74.3.  

Another important development is that the common practice of granting full indexation 

(correction for pension rights for inflation) by pension funds is stopped. In the Netherlands, 

indexation of pension benefits to either wage or price inflation − depending on the terms of the 

pension contract − has long been considered a guaranteed right. Due to adverse economic 

circumstances and international accounting rules, many pension funds became severely 

underfunded.8 This has resulted in grave uncertainties in the indexation of many pension 

schemes. In order to recover, pension contributions were increased and indexation cuts are 

bound to be implemented. Bikker and Vlaar (2007) analyze the conditional indexation in DB 

pension plans in the Netherlands and provide recommendations regarding the various types of 

indexation and contribution policies. Without full indexation, the accrued pension benefit at 

retirement may therefore not reach the 70% target of final or average salary schemes. At this 

moment, the vast majority (85%) of pension fund members build up pension according to a 

conditional average-wage DB type. 

                                                      
7
 In March 2009, the Prime Minister Jan Peter Balkenende of the Netherlands made a formal proposal to raise the 

legal retirement age from 65 to 67. Till today, no official agreement has been reached between the Dutch government 
and the respective labour unions and employee associations. 

8
 Low interest rates imply lower expected future returns, raising the discounted costs of future pension benefits. 

Under the previous regulatory regime, effective until end-2006, the maximum allowed actuarial interest rate, used to 
calculate the levels of contributions and the funding ratio of the fund, remained constant at 4%. 
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More recently, the Dutch government has announced a proposal to raise the official ‘AOW 

retirement age’ from 65 to 67 in an effort to improve state finances and to cope with the 

contraction of the working population which finances the Dutch state pension. This issue has 

caused extensive discussions among politicians, unions for employees and public opinions. In this 

thesis, the valuation of profit-sharing contracts is based on a pensionable age 65. Any deviations 

from the legal retirement age should be easily implemented by a minor modification of the 

model. 

2.5. Review of pension participants 

Occupational pension schemes are mainly arranged by pension funds or life insurance 

companies. The participation structure of various pension participants subject to regulatory 

supervision is presented in the following figure. 

 

Fig. 1. This figure provides a general overview of the linkage between the different 
pension participants and its connections with (international) financial regulation 
regimes. Annuity provided to employees is only available after the retirement.  

 

We start by analyzing the role of pension funds and insurance companies in more details. The 

main task of a pension fund is to organize the investment of employees’ retirement funds 

contributed by the employer and employees. At the retirement age, accrued pension benefits are 

provided to beneficiaries. Both industry and company pension funds are faced with two major 

decisions: 1) provide pension plans and bear the various risks involved; or 2) transfer the risks to a 

third party by issuing an insurance contract (i.e. reinsurance).9 For the latter, extra risk premiums 

are required by the (re)insurance company for bearing the risks. On the other hands, guarantee 

                                                      
9 An insurance contract is characterized by the agreement that one party (e.g. reinsurance company) accepts 

significant insurance risk from another party (e.g. insurance company or pension fund). 



CHAPTER 2.   PUBLIC PENSION SYSTEM AND REGULATORY RULES 

12 
 

contracts may also directly implied by insurance companies without involvement of a pension 

fund.  

As a result of the recent economic recession, higher contributions are required from active 

pension or life insurance plan participants, indexation cuts are bound to be implemented, or even 

defined benefits to beneficiaries may be reduced. Pension funds are allowed to implement these 

measures whenever a compelling situation arises. For those reasons, pension funds are authorized 

to invest greater capital amounts in high-risk assets, such as equity share, real estate and 

mortgages. Insurance companies, on the other hand, do not have the ability to implement these 

measures in case of insolvency. Disastrous consequences of mismatching the risk associated with 

pension guarantees (implicit options) are thus critical issues for insurance companies. The 

objective of this thesis is to conduct further research into the valuation approach of minimum of 

return guarantees, in order to assess the risk profile of embedded options and mitigate potentially 

large losses from financial guarantee contract for particularly insurance companies.  

As discussed in Section 2.3, the European Commission has set up a new framework for the 

supervision of the insurance sector titled Solvency II and the statutory financial requirements for 

pension funds is presented in the FTK. On top of that, the market-oriented approach has been 

also promoted by the international accountancy standards (IFRS), as compiled by the 

International Accounting Standard Board (IASB), to encourage financial institutions (employers) 

to value their balance sheets at current market prices. At this moment, the insurance liabilities 

are reported based on their book value, where economic assumptions are often not directly linked 

to the financial market. The main drawback remains the inability to value the costs of options and 

guarantees.  

Finally, we mention that the supervision and intervention measures should be implemented 

in a coordinated fashion and at international level. This would demand an improved mutual 

harmonization of the European supervision and the associated local authorities such as the Dutch 

Central Bank (DNB) and the Netherlands Authority for the Financial Markets (AFM). DNB and 

AFM are responsible for monitoring the financial position of pension providers and assess 

whether they are financially sound and able to fulfill their future obligations.  

 

  



Fair Valuation of Embedded Options in Participating Life Insurance Policies 

13 
 

3. Insurance Contract and Embedded Options 

In the previous chapter we have reviewed the Dutch pension system and motivated the use of 

market-based valuation of liabilities. In this chapter we discuss the primary characteristics of 

minimum rate of return guarantees in Section 3.1. We then describe the linkage between 

minimum interest rate guarantees and embedded options in Section 3.2. Section 3.3 is devoted to 

the description of the insurance contract that we analyze in this thesis. In Section 3.4, we present 

closed-form solutions for the initial market value of insurance accounts under the assumption of 

deterministic interest rates. We then provide the fair pricing principle in Section 3.5. We treat 

numerical examples in the final section of this chapter. 

3.1. Background on minimum rate of return guarantees 

Minimum rate of return guarantees (MRRG) are important elements of many insurance 

contracts offered in today’s financial market. The main characteristic of MRRGs is to provide 

benefits contingent on survival or death of individuals. These guarantee contracts are embedded 

in various life insurance products in the Netherlands, such as equity-linked (unit-linked) products 

and profit-sharing (participating) contracts.  

Under a defined benefit (DB) pension arrangement, the value of an equity-linked contract is 

directly linked to the performance of a portfolio of assets associated with the contract, such as a 

mutual fund, a certain stock, a stock index or a foreign currency. The guaranteed minimum is 

then binding only at the expiration of the contract. The return of a profit-sharing contract is 

determined periodically until the termination of the contract. The profit-sharing insurance 

contract stands in contrast to equity-linked products in that interest is credited to the policy 

periodically according to some bonus distribution mechanism which smoothes past returns on 

the life insurance company’s assets. Intuitively, profit-sharing contracts are more valuable than 

equity-linked contracts [see Finkelstein et al. (2003)].  

In order to gain a better understanding of the valuation of the two types of guarantees, we 

refer to a pure endowment policy as an example. With respect to a policy with term 𝑇, the 

contract holding period, [0, 𝑇], is defined as sub-periods 0 = 𝑡0 ≤ 𝑡𝑖 < 𝑡𝑛 = 𝑇, for 𝑖 = 0, … , 𝑛 − 1. 

For convenience we assume the initial investment for both cases is 1.  

In an equity-linked product, the benefit payable is determined by comparing the accumulated 

investment returns with the accumulated guaranteed returns at end of each contract period. For 

the holding period [0, 𝑇], the benefit payable can be written as: 



CHAPTER 3.   INSURANCE CONTRACT AND EMBEDDED OPTIONS 

14 
 

EL(t) = exp  max   𝛿𝑖

𝑛−1

𝑖=0

, 𝑟𝐺𝑇  ,                                                            (3.1) 

where 𝛿𝑖  denotes the rate of return of the investment portfolio during the 𝑖-th policy period 

 𝑡𝑖−1, 𝑡𝑖 , and 𝑟𝐺  denotes guaranteed rate of return (usually 3% or 4% in the Netherlands). 

In a profit-sharing policy, the benefit payable is adjusted according to the achieved 

investment return adjusted with some bonus distribution mechanism, i.e. 𝛿𝑡
∗, and the level of 

minimum guaranteed return for each period. These types of guarantees are often referred to as 

‘cliquet-style’ guarantee, where guaranteed amounts are re-set periodically. The payoffs of a 

profit-sharing contract are given by:  

PS(t) = exp   max 𝛿𝑡
∗, 𝑟𝐺 𝑡𝑖+1 − 𝑡𝑖  

𝑛−1

𝑖=0

 .                                                (3.2) 

Note that the reader might not find such contracts in the market given by expressions (3.1) 

and  3.2  due to the simple nature of the contract. In this thesis, we limit our attention to the case 

of profit-sharing policies. We refer the reader to Brennan and Schwartz (1976) and Boyle and 

Schwartz (1977) for considerations on equity-linked guarantees.  

Why study profit-sharing policies instead of equity-linked policies? 

The focus of this thesis is on participating life insurance contract embedded in segregated 

investments. This is motivated by several reasons. First, a large body of the existing literature is 

dedicated to the valuation of options embedded in equity-linked insurance products, whereas to 

our knowledge there has been little focus on profit-sharing policies, despite this being one of the 

most common life insurance contract sold in Europe. Second, in terms of market size, 

participating life insurance products are considered to be the most important modern life 

insurance products in major insurance markets around the world. Third, participating contracts 

are considered more risky since the risk from investments is borne by the insurer. In an equity-

linked plan, the investment risk is however switched back to the policyholder. With the current 

bearish equity markets and fair value calculations at the center of attention, it should be realized 

that these options are in or at least at the money. Finally, the existence of the surplus distribution 

mechanism makes the calculations of financial guarantee contract even more complicated. 

Indeed, many insurance company executives around the world have indicated that they regard 

the pricing of guarantees and options embedded in insurance contracts as the most important 

and difficult financial challenge they face. 
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Purpose of a pension guarantee  

Guarantees in insurance contracts are offered for many reasons. We can indentify three 

potential purposes served by minimum rate of return guarantees: (i) pension guarantees increase 

competiveness by providing the retirees with additional certainty; (ii) financial regulations require 

guaranteed minimum cash values − so that no one falls below a particular income threshold after 

retirement; (iii) requirements to receive favorable tax treatment (either for the insurer or for the 

policyholder).  

Various types of profit-sharing policies 

The tariffs rate of Dutch insurers was based on the technical interest rate of 4% until August 

of 1999. Since it is clear that a better return can be made in the market than the interest basis of 

4%, many insurance contracts offer profit provisions. The current technical interest rate in the 

Netherlands equals 3%.  

One of the most common forms of profit-sharing in the Netherlands is based on a moving 

average of the so-called u-yield. The u-yield is the average of six u-yield-parts, where the 

subsequent u-yield-parts are weighted average of an effective return on a basket of government 

bonds with maturity varies between 2 and 15 years. Contracting the u-yield, the building blocks of 

the t-yield provide a less accurate estimate of effective return on investments. The t-yield 

compromises the weighted average return on government bonds with maturities of at least 7 

years. From this point of view, the u-yield is more representative for the effective return on 

investments and is therefore preferred (source: Pensioengids 2008).  

Broadly speaking, there exist various types of profit-sharing provisions in the Dutch life 

insurance market: 

1) Profit-sharing based on TL-discount or UL-discount 

2) Profit-sharing based on TL-discount or UL-discount with continuation discount 

3) Profit-sharing based on excess return u-yield 

4) Profit-sharing of the so-called segregated funds, where regular and terminal bonuses are 

given though the life of the product, based on the return of the underlying investment 

portfolios 

Throughout the thesis, we will focus on the fair valuation of minimum rate of return 

guarantees with profit-sharing based on segregated investments. We refer the reader to Appendix 

B for a further explanation regarding the different types of profit-sharing insurance contract 

existing in the Netherlands. 
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In other parts of the world, examples of life insurance policies include guaranteed minimum 

death benefits (GMDB) as well as guaranteed minimum living benefits (GMLB) in the US, and 

guaranteed annuity options (GAO) in the UK. The pricing of GMDB and GMLB has been tackled 

by several authors, e.g., we refer to Milevsky and Salisbury (2002) and Bauer, Kling and Ruß 

(2006). With respect to the valuation of GAOs, see Boyle and Hardy (2003), Pelsser (2003), 

Ballotta and Haberman (2003) and Biffis and Millossovich (2006) for more information. 

In the next section, we set out in more detail what we mean by the additional cost of 

guarantees and to explain the link between investment guarantees and embedded option in a 

general context. Before any further developments, we also draw the attention on the fact that the 

product pricing is coordinated in such way that is consistent with the principles of the Dutch 

pension system and the regulatory rules as discussed in Chapter 2.   

3.2. Understanding the costs of guarantees and the link with 

embedded options 

A barrier to market consistent valuation of pension guarantees is the lack of transparency in 

costs of insurance products. Provided that an insurer promises to pay a certain quantity, the 

valuation of the pension benefits is usually straightforward. Problems arise when a guarantee or 

option is issued by the greater of two values, say, A and B, where it is not certain which of the two 

is greater at the expiration date. Suppose that premiums paid or the accumulation of premiums is 

invested in an equity-linked fund, then it is uncertain which will be the greater amount and 

therefore the final benefit. In order to provide an adequate pricing approach, it is reasonable to 

look at the different cost components and verify which one reflects the uncertainty and thus the 

value of guarantee. The cost of the guarantee contract consists of two components: realized 

benefit (B) and additional cost (A-B) which is related to the uncertainty around the performance 

of the equity index-tracking fund. 

 

Fig. 2. The cost of the guarantee consists of the cost of the normal benefit 
B (realized benefit), the guaranteed minimum (A) and the guarantee cost 
(A-B). 
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Suppose that the guarantee contract is valued as the greater of A and B, where A is the 

minimum guaranteed rate and B is the rate of return of the investment portfolio. In this case, the 

insurance contract is very similar to a put option with a fixed strike price A. The extra guarantee 

benefit is therefore equivalent to the payoff of the put option (i.e. A-B). For clarity we will 

illustrate the option-like representation of participating benefits by the following example: 

“Consider a European put option with a strike price of €4.00 and a maturity of 12 months. 

This is very similar to an insurance guarantee that has promised to invest the 

policyholder’s premium in the relevant stock and has guaranteed to provide a benefit to 

the policyholder in 12 month’s time, based on a minimum stock price of €4.00. If the 

stock price drops below €4.00 (say €3.00) after 12 months, then exercise of the put option 

would yields €1.00 and provides sufficient benefit to the policyholder. If the stock price 

cumulated above €4.00, then the put option becomes worthless. However, the insurance 

company would be able to provide the promised benefit of €4.00 plus the remaining profit 

after selling the stock.” 

The option-like representation described above is presented in a rather simplified way. With 

respect to the fair valuation of profit-sharing contract, the pricing of embedded option becomes 

difficult due to the existence of the bonus policy as mentioned earlier. On top of that, the 

endowments can be cashed in early and the holder then receives a lump sum (i.e. surrender 

value) instead of any future death or maturity benefits. The surrender value is determined by the 

insurance company depending on how long the policy has been running and how much has been 

paid in to it. In life insurance contracts this is labeled the surrender option or American-style 

option. A contract without a surrender option is called European. Put differently, the European-

style contract is defined as the contract which pays off at the expiration date. In this thesis, we 

consider both the American and European types of the MRRG with profit-sharing.  

3.3. Contract design 

In this section, we develop a theoretical framework to analyze fair single premium 

participating life insurance contracts with a minimum guarantee. A fair contract is a contract 

where the initial market value of capital inflow (premiums) equals the initial market value of the 

capital outflow (benefits). We wish to study a savings plan which yields a guaranteed interest rate 

plus a participation in the positive excess return of a given investment portfolio.  

We consider the pension plan of a single representative participant aged 𝑥 at time zero 

entering a single premium participating life insurance policy and maturing 𝑇 years after as 

presented in Fig. 3. Let 𝑃0 be the initial amount deposit by the investor of age 𝑥 in an account 𝐴 at 

the inception of the contract. We assume no additional payments are done after the inception of 

the contract. The contract is linked to the segregated fund, e.g. a basket of stocks and bonds, for 
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an investment horizon of 𝑇 years. In a DB plan, policyholders insured with minimum guarantees 

are eligible to either receive an assured accumulated fund (i.e. lump sum) or a predefined annuity 

after the retirement date (i.e. An). The annuities are intended to provide the annuitant with a 

steady stream of income after the retirement date upon to death. Since we are interested in the 

fair valuation of embedded options, we focus rather on the discounted lump sum value instead of 

requiring the annuity value. Under these contracts, the insurer is obliged to pay a specified 

amount of benefit to the beneficiary of the insured client if he/she dies (death benefit) or 

surrenders (surrender value) within the term of the contract. More precisely, we assume that in 

the case of death during the 𝑡-th year of contract, 0 < 𝑡 < 𝑇, a death benefit is assigned to the 

beneficiary at the end of the year. The amount of the death benefit is equal to the accrued 

policyholder’s account at the end of the year of death. The contract can also be terminated 

depending on the policyholder’s discretion before time 𝑇. In that case, the insured is eligible to 

receive the surrender value reflecting his/her past contributions to the policy, minus any costs 

and charges incurred by the insurance company. Note that surrender can only occur at integral 

times.  

 

 

 

 

 

 

 

 

 

 

Fig. 3. The policyholder deposits an initial amount 𝑃0 in an account 𝐴 at the inception of the 
contract and invested for 𝑇 years. Policyholders insured with minimum guarantees are eligible 
to either receive an assured accumulated fund (i.e. lump sum) or a predefined annuity (i.e. 
An) after the retirement age (i.e. 65). The fair value (or the present value) of the insurance 
contract is determined at time 0. 

 

Next, we present the valuation framework in which participating life insurance contracts can 

be valued and analyzed in a simplified risk environment. We build upon the methodology 

proposed by Miltersen and Persson (2003), who analyze the valuation of a single premium life 

insurance policy with and without a surplus distribution mechanism. Along the lines of Miltersen 

and Persson (2003), the instantaneous interest rate is assumed to be deterministic and constant 
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during the investment horizon. The return of risky asset is governed by a standard geometric 

Brownian motion.  

The modeling of the insurance business and its associated risks in this thesis has necessarily 

required a number of simplifying assumptions. In the basic valuation framework we crucially rely 

on the assumption that the effect of mortality, surrender and multivariate risk are not presented. 

More specifically, the policyholder is assumed to be alive until the age of retirement (death 

probabilities are set equal to zero within the contract period); the possibility of early withdrawals 

of the policy is not permitted; no attention is paid to the dependence structures among various 

risk factors. Unlike Miltersen and Persson (2003), we consider price inflation by assuming that the 

annual inflation rate equals the expected inflation 𝜋 . As we proceed, we will relax some of these 

assumptions when the valuation framework becomes more realistic. For the ease of exposition, we 

also neglect all types of costs, and assume the market is complete and perfectly liquid.10 Moreover, 

the effects of financial regulations and management decisions concerning asset allocation or 

surplus distribution are not considered in this research.11  

The financial characteristics of the contracts between the insurance company (or pension 

fund) and the investor are defined as follows. The insurance provider promises the investor an 

annual rate of return on the account 𝐴 in year 𝑡 equal to 

𝑟𝐺 + 𝛼[𝛿𝑡 − 𝑟𝐺]+,                                                               (3.3) 

where 𝑟𝐺  denotes the guaranteed rate (also referred to as technical interest rate) which is assumed 

to be constant during the contract period, 𝛿𝑡  is the return gained from segregated investments 

portfolio in year 𝑡, and 𝛼 is the fraction of the positive excess rate of return which is credit to the 

investor’s account. The + superscript presents the positive part of 𝛿𝑡 − 𝑟𝐺 , i.e. max(𝛿𝑡 − 𝑟𝐺 , 0). 

Recall that 𝛼 = 0 corresponds to the extreme situation where surplus is never distributed (all 

surplus remains at the insurance company). This special case resembles an equity-linked policy 

including an annual minimum rate of return guarantee, but without a surplus distribution 

mechanism.  

The insurer will make a loss on these policies if the guaranteed payout is greater than the 

asset share. Therefore the insurer needs to charge the policyholder for providing these 

guarantees. Following Miltersen and Persson (2003), the insurer is eligible to receive a fraction of 

the obtained gain from investments to cover the costs made by the insurance company. We 

                                                      
10 A financial market is said to be complete if the equivalent martingale measure is unique and all contingent claims 

can be hedged perfectly and priced uniquely (e.g. Balck and Scholes (1973) and the CRR model proposed by Cox et al 
(1979)). 

11
 For more details on the evaluation of the management decision on the embedded option value, we refer the reader 

to the article of Kling, Rochter and Ruß (2006). 
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model this by adding a fraction 𝛽 of the excess rate of returns to the insurer’s account, denoted 

by 𝐶. The parameter 𝛽 ∈ [0,1] determines the share of the positive surplus that is distributed to 

the insurer and hence can be associated with the required risk premium by insurer. The benefits 

is defined as 

𝛽 𝛿𝑡 − 𝑟𝐺 +.                                                                             (3.4)    

Further note that we are also subject to the constraint 𝛼 + 𝛽 ≤ 1. When 𝛼 + 𝛽 < 1, the remaining 

share of the excess investment return, i.e. 1 − (𝛼 + 𝛽), is attributed to the reserve account (𝑅). 

One major feature of these investment plans is the participation in surplus distribution which 

is arranged between the policyholder and the insurer. Typically, the insurer employs a specified 

rule of surplus distribution, namely average interest principle, to credit interest at or above a 

specified guaranteed rate to the policyholders every period. The surplus distribution mechanism 

with a reserve account 𝑅 serves as a buffer to protect the policy reserve from unfavorable 

fluctuations in the asset base. The reserve account can be used to back up the insured’s account 𝐴 

in case that the realized annual rate of return on assets is below the base rate. In particular, the 

bonus account can become negative, but the insurer has to consolidate a negative balance at the 

end of the insurance period. Any further non-guaranteed bonus is paid to the policyholders at the 

expiration known as a terminal bonus. 

In fact, the participating life insurance contract can be viewed as two components, namely the 

terminal insured’s account (𝐴𝑇 + 𝑅𝑇
+) and the terminal insurer’s account (𝐶𝑇 + 𝑅𝑇

−). The insured’s 

account is decomposed into a fixed guaranteed payment (bond), a bonus option value which gives 

the insured client a fraction of the surplus, and a terminal bonus which depends on the 

investment performance over years (i.e. profit-sharing contract without surrender). The insurer’s 

account consists of a fraction of the investment surplus (i.e. risk premium) and the possibly loss 

on the terminal bonus account at expiry. To derive the American version of the participating life 

insurance contract, the surrender option is then given by the difference between the value for the 

nonsurrenderable participating contract and the value for the American-style contract. 

In order to obtain the fair value of the contract, we need to specify the three accounts (i.e. 𝐴, 

𝑅 and 𝐶) separately. At the end of year 𝑡, the balance of the insured’s account 𝐴 is simply the 

previous year’s balance accrued with the guaranteed minimum rate of return 𝑟𝐺 , and the fraction 

of positive excess rate of return given by 𝛼 𝛿𝑡 − 𝑟𝐺 +. Hence we have 

𝐴𝑡 = 𝐴𝑡−1𝑒𝑟𝐺 +𝛼 𝛿𝑡−𝑟𝐺  +
= 𝑃0𝑒  𝑟𝐺 +𝛼 𝛿𝑖−𝑟𝐺  + 𝑡

𝑖=1 .                                       (3.5) 

The balance of the insurer’s account 𝐶 is denoted by 
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𝐶𝑡 = 𝐶𝑡−1 + 𝐴𝑡−1 𝑒𝛽 𝛿𝑡−𝑟𝐺  +
− 1 .                                                         (3.6) 

The last term of Equation (3.6) represents the share, i.e. 𝛽, of the excess return obtained in year 𝑡 

that is credited to the insurer. The expression in (3.6) can be rewritten as 

𝐶𝑡 =   𝑒𝛽 𝛿𝑡−𝑟𝐺  +
− 1 𝐴𝑖−1

𝑡

𝑖=1

.                                                           (3.7) 

The remaining amount is credited to the bonus reserve account 𝑅 which is residually 

determined as 

𝑅𝑡 = 𝑃𝑒 𝛿𝑖
𝑡
𝑖=1 − 𝐴𝑡 − 𝐶𝑡 .                                                                 (3.8) 

In case that the bonus reserve account is negative at date 𝑇, the insurer is obligated to cover the 

potential deficit on the account 𝑅. Then, the accumulated value in account 𝐶 represents the profit 

obtained by the insurer for issuing the minimum guarantee contract. It is obvious that the insurer 

may either lose or win money. To further illustrate the balance account, we consider the next 

example: 

Table 1 
Example of distributions between account for a given scenario 

Year 

(𝑡) 

Return 

(𝛿𝑡) 

Excess return 

(𝛿𝑡 − 𝑟𝐺) 

Investment 

account (𝑃𝑡) 

Insured’s 

account (𝐴𝑡) 

Reserve 

account (𝑅𝑡) 

Insurer’s 

account (𝐶𝑡) 

0 − − 100.00 100.00 0.00 0.00 

1 15% 12% 116.18 109.42 3.72 3.05 

2 5% 2% 122.14 113.88 4.66 3.59 

3 −5% −8% 116.18 117.35 −4.76 3.59 

4 10% 7% 128.40 125.23 −2.50 5.67 

5 20% 17% 156.83 140.49 5.23 11.10 

Numerical example of the distribution of returns between the different accounts with the following parameter values: 
minimum guaranteed rate 𝑟𝐺  = 0.03, profit-sharing rate insured 𝛼 = 0.50, profit-sharing rate insurer 𝛽 = 0.25, stock 
weight 𝑤 = 1, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial 
insurer’s account 𝐶0 = 0 and 𝑇 = 5. 

The first year’s realized rate of return, 15%, is distributed as follows: account A at 𝑡 = 1 is 

attributed with the amount, 𝐴0𝑒𝑟𝐺 +𝛼(𝛿𝑡−𝑟𝐺 )+
= 100𝑒(0.03+0.5(0.15−0.03)+

≈ 109.42, account C is 

attributed with the amount 𝐶0 + 𝐴0 𝑒𝛽 𝛿𝑡−𝑟𝐺  +
− 1 = 0 + 100 𝑒0.25 0.15−0.03 +

− 1 ≈ 3.05 and 

reserve account 𝑅 is credited with 𝑃0𝑒 𝛿𝑖
1
𝑖=1 − 𝐴1 − 𝐶1 = 100𝑒0.15 − 109.42 − 3.05 ≈ 3.72.  
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The distribution of the second year’s return is similar. However, the realized rate of return 

obtained in the third year is negative (i.e. -5%) and the minimum rate of return guarantee is 

triggered. Account 𝐴 is credited with the amount 𝐴2𝑒𝑟𝐺 +𝛼(𝛿𝑡−𝑟𝐺 )+
= 113.88𝑒(0.03+0.5(−0.05−0.03)+

≈

117.35, account 𝐶 is credited with the amount 𝐶2 + 𝐴2 𝑒𝛽 𝛿𝑡−𝑟𝐺  +
− 1 = 3.59 + 

113.88 𝑒0.25 −0.05−0.03 +
− 1 ≈ 3.59 since no profit is shared with the insurer, account 𝑅 at 𝑡 = 3 

becomes 𝑃0𝑒 𝛿𝑖
3
𝑖=1 − 𝐴3 − 𝐶3 = 116.18 − 117.35 − 3.59 ≈ −4.76, where the amount 9.43 (= 𝑅2 −

𝑅3) is subtracted from reserve account 𝑅 to compensate the loss on investments.  

Subsequently, positive returns of 15 and 20% are obtained in year four and five respectively, 

therefore we end up with a positive reserve account. Given that the contract matures at date five, 

the investor now receives the balance on account 𝐴 and 𝑅, in total 145.72, whereas the insurer 

receives the balance of 11.10 of the insurer account. It is also possible that account  𝑅 is negative at 

the expiration date. In that case, the insurer has to cover all the negative balance of the reserve 

account.  

