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Abstract

I apply the methods to express subjective views in the spirit of Black-Litterman
in the optimization of CVaR of a loan portfolio in order to explore the effects of
the stress-tests of parameters defining the risk and return of a loan portfolio. The
loan portfolio returns distribution is characterized by the joint default distribu-
tion, where each individual loan has a high probability of small profit (no default)
and a low probability of big losses (default). Normality assumption does not hold
thus the standard mean-variance optimization and Black-Litterman views cannot
be applied. I simulate the joint distribution of the times to default and express
views on different properties of the joint distribution of discrete default events:
means, correlation, tail dependence. I optimize the CVaR of the original and
stressed portfolios and compare the weights.
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1 Introduction

The key idea of this work is to implement a subjective view expression on the joint
default distribution with the purpose of optimizing the credit risk of a loan portfolio.
Subjective views allow stress-testing: investigating how does the optimal portfolio
change with respect to certain changes in the default distribution.

A loan is a financial instrument with the profit or loss it generates and the risk it carries.
The risk is that the borrower defaults and is not able to repay all or a part of its debt.
The risk of the portfolio of loans depends not only on the quality of individual borrower
but also on the dependence between their probabilities to default. If we choose a risk
measure and are able to determine each loan’s contribution to overall portfolio risk,
we evaluate how good certain loans are to our risk profile. There is nothing to prevent
us to look at loan portfolio as something to be optimized with the help of the methods
used in optimization of stocks and other instruments.

Optimizing the loan portfolio for the bank can result, most directly, in selling the least
optimal (in chosen risk-return measure) loans. Results may facilitate rethinking of the
lending strategy, by focusing to the sectors where loans have a better risk/return profile
or by modifying the margin structure. ”Good” loans may also be bought.

”Return” of the loan is a variable which depends on whether the obligor defaults or
not within a given time frame, usually a year. If not, we get the margin. The margin of
the loan is the difference between the interest rate that bank borrows and the interest
rate that bank lends. In the framework of risk-return optimization the margin is the
equivalent of stock excess returns. If the obligor defaults, we lose the money, recov-
ering only the amount specified by the recovery rate. With this definition of returns,
the returns are already risk adjusted. The distribution of returns is therefore such that
with high probability we gain small amounts and with low probability we suffer large
losses. This distribution is highly skewed to the left - is far from normal and just as far
from being elliptical. This obstacle must be overcome before applying methods from
stock portfolio optimization directly.

In particular, we replace variance as risk measure with a risk measure which respects
the assymmetry, for instance, Conditional Value-At-Risk (CVaR). In this thesis I dis-
cuss the issues related to the optimization of CVaR as a risk measure: what is CVaR,
how we can write down the optimization problem, how the optimization problem is
linearized, what are the features of the mean-CVaR optimal portfolio, especially the di-
versification, how the mean-CVaR efficient frontier is different from the mean-variance
efficient frontier and what is the sensitivity of the composition of the optimal portfolio
to the changes in parameters.

The joint distribution of loan returns is characterized by the joint distribution of de-
faults. Following Li (2000) [4], instead of working with the joint distribution of dis-
crete default events within a year, I analyze the joint distribution of the times to de-
fault, which is conveniently split into marginals and a copula. I assume exponential
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marginals with fixed hazard rate parameters and a t-copula (as opposed to normal) for
the dependence structure. A simulation panel consists of a set of scenarios of the times
to default of each obligor which maintain the dependence structure imposed by the
copula. The hazard rate parameters of the individual times to deault distributions are
estimated from the known probabilities of default. The parameters of the t-copula -
the degrees of freedom and the correlation matrix - are estimated from the dataset of
the historical equity returns of the obligors. Here I employ the assumption introduced
and verified by Mashal, Naldi and Zeevi (2003) [6] that the dependence structure of
the times to default follows the dependence structure between the historical equity
returns. Therefore, given the easily accesible equity returns, we can parametrize the
distribution of the times to default, which in turn defines the discrete default events
distribution, and further work with the latter.

The straightforward optimization of a loan portfolio already benefits the banks, but,
just like with stocks, further advances are possible. One such methodology is to allow
analysts to supplement the direct optimization with their own subjective opinions. Not
only the result can be more understandable and realistic, it often becomes more robust
and less sensitive to changes in inputs. In the area of stock portfolio management the
method to input subjective views is widely established. The technique by Black and
Litterman (1992) [8] allows portfolio managers to compute a posterior market distri-
bution that smoothly blends their subjective views on the market with a prior market
distribution, under the assumption that all the distributions involved are normal. Given
that the loan return distribution is not normal, the Black-Litterman method cannot be
applied here.

Meucci (2008) [1] Entropy Pooling (EP) is a way for a risk manager to express sub-
jective views on the joint portfolio default distribution. EP extends Meucci (2006) [2]
Copula Opinion Pooling technique, which provides an intuitive blending of the prior
distribution and the views of the manager without requiring the normality assumption.
The intuition behind their approach is to use opinion pooling criteria to determine the
marginal distribution of each view separately, whereas the joint co-dependence, i.e.
the copula is directly inherited from the prior market structure. A suitable change of
coordinates translates the joint distribution of the views into a joint posterior distri-
bution for the market. The market is represented by a large number of Monte-Carlo
generated scenarios of dependent risk factors. The simulation of the market is easy
once we have separated the joint multivariate distribution of risk factors into marginal
distributions plus a copula. Entropy Pooling extends the Copula Opinion Pooling by
permitting the views to be expressed on any property of the joint default distribution.
In this thesis I apply Entropy Pooling on the joint default distribution to express views
about its certain properties: mean, correlation, tail dependence.

I use scenario simulations to estimate portfolio CVaR. Each simulation scenario repre-
sents one particular instance of joint times to default. After the simulation, we trans-
form the simulation panel of the times to default to a panel of joint discrete default
events within one year. Before stress-testing, each scenario has equal probability of
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occurring. Stress-tests twist the probabilities - increases the likelihood of certain sce-
narios and decreases the likelihood of others, depending on what feature of distribution
is represented by a view (stress-test), while the simulation panel remains the same.
Thus the calculation of CVaR is computationally just as effective as for the original
market. The prior and stressed posterior default distributions are useful for numerous
purposes in risk management and portfolio optimization: the pricing of CDO and other
multiname credit risk derivatives and economic capital calculations, among others. I
concentrate on the optimization of the loan portfolio before and after stress testing.

I analyze 3 cases of stress-testing of the joint default distribution. First, increase prob-
abilities of default, corresponding to a view on a mean as a parameter of the marginal
distribution. Next, I stress the correlation matrix of the joint distribution of discrete
default events. Finally, I stress the tail dependence of the joint distribution of discrete
default events, allowing the default events to be related closer while the rest of the
distribution stays the same. I compare the minimum CVaR portfolio of the original
unstressed case and all the stress tests. The results on an artificial loan portfolio of real
obligors with real default parameters but generated loan margins show that Entropy
Pooling works well and the changes in the optimal portfolio indeed reflect the stress
tests in the parameters. When the dependence between tail event increases, the least
connected obligors increase their share in the portfolio, despite possibly lower returns.
Besides, Entropy Pooling is very effective computationally, making it cheap to run
many different tests and explore the effects in detail.

Moreover, I check how sensitive the CVaR optimum is with respect to the input returns.
It is well known that the stock portfolio mean-variance optimum is highly sensitive
to assumptions on returns and results in extremely different portfolios given a slight
change in returns. For this reason the Black-Litterman method starts with ”reverse
optimization” to determine the market equilibrium returns: the returns derived from
the assumption that the market is in the mean-variance equilibrium. Market equilib-
rium returns instead of the historical returns are considered the prior - this is the other
contribution of the Black-Litterman model besides the capability to express the views.
While I allow the expression of the views on the loan returns distribution using En-
tropy Pooling as the fitting alternative to the Black-Litterman model, I also put effort
in determining mean-CVaR equilibrium returns by the means of linear programming
inverse optimization techniques. The results of this part are incomplete and inconclu-
sive, suggesting that further research is needed.

My main contribution to the existing theory is the idea of applying Entropy Pooling to
express the views on the joint default distribution to allow the stress-testing of the loan
portfolio. It is not easy for banks to obtain the correlation matrix of default events and
have confidence in it. I show that we can start with the more robustly parametrized
joint distribution of the times to default (where the dependence structure is inherited
from the equity returns), smoothly translate it to the distribution between the discrete
default events, and stress test the latter with intuitive changes in its properties. The
work carries practical character and is readily applicable for bank practitioners wishing
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to strengthen the lending strategy against financial crises.

The remainder of the thesis is organized as follows. Section 2 describes the CVaR as
the risk measure and discusses the methodology of CVaR optimization. In section 3 I
show how to estimate the parameters of the t-copula. Section 4 deals with subjective
views: Black-Litterman, Copula Opinion Pooling, Entropy Pooling. Section 5 gives a
short summary of efforts to derive mean-CVaR equilibrium returns (reader may check
appendix B for detailed analysis). Section 6 describes the data and section 7 presents
numerical results. Finally, main conclusions and limitations are listed in section 8.

2 Risk of a loan portfolio

In this section we present a typical loan portfolio and how to measure and minimize
its risks.

2.1 CVaR as a risk measure

Next we decide how to measure the risk of a loan portfolio. Current regulations for
finance businesses (Basel II accord in particular) formulate some of the risk manage-
ment requirements in terms of percentiles of loss distributions. An upper percentile
of the loss distribution is called Value-at-Risk (VaR). The popularity of VaR is mostly
related to a simple and easy to understand representation of high losses. VaR can
be quite efficiently estimated and managed when underlying risk factors are normally
(log-normally) distributed. However, for non-normal distributions, VaR may have un-
desirable properties (Artzner at al. (1997, 1999) [18]) such as lack of sub-additivity,
i.e., VaR of a portfolio with two instruments may be greater than the sum of individ-
ual VaRs of these two instruments. Intuitively, we expect that the risk of the portfolio
with two instruments decreases inversely proportional to the correlation between the
instruments, and VaR does not necessarily reflect this insight. Also, VaR is difficult to
control/optimize for discrete distributions, when it is calculated using scenarios. In this
case, VaR is non-convex and non-smooth as a function of positions, and has multiple
local extrema (Rockafeller and Uryasev (2000) [9]).

VaR is also criticized for not taking into account the magnitude of losses when the VaR
is exceeded. VaR provides no insight into what would happen to a bank if a 1 in 1000
chance event occurs. Since Rockafellar and Uryasev (2000) [9] suggested to use, as
a supplement (or alternative) to VaR, another percentile risk measure which is called
Conditional Value-at-Risk, it has gained wide popularity and acceptance. The CVaR
risk measure is closely related to VaR. For continuous distributions, CVaR is defined
as the conditional expected loss under the condition that it exceeds VaR. For general
distributions, including discrete distributions, CVaR is defined as the weighted average
of VaR and losses strictly exceeding VaR, see Rockafellar and Uryasev (2000) [9].
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CVaR has more attractive properties than VaR. CVaR is sub-additive and convex (Rock-
afellar and Uryasev, 2000) [9]. Moreover, CVaR is a coherent measure of risk in the
sense of Artzner et al. (1997, 1999) [18]. We also hypothesize that CVaR is a more
robust risk measure than VaR. The reason is that all values in the tail of the distribu-
tion of returns are considered when estimating CVaR, compared to just the number of
values for the case of VaR. For example, if the tail consists of the returns -8%, -9.5%
and -11%, all these values are taken into account when estimating CVaR. When VaR
is estimated, the most important feature about the tail is that it consists of three dif-
ferent (in this example) values. It should be noted, that it is the tail of the distribution
that is important for most risk measures, since the tail in some sense defines the risk.
The variance of the estimate of a mean (e.g. CVaR) should, intuitively, be less than
the variance of the estimation of a single point (e.g. VaR), and therefore the variance
should be lower for CVaR compared to VaR. Hence CVaR ought to be a more robust
measure of risk than VaR.

Another risk measure CVaR outcompetes is variance. Despite common usage of the
variance as a risk measure for stock portfolio optimization, instead of optimizing ac-
cording to the mean-variance model, a portfolio can be optimized in other frameworks.
Krokhmal, Palmquist and Uryasev (2002) [11] illustrate the relation of the mean-CVaR
approach to the standard Markowitz mean-variance (MV) framework. Rockafellar and
Uryasev (2000) [9] show that for normally distributed loss functions these two method-
ologies are equivalent in the sense that they generate the same efficient frontier. How-
ever, in the case of nonnormal, and especially non-symmetric distributions, CVaR and
MV portfolio optimization approaches may reveal significant differences. Indeed, the
CVaR optimization technique concentrates on one tail of the loss distribution, which
corresponds to high losses, and does not account for the opposite tail representing high
profits. On the contrary, the Markowitz approach defines the risk as the variance of the
loss distribution, and since the variance incorporates information from both tails, it is
affected by high gains as well as by high losses. Due to the asymmetry of loan returns,
the traditional mean-variance framework may produce misleading results.

Mathematically, we define VaR as

P [x≤VaRβ] = 1− β, (1)

or equivalently, ∫ VaRβ

−∞
fX(x)dx = 1− β, (2)

where fX(x) is a probability distribution function of returns x and β is the desired VaR
level (95%, 99%).

We define CVaR as
CVaRβ(x) = E[x|x≤VaRβ], (3)

or equivalently,

CVaRβ(x) =
1

1− β

∫ VaRβ

−∞
xfX(x)dx (4)
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2.2 CVaR optimization

We implement the scenario-based model proposed by Rockafellar and Uryasev (2000)
[9] for portfolio CVaR minimization.

Let f(x, y) be the loss associated with the decision vector x, to be chosen from a cer-
tain subset X of Rn, and the random vector y in Rm. The vector x can be interpreted
as representing a portfolio, with X as the set of available portfolios (subject to various
constraints), but other interpretations could be made as well. The vector y stands for
the uncertainties, e.g. in market parameters, that can affect the loss. Of course the loss
might be negative and thus, in effect, constitute a gain. For each x, the loss f(x, y)
is a random variable having a distribution in R induced by that of y. The underlying
probability distribution of y ∈ Rm is assumed for convenience to have density, which
we denote by p(y). However, as it will be shown later, an analytical expression p(y)
for the implementation of the approach is not needed. It is enough to have an algorithm
(code) which generates random samples from p(y).

It is difficult to work with CVaR as per (4), because of the VaR function

αβ(x) = min
α∈R

(loss ≥ β) (5)

involved in its definition. Rockafeller and Uryasev (2000) [9] propose much simpler
function Fβ(x, α):

Fβ(x, α) = α +
1

1− β

∫
y∈R

[f(x, y)− α]+p(y)dy (6)

I.e., α is the β-VaR: the losses at percentile β of the loss function. Then β-CVaR of
the loss associated with any x∈X can be determined by the formula

CVaRβ(x) = min
α∈R

Fβ(x, α) (7)

In particular, it can be proven that one always has

αβ(x) = min
α∈R

Fβ(x, α), and CVaRβ(x) = Fβ(x, αβ(x)) (8)

Though it may seem clear that Fβ(x, α) is equal to CVaRβ(x), the demonstration of it
is not trivial and can be found in Rockafellar and Uryasev (2000) [9].

Furthermore, the integral in the definition (6) of Fβ(x, α) can be approximated in var-
ious ways. For example, this can be done by sampling the probability distribution
of y according to its density p(y). If the sampling generates a collection of vectors
y1, y2, . . . yJ , then the corresponding approximation to Fβ(x, α) is

F̃β(x, α) = α
1

1− β

J∑
k=1

p(y)[f(x, y)− α]+ (9)
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Finally, minimizing CVaR of the loss associated with x over all x ∈ X is equivalent to
minimizing Fβ(x;α) over all (x, α) ∈ (X×R), in the sense that

min
x∈X

CVaRβ(x) = min
(x,α)∈(X,R)

Fβ(x, α) (10)

When the analytical expression of density p(y) is not known, we use historical ob-
servations of prices of instruments or we may use Monte Carlo simulations. In this
case we use the approximation F̃β(x, α). If the function f(x, y) is convex with respect
to x, then F̃β(x, α) is a convex nonsmooth function with respect to the vector (x, α).
Therefore, if the feasible set X is convex, the optimization problem with the CVaR
performance function can be solved using nonsmooth optimization techniques.

