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Abstract

In a complex supply chain, in which several traders compete in a component
procurement market as well as in a sales market where assembled products
are sold through reverse auctions, product pricing is a vital, yet non-trivial
task. In this thesis, a product pricing approach using adaptive real-time
regime-based probability of acceptance estimations is proposed. Based on
economic regime estimations, price distributions are approximated, which
are adapted using relevant available information on prices and characteristics
of customer requests for quotes. Artificial neural networks are trained to
act as adapter and estimate parameters for the double-bounded log-logistic
function assumed to be underlying the prices. This adaptation differs per
market condition and is corrected using an error factor, which is updated
on-line. Given the parametric approximation of the price distribution, the
probability of acceptance is estimated using a closed-form mathematical
expression. This expression can then be used to determine the price yielding
a desired quota. The approach is implemented in the MinneTAC trading
agent and tested against a price-following product pricing approach in the
TAC SCM game. The new product pricing approach yields a significant
performance improvement; more orders are obtained against higher prices.
Profits are more than doubled.
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List of Symbols

Table 1 provides an overview of mathematical notation used in this thesis.
Symbols used in equations throughout this thesis are briefly explained.

Symbol Definition
α Parameter of the double-bounded log-logistic distri-
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β Smoothing factor for double exponential smoothing
γ Parameter of the double-bounded log-logistic distri-

bution, quantifying the distribution tightness
ε Error term accounting for the ratio between received

and predicted orders
ε̃ Smoothed error term accounting for the ratio between

received and predicted orders
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χ Shape parameter of the log-logistic distribution
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price p, with θ a vector of parameters
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(
p; θ
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p, with θ a vector of parameters

Fp
(
p; θ
)

Cumulative distribution of normalized minimum
valid offer price p, with θ a vector of parameters

f (x) Function of x
f̂ (x) Approximation of the function of x

Kh (d (xh, x)) Kernel function of hidden unit h used in an RBFN,
depending on the distance between the kernel center
xh and an instance x

Table 1: Summary of notation.
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Chapter 1

Introduction

In today’s global economy, supply chains are everywhere. A supply chain is
a complex logistics system in which raw materials are converted into finished
products and then distributed to the final users (consumers or companies). It
includes suppliers, manufacturing centers, warehouses, distribution centers
and retail outlets [9]. The main idea of supply chains is that every entity
within a chain adds value to the final product and fulfills a function within
the chain. It is possible to optimize individual elements within the chain,
but it is also possible to optimize the supply chain as a whole, which may
yield sub-optimal performance of individuals.

Effective Supply Chain Management (SCM), focussing on more flexible
and dynamic relationships between entities in the supply chain, is vital to the
competitiveness of traders within this chain. SCM can yield this effect, as
it enables these traders to respond to changing market demands in a timely
and cost effective manner [6]. Hence, research into performance optimization
in a supply chain is important for the profit maximizing companies of today.

A very basic supply chain with suppliers, traders and customers is sim-
ulated in the TAC SCM game, an international competition for designing
trading agents for an imaginary simulated personal computer (PC) supply
chain. The main goal of this game is to optimize the profit an agent gen-
erates, and not optimizing the generated profit of the supply chain as a
whole. A lot of research has been done on both the TAC SCM game and its
participating agents, as analysis of market conditions and behavior exhib-
ited by agents in a controlled environment could provide valuable insights
in the consequences of behavior of entities in a supply chain. The associated
software engineering challenges contribute to the importance and appeal of
this field of research. The focus of this thesis is on the MinneTAC agent, a
trading agent created by the University of Minnesota.

This section continues with a quick overview of the TAC SCM game
and the MinneTAC agent considered in this research in Section 1.1. The
goal of this research is defined in Section 1.2 and the methodology used for
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achieving this goal is described in Section 1.4. Finally, Section 1.5 presents
an overview of the structure of this thesis.

1.1 Background

This section presents the TAC SCM game (see Section 1.1.1), as well as the
the MinneTAC agent for this game (see Section 1.1.2) in a nutshell. This
overview should provide a proper initial understanding of the environment
considered in this thesis.