3.4. Closed-form solution for insurance accounts 

All agents are assumed to operate in a continuous time frictionless economy with a perfect 

financial market, so that tax effects, transaction costs and short-sales constraints and other 

imperfections are neglected.  

At this point, we ignore the issue of asset allocation and assume that the participating fund 

consisting of stocks only with a single premium paid at the inception of the contract (i.e. stock 

weight 𝑤 = 1). We will look into these more complex arrangements in Chapter 4 after the basic 

setup. The annual continuous compounded rate of return 𝛿𝑡 , is normally distributed and 

independent over different years. The risk-neutral probability measure ℚ is used to price 

derivative securities such as one embeds this insurance contract. The total market value of asset 𝑃 

evolves according to a geometric Brownian motion, i.e. with dynamics along the lines of Black and 

Scholes (1973). Existence of this measure also implies that the financial market is arbitrage free. 

Note that there are no dividends payments on the assets included in the benchmark portfolio. 

The dynamics of 𝛿𝑡  is given by 

𝛿𝑡 = 𝑟 −
1

2
𝜍2 + 𝜍 𝑊𝑡 − 𝑊𝑡−1 ,                                                          (3.9) 

where 𝑟 −
1

2
𝜍2 is the drift term, 𝜍 is the volatility of the rate of return on the benchmark portfolio 

and 𝑊 =   𝑊𝑡 , 𝑡 ≥ 0  is a standard one dimension Wiener process under the probability measure 

ℚ. Furthermore, 𝑟 denotes the instantaneous interest rate which is assumed to be constant and 

deterministic during the life of the contract. 
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3.4.1. The fair value of account A 

The present value of account 𝐴 from Equation (3.5) with a fixed guaranteed rate 𝑟𝐺 , 

deterministic interest rate 𝑟 and constant volatility 𝜍 is defined as 

Π  0,
𝐴𝑇

𝑃0
 = Π  0, 𝑒  𝑟𝐺 +𝛼 𝛿𝑖−𝑟𝐺  + 𝑇

𝑖=1   

Π  0,
𝐴𝑇

𝑃0
 = 𝐸𝑄  𝑒−𝑟𝑇𝑒  𝑟𝐺 +𝛼 𝛿𝑖−𝑟𝐺  + 𝑇

𝑖=1   

Π  0,
𝐴𝑇

𝑃0
 = 𝐸𝑄  𝑒−𝑟𝑇𝑒  𝑟𝐺⋁ 𝛼𝛿𝑖+(1−𝛼)𝑟𝐺   𝑇

𝑖=1   

Π  0,
𝐴𝑇

𝑃0
  = 𝐸𝑄  𝑒−𝑟𝑇𝑒   𝛼𝑟𝐺⋁ 𝛼𝛿𝑖 + 1−𝛼 𝑟𝐺 𝑇

𝑖=1                                            (3.10) 

Π  0,
𝐴𝑇

𝑃0
 = 𝐸𝑄  𝑒−𝑟𝑇𝑒 1−𝛼  𝑟𝐺

𝑇
𝑖=1 𝑒  𝛼𝑟𝐺⋁ 𝛼𝛿𝑖 

𝑇
𝑖=1   

Π  0,
𝐴𝑇

𝑃0
 = 𝑒 1−𝛼  𝑟𝐺

𝑇
𝑖=1  𝐸𝑄 𝑒−𝑟 𝑒 𝛼𝑟𝐺 ⋁ 𝛼𝛿𝑖   

𝑇

𝑖=1

 

Π  0,
𝐴𝑇

𝑃0
 = 𝑒 1−𝛼  𝑟𝐺

𝑇
𝑖=1  𝐸𝑄 𝑒−𝑟 𝑒𝛼𝑟𝐺 ⋁𝑒𝛼𝛿𝑖  

𝑇

𝑖=1

, 

where Π  0,
𝐴𝑇

𝑃0
  presents the fair value of 

𝐴𝑇

𝑃0
 at date zero and ⋁ denotes the max operator, i.e., 

𝑋 ⋁ 𝑌 = max(𝑋, 𝑌). 12 In order to evaluate 𝐸𝑄 𝑒−𝑟 𝑒𝛼𝑟𝐺 ⋁𝑒𝛼𝛿𝑖  , we can rewrite this as 

𝐸𝑄 𝑒−𝑟 𝑒𝛼𝑟𝐺 ⋁𝑒𝛼𝛿𝑖  = 𝑒−𝑟𝐸𝑄   𝑒𝛼𝛿𝑖 − 𝑒𝛼𝑟𝐺  
+

+ 𝑒𝛼𝑟𝐺   

𝐸𝑄 𝑒−𝑟 𝑒𝛼𝑟𝐺 ⋁𝑒𝛼𝛿𝑖  = 𝑒−𝑟𝐸𝑄   𝑒𝛼𝛿𝑖 − 𝑒𝛼𝑟𝐺  
+
 + 𝑒𝛼𝑟𝐺−𝑟 .                          (3.11) 

The first term of Equation (3.11) can been seen as a European call option on a modified 

underlying security with payoff 𝑒𝛼𝛿𝑖  at the maturity of the option and strike price 𝑒𝛼𝑟𝐺 . Under the 

objective martingale measure ℚ, the value of this modified underlying security is 

𝑒−𝑟𝐸𝑄 𝑒𝛼𝛿𝑖  = 𝑒−𝑟𝑒
𝛼 𝑟−

1
2
𝜍2 +

1
2
𝛼2𝜍2

= 𝑒
 𝛼−1  𝑟+

1
2
𝛼𝜍2 

 

and its volatility is 𝛼𝜍. Applying the Black and Scholes (1973) formula we can evaluate 

                                                      
12

 In this thesis, the fair value at time 0 is presented as  

Π 0, 𝑍𝑇 = 𝐸𝑄  𝑒− 𝑟𝑠𝑑𝑠
𝑇

0 𝑍𝑇 , 

where Π 0, 𝑍𝑇  presents the fair value of 𝑍𝑇  at time 0, 𝐸𝑄 ∙  denotes the conditional expectation under an equivalent 
martingale measure, ℚ, given the information at date zero, 𝑍𝑇  is a (stochastic) payoff at date 𝑇,  and 𝑟𝑠 is the 
instantaneous short term interest rate process. 
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𝑒−𝑟𝐸𝑄   𝑒𝛼𝛿𝑖 − 𝑒𝛼𝑟𝐺  
+
 = 𝑒

 𝛼−1  𝑟+
1

2
𝛼𝜍2 

Φ 
𝑟−𝑟𝐺−

1

2
𝜍2+𝛼𝜍2

𝜍
 − 𝑒𝛼𝑟𝐺−𝑟Φ  

𝑟−𝑟𝐺−
1

2
𝜍2

𝜍
 ,        (3.12) 

where Φ denotes the cumulative standard normal distribution. Finally, use Equations (3.11) and 

(3.12) to get the last expression of (3.10)  

Π  0,
𝐴𝑇

𝑃0
 =   𝑒

 1−𝛼  𝑟𝐺−𝑟−
1

2
𝛼𝜍2 

Φ 
𝑟−𝑟𝐺−

1

2
𝜍2+𝛼𝜍2

𝜍
 + 𝑒𝛼𝑟𝐺 −𝑟Φ  

𝑟𝐺−𝑟+
1

2
𝜍2

𝜍
  𝑇

𝑖=1 ,           (3.13)             

which is a closed-form solution for the present value of the insured’s account 𝐴.  

3.4.2. The fair value of account C 

In order to determine the fair value of the insurer’s account 𝐶 and to verify whether the 

pension guarantees are profitable given the chosen parameters, we derive the closed-form 

expression for the account 𝐶 (see Equation (3.7)) at date 𝑡 ≤ 𝑇 as 

Π  0,
𝐶𝑇

𝑃0
 =  Π  0,  𝑒𝛽 𝛿𝑖−𝑟𝐺  +

− 1 
𝐴𝑖−1

𝑃0
 𝑡

𝑖=1   

Π  0,
𝐴𝑇

𝑃0
 =  Π  𝑖 − 1,  𝑒𝛽 𝛿𝑖−𝑟𝐺  +

− 1  𝑒−𝑟 𝑡−𝑖+1 𝑡
𝑖=1 Π  0,

𝐴𝑖−1

𝑃0
   

Π  0,
𝐴𝑇

𝑃0
 = 𝜋𝑒−𝑟𝑡  𝜋𝐴 𝑖 − 1 𝑒𝑟 𝑖−1 𝑡

𝑖=1 ,                                                             (3.14)  

where  𝜋𝐴 𝑡 = Π  0,
𝐴𝑡

𝑃0
 = Π  0, 𝑒  𝑟𝐺 +𝛼 𝛿𝑖−𝑟𝐺  + 𝑡

𝑖=1   which has the closed-form expression (3.13) 

with 𝜋𝐴 0 = 1 and  

𝜋 = Π 𝑡 − 1, 𝑒𝛽 𝛿𝑡−𝑟𝐺  +
− 1   

𝜋 = Π 0, 𝑒𝛽 𝛿1−𝑟𝐺  +
− 1   

    = 𝑒
 𝛽−1  𝑟+

1

2
𝛽𝜍2 −𝛽𝑟𝐺 Φ  

𝑟−𝑟𝐺−
1

2
𝜍2+𝛽𝜍2

𝜍
 − 𝑒−𝑟Φ  

𝑟−𝑟𝐺−
1

2
𝜍2

𝜍
 .  

The above derivation can be found using the linearity of the market value operator, the law of 

iterated expectations,13 and the independence and identical distribution of annual returns over 

different years. The expression for 𝜋 can be derived by a minor modification of Equation (3.13). 

For more details regarding the derivation we refer to the article of Miltersen and Persson (2003). 

                                                      
13

 The law of iterated expectation is given by 𝐸 𝑋|𝐼1 = 𝐸(𝐸(𝑋|𝐼2)|𝐼1), where the value of 𝐼1 is determined by that of 
𝐼2. 
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As opposed to numerical solutions, the application of the analytical solutions here is only 

valid under certain conditions, i.e. deterministic interest rate, stochastic equity process, no 

occurrence of inflation, mortality, surrender and multivariate risk. When the valuation setup 

becomes stochastic, we will resort to sophisticated mathematical methods such as the Monte 

Carlo simulation instead of analytical solutions to provide fair calculations of the insurance policy. 

However, a vast number of trial runs are required for Monte Carlo approach to be accurate. The 

length of computation time may be problematic when the size of the evaluation problem is large. 

This practical issue is one research direction that may be explored as a continuation of this 

investigation. 

3.5. Fair pricing principle 

Since we are interested in the fair valuation of minimum rate of return guarantees, we first 

need to define the fair pricing principle. This can be represented in the following way 

Π 0,  𝐴𝑇 + 𝑅𝑇
+ −  𝐶𝑇 + 𝑅𝑇

−  = 𝑃0 .                                                     (3.15) 

Equation (3.15) can be interpreted as the fair pricing condition of the profit-sharing life insurance 

contract, where  𝐴𝑇 + 𝑅𝑇
+  presents the accumulated account value of the policyholder at time 𝑇 

and  𝐶𝑇 + 𝑅𝑇
−  denotes the insurer’s account at time 𝑇. For the contract fulfilling the fair pricing 

principle, the fair value must equal the initial investment 𝑃0 in the case of a single premium 

policy.  

Based on the fair pricing principle, given in (3.15), it is oblivious that Π 0, 𝐶𝑇 − Π 0, 𝑅𝑇
− = 0. 

More specifically, 𝐶𝑇 represents the risk premium for which the specific loss incurred by the 

insurer at the maturity, 𝑅𝑇
−, is compensated. Hence, this leads to the condition 𝑃0 =  Π 0, 𝐴𝑇 +

Π 0, 𝑅𝑇
+ . 

3.6. Numerical examples 

We present results from the numerical analysis of the simplified model for a single premium 

life insurance policy. As discussed earlier, we have derived closed-form solutions for the initial 

market values of the final balances of the accounts 𝐴 and 𝐶 under the risk-neutral framework. 

However, it is more interesting to determine the initial market value of the total cashflow to the 

investor 𝐴𝑇 + 𝑅𝑇
+ and the total cashflow to the insurer 𝐶𝑇 + 𝑅𝑇

−. Since no similar analytic solutions 

are available for 𝑅𝑇
+ and 𝑅𝑇

−, we have to resort to numerical methods. To illustrate these points, we 

look at some fair combinations that are affected by the changes and discuss their possible causes. 

We call a contract fair if the contract’s risk-neutral value equals the single premium paid.  
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3.6.1. Example 1: Illustrations of contract description based on one sample path 

First we show some plots of simulations runs of the model to give the reader a feel how things 

work. Fig. 4 plots the comparison between the various policy interest rates and the market returns 

obtained over a 20 year period resulting from a simulation run of our model. The plot clearly 

illustrates the smoothing that takes place in the policy interest rate. These rates are bounded 

below by the guaranteed rate of interest (𝑟𝐺) of 3% which comes into effect in certain years. The 

existence of a reserve account can be associated with a sort of ‘hedge’ construction and is thus 

essential for contracts with profit-sharing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Sample path of market returns and policy interest rates entitled to the insured with the following 
parameter values: minimum guaranteed rate 𝑟𝐺  = 0.03, profit-sharing rate insured 𝛼 = 0.50, profit-
sharing rate insurer 𝛽 = 0.25, stock weight 𝑤 = 1, initial investment 𝑃0 = 100, initial insured’s account 
𝐴0 = 100, initial reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 20, 𝑟 = 0.10 and 𝜍𝑠 = 0.15. 

 

It is also interesting to look at the evolution of several insurance accounts to gain additional 

understanding, especially when the market condition is adverse. Fig. 5 presents the development 

of four different accounts during an investment horizon of 20 years: (i) Minimum Guaranteed 

Account (MG); (ii) Insured’s Account (𝐴); (iii) Insurer’s Account (𝐶) and (iv) Reserve Account (𝑅). 

The Initial Guaranteed Amount denotes the amount of money which is guaranteed by the insurer. 

The policyholder receives 𝑟𝐺  per year for the entire period of the contract and the value of the 

guaranteed account at maturity can thus be associated with a bond element which is determined 
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by 𝑒 𝑟𝐺𝑇 ∙ 𝑃0. The Insured’s Account (𝐴) is given by the Minimum Guaranteed Account (MG) plus 

the profits shared during the life of the contract. The pace of increment of account 𝐴 depends on 

the fraction of excess return 𝛼 entitled to the policyholder. As it can be seen from Fig. 5, the 

obtained value for the Insurer’s Account (𝐶) is negative at the expiration date, but is positive for 

all periods prior to maturity. This can be motivated by the fact that the terminal surplus at the 

final date is below zero. Otherwise stated, the Reserve Account (𝑅) at expiry is negative. For this 

particular scenario, the insurer has to cover the loss obtained by account 𝑅 due to poor 

investment performances.  

 

 

 

Fig. 5. Sample path of evolution in different policy accounts with the following parameter values: 
minimum guaranteed rate 𝑟𝐺  = 0.03, profit-sharing rate insured 𝛼 = 0.50, profit-sharing rate 
insurer 𝛽 = 0.25, stock weight 𝑤 = 1, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, 
initial reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 20, 𝑟 = 0.10 and 𝜍𝑠 = 0.15. 

 

3.6.2. Example 2: Fair parameter combinations  

Having demonstrated some essential characteristics of the contract considered we now turn 

to their valuation. In the footsteps of Miltersen and Persson (2003), we have implemented a 

numerical simulation algorithm in order to calculate the expectation under the equivalent 

martingale measure, ℚ, 

Π 0, 𝑋𝑇 

𝑃0
= 𝑒−𝑟𝑇𝐸𝑄  

𝑋𝑇 Θ 

𝑃0
 ,                                                           (3.16) 
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where 𝑋𝑇  denotes the market value of the cash flow at time 𝑇 and Θ =  𝑃0 , 𝛿𝑡 , 𝑟𝐺 , 𝛼, 𝛽  represents 

the set of parameters included in the model framework. In our second example we seek to find 

reasonable parameter combinations of  𝛼, 𝛽, 𝑟𝐺  for our insurance contract. As our example, we 

look at the negative terminal reserve account 𝑅𝑇
−. 

To obtain suitable combinations of profit-sharing rates for insured 𝛼𝑠, profit-sharing rates for 

insurer 𝛽𝑠 and minimum guaranteed rates 𝑟𝐺𝑠 with respect to Π 0, 𝑅𝑇
− 𝑃0 , we employ numerical 

search algorithm for given 𝛼 and 𝑟𝐺  to find the fair 𝛽. In order to quantify the term Π 0, 𝑅𝑇
− 𝑃0 , 

we use the closed-form solution as defined in Section 3.4 to calculate 

Π 0, 𝐶𝑇 

𝑃0
=

Π 0, 𝑅𝑇
− 

𝑃0
.                                                                (3.17) 

Π 0,𝑅𝑇
− 

𝑃0
 can be interpreted as the fair percentage up-front premium the investor will have to pay for 

issuing the insurance policy. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Fair single premium life insurance contract parameter combinations of 

profit-sharing rate insured 𝛼, minimum guaranteed rate 𝑟𝐺  and 
Π 0,𝑅𝑇

− 

𝑃0
 for 𝜍 = 10%  

and 𝑟 = 10%, and 𝑇 = 5. 

 

 

Fig. 6 plots the fair combinations  𝛼∗, 𝛽∗, 𝑟𝐺
∗  for a 5-year contract fulfilling the fair pricing 

principle. For example, when we look at the case where 𝛼 = 0.5 and 𝑟𝐺 = 0.03, we observe that 
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the fair percentage up-front premium the investor will have to pay  
Π 0,𝑋𝑇 

𝑃0
  is relatively low (i.e. 

±2%). Although 𝛽 is not directly observable in the graph, it is implicitly included in the 

numerical search algorithm. Based on the numerical illustration in Fig. 6, several interesting 

statements can be formulated. First, we observe that some of the parameter combinations are 

simply not feasible, for instance, for extremely large value of 𝛼 (> ±0.98) and 𝑟𝐺(> ±5%), fair 

pricing cannot be obtained. Another essential observation is that the cost level of the annual 

minimum rate of return guarantee at the inception of the contract is increasing with respect to 𝑟𝐺 . 

As expected, the higher the base rate 𝑟𝐺 , the higher the minimum guaranteed value. In some 

circumstances, the fair percentage up-front premium even reaches ±25% which is quite unusual. 

It is thus very likely that the insurer will end up with a huge loss of fees in such case.   

The values presented here are only for illustrative purposes. One would expect that the 

parameter combination with negative 𝑟𝐺  is not rational and hence not realistic from practical 

point of view. In the remaining part of the thesis, we limit our attention to the case of 𝑟𝐺 = 3% 

since this is the current standard of minimum guaranteed rate issued in the Dutch life insurance 

market.  

3.6.3. Example 3: Fair value analysis 

In the previous section we conducted empirical analysis on the fair parameter combination of 

our product. The main objective now is to determine the fair value of the European participating 

contract with single endowment. More specifically, we are interested in the present value of the 

initial market value of the total cash flow for both the policyholder and the insurance provider. 

To evaluate the fair premium needed for each specific insurance account, we consider a single 

premium contract of a policyholder enters the contract at the age of 25. The basic values for the 

parameters used are: minimum guaranteed rate  𝑟𝐺  = 0.03, stock weight (𝑤) = 1, initial 

investment (𝑃0) = 100, initial insured’s account (𝐴0) = 100, initial reserve account (𝑅0) = 0, 

initial insurer’s account (𝐶0) = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, long-term inflation rate (𝜋 ) = 0.024 

and simulation runs = 50000. In addition, we investigate the financial impact for different levels 

of profit-sharing rates for insured 𝛼𝑠, profit-sharing rates for insurer𝛽𝑠 and interest rate 𝑟 on the 

fair price of the minimum rate of return guarantee. To be more specific, these set of parameters 

include: 𝛼 =  0.10, 0.20, 0.30 , 𝛽 =  0.30, 0.40, 0.50  and 𝑟 =  0.06, 0.08, 0.10 . In what follows, all 

experiments are carried out with Monte Carlo simulations.  

In Table 2, we provide the results of the fair price of the European participating contract for 

different parameter choices. The risk-neutral value of the insurance contract is determined by 

discounting the sum of the insured’s account (𝐴𝑇 + 𝑅𝑇
+) and the insurer’s account (𝐶𝑇 + 𝑅𝑇

−). Note 

that the initial premium of the contract 𝑃0 = 100 and thus the market value of the contract 
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should be equal to this value if the fair pricing condition is satisfied. However, since real contracts 

often include commissions and fees for different services and options, it is preferred that the fair 

contract value is less than the initial premium 𝑃0. 

From Table 2, it can be observed that the fair value of the European contract for different 

levels of profit-sharing rates of insured 𝛼𝑠 and profit-sharing rates of insurer 𝛽𝑠 (i.e. the last three 

columns) is decreasing with respect to the interest rates. Of course, high interest rates imply 

higher expected returns and lower discounted costs of future pension liabilities. In addition, no 

fair pricing principle can be established for 𝑟 = 6% for all possible contract setting. We also look 

at the impact of changes in the fraction of profit shared with the policyholder 𝛼 and the fraction 

of profit shared with the insurer 𝛽. We observe that when 𝛼 is increasing, then, as expected, the 

insured’s account value becomes higher in most cases. In fact, high rates of profit-sharing 

attributed to the policyholder (𝛼𝑠) often lead to lower reserve account 𝑅 and the ability to 

maintain the required minimum guarantee 𝑟𝐺  becomes doubtful. Similarly, the amount of the 

insurer’s account is increasing with the rate of profit-sharing of the insurance company (𝛽), since 

more risk premiums are attributed to the insurer for larger value of 𝛽𝑠.  

Table 2 
Fair values of a single premium European life insurance contract for different levels of interest rates  𝑟 , 
profit-sharing rate insured  𝛼  and profit-sharing rate insurer (𝛽). Assumptions used are: 1) stochastic 
equity return; 2) deterministic interest rate; 3) deterministic inflation rate; 4) no mortality risk; 5) no 
surrender risk. 

Interest 

rate 

scenario 

Ps-rate 

insured 

 𝛼  

Insured’s account (𝐴𝑇 + 𝑅𝑇
+) Insurer’s account (𝐶𝑇 + 𝑅𝑇

−) European contract 

Ps-rate insurer  𝛽  Ps-rate insurer  𝛽  Ps-rate insurer  𝛽  

0.30 0.40 0.50 0.30 0.40 0.50 0.30 0.40 0.50 

           

𝑟 =  10% 0.10 91.07 87.96 85.01 8.82 11.91 15.02 82.25 76.05 70.00 

 0.20 90.54 86.78 84.21 9.33 12.79 16.11 81.21 73.99 68.10 

 0.30 90.85 87.88 84.85 8.72 12.23 15.84 82.13 75.66 69.01 

           

𝑟 =  8% 0.10 93.70 89.41 86.09 6.41 10.43 13.75 87.29 78.98 72.34 

 0.20 97.95 94.26 91.59 1.89 5.20 8.87 96.06 89.07 82.71 

 0.30 107.07 103.90 102.30 −7.61 −4.42 −1.20 114.69 108.32 103.50 

           

𝑟 =  6% 0.10 122.07 119.04 116.83 −22.59 −19.60 −16.57 144.67 138.64 133.39 

 0.20 140.76 139.08 136.89 −41.31 −38.20 −36.19 182.07 177.28 173.08 

 0.30 168.45 166.45 164.93 −67.58 −66.42 −65.12 236.03 232.87 230.04 

The table reports the fair values of the terminal insured’s account (𝐴𝑇 + 𝑅𝑇
+) and the terminal insurer’s account 

(𝐶𝑇 + 𝑅𝑇
−) under the risk-neutral measure ℚ. The present value of the insurance policy is defined as Π 0, 𝑋𝑇 =

𝑒−(𝑟−𝜋 )𝑇𝐸𝑄 𝑋𝑇 , where 𝑋𝑇  presents the market value of the insurance account at expiry date, 𝑟 is the constant short rate 

of interest and 𝜋  describes the long-term inflation rate. The reference insured is aged 𝑥 =  25 at time 0. Other 
parameters included in the model are: minimum guaranteed rate 𝑟𝐺  = 0.03, stock weight 𝑤 = 1, initial investment 
𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 
𝜍𝑠 = 0.15, long-term inflation rate 𝜋  = 0.0240 and scenario = 50000. 
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According to the fair pricing principle as given in (3.15), our goal is find a fair contract in 

which the conditions Π 0, 𝐶𝑇 − Π 0, 𝑅𝑇
− = 0 and 𝑃0 =  Π 0, 𝐴𝑇 + Π 0, 𝑅𝑇

+  are satisfied, or more 

equivalently Π 0,  𝐴𝑇 + 𝑅𝑇
+ −  𝐶𝑇 + 𝑅𝑇

−  = 𝑃0. Given the financial assumptions we have made 

earlier in this chapter and the results presented in Table 2, the most appropriate fair parameter 

combination satisfying the two conditions would be  𝑟∗ = 8%, 𝛼∗ = 0.20, 𝛽∗ = 0.30 , with a 

European contract value of 96.06.  

Finally, in order to gain additional insights with respect to the fair valuation of interest rate 

guarantees we decompose the contract value into their basic components, i.e. the risk-free bond 

element (MG), the insured’s account (A), the bonus insured (A-G), the positive terminal bonus 

(R+), the insurer’s account (C) and the negative terminal bonus (R-). The characteristic of implicit 

option elements for 𝛽 =  0.30, 0.40, 0.50  is illustrated from Table E1 to Table E3 in Appendix E. 

 In the interpretation of these tables, it can be noticed that the fair risk-free bond element 

(MG) is fixed for different values of profit-sharing rate attributed to the insured 𝛼𝑠 and the 

insurer 𝛽𝑠, and rises tremendously if the market interest rate drops towards. For instance, the 

change in interest rate from 10% to 8% in Table E1 results in a change in the bond value from 15.88 

to 35.35. The bonus option of the insurer (A-G) appears to be increasing with the profit-sharing 

rate 𝛼 which is quite intuitive. We also see that the terminal bonus R+ becomes more valuable 

due to the increment in the level of the interest rate. This observation could explained by the fact 

that high interest rates are associated with high expected investment gains.  

Furthermore, by comparing Tables E1 to E3 we see that the fair value of the insurer’s account 

C improves when the profit-sharing 𝛽 increases irrespective of the development of interest rate 𝑟 

and the profit-sharing rate of insured 𝛼. In contracting, the fair balance of the terminal bonus R- 

is decreasing with 𝛽. Not surprisingly, higher 𝛽 means that lower profit is credited to the reserve 

account R, and hence leading to a larger deficit on the reserve account. From a risk management 

perspective, it is thus crucial for insurance companies to find reasonable value for 𝛼 and 𝛽 in 

order to fulfill the fair pricing principle and at the same time to be profitable.   
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4. Stochastic Modeling of Financial Risks  

This chapter is concerned with the long-term financial risk sources which investors have to 

cope with: investment portfolio risk, term structure and inflation risk. All considered risk factors 

are captured by separate stochastic diffusion processes, each of which can be potentially 

correlated. In this chapter, we consider the classical approach based on the real-world measure 

(ℙ) and the risk-neutral measure (ℚ). In turn, each risk type is elaborated upon in a separate 

section. 

4.1. Assets dynamics and interest rate modeling 

Let  Ω, ℱ,  ℱ𝑡 , ℙ  be a complete probability space supporting all sources of financial 

randomness. The set Ω is the set of all possible outcomes for market movements. The filtration 

 ℱ𝑡 𝑡∈ 0,𝑇  represents the flow of information available to the insurer and the policyholder at time 

𝑡. Consistent with no-arbitrage paradigm, we assume the existence of an equivalent martingale 

measure ℚ for this economy.  