Moreover, if the function f(x, y) is linear with respect to x, these problems can be
solved using Linear Programming (LP) techniques (Rockafeller and Uryasev (2000)
[9]). The possibility of such reduction to linear programming does not depend on a
special distribution of y, such as a normal distribution; it works for nonnormal distri-
butions just as well. However, linearization adds a variable for each scenario, thus for
problems involving low number of instruments but many scenarios nonsmooth tech-
niques compete with linear programming in terms of the computation time.

I minimize CVaR with respect to a constraint on returns. I build the efficient portfolio
frontier in the mean-CVaR space by repeating the CVaR minimization procedure for
different values of the expected return of the portfolio, r.

2.3 Linearization of CVaR optimization problem

In this section and onwards f(x, y) denotes the returns, not the loss as per Rockafeller
and Uryasev (2000) [9] definition, because it is easier to relate to returns distribution.
Consequently, if VaR is defined as a quantile of the returns distribution instead of the
loss distribution, we must invert its sign as well. ζ is minus α of the previous section.

From the linearization of the CVaR function (9) we obtain the linear form of the CVaR
minimization problem.

Minimize ζ + 1
1−β

∑J
j=1 pjzj

s.t. zj + ζ + f(x, yj) ≥ 0 ∀j ∈ J
f(x, y) ≥ r
zj ≥ 0 ∀j ∈ J

(11)

where r is the desired level or returns and zj are artificial linearization variables:

zj = [ζ + f(x, yj)]
+ (12)

which together with ζ become the decision variables.
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Alternatively, we could fix the CVaR at a desired level ω and maximize the portfolio
return f(x, y):

Maximize f(x, y)

s.t. ζ + 1
1−β

∑J
j=1 pjzj ≤ ω

zj + ζ + f(x, yj) ≥ 0 ∀j ∈ J
zj ≥ 0 ∀j ∈ J

(13)

The real portfolio holdings are x - we must expand the f(x, y) in order to specify the
x. In the scenario based approach every scenario is a certain outcome of the market,
dependent on the uncertainties y, which determine the multivariate returns. Let us
also assume we simulate market outcome panel M: J × K matrix, where J is the
number of simulations and K is the number of obligors. The elements of panel M are
mij, i = 1, . . . , K, j = i = 1, . . . , J . One scenario can also be presented as vector
x = (m1j, . . . ,mKj). Then

f(x, y) =
J∑
j=1

pj(
K∑
i=1

wimij) (14)

In other words, the returns is the average over all scenarios of market outcomes per
obligor multiplied by the weights of the obligors. f(x, yj) is the j-th scenario’s portfo-
lio return:

f(x, yj) =
K∑
i=1

wimij (15)

Usually, but not necessarily, pj = 1/J . We will encounter twisted (stressed) pj in
the Entropy Pooling problem where we reuse the same simulated market outcome
scenarios with new probabilities to express the stressed joint default distribution.

f(x, y) expanded into a function of the market outcome panel M I write (11) specify-
ing all the K + 1 + J variables involved: K portfolio holdings wi, 1 ζ for VaR and J
dummies zj .

Minimize ζ + 1
1−β

∑J
j=1 pjzj

s.t. zj + ζ +
∑K

i=1wimij ≥ 0 ∀j ∈ J∑J
j=1 pj(

∑K
i=1wimij) ≥ r∑K

i=1wi = 1
wi ≥ 0, ζ ≥ 0, zj ≥ 0 ∀i ∈ K, ∀j ∈ J

(16)

Two notable differences from (11) have appeared:

• Full investment constraint
∑K

i=1wi = 1.
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• Requirement wi ≥ 0. In business terms it means that we deny negative loans,
for instance, when bank borrows from another bank. Negative loan is similar to
short selling, we would hope for lender to default.

The size of the decision variable now isK+1+J+1+J . K is the number of obligors,
so first K of the final weight vector will be the true portfolio holdings. Next, K + 1’th
entry is VaR, referred to as ζ . Next J entries are the zj , the dummies resulting from
CVaR function linearization. The first K entries of the solution x∗ = (x1, . . . , xK) is
the vector of weights that define mean-CVaR optimal portfolio.

2.4 CVaR optimization examples

Usually the CVaR optimization results in a balanced and sensible portfolio, given that
the constituents of the portfolio present a balanced trade-off between risk and return.
The higher the default probability, the higher the return (the margin bank sets lending
to this obligor) and vice versa. The higher the desired level of returns, the higher the
investment into high risk-high return obligor, and vice versa. However, there is some
research suggesting that sometimes the portfolios optimized in CVaR sense can be
very concentrated. For instance Romero-Meza and Laengle (2007) [17] find that half
of the assets in their portfolio receive zero weights and hypothesize that this is due to
instablility of foreign currencies against Chilean Peso.

Another reason could be a tendency of CVaR optimization to produce concentrated
portfolios if risk-return balance is a little unfavourable for certain assets.

I start with a simple example with just 3 obligors in order to see what happens when
the portfolio is simplified to the very minimum. This way I can disentangle the effects
of all the parameters. Assume we have 3 obligors. Correlations equal (=0.3367 off-
diagonal), recovery rates equal (=0%). Returns and PDs are all different and calibrated
to represent realistic trade-off between risk and return. Table 1 gives PDs and returns
of 3 obligors.

Obligor Returns before risk adjustment PD Risk adjusted returns
1 9.00% 2.62% 6.14%
2 5.00% 0.90% 4.06%
3 4.00% 0.81% 3.15%

Table 1: 3 obligor problem: risk and return

The risk adjusted returns are derived from the panel of the joint default scenarios,
where the dependence between defaults is modelled by a t-copula with 3 degrees of
freedom. In every scenario each obligor either defaults or not. If not, we get the ex-
pected returns (9%, 5%, 4% respectively). If defaults, we lose the loan, recovering
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only the amount specified by the recovery rate, which in this case is 0%. The distribu-
tion of returns is therefore such that with high probability we gain small amounts and
with low probability we suffer large losses.

I illustrate the efficient frontier of this portfolio in the mean-CVaR setup in figure 1.
For comparison I also show the mean-variance frontier.

(a) Mean-CVaR efficient frontier

(b) Mean-variance efficient frontier

Figure 1: Efficient frontiers. Solid line in both pictures is obtained optimizing CVaR,
and dotted line optimizing variance.

We see that when we optimize the CVaR, resulting portfolios’ variance is practically
indistinguishable from minimal. However if the variance is optimized, resulting CVaR
can be much further away from optimal. At a nearly minimum CVaR point (returns:
0.044) CVaR of the minimum variance portfolio is higher than the CVaR of the CVaR-
optimal portfolio by 15%.

The diversification of the 3 obligor portfolio is displayed in figure 2: it shows which
parts of the mean-CVaR efficient frontier are constructed of which obligors. In the
redundant bottom branch where returns are low but CVaR is high only obligors 2 and
3 (low returns, lower but not so low risk) are used. The upper part is contributed
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by obligors 2 and 3 (higher returns, higher risk - the typical trade-off). The middle
portfolios use all 3 obligors. In this case the equal weights (=1/3) portfolio would be
quite close to the tip point of the efficient frontier. It means that all the obligors present
a healthy mix of risk and return. Thus we observe that in a healthy (and already
quite optimal) case where different obligors do not stand out by their good or bad
risk profile, but contribute to trade-off in a proportionate manner, the minimum CVaR
portfolio is quite well diversified. Concentrated portfolios most likely arise from the
fact that discarded assets have a (slightly) suboptimal risk-return profile.

Figure 2: How many obligors contribute to portfolio at different return-CVaR levels

Also, note that efficient frontier is indeed convex and piecewise-linear, at least in 3
obligors case. It should enable us to find a point where CVaR is lowest overall -
similarly to the lowest variance point in the mean-variance frontier.

Next I try to reproduce the research of DiClemente and Romano (2004) [7] who ana-
lyze loan portfolio optimization, show significant benefits of performing it and present
a balanced portfolio as a result. The authors present all the necessary data components
in the paper. Table 2 presents the findings in terms of the weights of the optimal port-
folios with different return constraints. To be true to the original article, DiClemente
and Romano (2004) [7] consider that the returns in this context are pure loan margins
without default events, i.e. returns before risk adjustment. In this case 7.177% is the
return of the equal weights portfolio. This paradigm is hard to justify in business sense,
as it means that in the case of obligor default we still earn the margin, but it makes cer-
tain computational sense because this way we can separate risk from return. Still, the
difference in return level specification does not impact the weights of the portfolio: if
I fix the returns before risk adjustment at the level that corresponds the risk adjusted
returns level of say 1%, I get the same weights as displayed in column 1 where the risk
adjusted returns are constrained.

I would expect column 3 to match column 6 exactly, i.e. DiClemente and Romano
(2004) [7] results to be reproducible, but this was not the case. I cannot find the
diversification. The portfolio consists purely of the lowest risk/lowest return obligor
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returns
With 29.35% upper limit DR

obligor 1% 2% 2.93% 3% 2.93% 7.177%
1 0.9089 0.5591 0.2326 0.2094 0.2053 0.2612
2 0 0 0 0 0.0075 0.0020
3 0 0 0 0 0.1594 0.1242
4 0 0 0 0 0.1441 0.1618
5 0 0 0 0 0 0
6 0 0 0 0 0.0064 0
7 0 0 0 0 0.1805 0.1573
8 0.0911 0.4408 0.7674 0.7906 0.2935 0.2935
9 0 0 0 0 0 0

10 0 0 0 0 0.0032 0

Table 2: DiClemente and Romano (2004) [7] portfolios. First 4 columns are plain
CVaR minimum weights subject to the given return level. The level 2.93% corre-
sponds to the risk adjusted return of the portfolio with equal weights, which is a good
benchmark. Column 5 contains CVaR minimum weights with an upper limit on invest-
ment into a single asset, namely 29.35%. This number is the level of largest investment
in column 6, which reprints results from the article of DiClemente and Romano (2004)
[7] where 7.177% is the returns before risk adjustment.

and the highest risk/highest return obligor. The pattern remains over all set levels of
returns, only the ratio changes in favor of the low risk obligor when we request a lower
return overall. I cannot find the reason for the discrepancy.

I hypothesize that other obligors may have less favourable risk/return trade-off - then
the concentration is quite a typical result to find. Usually it is countered by setting an
upper limit of an investment into one asset. For example, Krokhmal, Palmquist and
Uryasev (2002) [11] set the maximum limit of one investment to 20%. Their numerical
results show that the limit is reached in every scenario with every constraint on return
(their table 1). The column 5 in the table 2 displays the diversifying impact of the uper
limit too.

2.5 Effects of correlation

Before I have assumed the pairwise correlation between the times to default of all 3
obligors to be equal. In the next table (Table 3) I show how changes in the correlation
matrix affect the weights of the mean-CVaR optimal portfolio. It will help under-
standing the results of the correlation stress test later. ”Correlation” is the correlation
matrix parameter of the t-copula. It translates almost directly to the correlation be-
tween the times to default, although not precisely so. For instance, in scenario 1 the
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off-diagonal elements of the empirical correlation matrix between the times to default
turn out between 0.31 and 0.32; and in scenario 2 - between 0.01 and 0.02. ”Default
correlation” is the empirical correlation between default events within one year, i.e.
1 when the time to default is less than 1 and 0 otherwise. The correlation between
the default occurrences is very much lower than the correlation between the times to
default. Column ”D” contains the counts of the default occurrences together: the first
row is the number of simulations with at least 1 one obligor defaulting, the second -
the number of scenarios with at least 2 obligors defaulting, the third - the number of
scenarios with 3 obligors defaulting. The numbers sum up to the total count of the
default occurences over the simulation panel. ”CVaR” and wopt are the CVaR and the
weights of the mean-CVaR optimum portfolio, respectively. I impose returns of 4.9%
and do 100 000 simulations. The random numbers for the simulations are the same in
all 10 scenarios.

Ignoring minor differences, there are two distinct patterns of the weights over 10 sce-
narios: one with obligors 1 and 2 sharing 90% of portfolio almost equally, and another
with obligor 3 gaining more weight and obligor 2 not invested at all. This structural
break occurs when obligor 3 (with the lowest risk and return) is significantly less cor-
related to 1 and 2 than 1 and 2 between themselves; or when the correlation overall
is very high. Normally, as the demanded return level is higher than the equal weights
portfolio return (4.4%), portfolio is mostly invested into the higher risk-return profile
obligors 1 and 2. This typical pattern is retained with the typical correlation structures.
Thus the findings confirm the intuitive insight that when correlations get higher than
typical, the least ”connected” obligor is favoured, despite of its possibly lower returns.

3 Copulas

3.1 Copula of time to default distribution

We now turn to the question how to generate the joint default scenarios. The article by
Li (2000) [4] transformed the understanding and modeling of joint default completely.
Li’s assumption that codependence between defaults is described by a normal copula
is largely discredited and even blamed for ruining the Wall Street, but otherwise, us-
ing more fitting classes of copulas, the copula approach yields extremely satisfactory
results. The ease of manipulation and simulation offered by the copula approach is
compelling.

First, Li (2000) [4] introduces a random variable ”time-until-default”, or survival time
of the defaultable entity or financial instrument. A discrete default event within a given
time frame (usually, one year) is completely defined by the time to default.
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Nr Correlation Default correlation D CVaR wopt
1 1 0.3367 0.3367 1 0.1229 0.1089 3872 0.5404 0.4416

0.3367 1 0.3367 0.1229 1 0.1176 412 0.4584
0.3367 0.3367 1 0.1089 0.1176 1 42 0.1000

2 1 0 0 1 0.0330 0.0262 4142 0.4560 0.4392
0 1 0 0.0330 1 0.0255 154 0.4559
0 0 1 0.0262 0.0255 1 3 0.1048

3 1 0.6667 0.6667 1 0.2988 0.2885 3343 0.6944 0.4411
0.6667 1 0.6667 0.2988 1 0.2937 794 0.4579
0.6667 0.6667 1 0.2885 0.2937 1 189 0.1009

4 1 0.9999 0.9999 1 0.5812 0.5514 2584 0.9115 0.5744
0.9999 1 0.9999 0.5812 1 0.9487 888 0.0000
0.9999 0.9999 1 0.5514 0.9487 1 800 0.4256

5 1 0.6667 0 1 0.2988 0.0262 3766 0.5875 0.5784
0.6667 1 0 0.2988 1 0.0263 532 0.0000

0 0 1 0.0262 0.0263 1 14 0.4216
6 1 0.3367 0 1 0.1229 0.0262 4028 0.5230 0.4414

0.3367 1 0 0.1229 1 0.0239 283 0.4582
0 0 1 0.0262 0.0239 1 6 0.1004

7 1 0 0.3367 1 0.0330 0.1149 4033 0.4702 0.4397
0 1 0 0.0330 1 0.0262 279 0.4565

0.3367 0 1 0.1149 0.0262 1 6 0.1038
8 1 0 0 1 0.0330 0.0251 4052 0.4617 0.4384

0 1 0.3367 0.0330 1 0.1055 209 0.4551
0 0.3367 1 0.0251 0.1055 1 7 0.1066

9 1 0.6667 0.6667 1 0.2988 0.2727 3415 0.6830 0.4403
0.6667 1 0 0.2988 1 0.0280 849 0.4571
0.6667 0 1 0.2727 0.0280 1 31 0.1026

10 1 0.6667 0 1 0.2988 0.0321 3533 0.5864 0.5742
0.6667 1 0.6667 0.2988 1 0.3209 686 0.0000

0 0.6667 1 0.0321 0.3209 1 64 0.4258

Table 3: 3 obligor problem: correlation impact on mean-CVaR optimal weights. ”Cor-
relation” is the correlation matrix parameter of the t-copula. ”Default correlation” is
the empirical correlation between default events within one year. ”D” is the count of
simulations with at least 1, 2 and 3 defaults. ”CVaR” and wopt are the CVaR and the
weights of the mean-CVaR optimum portfolio, respectively.