1.1.1 The TAC SCM Game

Since 2002, the Trading Agent Competition for Supply Chain Management
(TAC SCM) game has been organized in order to promote and encourage
high quality research into trading agents in supply chain environments. The
TAC SCM game stimulates research with respect to more flexible and dy-
namic supply chain practices as opposed to the current common practices
where supply chains are essentially static and rely on long-term relationships
among key trading partners [6].

In the TAC SCM game, a supply chain for PCs is considered. This
supply chain consists of customers, traders and suppliers. The 16 PC types
available through this supply chain can be classified into a high-range, mid-
range, and low-range market segment. Every game day, customers issue
requests for quotes (RFQs) for finished computers, on which traders can
bid. The requested products are subsequently assembled by the traders using
components procured from suppliers. These trading agents are developed in
the context of the TAC SCM game and they all try to maximize their profit
over a game. The major challenge to this respect is the limited visibility of
the market environment; little data is available on-line to an agent.

1.1.2 The MinneTAC Trading Agent

The University of Minnesota competes in the TAC SCM game with their
MinneTAC trading agent [7]. For each individual market segment, the Min-
neTAC agent uses historical data as well as observable current data to char-
acterize microeconomic conditions in order to guide tactical (e.g. product
pricing) as well as strategic decision making processes (e.g. product mix and
production planning) [15, 16, 17].

In this context, the distribution of prices in past games has been approxi-
mated using a Gaussian Mixture Model (GMM). Clustering the probabilities
represented by these individual Gaussians (using the k-means algorithm [21])
yielded distinguishable statistical patterns, which are referred to as economic
regimes (e.g. scarcity, a balanced situation, and oversupply).
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Now, when on a particular day in a game the (expected) price of that
day is used as input for the GMM, the individual Gaussians are all activated
to a certain extent, which yields an approximation of the price distribution
of that day. Subsequently calculating each cluster’s normalized price density
enables the regime probabilities for an arbitrary day, given the (expected)
price, to be determined.

Typically, on an arbitrary day, the regime probabilities for that day are
approximated using an exponentially smoothed prediction of the price of
that day. The agent is not only able to identify the current regime and act
accordingly, but the agent’s behavior depends on expected future regimes
as well. With respect to regime prediction, for short-term prediction for
tactical decision making, the agent uses a Markov prediction process based
on the last normalized smoothed mid-range price, hereby utilizing Markov
transition matrices created off-line by a counting process over past games.
For long-term prediction for strategic decision making, the MinneTAC agent
uses a Markov correction-prediction process, which is similar to the Markov
prediction process, except for that its predictions are based on all normalized
smoothed mid-range prices up until the previous day. An alternative for the
Markov prediction processes is regime prediction based on exponentially
smoothed price predictions which take into account exponentially smoothed
price trends.

The MinneTAC trading agent is founded on two pieces of software: the
Apache Excalibur component framework [1], which enables components to
be constructed for and used in configurations of working agents, and the
AgentWare package distributed by the TAC SCM game organizers, which
handles interaction with the game server. The usage of Excalibur yields a
loosely coupled architecture of the agent, which facilitates easier develop-
ment and maintenance. Furthermore, the architecture increases the flexi-
bility of the MinneTAC agent in practice, as components can be used any
time, hereby enabling the agent to be configurable in many ways.

All decision making processes in the agent serve one single goal: to max-
imize the overall profit generated by this agent in a game. With respect to
tactical decisions related to sales, identified probabilities for current or future
economic regimes are used in order to determine daily sales quotas. Using
a configurable chain of evaluators [7], enabled by the Excalibur framework,
the price likely to be accepted by the desired proportion of the customers
(the sales target) is estimated. In order to compensate for the uncertainty in
the generated predictions, a slight variability is added to the offered prices
by generating prices in an interval around the determined price (interval
randomization). The inputs for this product pricing process (a sales quota
and a function representing the probability of customers to accept an offer)
depend on the evaluators used. The software is designed to select the right
configuration of evaluators in the right situations.
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1.2 Goal

The goal of this thesis is to improve the product pricing process of the
MinneTAC agent in order to maximize profits. In the current approach,
the curve representing the probability of customers to accept an offer for a
specified price on an arbitrary game day is approximated using an estimation
of the median price and slope of the curve in the median of that day. This
acceptance probability is subsequently used for determining the price to be
offered in order for the sales agent to sell its desired quota for a specific
product. This approach implies the loss of possibly crucial data on the
range and distribution of prices in the observed time frame, whereas these
characteristics vary per economic regime.