With respect to the investment portfolio, we consider an economy with two traded assets − a 

bond with price process 𝐵 and a stock with price process 𝑆. The modeling of the interest rate 

crediting mechanism takes the following simplified balance sheet at time 𝑡:  

Assets Liabilities 

𝐵 𝑡, 𝑇𝐵 =  1 − 𝑤 ∙ 𝑃𝑡  𝐴𝑡 + 𝑅𝑡
+ 

𝑆𝑡 = 𝑤 ∙ 𝑃𝑡  𝐶𝑡  –  𝑅𝑡
− 

𝑃𝑡  𝑃𝑡  

Fig. 7. Simplified illustration of the insurer’s financial situation at 
time 𝑡 for a single premium life insurance contract. The parameters 
are: bond price 𝐵 𝑡, 𝑇𝐵  with maturity 𝑇𝐵, stock price 𝑆𝑡 , investment 
account 𝑃𝑡 , insured’s account 𝐴𝑡 , reserve account 𝑅𝑡 , insurer’s 
account 𝐶𝑡  and stock weight 𝑤,  

 

We let 𝑃𝑡  denotes the market value of the insurer’s assets at time 𝑡. Furthermore, we assume that 

the insurer invests a fraction 𝑤 in of the received premium in stocks, 𝑆𝑡 , and the rest in risky 

bonds, 𝐵 𝑡, 𝑇𝐵 , of maturity 𝑇𝐵 ≥ 𝑇. The return gained from segregated fund for each integer 𝑡 is 

defined by 

𝛿𝑡 = 𝑤ln  
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
 +  1 − 𝑤 ln  

𝐵𝑡−𝐵𝑡−1

𝐵𝑡−1
 .                                          (4.1) 
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Typical values of the parameter 𝑤 (i.e. fraction invested in stocks) for Dutch outstanding policies 

are 10%, 20% and 30%. The liability side comprises three entries: 𝐴𝑡  is book value of the 

policyholder’s account; 𝑅𝑡
+ and 𝑅𝑡

− represent the positive and the negative reserve account at time 

𝑡 respectively, and 𝐶𝑡  denotes the insurer account.  

As aforementioned, the insurer invests in two assets: stock and bond. Under the real-world 

probability measure ℙ, the stock market uncertainty is considered by modeling the stock index 𝑆𝑡  

as a Black and Scholes model  

𝑑𝑆𝑡 =  𝑟𝑡 + 𝜍𝑆𝜆𝑠 𝑆𝑡𝑑𝑡 + 𝜍𝑆𝑆𝑡𝑑𝑊 𝑡
𝑆,                                                    (4.2) 

where 𝑟𝑡  is the instantaneous spot rate, 𝜍𝑆 is the constant stock price volatility, 𝜆𝑠 ≥ 0 represents 

the market price of equity risk, and 𝑊 𝑡
𝑆 is a standard Brownian motion defined on the filtered 

probability space  Ω, ℱ,  ℱ𝑡 , ℙ  in the interval [0, 𝑇]. Then after risk adjustment [see Baxter and 

Rennie (1996) for an introduction], (4.2) can be written in the form 

𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡𝑑𝑡 + 𝜍𝑆𝑆𝑡𝑑𝑊𝑡
𝑆,                                                            (4.3) 

where 𝑊𝑡
𝑆 is a standard Brownian motion under risk-neutral measure ℚ. The transition from 

martingale ℙ to ℚ is facilitated through the market price of equity risk: 

𝜆𝑠 =
𝜇𝑡 − 𝑟𝑡

𝜍𝑆
,                                                                                (4.4) 

where 𝜇𝑡 = 𝑟𝑡 + 𝜍𝑆𝜆𝑠. We see from Equations (4.2) and (4.3) that the market price of equity risk 

(𝜆𝑠) is zero under risk-neutral martingale measure. As expected, if the investors were risk-neutral, 

no excess return is required for taking additional risk. The investor would discount all cash flows 

− irrespective of their risk − at the risk-free rate (or short rate). In this context, computations are 

done in the real historical world and valuations take place under a risk-neutral probability 

measure. 

Under martingale ℚ, Ito’s lemma with 𝑓(𝑆𝑡) = ln(𝑆𝑡) gives  

𝑑𝑓 𝑆𝑡 =
𝜕𝑓

𝑑𝑡
𝑑𝑡 +

𝜕𝑓

𝑑𝑆
𝑑𝑆𝑡 +

1

2

𝜕2𝑓

𝑑𝑆2
 𝑑𝑆𝑡𝑑𝑆𝑡  

⟹              𝑑ln 𝑆𝑡 =
1

𝑆𝑡

 𝑟𝑡𝑆𝑡𝑑𝑡 + 𝜍𝑆𝑆𝑡𝑑𝑊𝑡
𝑆 −

1

2
𝜍𝑠

2𝑑𝑡 

⟹              𝑑ln 𝑆𝑡 =  𝑟𝑡 −
𝜍𝑆

2

2
 𝑑𝑡 + 𝜍𝑆𝑑𝑊𝑡

𝑆 .                                                         (4.5) 

It follows that 
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𝑆𝑇 = 𝑆𝑡 exp    𝑟𝑢 −
𝜍𝑆

2

2
 

𝑇

𝑡

𝑑𝑢 +  𝜍𝑆𝑑𝑊𝑢
𝑆

𝑇

𝑡

 . 

The continuous nominal short rate process 𝑟𝑡  can be modeled by many different interest 

models. The most well-known term structure models are: Vasicek (1977), Cox, Ingersoll and Ross 

(1985), Ho and Lee (1986), and Hull and White (1990). For a complete overview of these stochastic 

interest models we refer to the textbook of Hull (2006). Here, we limit our attention to the 

Vasicek (1977) model. The Vasicek model enjoys popularity among academics and practitioners. 

One of the reasons that this model is appealing is because it has analytical solution for many 

interest rate derivatives, meaning that an explicit solution can be found. However, for the 

modeling of short interest rates, the Vasicek model has a disadvantage because they allow the 

rates to become negative. In practice, the probability of 𝑟 going below zero is almost negligible for 

typical parameter values. 

The dynamics of the one-factor Vasicek (1977) under the risk-neutral probability measure ℚ, is 

given by the following stochastic process 

𝑑𝑟𝑡 =  𝑎 𝜃𝑟 − 𝑟𝑡 𝑑𝑡 + 𝜍𝑟𝑑𝑊𝑡
𝑟 ,                                                     (4.6) 

where  𝜃𝑟  describes the long-run mean of the interest rate, 𝑎 is a constant representing the 

reversion speed, 𝜍𝑟  is the instantaneous volatility of the interest rate and 𝑊𝑡
𝑟  is a standard 

Brownian motion under ℚ. The mean reversion characteristic implies that the interest rates have 

the tendency to move back towards the long-run mean 𝜃𝑟 , where the parameter 𝑎 indicates how 

strong the force of mean reversion is. The correlation between the Wiener process of the risky 

asset 𝑑𝑊𝑡
𝑆 and the Wiener process of the risk-free rate 𝑑𝑊𝑡

𝑟  is given by the 𝜌𝑆,𝑟 . In this thesis, the 

interest rate risk can be defined as the risk of a change in fair value caused by the transformation 

from the stochastic interest rates to the deterministic interest rates. 

The value of a zero-coupon bond in the Vasicek model with time to maturity 𝑇 is given by 

𝑃 𝑡, 𝑇 =  𝑒−𝐴 𝑡,𝑇 −𝐵(𝑡 ,𝑇)𝑟𝑡 ,                                                          (4.7) 

where  

𝐴 𝑡, 𝑇 =  𝑅 ∞  𝑇 − 𝐵 𝑡, 𝑇  +
𝜍𝑟

2

4𝑎
 𝐵 𝑡, 𝑇  

2
, 

𝐵 𝑡, 𝑇 =  
1

𝑎
 1 − 𝑒−𝑎𝑇 , 

and where 𝑅 ∞ = 𝜃 +
𝜍𝑟𝜆𝑟

𝑎
−

1

2

𝜍𝑟
2

𝑎2 describes the nominal interest rate of a bond with maturity 

approaches infinity [see Sørensen (1999)].  
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Under the real-world probability measure ℙ, the dynamics of the value of the risky bond 

portfolio 𝐵 with a given modified duration 𝐷 =  −
𝜕𝐵

𝜕𝑟

1

𝐵
, by Ito’s lemma, is assumed to follow the 

stochastic differential equation [see Munk, Sørensen and Vintner (2004)]: 

𝑑𝐵𝑡 =  𝑟𝑡 + 𝜍𝐵𝜆𝑟 𝐵𝑡𝑑𝑡 + 𝜍𝐵𝐵𝑡𝑑𝑊𝑡
𝑟 ,                                                (4.8) 

where 𝜆𝑟  is the market price of interest rate risk, 𝜍𝐵 = 𝜍𝑟𝐷 is the instantaneous standard 

deviation of the bond portfolio and 𝑊𝑡
𝑟  presents the standard Brownian motion of the interest 

rate process. The duration 𝐷 can been associated with the elasticity of the bond price with respect 

to the short interest rate. We mention that the short interest rate and the return on the bond are 

perfectly negatively correlated and with covariance rate 𝜍𝐵,𝑟 = −𝐷𝜍𝑟
2 = −(1 𝐷 )𝜍𝐵

2. For the 

correlation between stock and bonds it holds that 𝜌𝑆,𝐵 = −𝜌𝑆,𝑟 . The variance-covariance matrix of 

stocks and bonds can be summarized in matrix form by 

𝛴 =  
𝜍𝑆

2 𝜍𝑆𝜍𝐵𝜌𝑆,𝐵

𝜍𝑆𝜍𝐵𝜌𝑆,𝐵 𝜍𝐵
2  . 

Under the equivalent martingale measure ℚ, the stochastic differential equation of the bond 

price process is given by 

𝑑𝐵𝑡 = 𝑟𝑡𝐵𝑡𝑑𝑡 + 𝜍𝐵𝐵𝑡𝑑𝑊𝑡
𝑟 ,                                                      (4.9) 

where the term 𝜍𝐵𝜆𝑟  is omitted due to the well-known fact that derivative pricing takes place 

under a risk-neutral probability measure.  

4.2. Inflation risk 

In Chapter 3 we have assumed that the annual inflation rate is deterministic and equals the 

expected inflation 𝜋 . From now onwards, we model the inflation rate risk stochastically because 

the effect of uncertain inflation becomes especially important when we consider long-maturity 

options. We build upon the article of Maurer, Schlag and Stamos (2008) when we describe the 

impact of stochastic inflation rates.  

We assume that the nominal price level of the consumption good denoted by Ψ𝑡  evolves 

according to  

𝑑Ψ𝑡 = 𝜋𝑡Ψ𝑡𝑑𝑡 + 𝜍ΨΨ𝑡𝑑𝑊𝑡
Ψ                                                        (4.10) 

where 𝜋𝑡  is the expected rate of inflation, 𝜍Ψ  is the volatility of the price index and 𝜍Ψ  thus 

presents the degree of the unexpected short-run inflation movements in the economy. 𝑊𝑡
Ψ  is a 
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Wiener process with incremental variance 𝑑𝑡 under martingale ℚ. The expected inflation rate 

itself is given by the next stochastic process 

𝑑𝜋𝑡 = 𝛾 𝜋 − 𝜋𝑡 𝑑𝑡 + 𝜍π𝑑𝑊𝑡
𝜋 ,                                                 (4.11) 

where 𝜋  describes the long-run mean of the rate of inflation, 𝛾 represents the degree of mean 

reversion, 𝜍π  is the volatility of the inflation rate and 𝑊𝑡
𝜋  is a standard Brownian motion under 

measure ℚ. Equation (4.11) is known as Ornstein–Uhlenbeck process with mean reversion, which 

is similar to the approach of interest rate modeling. The Ornstein–Uhlenbeck process is linked 

with the Vasicek (1977) model and has thus a disadvantage because they allow the rates to 

become negative. This is not a problem for the modeling of inflation rates, since deflation 

(negative inflation rate) is a common economic issue. Furthermore, changes in the price of the 

consumption good and the inflation rate are correlated with the stock index and the short rates. 

The corresponding correlation between inflation and two stochastic processes, i.e. interest rate 

and stock returns is given by 𝜌𝑟 ,𝜋  and 𝜌𝑆,𝜋  respectively. In addition, the correlation between the 

price index and the expected inflation is defined as 𝜌Ψ ,π .  

Note that the estimates of the inflation process and the covariance matrix are obtained from 

the article proposed by Maurer, Schlag and Stamos (2008). They present a similar valuation 

approach to model the various stochastic processes and their dependence structure. The specific 

framework is based on expressing the model in state space form and then using the Kalman filter 

to obtain the relevant log-likelihood function to be maximized.14 Historical data about the 

development of the consumer price index in Germany are taken from the German Central Bank 

(Bundesbank). Our choice here is justified because the German data can be seen as the 

benchmark for most West-European countries, in particular the Netherlands. 

4.3. Multivariate risk framework 

Modeling and measurement of multivariate risk in insurance and finance is an extremely 

challenging and important. The values of our stochastic processes are all correlated. In order to 

assess the risk profile of the insurance contract in an appropriate manner, we employ the 

Cholesky decomposition. The Cholesky decomposition is commonly used in the Monte Carlo 

method for simulating systems with multiple correlated variables. 

Applying Cholesky decomposition we obtain the following correlation matrix 

                                                      
14

 We refer to Babbs and Nowman (1999) and Harvey (1989) for the application of the Kalman filter to the 
calibration of the Vasicek model. 
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𝑈 =

 

 

1 𝜌𝑟 ,𝑆 𝜌𝑟 ,Ψ 𝜌𝑟 ,𝜋

𝜌𝑟 ,𝑆 1 𝜌𝑆,Ψ 𝜌S,π

𝜌𝑟 ,Ψ 𝜌𝑆,Ψ 1 𝜌Ψ ,π

𝜌𝑟 ,𝜋 𝜌𝑆,𝜋 𝜌Ψ ,π 1  

 

                   
𝑟𝑡   𝑆𝑡   Ψ𝑡  𝜋𝑡

,                                                  (4.12) 

where 𝑈 is a symmetric positive definite matrix. Then 𝑈 can be factored into an upper triangular 

matrix 𝐿 such that 𝑈 = 𝐿𝐿′ where 𝐿 refers to its conjugate transpose.  A similar procedure can be 

found in Brigo and Mercurio (2006), where only interest rate and stock return dynamics are 

considered.  Then 𝐿 can be expressed as 

𝐿 =
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,                           (4.13) 

where 

𝑌 =

𝜌Ψ ,π − 𝜌𝑟 ,Ψ𝜌𝑟 ,π −
 𝜌𝑆,Ψ − 𝜌𝑟 ,𝑆𝜌𝑟 ,Ψ  𝜌𝑆,π − 𝜌𝑟 ,𝑆𝜌𝑟 ,π 

1 − 𝜌𝑟 ,𝑆
2
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2 −

 𝜌𝑆,Ψ − 𝜌𝑟 ,𝑆𝜌𝑟 ,Ψ 
2

1 − 𝜌𝑟 ,𝑆
2

                                    (4.14) 

and 

𝑍 =  
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2 −
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1 − 𝜌𝑟 ,𝑆
2  

2

1 − 𝜌𝑟 ,Ψ
2 −

 𝜌𝑆,Ψ − 𝜌𝑟 ,𝑆𝜌𝑟,Ψ 
2

1 − 𝜌𝑟 ,𝑆
2

. (4.15) 

Thus 
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4.4. Numerical results 

We show several numerical illustrations to convey the impact of stochastic interest rates and 

inflation rates on the insurance policy. Unless otherwise stated, the basic set of parameters used 

in the simulation is reported in Table 3. We analyze the case in which the insurance client 

contributes the initial investment value 𝑃0 = 100 and enters a single premium participating 

contract offering a 3% minimum guarantee 𝑟𝐺 ; 20% profit-sharing rate 𝛼 in the excess returns 

generated by the segregated fund is attributed to the policyholder and 30% of the excess return 𝛽 

is assigned to the insurer.15  We also assume that the insurance contract has a life span of 40 years 

given that the insured is aged 25 at the inception of the contract and retires at the age of 65.  

Table 3 
Parameters used in the simulation 

Contract Asset Interest rates Inflation 
 Correlations  

𝑆 𝑟 Ψ 𝜋 

𝑟𝐺  0.03 𝑃0 100 𝜍𝑆 0.15 𝑎 0.10 𝜍𝛹  0.0101 1 −0.0531 −0.0675 0.0026 

𝛼 0.20 𝐴0 0 𝐷 5 𝜃𝑟   0.06; 0.08; 0.10  𝜋  0.0240  1 0.0516 0.5248 

𝛽 0.30 𝐶0 0 𝜍𝐵 0.05 𝜍r  0.01; 0.02; 0.03  𝛾 0.4740   1 0.1641 

𝑇 40 𝑅0 0 𝑤 ∈ [0,1]  𝜍𝜋   0.01; 0.02; 0.03     1 

This table reports the parameters used in the simulation for the basic contract, the interest rates and the inflation 
process, and the corresponding covariance matrix. The parameters are:  minimum guaranteed rate 𝑟𝐺  , profit-sharing 
rate insured 𝛼, profit-sharing rate insurer 𝛽, contract maturity 𝑇, initial investment 𝑃0, initial insured’s account 𝐴0, 
initial reserve account 𝑅0, initial insurer’s account 𝐶0, stock price volatility 𝜍𝑠, bond duration 𝐷, bond price volatility 𝜍𝐵 , 
stock weight 𝑤, mean reversion rate of the interest rate 𝑎, long-term mean of the interest rate  
𝜃𝑟 , volatility of the interest rate 𝜍𝑟 , volatility of the price index 𝜍𝛹 ,  long-term inflation rate 𝜋 , mean reversion rate of 
the inflation rate 𝛾 and volatility of the inflation rate 𝜍𝜋 .  

The covariance matrix in Table 3 is obtained from the article proposed by Maurer, Schlag and 

Stamos (2008). For instance, the correlation coefficient between the stock return and the short 

rate is given by −0.0531 (𝜌𝑟 ,𝑆). This means that when interest rates go up, stock prices will go 

                                                      
15

 In Subsection 3.6.3 we found that  𝑟∗ = 8%, 𝛼∗ = 0.20, 𝛽∗ = 0.30  is an appropriate fair parameter combination. 
As an example, we use these specific parameter values as our starting point for analyzing the fair guarantee contract. 
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down. This relationship is interpreted as follows. First, higher interest rates make borrowing more 

costly. This tends to put downward pressure on corporate investments and consumer spending. 

As a result, the economy will slow down and stock prices will decrease. A second reason for stock 

prices to decrease after a rise in central bank policy rate is that many investors who had been 

buying stocks are seeking safe investment opportunities such as corporate or government bond. 

Money leaving the stock market and entering the bond market can be associated with a bearish 

stock market. Moreover, companies that sell long-term debt will pay more now that rates are 

higher and in turn it reduces their earnings power. Another essential observation is the 

correlation between the interest rate and the inflation rate. The core monetary policy objective of 

the European Central Bank (ECB) is to maintain price stability with achieving an inflation target 

of 2%, as measured by the annual change in the consumer prices index (CPI). The correlation 

coefficient between the interest rate and the expected inflation rate (𝜌𝑟 ,𝜋) is 0.5248. This is 

contrary to our beliefs, since an increase in interest rate lowers the economy growth, and thus 

reduces the price inflation. However, prices tend to have a direct but lagging relationship to 

interest rates. This means that falling prices have followed falls in interest rates, and rising prices 

have followed rises in interest rates. In addition, a rise in interest rates pushes up the cost of 

lending as mentioned earlier. To some extent, business may decide to pass on this higher 

marginal cost of capital to the consumer. Therefore, it could take some time for a rate change to 

work its way through into prices. 

4.4.1. Asset allocation 

For purposes of illustrating the financial effect of asset allocation on the fair contract and its 

associated risks, in Fig. 8 we show the results of asset allocation for several combinations of stock 

and bond − the proportion invested in stock is denoted by weight 𝑤. In Fig. 8 we also illustrate 

the mark-to-market values of the options embedded in the insurance contract for several different 

levels of the long-term mean of the interest rate, i.e. 𝜃𝑟 =  10%, 8%, 6% .  

A closer look at the fair values in Fig. 8 reveals that, when we invest more in bonds (or 𝑤 

becomes lower), the fair value of the insurance contract decreases. This is consistent with our 

intuition, since bonds are considered as less risky asset (𝜍𝐵 = 5%) with regards to stocks 

(𝜍𝑆 = 15%). However, Fig. 8 also shows that the change in fair value stabilizes around stock 

weight 𝑤 = 20%, and even slightly increases when the stock weight 𝑤 declines towards zero. 

Therefore, it is not very plausible to construct a portfolio with bonds only. However, due to either 

higher profit-sharing rate to the insured 𝛼 or a higher minimum guaranteed rate 𝑟𝐺 , the insurer is 

forced to adopt a more aggressive investment strategy in order to meet the target demand. 

Moreover, the patterns of variability in the fair values for different levels of the long-term mean of 

the interest rate 𝜃𝑟  are quite similar for different stock weights. Again, we have illustrated that 



CHAPTER 4.   STOCHASTIC MODELING OF FINANCIAL RISKS 

40 
 

0

20

40

60

80

100

120

140

100% 80% 60% 40% 20% 0%

F
a

ir
 v

a
lu

e

Stock weight

Impact of asset allocation on the fair value

θr = 10%

θr = 8%

θr = 6%

high interest rates have negative impact on the risk-neutral embedded value. This is in line with 

our findings from the previous chapter (e.g. see Chapter 3 – Table 2). 

 

 

 

 

 

 

Fig. 8.  The figure illustrates the financial impact of asset allocation (bond or stock) on the fair 
value of the insurance contract for different weights in stock  1; 0.8; 0.6; 0.4; 0.2; 0  and different 
levels of the long-run mean of the interest rate  10%; 8%; 6% . Other parameters used are: 
minimum guaranteed rate 𝑟𝐺  = 0.03, profit-sharing rate insured 𝛼 = 0.20, profit-sharing rate 
insurer 𝛽 = 0.30, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve 
account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝐵 = 0.05, 𝜍𝑟 = 0.01, long-
term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531 and scenario = 50000. 

 

In this respect, insurance companies should implement an asset allocation strategy for the 

reference portfolio to minimize the financial risk induced by the insurance policy [see, e.g., 

Brinson et al. (1991)]. However, the objective of this research project is not to find an optimum 

investment strategy (e.g. optimum bond-stock mix), but to focus on the pricing of insurance 

contracts. Hence in the remaining parts of the thesis, we consider two cases: 1) we invest in stocks 

only (i.e. 𝑤 = 100%); 2) we invest 30% in stocks and 70% bonds (i.e. 𝑤 = 30%). For more 

information regarding the topic of asset allocation on participating life insurance policies, see for 

example, Ballotta and Haberman (2009).  

4.4.2. Impact of stochastic interest rates 

The short rate is now modeled as a stochastic process using the Vasicek (1977) term structure 

model such as defined in Section 4.1. We examine the financial impact of stochastic interest rates 

on the fair price of the financial guarantee with profit-sharing rate of insured 𝛼 = 0.20 and profit-

sharing rate of insured 𝛽 = 0.30. The volatility of the risk-free rate 𝜍𝑟  is assumed to be 
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deterministic and constant over time and is chosen from the set 𝜍𝑟 = 1%, 2%, 3%.  The present 

value of the single premium life insurance policy is presented by  

Π 0, 𝑋𝑇 = 𝐸𝑄  𝑒−  𝑟𝑡−𝜋  𝑇
𝑡=1 𝑋𝑇 ,                                              (4.23) 

where Π 0, 𝑋𝑇  presents the fair value of 𝑋𝑇  at time 0, 𝐸𝑄 ∙  denotes the conditional expectation 

under an equivalent martingale measure, ℚ, given the information at date zero, 𝑋𝑇  presents the 

market value of the insurance account at expiry date, 𝑟𝑡  is the short rate of interest at time 𝑡 and 𝜋  

describes the long-term mean of the inflation rate.  

In Table 4, we list the numerical results of the fair values of the European life insurance 

contract. The computed fair values are based on three different levels of interest rate volatility 

(𝜍𝑟 = 1%, 2%, 3%) and two different asset allocations (𝑤 = 100%, 30%). Furthermore, the 

percentage increase of the change in the risk-neutral option value as regards to the standard case 

(i.e. 𝜍𝑟 = 0% and 𝜍𝜋 = 0%) is given in parenthesis. 

Table 4 

Fair values of a single premium European life insurance contract for different levels of long-run mean of the 
interest rates  𝜃𝑟  with profit-sharing rate insured 𝛼 = 0.20 and profit-sharing rate insurer 𝛽 = 0.30. 
Assumptions used are: 1) stochastic equity return; 2) deterministic or stochastic interest rate; 3) 
deterministic inflation rate; 4) no mortality risk; 5) no surrender risk. 

Interest rate 
scenario 

Chapter 3  Chapter 4  

𝜍𝑟 = 0% and 𝜍𝜋 = 0% 𝜍𝑟 = 1% and 𝜍𝜋 = 0% 𝜍𝑟 = 2% and 𝜍𝜋 = 0% 𝜍𝑟 = 3% and 𝜍𝜋 = 0% 

𝑤 = 1     

𝜃𝑟 = 10% 81.21 85.57 (+5%) 104.05 (+28%) 166.73 (+105%) 

𝜃𝑟 = 8% 96.06 109.51 (+14%) 163.08 (+70%) 304.87 (+217%) 

𝜃𝑟 = 6% 182.07 213.93 (+18%) 331.64 (+82%) 622.49 (+242%) 

𝑤 = 0.30     

𝜃𝑟 = 10% 77.99 77.38 (−1%) 94.30 (+21%) 154.67 (+98%) 

𝜃𝑟 = 8% 73.02 84.51 (+16%) 140.18 (+92%) 281.13 (+285%) 

𝜃𝑟 = 6% 101.03 148.25 (+47%) 271.46 (+169%) 569.60 (+464%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates, in column 3 to 5 we report the fair values under the assumption of stochastic interest rates and 
deterministic inflation rates. In addition, we report the fair values for two different portfolios where stock weight 
 𝑤 =  1, 0.30 . Between parentheses are the percentage increases of the fair values as regards to the basic contract value 

from Chapter 3. The present value of the insurance policy is defined as Π 0, 𝑋𝑇 = 𝐸𝑄 𝑒−  𝑟𝑡−𝜋  𝑇
𝑡=1 𝑋𝑇 , where 𝑋𝑇  

presents the market value of the insurance account at expiry date, 𝑟𝑡  is the interest rates at time 𝑡 and 𝜋  describes the 
long-term inflation rate. The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: 
minimum guaranteed rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve 
account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, long-term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531 

and scenario = 50000. 
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From Table 4 we observe that the interest rate risk effect on the contract value is extremely 

large. For example, if we look at the case where the long-term interest rate 𝜃𝑟 = 10%, the fraction 

of investment in stocks 𝑤 = 100% and the interest rate volatility 𝜍𝑟 = 0%, the corresponding  

value of the basic contract is given by 81.21. If we increase the interest rate volatility 𝜍𝑟  from 0% to 

1%, 2% or 3%, the fair value becomes 85.57, 104.05 and 166.73 with a respective upwards change of 

5%, 28% and 105%. It can be seen that the contract value increases exponentially. Similar 

developments are found for 𝜃𝑟 = 8% and 𝜃𝑟 = 6%, where the influence of stochastic interest rates 

is even more impacting. When we turn our attention to the case where the stock weight 𝑤 =

30%, we notice that the fair values are much lower as compared to the case of 𝑤 = 100%. Indeed, 

the main purpose of asset allocation is to enhance the likelihood of achieving desired investment 

returns and to reduce risk and volatility in the investment portfolio. With respect to the initial 

example, the risk-neutral contract value now becomes 77.99 which is an improvement of 

approximately 4% (= 81.21 77.99 ). However, the fair value of the diversified portfolio is more 

sensitive to the interest rate risk, especially when the market interest rate drops and its volatility 

increases. This result could be explained by the dynamics of the instantaneous standard deviation 

of the bond portfolio, i.e., 𝜍𝐵 = 𝜍𝑟𝐷. The bond volatility 𝜍𝐵 is thus an increasing function of the 

parameter 𝜍𝑟  and 𝐷, where 𝜍𝑟  denotes the interest rate volatility and 𝐷 represents the bond 

duration. Based on 𝐷 = 5, an increase in interest rate volatility of 1% corresponds with an increase 

in bond volatility of 5%. This change is relatively high as compared to the stock volatility 

𝜍𝑠 = 15% which is assumed to be constant over time.  