Each time until default separately can be described in terms of its distribution function.

F (t) = Pr(T ≤ t), t ≥ 0 (17)
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and a corresponding density function f(x). Further Li (2000) [4] specifies a hazard
rate function

h(x) =
f(x)

1− F (x)
, (18)

which has a conditional probability density interpretation: it gives the value of the
conditional probability density function of T at exact age x, given survival to that time.
Li (2000) [4] shows that

F (t) = 1− e−
∫ t
0 h(s)ds, t ≥ 0 (19)

A typical assumption is that the hazard rate is a constant, h, over certain period, such
as [x, x+ 1]. In this case, the distribution function is

F (t) = 1− e−ht (20)

which shows that the survival time follows an exponential distribution with the param-
eter h. Under this assumption, the survival probability over the time interval [x, x+ t]
for 0 < t ≤ 1 is e−ht.

Modelling a default process is equivalent to modelling a hazard function. Li (2000) [4]
lists several reasons why modelling the hazard rate function is a good idea. I take this
proposal too. A simple way to model the hazard rate is to assume it is fixed and derive
it from the known one year probabilities of default (PD). As PD = F (1), we see from
(20) that h = −ln(1− PD).

The default correlation between two entities A and B can be defined with respect to
their survival times (=times until default), TA and TB:

ρAB =
Cov(TA, TB)√
V ar(TA)V ar(TB)

(21)

Li (2000) [4] calls this definition of the default correlation ”survival time correlation”
and shows that it is a much more general concept than the discrete default correlation
- correlation between default events within given time frame. We use this default
correlation definition too, only replace the wording ”survival time” to ”time to default”.

The core issue in modelling defaults is to determine the dependence between the de-
fault occurrences. Generally speaking, given marginal distributions for every obligor
and a default correlation matrix, we still cannot work out the joint default distribution
function. Li (2000) [4] popularized simple and convenient approach to the problem -
copulas. I give a brief overview of copulas here.

A copula function is a function that connects univariate marginals to their full mul-
tivariate distribution. A copula allows us to model marginal distribution functions
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of each time to default and default codependence separately. A copula is a mapping
C : [0, 1]n → [0, 1] with the following characteristics:

1. C(u1, . . . , un) is non-decreasing in each component. It is a multivariate cumu-
lative distribution.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui ∀i. The copulas respects the given marginals.

3. C(u1, . . . , ui = 0, . . . , un) = 0 ∀i. It is a multivariate cumulative distribution.

4. ∀[a1, . . . , an], [b1, . . . , bn] ∈ [0, 1]n, where ai ≤ bi, the following holds:∑2
i1=1 . . .

∑2
in=1 (−1)i1+...+inC(u1,i1 , . . . , un,in) ≥ 0, where uj,1 = aj and uj,2 =

bj . This implies a positive ”area” under the copula function.

Copula functions can be used to link marginal distributions with a joint distribution.
For a given univariate marginal distribution functions F1(x1), F2(x2), . . . , Fm(xm), the
functionC(F1(x1), F2(x2), . . . , Fm(xm)) = F (x1, x2, . . . , xm), which is defined using
a copula function C, results in a multivariate distribution function with an univariate
marginal distributions as specified by F1(x1), F2(x2), . . . , Fm(xm).

The converse also holds, established by Sklar (1959). Any multivariate distribution
function F can be written in the form of a copula function. He proved the following: If
F (x1, x2, . . . xm) is a joint multivariate distribution function with univariate marginal
distribution functions F1(x1), F2(x2), . . . , Fm(xm), then there exists a copula function
C(u1, u2, . . . , um) such that F (x1, x2, . . . , xm) = C(F1(x1), F2(x2), . . . , Fm(xm)).

We also use the property that copulas are invariant under strictly increasing transfor-
mation of the marginals.

One rather seldom sees copula function as such, per definition above. More often its
density is used in applications, primarily to simulate random variates with a desired
codependence. Figure 3 is a poster picture of normal and t-copulas with two variables,
though what is in the picture should more strictly be called a simulation from a copula,
revealing the copula density.

There is a wide family of known and popular copula functions. Li (2000) [4] had
good reasons to use normal copula to model defaults, however, just like with equity
returns, normality assumption does not hold very well. Mashal and Naldi (2002) [5]
give extensive explanation with examples how t-copula fits better. For example, if one
uses the t-distribution with 10 degrees of freedom and 30% correlation, the probability
of having a joint tail event, given that a marginal tail event occurred, is about 3%; this
is very different from the 0% that the normality entails. Figure 3 illustrates a higher
probability of joint tail events in a t-copula as well.

The distribution of marginals do not have to be equal, and marginal and joint dis-
tributions do not have to come from the same family. In fact, while our marginals
representing the distribution of the times to default are exponential, there is no such
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Figure 3: Simulation from a copula: t-copula(left) and normal copula(right)

thing as a multivariate exponential distribution - and this is another argument for using
a t-copula.

3.2 t-Copula correlation parameter estimation

We have already established that the normal copula to represent the default correlation
is not the prime choice, and that the t-copula, following the analogy with equity returns,
is the next thing to try.

Mashal, Naldi and Zeevi (2003) [6] argue that the dependence between the times to
default has the same structure as the dependence between asset returns. If we think of
defaults as being generated by asset values falling below a given boundary, than the
probabilities of joint defaults over a specific horizon must follow the joint dynamics of
asset values. They extend the argument further and check the presumption that asset
return dependence can be substituted by equity return dependence. The assumption
has long been used by practitioners, because equity returns are observable and asset
returns are not. It is also criticized because of the different leverage between assets and
equity. Mashal, Naldi and Zeevi (2003) [6] find the similarities between the joint tail
dependence (as measured by the DOF) of asset and equity returns quite striking and
conclude that the empirical evidence strongly supports the widespread assumption of
substitution.

There is a rich body of research on which distribution fits equity returns best, with
t-distribution being one of the reasonably simple options that fits well. Another neces-
sary assumption is that in the risk-neutral world the dependence stays the same as in
the risky world.

Next we will extract t-copula parameters - the correlation matrix and the degrees of
freedom - from the historical series of equity returns, following Meucci (2008) [3].
Mashal and Naldi (2002) [5] provide similar procedure, but Meucci (2008) [3] goes
further by imposing structure on correlations.
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Let us have the market X, represented by N risk factors. Our market X is such that
Y = Φ−1

ν (X), where Φν is a cdf of the univariate t distribution. Y ∼ t(ν,0,C): mul-
tivariate t distribution with ν degrees of freedom, zero means and correlation matrix
C. Assume the marginals are known or estimated empirically and presented as cdf’s:
F̂1, . . . , F̂n. If the number of degrees of freedom ν is known, we can transform the
data to form T ×N panel Y, defined entry-wise as follows:

Yt,n = Φ−1
ν (F̂n(Xt,n)) (22)

Y is a time series of independent identically distributed joint multivariate t variables.
Meucci (2008) [3] shows that for given degrees of freedom ν, Maximum Likelihood
estimator of the correlation parameter C is

Ĉ =
1

T

T∑
t=1

wtyty
′

t (23)

where yt denotes transpose of the t-th row in panel Y and the weights wt are defined
as follows:

wt =
ν +N

ν + y
′
tĈ
−1yt

(24)

This definition cannot be solved analytically, except in the normal case (ν = ∞).
Meucci (2008) [3] gives following recursive numerical estimation procedure:

Step 0. Set u = 0 and initialize Ĉ(u) as the sample correlation.
Step 1. Compute the weights

w
(u)
t =

ν +N

ν + y
′
tĈ
−1
(u)yt

(25)

Step 2. Compute the scatter matrix

Σ̂(u+1) =
1

T

T∑
t=1

w
(u)
t yty

′

t (26)

Step 3. Extract the correlation from the following relation

Σ̂(u+1) = diag(σ̂)Ĉ(u+1)diag(σ̂) (27)

Step 4. Check for convergence

d =

√
1

N
tr(Ĉ(u+1) − Ĉ(u))2 (28)
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If d is less than desired threshold, stop. Otherwise, increment u = u+ 1 and continue
from step 1.

The estimate Ĉ(ν) is a function of degrees of freedom ν that we assumed in the begin-
ning. To estimate ν, loop over candidates (say 2 to 50) to find the value maximizing
the log-likelihood

1

T

T∑
t=1

ln(fν,0,C(yt)) (29)

where fν,µ,Σ is the pdf of the multivariate t distribution:

fν,µ,Σ(x) =
1

|Σ|
gN,ν((x− µ)

′
Σ−1(x− µ)) (30)

where gN,ν is the generator

gN,ν(z) =
Γ(ν+N

2
)

Γ(ν
2
)(νπ)

N
2

(1 +
z

ν
)−

ν+N
2 (31)

Further, Meucci (2008) [3] imposes structure on the correlation matrix, because in
many financial applications the number of simulations T is many times larger than
number of risk factors N . The routine above is supplemented by several steps:

Step 2b. Perform the principal component decomposition of the estimated correlation:

Σ̂(u+1) = ÊΛ̂Ê
′

(32)

Step 2c. Redefine the eigenvalues by setting the trailing ones to equal value λ > 0,
assuming isotropy:

Λ̂ = diag(λ̂1, . . . , λ̂K , λ, . . . , λ) (33)

where

λ =
1

N −K + 1

N∑
k=K+1

λ̂k (34)

Step2d. Recompose the scatter matrix:

Σ̂(u+1) = ÊΛ̂Ê
′

(35)
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4 Subjective views

The optimal portfolio composition depends greatly on the values of the input param-
eters. In general, it is a well known issue in asset allocation that small changes in
inputs can lead to completely different optimal weights. There are two main streams
of research dedicated to this issue: (a) robust optimization and (b) methods involving
subjective views of analysts. In the latter family the first widely famous and still num-
ber one in popularity with practitioners is the Black-Litterman model (1992). In this
section I explore how subjective view techniques may benefit to loan portfolio opti-
mization. I start with briefly explaining Black-Litterman and why it does not apply,
move through the Copula Opinion Pooling which applies but is too weak, and finally
describe in detail the Entropy Pooling.

4.1 Black-Litterman

I describe the Black-Litterman model following Walters (2009) [8].

The Black-Litterman model makes two significant contributions to the problem of as-
set allocation. First, it provides an intuitive prior, the CAPM equilibrium market port-
folio, as a starting point for the estimation of asset returns. Second, it shows a clear
way to specify investor’s views and to blend investor’s views with the market implied
prior information. The investor’s views can span partial, arbitrary or overlapping set
of assets. The model estimates expected excess returns and covariances which can
be used as an input to an optimizer. When used as a part of an asset allocation pro-
cess, the Black-Litterman model leads to more stable and more diversified portfolios
than plain mean-variance optimization. I seek the same advantages for loan portfolio
optimization.

The Black-Litterman model has several representations and a few more interpretations.
I start with the most usual and then proceed to the one used by Meucci (2006) [22].

The reference model for Black-Litterman expected return is

E(r) ∼ N(π,Σr) (36)

where r are the returns, π is the mean of the mean return (µ, where r ∼ N(µ,Σ)),
which itself is a random variable. µ ∼ N(π,Σπ). π = µ+ ε, ε ∼ N(0,Σπ).

The formula to calculate Σr is

Σr = Σ− Σπ (37)
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We need Σπ. Black and Litterman (1992) made the simplifying assumption that the
structure of the covariance matrix is proportional to the covariance of returns Σ:

Σπ = τΣ (38)

Then, the prior distribution is

P (returns) ∼ N(Π, τΣ) (39)

And Π here are the CAPM excess equilibrium returns (details of derivation can be
found in Walters(2009) [8]). I also discuss the starting point of returns in more detail
in section 5.

The investor’s views are defined as a conditional distribution. First, we require that the
views are independent - it makes the views covariance matrix diagonal. Second, we
require the views to be fully invested - weights summing up to 1 for absolute view and
0 for relative view. We represent the views by 3 matrices:

1. P , a k × n matrix with the weights of each asset within each view.

2. Q, a k × 1 matrix of returns of each view.

3. Ω, a k × k matrix of view covariances.

Given this specification of the views, we formulate the conditional distribution mean
and variance in view space:

P (views|returns) ∼ N(Q,Ω) (40)

and in asset space

P (views|returns) ∼ N(P−1Q, [P TΩ−1P ]−1) (41)

With the help of an intervention from Theil’s mixed estimation theory (1974) or Bayes
theory (1763) we obtain that

P (returns|views) ∼ N([(τΣ)−1Π+P TΣ−1Q][(τΣ)−1Π+P TΣ−1P ]−1, [(τΣ)−1+P TΩ−1P ]−1)
(42)

It is up to investor to calculate Ω, and it is here that various interpretations start to
differ. He and Litterman (2000) sets Ω = diag(P (τΣ)P T ). Idzorek (2004) uses
confidence of the views. Meucci(2006) [22] skips the diagonalization and sets Ω =
1
c
PΣP T ), c representing overall confidence in the views, and the obvious choice for

the relationship between c and τ is c = τ−1.
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4.2 Beyond Black-Litterman: Copula Opinion Pooling

With this specification of τ and Ω, Black and Litterman’s posterior can be a little
simplified, namely τ gets eliminated due to proportionality, but in essence stays as
above. Meucci (2006) [2] gives an alternative method of mixing the prior with the
conditional views distribution:

Ṽ ∼ f̃ cX = (1− c)fX + cf̃X (43)

This idea is best revealed in the picture of cdf’s (Figure 4).

Figure 4: Copula Opinion Pooling: cdf of prior, view, and posterior (source: Meucci
(2006) [2])

This mixing of cdf’s is quite intuitive, at least more so than Black-Litterman, and
this is the essence of Meucci’s Copula Opinion Pooling method. If the conditional
distribution of the views is normal too, resulting posterior is very little different from
Black-Litterman posterior.

But besides intuitiveness, the other advantage of the method is that it does not require
neither views nor prior distributions to be normal. Similar to the Black-Litterman
retaining the covariance between prior and posterior return distribution (with changes,
dependent on τ ), COP retains the codependence through copula - this is the reason
why a copula is in the name.

COP must implemented numerically. We start with a prior market panel M, multiply
it by the views, extract the empirical copula, get the empirical cdfs, combine with view
cdfs to obtain posterior cdfs, and finally construct a posterior market panel M̃ from the
empirical copula and the posterior cdfs.

Having two panels M and M̃ we can easily compare the parameters of the distribu-
tions and observe the effects of the views. The covariance matrix between prior and
posterior changes in different ways, comparing to the Black-Litterman model. For the
assets where no views are expressed, covariances remain unchanged. When a view is
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expressed, if the view distribution is tighter around its mean than the prior, the pos-
terior covariances are lower. Otherwise, higher. The Black-Litterman model in the
same situation changes the whole matrix, whether or not the view was expressed. This
aspect adds to COP’s intuitiveness.

Now that we see that the normality is not required, we could try applying COP for
the default distribution. And it works indeed, only, unfortunately, reveals very little
power. The mixing of continuous distributions is not straightforward. It is only pos-
sible to implement analytically if both distributions are normal, as demonstrated by
Black and Litterman. If the distributions are not normal, numerical methods such as
Copula Opinion Pooling are employed. But mixing of discrete distributions, like de-
fault distributions, does not require any effort. Say the PD (the mean of the prior) is
2%, and we have the view that the PD will be 5% instead, with confidence 20%. We
immediately calculate that the PD of the posterior is 2.6% (from the mixing formula),
hence the simulation from the posterior is not at all harder than the simulation from
the prior. Figure 5 shows the mixing of discrete default distributions graphically.

Figure 5: Blending of discrete default distribution prior and the view into the posterior

4.3 Entropy Pooling

Much more interesting task would be to specify views on the dependence between
defaults, and we can do that because views on nonlinear properties of the distribution
is exactly where Meucci ventured next.