The regime model implemented in the MinneTAC agent can be used
to predict prices, price trends, and price distributions for a given horizon.
However, these price distribution estimations are not exploited yet in the
product pricing process, as these distributions tend to be fairly static and
general, because no factors other than a mean price estimate are accounted
for. In order for the regime model’s price distributions to be useful in the
daily product pricing process, these price distributions need to be adapted
to better approximate the real price distribution by incorporating additional
information. An on-line update mechanism accounting for market responses
to product pricing behavior resulting from the model is crucial as well.

Hence, the focus in this thesis is on the estimation of an arbitrary day’s
price distribution – given that day’s regime probabilities – and subsequently
determining the customer offer acceptance probabilities using this distribu-
tion, in order to improve MinneTAC’s product pricing process. The main
concern in this respect is how to incorporate additional information, such
as information on leadtimes associated with relevant RFQs, and feedback
through market responses in the process.

1.3 Research Questions

The main question to be answered in this thesis is:

How can estimating price distributions using economic regimes in the
context of product pricing contribute to profit maximization?

In order to be able to properly answer this question, some sub questions
need to be answered. The main question of this research can be divided into
the following sub questions:

1. How can the relation between price distributions and the daily product
pricing process be modeled?
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2. In what way can daily product pricing using regime-based price dis-
tribution estimations be applied in real-time?

3. How can price distribution estimation, and hence product pricing, be
adapted to dynamic market characteristics?

1.4 Methodology

In order to answer the questions posed in Section 1.3 and achieve the objec-
tive defined in Section 1.2, the methodology as discussed here is used.

First of all, the application of regimes in related work, as well as accep-
tance probability estimation and product pricing strategies should be looked
into. Furthermore, the specifications of the TAC SCM game as well as the
characteristics of the MinneTAC trading agent considered in this thesis are
to be looked into. This should provide insight in constraints posed by the
environment the agent considered in this thesis is designed for, as well as in
the processes this research aims to improve. The literature survey should
especially cover the economic regime identification process as well as the
product pricing process used in the MinneTAC trading agent.

Then, historical game data should be analyzed in order to determine
how exactly product pricing can be related to price distributions. Because
the focus in this thesis is on adapting regime-based price distributions in
order for them to be useful in the daily product pricing process, a subset
of the historical game data, containing data available on-line to the agent,
is to be considered in the subsequent translation into an on-line applicable
real-time daily product pricing approach.

Furthermore, the proposed improvements to MinneTAC’s process of
product pricing are to be assessed. To this end, the quality of price dis-
tribution estimations can be evaluated using historical game data in the
first place. However, the improvements should be tested in real game situa-
tions as well. Therefore, the proposed improvements are to be implemented
in Java, in order to assess the in-game performance of these adaptations,
compared to the approach currently used. In a controlled environment, the
overall profit the agent generates in a game using the product pricing ap-
proach proposed in this thesis can then be compared to the profit generated
when using the current approach. The extent to which sales targets are
realized could also be assessed.

For each TAC SCM game run, a game server logs a vast amount of
data, including data on sales, procurement, and so on. The dataset to
be used in this research concerns the sales part of the agent, i.e. it only
contains information about transactions between customers and agents and
some additional (banking) information about these agents. The dataset is
extracted from game data of the TAC SCM 2007 Semi-Finals and Finals
games run on the tac5 [32] (games 9321 through 9328) and tac3 [31] (games
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7306 through 7313) servers respectively. The dataset also contains game
data extracted from the TAC SCM 2008 Semi-Finals and Finals run on the
tac02 [41] (games 761 through 769) and tac01 [40] (games 792 through 800)
servers respectively. The test set considered in this research consists of game
data of the first two games and the last game of each set of games run on
a server. All other data is part of a training set, which is used for analysis
purposes.