Regarding the fair pricing principle, given in (3.15), we mention that the fair contract from 

Chapter 3  𝑟∗ = 8%, 𝛼∗ = 0.20, 𝛽∗ = 0.30, 𝑤 = 100%, 96.06  is not valid anymore under the 

current assumptions. When more variability in interest rates is added, e.g. 𝜍𝑟 = 1%, the 

respective contract value is given by 109.51 (+14%) which exceeds the initial premium paid at the 

inception of the contract (i.e. 𝑃0 = 100). In order to fulfill the fair pricing principle, the insurance 

provider may raise the profit-sharing rate 𝛽, or alternatively, reduce the rate of excess return 

shared with the insurance client 𝛼.  

4.4.3. Impact of stochastic inflation rates  

In this subsection, we determine the impact of inflation rate risk on the fair pricing of 

embedded options. More specifically, we assume that the price inflation process is stochastic, 

whereas the interest rate dynamics remains deterministic and constant during the lifetime of the 

contract. The present value of the insurance policy is given by  

Π 0, 𝑋𝑇 = 𝐸𝑄  𝑒−  𝑟−𝜋𝑡 
𝑇
𝑡=1 𝑋𝑇 ,                                             (4.24) 
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where Π 0, 𝑋𝑇  presents the fair value of 𝑋𝑇  at time 0, 𝐸𝑄 ∙  denotes the conditional expectation 

under an equivalent martingale measure, ℚ, given the information at date zero, 𝑋𝑇  presents the 

market value of the insurance account at expiry date, 𝑟 is the constant short rate of interest and 

𝜋𝑡  describes the  inflation rate at time 𝑡. To properly assess the inflation rate risk, we compare the 

results from Chapter 3 − i.e. deterministic and constant interest rate and inflation rate (see Table 

2) − with the new case wherein the inflation rates are assumed to be stochastic. These 

comparisons are highlighted in Table 5. 

Table 5 

Fair values of a single premium European life insurance contract for different levels of long-run mean of the 
interest rates  𝜃𝑟  with profit-sharing rate insured 𝛼 = 0.20 and profit-sharing rate insurer 𝛽 = 0.30. 
Assumptions used are: 1) stochastic equity return; 2) deterministic interest rate; 3) deterministic or 
stochastic inflation rate; 4) no mortality risk; 5) no surrender risk. 

Interest rate 
scenario 

Chapter 3 Chapter 4 

𝜍𝑟 = 0% and 𝜍𝜋 = 0% 𝜍𝑟 = 0% and 𝜍𝜋 = 1% 𝜍𝑟 = 0% and 𝜍𝜋 = 2% 𝜍𝑟 = 0% and 𝜍𝜋 = 3% 

𝑤 = 1     

𝜃𝑟 = 10% 81.21 81.17 (−0%) 82.65 (+2%) 84.27 (+4%) 

𝜃𝑟 = 8% 96.06 97.98 (+2%) 101.78 (+6%) 107.71 (+12%) 

𝜃𝑟 = 6% 182.07 184.63 (+1%) 194.76 (+7%) 208.55 (+15%) 

𝑤 = 0.30     

𝜃𝑟 = 10% 77.99 77.83 (−0%) 77.24 (−1%) 76.57 (−2%) 

𝜃𝑟 = 8% 73.02 73.05 (+0%) 73.34 (+0%) 75.53 (+3%) 

𝜃𝑟 = 6% 101.03 104.88 (+4%) 115.06 (+14%) 131.71 (+30%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates, in column 3 to 5 we report the fair values under the assumption of deterministic interest rates and 
stochastic inflation rates. In addition, we report the fair values for two different portfolios where stock weight 𝑤 =
 1, 0.30 . Between parentheses are the percentage increases of the fair values as regards to the basic contract value from 

Chapter 3. The present value of the insurance policy is defined as Π 0, 𝑋𝑇 = 𝐸𝑄 𝑒−  𝑟−𝜋𝑡 
𝑇
𝑡=1 𝑋𝑇 , where 𝑋𝑇  presents the 

market value of the insurance account at expiry date, 𝑟 is the constant short rate of interest and 𝜋𝑡  describes the 
inflation rate at time 𝑡. The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: 
minimum guaranteed rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve 
account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝜋 = 0.0101, mean reversion rate of the inflation 
rate 𝛾 = 0.4740, long-term inflation rate 𝜋  = 0.0240,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌Ψ,π = 0.1641, and scenario 
= 50000. 

 

 

Based on Table 5, several important statements can be made. First, it can be observed that the 

market-consistent contract value is increasing with the respective level of the inflation rate 

volatility. For instance, for 𝜃𝑟 = 8% and 𝑤 = 100%, the risk-neutral contract value increases by 

2% when the inflation rate volatility 𝜍𝜋  is set to 1%. When the volatility level 𝜍𝜋  rises fr0m 0% to 

2% and 3%, the European contract value increases by respectively 6% and 12%. As expected, the 

more volatile the expected inflation rate process, the greater the uncertainty regarding the actual 
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future value of our investment. Furthermore, the impact of inflation rate risk is most remarkable 

for low levels of market interest rates. In fact, low market interest rates are typically associated 

with adverse market conditions and thus poor investment performances. In such situation, any 

reduction in the fund value due to inflation risk will adversely impact the contract value. This 

finding is similar to the case of stochastic interest rates as described in Subsection 4.4.2. We have 

also conducted the same analysis for a portfolio consisting of 30% stock and 70% bonds. The 

respective lower fair values are exactly in line with our expectations and our previous findings.  

Based on the results obtained from Table 4 and Table 5, we argue that the impact of interest 

rate risk on the contract values is substantially larger than the impact of inflation rate risk. This 

can be explained as follows. There is a huge difference between the mean-reversion parameter of 

the two models. More specifically, the constant mean-reversion speed of the interest rate model 𝑎 

in (4.6) is assumed to be 0.10, while the estimated mean-reversion rate of the expected inflation 

process 𝛾 in (4.11) equals 0.4742 (see Table 3). Hence, the tendency to revert to its long-term level 

is much stronger for the latter case. This will certainly weaken the effect of inflation rate 

variability on the contract value. From an economic point of view, the main task of the European 

Central Bank (ECB) is to keep inflation rates low and stable over time. Therefore, a high rate of 

mean-reversion is consistent with our intuition. 

4.4.4. Impact of stochastic interest rates and inflation rates  

Up to now we have only considered the impact of interest rate risk and inflation rate risk 

separately. In this section, we wish to study these risks together and also include the correlations 

between each risk processes. The fair value of the single premium participating insurance contract 

at the inception is expressed by  

Π 0, 𝑋𝑇 = 𝐸𝑄  𝑒−  𝑟𝑡−𝜋𝑡 
𝑇
𝑡=1 𝑋𝑇 ,                                                    (4.25)  

where Π 0, 𝑋𝑇  presents the fair value of 𝑋𝑇  at time 0, 𝐸𝑄 ∙  denotes the conditional expectation 

under an equivalent martingale measure, ℚ, given the information at date zero, 𝑋𝑇  presents the 

market value of the insurance account at expiry date, 𝑟𝑡  is the interest rates at time 𝑡 and 𝜋𝑡  

describes the inflation rate at time 𝑡. The results are reported in Table 6. 

As aforementioned, the impact of stochastic inflation rates is relatively weak (column 4) when 

compared to the impact of stochastic short rates (column 3). This is a well-known fact since 

insurance companies are predominantly exposed to interest rate risk. In the last 2 columns of 

Tables 6 we report the fair values where both financial risk effects are analyzed. In order to reveal 

the influence of dependence structures among stochastic financial processes, as an example, in 

column 5 we assume that interest rate and price inflation are uncorrelated (other correlations are 
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incorporated), whereas in column 6 the respective correlation coefficient 𝜌𝑟 ,𝜋 = 0.5248 is 

investigated. It is shown that the contract values given in column 3 (i.e. 𝜍𝑟 = 1% and 𝜍𝜋 = 0%) 

and column 5 (i.e. 𝜍𝑟 = 1%, 𝜍𝜋 = 1% and 𝜌𝑟 ,𝜋 = 0) exceed the contract values presented in 

column 6. Based on Equation (4.16), it can be clearly seen that the Brownian motion of the 

expected inflation process (𝑊𝑡
π) is affected by the correlation value 𝜌𝑟 ,𝜋  and presents a significant 

downward change in the contract value. The above example shows once again how important and 

relevant multivariate risk modeling is as regards to the pricing of life insurance contracts and 

embedded options.  

 
Table 6 
Fair values of a single premium European life insurance contract for different levels of long-run mean of the 
interest rates  𝜃𝑟  with the profit-sharing rate insured 𝛼 = 0.20 and the profit-sharing rate insurer 𝛽 = 0.30. 
Other assumptions used are: 1) stochastic equity return; 2) no mortality risk; 3) no surrender risk. 

Interest rate 
scenario 

Chapter 3 Chapter 4 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝜍𝑟 = 1% 

𝜍𝜋 = 0% 

𝜍𝑟 = 0% 

𝜍𝜋 = 1% 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝜌𝑟 ,𝜋 = 0 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝜌𝑟 ,𝜋 = 0.5248 

𝑤 = 1      

𝜃𝑟 = 10% 81.21 85.57 (+5%) 81.17 (−0%) 84.47 (+4%) 83.59 (+3%) 

𝜃𝑟 = 8% 96.06 109.51 (+14%) 97.98 (+2%) 110.94 (+15%) 107.32 (+12%) 

𝜃𝑟 = 6% 182.07 213.93 (+18%) 184.63 (+1%) 215.87 (+19%) 207.62 (+14%) 

𝑤 = 0.30      

𝜃𝑟 = 10% 77.99 77.38 (−1%) 77.83 (−0%) 77.50 (−1%) 76.63 (−2%) 

𝜃𝑟 = 8% 73.02 84.51 (+16%) 73.05 (+0%) 85.04 (+16%) 81.71 (+12%) 

𝜃𝑟 = 6% 101.03 148.25 (+47%) 104.88 (+4%) 150.20 (+49%) 142.35 (+41%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates (see Chapter 3); in column 3 to 4 we report the fair values under the assumption of either stochastic 
interest rates or stochastic inflation rates; and in column 5 and 6 we report the fair values under the assumption of 
stochastic interest rates and stochastic inflation rates, where in column 5 𝜌𝑟 ,𝜋 = 0 and in column 6  

𝜌𝑟 ,𝜋 = 0.5248. In addition, we report the fair values for two different portfolios where stock weight  𝑤 =  1, 0.30 . 

Between parentheses are the percentage increases of the fair values as regards to the contract value given in column 2. 

The present value of the insurance policy is defined as Π 0, 𝑋𝑇 = 𝐸𝑄 𝑒−  𝑟𝑡−𝜋𝑡 
𝑇
𝑡=1 𝑋𝑇 , where 𝑋𝑇  presents the market 

value of the insurance account at expiry date,  𝑟𝑡  is the interest rates at time 𝑡 and 𝜋𝑡  describes the inflation rate at time 
𝑡. The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum guaranteed 
rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial 
insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝜋 = 0.0101, mean reversion rate of the inflation rate 𝛾 = 0.4740, long-
term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 𝜌𝑟 ,𝜋 = 0.5248, 

𝜌Ψ,π = 0.1641, and scenario = 50000. 
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5. Insurance Contracts and Mortality Risk  

The prior chapter demonstrated the importance of stochastic modeling of financial risks. This 

chapter examines how uncertainties regarding future mortality and life expectancy outcomes 

affect the fair value of life insurance participating policies. In this regard, we estimate and forecast 

the stochastic mortality rates by means of the Lee-Carter model (1992). The Lee-Carter model is 

applied to historical population data from the Netherlands in the long-term perspective. The 

estimation of the model’s parameter is estimated using the Singular Value Decomposition (SVD) 

technique. In the end of the chapter, we present numerical results to reveal the impact of 

mortality risk on the fair valuation of embedded options.  

5.1. Introduction of mortality risk 

For life insurance and annuity products whose payoffs depend on future mortality rates, it is 

essential to study the so-called mortality risk. We distinguish two types of mortality risk: micro-

longevity risk and macro-longevity risk. Micro-longevity risk defines the risk related to 

uncertainty in time of death if survival probabilities are known with certainty, while macro-

longevity risk refers to the risk of unexpected improvements in future life expectancies [see Hari 

et al. (2007a)]. In practice, micro-longevity risk can be reduced by means of portfolio 

diversification or by pooling arguments [see, e.g., Olivieri (2000), Coppola et al. (2000, 2002, 

2003), and Di Lorenzo and Sibillo (2002)]. In contrast, the fact that macro-longevity risk is a 

systematic risk weakens the diversification principle and increasing the portfolio size is therefore 

no longer applicable. Our objective is to quantify the second type of mortality risk, namely macro-

longevity risk, for the solvency of minimum rate of return guarantees. For convenience, we use 

the general term mortality risk to refer exclusively to the uncertainty in future mortality and life 

expectancy outcomes, regardless of whether it leads to longer or shorter than expected lifetime. 

Owing to the pace of ongoing improvements in medical support, nutrition, safety precautions, 

and a more health-oriented focus of lifestyle, human mortality rates have decreased considerably 

over the past centuries. These declines stem from substantial reductions in mortality rates at 

younger ages and, to some extent, improvements at old-ages. Although this is a positive 

development it brought considerable stress in pension plans for the elderly. As a consequence, 

adverse financial impacts caused by improper pricing and risk managing of mortality risk has 

been blamed as one of the main reasons for the collapse of the British Equitable Life Assurance 

Society (ELAS) in 2000, the world’s oldest life insurance office. The unexpected level of population 

ageing, together with the introduction of market-consistent accounting and risk-based solvency 

requirements, has called for an integration of mortality risk analysis into stochastic valuation 

models.  
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Actuaries (or insurance statisticians) have traditionally valued premium and reserves using 

deterministic mortality intensity, with the implication that the past represents the future. The 

deterministic approach fits curves to mortality as a function of age and time to approximate 

mortality rates. [see, e.g., Gompertz (1825) and Makeham (1860)]. A main disadvantage of 

deterministic mortality approach is that the model uncertainty is not taken into account. As a 

result, the traditional deterministic actuarial approach is now seen to be inadequate for the 

assessment of fair pricing of pension liabilities. The newest direction in the study of human 

survival is to model and/or forecast mortality as a random process in which the variability of 

mortality rates is incorporated. Over the past ten years, a number of new approaches have been 

developed for forecasting mortality using stochastic models, such Lee-Carter (1992), Biffs (2005) 

and Hari et al. (2007a,b).  

In this chapter, we analyze the impact of financial risks and mortality risk on participating life 

insurance contracts, where the mortality risk is modeled according to the Lee-Carter (1992) 

method. Moreover, our model framework relies on the assumption of independence between 

financial and actuarial risk. 

5.2. The Lee-Carter method 

The Lee-Carter (1992) model is one of the most popular methodologies for mortality trend 

fitting and projection. This model is computationally simple to apply and it has given satisfactory 

results in fitting mortality rates for many countries, for instance, U.S. and Canada [(Li and Chan 

(2007)], Chile [Lee and Rofman (1994)], Japan [Wilmoth (1996)], and the Netherlands [Hari et al. 

(2007a,b)]. 

During the last decade, various extensions of the Lee-Carter model have been developed for 

forecasting mortality using stochastic models, see for instance, Lee and Miller (2001), Brouhns et 

al (2002), Renshaw and Haberman (2003), Girosi and King (2005) and Hari et al. (2007a,b). Our 

attention focuses on the method proposed by Lee and Carter (1992) and used for projections of 

the age-specific death and survival probability rates for men and women in the Netherlands.16 To 

fit the Lee-Carter model we require both the central rates of death and the exposures to risk. We 

use 157 yearly observations of age-specific death numbers and exposures for men and women in 

the Netherlands, from 1850 till 2006, provided by The Human Mortality Databases.17  

The Lee-Carter model, specified for the logarithm of 𝑚𝑥 ,𝑡  the central death rate for age 𝑥 at 

time 𝑡, has the form:  

                                                      
16

 Variables such as number of policy years, smoking/non-smoking and some medical issues are not considered in 

this thesis. 
17

 Human Mortality Database, University of California, Berkeley (USA), and Max Planck Institute for Demographic 
Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded on 01/09/2009). 

http://www.mortality.org/
http://www.humanmortality.de/
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ln 𝑚𝑥 ,𝑡 =  𝑎𝑥 + 𝑏𝑥𝜅𝑡 + 휀𝑥 ,𝑡 ,    𝑥 =  𝑥1 , … , 𝑥𝑁     and     𝑡 = 1, … 𝑇.                       (5.1) 

Here 𝑎𝑥  coefficients describe the average shape of ln 𝑚𝑥 ,𝑡  across age, the 𝑏𝑥  coefficients describe 

the way mortality varies at the age 𝑥 as a reaction to the change of the general level of mortality 𝜅𝑡  

and 𝑥 denotes the specific age of the insured.18 If 𝜅𝑡  falls, mortality improves, and if 𝜅𝑡  rises, 

mortality worsens. The error term 휀𝑥 ,𝑡  illustrates the deviation of the model from the observed log 

central death rates and is expected to be Gaussian 휀𝑥 ,𝑡  ~ 𝑁(0, 𝜍휀
2). The Lee-Carter model 

presented in (5.1) is solved under the constraints  𝜅𝑡 = 0𝑡  and  𝑏𝑥𝑥 = 1 to ensure identifiability 

of the model. We note that the central death rate is obtained by 𝑚𝑥 ,𝑡 =
𝐷𝑥 ,𝑡

𝐸𝑥 ,𝑡
, where 𝐷𝑥 ,𝑡  denotes 

the number of people with age 𝑥 that died in year 𝑡, and 𝐸𝑥 ,𝑡  being the number of person years 

with age 𝑥 in year 𝑡, the so-called exposure.  

As all parameters at the right-hand side of Equation (5.1) are unobservable, the model cannot 

be fit by the ordinary least squares method. Nonetheless, we overcome this problem by employing 

the Lee and Carter’s (1992) two-stage estimation procedure, which gives exact solutions. In the 

first stage, Singular Value Decomposition (SVD) is applied to retrieve the underlying latent 

process [Lawson and Hanson (1974)].19 In the second stage, the time series of 𝜅𝑡  is re-estimated by 

solving for 𝜅𝑡  such that 

𝐷𝑡 =   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡 𝐸𝑥 ,𝑡 ,                                                       (5.2) 

where 𝐷𝑡  denotes total number of deaths in year 𝑡. The second stage guarantees that the life 

tables fitted over the sample years will reconcile the total number of deaths and the population 

age distributions.  

The most distinguishable aspect of the Lee-Carter model is that the model allows 

uncertainties for forecasts. In other words, the mortality index 𝜅𝑡  is intrinsically viewed as a 

random process. Thus the resulting estimate of the time-varying parameter 𝜅𝑡  is then modeled as 

a stochastic time series using standard Box-Jenkins (1976) methods. An autoregressive integrated 

moving average (ARIMA) model is then used to model the dynamics of the latent factor 𝜅𝑡 . When 

estimate the Lee-Carter model, one usually models the mortality index 𝜅𝑡  as a random walk with 

drift: 

𝜅𝑡 = 𝑐 + 𝜅𝑡−1 + 𝜂𝑡 ,                                                              (5.3) 

                                                      
18

 In Lee and Carter (1992), the authors define 𝑥 as the set of age groups, i.e., 1-4, 5-9, 10-14, …, 80-84, and 85+.   
19

 Two alternative approaches to SVD are: a Weighted Least Square [Wilmoth (1993)] and a Maximum Likelihood 
Estimation [Wilmoth (1993) and Brouhns et al. (2002)]. 
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where permanent shocks 𝑢𝑡~ 𝑁(0, 𝜍𝑢
2) are white noises and thus corresponds to ARIMA(0,1,0). In 

this case, the forecast of the mortality index 𝜅𝑡  changes linearly and each forecasted death rate 

𝑚𝑥 ,𝑡  changes at a constant exponential rate. In addition, in order to deal with potential outliers, 

the estimated latent process may be extended by including dummy variables to capture the effect 

of temporary shocks, e.g. pandemics or wars. This is exemplified by Lee and Carter (1992), who 

viewed subjectively the known influenza epidemic in 1918 as an anomaly and dealt with it by 

means of an intervention model with a dummy variable. Further note that 휀𝑥 ,𝑡  and 𝜂𝑡  are 

independent, satisfying the distributional assumptions 

  
휀𝑥 ,𝑡

𝑢𝑡
  ℱ𝑡−1~   

0
0
 ,  

Σ휀 0

0 𝜍𝜂
2  .                                                 (5.4) 

5.3. Modeling of the old-age 

Data quality issues have made the modeling of the old-age mortality difficult. In more detail, 

the number of deaths and exposures-to-risk at advanced ages are relatively low at the middle of 

19th century and at the first half of 20th century. The occurrence of the few centenarians may lead 

to large sampling errors and highly crude death rates. Therefore, our approach of model fitting is 

simply based on the age range 0-85. Since we are also interested in the death and survival 

probabilities of individuals aged 85+, we need a method that can extrapolate survival distribution 

for this segment of the population. In order to tackle this issue, we employ mathematical 

extrapolation technique as presented by Coale and Guo (1989) and Coale and Kisker (1990) to 

provide a consistent model framework that also accounts for the emergence of older ages. The 

Coale and Kisker method is appealing due to its simplicity and ease of calculation. 

The Coale-Kisker method has been widely applied to the mortality data of various developed 

countries. This method is based on the assumption that old-age mortality rates increase at a 

varying rate instead of a constant rate as the Gompertz law of mortality (1982) assumes.20 The 

Coale-Kisker extrapolation age starts at age of 86 and defines the following relation 

𝑐𝑘𝑥 ,𝑡 =  𝑐𝑘𝑥−1,𝑡 − 𝑅𝑡 ,          for 𝑥 ≥ 86,                                               (5.5) 

where 𝑐𝑘𝑥 ,𝑡 = ln 𝑚𝑥 ,𝑡 𝑚𝑥−1,𝑡  , i.e. the change in log central death rate at age 𝑥, and 𝑅𝑡  is a 

constant number. We then extend the Lee-Carter model with the highest attained age, which is 

commonly referred to as 𝜔 in the actuarial literature. The maximum attainable age is assumed to 

be 110. Extending the formula (5.5) up to 𝜔 = 110 and summing, the following condition is 

sattisfied 

                                                      
20

 The Gompertz (1928) model proposed that mortality rate increased exponentially with age. 
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𝑐𝑘86,𝑡 + ⋯ + 𝑐𝑘110,𝑡 = 15𝑐𝑘85,𝑡 −  1 + 2 + ⋯ + 25 𝑅𝑡 .                                (5.6) 

Solving for 𝑅𝑡 , we obtain 

𝑅𝑡 =
25𝑐𝑘85,𝑡  + ln 𝑚85,𝑡 − ln 𝑚110,𝑡 

 1 + 2 + ⋯ + 25 
.                                                (5.7) 

As proposed by Coale and Kisker (1990), the level of mortality at age 110 years (𝑚110) is fixed at 

1.0 for males, since there are almost no male survivors left at ages greater than 110. With respect to 

the level of mortality at age 110 years for females, the authors assumed that 𝑚110  is fixed at 0.8. 

This is because women tend to have longer life expectancies than their male counterparts. 

It is worth noting that various alternatives are available to model the old-age mortality. For 

example, Panjer and Russon (1992) and Panjer and Tan (1995) use cubic polynomial to extend  

survival distribution beyond age 100; Heligman and Pollard (1980) proposed a discrete version of 

the Gompertz law of mortality to describe the mortality rates; Himes, Preston and Coudran (1994) 

suggest a method using logit regression to extrapolate any life table by relating it to the extended 

‘standard’ mortality schedule; more recently, Li, Hardy and Tan (2008) developed a threshold life 

table using extreme value theory. This model allows us to extrapolate a survival distribution 

without the need for accurate mortality data.  

5.4. Estimation procedure of Lee-Carter model 

Before we reach the stage of forecasting the survival probability, we first provide a more 

detailed treatment of the Lee-Carter model as described above. In order to estimate the 

parameters 𝑎𝑥  (intercept), 𝑏𝑥  (slope) and the mortality index 𝜅𝑡  of the Lee-Carter model for a 

given matrix of log central death rates ln 𝑚𝑥 ,𝑡 , we employ the following estimation procedures: 

1. We assume that for any integer 𝑥, and any time 𝑡, the force of mortality is constant during 

the year: 𝑚𝑥+𝑢 ,𝑡+𝑢 = 𝑚𝑥 ,𝑡 , for all 𝑢 ∈  0,1  ). Then, one can verify that 𝑝𝑥 ,𝑡 = 𝑒− 𝑚𝑥 (𝑠)
1

0
𝑑𝑠 =

exp −𝑚𝑥 ,𝑡 . 

2. The estimator of 𝑎𝑥  are given by the means:  𝑎 𝑥 =
 ln 𝑚𝑥 ,𝑡 𝑡

𝑇
. 

3. Let Z denote the demeaned matrix of the log central death rate ln 𝑚𝑥 ,𝑡 , 𝑍 = ln 𝑚𝑥 ,𝑡 −

 𝑎 𝑥 𝜄, where 𝜄 is a row vector of ones. 

4. We estimate 𝑏 𝑥  and 𝜅 𝑡
(1)

 using the Singular Value Decomposition, i.e. 𝑍 = 𝑈𝑆𝑉𝑇 . 
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5. We re-estimate 𝜅 𝑡
(2)

 with values 𝑎 𝑥  and 𝑏 𝑥  obtained from the previous steps to satisfy the 

condition 𝐷𝑡 =   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡 𝐸𝑥 ,𝑡 . 

The most challenging part of estimating the Lee-Carter model is Step 4, namely the 

implementation of Singular Value Decomposition (SVD). The SVD is a widely used technique to 

decompose a matrix into several component matrices, exposing many of the useful and 

interesting properties of the original matrix. The intuition behind this approach is that the 

difference to the mean is decomposed into a time trend 𝜅𝑡  and an age-specific factor 𝑏𝑥  that 

determines the strength with which the time trend affects a certain age. A SVD can be 

constructed by 𝑍 = 𝑈𝑆𝑉𝑇(see Appendix D1). 

As it turns out, the vectors in the expansion of 𝑍 are the eigenvectors of the square matrices 

𝑍𝑍𝑇 and 𝑍𝑇𝑍. The column of 𝑈 are called left singular vector of 𝑍, and the columns of 𝑉 are called 

right singular vector of 𝑍. The singular values are the nonzero square roots of the eigenvalues 

from 𝑍𝑍𝑇 and 𝑍𝑇𝑍. The SVD can be represented equivalently as 

𝑍 = 𝜍1𝑢1𝑣1
𝑇 + 𝜍2𝑢2𝑣2

𝑇 … + 𝜍𝑟𝑢𝑟𝑣𝑟
𝑇, 

where 𝑢𝑗  and 𝑣𝑗  are the 𝑗th columns of 𝑈 and 𝑉 respectively, and 𝑟 is the minimum of 𝑚 and 𝑛, 

denoted 𝑟 =  min(𝑚, 𝑛).  