Meucci (2008) [1] fully generalizes the COP and other techniques of scenario analysis.
The assumption of normality of the prior distribution (risk factors) or the views is
no longer present. Also, views can be formulated about any aspect of the prior, not
only means: we may have an opinion or restriction on ranking, volatility, correlation,
other features of codependence and so on. The input is the simulation of the market:
J × K matrix of J simulations and K risk factors, and fully general views, or stress
tests, on the market, expressed as constraints. The output is a distribution, which we
call ”posterior”, expressed as a vector of probabilities, together with the input market
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matrix. The posterior can be used for risk management and portfolio optimization
purposes.

The idea of the method is to interpret the views as statements that distort the prior
distribution by changing the probabilities of relevant market outcome scenarios. For
example, the returns of the portfolio according to formula (14) change if pj change.
The CVaR of the portfolio changes with respect to the probabilities as per formula (9).
If we have a simple average over all scenarios in the formula, we can always rewrite
it as a probability weighted average, where the probabilities are equal (=1/number of
scenarios). The direction of the distortion with respect to the views is such that the
least possible amount of spurious structure is induced. The natural index of structure
in a distribution is the entropy. Therefore we define the posterior as such a distribution
which minimizes the entropy relative to the prior.

Entropy Pooling works with non-normal markets, making it useful for a default distri-
bution. The method handles views on non-linear combinations of risk factors which
affect returns directly or indirectly through codependence, also making it particularly
useful for default distribution. Specifically we can investigate what happens when the
dependence between defaults increases, throughout the whole distribution or just the
low end of it. We will see how increased default tendency to occur together affects
banks’ profit and loss.

Another property of Entropy Pooling is the reusing of just one market simulation to
simulate both prior and posterior. Probabilities change, but both sets of probabilities
affect the same simulated market. Thus the most complex securities can be handled
without costly repricing.

Now we describe the method in detail, following Meucci(2008) [1].

We consider a book defined by a N-dimensional vector of risk factors X. This frame-
work is completely general, for instance, in a book of options X can represent the
changes in the underlyings and the implied volatilities. Also, X can represent a set
of risk factors behind a computationally intensive full Monte-Carlo pricing function,
such as interest rate values at different monitoring times for mortgage derivatives. In
any case, X can be, but is by no means restricted by, the returns of securities.

We assume a model for the joint distribution of risk factors:

X ∼ fX (44)

In the Black-Litterman model this is the prior distribution (there, multivariate normal).
More general, this is the model that risk managers use to perform their analysis, and
on the other hand, portfolio managers use to optimize portfolios. The reference model
can be estimated from historical analysis, or calibrated to current market observables.

The views. In the most general case, the user expresses the views on generic functions
of the market g1(X), . . . , gk(X). These functions constitute a K-dimensional random
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variable whose joint distribution is implied by the reference model (44):

V ≡ g(X) ∼ fV (45)

In the Black-Litterman model the functions are linear. As a special case, we can ex-
press the views on securities values, in which case V = X. We find the indicator
function to be helpful in dealing with the default distribution: it allows us to translate
the joint distribution of the times to default (which we can parametrize as discussed in
section 3.2) to the joint distribution of discrete default events within one year (which
we express the views on).

g(Xk) = 1(Xk < 1) (46)

where 1(z) is the indicator function.

The views are statements on the distribution, possibly conflicting with the prior dis-
tribution. The most complete possible view specification is the complete distribution,
however we usually would choose a certain aspect of it. For instance, a view on the
mean return would be expressed as

m̃(Vk) = mk (47)

where mk is the subjective opinion of the analyst what the average of the risk fac-
tor could or should be. Views are constraints on the posterior distribution, expressed
through the probabilities of the scenarios.

The posterior. The posterior distribution should satisfy the views without adding ad-
ditional structure and should be as close as possible to the reference model (44). The
relative entropy Υ(f̃X, fX) between a generic distribution f̃X and a reference distribu-
tion fX is a natural measure of the amount of structure in f̃X:

Υ(f̃X, fX) =

∫
f̃X(x)

[
ln(f̃X)− ln(fX)

]
dx (48)

Furthermore, it also measures how distorted f̃X is with respect to fX. If two distribu-
tions coincide, the relative entropy is zero. Therefore, we define the posterior market
distribution as

f̃X ≡ argminf∈V (Υ(f̃X, fX)) (49)
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Finally, the model can encompass more than one view. We combine views and take
into account all analysts’ confidence if we express the opinion-pooled posterior distri-
bution the same way we did in Copula Opinion Pooling:

f̃ cX = c0fX +
S∑
s=1

csf̃
(s)
X (50)

where c0 is the belief in the prior and c1 . . . cs, ci ∈ [0; 1], i = 0, . . . , s - confidence
levels/significance weights in the views, summing up to 1. In the extreme case where
the confidence is total, the full confidence posterior is recovered; on the other hand, in
the absence of confidence, the reference risk model is recovered.

Apart for the special case of Black-Litterman (assuming normality of both the prior and
the views, and specifying the views on means and covariances of a linear combination
of assets), Entropy Pooling cannot be implemented analytically. Meucci (2008) [1]
presents a computationally efficient numerical implementation of the method in full
generality.

First, we represent the reference distribution of the market X in terms of a J×N panel
M of simulations: j-th row of M represents a scenario of joint realizations of the N
variables X, and n-th column represents marginal distribution of n-th risk factor Xn.
With the scenarios we associate a vector of probabilities p, which typically, but not
necessarily, equal to 1/J .

The user expresses views on generic non-linear functions on the market, resulting in a
J ×K panel V:

Vjk = gk(X1, . . . , Xn) (51)

To represent the posterior we use the same scenarios with different probabilities p̃.
Then we write down the views as constraints on the new probabilities:

Ap̃ ≤ b (52)

where A and b are simple expressions on panel V. For instance, in the view on means
(47) A = V′ and b = (m1, . . . ,mk) .

Relative entropy becomes its discrete counterpart:

Υ(p̃,p) =
J∑
j=1

|ln(p̃j)− ln(pj)| (53)

Therefore, the full-confidence posterior is represented by

p̃ = argminAp̃≤b(Υ(p̃,p)) (54)
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and the opinion-pooled, confidence-weighted posterior as

p̃c = (1− c)p + cp̃ (55)

Proofs and details can be found in Meucci (2008) [1]. Especially relevant topics are:

1. Multiple users, multiple views - how to combine all confidence parameters to
form a posterior.

2. Numerical entropy minimization.

3. Examples of views about different aspects of the distribution.

For our purposes three specifications of the views will be relevant. One is the view
on mean (47). Here, the Entropy Pooling entropy minimization algorithm returns the
set of p̃j consistent with the constraint in such a way that it is possible to replicate by
tweaking the parameters of the original times to default distribution and simulating it
again, because only the marginals are affected. The change in the mean of discrete
default events within one year translates directly into the change in the hazard rate,
which in turn is a parameter of the marginal time to default distribution. Thus we can
trace back what change must be introduced into the distribution of the marginal time
to default in order to achieve the desired change in the one year PD, and simulate a
new panel of the times to default. Still, the advantage of Entropy Pooling remains the
possibility to express all the views at once without potentially costly resimulation.

Next is the view on correlation. We impose

J∑
j=1

p̃jVjkVjl = m̂km̂l + σ̂kσ̂lZ̃kl (56)

where m̂k is the sample mean and σ̂k is the sample standard deviation of the k-th
column of the panel V. Matrix Z̃ is pre-defined, for example as the homogenous
shrinkage

Z̃ = ρ1I + ρ2Z + ρ311′ (57)

where Z is the correlation matrix of V, 0 ≤ ρ1, ρ2, ρ3 ≤ 1, ρ1 + ρ2 + ρ3 = 1, I is the
identity matrix and 1 is a vector of ones.

The view on correlation between discrete default events, unlike the views on means,
cannot be translated straightforwardly into a change in the correlation matrix as a cop-
ula parameter of the joint times to default distribution. The p̃j are not trivial.

Finally, I write down the specification of the view on tail codependence. First we
extract the copula of the panel V: C̃V (u). In case V = X, we most likely have the
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copula already as a by-product of simulations to obtain X. For example, when X is the
joint distribution of the times to default, we generate it by first simulating univariates
from the copula with given parameters and then applying the inverse marginals on the
simulated univariates. Thus we know the copula (in the form of a panel of univariates
simulated from it) before we have X. If V does not coincide with X, as in our case
where X is the joint times to default and V are the joint discrete default events, we
extract the empirical copula as in Meucci (2006) [2] from V by converting the mem-
bers of the panel V into their respective normalized ranks in the respective columns.
In both cases we obtain a panel U, every row of which represents a simulation from
the copula of V.

Still we need to know the copula function C̃V (u) itself, not only the simulations. For
example, when X is the joint distribution of the times to default where we have as-
sumed the t-copula for the dependence structure, the copula function is the multivariate
t cdf:

CR,ν = t(t−1(u1), . . . , t
−1(un)) (58)

thus for every row of the simulation panel we obtain

Cj
R,ν = t(t−1(uj1), . . . , t

−1(ujn)) (59)

In case of the empirical copula - when V 6= X - we have

Cj
emp(u) = [number of rows that lie jointly below u]/J (60)

when the scenario probabilities are equal, or

Cj
emp(u) =

J∑
j=1

pj1[row lies jointly below u] (61)

where pj are the probabilities of scenarios and the rows that lie jointly below u are
∀v : v1 ≤ u1, . . . , vn ≤ un and 1[z] is the indicator function. If we denote by IU the
set of scenarios in U that lie jointly below u, we can write the empirical copula (61)
as

Cj
emp(u) =

∑
j∈IU

p̃j (62)

Stress-testing the tail codependence means picking out the rows in the tail end of the
copula where bad events happen together and increasing their occurence probabilities:

C̃V (u) ≤ C̃ (63)
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where C̃ can be set exogenously. A convenient specification yields

C̃ = κCV (u) (64)

where CV (u) is the reference copula induced by V and κ is a stress factor, for instance,
2.

This translates into

∑
j∈IU

p̃j ≤ κ
∑
j∈IU

pj (65)

Practically, we choose the cutoff level CV (u), find the corresponding set IU as the
rows that have smaller CV (u) than this predefined level, and impose the sum of the
posterior probabilities of the scenarios in IU to be, say, two times higher than the sum
of the prior probabilities of the scenarios in IU.

Indeed, this procedure is not different from simply including the bad default scenarios
two times in the simulation panel. The entropy minimization algorithm with the con-
straint (65) on p̃j returns a set of p̃j exactly like this: for the bad scenarios all p̃j are
equal and the value is κpj , and for the rest of the scenarios, p̃j are equal too and scaled
so that the sum of all p̃j is 1. But again, the advantage of Entropy Pooling remains the
possibility to express all the views at once with assigned confidences within a common
framework.

5 Market quilibrium returns and inverse optimization

Although I have mentioned in the beginning of the section 4 that the Black-Litterman
model brought two significant contributions to asset allocation theory, the entire sec-
tion concentrated on the second contribution, the views. This section will try to explore
the first contribution, the intuitive prior, in the context of the mean-CVaR optimization
instead of the mean-variance optimization.

Here we start with the Markowitz mean-variance framework and derive the equations
for ’reverse optimization’ starting from the quadratic utility function.

U = wTΠ− λ

2
wTΣw (66)

where U is the investors utility which is the function we maximize during portfolio
optimization. w is the vector of weights, Π - excess returns, Σ - the covariance matrix
of the assets and λ - the risk aversion parameter of the market. U is a concave function
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thus it has single global maximum. We find it by taking the first derivative by w of U
and setting it to 0:

dU

dw
= Π− λΣw = 0 (67)

Solving for the excess returns Π we get

Π = λΣw (68)

If we feed the market capitalization weights wcap into (68) and assume that the market
is in equilibrium, we obtain equilibrium excess returns. Solving back for weights:

w = (λΣ)−1Π (69)

If we use historical equity returns in (69) rather than the equilibrium excess returns,
the results will be very sensitive to the changes in Π. With the Black-Litterman model,
the weight vector is less sensitive to the reverse optimized Π vector. The stability of
the optimization process is one of the strengths of the model.

If we change the risk measure from variance to CVaR, we can try to recover the re-
turns implied by market equilibrium in return-CVaR sense. Or, could mean-variance
optimum implied market equilibrium returns still be used as a starting point? Most
likely not, as there is some research pointing out that mean-variance (M-V) and mean-
CVaR optimal portfolios can be quite different. Fabozzi (2007) [20] notes that in re-
turn/CVaR coordinates, as expected, then mean-CVaR efficient frontier lies above the
mean-variance efficient frontier. With the inclusion of derivative assets such as options
and credit derivatives, the frontiers are no longer close to each other. Agarwal and Naik
(2004) [19] find that ”tail risk is significantly underestimated using the M-V approach,
the range of underestimation being 12% to 54% for confidence level ranging from 90%
to 99%”. The reason for underestimation is the high non-normality of return distribu-
tions of analyzed portfolios. When distribution of returns is normal, mean-variance
and mean-CVaR efficient frontiers actually match (Fabozzi (2007) [20]).

Since the tractable analytical expressions of M-V optimization are convenient, a lot of
research goes in the direction of dealing with non-normality in the form of including
higher moments of the distribution into optimization objective. In particular, coskew-
ness and cokurtosis, to account for skewness of distributions, which is usually not
favoured by agents.

Another stream of research expands the family of returns distribution having analytical
expressions to stable distributions. Fabozzi et.al. (2007) [12] presents the following
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formula for the CVaR equilibrium returns under the assumption that the returns distri-
bution is stable:

Π =
λ

2
(CVaRβ

Σw√
wTΣw

− E(r)) (70)

where E(r) is the expected return. λ is the market risk aversion parameter. We calcu-
late λ as follows:

λ =
wT r√
wTΣw

(71)

The α-stable distributions describe a general class of distribution functions. The α-
stable distribution is identified by four parameters: the index of stability α ∈ (0, 2]
which is the parameter of the kurtosis, the skewness parameter β ∈ [−1, 1]; µ ∈ R,
and γ ∈ R+ which are, respectively, the location and the dispersion parameter. The
stable distribution is normal, when α = 2 and it is leptokurtotic when α < 2. A
positive skewness (β > 0) identifies distributions with right fat tails, while a negative
skewness (β < 0) typically characterizes distributions with left fat tails. Therefore,
the stable density functions synthesize the distributional forms empirically observed
in the real data. Unfortunately the density of stable distributions cannot be express in
closed form. Thus, in order to value the density function, it is necessary to invert the
characteristic function.

It is hard to say whether the assumption of a stable distribution is still too strong for
our loan returns distribution, and more likely than not it is too strong. It remains to be
answered what exactly is the effect of the distribution assumption; perhaps this result
could still be partially utilized. Applying the formula (70) regardless of the possibly
wrong assumption produces strange negative returns Π. The returns are still strange
if in the formula (70) the expected returns are not deducted. Table 4 summarizes the
results on the 3 obligor example from the section 2.4.

wopt r λ Π Π∗ ropt
0.4303 9.00% 5.5 22.81% 5.88% 9.00%
0.4302 5.00% 8.88% -2.13% 5.00%
0.1396 4.00% 3.72% -5.05% 5.00%

Table 4: Market equilibrium returns according to (70). wopt are the true optimum
weights attained with returns r. λ as in (71), Π are returns from the formula (70) and
Π∗ are returns from the formula (70) if E(r) are not deducted. ropt is the numerical
result from the appendix B.

As wopt is the true optimum attained with returns r, we would expect the Π to be close
to the original r, but this is not the case.
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The final option is to use numerical methods, and this is the way I go. Instead of
the analytical expression (68) implied by the mean-variance equilibrium (which is the
same thing as to say that our utility function is quadratic, or that the returns distribution
is normal, or that the higher moments are irrelevant in the sense that odd moments
are 0 and even moments are subordinated by a second moment), I try to obtain Π,
knowing w, assuming that the market is in the mean-CVaR equilibrium. I do not
assume normality or a certain shape of the utility function.