If most singular values are smaller than the others, then it might be reasonable to 

approximate 𝑍 by a few of the terms with the largest singular values. As proposed by Lee and 

Carter (1992), the first singular value is significantly larger that other singular values, one can use 

one factor (rank 1) to approximate the log death rates. We have 

𝑍 ≈  𝜍1𝑢1𝑣1
𝑇 = 𝑏 𝑥𝜅 (1), 

where 

𝑏 𝑥 =
𝜍1

𝑢 1𝑁
             and           𝜅 (1) = 𝜍1𝑣1𝑢 1𝑁.                                    (5.8) 

To deal with the unity condition of the slope coefficient 𝑏𝑥 , we divide 𝑏 𝑥  by 𝑢 1𝑁  such that 

 𝑏𝑥𝑥 = 1 holds. Here the term 𝑢 1 denotes the average of the first column of 𝑈 and 𝑁 is the total 

number of age groups. 

During the estimation procedure the mortality index 𝜅𝑡  is first estimated to minimize errors 

in the log of central death rates rather than the death rates themselves. At this point, we proceed 

to Step 5 to re-estimate the mortality index 𝜅𝑡  for a given population age distribution. This is done 

by taking the previous estimates of 𝑎𝑥  and 𝑏𝑥 . Next, we aim to find 𝜅 (2) such that 
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 𝐷𝑡 =   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡 𝐸𝑥 ,𝑡 .                                                  (5.9) 

Since no analytic solution is available for 𝜅 𝑡
(2)

, this can be done only by searching over a range 

of values of the mortality level 𝜅. The searching algorithm can be schematized in the following 

steps: 

1. Define the relation  𝐷𝑡 =   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡 𝐸𝑥 ,𝑡 , where 𝜅 𝑡
(1)

 presents the initial value of 𝜅𝑡  

2. Check which of the following three cases is satisfied 

 If   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡   𝐸𝑥 ,𝑡 −  𝐷𝑡 > 0 and  
𝜅𝑡 > 0, then  𝜅𝑡 =  𝜅𝑡(1 − 𝜆)
𝜅𝑡 < 0, then  𝜅𝑡 =  𝜅𝑡(1 + 𝜆)

   

 If   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡   𝐸𝑥 ,𝑡 −  𝐷𝑡 < 0 and  
𝜅𝑡 > 0, then  𝜅𝑡 =  𝜅𝑡(1 + 𝜆)
𝜅𝑡 < 0, then  𝜅𝑡 =  𝜅𝑡(1 − 𝜆)

   

 If   exp 𝑎𝑥 + 𝑏𝑥𝜅𝑡   𝐸𝑥 ,𝑡 −  𝐷𝑡 =  0, then 𝜅 𝑡
(2)

= 𝜅𝑡  and stop iteration (+ repeat all 

the steps for 𝑡 = 𝑡 + 1) 

3. Return to Step 1 

(Remark: 𝜆 is a small number, e.g. 𝜆 = 0.001) 

After obtaining the new values 𝜅 𝑡
(2)

, we attempt to find an appropiate model for the mortality 

index 𝜅𝑡 . The latent factor 𝜅𝑡  modeled for both male and female according to historical Dutch 

mortality data is given by 

𝜅𝑡
𝑚 = −1.3361 + 𝜅𝑡−1

𝑚 + 20.52 ∙ 𝑓𝑙𝑢𝑡 + 11.92 ∙ 𝑊𝑊𝐼𝐼𝑡 + 𝜂𝑡
𝑚                             (5.10) 

𝜅𝑡
𝑓

= −1.6035 + 𝜅𝑡−1
𝑓

+ 22.04 ∙ 𝑓𝑙𝑢𝑡 + 7.51 ∙ 𝑊𝑊𝐼𝐼𝑡 + 𝜂𝑡
𝑓
                             (5.11) 

where two dummies variables are included to deal with temporary shocks, i.e. (1) the ‘flu’ dummy 

which stands for the 1918 Spanish flu pandemic and (2) the ‘WWII’ dummy which refers to the 

event of World War II dated from 1939 till 1945 for European countries.21 The corresponding 

standard errors of the mortality index model for male and female are 𝜍𝜂
𝑚 = 5.91 and 𝜍𝜂

𝑓
= 5.90 

respectively. Finally, we use the estimated parameter values to derive the log central death rates 

ln 𝑚𝑥 ,𝑡  by applying formula (5.1). 

Fig. 9 shows the estimated Lee-Carter (1992) model parameters values of the intercept 

coefficient 𝑎𝑥 , the slope coefficient 𝑏𝑥  and the mortality level 𝜅𝑡  for men and women in the 

                                                      
21

 The flu dummy takes non-zero values for years {1918 = 1; 1919=-1} and zero elsewhere. The WWII dummy takes 
non-zero values for years {1940-1945 = 1 and 1946 =-6} and zero elsewhere.  
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Netherlands. Additionally, this figure presents the corresponding log central death rates, ln 𝑚𝑥 ,𝑡 , 

for the period 1850 till 2006. The 𝑎𝑥  coefficients are the average values of the logs of the death 

rates. Not surprisingly, the male coefficients lie above those of the female at all ages, reflecting the 

fact that mortality was higher for men on average from 1850 to 2006. The 𝑏𝑥  coefficients describe 

the relative sensitivity of death rates to variation in the latent factor 𝜅𝑡 . If the 𝑏𝑥  is high for some 

age 𝑥, then this means that the mortality rate improves faster at this age than in general. If it were 

negative at some ages, in particular for old ages, this would mean that the likelihood of dying at 

those ages are increasing. As can be seen from the graph, the set of coefficient is quite similar for 

both genders. As the 𝑏𝑥 ’s are controlled to sum to 1, their absolute levels have no particular 

meaning.  

 

Fig. 9. The estimated Lee-Carter (1992) model: ln 𝑚𝑥 ,𝑡 =  𝑎𝑥 + 𝑏𝑥𝜅𝑡 + 휀𝑥 ,𝑡 , with 𝑎𝑥  (left upper panel), 𝜅𝑡  (right 

upper panel), 𝑏𝑥  (left lower panel) for both male and female, and ln 𝑚𝑥,𝑡  for 𝑥 = 25 and 𝑥 = 65 aged male (right 

lower panel). The model is constructed using Dutch mortality data for the period 1850 till 2006 and the considered 
age range is 0-110. 
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Furthermore, in the right upper panel of Fig. 9 we illustrate the development of the mortality 

index 𝜅𝑡  from the period 1850 to 2006. It is clear that the mortality data is rather volatile, 

particular around the period of the Spanish flu (1918) and the Second World War (1939-1945). 

Overall, the mortality level has been decreasing almost linearly during the sample period, for both 

male and female, which suggests that the human life expectancy is improving over years.  

In the following, we compare the log central death rates, ln 𝑚𝑥 ,𝑡 , of a male policyholder aged 

25 and a male policyholder aged 65 during the sample period 1985-2006 in the right lower panel of 

Fig 9. We notice that the fitted values of ln 𝑚𝑥 ,𝑡  are decreasing for both age categories, reflecting 

an increase in the life expectancy as expected. It should also be addressed that the improvements 

in mortality for a 25 aged male are more significant than the case of 65 aged male. Another 

essential observation from Fig. 9 is that the log central death rates of the 25-year-old policyholder 

are severely affected by the Spanish flu (1918) and the WWII (1939-1945), whereas the mortality 

intensity of the 65-year-old policyholder remains almost unchanged. Moreover, it worth noting 

that the main findings obtained in Fig. 9 is also consistent with the results from Cui (2008). 

5.5. Forecasting future mortality 

Having developed and fitted the demographic model we are now ready to move to the 

problem of forecasting. Fig. 10 displays actual fitted base period value of the mortality index 𝜅𝑡  for 

the Netherlands from 1850 to 2006 and their forecasts from 2007 to 2100. More specifically, we 

have performed one-step ahead forecasts for the latent process 𝜅𝑡 . Note that the points forecast 

are essentially linear extrapolations of the base period series. 95% confidence intervals are also 

shown for the forecast of 𝜅𝑡 .  

The next step is to convert the forecasts of 𝜅𝑡  into the forecasts of log death rates using the 

previously estimated age-specific coefficients 𝑎𝑥  and 𝑏𝑥  and model (5.1). Once the implied 

forecast of the central death rates has been obtained, any desired life table function can be 

constructed. 

Using the forecasted results as outlined above, we derive the survival probability and the 

expected remaining lifetime of an individual with age 𝑥 at time 𝑡. Let us denote 𝑝𝑥 ,𝑡𝜏  for the 

probability that an 𝑥-year-old insurance client at time 𝑡 will survive at least another 𝜏 years with 

the convention that 𝑝𝑥 ,𝑡 = 𝑝𝑥 ,𝑡1 , i.e. 

𝑝𝑥 ,𝑡𝜏 = 𝑝𝑥 ,𝑡 × 𝑝𝑥+1,𝑡+1 × … × 𝑝𝑥+𝜏−1,𝑡+𝜏−1.                                      (5.12) 
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Fig. 10. Mortality forecast from actual data (1850-2006) to forecasts 
(2007-2100). The actual data are modeled as ARIMA(0,1,0) model from 
1850 and has one dummy for the influenza epidemic and one dummy for 
the WWII.  

 

The remaining lifetime of an 𝑥-year-old individual at time 𝑡 is given by 𝑇𝑥 ,𝑡 , and 1 𝑇𝑥 ,𝑡≥𝜏  refers 

to the indicator random variable that indicates whether an 𝑥-year-old person at time 𝑡 will survive 

at least 𝜏 more years [see Hari et al. (2007a)]. Then, conditional on survival rates up to period 𝑡, 

the expected curtate remaining lifetime of  a policyholder aged 𝑥 at time 𝑡 is given by 

𝐸𝑡 𝑇𝑥 ,𝑡 =  𝐸𝑡  1 𝑇𝑥 ,𝑡≥𝜏  

ω−𝑥

𝜏=1

 

𝐸𝑡 𝑇𝑥 ,𝑡 =  𝐸𝑡 𝑝𝜏 𝑥 ,𝑡 

𝜔−𝑥

𝜏=1

                                                                              (5.13) 

𝐸𝑡 𝑇𝑥 ,𝑡 =  𝐸𝑡  exp  −  𝑚𝑥+𝑠,𝑡+𝑠

𝜏−1

𝑠=0

  

𝜔−𝑥

𝜏=1

, 

where the second expression of (5.13) follows from the law of iterated expectation, and where 𝜔 

denotes the maximum attainable age, i.e. 𝜔 = 110. 

To reveal the size of improvements in human life expectancy, we define the expected 

remaining lifetime for selected historical years under the assumption that there are no further 

improvements in survival rates and compare it to the case when improvements in mortality are 
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included. The expected remaining lifetime without accounting for future mortality development 

is calculated by 

𝐸𝑡 𝑇𝑥 ,𝑡 =  𝐸𝑡 𝑝𝜏 𝑥 ,𝑡 

𝜔−𝑥

𝜏=1

=  𝐸𝑡  exp  −  𝑚𝑥+𝑠,𝑡

𝜏−1

𝑠=0

  

𝜔−𝑥

𝜏=1

.                                  (5.14) 

Life tables for which age-specific probabilities of death are calculated under the assumption that 

further improvement in survival probability are not taken into account are known as period life 

tables. In contrast, cohort life table are calculated using age-specific mortality rates which allow 

for known or projected changes in mortality in later years.  

 

Table 7 
Expected remaining lifetime based on period and cohort life table 

Gender Year Period Life Table Cohort Life Table 

  25 65 25 65 

 1900 39.7 10.6 44.3 11.3 

 1925 45.3 12.3 46.4 12.2 

Men 1950 48.5 13.7 49.4 13.9 

 1975 47.7 13.0 52.6 13.4 

 2000 51.1 15.0 54.7 15.9 

 1900 40.7 11.2 44.7 11.8 

 1925 45.4 12.9 51.3 12.4 

Women 1950 49.9 14.2 55.4 15.3 

 1975 53.5 16.8 57.5 18.5 

 2000 56.3 19.3 59.7 19.5 

The table shows the expected remaining lifetime at the age of 25 and 65 for men and 
women according to two different life tables. The period life table is based on the 
assumption that there is no further improvement in mortality, while the cohort life 
table includes the future improvement of mortality rates. 

 

Table 7 reports the expected remaining lifetime computed by the period - and the cohort life 

table for historical time periods from 1900 to 2000. The analysis is implemented on Dutch male 

and female policyholders at the age of 25 and 65. Table 7 shows that the expected remaining 

lifetime based on the period life table is somewhat lower as compared to the one obtained by the 

cohort life table. For instance, according to the period life table the expected remaining lifetime of 

a 25-year-old male in year 2000 is 51.1, while based on the cohort table we observe an expected 

remaining lifetime of 54.7, which is an increase of approximately 7%. The results confirm the fact 

that mortality calculations which are based on period life tables seriously underestimate future 

life expectancy. For this reason, cohort life tables are regarded as a more appropriate measure of 
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expected life expectancy than period life tables. The analysis of mortality risk in this thesis is 

carried out by using cohort life tables [see formula (5.14)]. 

5.6. Effect of mortality on fair value 

In this section, we explore the impact of mortality risk on the fair value of the single premium 

insurance contract as described in Chapter 3. We build upon the approach of Bacinello (2003b). 

According to Bacinello (2003b), the fair European contract adjusted for death and survival 

probabilities can be expressed by  

Π 0, 𝑋𝑇 = 𝐸𝑄   𝑒−  𝑟𝑘−𝜋𝑘 𝑡
𝑘=1 𝑋𝑡 ∙ 𝑞𝑥𝑡−1/1 +

T−1

t=1

𝑒−  𝑟𝑡−𝜋𝑡 
𝑇−1
𝑡=1 𝑋𝑇 ∙ 𝑝𝑥𝑇  ,                     (5.15) 

where Π 0, 𝑋𝑇  presents the fair value of 𝑋𝑇  at time 0, 𝐸𝑄 ∙  denotes the conditional expectation 

under an equivalent martingale measure, ℚ, given the information at date zero, 𝑋𝑇  is the liability 

without consideration for the mortality risk, 𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old 

policyholder dies at 𝑡-th year and 𝑝𝑥𝑇  presents the probability of an 𝑥-year-old policyholder 

survives another 𝑇 years. The parameter 𝑟𝑡  and 𝜋𝑡  denote respectively the stochastic interest rate 

and the short inflation rate at time 𝑡. Furthermore, we have assumed that the remaining lifetime 

𝑇𝑥 ,𝑡  is stochastically independent of the Brownian motions 𝑊𝑡
𝑟 , 𝑊𝑡

𝑆, 𝑊𝑡
Ψ  and 𝑊𝑡

π . Intuitively, this 

means that the event death is independent of stochastic financial processes such as the term 

structure, the price inflation and the performance of the stock returns, and vice versa.  

It is worth noting that the reference insured is a Dutch male aged 𝑥 = 25 at the inception of 

the contract. A similar analysis can be conducted for a female policyholder; although a minor 

modification of the respective mortality rates would be required. Moreover, in the previous 

sections we have assumed that the insurance client is aged 25 and is alive at the age of 65 (i.e. the 

retirement age). The contract maturity is therefore 𝑇 = 40 years − this implicitly also assumes 

that the death probability of an 𝑥-year-old policyholder in 𝑡-th year 𝑞𝑥𝑡−1/1 = 0 and the 

probability of an 𝑥-year-old policyholder survives another 𝑇 years 𝑝𝑥𝑇 = 1. In our current setting, 

where mortality risk is incorporated, feasible values of the death probability 𝑞𝑥𝑡−1/1  and the 

survival probability 𝑝𝑥𝑇  are elements of the unit interval  0,1 .  

Next, Table 8 reports fair values of a single premium European life insurance contract for 

different levels of long-run mean of the interest rates  𝜃𝑟  and stock weight 𝑤 = 0.3. The last 

column of Table 8 reports the fair value of the European contract adjusted for mortality risk, 

while the other columns report the fair values in which the mortality risk is neglected. Between 

parentheses we give the percentage changes in fair values with respect to the basis contract from 
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Chapter 3 (i.e. column 2). Turning to the last column of Table 8, we observe the fair value to be 

highest when all the three risk effects are taken into account. This is hardly surprising since each 

risk factor poses risk premium to the insurer. To be able to gain more insight regarding the 

mortality effect, we set the volatility of interest rates and inflation rates both to zero (i.e. 𝜍𝑟 = 0 

and 𝜍𝜋 = 0). The corresponding results are provided in column 6 of Table 8. 

 Table 8 
Fair values of a single premium European life insurance contract for different levels of long-run mean of the 
interest rates  𝜃𝑟  and stock weight 𝑤 = 0.3. Other assumptions used are: 1) stochastic equity return; 2) no 
surrender risk. 

𝑤 = 0.30 Chapter 3 Chapter 4 Chapter 5 

Interest rate 

scenario 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 1% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 0% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.30   

𝜃𝑟 = 10% 77.99 77.38 (−1%) 77.83 (−0%) 76.63 (−2%) 86.38 (+11%) 85.79 (+10%) 

𝜃𝑟 = 8% 73.02 84.51 (+16%) 73.05 (+0%) 81.71 (+12%) 91.89 (+26%) 101.94 (+40%) 

𝜃𝑟 = 6% 101.03 148.25 (+47%) 104.88 (+4%) 142.35 (+41%) 137 (+36%) 179.51 (+78%) 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.40   

𝜃𝑟 = 10% 73.75 72.71 (−1%) 73.27 (−1%) 71.95 (−2%) 80.83 (+10%) 80.31 (+9%) 

𝜃𝑟 = 8% 67.11 79.34 (+18%) 67.01 (+0%) 76.65 (+14%) 84.58 (+26%) 95.11 (+42%) 

𝜃𝑟 = 6% 98.86 144.83 (+47%) 102.37 (+4%) 139.42 (+41%) 133.71 (+35%) 174.08 (+76%) 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.50   

𝜃𝑟 = 10% 68.98 68.20 (−1%) 69.18 (+0%) 67.64 (−2%) 75.25 (+9%) 74.42 (+8%) 

𝜃𝑟 = 8% 61.23 74.58 (+22%) 60.85 (−1%) 71.63 (+17%) 77.48 (+27%) 88.60 (+45%) 

𝜃𝑟 = 6% 97.05 143.04 (+47%) 100.55 (+4%) 136.46 (+41%) 130.32 (+34%) 169.88 (+75%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates (see Chapter 3); in column 3 to 5 we report the fair values under the assumption of either stochastic 
interest rates or stochastic inflation rates or both (see Chapter 4); in column 6 we report the fair values under the 
assumption of stochastic mortality and in column 7 we report the fair values under the presence of interest rate risk, 
inflation risk and mortality risk. Between parentheses are the percentage increases of the fair values as regards to the 
contract value given in column 2. The present value of the insurance policy is defined as 

Π 0, 𝑋𝑇 = 𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡
𝑘=1 𝑋𝑡 ∙ 𝑞𝑥𝑡−1/1 +T−1

t=1 𝑒−  𝑟𝑡−𝜋𝑡 
𝑇−1
𝑡=1 𝑋𝑇 ∙ 𝑝𝑥𝑇  , where 𝑋𝑇  is the liability without consideration for 

the mortality risk, 𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old policyholder dies at 𝑡-th year, 𝑝𝑥𝑇  presents the 

probability of an 𝑥-year-old policyholder survives another 𝑇,  𝑟𝑡  is the interest rates at time 𝑡 and 𝜋𝑡  describes the 
inflation rate at time 𝑡. The reference insured is a male aged 𝑥 =  25 at time 0. Other parameters included in the model 
are: minimum guaranteed rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve 
account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝜋 = 0.0101, mean reversion rate of the inflation 
rate 𝛾 = 0.4740, long-term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 

𝜌𝑟 ,𝜋 = 0.5248, 𝜌Ψ ,π = 0.1641, and scenario = 50000. 
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As an example, we will look at the contract type 𝛼 = 0.20 and 𝛽 = 0.30. Among the three risk 

sources, it can be seen that the influence of mortality risk is strongest when the long-term mean 

of the interest rate 𝜃𝑟 = 10%. We also observe that the increase in fair values due to change in 

market interest rates occur almost linearly for the mortality risk, whereas the increase in fair 

values is somewhat exponentially for the interest rate risk. This implies that the effect of different 

type of risk is heavily dependent on the level of the market interest rate, or more generally, the 

state of the economy. Moreover, Table 8 also reflects the fact that higher contribution in profit-

sharing rate 𝛽 is associated with a decrease in the contract value. The present value of the 

insurer’s account Π 0, 𝐶𝑇 + 𝑅𝑇
−  improves due to an increase in the risk premium caused by an 

upward change in 𝛽. Based on the results, an appropriate value for the profit-sharing rate 𝛽 would 

be near 0.4 or 0.5. 

Based on the analysis outline above and the results from Chapter 3 and 4, we argue that a 

substantial amount of the fair value change is dedicated to the risk of mortality. The huge impact 

of mortality risk on the fair premium can be explained as follows. In normal circumstances, the 

life insurance benefit would be paid to the policyholders providing that they survive until 

maturity, 𝑇, and there might be a payment on earlier death. In the case that the policyholder dies 

within the investment period [0, 𝑇], say in year 𝑡 = 5, the insurer is obliged to pay a specified 

amount of benefit to the beneficiary of the insured client. In this thesis, we have assumed that the 

amount of the death benefit is equal to the accrued policyholder’s account at the end of the year 

of death. If the investment performance in the first 5 years is worse or at least below the 

guaranteed benefits, the insurer has to cover any deficits on the insurance account. This will 

negatively impacts the fair contract value. In addition, we would like to remark that the definition 

of mortality risk used in the thesis is somewhat different from other papers. In practice, the 

mortality risk is often referred as the systematic deviations of the realized mortality rates from the 

projected rates. Since we have initially assumed that the policyholder does not die within the 

period of interest [0, 𝑇], our projected mortality rates is rather unrealistic because 𝑞𝑥𝑡−1/1 = 0 and 

𝑝𝑥𝑇 = 1 are used. This would explain the major impact as well. 

Additionally, we show in Table 9 the fair values of the single premium contract where no asset 

allocation is applied (𝑤 = 100%). The result reveals that the undiversified portfolio leads to a 

higher fair premium, which is in line with our feeling. However, we also find that the financial 

impact of mortality risk in Table 9 is significantly lower than the mortality impact observed in 

Table 8. Interesting, the difference between the two portfolios is biggest when 𝜃𝑟 = 6%. In this 

case, it is very difficult for the insurance company to make enough investment return to meet the 

minimum guaranteed rate 𝑟𝐺 . We know that the average inflation is around 2.5%, which implies 

that the real interest rate should be around 3.5% (= 6% − 2.5%), that is near the minimum 

required. Hence, in order to meet the guaranteed benefits, one way is to invest 100% in stocks.  
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Table 9 
Fair values of a single premium European life insurance contract for different levels of long-run mean of the 
interest rates  𝜃𝑟  and stock weight 𝑤 = 1. Other assumptions used are: 1) stochastic equity return; 2) no 
surrender risk. 

𝑤 = 1 Chapter 3 Chapter 4 Chapter 5 

Interest rate 

scenario 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 1% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 0% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.30   

𝜃𝑟 = 10% 81.21 85.57 (+5%) 81.17 (−0%) 83.59 (+3%) 89.17 (+10%) 92.95 (+14%) 

𝜃𝑟 = 8% 96.06 109.51 (+14%) 97.98 (+2%) 107.32 (+12%) 113.66 (+18%) 125.03 (+30%) 

𝜃𝑟 = 6% 182.07 213.93 (+18%) 184.63 (+1%) 207.62 (+14%) 214.61 (18%) 240.72 (+32%) 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.40   

𝜃𝑟 = 10% 73.99 77.85 (+5%) 75.11 (+2%) 77.18 (+4%) 79.47 (+7%) 82.80 (+12%) 

𝜃𝑟 = 8% 89.07 102.26 (+15%) 89.93 (+1%) 100.34 (+13%) 102.90 (+16%) 114.43 (+28%) 

𝜃𝑟 = 6% 177.28 208.28 (+17%) 180.27 (+2%) 203.08 (+15%) 203.17 (+15%) 229.14 (+29%) 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.50   

𝜃𝑟 = 10% 68.10 70.67 (+4%) 67.38 (−1%) 70.31 (+3%) 71.28 (+5%) 74.04 (+9%) 

𝜃𝑟 = 8% 82.71 97.16 (+17%) 84.32 (+2%) 93.58 (+13%) 92.62 (+12%) 104.70 (+27%) 

𝜃𝑟 = 6% 173.08 204.00 (+18%) 176.27 (+2%) 199.14 (+15%) 192.89 (+11%) 219.46 (+27%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates (see Chapter 3); in column 3 to 5 we report the fair values under the assumption of either stochastic 
interest rates or stochastic inflation rates or both (see Chapter 4); in column 6 we report the fair values under the 
assumption of stochastic mortality and in column 7 we report the fair values under the presence of interest rate risk, 
inflation risk and mortality risk. Between parentheses are the percentage increases of the fair values as regards to the 
contract value given in column 2. The present value of the insurance policy is defined as 

Π 0, 𝑋𝑇 = 𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡
𝑘=1 𝑋𝑡 ∙ 𝑞𝑥𝑡−1/1 +T−1

t=1 𝑒−  𝑟𝑡−𝜋𝑡 
𝑇−1
𝑡=1 𝑋𝑇 ∙ 𝑝𝑥𝑇  , where 𝑋𝑇  is the liability without consideration for 

the mortality risk, 𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old policyholder dies at 𝑡-th year, 𝑝𝑥𝑇  presents the 

probability of an 𝑥-year-old policyholder survives another 𝑇,  𝑟𝑡  is the interest rates at time 𝑡 and 𝜋𝑡  describes the 
inflation rate at time 𝑡. The reference insured is a male aged 𝑥 =  25 at time 0. Other parameters included in the model 
are: minimum guaranteed rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve 
account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝜋 = 0.0101, mean reversion rate of the inflation 
rate 𝛾 = 0.4740, long-term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 

𝜌𝑟 ,𝜋 = 0.5248, 𝜌Ψ ,π = 0.1641, and scenario = 50000. 
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6. Life Insurance Contracts and Surrender Risk 

The final phase of our research aims at studying the valuation of single premium life 

insurance contracts with a surrender option. In this chapter, we describe the Least Squares Monte 

Carlo (LSMC) approach as proposed by Longstaff and Schwartz (2001) to price the value of 

American-like claims. Here, we focus on financial and demographic drivers of surrender decisions 

including variability of the term structure, price inflation, stock market performance and the 

uncertainty regarding future mortality and life expectancy. We build upon the insurance contract 

as described in previous chapters by incorporating the possibility to exit (surrender) the contract 

prior maturity. We present numerical results relative to the proposed evaluation problem the final 

section. 

6.1. Introduction of surrender option 

A profit-sharing policy embeds a surrender option gives the policyholder the chance to 

terminate the contract before its maturity. If the policyholder decides to early abandon the 

contract because it is financially convenient, he/she receives a sum that is defined as the surrender 

value, minus any costs charged by the insurance company. If the policyholder decides to hold the 

contract until the maturity date, he/she receives the stated survival benefits. Since life insurance 

contracts are long-term contracts, many clients may be reluctant to the idea of locking high 

amounts of money for such long periods. For this reason, the insurer may offer the possibility of 

early withdrawals to ensure that the policyholder will not perceive insurance security as an 

illiquid investment.  