Thus we need to investigate what sort of problem is to find returns, given which a
known vector of weights represents the market equilibrium. The weights should be
optimal across all other weights. It is tempting to simply change the decision variables
and exchange the objective function with the constraints in the original problem: in-
stead of finding the optimal weights across all other weights when returns are known,
look for the optimal returns across all returns when the weights are known. Obviously
this transposition is not answering the core question: the optimal returns across all
returns are definitely the 100% returns, or whatever the maximum limit for the returns
we set, because objective would be to maximize the return. Even if we would write
down the alternative formulation and minimize risk, given fixed level of returns, the
optimal returns would be the maximum allowed: there is not much freedom to change
the risk when weights are fixed. The problem of finding the objective function with
which the given weights vector is the optimum in weights space belongs to a class of
problems referred to as inverse optimization.

The chapter ”Inverse Optimization” in the appendix B tackles this issue. We see that
the problem is not insurmountable but usable results remain beyond the reach of this
paper. Here is the list of problematic issues.

1. It is necessary to separate risk from returns in the problem definition. If we put
returns in the optimization objective, as in (13), defined by the market outcome
scenarios M, we cannot have return impacting also the optimization constraints,
i.e. fixed risk. We can only fix the risk in the form of ”pure loss CVaR”: a matrix
Mp, where in case of a default event we find -1 and in case of no default we find
0 or another fixed value instead of a loan margin.

2. We start with given returns r0 and chosen starting weights (say, market capi-
talization weights) x0. If the point is infeasible with respect to (13), we find a
nearest feasible x1. Then we solve the dual problem to find ropt, the market equi-
librium returns. The goodness (acceptance) criteria for ropt is whether (13) with
ropt instead of r0 optimizes to x∗, which is sufficiently close to x0(x1). And there
is clearly some problem with my results as with reasonably sized problem the
criteria does not always hold well, although theoretically it should. The problem
is linear and on small data sizes the theory seems to work well. I am not able to
find the error.
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3. In addition to this problem, there are two interesting aspects of the returns sen-
sitivity in this area. First, the sensitivity of optimal returns to the initial returns
provided. We set the distance between optimum and provided returns to be min-
imal. This restriction places a very high importance on what returns we provide
as a benchmark, because the returned returns will not deviate much. They will
deviate as little as possible, given the restraint that weights will still be optimal.
Perhaps, if returns provided are historical, this behaviour is desirable.

4. Second, we move the dual solution returns by an ε in order to get into the inside
of the area where the primal problem has unique optimum. It would be interest-
ing to know what exactly are the limits of the movement of ropt so that the same
optimum is returned. In a sense an answer to this problem would help answering
the first as we would see how far ropt can deviate from r0.

The first issue is methodological and not critical. All three remaining issues in the
inverse optimization process carry more technical character and require more exper-
tise in linear programming than is relevant to the overall scope of the paper, hence
unfortunately I will defer them to the further research.

We have shown that given sensible initial returns, we can find the returns as close as
possible to the initial, with which the ”market capitalization” weights are optimal in
the mean-CVaR sense, as long as the market capitalization weights satisfy the CVaR
constraint initially. If they do not satisfy the CVaR constraint, we move the weights
towards the CVaR satisfaction. For every pair of initial weights and returns, then, we
discover a closest pair of weights and returns which make mean-CVaR equilibrium.

However, it is feasible and relevant to start analyzing what could be the effects of the
subjective views on optimization even if we take as prior given returns instead of the
market equilibrium returns. I am going to investigate the significance of the starting
point of returns too, in order to see whether the optimal portfolio in the mean-CVaR
framework is as sensitive to changes in returns as the mean-variance optimal portfolio.

6 Data

I illustrate the use of subjective views in loan portfolio optimization. I first optimize
CVaR, then stress test the distribution in 3 ways, reoptimize CVaR after each stress
test and compare the differences. As inputs I take the data that banks usually have
collected for various other purposes. It means that the methods described in this thesis
do not require a specific data collection or estimation effort and therefore are directly
applicable in practice.

1. Probabilities of default(PD). We assume that every obligor has its one year PD
assigned, either through rating, or by internal models. The Basel II accord spec-
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ifies that the internally specified PD should be average over all phases of econ-
omy.

2. Loss given default (LGD), equal to 100% minus the recovery rate. Internal as-
sessment or, for example, Basel IRBF specified, which then are downturn LGD.

3. Historical equity returns. We will use historical equity returns to determine the
default correlation matrix (meaning correlation between the times to default), as
described in section 3.2. In practical situations a time series of returns of each
individual obligor would usually be condensed into a time series of returns on
risk factors, most likely the average returns of sectors of economy, due to data
unavailability and practical difficulties of working with too big datasets.

4. Loan margins.

We have a portfolio of 10 randomly selected large multinational corporate customers
with known credit ratings and historical equity returns. Thus the obligors and their
risk profiles are real but the lender, the portfolio and the loan margins are fictional. I
simulate the loan margins to be roughly inversely proportional to PDs, ensuring a good
trade-off between risk and return.

The source of the ratings is Standard & Poors(http://www.standardandpoors.com),
date: August 20, 2009. Associated PDs are of year 2008, taken from S&P report,
publicly available on the web on http://www.standardandpoors.com. Note that 2008
was a crisis year with several large highly rated companies defaulting, so PDs of 2008
are greater than average. It also happened that a lower rating class (BBB+) had less
defaults than a higher rating class (A-). The Loss Given Default for every obligor is
100%, for simplicity. Table 5 displays the obligors and their ratings.

Nr Name DScode Country Industry S&P
1 BHP BILLITON 912398 United Kingdom Basic Materials A+
2 BRITISH AMERICAN TOBACCO 905478 United Kingdom Consumer Goods BBB+
3 DIAGEO 275791 United Kingdom Consumer Goods A-
4 ENI 923306 Italy Oil & Gas AA-
5 HSBC HDG. 531865 United Kingdom Financials AA
6 IBERDROLA 929420 Spain Utilities A-
7 NESTLE ’R’ 870533 Switzerland Consumer Goods AA
8 ROCHE HOLDINGS GSH. 866056 Switzerland Health Care AA-
9 TELEFONICA 923374 Spain Telecommunications A-
10 TESCO 929534 United Kingdom Consumer Services A-

Table 5: Obligors and ratings

We have the time series of weekly log equity returns of this portfolio for the period 26
October 2001 - 17 October 2008 (364 observations). We assume a joint multivariate
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t distribution for this dataset and extract the t-copula parameters: degrees of freedom
and correlation matrix, as outlined in section 3.2. The estimated correlation matrix is
given in table 6.

1.0000 0.1056 0.2087 0.4258 0.3415 0.3288 0.2393 0.1800 0.3414 0.2031
0.1056 1.0000 0.3974 0.1893 0.2968 0.2900 0.3257 0.1938 0.2109 0.3629
0.2087 0.3974 1.0000 0.2744 0.3548 0.3666 0.3555 0.1984 0.2628 0.4028
0.4258 0.1893 0.2744 1.0000 0.3962 0.3439 0.3248 0.2654 0.3875 0.2684
0.3415 0.2968 0.3548 0.3962 1.0000 0.3498 0.4073 0.3382 0.4067 0.3443
0.3288 0.2900 0.3666 0.3439 0.3498 1.0000 0.3010 0.1634 0.2849 0.3354
0.2393 0.3257 0.3555 0.3248 0.4073 0.3010 1.0000 0.3579 0.3755 0.3460
0.1800 0.1938 0.1984 0.2654 0.3382 0.1634 0.3579 1.0000 0.3598 0.2145
0.3414 0.2109 0.2628 0.3875 0.4067 0.2849 0.3755 0.3598 1.0000 0.2677
0.2031 0.3629 0.4028 0.2684 0.3443 0.3354 0.3460 0.2145 0.2677 1.0000

Table 6: The original correlation matrix (t-copula parameter C) extracted from the
historical equity returns time series

The t-copula parameter degrees of freedom ν is estimated as 10.

I simulate 100 000 time to default scenarios using the t-copula with parameters C and
ν and exponential marginals for the times to default with hazard rate parameter h,
derived from the PDs, according to this procedure:

1. Get multivariate t variable with df ν, mean 0 and correlation C:

(a) find A = Cholesky(C)

(b) generate n standard normals z1, . . . , zn ∼ N(0, 1)

(c) y = Az

(d) generate s, independent of z: s ∼ χ2
ν

(e) x =
√
ν√
s
y

(by multiplying by standard deviation and adding means we would get the orig-
inal stock returns back - if assumption on the original distribution holds. It is a
good check, especially for covariances)

2. Transform to univariates: u = tν(x), where tν is cdf of t distribution with ν df.
The resultant multivariate vector u is what is called a simulation from a copula.
It retains the dependence structure from the equity returns.

3. Transform u to exponential marginals of times to default: T = F−1(u), where
F is the exponential distribution function of time to default:

F (t) = 1− e−ht (72)
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(→ T = −ln(1 − u)/h) assuming constant hazard rates h. Hazard rate itself is
calculated from PD, as one year PD is F (1): h = −ln(1− PD).

Default events within one year are the cases when the time to default is less than 1. We
check afterwards whether the average of default events matches back to the original
input PDs.

The table 7 summarizes the information about the risk/return profile of the obligors.

Nr PD Margin h(×10−2) T̄ P̂D r̄ Profile
1 0.31% 5.96% 0.3105 321.5 0.309% 5.63% L
2 0.18% 5.16% 0.1802 555.2 0.158% 5.00% L
3 0.58% 6.90% 0.5817 171.9 0.554% 6.30% H
4 0.40% 5.03% 0.4008 248.5 0.388% 4.62% L
5 0.43% 6.31% 0.4309 231.9 0.432% 5.85% L
6 0.58% 7.57% 0.5817 172.2 0.539% 6.99% H
7 0.43% 7.87% 0.4309 231.6 0.428% 7.41% H
8 0.40% 5.70% 0.4008 249.6 0.428% 5.24% L
9 0.58% 7.05% 0.5817 171.2 0.595% 6.41% H
10 0.58% 7.73% 0.5817 172.0 0.557% 7.13% H

Table 7: Risk and return data of the obligors. The first column is the PD corresponding
to the rating. The loan margins are generated inversely proportional to PD (high risk-
high return) plus a random factor. T̄ is the average time to default. P̂D is the empirical
one year PD, as the average of the default events (where T < 1). r̄ is the risk adjusted
loan returns.

Based on this information obligors fall into categories: High(H) or Low(L) risk profile.
Obligor 7 stands out as having the most favourable risk/return ratio - the return is
highest of all obligors, and the PD is lower than some; and obligor 4 as the most
unfavourable.

The panel of simulations of the times to default is translated to the panel of discrete
default events within one year by applying the indicator function (1 if the time to
default is less than 1; 0 otherwise). The empirical correlation matrix of the panel of
discrete default events within one year is given in the table 8.

The mean time to default in the stressed posterior distribution is calculated according
to the formula

T̄i =
J∑
j=1

p̃jTij (73)

where p̃j are the posterior probabilities and Tij are the elements of the T - J×K panel
of the simulations of the times to default.
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1.000 0.034 0.047 0.121 0.084 0.087 0.035 0.046 0.115 0.054
0.034 1.000 0.112 0.066 0.090 0.073 0.067 0.063 0.062 0.065
0.047 0.112 1.000 0.091 0.112 0.088 0.100 0.053 0.064 0.121
0.121 0.066 0.091 1.000 0.119 0.085 0.092 0.067 0.093 0.077
0.084 0.090 0.112 0.119 1.000 0.093 0.131 0.110 0.132 0.102
0.087 0.073 0.088 0.085 0.093 1.000 0.073 0.047 0.096 0.092
0.035 0.067 0.100 0.092 0.131 0.073 1.000 0.127 0.128 0.098
0.046 0.063 0.053 0.067 0.110 0.047 0.127 1.000 0.116 0.073
0.115 0.062 0.064 0.093 0.132 0.096 0.128 0.116 1.000 0.066
0.054 0.065 0.121 0.077 0.102 0.092 0.098 0.073 0.066 1.000

Table 8: The empirical correlation matrix between discrete defaults

The posterior PDs are calculated according to the formula

¯PDi =
J∑
j=1

p̃jDij (74)

where Dij are the elements of D - J ×K panel of the default events within one year
(1 if time to default T is less than 1 and 0 otherwise).

Another statistics that defines the posterior joint default distribution is the count of
scenarios where at least x obligors default together. In the prior distribution we can
simply count the events, and in posterior the number of defaults is a posterior proba-
bility weighted average of scenarios where default number is greater than x (of course
one can always also express a simple count as an average weighted by equal probabil-
ities):

D̄ = J

J∑
j=1

p̃j1[
K∑
i=1

Dij ≥ x] (75)

where 1[z] is the indicator function.

7 Results

7.1 Mean-CVaR optimal portfolio before stress testing

The default event panel (multiplied by minus LGD) is the loss part of the loan return
distribution. The profit part of the loan return distribution consists of the loan margins
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when default does not occur - i.e. returns before they are risk adjusted. The complete
market outcome matrix to be used for CVaR optimization looks in essence like this:

0.09 −1 0.04 . . .
0.09 0.05 0.04 . . .
0.09 0.05 −1 . . .
. . . . . . . . . . . .

0.09 0.05 0.04 . . .
−1 −1 −1 . . .

 (76)

We start with the equal weights (=1/10) portfolio. The mean risk adjusted return of
this portfolio is 6.06%.

Typically, the 99% quantile of VaR and CVaR is used and reported, based on habit
and convenience. In our 100 000 simulation panel 1% of the worst outcomes is 1 000
scenarios, and with these low default rates as we have (mean: 0.447%), 1 000 cases
would contain a very significant part of scenarios where anybody defaults. If all the
cases where anybody defaults would fall under the CVaR quantile, not much sense is
there in stressing the default correlation. If defaults are even more clumped together,
they would all still fall under the threshold, and only the marginal default rate defines
the weight.

Table 9 pictures how many scenarios have at least x obligors defaulting together.

≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8
3252 740 245 94 38 14 4 1

Table 9: Joint default events: how many scenarios have at least x obligors defaulting
together.

It makes better sense to work with the 99.9% quantile than the 99%, then. The 99.9%
quantile is also the stress level of Basel II accord formulas for Risk Weighted Assets
in Internal Ratings Based approach.

We set the desired returns to the same level as the return of the equal weights portfolio
(6.06%) and optimize 99.9% CVaR (with 99% and 95% CVaR optimum weights given
for comparison) as setup in (11). Table 10 presents optimal portfolios.

Q 1 2 3 4 5 6 7 8 9 10
99.9% 0.1703 0.1716 0.0507 0.0516 0.0509 0.1174 0.1171 0.1025 0.0506 0.1173

99% 0.1061 0.2641 0.1052 0 0 0.1045 0.1042 0.1064 0.1050 0.1044
95% 0.0608 0.3513 0.0603 0 0.0606 0.0599 0.2262 0.0609 0.0602 0.0598

Table 10: Mean-CVaR optimal portfolios before the stress testing: 99.9%, 99% and
95% quantiles.

41



99.9% CVaR optimum portfolio looks normal, favoring obligors with lower risk (1 and
2). 95% CVaR, with all defaults under the threshold, chooses obligor 2 predominantly
as the most invested, because it has the lowest PD overall. Obligor 7, with largest
return overall, is also favoured.

Next table 11 compares the CVaR and VaR of the equal weights and optimal portfolios.

Q VaR eq CVaR eq VaR opt CVaR opt
99.9% 0.2572 0.4158 0.2961 0.3889

99% 0.0425 0.1629 0.0476 0.1575
95% -0.0653 0.0283 -0.0644 0.0121

Table 11: CVaR and VaR of the equal weights and optimal portfolios.

We start with the panel of simulation of times to default and apply Entropy Pooling
procedure to obtain posterior probabilities. We express the views on the discrete de-
fault events within one year rather than the times to default, using the function g as in
(46) for the transition. Then we take the same market scenarios as prior and optimize
CVaR using new probabilities. We investigate three scenarios:

1. Increased mean (i.e, PD)

2. Increased default correlation throughout the whole distribution

3. Increased lower tail codependence

The views are already relative to the original distribution, thus we will apply 100%
confidence.

7.2 Stress testing: means

As the mean stress testing exercise we impose a view on PDs of 5 obligors. The view
states that PDs of obligors 1,2,3,5 and 10 is actually higher by 0.1 percentage point
than S&P rating class average (Table 12).