The additional flexibility in early termination of the contract might cause some profit 

reduction for the insurer if optimally exercised. It is thus crucial for insurance providers to 

understand the surrender behavior and its financial impact. Empirical evidence suggests that 

surrender decisions are mainly driven by several factors including changes the in competitive 

environment (e.g. risk premium paid by the insurance client), financial market conditions (e.g. 

level of interest rate), investment performance and deterioration/improvements of the 

policyholders’ health. High interest rates as well as poor investment results are usually associated 

with the policyholder leaving the contract and engage in more rewarding investment 

opportunities. In our analysis, we will assume that the policyholder is perfectly informed and 

takes rational decisions. The policyholder will take the decision to surrender in order to maximize 

the value of his wealth.  

Surrenders are not welcomed by insurance companies for several reasons. First, the insurance 

company might incur financial losses from early payments caused by leaving customers due to 
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reduction in the assets base (liquidity) and increase in the costs per-policy. Second, in the long 

term the insurance company might suffer from adverse selection since policyholders that have 

health problems will not surrender. This may generate imbalances in the exposure to the 

mortality risk of remaining insureds. In practice, to minimize surrender risk insurance companies 

will partially cover the cost of surrender options by applying surrender penalties. The penalties 

are often predefined as a percentage of the guaranteed benefit. This percentage could be for 

instance a decreasing function of the in force period of the contract.  

From the point view of asset pricing theory, surrender options can be viewed as derivatives 

with American-style exercise features. The valuation of American-style claims is one of the most 

important practical problems in financial engineering due to the early exercise feature, 

particularly when more than one factor affects the value of the option. Indeed, because of the 

complexity of the underlying dynamics, there is no analytical solution available for the valuation 

of American options in the standard Black and Scholes (1973) framework.  

Two broad approaches are usually distinguished in the academic literature. In the first, finite 

difference (e.g. binomial/multinomial trees) methods generate a discrete lattice in time and space 

and iterate backwards in time from expiration.22 Lattice methods are well-suited for the valuation 

of American option when the dimension of outcome space is low. However, as the dimension of 

the problem increases, computing this conditional expectation can become computationally 

prohibitive. In contrast to traditional finite difference and lattice methods, Monte Carlo 

simulation methods [see Boyle (1977)] are more widely applicable. Since their convergence rate 

does not depend on the number of dimensions, Monte Carlo simulations can be effective for high-

dimensional pricing problems.  

There are a number of studies that have considered the pricing of American options. Some of 

the first treatments analyzing it are by Tilley (1993), Fu and Hu (1995), Carrière (1996), Carr 

(1998), Longstaff and Schwartz (2001), Broadie and Glasserman (2004), and Laprise et al. (2006). 

In particular, Longstaff and Schwartz (2001) employed the least squares regression to determine 

the optimal exercise time of the problem by backward dynamic programming. The main idea is to 

estimate the condition expected payoff from continuation at each exercise date (i.e. continuation 

value), and compare it with the payoff from immediate exercise. Its success is due to its general 

applicability combined with its ability to deal with both high-dimensional models and multiple 

exercise times. Applications of the Least Squares Monte Carlo (LSMC) approach on life insurance 

contracts with surrender option have been tackled by Andreatta and Corradin (2003) and 

                                                      
22

 For instance the approach presented in Bacinello (2003a,b), who analyzes the surrender option in an Italian life 

insurance contract with single and periodic premiums, and provides numerical illustrations based on a recursive 
binomial formula implemented in  the Cox-Ross-Rubinstein (1979) framework. 
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Bacinello, Biffis and Millossovich (2008). In this thesis, we apply the LSMC approach to price the 

participating life insurance contract with surrender option. 

6.2. The Longstaff-Schwartz approach 

Formally, the Longstaff-Schwartz (2001) approach to price American-style claims assumes an 

underlying complete probability space (Ω, ℱ, ℚ) and finite time horizon [0, 𝑇], where the set Ω is 

called the sample space of all possible outcomes, the 𝜍-algebra ℱ, as the subset of Ω, are called 

events, and ℚ is a probability measure defined on the elements of ℱ. Let 𝑚 denote a sample path 

of underlying asset prices generated by Monte Carlo simulation over a discrete 𝑁 exercise times 

0 < 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ ⋯ ≤ 𝑡𝑁 = 𝑇. For the sake of simplicity, we assume that the right to surrender 

can only be done at the end of the year until the maturity of the contract. Hence this is a 

Bermudan-type option rather than a truly American one − a Bermuda option can be exercised on 

predetermined dates during its life, for example on annual basis [Hull (2006)]. Next, we introduce 

the notation 𝒞 𝑚, 𝑠; 𝑡, 𝑇  to denote the path of cash flow generated by the option, conditional on 

the option not being exercised at or before time 𝑡 and on the optionholder following the optimal 

exercise policy for all subsequent 𝑠, 𝑡 < 𝑠 ≤ 𝑇. Moreover, we assume that the asset value 

underlying the option follows a Markov process. 

At maturity, the investor exercises the option if it is in the money, or allows it to expire if it is 

out of money. At time 𝑡𝑛  prior to the terminal expiration date (𝑛 = 1,2, … , 𝑁 − 1), the 

optionholder must decide whether to exercise at that point or to hold the option and revisit the 

decision at the next exercise date. Therefore, the optimal stopping problem changes to comparing 

the immediate exercise value with the conditional expectation from continuation. Unfortunately, 

the policyholder has no idea of the true future payoff from continuation at time 𝑡𝑛 . As is common 

when dealing with American options, one can introduce the Snell envelope to evaluate the 

American-style option features (see Appendix D2). For more information regarding the 

implementation of the Snell envelope, see for instance, Bensoussan (1984) and Karatzas (1988). 

According to no-arbitrage valuation theory, 𝐹 𝑚; 𝑡𝑛 , the continuation value at time 𝑡𝑛  for 𝑚-

th path with respect to the risk-neutral pricing measure ℚ, is given by 

𝐹 𝑚; 𝑡𝑛 = 𝐸𝑄   exp  − 𝑟 𝑚, 𝑠 𝑑𝑠
𝑡𝑗

𝑡𝑛

 

𝑁

𝑗=𝑛+1

𝒞 𝑚, 𝑡𝑗 ; 𝑡𝑛 , 𝑇   ℱ𝑡𝑛
  ,                          (6.1) 

where 𝑟 𝑚, 𝑡  is the stochastic riskless discount rate, and the expectation of the cash flows is 

taken conditional on the information set ℱ𝑡𝑛
 at time 𝑡𝑛 . The idea underlying the Least Squares 

Monte Carlo (LSMC) approach methodology is that the conditional expectation, as presented in 
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(6.1), can be approximated by a least squares regression for each exercise date.23 Let 𝐹  𝑚; 𝑡𝑛  

denote this estimate and let 𝐿ℎ  denote the ℎ-th basis function, then we can represent the 

estimated continuation value as 

𝐹  𝑚; 𝑡𝑛 =  𝑎ℎ 𝑡𝑛 

𝐻

ℎ=1

𝐿ℎ 𝑋 𝑚; 𝑡𝑛  ,                                                       (6.2) 

where 𝑎ℎ 𝑡𝑛  is the coefficient corresponding to the ℎ-th basis function 𝐿ℎ  at time 𝑡𝑛  and 𝑋 𝑚; 𝑡𝑛  

presents the asset price at the 𝑛-th timestep for the scenario 𝑚.  

To implement the LSMC method, we have approximated 𝐹  𝑚; 𝑡𝑛  using the first 𝐻 < ∞ basis 

functions. Now, 𝑎ℎ 𝑡𝑛  can be estimated by a least squares regression of 𝐹 𝑚; 𝑡𝑛  onto the basis 

𝐿ℎ 𝑋 𝑚; 𝑡𝑛  . The coefficient vector can be expressed as 

 𝑎 1 𝑡𝑛 , … , 𝑎 𝐻 𝑡𝑛  
𝑇

=  Ψ𝑇Ψ 
−1

Ψ𝑇 𝑦1 𝑡𝑛 , … , 𝑦𝑀 𝑡𝑛  
𝑇

,                                  (6.3) 

where 𝑦𝑚  𝑡𝑛 = 𝑒−𝑟𝑡𝑛 𝑋 𝑚; 𝑡𝑛+1 , and Ψm =  𝐿0 𝑋 𝑚; 𝑡𝑛  , … 𝐿𝐻 𝑋 𝑚; 𝑡𝑛    for 𝑚 = 1, … , 𝑀 

realization paths. Since we work in a Markovian environment, we can use Laguerre polynomials 

as choice of basic functions as suggested by Longstaff and Schwartz (2001). Mathematically, the 

Laguerre polynomials are given by 

𝐿1 𝑋 = 1 

𝐿2 𝑋 = −𝑋 + 1 

𝐿3 𝑋 =
1

2
 𝑋2 − 4𝑋 + 2  

⋮                                                                          (6.4) 

𝐿𝐻 𝑋 =  
𝑒𝑋

𝐻!

𝑑𝐻

𝑑𝑋𝐻
 𝑋𝐻𝑒−𝑋 , 

where 𝑋 denotes the underlying cash flow. Hence, the continuation function 𝐹 𝑚; 𝑡𝑛  is 

approximated as a linear combination of a set of Laguerre polynomials as described above. Other 

types of the basic function are for example Hermite, Legendre, Chebyshev, Gegenbauer, Jacobi 

polynomials or also powers of 𝑋. Numerical analyses for several choices of basis functions are 

reported in Moreno and Navas (2003) and Stentoft (2004). 

                                                      
23

 The motivation for approximating the conditional expectation can be given in terms of projection theory of 

Hilbert spaces. We restrict our attention to derivatives with payoffs that are elements of the space of square-integrable 
or finite-variance functions 𝐿2 Ω, ℱ, ℚ . Since 𝐿2 is a Hilbert space, it is assumed that the conditional expectation, 
𝐹 𝑚; 𝑡𝑛 , can be expressed as a linear combination of a countable set of orthonormal basis functions. For a 
comprehensive view of Hilbert space theory and Hilbert space representations of square-integrable functions, see 
Royden (1968). 
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The above pricing methodology relies on the assumption of no mortality risk. When deciding 

whether to surrender or not, we must take into account the fact that the policyholder might die in 

the next year.  Hence at time 𝑡𝑛 , the adjusted continuation value can be defined as 

𝐹 𝐶 𝑚; 𝑡𝑛 = 𝑒− 𝑟𝑡𝑛 −𝜋𝑡𝑛   𝐹  𝑚; 𝑡𝑛 𝑞𝑥𝑡𝑛 −1/1 + 𝐹  𝑚; 𝑡𝑛 𝑝𝑥𝑡𝑛
                              (6.5) 

where 𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old annuitant dies at 𝑡-th year and 𝑝𝑥𝜏  

presents the probability of an 𝑥-year-old annuitant survives another 𝜏 years. The term 𝑒− 𝑟𝑡𝑛 −𝜋𝑡𝑛   

denotes the discount rate at time 𝑡𝑛 . 

Once the continuation value, 𝐹 𝐶 𝑚; 𝑡𝑁−1 , is estimated at time 𝑡𝑁−1, we can compare it with 

the payoff of immediate exercise, after which the optimal exercise strategy along each exercise 

point can be obtained. The recursion proceeds by rolling back to time 𝑡𝑁−2 and repeating the 

process until the exercise decisions at each time along each path have been identified. After 

having obtained the optimum exercise time 𝑡𝑚
∗  for each scenario, the value of the surrender 

contract is then approximated by averaging these values for all paths results in the present value 

of the option. Given the valuation problem in (5.15), a Bermuda-style contingent claim on 𝑋 and 

expiring at 𝑇 can obtained by choosing  

Π 0, 𝑋𝜏 =  sup
𝜏𝜖𝒯(0,𝑇)

𝐸𝑄   𝑒−  𝑟𝑘−𝜋𝑘 𝑡
𝑘=1 𝑋𝑡

𝜏−1

t=1

∙ 𝑞𝑥𝑡−1/1 + 𝑒−  𝑟𝑘−𝜋𝑘 𝜏
𝑘=1 𝑋𝜏 ∙ 𝑝𝑥𝜏  ,                  (6.6) 

where Π 0, 𝑋𝜏  presents the fair value of 𝑋𝜏  at time 0, 𝐸𝑄 ∙  denotes the conditional expectation 

under an equivalent martingale measure, ℚ, given the information at date zero, 𝒯0,𝑇  is the class of 

stopping times taking values in [0, 𝑇], 𝜏 denotes the stopping time dependent on whether the 

contract is ended by maturity (𝜏 = 𝑇), death (𝜏 ∈ [0, 𝑇 − 1]), or surrender (𝜏 = 𝑡𝑚
∗ ). As already 

stated, the contract can only be stopped at the end of each year until the maturity; the stopping 

time 𝜏 is therefore an integer. Accuracy of the estimates of the value of the American contingent 

claim can be increased by increasing the number of time steps (𝑁), the number of realization 

paths (𝑀) and the number of basis function (𝐻). Clément, Lamberton and Protter (2002) give a 

detailed analysis of convergence theorems and proves that the algorithm converges to the actual 

value of the claim if 𝑀 and 𝐻 approaches infinity. In addition, they also determine the rate of 

convergence of the Monte Carlo procedure.  

Subsequently, we replace the term 𝑋 in relation (6.6) by the insurance accounts of interest, 

namely insured’s account (𝐴), insurer’s account (𝐶) and reserve account (𝑅+ and 𝑅−). The 

premium for the surrender option is then given by the difference between the fair premium for 
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the whole contract (i.e. including surrendering) and the fair premium for the nonsurrenderable 

European participating contract (see Chapter 5). 

With respect to the surrender penalty, we make the assumption that the policyholder receives 

the surrender value 𝐹𝑆 𝑚; 𝑡  at the scenario 𝑚, if he/she surrenders the policy at time 𝑡: 

𝐹𝑆 𝑚; 𝑡 =  1 − 𝜉 𝐴𝑡−1𝑒𝑟𝐺 +𝛼 𝛿𝑡−𝑟𝐺  +
,                                                    (6.7) 

where 𝜉 ∈ [0,1] denotes the constant penalty rate charged by the insurance companies in case of 

surrendering and 𝐴𝑡−1 presents the insured’s account at time 𝑡 − 1. A more realistic penalty 

would be for instance a decreasing rate over years.  

6.3. The LSMC algorithm 

We describe the LSMC algorithm to the application of profit-sharing insurance contract with 

minimum guarantee. The method uses 𝑀 simulated paths and in each of path 𝑚 (𝑚 = 1, … 𝑀) the 

optimum surrender time 𝑡𝑚
∗  has to be determined. Since it is not allowed for the policyholder to 

surrender at the inception of the contract or at the maturity date, we divide the interval [1, 𝑇 − 1] 

into discrete integral time steps, i.e. 𝑡 =  𝑇 − 1, 𝑇 − 2, … , 1 . Starting from time 𝑇 − 1, the 

optimum policy is then obtained by using backward dynamic programming. 

In practice, the policyholder will surrender because of financial reasons if 

𝐹𝑆 𝑚; 𝑡 > 𝐹 𝐶 𝑚; 𝑡 ,                                                               (6.8) 

where 𝐹𝑆 𝑚; 𝑡  represents the benefits entitled to the policyholder in the case of surrendering, 

and 𝐹 𝐶 𝑚; 𝑡  denotes the estimated continuation value of the contract at time 𝑡. Since the 

valuation algorithm start at time 𝑇 − 1, the decision rule along path 𝑚 is made by comparing the 

payoff of immediate exercise (including surrender penalty) at time 𝑇 − 1 with the discounted 

payoff from time 𝑇. The value of the contract at expiration date for 𝑚-th path is given by 

𝑉𝑇(𝑚) = 𝐴𝑇
𝑚 + max 𝑅𝑇

𝑚 , 0 . We use the contract value 𝑉𝑇(𝑚) to derive the corresponding 

continuation value 𝐹 𝐶 𝑚; 𝑇 . This value is adjusted for both financial and actuarial risk factors. 

When 𝐹𝑆 𝑚; 𝑇 − 1 > 𝐹 𝐶 𝑚; 𝑇 − 1 , we set 𝑡𝑚
∗ = 𝑇 − 1 and 𝑉𝑇−1 𝑚 = 𝐹𝑆 𝑚; 𝑇 − 1 . In the case 

that 𝐹𝑆 𝑚; 𝑇 − 1 ≤ 𝐹 𝐶 𝑚; 𝑇 − 1 , then we simply update the contract’s value on path 𝑚 by 

discounting it for one more step, i.e., we set 𝑉𝑇−1 𝑚 = 𝑒− 𝑟𝑇−1−𝜋𝑇−1  𝑉𝑇−1 𝑚 ∙ 𝑞𝑥
𝑚

𝑗−1/1 +

𝑉𝑇−1 𝑚 ∙ 𝑝𝑥
𝑚

𝑇−1   . Subsequently, this procedure is repeated by going backwards in time till 𝑡 = 1. 

Once the optimal set of stopping times 𝑡𝑚
∗  has been identified for each single scenario, implicit 

option elements can be approximated by Equation (6.6). Further note that the pseudo-code of the 

algorithm is also provided in Fig. 11. 
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 The LSMC pricing algorithm  

 for 𝑚 ← 1 to 𝑀  

  generate interest rates (𝑟1
𝑚 ,…, 𝑟𝑇

𝑚 ); inflation rates (𝜋1
𝑚 ,…, 𝜋𝑇

𝑚 ); equity returns (𝛿1
𝑚 ,…, 𝛿𝑇

𝑚 )  

  determine insured’s account (𝐴1
𝑚 ,…, 𝐴𝑇

𝑚 ); insurer’s account (𝐶1
𝑚 ,…, 𝐶𝑇

𝑚 ); reserve account (𝑅1
𝑚 ,…, 𝑅𝑇

𝑚 )  

  generate survival probability 𝑝𝑥𝑡  and death probability 𝑞𝑥𝑡−1/1   

  𝑉(𝑚) ← 𝐴𝑇
𝑚 + max(𝑅𝑇

𝑚 , 0)  

 end  

 for 𝑗 ← 𝑇 − 1 to 1  

  𝑌 ← 𝑉; 𝑋 ← 𝐴𝑗 ; Ψ ← matrix of basis functions (see Eq. 6.2)   

  compute 𝑎 1,…,𝑎 𝐻  ←  Ψ𝑇Ψ −1Ψ𝑇𝑌  

  𝐹  Ω, 𝑗 ←  𝑎 1 , … , 𝑎 𝐻 Ψ  

  𝐹 𝐶 Ω; 𝑗 ← 𝑒− 𝑟𝑗−𝜋𝑗  𝐹  Ω, 𝑗 ∙ 𝑞
𝑥𝑗−1/1

+ 𝐹  Ω, 𝑗 ∙ 𝑝
𝑥𝑗
   

  𝐹𝑆 Ω; 𝑗 ←  1 − 𝜉 𝑋  

  for 𝑚 ← 1 to 𝑀  

   if 𝐹𝑆 𝑚; 𝑗 > 𝐹 𝐶 𝑚; 𝑗   

    𝑡𝑚
∗ ← 𝑗  

    𝑉𝑗  𝑚 ← 𝐹𝑆 𝑚; 𝑗   

   else  

    𝑉𝑗  𝑚 ← 𝑒− 𝑟𝑗 −𝜋𝑗   𝑉𝑗  𝑚 ∙ 𝑞𝑥
𝑚

𝑗−1/1 + 𝑉𝑗  𝑚 ∙ 𝑝𝑥
𝑚

𝑗     

   end  

  end  

 end   

 for 𝑚 ← 1 to 𝑀  

  𝜏 = 𝑡𝑚
∗   

  𝑉 0[𝑚] ←  𝑒−  𝑟𝑘
𝑚 −𝜋𝑘

𝑚  𝑡
𝑘=1 𝑋𝜏

𝑚𝜏−1
t=1 ∙ 𝑞𝑥

𝑚
𝑡−1/1 + 𝑒−  𝑟𝑘

𝑚 −𝜋𝑘
𝑚  𝜏

𝑘=1 𝑋𝜏
𝑚 ∙ 𝑝𝑥

𝑚
𝜏 , for 𝑋𝜏

𝑚 ←  𝐴, 𝐶, 𝑅+, 𝑅−   

 end  

 return  𝑉 0 𝑚 /𝑀𝑀
𝑚=1   

   

Fig. 11. Pseudocode describing the Least Squares Monte Carlo (LSMC) pricing algorithm for a profit-sharing life insurance 

contract. 
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6.4. Effect of surrender risk on fair value 

In this section, we present the results for a single premium life insurance contract by focusing 

on the surrender option when exercised rationally. Furthermore, financial risks and mortality risk 

are considered when analyzing the fair financial contract. Following the approach presented by 

Bacinello, Biffis and Millossovich (2008), we employ the Least Squares Monte Carlo valuation 

algorithm with Laguerre polynomial basis function of order 3. Hence, we regress the discounted 

realized cash flows on a constant and two nonlinear functions of the underlying asset index (see 

Equation 6.4). The results of the European type contract (Chapter 3 to 5) and the American type 

contract (Chapter 6) with stock weight 𝑤 = 30% and 𝑤 = 100% are reported respectively in 

Table 10 and Table 11. Furthermore, in order to achieve a better understanding of surrender 

behavior, from Table E4 to Table E6 in Appendix E we present the fair values of the decomposed 

American-style contract.  

Based on results from numerical experiments in Table 10 and in Table 11, we show that the 

American type contract (i.e. the last column) may be either more or less valuable to the insurer as 

opposed to the European counterpart. It is obvious that whether an insured will choose surrender 

or not and when surrender will occur depends on the parameters used in the model. In particular, 

the American contract value depends on the share of the positive surplus that is distributed to the 

insurer  𝛽 , the long-term mean of the interest rate  𝜃𝑟  and more importantly, the proportion 

invested in stocks  𝑤 .  

First, the incentive to early exercise prematurely will gradually disappear as the profit-sharing 

rate 𝛽 drops. This can be observed by comparing the percentage increases in the last two columns 

of the two tables. For example, in Table 10 with a given interest rate level 𝜃𝑟 = 10%, the 

percentage changes are  𝛽 = 0.30: + 10%; +6% ,  𝛽 = 0.40: + 9%; +9%  and  𝛽 = 0.50: +

8%; +14% ). This suggests that for the two different portfolios, an increase in 𝛽 must be followed 

by an increase in the incentive to surrender. The intuition behind this behavior is simple. Due to 

an increase in the 𝛽, more surplus is attributed to the insurance company and lower amount of 

surplus is assigned to the reserve account 𝑅. This is further illustrated in column 5 (terminal 

bonus 𝑅+) and column 7 (insurer’s account 𝐶) from Table E4 to Table E6 given in Appendix E. 

According to the approach of the Least Squares Monte Carlo (LSMC), higher 𝛽𝑠 are often 

associated with lower terminal bonuses and thus lower continuation values (i.e. rewarding from 

not exercising). Thus, the numerical results obtained are in good agreement with the theoretical 

analysis. 

Second, the influence of the long-term mean of the interest rate 𝜃𝑟  on the American contract 

value depends on the risk profile of the investment portfolio. If we limit our attention to the case 

where the proportion of investment in stocks is 30% (see Table 10), we observe the surrender 
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effect is strongest when 𝜃𝑟 = 8% and is significant lower for other market interest levels. It can be 

also seen that the American contract value is mostly below the European contract value, except 

for one case, i.e., 𝛼 = 0.20, 𝛽 = 0.50 and 𝜃𝑟 = 10% with the respective fair value of the American 

type contract 78.42 > 74.42 (European contract). Before we give any economic interpretations 

why this could happen, we first motivate the surrender effect at 𝜃𝑟 = 8% and why it positively 

impacts the fair value. The reason why policyholders decide to cancel the insurance policy before 

time 𝑇 is because they believe that the discounted future claims will be significantly lower than 

the present claim value.24 This additional American-option feature would make the contract more 

valuable to the policyholder.25 However, this condition does not necessarily have to hold for the 

insurer (see previous example). Instead, it is very likely that not sufficient returns will be made by 

the insurer to meet the required minimum guaranteed rate 𝑟𝐺 = 3%. Therefore, leaving 

customers seems desirable to the insurance company in this situation. In addition, we observe a 

similar development for 𝜃𝑟 = 6%. However, the difference between the European contract and 

the American contract becomes much lower with respect to the initial case 𝜃𝑟 = 8%. In this 

thesis, the market interest rate 𝜃𝑟 = 6% is associated with extremely adverse economic condition. 

Hence, most of the policyholders will stick to the insurance contract and a very few will 

surrender. We partially explain this observation by looking at the surrender penalty value 

(column 11) and the terminal bonus account (column 5) in Table E4 to Table E6. As expected, the 

surrender penalty value is significantly lower than the case 𝜃𝑟 = 8% and the terminal bonus is far 

above the values obtained for 𝜃𝑟 = 8% for each contract types; this implies that less people are 

leaving the contract. Similar analysis can be conducted for 𝜃𝑟 = 10%. 

Third, the risk of a change in the value of an insurance policy caused by a deviation of the 

actual surrenders (premature terminations) affects the two portfolios differently. Up to now, we 

have evaluated the impact of market interest rates on the diversified portfolio. What about the 

case when all pension premium is invested into stocks? Does the surrender risk affect the 

American contract value differently when the investment portfolio becomes more risky? The 

answer is yes. For example, if we look at the case where the market interest rate level 𝜃𝑟 = 10%. 

Table 11 shows that, for each contract type, the American contract values exceed the 

corresponding European contract values (definitely not favorable for the insurer). Not 

surprisingly, since this is a good state of economy, it is relative easy for the insurance company to   

maintain the promised rate of 3%. On top of that, leaving customers (slim chance here) implies 

substantial reductions in account values of the insurance company (𝐶). It is apparent that when 

                                                      
24

 Although the insured has no idea about the ‘real’ account value in the near future, he/she might know the 

‘expected’ account value. 
25

 In order to compensate for this increase in value, it is common for insurance companies to impose a penalty 

charge if the policyholder opts to surrender the policy prematurely. In this thesis, the surrender penalty 𝜉 is set to 5% of 
the initial surrenderable value. 
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the portfolio consists of stocks only, higher returns can be made as compared to a diversified 

portfolio. This is reflected in the terminal bonus account 𝑅+ (column 5) and the insurer account 𝐶 

(column 7) of Table E4, Table5 and Table E6 presented in Appendix E. We notice that the 

respective values of the terminal bonus 𝑅+ and the insurer’s account 𝐶 are much larger for stock 

weight 𝑤 = 100% than stock weight 𝑤 = 30%. Furthermore, the surrender behavior is also 

subject to the profit-sharing rate 𝛽. The higher the fraction of surplus distributed to the insurer, 

the less attractive for policyholder to keep the contract. The surrender penalty result from Table 

E4 to E6 clearly confirms our expectation. Subsequently, we remark that the risk-neutral values of 

the American contract for different contract types all fall beneath the initial premium level 

𝑃0 = 100 and the European counterpart. The corresponding fair values are:  𝛼 = 0.20;  𝛽 =

0.30; 𝜃𝑟 = 10%;  98.60 ,  𝛼 = 0.20;  𝛽 = 0.30; 𝜃𝑟 = 10%;  94.14  and  𝛼 = 0.20;  𝛽 = 0.30; 𝜃𝑟 =

10%;  89.73 .  For 𝜃𝑟 = 8% and 𝜃𝑟 = 6%, no fair contract can be obtained for 𝑤 = 100%. As the 

market interest rate drops from 10% towards 6%, it becomes very risky for the insurance company 

since stocks are considered as extreme volatile assets. For example, the amount of potential losses 

for the surrendered policies is reported from Table E4 to Table E6 in column 10. More precisely, 

column 10 represents the surrender reserve value 𝑅∗-. This value indicates the initial market value 

of the loss when surrendering occurred and is much higher than the case where 𝑤 = 30%. 

Moreover, the incentive to surrender increases as the interest rate level falls. This is again 

confirmed by the development in the surrender penalty values. Based on the provided analysis, 

the American contract value improves with respect to the European contract due to extreme 

adverse economic condition presented here, i.e. when 𝜃𝑟 = 6%. 

Based on the numerical results illustrated in this section and the extensive discussions, we are 

ready to find an appropriate parameter combination that satisfies the fair pricing principle. We 

know that 𝜃𝑟 = 6% is the worst case scenario presented in this thesis. No matter what setting the 

insurance company chooses, a fair contract cannot be obtained. In the remaining economic 

scenarios, a suitable value for the profit-sharing rate 𝛽 would be around 0.30 or 0.40; with respect 

to the profit-sharing rate 𝛼, at least 20% of the positive excess should be credited to the insured. 
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Table 10 
Overview of fair values of the single premium profit-sharing life insurance contract based on a portfolio 
consisting of 30% stocks and 70% bonds 

𝑤 = 0.30 Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Interest 

rate 

scenario 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 1% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 0% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝑇 ∈ [0,40] 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝑇 ∈ [0,40] 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝑇 ∈ [0, 𝑡𝑚
∗ ] 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.30 

𝜃𝑟 = 10% 77.99 77.38 (−1%) 77.83 (−0%) 76.63 (−2%) 86.38 (+11%) 85.79 (+10%) 82.52 (+6%) 

𝜃𝑟 = 8% 73.02 84.51 (+16%) 73.05 (+0%) 81.71 (+12%) 91.89 (+26%) 101.94 (+40%) 87.50 (+20%) 

𝜃𝑟 = 6% 101.03 148.25 (+47%) 104.88 (+4%) 142.35 (+41%) 137 (+36%) 179.51 (+78%) 177.09 (+75%) 

Contract type: 𝛼 = 0.20  and 𝛽 = 0.40 

𝜃𝑟 = 10% 77.99 77.38 (−1%) 77.83 (−0%) 76.63 (−2%) 80.83 (+10%) 80.31 (+9%) 80.26 (+9%) 

𝜃𝑟 = 8% 73.02 84.51 (+16%) 73.05 (+0%) 81.71 (+12%) 84.58 (+26%) 95.11 (+42%) 85.49 (+27%) 

𝜃𝑟 = 6% 101.03 148.25 (+47%) 104.88 (+4%) 142.35 (+41%) 133.71 (+35%) 174.08 (+76%) 171.32 (+73%) 

Contract type: 𝛼 = 0.20  and 𝛽 = 0.50 

𝜃𝑟 = 10% 68.98 68.20 (−1%) 69.18 (+0%) 67.64 (−2%) 75.25 (+9%) 74.42 (+8%) 78.42 (+14%) 

𝜃𝑟 = 8% 61.23 74.58 (+22%) 60.85 (−1%) 71.63 (+17%) 77.48 (+27%) 88.60 (+45%) 84.54 (+38%) 

𝜃𝑟 = 6% 97.05 143.04 (+47%) 100.55 (+4%) 136.46 (+41%) 130.32 (+34%) 169.88 (+75%) 164.55 (+70%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates (see Chapter 3); in column 3 to 5 we report the fair values under the assumption of either stochastic 
interest rates or stochastic inflation rates or both (see Chapter 4); in column 6 we report the fair values under the 
assumption of stochastic mortality and in column 7 we report the fair values under the presence of interest rate risk, 
inflation risk and mortality risk (Chapter 5); finally in column 8 we report the fair values  under the presence of both 
financial and actuarial risks. Between parentheses are the percentage increases of the fair values as regards to the 
contract value given in column 2. The present value of the insurance policy is defined as 

Π 0, 𝜏 =  sup𝜏𝜖𝒯(0,𝑇)
𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡

𝑘=1 𝑋𝑡
𝜏−1
t=1 ∙ 𝑞𝑥𝑡−1/1 + 𝑒−  𝑟𝑘−𝜋𝑘 𝜏

𝑘=1 𝑋𝜏 ∙ 𝑝𝑥𝜏  , where 𝒯0,𝑇  is the class of stopping times 

taking values in [0, 𝑇], 𝜏 denotes the stopping time dependent on whether the contract is ended by maturity (𝜏 = 𝑇), 

death (𝜏 ∈ [0, 𝑇 − 1]), or surrender (𝜏 = 𝑡𝑚
∗ ), 𝑋𝑇  is the liability without consideration for the mortality risk, 𝑞𝑥𝑡−1/1  

presents the probability of an 𝑥-year-old policyholder dies at 𝑡-th year, 𝑝𝑥𝑇  presents the probability of an 𝑥-year-old 
policyholder survives another 𝑇, 𝑟𝑡  is the interest rates at time 𝑡 and 𝜋𝑡  describes the inflation rate at time 𝑡. The 
reference insured is a male aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum guaranteed 
rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial 
insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝜋 = 0.0101, mean reversion rate of the inflation rate 𝛾 = 0.4740, long-
term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 𝜌𝑟 ,𝜋 = 0.5248, 

𝜌Ψ ,π = 0.1641, surrender penalty 𝜉 = 0.05 and scenario = 50000. 
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Table 11 
Overview of fair values of the single premium profit-sharing life insurance contract based on a portfolio 
consisting of 100% stocks and 0% bonds 

𝑤 = 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Interest 

rate 

scenario 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 1% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 0% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 = 0 

𝑝𝑥𝑇 = 1 

𝑇 = 40 

𝜍𝑟 = 0% 

𝜍𝜋 = 0% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝑇 ∈ [0,40] 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝑇 ∈ [0,40] 

𝜍𝑟 = 1% 

𝜍𝜋 = 1% 

𝑞𝑥𝑡−1/1 ∈ [0,1] 

𝑝𝑥𝑇 ∈ [0,1] 

𝑇 ∈ [0, 𝑡𝑚
∗ ] 

Contract type: 𝛼 = 0.20 and 𝛽 = 0.30 

𝜃𝑟 = 10% 81.21 85.57 (+5%) 81.17 (−0%) 83.59 (+3%) 89.17 (+10%) 92.95 (+14%) 98.60 (+21%) 

𝜃𝑟 = 8% 96.06 109.51 (+14%) 97.98 (+2%) 107.32 (+12%) 113.66 (+18%) 125.03 (+30%) 114.01 (+19%) 

𝜃𝑟 = 6% 182.07 213.93 (+18%) 184.63 (+1%) 207.62 (+14%) 214.61 (18%) 240.72 (+32%) 210.37 (+16%) 

Contract type: 𝛼 = 0.20  and 𝛽 = 0.40 

𝜃𝑟 = 10% 73.99 77.85 (+5%) 75.11 (+2%) 77.18 (+4%) 79.47 (+7%) 82.80 (+12%) 94.14 (+27%) 

𝜃𝑟 = 8% 89.07 102.26 (+15%) 89.93 (+1%) 100.34 (+13%) 102.90 (+16%) 114.43 (+28%) 107.47 (+21%) 

𝜃𝑟 = 6% 177.28 208.28 (+17%) 180.27 (+2%) 203.08 (+15%) 203.17 (+15%) 229.14 (+29%) 190.53 (+7%) 

Contract type: 𝛼 = 0.20  and 𝛽 = 0.50 

𝜃𝑟 = 10% 68.10 70.67 (+4%) 67.38 (−1%) 70.31 (+3%) 71.28 (+5%) 74.04 (+9%) 89.73 (+32%) 

𝜃𝑟 = 8% 82.71 97.16 (+17%) 84.32 (+2%) 93.58 (+13%) 92.62 (+12%) 104.70 (+27%) 103.34 (+25%) 

𝜃𝑟 = 6% 173.08 204.00 (+18%) 176.27 (+2%) 199.14 (+15%) 192.89 (+11%) 219.46 (+27%) 198.30 (+15%) 

The table shows the fair values of a single premium European life insurance contract under the risk-neutral measure ℚ. 
More specifically, in column 2 we report the fair values under the assumption of deterministic interest rates and 
inflation rates (see Chapter 3); in column 3 to 5 we report the fair values under the assumption of either stochastic 
interest rates or stochastic inflation rates or both (see Chapter 4); in column 6 we report the fair values under the 
assumption of stochastic mortality and in column 7 we report the fair values under the presence of interest rate risk, 
inflation risk and mortality risk (Chapter 5); finally in column 8 we report the fair values  under the presence of both 
financial and actuarial risks. Between parentheses are the percentage increases of the fair values as regards to the 
contract value given in column 2. The present value of the insurance policy is defined as 

Π 0, 𝜏 =  sup𝜏𝜖𝒯(0,𝑇)
𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡

𝑘=1 𝑋𝑡
𝜏−1
t=1 ∙ 𝑞𝑥𝑡−1/1 + 𝑒−  𝑟𝑘−𝜋𝑘 𝜏

𝑘=1 𝑋𝜏 ∙ 𝑝𝑥𝜏  , where 𝒯0,𝑇  is the class of stopping times 

taking values in [0, 𝑇], 𝜏 denotes the stopping time dependent on whether the contract is ended by maturity (𝜏 = 𝑇), 

death (𝜏 ∈ [0, 𝑇 − 1]), or surrender (𝜏 = 𝑡𝑚
∗ ), 𝑋𝑇  is the liability without consideration for the mortality risk, 𝑞𝑥𝑡−1/1  

presents the probability of an 𝑥-year-old policyholder dies at 𝑡-th year, 𝑝𝑥𝑇  presents the probability of an 𝑥-year-old 
policyholder survives another 𝑇, 𝑟𝑡  is the interest rates at time 𝑡 and 𝜋𝑡  describes the inflation rate at time 𝑡. The 
reference insured is a male aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum guaranteed 
rate 𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial 
insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝜋 = 0.0101, mean reversion rate of the inflation rate 𝛾 = 0.4740, long-
term inflation rate 𝜋  = 0.0240, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 𝜌𝑟 ,𝜋 = 0.5248, 

𝜌Ψ ,π = 0.1641, surrender penalty 𝜉 = 0.05 and scenario = 50000. 
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7. Concluding Remarks  

7.1. Summary and conclusions 

This thesis provides valuable insights into the key factors of Dutch single premium 

participating life insurance policies. The aim of participating life insurance policies is to provide 

sustainable and stable medium- to long-term returns through the combination of guaranteed 

benefits and non-guaranteed bonuses to policyholders. These policies are endowments that 

contain implicit options-like features such as minimum interest rate guarantees, stochastic 

annual surplus participation, terminal bonus and a surrender option. It is essential to get a 

thorough understanding of these items so that fluctuation in the embedded option value can be 

anticipated and explained. 

Adapting the methodology from Miltersen and Persson (2003), we present a framework in 

which the different kinds of guarantees or options are considered and priced separately in a 

market-consistent manner. In particular, we analyze the influence of the term structure of 

interest, the investment performance, the price inflation, the mortality development, the 

surrender behavior and the multivariate risk on the risk exposure of an insurer. The fair values of 

the embedded options are measured using arbitrage-free option pricing techniques and assuming 

complete markets. Since life insurance products are usually long-term contract, the instantaneous 

short rate is modeled as a mean-reversion process using the one-factor Vasicek model (1977). We 

propose to describe the consumer price index dynamics by means of an Ornstein–Ulhenbeck 

process which takes into account stochastic inflation rates. A standard geometric Brownian 

motion is used to generate the evolution of the equity price. Furthermore, the mortality risk is 

modeled according to the Lee-Carter mortality model (1992) with an extension in old-age 

modeling. The surrender option is modeled in the evaluation framework as a Bermudan option 

that is exercised by the policyholder only if it financially convenient. We have also shown how to 

incorporate the multivariate risk into these pricing methods. In addition, we have shown that the 

typical contract can be decomposed into various basic components: a risk-free bond, an option to 

receive bonus (for both insured and insurer), and a surrender option. 

The valuation of the participating insurance contracts with surplus distribution is conducted 

in a risk-neutral framework. The insurance contract itself and the embedded options are relatively 

complex derivatives. It is not possible to obtain closed-form expressions for their risk-neutral 

value while taken into account all the aforementioned risk factors. Therefore, Monte Carlo 

simulations are used to derive the risk-neutral value for the European type contract as well as the 

American (Bermudan) type contract.  
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The analysis of numerical results led to several conclusions. Our numerical studies showed 

that the insurance company is mainly exposed to the equity risk, interest rate risk and the 

mortality risk. In particular, it turns out that the risk-neutral value of an insurance contract with 

stochastic short rates mostly exceeds the value of a contract with a constant or deterministic short 

rate for a comparable parameter choice. With increasing volatility of the interest rate process, the 

fair contract value also increases. The reason why interest rate risk modeling is essential to 

insurance companies is because they reflect the expected future returns and at the same time 

interest rates are also used to discount future cash flows (pension benefits). We also found that 

the effect of the inflation rate risk on the contract value is relatively small due to the strong mean-

reversion characteristic of the inflation process. In other words, the tendency to revert to its long-

term inflation rate weakens the impact of inflation rate variability. This is also consistent with the 

primary objective of the ECB to maintain price stability within the Eurozone. The impact of 

inflation rate risk becomes only noticeable when the rate of volatility increases to extreme high 

levels or when the market interest rate level drops towards zero. Moreover, we argue that the 

multivariate risk modeling is important regarding the pricing of life insurance contracts and 

embedded options. The way how it affects the contract value crucially depends on the value of the 

correlation parameter. Furthermore, we show that the mortality risk influences the contract value 

considerably. This can be attributed to the uncertainty surrounding future mortality rates and life 

expectancy outcomes. With respect to the surrender option, it is unclear whether the possibility 

of early withdrawals of the contract positively or negatively impacts the risk-neutral value. It is 

shown that whether an insured will choose surrender or not and when surrender will occur 

depends on the parameters used in the model. Specifically, the value of the American type 

contract depends on the share of the positive surplus that is distributed to the insurer  𝛽 , the 

long-term mean of the interest rate  𝜃𝑟  and more importantly, the proportion invested in stocks 

 𝑤  and in bonds (1 − 𝑤). 

Furthermore, the implication of asset allocation is investigated for two simple bond-stock 

mixes, namely a portfolio consisting of 100% stocks and a portfolio consisting of 30% stocks and 

70% bonds. We found that the fair values derived from the diversified portfolio are significantly 

lower when compared to the undiversified portfolio. This reveals once again how relevant asset 

allocation can be and how careful the insurers should be in their investment decisions. Moreover, 

we have also analyzed the impact of the market interest rate level 𝜃𝑟  on the evolution of market-

consistent contract values. We found that the contract value is a decreasing function of the 

market interest rates. Furthermore, the influence of the profit-sharing rate of the insured 𝛼, 

effects the insurance contract negatively. The share of the positive surplus that is distributed to 

the insured 𝛽, however, reduces the fair contract value. The above findings confirm the fact that 

the contract value highly dependent on the parameterization used in the model. Finally, empirical 

studies further show that an appropriate fair parameter combination for the profit-sharing rate of 
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the insured 𝛼 ≥ 0.20 and the share of the positive surplus that is distributed to the insurer 
𝛽 =  0.30 − 0.40  for a given minimum guaranteed rate 𝑟𝐺 = 3% and a market interest rate level 

𝜃𝑟 =  8%; 10% . The respective fair values are below the initial premium paid (𝑃0) in all cases. In 

the special case 𝜃𝑟 = 6%, we observe that the whole contract exceeds the initial payment which 

implies that the insurance company will make losses on the issued contracts. In this situation, it 

could be worthwhile for the insurance company to consider hedging strategies.  

7.2. Suggestions for further research 

Although this thesis made a good attempt at providing a realistic valuation framework for 

Dutch single premium participating life insurance policies, more work is needed to deal with 

more complex product and more realistic market parameters. With respect to future studies, 

there are several interesting directions worth exploring. 

First, a natural extension of the current setting is to consider the multi-period version of the 

insurance contract analyzed in this thesis. In this case instead of requiring a net single premium 

policy at the beginning of the contract, we allow the policyholder to pay his/her premium at a 

constant or varying rate for each single year until the pensionable age is reached [see, e.g., 

Bacinello (2003b) and Bakken, Lindset and Olson (2006)]. In our setup, the total amount of the 

initial premium 𝑃0 is credited to the participating account. Other possibilities are to deposit parts 

of the initial deposit 𝑃0 into account the insurer’s account 𝐶 and/or the reserve account 𝑅 when 

the contract is initiated. This is especially useful when the first year’s investment performance is 

below the minimum guaranteed rate 𝑟𝐺 . It is also straightforward to include varying rate 

minimum guaranteed rate 𝑟𝐺  in our framework. Such extensions would illustrate the use of our 

methodology in a more realistic setting, appealing to researchers and practitioners in the actuarial 

and insurance fields. 

Furthermore, the accrued pension contribution is considered as a lump sum (single payment) 

at the maturity date 𝑇 in this thesis. Another possibility is to study the influence of financial- and 

actuarial risk on the market value of an annuity with regular payments. The (life) annuity 

provides the annuitant a predetermined periodical payment, staring at the end of the year in 

which the annuitant reaches the retirement age (e.g. 65), until he/she is passed away. For the 

latter case, one should realize that the mortality effects generally play a more important role over 

longer time horizon and therefore induce a stronger influence on the fair price than the initial 

case.  

In light of the above discussions, the complexity of the evaluation problem becomes 

considerable when we consider the case of multi-period contracts. The main sources of the 

difficulty are due to the choice of the risk measure but also the choice of the Monte Carlo 
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simulation approach. In Chapter 3, we have mentioned the drawback of the Monte Carlo 

simulation method as opposed to closed-form solutions. Recall that simulation is used to solve 

the valuation problem that is too hard to solve either explicitly or numerically. It is therefore very 

demanding from a computational point of view. One way to overcome this obstacle is to apply 

variance reduction techniques to further improve the accuracy and performance of the Monte 

Carlo approach. With respect to the risk-neutral valuation measure, one may also consider the T-

forward risk-neutral measure as an alternate method of pricing derivatives securities [see, e.g., 

Geman et al. (1995) and Brigo and Mercurio (2006) for an introduction]. This method is 

continuous with respect to a risk-neutral measure ℚ but rather than using the money market as 

numeraire, it uses a zero-coupon bond (ZCB) with maturity 𝑇. One can use ZCB observed on the 

market to construct term structure models and use it to discount future cash flows. Under this 

approach, the valuation of financial derivatives becomes more efficiency and easier to implement. 

See Appendix C for complete overview of the application of the T-forward risk-neutral measure. 

The main emphasis of this thesis has been on pricing of the value of options embedded in the 

life insurance contract. With the downfall of the stock markets, it has become apparent that not 

only the valuation is crucial, but also the hedging of embedded options. Even if the options 

embedded in insurance products are priced correctly, they still represent uncontrollable liabilities 

if unhedged. Future research should be conducted to identify tractable and realistic hedging 

strategies to protect the insurance company against the risk associated with the given guarantees. 

Effective hedging strategies for life insurance contracts with minimum guarantee have been 

explored by for instance Coleman et al. (2007) and Fleten and Lindset (2008). Fleten and Lindset 

(2008) applied the delta-hedging method (i.e. rebalancing techniques) to hedge multi-period 

guarantees in the presence of transaction costs.26 Coleman et al. (2007) evaluated performances of 

delta-hedging, quadratic, piecewise linear local risk minimization methods for discrete hedging of 

American-type options in an incomplete market setting. 

Finally, future research could attempt to investigate the issue of the optimal structure of the 

insurance company’s asset portfolio when guaranteed are offered. In this thesis, we have only 

considered a very simple bond-stock mix. Given that the investment performance of the 

participating account is an important component, more flexibility and investigation should be 

implemented. For example, we could further extend the model by considering an asset portfolio 

consisting of several different asset classes such as equity shares, publicity traded government and 

corporate bonds, commercial mortgages, corporate lending, real estates and exchanges.  

  
                                                      

26
 The typically risk management strategies in this case consist of holding positions in stocks and bonds and 

dynamically rebalance these positions in order to cover guarantees. The number of shares of the underlying held in a 
delta-hedging strategy is given by the sensitivity (delta) of the option value to the underlying. 
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Appendix A − FTK Stress Tests  

The testing framework contains three key elements: 

1. Minimum test: The minimum test ensures that the accrued benefits are funded by sufficient 

assets in the case of immediate discontinuance. The funding ratio is computed by  

Funding ratio =  
Pension Asset

Pension Liability
 . 

According to the FTK regulations, the funding ratio of at least 105% should be maintained by 

each pension fund. Under the FTK rules, pension funds that fall below the minimum coverage 

ratio of 105% of their indexed liabilities are required to produce a recovery plan to correct 

their situation within a predetermined period. 

2. Solvency test: The second test reveals whether the current value of the assets is at least equal 

to the current value of the liabilities and whether there is sufficient solvency to absorb a 

mismatch over a period of one year. Pension funds are therefore obligated to establish 

sufficient safety capital or any similar buffer against market volatility. Both standard models 

and own firm based models are allowed to be implemented. 

3. Continuity test: The continuity test assesses the fund’s long-term prospects. The continuity 

test is intended to show whether the risks in terms of capital solvency will remain within the 

risk exposure norms applicable at the time. The long-term stress test is focusing on the 

investment management of a pension fund (i.e. ALM-studies). Based on this test, appropriate 

ALM strategies are chosen in order to reduce financial risk on the long run. 
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Appendix B − Profit-sharing Policies  

B1. Profit-sharing based on TL-discount or UL-discount 

Profit-sharing mechanism provided in contract with TL-discount (t-yield) or UL-discount (u-

yield) is determined at the start of the issued contract and is mainly offered to small-middle size 

companies. The interest rate discount is derived from fictive investment returns on several 

treasury rates (i.e. t-yield or u-yield) instead of actual returns achieved by insurance company. A 

single premium discount is given on beforehand, so no more profit-sharing is credited to the 

policyholder during the contract period, except the guaranteed rate of interest. Furthermore, it 

should be mentioned that the specific discount system represents the fictive excess return made 

in the first 10 à 12 years of the contract period. Since the former t-yield is replaced by u-yield in 1 

January of 1995, we only focus on the computational aspect of insurance product with UL-

discount. 

Table B1 
Computation 4% interest rates discount  

u-yield (U) in % UL-discount in % 

4 - 6 8 x (t -/- 4) 

6 - 8 16 + 5.5 x (t -/- 6) 

8 - 10 27 + 4.5 x (t-/- 8) 

Source: Pension guide 2008 (Pensioengids 2008) 

 

Table B2 
Computation 3% interest rates discount 

u-yield (U) in % UL-discount in % 

U ≤ 3% 0 

3% < U ≤ 5% 8.0 x (U - 3) 

5% < U ≤ 7% 5.5 x (U - 5) + 16 

7% < U ≤ 9% 4.5 x (U - 7) + 27 

9% < U ≤ 11% 4.0 x (U - 9) + 36 

11% < U ≤ 14% 3.0 x (U - 11) + 44 

U > 14% 53 

Source: Pension guide 2008 (Pensioengids 2008) 

 

Table B1 summarizes how UL-discount could be measured using t-yield under technical 

interest rate of 4%. From August of 1999 the insurance tariff is not based on the interest rate of 

4%, but 3%.  The computation of UL-discount for the current situation is shown in Table B2. For 

example, suppose that a guarantee contract is issued in the month of January and the 

corresponding u-yield is 4.5%. The UL-discount on premium tariff is computed as 8.0 x (4.5 – 3) = 
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12.0%. The contract period is typically five years and the premium tariffs are fixed over this period. 

By contract extensions, the UL-discount is recalculated according to the new u-yield. 

B2. Profit-sharing based on TL-discount or UL-discount with continuation discount 

This variant of profit-sharing is quite similar to the contract discussed in the previous section. 

A key difference is that a continuation discount is added. An extra discount is assigned to the 

insured’s account in case that the contract with TL-discount or UL-discount is extended after a 

period of 10 years of insurance. The continuation discount consists of partially excess returns 

obtained after 10 à 12 years of investment. In case the returns remain unchanged during the 

investment period, the continuation discount could be valued as 70-75% of the total realized 

excess return by the insurance company. 

B3. Profit-sharing based on excess return u-yield  

Contracting the first two forms of profit-sharing schemes, this provision provided here is 

however not determined in a constant manner. The profit-sharing occurs periodically according 

to the performance of an external reference index, i.e. u-yield. Profit is shared with beneficiaries 

when the u-yield exceeds the guaranteed rate of interest. Similarly, the returns are simply not 

based on the actual index performance, but on some fictive returns of mixed government bonds. 

Due to absence of implied volatilities for government bonds, valuation of this type of product 

becomes more complex. To able to value this product, it is common practice in the Netherlands 

to approximate the u-yield by a swap-rates. Evidence on historical data show that u-yield have 

behaved similarly as swap rate, and is therefore a robust estimator. More precisely, the 7-years 

swap rates curve has been recognized as a good proxy for the u-yield [see Plat and Gregorkiewicz 

(2007)]. The third form of profit-sharing policy sold in the Netherlands is applicable to middle-

large enterprises.  

B4. Profit-sharing based on segregated funds  

The most important and well-known profit-sharing policy available in the Netherlands is the 

profit-sharing based on segregated funds. Segregated funds consist of professionally managed 

investment portfolios that guarantee to return a predetermined percentage of the investment 

at maturity or upon the death of the investor. These funds derive their name from the fact that 

their assets are set aside to pay policyholders and are not part of the issuing insurance company's 

general assets.  

Like the profit-sharing based on excess return u-yield, the excess return credited to the policy 

owner occur in each policy year. However, the excess return is not determined by some external 

http://www.investopedia.com/terms/m/maturityguarantee.asp
http://www.investopedia.com/terms/m/maturity.asp
http://www.investopedia.com/terms/a/asset.asp
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reference index, but is subject to the performance of the underlying segregated investment funds. 

The segregated fund is typically composed of stocks, bonds or other securities, and risk sources 

related to them have to be taken into account. The segregated funds often have complex 

embedded option features. These contracts typically also offer features such as mortality benefits, 

where the guarantee is paid off immediately upon death of the investor. Furthermore, because the 

payment for the guarantee is usually amortized over the life of the contract, there are additional 

complications due to investor lapsing. Usually, these types of guarantee products are suitable for 

large enterprises where more flexibility and upfront profit-sharing are implemented in the 

contract.  
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Appendix C − The T-forward Risk-neutral Measure  

Following the technique proposed by Geman et al. (1995) and Brigo and Mercurio (2006)], we 

will now derive the dynamics of our model under the 𝑇-forward measure for a general maturity 𝑇. 

Let us denote by 𝑄𝑇 the 𝑇-forward (risk-adjusted) measure, i.e., the probability measure that is 

defined by the Radon-Nikodym derivative. We choose the ZCB maturing at 𝑇 given by 𝑃(𝑡, 𝑇) as a 

numeraire 

𝑑𝑄𝑇

𝑑𝑄
=

exp  −  𝑟𝑢𝑑𝑢
𝑇

0
 

𝑃 0, 𝑇 
.                                                                (C1) 

We know that we can rewrite the process 𝑟𝑡  as 

𝑟𝑡 = 𝑥𝑡 + 𝜑𝑡 ,                                                                 (C2) 

where the process 𝑥 satisfies 

𝑑𝑥𝑡 =  −𝑎𝑥𝑡𝑑𝑡 + 𝜍𝑟𝑑𝑊𝑡
𝑟 .                                                     (C3) 

It can be shown that, denoting by 𝑓𝑀 0, 𝑇 , the market instantaneous forward rate at time zero 

for maturity 𝑇 is given by 

𝑓𝑀 0, 𝑇 = −
𝜕ln𝑃𝑀 0, 𝑇 

𝜕𝑇
, 

with 𝑃𝑀 0, 𝑇  the market discount factor for maturity 𝑇. In order to exactly fit the observed term 

structure, we must have 

𝜑𝑇 = 𝑓𝑀 0, 𝑇 +
𝜍𝑟

2

2𝑎2
 1 − 𝑒−2𝑎𝑇 2 . 