PD 1 2 3 4 5 6 7 8 9 10
Original 0.31 0.18 0.58 0.40 0.43 0.58 0.43 0.40 0.58 0.58
Stressed 0.41 0.28 0.68 0.40 0.53 0.58 0.43 0.40 0.58 0.68

Table 12: Stressed PDs

Although this kind of stress-testing does not require sophisticated methods of distribu-
tion blending, as discussed before, entropy pooling can accommodate it as well.

The stressed scenario probabilities (p̃j) reflect the stress test. When no default occurs
(100 000 - 3 252 = 96 478 cases) the probability is practically unchanged (9.97×10−6).
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The scenarios where others default but obligors 1,2,3,5 and 10 do not default get lower
p̃j’s, and the scenarios where obligors 1,2,3,5 and 10 default at least partly together,
get higher p̃j’s.

Table 13 shows the average times to default and average one year PD.

Obligor 1 2 3 4 5 6 7 8 9 10
T 321.2 554.3 171.6 248.2 231.5 172.0 231.3 249.5 171.1 171.7
PD 0.409% 0.258% 0.654% 0.388% 0.532% 0.539% 0.428% 0.428% 0.595% 0.657%

Table 13: Time to default (T) and one year PD in the mean stress test

The times to default change little, compared to the table 7, but PDs change accordingly
to the specification of the stress test. Table 14 pictures how many scenarios have at
least x obligors defaulting together in this stress test.

≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 Total
3507 867 306 124 54 22 7 2 0 4888

Table 14: Joint default events in the mean stress test: how many scenarios have at least
x obligors defaulting together.

The mean stress test increases overall default count, as expected.

The 99.9%-CVaR optimal portfolio is presented in the table 15.

1 2 3 4 5 6 7 8 9 10
0.1692 0.1513 0.0466 0.0758 0.0000 0.1203 0.1200 0.1224 0.0743 0.1201

Table 15: Mean-CVaR optimal portfolio after the mean stress test

For the discussion of the effects of the stress tests on the optimal portfolio the reader
is referred to the section 7.5.

7.3 Stress testing: correlation

Here I take the correlation matrix between discrete default events (table 8) and use the
homogenous shrinkage (56) with parameters in (57): ρ1 = 0.3, ρ2 = 0.5 , ρ3 =
0.2. The covariance matrix this way increase element-by-element by roughly the same
amount. The correlation matrix shown in table 16.

The stressed scenario probabilities (p̃j) sensibly reflect the stress test again. When no
default occurs (100 000 - 3 252 = 96 478 cases) the probability is practically unchanged
(1.01 × 10−5). The default scenarios get p̃j’s dependent on the number of obligors
defaulting together: the more obligors default together, the higher the p̃, but p̃j is
smaller than the neutral (1.01×10−5) when there is just 1 default event in the scenario.
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1.000 0.217 0.223 0.261 0.242 0.243 0.217 0.223 0.258 0.227
0.217 1.000 0.256 0.233 0.245 0.236 0.233 0.231 0.231 0.232
0.223 0.256 1.000 0.245 0.256 0.244 0.250 0.226 0.232 0.261
0.261 0.233 0.245 1.000 0.259 0.243 0.246 0.234 0.247 0.239
0.242 0.245 0.256 0.259 1.000 0.247 0.266 0.255 0.266 0.251
0.243 0.236 0.244 0.243 0.247 1.000 0.236 0.224 0.248 0.246
0.217 0.233 0.250 0.246 0.266 0.236 1.000 0.264 0.264 0.249
0.223 0.231 0.226 0.234 0.255 0.224 0.264 1.000 0.258 0.237
0.258 0.231 0.232 0.247 0.266 0.248 0.264 0.258 1.000 0.233
0.227 0.232 0.261 0.239 0.251 0.246 0.249 0.237 0.233 1.000

Table 16: Stressed discrete default correlation matrix, correlation stress test

The test favours the cases with many default events over the cases with just one default
event.

Table 17 shows the average times to default and average one year PD.

Obligor 1 2 3 4 5 6 7 8 9 10
T 322.5 556.4 172.4 249.3 232.7 172.7 232.4 250.1 171.8 172.5
PD 0.309% 0.158% 0.554% 0.388% 0.432% 0.539% 0.428% 0.428% 0.595% 0.557%

Table 17: Time to default (T) and one year PD in the mean stress test

The times to default again change little, compared to the table 7, and PDs this time
remain unchanged too. Table 18 pictures how many scenarios have at least x obligors
defaulting together in this stress test.

≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 Total
2350 793 495 333 223 117 58 19 0 4388

Table 18: Joint default events in the correlation stress test: how many scenarios have
at least x obligors defaulting together.

This time the overall default count stays exactly the same as before stress testing (table
9), showing that indeed we do not change the overall default frequency. But we clearly
see that the defaults are much more likely to occur together: there are less scenarios
with at least one default occuring but more scenarios with multiple default. If one
obligor defaults, others are more likely to default too.

The 99.9%-CVaR optimal portfolio is presented in the table 19.

1 2 3 4 5 6 7 8 9 10
0.2551 0.1440 0.1264 0.0566 0.0000 0.1105 0.0551 0.0717 0.0000 0.1806

Table 19: Mean-CVaR optimal portfolio after the correlation stress test
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For the discussion of the effects of the stress tests on the optimal portfolio the reader
is referred to the section 7.5.

7.4 Stress testing: tail dependence

Here I increase the tendency of default events to happen together. First we extract the
empirical copula of the discrete default events panel V (45). The empirical copula
function is the proportion of rows lying jointly below the given row, as in (61). Then
I take the low end of the copula (to make the low end the bad case, we invert the sign
of the default indicator and represent the default by -1): cases where the empirical
copula function is less than 10−5. There are 73 such scenarios out of 100 000. Let us
increase the dependence between the low end of the distribution by a factor of 4.41. I
constrain the sum of probabilities for these 73 bad cases to 4.41 times the sum of the
prior probabilities (=73 ∗ 4.41× 10−5 = 0.00322). Basically I set the κ in the formula
(65) to 4.41.

The resulting correlation matrix (over all distribution) is quite different from the origi-
nal empirical one, but not as homogeneously as in the correlation stress test case. This
indicates that we have indeed affected only the low end of the distribution, table 20:

1.000 0.076 0.124 0.200 0.167 0.150 0.112 0.107 0.182 0.111
0.076 1.000 0.197 0.161 0.172 0.162 0.141 0.149 0.151 0.105
0.124 0.197 1.000 0.178 0.218 0.156 0.180 0.109 0.129 0.198
0.200 0.161 0.178 1.000 0.234 0.153 0.173 0.137 0.168 0.153
0.167 0.172 0.218 0.234 1.000 0.166 0.230 0.198 0.210 0.184
0.150 0.162 0.156 0.153 0.166 1.000 0.136 0.106 0.171 0.155
0.112 0.141 0.180 0.173 0.230 0.136 1.000 0.203 0.207 0.151
0.107 0.149 0.109 0.137 0.198 0.106 0.203 1.000 0.166 0.128
0.182 0.151 0.129 0.168 0.210 0.171 0.207 0.166 1.000 0.117
0.111 0.105 0.198 0.153 0.184 0.155 0.151 0.128 0.117 1.000

Table 20: Stressed discrete default correlation matrix, tail dependence stress test

The stressed scenario probabilities (p̃j) in this case are different from the other stress
tests - only the 73 ”bad” scenarios get a significantly different p̃j from the rest. It
is equal for all 73 scenarios (=73 ∗ 4.41 × 10−5). The rest 99 927 scenarios all get
9.98× 10−6, regardless of whether any defaults occur or not.

Table 21 shows the average times to default and average one year PD.

The times to default again change little, compared to the table 7, but PDs increase all.
Table 22 pictures how many scenarios have at least x obligors defaulting together in
this stress test.

Now we observe the overal default incidence increasing. Figure 6 helps to explain why
the correlation and the tail dependence stress tests behave differently.

45



Obligor 1 2 3 4 5 6 7 8 9 10
T 320.9 554.1 171.5 248.0 231.4 171.9 231.1 249.2 170.9 252.1
PD 0.418% 0.243% 0.686% 0.513% 0.568% 0.664% 0.540% 0.526% 0.716% 0.672%

Table 21: Time to default (T) and one year PD in the mean stress test

≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 Total
3490 990 490 320 170 62 18 4 0 5544

Table 22: Joint default events in the tail dependence stress test: how many scenarios
have at least x obligors defaulting together.

(a) Obligor 1 (b) Obligor 2

Figure 6: Schematic illustration of default events: correlation stress test as downwards
pointing arrows and tail dependence stress test as upwards pointing arrows

Let’s assume a joint distribution of a variable, marginals of which are in the pictures,
say, obligor 1 is on the left and obligor 2 on the right (the distribution of the time
to default in reality is, of course, exponential; I show as if it was normal only for
simplicity). Without the stress testing, the joint tail events are likely to occur with
a certain frequency: if obligor 1 defaults, with a certain probability obligor 2 will
default too. The downwards pointing arrows display the correlation stress test: if a
certain value is obtained by obligor 1, the value of obligor 2 will be close, because the
correlation is high. It means that if a tail event occurs in obligor 1, tail event will likely
occur in obligor 2 as well, but, if a normal event occurs in obligor 1, tail event is not
likely to occur in obligor 2. It means that besides strenghtening the ties between default
events, the correlation stress test is strenghtening the relationship between other events
as well, driving PD both up and down. The tail dependence stress test, pictured as the
upwards pointing arrows, increases the chance of tail event in obligor 2 only in case
when tail event occured in obligor 1. If a normal event happened with obligor 1, a tail
event still happens with obligor 2 with the same probability as before. So there is no
pressing down of PD, only up - and overall PD increases.

The 99.9%-CVaR optimal portfolio is presented in the table 23.

For the discussion of the effects of the stress tests on the optimal portfolio the reader
is referred to the section 7.5.
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1 2 3 4 5 6 7 8 9 10
0.1699 0.1926 0.0702 0.0500 0.0000 0.0976 0.0973 0.0993 0.0770 0.1461

Table 23: Mean-CVaR optimal portfolio after the tail dependence stress test

7.5 Comparison of optimal portfolios

For the reference, I include the table 24 which displays the default count in all 4 sce-
narios: original and the 3 stress tests.

Scenario ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 Total
Original 3252 740 245 94 38 14 4 1 0 4388
Mean 3507 867 306 124 54 22 7 2 0 4888
Correlation 2350 793 495 333 223 117 58 19 0 4388
Tail 3490 990 490 320 170 62 18 4 0 5544

Table 24: Joint default events in 4 scenarios: how many simulations have more than x
default occuring together

The ratios of each count of default in each stress test to original are presented in table
25 (NA=not available).

Scenario ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 Total
Mean 1.08 1.17 1.25 1.31 1.43 1.58 1.75 1.51 NA 1.11
Correlation 0.72 1.07 2.02 3.54 5.86 8.35 14.61 19.48 NA 1.00
Tail 1.07 1.34 2.00 3.40 4.47 4.41 4.41 4.41 NA 1.26

Table 25: Joint default events in 4 scenarios as ratios to the original distribution joint
default events

The correlation stress test has the ratio growing with the x: the more default events oc-
cur together, the higher the difference between the stressed and original distributions.
The ratio does not grow so pronounced in the tail stress test. The number 4.41 in the
tail test row represents the ratio of stressed probability of a scenario (p̃) and the original
probability, p (= 1/J). All the scenarios with 6 defaults and more got the same p̃.

The table 26 shows jopint default occurences in the shape of conditional probabilities:
how likely additional defaults are to occur, if any default occurs.

Again we see how likely the defaults are to occur together, with correlation stress test
standing out.

All 4 scenario’s optimal portfolio weights are presented together in table 27 and CVaR,
VaR and returns in table 28 - essentially all the portfolios are equal on these three main
characteristics.

The figure 7 shows the composition of all 4 optimal portfolios together.

The main observations:
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Joint defaults
Scenario 1 2 3 4 5 6 7
Original 0.772 0.152 0.046 0.017 0.007 0.003 0.001 0.000
Mean 0.753 0.160 0.052 0.020 0.009 0.004 0.002 0.000
Correlation 0.663 0.127 0.069 0.047 0.045 0.025 0.017 0.008
Tail 0.716 0.143 0.049 0.043 0.031 0.013 0.004 0.001

Table 26: Joint default events in 4 scenarios as conditional probabilities of exactly x
defaults occuring given that at least 1 occurs

Scenario 1 2 3 4 5 6 7 8 9 10
Original 0.1703 0.1716 0.0507 0.0516 0.0509 0.1174 0.1171 0.1025 0.0506 0.1173
Mean 0.1692 0.1513 0.0466 0.0758 0.0000 0.1203 0.1200 0.1224 0.0743 0.1201
Correlation 0.2551 0.1440 0.1264 0.0566 0.0000 0.1105 0.0551 0.0717 0.0000 0.1806
Tail 0.1699 0.1926 0.0702 0.0500 0.0000 0.0976 0.0973 0.0993 0.0770 0.1461

Table 27: Optimal portfolios in 4 scenarios: original and 3 stress tests

Scenario CVaR VaR Return∗

Original 0.3889 0.2961 -0.0606
Mean 0.3953 0.3032 -0.0601
Correlation 0.4318 0.3242 -0.0606
Tail 0.3921 0.3025 -0.0594

Table 28: CVaR, VaR and returns of the optimal portfolios in 4 scenarios: original and
3 stress tests

Figure 7: Composition of the original and stress-tested portfolios as per table 27. Low
risk obligors displayed in light color and high risk obligors in dark color.

• The mean stress test results are consistent with the increases in PD: the weight
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of raised PD obligor shrinks and vice versa, except for the obligor 10, which
requires separate explanation.

• The share of obligor 10 grows consistently, although 10 is a high risk/return
obligor. In the mean test it consumes a part of the share of obligor 5. In correla-
tion and especially tail dependence cases, another factor is involved: obligor 10
is comparatively little ”connected” to others. Default correlation matrix does not
reveal this fact but we can observe other measures of dependence. Table 29 dis-
plays one possible measure: the ratio of number of defaults of obligor N to the
number of defaults of all other obligors in scenarios where N defaults. It shows
how likely any of other obligors are to default too when obligor N defaults.

Obligor Defaults Defaults other Ratio
1 309 248 1.246
2 158 180 0.878
3 554 396 1.399
4 388 348 1.115
5 432 438 0.986
6 539 370 1.457
7 428 390 1.097
8 428 321 1.333
9 595 453 1.313
10 557 386 1.443

Table 29: Ratio of defaults of obligor N to the count of default occurences of other
obligor in the same simulation row. For instance, obligor 1 defaults 309 times. In
these 309 simulation scenarios, all other obligors default in total 248 times.

By this measure, obligor 10 is less connected to others than for example obligor
9. Obligor 6 is comparable, but the lower connectivity does not outweigh lower
returns.

• Table 29 also explains why, although having the highest returns overall, obligor
7 is not favoured much when the dependence is stressed: it has one of the lowest
dependence ratios. If obligor 7 is selected with a high weight, it contaminates
the portfolio through correlations.

• The correlation stress test favors very strongly obligor 1. It has the second lowest
PD, after obligor 2, and also has very much lower connectivity than obligor 2,
which would clearly be a favourite otherwise (and obligor 2 is a favourite in the
tail dependence stress test).

49



7.6 Significance of starting returns

As mentioned in section 5, in addition to the views, the Black-Litterman model intro-
duces reverse optimized market equilibrium weights as the prior. Thus besides stress-
testing (corresponding to the former contribution), it would be interesting to investigate
how sensitive the mean-CVaR optimal portfolio weights actually are to the starting
point of returns. Does mean-CVaR optimization is as dependent on small changes in
returns as Markowitz mean-variance optimization and whether small changes in re-
turns induce large swings in the optimal portfolio? For the purpose of this thesis I only
check a few scenarios and leave the deeper analysis for further research.

Table 30 presents the findings. A and B are scenarios of different returns (before risk
adjustment) when everything else stays the same. For reference I also present the
optimal portfolio weights under the tail dependence stress test (as in subsection 7.4)
with the new returns.