The Radon-Nikodym derivatives from Equation (C1) becomes 

𝑑𝑄𝑇

𝑑𝑄
=

exp  − 𝑥𝑢𝑑𝑢
𝑇

0
−  𝜑𝑢𝑑𝑢

𝑇

0
 

𝑃 0, 𝑇 
    

=
exp  −

𝜍𝑟
𝑎   1 − 𝑒−𝑎 𝑇−𝑢  𝑑𝑊  𝑢 −  𝑓𝑀 0, 𝑢 𝑑𝑢

𝑇

0
−  

𝜍𝑟
2

2𝑎2  1 − 𝑒−𝑎𝑢  2𝑑𝑢
𝑇

0

𝑇

0
 

𝑃 0, 𝑇 
             (C4) 

𝑑𝑄𝑇

𝑑𝑄
= exp  −

𝜍𝑟

𝑎
  1 − 𝑒−𝑎 𝑇−𝑢  𝑑𝑊  𝑢 −  

𝜍𝑟
2

2𝑎2  1 − 𝑒−𝑎 𝑇−𝑢  
2
𝑑𝑢

𝑇

0

𝑇

0

 . 
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The Girsanov theorem implies that the four processes 𝑊 𝑡
𝑇,𝑆, 𝑊 𝑡

𝑇,𝑟 , 𝑊 𝑡
𝑇,Ψ  and 𝑊 𝑡

𝑇,𝜋  are 

independent Brownian motions under measure ℚ𝑇 , where 

𝑑𝑊 𝑡
𝑇,𝑟 = 𝑑𝑊 𝑡

𝑟 +
𝜍𝑟

𝑎
 1 − 𝑒−𝑎 𝑇−𝑡  𝑑𝑡 

𝑑𝑊 𝑡
𝑇,𝑆 = 𝑑𝑊 𝑡

𝑆                                                              (C5) 

𝑑𝑊 𝑡
𝑇,Ψ = 𝑑𝑊 𝑡

Ψ  

𝑑𝑊 𝑡
𝑇,𝜋 = 𝑑𝑊 𝑡

π  

Only 𝑊𝑡
𝑟  is affected by the change of measure. The three other Brownian motions are not affected 

by this change of measure. One can find similar development of the change of measure in Brigo 

and Mercurio (2006). Therefore the (joint) dynamics of 𝑟, 𝑆, Ψ and 𝜋 under 𝑄𝑇 with independent 

Brownian motion are defined by 

𝑑𝑟𝑡 =  𝑎  𝜃𝑟 −
𝜍𝑟

2

𝑎
 1 − 𝑒−𝑎 𝑇−𝑡  − 𝑟𝑡 𝑑𝑡 + 𝜍𝑟𝑑𝑊 𝑡

𝑇,𝑟 , 

𝑑𝑆𝑡 = 𝑆𝑡  𝑟𝑡 − 𝜌𝑟 ,𝑆
𝜍𝑆𝜍𝑟

𝑎
 1 − 𝑒−𝑎 𝑇−𝑡   𝑑𝑡 + 𝑆𝑡  𝜍𝑆𝜌𝑟 ,𝑆𝑑𝑊 𝑡

𝑇,𝑟 + 𝜍𝑆 1 − 𝜌𝑟 ,𝑆
2 𝑑𝑊 𝑡

𝑇,𝑆 , 

𝑑Ψ𝑡 = Ψ𝑡  𝜋𝑡 − 𝜌𝑟 ,Ψ
𝜍Ψ 𝜍𝑟

𝑎
 1 − 𝑒−𝑎 𝑇−𝑡   𝑑𝑡 …                                                                           (C6) 

+ Ψ𝑡  𝜍Ψ𝜌𝑟 ,Ψ𝑑𝑊 𝑡
𝑇,𝑟 + 𝜍Ψ  

𝜌𝑆 ,Ψ −𝜌𝑟 ,𝑆𝜌𝑟 ,Ψ

 1−𝜌𝑟 ,𝑆
2

 𝑑𝑊 𝑡
𝑇,𝑆 + 𝜍Ψ 1 − 𝜌𝑟 ,Ψ

2 −
 𝜌𝑆 ,Ψ −𝜌𝑟 ,𝑆𝜌𝑟 ,Ψ  

2

1−𝜌𝑟 ,𝑆
2 𝑑𝑊 𝑡

𝑇,Ψ +

          𝜍Ψ𝑍𝑑𝑊 𝑡
T,π ,                                                                       

𝑑π𝑡 =  𝛾 𝜋 − 𝜋𝑡 − 𝜌𝑟 ,π

𝜍𝜋𝜍𝑟

𝑎
 1 − 𝑒−𝑎 𝑇−𝑡   𝑑𝑡 + 𝜍𝜋𝜌𝑟 ,π𝑑𝑊 𝑡

𝑇,𝑟 + 𝜍π

 

 
𝜌𝑆,π − 𝜌𝑟 ,𝑆𝜌𝑟 ,π

 1 − 𝜌𝑟 ,𝑆
2

 

 𝑑𝑊 𝑡
𝑇,𝑆 

+ 𝜍𝜋𝑌𝑑𝑊 𝑡
𝑇,Ψ + 𝜍𝜋𝑍𝑑𝑊 𝑡

T,π ,                                                                                             

where 𝑌 and 𝑍 are given by Equations (4.14) and (4.15) provided in Chapter 4. Thus, in the 

absence of actuarial risk, the fair value of liability 𝑋𝑇  at time zero under 𝑇-forward risk-neutral 

measure can be expressed as 

Π 0, 𝑋𝑇 =   e−  rt−πt 
T

0 𝐸𝑄𝑇
 𝑋𝑇 Θ  ,                                             (C7) 
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with Θ =  𝑃0 , 𝛿𝑡 , 𝑟𝐺 , 𝛼, 𝛽 ; 𝑃0 denotes the initial investment at the inception of the contract, 𝛿𝑡  

presents the equity return at time 𝑡, 𝑟𝐺  is the minimum guaranteed rate, 𝛼 corresponds to the 

profit-sharing rate attributed to the insured and 𝛽 is the profit-sharing rate attributed to the 

insurer. Hence, the transformation from the risk-neutral measure ℚ to the 𝑇-forward measure 

moves the discounting outside of the expectation term. This would accelerate the valuation 

process in the case that the size of problem that needs to be analyzed is large.   
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Appendix D − Theorems  

Theorem D1 (Singular Value Decomposition) 

Let Z be an 𝑚 × 𝑛 matrix with singular values 𝜍1 ≥ 𝜍2 ≥ ⋯ ≥ 𝜍𝑟 > 0 and 𝜍𝑟+1 = 𝜍𝑟+2 = ⋯ =

𝜍𝑛 = 0. Then there exist an 𝑚 × 𝑚 orthogonal matrix 𝑈, an 𝑛 × 𝑛 orthogonal matrix 𝑉, and an 

𝑚 × 𝑛 ‘diagonal’ matrix 𝑆 such that 

𝑍 = 𝑈𝑆𝑉𝑇  

Then matrix S will have the block form 

𝑆 =   
𝐷 𝑂
𝑂 𝑂

 ,    where 𝐷 =   
𝜍1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜍𝑟

  

and each matrix 𝑂 is a zero matrix of the appropriate size. 

Theorem D2 (The Snell envelope) 

Let  𝑍𝑛 0≤𝑛≤𝑁  be an adapted sequence, and define  𝑈𝑛 0≤𝑛≤𝑁 as follows: 

    
𝑈𝑁 = 𝑍𝑁                                                               

𝑈𝑛 = 𝑚𝑎𝑥 𝑍𝑛 , 𝐸 𝑈𝑛+1 ℱ𝑛
       ∀𝑛 ≤ 𝑁 − 1

  

We call 𝑈𝑛  the Snell envelope of 𝑍𝑛 . It is the smallest super-martingale that dominates 𝑍𝑛 . 
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Appendix E − Tables  

Table E1 
Fair values of a single premium European life insurance contract for different levels of interest rates  𝑟  and 
profit-sharing rate insured  𝛼  with a fixed profit-sharing rate insurer 𝛽 = 0.30. Assumptions used are: 1) 
stochastic equity return; 2) deterministic interest rate; 3) deterministic inflation rate; 4) no mortality risk; 5) 
no surrender risk.  

Ps-rate insurer 

(𝛽)= 0.30 
Terminal insured’s account (𝐴𝑇 + 𝑅𝑇

+) Terminal insurer’s account (𝐶𝑇 + 𝑅𝑇
−) 

 

Interest 

rate 

scenario 

 

Ps-rate 

insured 

 𝛼  

Bond 

element 

(MG) 

Bonus 

insured 

(A-G) 

Insured’s 

account 

(A) 

Terminal 

bonus 

(R+) 

Total 

Insurer’s 

account 

(C) 

Terminal 

bonus 

(R-) 

Total 
European 

contract 

[1] [2] [1]+[2] [3] [1]+[2]+[3] [4] [5] [4]+[5] [1]+…+[5] 

           

𝑟 =  10% 0.10 15.88 5.93 21.82 69.26 91.07 10.75 −1.93 8.82 82.25 

 0.20 15.88 14.19 30.07 60.47 90.54 13.10 −3.77 9.33 81.21 

 0.30 15.88 25.76 41.64 49.21 90.85 16.17 −7.45 8.72 82.13 

           

𝑟 =  8% 0.10 35.35 11.03 46.37 47.33 93.70 19.87 −13.46 6.41 87.29 

 0.20 35.35 25.73 61.07 36.88 97.95 23.55 −21.66 1.89 96.06 

 0.30 35.35 45.30 80.64 26.43 107.07 28.09 −35.71 −7.61 114.69 

           

𝑟 =  6% 0.10 78.66 20.36 99.03 23.04 122.07 36.52 −59.12 −22.59 144.67 

 0.20 78.66 46.39 125.06 15.70 140.76 42.10 −83.42 −41.31 182.07 

 0.30 78.66 79.85 158.51 9.94 168.45 48.96 −116.53 −67.58 236.03 

The table shows the fair values of the decomposed profit-sharing insurance contract under the risk-neutral measure ℚ. 

The present value of the insurance policy is defined as Π 0, 𝑋𝑇 = 𝑒−(𝑟−𝜋 )𝑇𝐸𝑄 𝑋𝑇 , where 𝑋𝑇  presents the market value 

of the insurance account at expiry date, 𝑟 is the constant short rate of interest and 𝜋  describes the long-term inflation 
rate. The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum 
guaranteed rate 𝑟𝐺  = 0.03, stock weight 𝑤 = 1, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial 
reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, long-term inflation rate 𝜋  = 0.0240 
and scenario = 50000. 
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Table E2 
Fair values of a single premium European life insurance contract for different levels of interest rates  𝑟  and 
profit-sharing rate insured  𝛼  with a fixed profit-sharing rate insurer 𝛽 = 0.40. Assumptions used are: 1) 
stochastic equity return; 2) deterministic interest rate; 3) deterministic inflation rate; 4) no mortality risk; 5) 
no surrender risk.  

Ps-rate insurer 

(𝛽)= 0.40 
Terminal insured’s account (𝐴𝑇 + 𝑅𝑇

+) Terminal insurer’s account (𝐶𝑇 + 𝑅𝑇
−) 

 

Interest 

rate 

scenario 

 

Ps-rate 

insured 

 𝛼  

Bond 

element 

(MG) 

Bonus 

insured 

(A-G) 

Insured’s 

account 

(A) 

Terminal 

bonus 

(R+) 

Total 

Insurer’s 

account 

(C) 

Terminal 

bonus 

(R-) 

Total 
European 

contract 

[1] [2] [1]+[2] [3] [1]+[2]+[3] [4] [5] [4]+[5] [1]+…+[5] 

           

𝑟 =  10% 0.10 15.88 5.93 21.81 66.15 87.96 14.46 −2.55 11.91 76.05 

 0.20 15.88 14.20 30.08 56.70 86.78 17.67 −4.88 12.79 73.99 

 0.30 15.88 25.73 41.61 46.27 87.88 21.76 −9.53 12.23 75.66 

           

𝑟 =  8% 0.10 35.35 11.04 46.38 43.03 89.41 26.77 −16.34 10.43 78.98 

 0.20 35.35 25.70 61.04 33.22 94.26 31.69 −26.49 5.20 89.07 

 0.30 35.35 45.29 80.64 23.26 103.90 37.83 −42.25 −4.42 108.32 

           

𝑟 =  6% 0.10 78.66 20.37 99.04 20.00 119.04 49.14 −68.74 −19.60 138.64 

 0.20 78.66 46.45 125.12 13.96 139.08 56.79 −95.00 −38.20 177.28 

 0.30 78.66 79.89 158.55 7.90 166.45 65.91 −132.33 −66.42 232.87 

The table shows the fair values of the decomposed profit-sharing insurance contract under the risk-neutral measure ℚ. 

The present value of the insurance policy is defined as Π 0, 𝑋𝑇 = 𝑒−(𝑟−𝜋 )𝑇𝐸𝑄 𝑋𝑇 , where 𝑋𝑇  presents the market value 

of the insurance account at expiry date, 𝑟 is the constant short rate of interest and 𝜋  describes the long-term inflation 
rate. The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum 
guaranteed rate 𝑟𝐺  = 0.03, stock weight 𝑤 = 1, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial 
reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, long-term inflation rate 𝜋  = 0.0240 
and scenario = 50000. 
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Table E3 
Fair values of a single premium European life insurance contract for different levels of interest rates  𝑟  and 
profit-sharing rate insured  𝛼  with a fixed profit-sharing rate insurer 𝛽 = 0.50. Assumptions used are: 1) 
stochastic equity return; 2) deterministic interest rate; 3) deterministic inflation rate; 4) no mortality risk; 5) 
no surrender risk.  

Ps-rate insurer 

(𝛽)= 0.50 
Terminal insured’s account (𝐴𝑇 + 𝑅𝑇

+) Terminal insurer’s account (𝐶𝑇 + 𝑅𝑇
−) 

 

Interest 

rate 

scenario 

 

Ps-rate 

insured 

 𝛼  

Bond 

element 

(MG) 

Bonus 

insured 

(A-G) 

Insured’s 

account 

(A) 

Terminal 

bonus 

(R+) 

Total 

Insurer’s 

account 

(C) 

Terminal 

bonus 

(R-) 

Total 
European 

contract 

[1] [2] [1]+[2] [3] [1]+[2]+[3] [4] [5] [4]+[5] [1]+…+[5] 

           

𝑟 =  10% 0.10 15.88 5.93 21.82 63.20 85.01 18.29 −3.27 15.02 70.00 

 0.20 15.88 14.19 30.07 54.14 84.21 22.31 −6.20 16.11 68.10 

 0.30 15.88 25.80 41.69 43.16 84.85 27.58 −11.74 15.84 69.01 

           

𝑟 =  8% 0.10 35.35 11.04 46.38 39.71 86.09 33.80 −20.05 13.75 72.34 

 0.20 35.35 25.75 61.10 30.49 91.59 40.12 −31.25 8.87 82.71 

 0.30 35.35 45.52 80.86 21.44 102.30 47.98 −49.18 −1.20 103.50 

           

𝑟 =  6% 0.10 78.66 20.42 99.08 17.74 116.83 62.23 −78.79 −16.57 133.39 

 0.20 78.66 46.54 125.21 11.68 136.89 71.79 −107.98 −36.19 173.08 

 0.30 78.66 79.76 158.43 6.50 164.93 83.07 −148.19 −65.12 230.04 

The table shows the fair values of the decomposed profit-sharing insurance contract under the risk-neutral measure ℚ. 

The present value of the insurance policy is defined as Π 0, 𝑋𝑇 = 𝑒−(𝑟−𝜋 )𝑇𝐸𝑄 𝑋𝑇 , where 𝑋𝑇  presents the market value 

of the insurance account at expiry date, 𝑟 is the constant short rate of interest and 𝜋  describes the long-term inflation 
rate. The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum 
guaranteed rate 𝑟𝐺  = 0.03, stock weight 𝑤 = 1, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial 
reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, 𝑇 = 40, 𝜍𝑠 = 0.15, long-term inflation rate 𝜋  = 0.0240 
and scenario = 50000. 
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Table E4 
Decomposed fair values of a single premium American life insurance contract for different levels of the long-run mean of interest rates  𝜃𝑟  and profit-
sharing rate insured 𝛼 = 0.20 and profit-sharing rate insurer 𝛽 = 0.30 with the assumptions: 1) stochastic equity return; 2) stochastic interest rate; 3) 
stochastic inflation rate; 4) stochastic mortality; 5) surrendering allowed. 

Ps-rate 

insurer 

(𝛽)= 0.30 

Terminal insured’s account (𝐴𝑇 + 𝑅𝑇
+) Terminal insurer’s account (𝐶𝑇 + 𝑅𝑇

−) 

 

Interest rate 

scenario 

Bond 

element 

(MG) 

Bonus 

insured 

(A-G) 

Insured’s 

account 

(A) 

Terminal 

bonus 

(R+) 

Total 

Insurer’s 

account 

(C) 

Terminal 

bonus 

(R-) 

Surrender 

reserve 

(R*+) 

Surrender 

reserve 

(R*-) 

Surrender 

penalty 
Total 

American 

contract 

[1] [2] [1]+[2] [3] [1]+[2]+[3] [4] [5] [6] [7] [8] [4]+…+[8] [9] 

𝑤 = 1             

𝜃𝑟  = 10% 59.26 11.03 70.29 33.02 103.32 11.02 −0.22 1.32 −10.21 2.81 4.72 98.60 

𝜃𝑟= 8% 69.52 19.86 89.38 23.87 113.26 20.04 −1.61 1.51 −23.97 3.28 −0.75 114.01 

𝜃𝑟  = 6% 109.58 48.98 158.56 14.26 172.82 48.04 −25.03 0.68 −65.26 4.03 −37.54 210.37 

𝑤 = 0.30             

𝜃𝑟  = 10% 74.39 3.45 77.84 13.59 91.43 3.75 −0.03 2.32 −0.79 3.67 8.91 82.52 

𝜃𝑟= 8% 86.15 2.97 89.12 5.12 94.24 3.25 −0.21 1.83 −2.41 4.28 6.74 87.50 

𝜃𝑟  = 6% 122.86 20.41 143.27 11.44 154.71 18.73 −24.28 0.05 −18.50 1.63 −22.38 177.09 

The table shows the fair value of the decomposed profit-sharing insurance contract under the risk-neutral measure ℚ for asset allocation. Furthermore, we report the 

fair values for two different portfolios 𝑤 =  1, 0.30 . The present value of the insurance policy is defined as Π 0, 𝜏 =  sup𝜏𝜖𝒯(0,𝑇)
𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡

𝑘=1 𝑋𝑡
𝜏−1
t=1 ∙ 𝑞𝑥𝑡−1/1 +

𝑒−  𝑟𝑘−𝜋𝑘 𝜏
𝑘=1 𝑋𝜏 ∙ 𝑝𝑥𝜏  , where 𝑋𝑇  presents the market value of the insurance account at expiry date, 𝑟𝑡  and 𝜋𝑡  denote respectively the interest rates and the inflation rate 

at time 𝑡. In addition, 𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old Dutch male policyholder dies at 𝑡-th year and 𝑝𝑥𝜏  presents the probability of an 𝑥-year-old male 

Dutch policyholder survives another 𝜏 years.  The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum guaranteed rate 
𝑟𝐺  = 0.03, initial investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, initial surrender reserve 𝑅0

∗ =
0, 𝑇 = 40, 𝜍𝑠 = 0.15, 𝜍𝑟 = 0.01, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 𝜌𝑟 ,𝜋 = 0.5248, 𝜌Ψ,π = 0.1641, long-term inflation rate 𝜋  = 0.024, 

surrender penalty 𝜉 = 0.05 and scenario = 50000. 
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Table E5 
Decomposed fair values of a single premium American life insurance contract for different levels of the long-run mean of interest rates  𝜃𝑟  and profit-
sharing rate insured 𝛼 = 0.20 and profit-sharing rate insurer 𝛽 = 0.40 with the assumptions: 1) stochastic equity return; 2) stochastic interest rate; 3) 
stochastic inflation rate; 4) stochastic mortality; 5) surrendering allowed. 

Ps-rate 

insurer 

(𝛽)= 0.40 

Terminal insured’s account (𝐴𝑇 + 𝑅𝑇
+) Terminal insurer’s account (𝐶𝑇 + 𝑅𝑇

−) 

 

Interest rate 

scenario 

Bond 

element 

(MG) 

Bonus 

insured 

(A-G) 

Insured’s 

account 

(A) 

Terminal 

bonus 

(R+) 

Total 

Insurer’s 

account 

(C) 

Terminal 

bonus 

(R-) 

Surrender 

reserve 

(R*+) 

Surrender 

reserve 

(R*-) 

Surrender 

penalty 
Total 

American 

contract 

[1] [2] [1]+[2] [3] [1]+[2]+[3] [4] [5] [6] [7] [8] [4]+…+[8] [9] 

𝑤 = 1             

𝜃𝑟  = 10% 61.75 10.21 71.96 29.06 101.02 13.87 −0.25 1.26 −11.01 3.00 6.88 94.14 

𝜃𝑟= 8% 72.41 17.31 89.72 19.76 109.48 23.82 −1.65 1.20 −24.90 3.54 2.01 107.47 

𝜃𝑟  = 6% 105.92 42.92 148.85 12.07 160.92 58.16 −22.53 0.67 −70.32 4.41 −29.61 190.53 

𝑤 = 0.30             

𝜃𝑟  = 10% 79.03 2.76 81.78 8.39 90.17 4.35 −0.01 2.41 −0.87 4.04 9.91 80.26 

𝜃𝑟= 8% 88.15 2.17 90.32 2.55 92.87 3.55 −0.10 1.85 −2.47 4.55 7.38 85.49 

𝜃𝑟  = 6% 121.48 19.91 141.39 10.09 151.48 24.57 −23.96 0.06 −22.46 1.95 −19.84 171.32 

The table shows the fair value of the decomposed profit-sharing insurance contract under the risk-neutral measure ℚ.   Furthermore, we report the fair values for two 

different portfolios 𝑤 =  1, 0.30 . The present value of the insurance policy is defined as Π 0, 𝜏 =  sup𝜏𝜖𝒯(0,𝑇)
𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡

𝑘=1 𝑋𝑡
𝜏−1
t=1 ∙ 𝑞𝑥𝑡−1/1 + 𝑒−  𝑟𝑘−𝜋𝑘 𝜏

𝑘=1 𝑋𝜏 ∙ 𝑝𝑥𝜏  , 

where 𝑋𝑇  presents the market value of the insurance account at expiry date, 𝑟𝑡  and 𝜋𝑡  denote respectively the interest rates and the inflation rate at time 𝑡. In addition, 

𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old Dutch male policyholder dies at 𝑡-th year and 𝑝𝑥𝜏  presents the probability of an 𝑥-year-old male Dutch policyholder 

survives another 𝜏 years.  The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum guaranteed rate 𝑟𝐺  = 0.03, initial 
investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, initial surrender reserve 𝑅0

∗ = 0, 𝑇 = 40, 
𝜍𝑠 = 0.15, 𝜍𝑟 = 0.01, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 𝜌𝑟 ,𝜋 = 0.5248, 𝜌Ψ,π = 0.1641, long-term inflation rate 𝜋  = 0.024, surrender penalty 

𝜉 = 0.05 and scenario = 50000. 
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Table E6 
Decomposed fair values of a single premium American life insurance contract for different levels of the long-run mean of interest rates  𝜃𝑟  and profit-
sharing rate insured 𝛼 = 0.20 and profit-sharing rate insurer 𝛽 = 0.50 with the assumptions: 1) stochastic equity return; 2) stochastic interest rate; 3) 
stochastic inflation rate; 4) stochastic mortality; 5) surrendering allowed. 

Ps-rate 

insurer 

(𝛽)= 0.50 

Terminal insured’s account (𝐴𝑇 + 𝑅𝑇
+) Terminal insurer’s account (𝐶𝑇 + 𝑅𝑇

−) 

 

Interest rate 

scenario 

Bond 

element 

(MG) 

Bonus 

insured 

(A-G) 

Insured’s 

account 

(A) 

Terminal 

bonus 

(R+) 

Total 

Insurer’s 

account 

(C) 

Terminal 

bonus 

(R-) 

Surrender 

reserve 

(R*+) 

Surrender 

reserve 

(R*-) 

Surrender 

penalty 
Total 

American 

contract 

[1] [2] [1]+[2] [3] [1]+[2]+[3] [4] [5] [6] [7] [8] [4]+…+[8] [9] 

𝑤 = 1             

𝜃𝑟  = 10% 68.32 8.12 76.44 21.21 97.65 14.37 −0.22 1.19 −10.89 3.47 7.92 89.73 

𝜃𝑟= 8% 74.20 15.89 90.09 17.43 107.52 27.85 −1.72 0.99 −26.66 3.72 4.18 103.34 

𝜃𝑟  = 6% 109.41 48.77 158.18 11.19 169.37 81.51 −31.49 0.39 −83.47 4.13 −28.93 198.30 

𝑤 = 0.30             

𝜃𝑟  = 10% 83.41 2.14 85.55 3.49 89.04 4.77 −0.01 2.39 −0.93 4.39 10.62 78.42 

𝜃𝑟= 8% 89.40 1.76 91.16 1.01 92.17 4.02 −0.07 1.64 −2.68 4.71 7.62 84.54 

𝜃𝑟  = 6% 119.41 19.28 138.70 8.86 147.56 30.03 −23.67 0.06 −25.64 2.22 −16.99 164.55 

The table shows the fair value of the decomposed profit-sharing insurance contract under the risk-neutral measure ℚ.  Furthermore, we report the fair values for two 

different portfolios 𝑤 =  1, 0.30 . The present value of the insurance policy is defined as Π 0, 𝜏 =  sup𝜏𝜖𝒯(0,𝑇)
𝐸𝑄  𝑒−  𝑟𝑘−𝜋𝑘 𝑡

𝑘=1 𝑋𝑡
𝜏−1
t=1 ∙ 𝑞𝑥𝑡−1/1 + 𝑒−  𝑟𝑘−𝜋𝑘 𝜏

𝑘=1 𝑋𝜏 ∙ 𝑝𝑥𝜏  , 

where 𝑋𝑇  presents the market value of the insurance account at expiry date, 𝑟𝑡  and 𝜋𝑡  denote respectively the interest rates and the inflation rate at time 𝑡. In addition, 

𝑞𝑥𝑡−1/1  presents the probability of an 𝑥-year-old Dutch male policyholder dies at 𝑡-th year and 𝑝𝑥𝜏  presents the probability of an 𝑥-year-old male Dutch policyholder 

survives another 𝜏 years.  The reference insured is aged 𝑥 =  25 at time 0. Other parameters included in the model are: minimum guaranteed rate 𝑟𝐺  = 0.03, initial 
investment 𝑃0 = 100, initial insured’s account 𝐴0 = 100, initial reserve account 𝑅0 = 0, initial insurer’s account 𝐶0 = 0, initial surrender reserve 𝑅0

∗ = 0, 𝑇 = 40, 
𝜍𝑠 = 0.15, 𝜍𝑟 = 0.01, 𝜌𝑟 ,𝑆 = −0.0531,  𝜌𝑆,Ψ = −0.0675,  𝜌𝑆,𝜋 = 0.0026, 𝜌𝑟 ,Ψ = 0.0516, 𝜌𝑟 ,𝜋 = 0.5248, 𝜌Ψ,π = 0.1641, long-term inflation rate 𝜋  = 0.024, surrender penalty 

𝜉 = 0.05 and scenario = 50000. 
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