Original A B
Nr Returns Prior Posterior Returns Prior Posterior Returns Prior Posterior
1 5.96% 0.1703 0.1699 5.27% 0.1346 0.1667 6.51% 0.1669 0.1714
2 5.16% 0.1716 0.1926 6.10% 0.2003 0.1777 5.04% 0.1692 0.1982
3 6.90% 0.0507 0.0702 7.81% 0.0657 0.0623 6.99% 0.0554 0.0728
4 5.03% 0.0516 0.0500 5.00% 0.0391 0.0516 5.59% 0.0561 0.0495
5 6.31% 0.0509 0.0000 6.91% 0.0331 0.0000 6.78% 0.0555 0.0000
6 7.57% 0.1174 0.0976 6.85% 0.0994 0.1014 7.85% 0.1099 0.0960
7 7.87% 0.1171 0.0973 7.72% 0.0986 0.1006 7.30% 0.1089 0.0965
8 5.70% 0.1025 0.0993 6.53% 0.1330 0.1017 6.22% 0.1131 0.0985
9 7.05% 0.0506 0.0770 7.63% 0.0658 0.0885 6.09% 0.0543 0.0735
10 7.73% 0.1173 0.1461 8.65% 0.1304 0.1495 8.58% 0.1106 0.1436
Tot r CVaR CVaR r CVaR CVaR r CVaR CVaR

6.06% 0.4158 0.3921 6.38% 0.3878 0.3923 6.23% 0.3857 0.3905

Table 30: Two scenarios of changes in returns: mean-CVaR optimal portfolios un-
stressed and under tail dependence stress test with different starting returns

From this small sample I conclude that the optimal portfolios in the original setup be-
fore stress testing indeed change with respect to the changed returns. Changes are not
extreme and consistent with the movements in returns. Market equilibrium returns may
indeed introduce some more stability. However, stressed optimal portfolio depends on
the initial returns very little.
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8 Conclusions, limitations and further research sug-
gestions

I have shown that subjective views and stress-testing methods created originally for
stock portfolios can successfully be applied for portfolios of loans.

The loan return distribution is characterized by the joint distribution of the times to
default. We assume an exponential distribution for each individual obligor and a t-
copula for the dependence structure of the joint distribution of the times to default.
The parameters for the t-copula are estimated using historical equity returns, based
on assumption that dependence between times to default is the same as dependence
between equity returns. The assumption about default distribution enables us to simu-
late the loan ”market” outcomes. Subsequently we apply numerical methods of CVaR
optimization.

Even more importantly, different aspects of the market can be stressed. In addition
to stressing the PDs, we have stressed the dependence between default events in two
ways: if correlation of joint default distribution is increased and if we only increase
the probability of events in lower tails of distribution to occur together, that is, the low
values of times to default to occur together. Both stress tests were done using Meucci
(2008) Entropy Pooling methodology, which applies for loan portfolios because it does
not assume a specific distribution for the risk factors. We have exploited a feature
of Entropy Pooling that views can be expressed on a function of risk factors. It is
very useful for working with default distributions to choose the function as the one
year default indicator. We start working with the joint distribution of times to default,
because we can parametrize the times to default distribution using equity returns, but
express the views on the discrete default distribution, because it is much more intuitive
to do so.

The mean stress test (increasing PDs) could be implemented in a different way, by
resimulating the joint times to default distribution with the different hazard rate pa-
rameters for the marginals, because a change in a PD resolves directly into a change
in the hazard rate which in turn affect the time to default in a predictable way. Also,
the tail dependence stress test could be done by including the cases with many defaults
repeatedly into the simulation panel. (There is no such a clear cut way to stress test
the correlation.) Still, Entropy Pooling is convenient because it is a generalization:
it ties different stress tests together in one framework. Many different views can be
expressed with different confidence at once. Besides, one could express views on any
other parameter of the joint default distribution that I did not go into: ranking and rel-
ative views to name a few. The method does not require resimulating the panel and is
very fast computationally.

The stressed default distribution can be used in many different ways for risk man-
agement and optimization purposes. We have optimized it again with CVaR as risk
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measure and compared the weights. The difference in weights is subtle, with prefer-
ence for lower risk obligors and least connected obligors when defaults are more likely
to occur together.

Entropy Pooling is shown to work on loan portfolios and may be directly applied in
practice on real data. Further research is proposed mainly for insufficiently explored
auxiliary problems:

1. Well-known tendency of Markowitz MV optimization to produce extreme, un-
diversified and sensitive to small changes in returns is countered by reverse
optimized market equilibrium returns prior by Black-Litterman. It is unclear
whether the weights are just as sensitive to small changes in returns if the risk
measure is CVaR.

2. If so, numerical methods (inverse optimization) may be used to find the mean-
CVaR equilibrium prior. Our efforts (section 5 and appendix B) were limited
and inconclusive.

3. In real life instead of individual obligors we would work with risk factors, gen-
erally sectors of economy.
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A Linear CVaR optimization problem

Here I show how to write down (16) in order to solve it with an optimization package.
In matrix form and converted to equality shape (for use with SeDuMi package all con-
straints should be binding - we achieve that by adding slack variables) (16) becomes

Minimize cTx
s.t Ax = b

x ≥ 0
(77)

A =


−
∑

j pjm1j . . . −
∑

j pjmKj 0 0 . . . 0 1 0 . . . 0

−1 . . . −1 0 0 . . . 0 0 0 . . . 0
−m11 . . . −m1K −1 −1 . . . 0 0 1 . . . 0

... . . . ...
... 0

. . . 0
... 0

. . . 0
−mJ1 . . . −mJK −1 0 . . . −1 0 0 . . . 1


(78)

b = (−r − 1 0 . . . 0)′ (79)

c = (0 . . . 0 1
1

1− β
p1 . . .

1

1− β
pJ 0 0 . . . 0)′ (80)

In concise notation:

A =

 −pM 0 01×J 1 01×J
11×S 0 01×J 0 01×J
−M −1J×1 −IJ 0J×1 IJ

 (81)

b = (−r 1 01×J)′ (82)

c = (01×K 1
1

1− β
∗ 11×J)′ (83)

The size of the decision variable now is K+1+J+1+J. K is the number of obligors, so
first K of the final weight vector will be the true portfolio holdings. Next, K+1’th
entry is VaR, referred to as ζ . Next J are the z’s, the dummies resulting from CVaR
function linearization. Final 1+J are dummies required for converting inequalities to
equalities. In total there are K+1+J+1+J variables and 2+J constraints in this problem.
(J was the number of market outcome scenarios). The first K entries of the solution
x∗ = (x1, . . . , xK) is the vector of weights that define mean-CVaR optimal portfolio.
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B Inverse optimization

B.1 Inverse linear problem with a two-dimensional example

A typical optimization problem is a forward problem because it identifies the values
of observable parameters (optimal decision variables), given the values of the model
parameters (cost coefficients, right-hand side vector, and the constraint matrix). An
inverse optimization problem consists of inferring the values of the model parameters
(cost coefficients, right-hand side vector, and the constraint matrix), given the values
of observable parameters (optimal decision variables). Recently inverse optimization
gained interest in areas as diverse as geophysical science, medical imaging, trans-
portation flow analysis, railroad scheduling and others, among which also portfolio
optimization is found. For instance, Iyengar and Kang(2004) [13] describe a case of
finding optimal portfolio in Sharpe equilibrium with transactions costs. In principle,
their problem is similar to ours. We assume that market is in equilibrium, but equi-
librium is of non-trivial kind - we cannot inverse the optimum easily to get back to
optimum weights. Iyengar and Kang’s case is complicated by transaction costs, ours
by equilibrium defined by CVaR rather than variance as risk measure and nonnormal
returns.

We gain insight into inverse optimization by studying a two-dimensional example and
looking at its graphical representation first. Called ”Two Crude petroleum model”, our
example problem is defined as follows.

min 20x1 +15x2 (total cost; coefficients:
costs of Saudi and Venezuelan oil per gallon)

s.t 0.3x1 +0.4x2 ≥ 2.0 (1 gasoline requirement)
0.4x1 +0.2x2 ≥ 1.5 (2 jet fuel requirement)
0.2x1 +0.3x2 ≥ 0.5 (3 lubricant requirement)
x1 ≤ 9 (4 Saudi availability)

x2 ≤ 6 (5 Venezuelan availability)
x1, x2 ≥ 0 (6,7 nonnegativity)

(84)

As the problem has only two dimensions we can plot the constraints and the objective
graphically.

Points A,B,C,D,E where constraints intersect define the feasible region of the problem.
Thin lines are lines where the objective function has the same value. It is easy to solve
the problem just by looking at the picture: optimum is the point B, where feasible
region is bordered by constraints 1 and 2 (i.e., constraints 1 and 2 are binding). Solve
linear equation 0.3x1 + 0.4x2 = 2.0; 0.4x1 + 0.2x2 = 1.5 and we obtain the point
[2.0;3.5]. Plugging it into objective function yields 92.5.

56



Figure 8: Feasible region and objective of two crude problem

However, having solved the forward problem and knowing the optimum buying quan-
tities we can still ask many questions. For instance, what if oil prices change? Consider
we start production and buy specified amounts of two types of oil. When prices move
with respect to each other, we cannot easily change the process, so there is no guar-
antee that the point will still be optimal. What are the ranges of oil prices where the
point B is still optimal? When we should move to another point?

Inverse problem is stated as follows. Given the current quantities, what are the prices
such that the current point is optimal across all quantities. It is not a coincidence that
we are reminded of the dual formulation here. The dual is the subsidiary optimization
model, defined over the same input parameters as the primal but characterizing the
sensitivity of primal results to changes in inputs. Dual variables reflect the rate of
change in primal optimal value per unit increase from the given right-hand-side value
of the corresponding constraint. They provide implicit prices for the marginal unit of
the resource modeled by each constraint as its right-hand-side limit is encountered.

If the primal problem is

Minimize
∑

j∈J cjxj
s.t.

∑
j∈J aijxj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J
(85)

,

the dual problem is

Maximize
∑

i∈I bivi
s.t.

∑
i∈I aijvi ≥ cj ∀j ∈ J

vi ≥ 0 ∀i ∈ I
(86)

.
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The dual of the Two Crude petroleum model is

max 2v1 +1.5v2 +0.5v3 +9v4 +6v5

s.t 0.3v1 +0.4v2 +0.2v3 +1v4 ≤ 20
0.4v1 +0.2v2 +0.3v3 + +1v5 ≤ 15
v1, v2, v3 ≥ 0
v4, v5 ≤ 0

(87)

The optimal solution is [20;35;0;0;0] with the dual objective function value 92.5. It
tells us about marginal unit prices. If the first activity constraint is modified by 1 unit,
the objective function value will change by 20. Besides, we notice that constraints 1
and 2 of the primal were active (binding) (from the principle of primal complementary
slackness).

The main dual constraints
∑

i∈I aijvi ≤ cj keep activity prices below the true cost.
It may seem reasonable to ask for more, i.e., demand that activity prices match ex-
actly corresponding cj . But more importantly, we want the dual variables to measure
resource value at optimality. The only (nonnegative) primal variables involved in an
optimal solution are those with optimal xj > 0. Limiting perfect valuation to this more
limited list of activities produces our final set of requirements - dual complementary
slackness conditions. Either a nonnegative primal variable has optimal value xj = 0
or the corresponding dual prices vi must make the jth dual constraint

∑
i∈I aijvi ≤ cj

active. Dual complimentary slackness thus binds dual constraints with the primal op-
timum.

So far we have determined that the primal solution x∗ and the dual solution v∗ are
optimal for their respective problems if x∗ is feasible for equations (85), v∗ is feasible
for equations (86), and together they satisfy the dual complementary slackness condi-
tions. Solving the dual, then, we automatically get the optimal solution of the primal.
Having dual problem with satisfied dual complimentary slackness conditions (derived
from the primal optimum) and the primal optimum itself, we can reconstruct the pri-
mal problem. Reconstructing the primal is exactly what we are aiming for in inverse
optimization.

Let us build the dual complimentary slackness conditions from known primal solution.
We started with the primal problem (85). We want now to perturb the cost vector c
to d in such a way that given x0 (which must be a feasible point, but not necessarily
optimal) would be the optimal solution.

Let B denote the set of active constraints in the primal formulation (if all were active,
B=I), L the set of x at lower bound(0) (if all x were at lower bound, L=J), and F the
set of x above lower bound (L+F=J). Following the principle of dual complimentary
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slackness, the dual formulation may be rewritten as follows:

Maximize
∑

i∈B bivi
s.t.

∑
i∈B aijvi ≥ cj ∀j ∈ L

s.t.
∑

i∈B aijvi = cj ∀j ∈ F
vi ≥ 0 ∀i ∈ B

(88)

We have a given solution x0 and are looking for a cost vector d (preferably in some
measure close to c) which would make it optimal. B, L and F are sets corresponding
to the solution x0 now. B consists of all constraints where

∑
j∈J aijxj = bi. L consists

of all j where x0
j = 0. F=J-L.

if v∗ is the optimal solution of (88), then
∑

i∈B aijv
∗
i would give us the answer: the

coefficients of the primal objective dj , making the x0 optimal.

However, there generally are many d’s which make x0 optimal. Returning back to Two
Crude example, we notice that the optimal point B does not change if the coefficients
cj=[20;15] move a little. The angle of objective contour has space to move between
the angle of constraint 1 and constraint 2.

We can even build a table to illustrate how far c2 can move, if we fix c1 to existing
value 20. By analogy similar table can be built for c2 (table 31).

Optimum c1 c2 from c2 to
A 20 −∞ 10
B 20 10 80/3
C 20 80/3 ∞

Optimum c2 c1 from c1 to
A 10 −∞ 11.25
B 10 11.25 20
C 10 20 ∞

Table 31: Values of c1 and c2 defining different optimums. Left: c1 fixed, Right: c2
fixed.

That is, any problem (with the same constraints) with objectives from 20x1 + 10x2

to 20x1 + 80/3x2 (coefficient of x2 is moving), including our original 20x1 + 15x2

optimizes to the same point [2.0;3.5]. There is a catch that marginal problems 20x1 +
10x2 to 20x1 +80/3x2 both have continuum solutions. We will come back to this later.

Notice that it is the ratio that matters, as the problem is linear. We can cover the
complete space [c1, c2] as displayed in the figure 9.

Subsequently, entering x0=[2.0;3.5] into the dual and solving it, we may obtain [d1, d2]
anywhere in the area B. Of multiple possible d’s, how do we select one? One way is
to select the d, which is closest to the original c in some way. Norms L1, Lp and L∞
are proposed, resulting in optimization problems

min
∑

j wj|dj − cj|,
min

∑
j wj‖dj − cj‖p, and
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Figure 9: Optimal points x0 in space [c1, c2]

min maxj wj|dj − cj|,
respectively.

For linear problems L1 and L∞ are appropriate, as we stay in linear realm after the
minimum norm objective is included into the formulation. Let us choose L1 and refor-
mulate our inverse programming problem as

Minimize
∑

j wj|dj − cj|
s.t.

∑
i∈B aijvi ≥ cj ∀j ∈ L

s.t.
∑

i∈B aijvi = cj ∀j ∈ F
vi ≥ 0 ∀i ∈ B

(89)

It is well known that minimizing
∑

j wj|dj − cj| is equivalent to minimizing αj + βj ,
subject to dj − cj = αj − βj , αj ≥ 0, βj ≥ 0.

Restating the problem to get rid of the absolute value and introducing dummy variables
λj to make all constraints equalities:

Minimize
∑

j wjαj +
∑

j wjβj
s.t.

∑
i∈B aijvi − αj + βj + λj = cj ∀j ∈ L

s.t.
∑

i∈B aijvi − αj + βj = cj ∀j ∈ F
vi ≥ 0 ∀i ∈ B, αj ≥ 0, βj ≥ 0 ∀j ∈ J, λj ≥ 0 ∀j ∈ L

(90)

If optimal solution of this problem is v∗, α∗, β∗, λ∗, the optimal d is

dj =
∑
i∈B

aijv
∗
i (91)

60



However, norm L1 still cannot ensure unique d. That is normal. Worse, d is always a
marginal solution - in figure 9, on the border between A and B - which when fed back
to the original primal problem, does not have a unique optimum. We would expect to
get the original starting point x0 as the solution of the primal with the coefficients of
the objective d instead of c. But we get x0 only if we move d by at least a very small
amount from the border. Again returning to the Two Crude example, if x0 = [0.75; 6],
in the intersection of constraint 2 and 5, the optimal x0 is [20;10]. The primal with this
objective has a continuum of optimums, one among which is x0, but clearly this is not
satisfactory. Only if d is moved by an ε into A territory - to [20, 10− ε] - optimum x0

is unique.

As the problem is linear, it is straightforward to find the direction of this movement:
simply continue the same direction as to get from c to d by a small amount more. This
direction is d-c. The new point d∗ which guarantees unique optimum then is

d∗ = d + ε(d− c). (92)

As we have seen, not all the starting points x0 will find us a cost vector which with the
point x0 would be optimal. Choices for the location of the point x0 are as follows:

1. x0 is a feasible point inside the feasible region (point F). No constraint is bind-
ing, no coordinates are at lower limit. There is no cost vector with which the
solution is optimal to the primal. B is empty; L is empty; F is empty → in-
verse problem cannot even be written down. This should not happen with CVaR
equilibrium problem, as it is very hard, if not impossible, to hit the point not
activating at least one constraint, because CVaR equilibrium problem has very
many constraints compared to the number of decision variables. Perhaps it is
even possible to prove this conjecture.

2. x0 is on a border of the feasible region, activating less constraints than necessary
to be an extreme point (point G). The cost vector with which the point is optimal
should be parallel to the limiting facet of the feasible region. In the figure 10 the
contours of the optimal cost vector are dashed lines. In two dimensions the cost
vector is unique, but with higher dimensions the border is much more likely a
facet rather that an edge, and the solution is not unique in this case.

3. x0 is an infeasible point (point H). Naturally, there is no cost vector with which
the solution is optimal.

4. x0 is an extreme point (point B). In this case the set of cost vectors with which
solution is optimal contains more than one point. Among possible choices we
have our original cost vector of Two Crude problem.

In the case of 2 and 4, then, we have obtained the optimal cost vector without much
difficulty. If we are especially lucky, the vector is unique already; otherwise we choose
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Figure 10: Options for x0

from alternatives, for instance, move the result by a small amount to the same direction
as d-c.

1 and 3 remains. What to do? Mathematically, in both cases, the answer is to find a
point on the border of the feasible region as close to x0 as possible. It remains to be
discussed how appropriate this answer is in business application. The measure of the
distance may become very important, best if it is also intuitive.

3, infeasible, is a little easier. Taken norm L1 as a measure of distance, all that is
necessary is to solve a LP with the same constraints as the original primal LP and
distance measure as objective.

Minimize
∑

j wj|x0
j − xj|

s.t.
∑

j∈J aijxj ≥ bi ∀i ∈ I
xj ≥ 0 ∀j ∈ J

(93)

We have already seen how to convert the distance measure in L1 into a linear problem.

Minimize
∑

j wjαj +
∑

j wjβj
s.t.

∑
j∈J aijxj ≥ bi ∀i ∈ I

x0
j − xj − αj + βj = 0 ∀j ∈ J
xj ≥ 0, αj ≥ 0, βj ≥ 0 ∀j ∈ J

(94)

The optimal x∗ may be an extreme point or a point on the facet.

With case 1, the procedure is more complex. First, notice that the problem to move
F to the border of the feasible region would be the same as case 3 problem if we
could invert the feasible region. We move infeasible point F as close as possible to the
feasible region, if we redefine the feasible region as the outside of the original feasible
region. Now, how to invert the original feasible region? A first answer that comes
to mind is to take all the constraints and simply invert the sign: turn all ”≤” to ”≥”
and vice versa (and keep equalities as they are). But we notice soon that there are
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constraints which do not define the feasible region at all, for instance, x1 ≥ 0 in Two
Crude example. Inverting this constraint would move the outside further away than
we wish. (As a side note, it may not be a very bad thing. For sure if we just solve
the distance minimizer problem with naively inverted constraint set, we are almost
surely getting the point infeasible to the original problem. Then we are back to already
solved case 3. Problem is, the optimum with naive inverse feasible region may be very
far from the original feasible region). First we need to detect the redundant constraint
of the original problem - in Two Crude example these would be constraint 3 and lower
bound of x1.

There are several known algorithms for detecting redundant constraints of LP. One
example is explored in the Paulraj, Cheppalan and Natesan (2006) [15]. Once the
set of essential (not redundant) constraints is identified, we invert the inequalities and
solve the distance minimizer problem to move from F to G. Again the point on the
border of the feasible set may or may not be extreme.

I suspect that stability problems arise if the identified border point is not extreme.
Especially when the border point is on the edge and the optimizer cost vector is unique.
If we optimize the primal with this unique cost vector, the resulting optimum depends
heavily on the optimizing algorithm. We may or may not - and more likely not -
will get back our starting border point as the optimum. If the objective contour is
parallel to the constraint, the choice between multiple alternative optima depends on
many things. The simplex method will always return an extreme point. With the
interior point method surely the optimum will be on the edge, but not certainly the
same. Moreover, move the coordinates of the unique cost vector by a little bit and the
optimum will surely move to an adjacent extreme point. Thus it would be desirable
to find a nearest extreme point of the feasible region instead of finding just a nearest
point in the feasible region if the starting point x0 is either infeasible or not extreme
(vast majority of cases will fall into these two categories in practice).

One solution would be to enumerate all adjacent optimal extreme points next to the
border point and choose the nearest. The same kind of problem would be to find an
extreme point of the primal, nearest to infeasible x0 from the start. Both formulations
are difficult subproblems on their own.

Another solution - instead of finding the nearest feasible point on the facet of feasible
region, we would ”extend” the constraints in the convex way to form new feasible
region with an extreme point in our infeasible point.

It is straightforward to identify active constraints but not so clear how to make them
pass through the originally infeasible point H. Convex linear combination of all ad-
jacent extreme points would most likely do it, again returning us to the problem of
enumerating all optimal extreme points. Tantawy (2008) [14] discusses this issue.
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Figure 11: Extend constraints to form new extreme point

B.2 Inverse of linearized CVaR minimization

Now that we have learned basic machinery of inverse optimization, let us return to the
CVaR minimization problem (11).

The problem is linear, so we should be close to inverting it: given portfolio weights,
what are the returns, with which the given weights are optimal? Given weights will
be then interpreted as market capitalization weights and optimizing returns - ”market
mean-CVaR equilibrium returns”.

There are two hurdles to overcome before we can answer this question. First, returns
should switch places with CVaR and get up to the objective while CVaR moves down
to constraints. It has been proven that efficient mean-CVaR frontier stays the same. In
its return maximizing shape the problem is (13).

Second, returns still participate in the constraints through the relationship zj + ζ +
f(x, yj) ≥ 0. If f(x, yj) are truly market outcomes, in case of default the entry is
-lgd and in case of non-default the entry is the return. For instance, continuing three
obligor problem, if returns are [9%; 5%; 4%] and recovery rate is 0%, the matrix M
looks more or less like (76), with 3 columns and 10 rows.

We want it exactly in this shape in the objective, but in the constraint we wish not to
see the returns and risk combined into the risk-adjusted returns. There is no (easy)
solution to the problem of finding returns with which given weights are optimal if we
cannot isolate the movable parts to objective alone, at least the theory above does not
apply.

Several alternatives can be proposed:

1. Leave the original returns, r0, in the dual optimization constraint fixed. Vary
only the returns in the objective.

2. Set the returns to some other sensible value.
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3. Set the returns to 0. In this case we implicitly change our risk measure. It is no
longer the CVaR as usual, the average of losses above certain quantile, but the
average of ”pure” losses above certain quantile.

It is hard to say which option is the most sensible. At least all seem to be viable.
For the numerical trials in the following section I assumed the third option: substitute
returns with 0 and this way measure risk by ”pure loss” CVaR, or CVaRp. Preliminary
numerical tests show that CVaR and CVaRp are not very different.

CVaR minimize problem now becomes

Maximize
∑

i

∑
j pjmijxi

s.t. ζ + 1
1−β

∑J
j=1 pjzj ≤ ω

zj + ζ +
∑

im
p
ijxi ≥ 0 ∀j ∈ J∑

i xi = 1
zj ≥ 0 ∀j ∈ J, xi ≥ 0 ∀i ∈ I

(95)

where mij are the elements of full market outcome matrix and mp
ij are the elements of

pure loss matrix.

Let us write down the inverse problem now: find the returns with which given weights
minimize the CVaR across all weights. If the forward problem is (95), concisely

Minimize cTx
s.t Ax ≤ b

x ≥ 0
(96)

its inverse is
Minimize c∗Tv

s.t A∗v = b∗

v ≥ 0
(97)

B: theset of active constraints in (96) i :
∑

j aijxj = bi; N : set of inactive constraints.
L: set of x where xj = 0; F : set of xj > 0. m is the size of B; l is the size of L. We
need to sort A, b, c and x into the order by binding/not binding (binding constraints
first) and at lower limit/not at lower limit (xj =0 first) for writing the inverse. For
instance, AbL is the submatrix in A where the constraints are active and xj = 0.

A =

(
AbL AbF

AnL AnF

)
(98)

b = (bb bn)′, c = (cL cF )′, x = (xL xF )′ (99)

Then inverse:

A∗ =

(
−AT

bL −IL 0L×F IL 0L×F IL
−AT

bF 0F×L −IF 0F×L IF 0F×L

)
(100)
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b∗ = c, c∗ = (01×m w1×J w1×J 01×L)′ (101)

The solution: v∗ = (v1, . . . , vm)′. In order to get the cost vector d, we multiply the
optimum by −ATbL:

d = −AT
bLv∗ (102)

and the result need to be sorted back to the original order.

Concerning weights wj in c∗ which define how far d can be from c in norm L1. In the
original primal formulation the components of c are all zeros, starting from J , i.e. all
linearization dummies get cost 0; and we would like d to retain this property. Thus we
set first S + 1 wj to 1 and the other J wj to 1000.

B.3 Some numerical results

Let us begin with a 10 scenarios example. Portfolio returns r0 are as before: (9%,
5%, 4%), LGD=100%. Out of 10 scenarios, 1 contains all 3 obligors defaulting and
additional 3 - one different obligor defaulting each. Individual PDs thus are 20%,
and default dependence structure is such that in one case all 3 default. We want to
maximize return, given that 80% pure loss CVaR should not be higher than 0.80.

Optimal weights with this specification - solution of the primal (95) - are [0.6;0.4;0].

Our goal is to determine market equilibrium returns given specific portfolio weights as
an input. We solve (97) with different values x. As noted above, x does not participate
in the (97) expression directly but only through defining sets of binding constraints B
(and its complement nonbindingN ) and variables at lower limitL (and its complement
F).

Figure 12: The points illustrating the results of inverse optimization

We illustrate the market equilibrium returns resulting from different kinds of input
x. Different kinds of points in two dimensional Two Crude example are displayed in
figure 12. Our example has many more dimensions, but idea remains the same.
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Table 32 displays the results. Epsilon=0.01. x0 is the starting point of weights; x1 -
closest feasible point in case x0 is infeasible; ropt - the optimum of inverse problem, the
returns with which x0 (x1) is optimal; rεopt - solution ropt moved by an ε as described
above, because ropt is usually the border solution; x∗ - test solution of the primal where
original returns are replaced by rεopt.

The criteria of goodness of the results is how close x0 (x1) is to x∗. Perfect match is
not likely, neither for feasible nor for infeasible points, because the x∗ will always be a
corner. If an initial point is feasible, is very likely not a corner. If it is infeasible, then
the closest feasible point x1 is more likely a point on edge than a corner.

x0 x1 ropt rεopt x∗

B
0.6
0.4
0

0.09
0.05
0.05

0.09
0.05

0.05001

0.6
0.4
0

A
0.6
0

0.4

0.09000
0.04315
0.04315

0.09000
0.04308
0.04318

0.6
0

0.4

G
0.6
0.2
0.2

0.09000
0.043761
0.043761

0.09000
0.043698
0.043798

0.6
0

0.4

H
0.2
0.8
0

0.27483
0.60000
0.12517

0.042932
0.050000
0.042932

0.042461
0.050000
0.042961

0
0.6
0.4

F
0.59
0.2
0.21

0.09000
0.043761
0.043761

0.09000
0.043698
0.043798

0.6
0

0.4

I
1/3
1/3
1/3

0.09
0.05
0.04

0.09
0.05
0.04

0.6
0.4
0

Table 32: Inverse optimization results on 10 simulations

Feeding the true optimum B as x0 to the inverse, equilibrium returns come back as
ropt=[0.09; 0.05; 0.05]. As explained in the previous section, this is a border solution.
Solving the primal (95) with these returns does not return [0.6;0.4;0] as unique opti-
mum. In order to get it back as optimum, we have to move the returns by ε further to
rεopt=[0.09; 0.05; 0.05001] does return x∗=[0.6;0.4;0] back.

Suboptimal corner A generates a border solution too, which moved by ε generates
returns which optimize back to the same corner of weights.

Point on edge G. Optimizing back with ropt instead of rεopt would bring back original
point on edge, but the result is highly unstable. It depends on the implementation of
the interior point algorithm whether the optimum is the same original point or not. rεopt
optimizes to the suboptimal corner.
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Starting with infeasible point H we first get to point on edge x1, then as above; rεopt
optimizes to the suboptimal corner.

Feasible point F generates rεopt, which optimize to a true optimum - a good result
because F was very close to it.

Another feasible point I, not as close to true optimum, also finds it back.

Overall results on this very little example where corners and edges are identifiable
easily are very satisfactory. Let us increase the problem to a realistic size. We will not
be able to say whether the point is a corner, is on the edge or inside the feasible region.
Counting the active constraints is helpful only up to certain level, due to degeneracy of
the problem.

Now the problem is built with 100 000 simulations. We maximize returns with the
constraint 99%-CVaR ≤ 0.55, epsilon=0.01. Table 33 displays the results.

x0 x1 ropt rεopt x∗

B
0.43026
0.43018
0.13956

0.09000
0.04338
0.04000

0.09000
0.04328
0.04000

0.43026
0.43018
0.13956

A
G

H
1
0
0

0.44635
0.10731
0.44635

0.06786
0.05000
0.04817

0.06764
0.05000
0.04825

0.08041
0.45593
0.46365

H’
0.6
0.2
0.2

0.44179
0.2

0.35820

0.09000
0.04329
0.04000

0.09000
0.04322
0.04000

0.44517
0.12631
0.42851

F
0.4
0.4
0.2

0.09000
0.04338
0.04000

0.09000
0.04328
0.04000

0.43026
0.43018
0.13956

I
1/3
1/3
1/3

0.09
0.05
0.04

0.09
0.05
0.04

0.43026
0.43018
0.13956

Table 33: Inverse optimization results on 100 000 simulations

Optimum B, just like in the small example, generates a border solution, which moved
by ε generates returns which optimize back to the original optimum B.

Suboptimal extreme point and point on the edge are hard to identify. Count of active
constraints can be inconclusive. Most reliable way to get one of these points is to start
with infeasible one and use distance minimization procedure. Other than suboptimal
extreme point and point on the edge it can only be the true optimum, which is a good
case too.
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Starting with infeasible point H we do get on the border of feasible region. Here we
have some problem, as border point x1 is not very close to x∗, the point to which
rεopt-problem optimizes. Another infeasible point H’ looks better, as x1 is closer to x∗.

Feasible points F and I generate rεopt which optimize to true optimum.

There is clearly some problem with finding the optimal cost vector for nearest feasible
points to infeasible points, as the goodness criteria that x0(x1) would be close to x∗

does not always hold well (H).

The sensitivity issues listed in section 5, were not investigated, except for the obser-
vation that on 3 obligors, 10 scenarios example we had x0 = [0.6; 0.4; 0]. The same
optimum is achieved back as long as the first return is the highest; the second is in the
middle, and the third is the last.
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