1.5 Thesis Structure

This thesis is structured as follows. In Chapter 2, the application of regimes
in general, acceptance probability estimation, and product pricing strate-
gies are discussed, as well as the TAC SCM game specifications and the
sales component of the MinneTAC agent. The connection of price distri-
butions to the product pricing process in the TAC SCM game is modeled
in Chapter 3. This model is translated into an on-line product pricing ap-
proach in Chapter 4, whereas adaptivity is introduced in Chapter 5. The
performance of the proposed approach is evaluated in Chapter 6. Chapter 7
discusses the research results. Finally, conclusions are drawn in Chapter 8.
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Chapter 2

Pricing Decisions in the TAC
SCM Game

Before an approach can be proposed for adapting regime-based price dis-
tribution estimations in order for them to be applicable in a TAC SCM
product pricing process, product pricing in general is to be looked into.
This is done in Section 2.1. Because the newly proposed product pricing ap-
proach is to be developed for and tested in the TAC SCM game, Sections 2.2
and 2.3 provide insight in the characteristics of this game and TAC SCM
sales strategies. Section 2.4 summarizes the findings.

2.1 Product Pricing

An approximation of the probability of acceptance of offers can be used
in the product pricing process, as proposed in [8]. The proposed analysis
of offer prices and their associated estimated probabilities of acceptance is
rather intuitive in a product pricing process, because this can help a seller
assessing how sales targets can be met. Therefore, Section 2.1.1 discusses
how these acceptance probabilities can be approximated. However, more
aspects can be taken into account when pricing products. This is discussed
in Section 2.1.2.

2.1.1 Modeling the Probability of Acceptance

In [8], a competitive economy is considered, in which a product is differen-
tiated on multiple attributes. The environment is constrained by limited
visibility; sellers only have limited knowledge about market parameters.
Products are priced using a dynamic pricing algorithm which considers an
estimated distribution of the buyer reservation price for products of a seller.
Inverting the cumulative form of this distribution yields a function express-
ing the proportion of buyers willing to pay the seller a specified price, which
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can also be interpreted as the probability that a customer accepts an offered
price. This function can subsequently be used to determine the price ex-
pected to yield a specified sales target (expressed as the desired proportion
of customers accepting the offered price).

The distribution underlying customer offer acceptance probabilities con-
sidered in [8] depends on market characteristics such as competing sellers’
prices and buyers’ purchase preferences. In the observed time frame, these
characteristics are assumed to be constant. The distribution parameters are
unknown and should be estimated. After each interval, the distribution pa-
rameters are updated, hereby taking into account the extent to which the
sales target has been fulfilled.

Another way of modeling acceptance probabilities is by using linear re-
gression on data points representing recent prices offered, along with the
resulting acceptance rate [29]. The distributions of customer acceptance
probabilities could also be trained off-line [4]. Another option is to try to
model the decision function of the accepting entities, based on their decision
histories, using for example Chebychev polynomials [30].

2.1.2 Accounting for Other Aspects

Related work on product pricing suggests some other aspects beside straight-
forward acceptance probability estimations as discussed in Section 2.1.1 to
be taken into account as well when pricing products. For instance, current
and/or future offers of other suppliers (outside options) could be consid-
ered [20, 19]. In [35], outside options are considered as well. Here, a dy-
namic product pricing model is proposed in which the price change of the
product itself as well as the relative price of competing products is quanti-
fied in a price elasticity. Using scenario analysis for distinguishing between
various situations of price elasticity, the pricing policy expected to maximize
revenue over the sales horizon is selected using a genetic algorithm. These
results indicate that relating product pricing strategies to market conditions
can be useful for profit maximization.

When determining an optimal product pricing strategy, the effect of
the product prices over time inherent to this strategy could also be taken
into account. Through expensiveness, as perceived by the customers, price
history tends to influence current demand. Higher past prices yield lower
perceived current expensiveness, which results in higher demand [33].

Another product pricing approach taking into consideration customer
valuations is proposed in [42]. In the context of English auctions, the goal in
this approach is to determine the optimal reservation price a seller should set,
given an unknown distribution of private values of the bidding parties. The
proposed framework is based on the idea that bids occurred in an auction
are not equal to, yet related to each bidder’s private value for the auctioned
good.
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Product pricing strategies can influence overall profits in another way:
the impact on market shares differs per type of price change [36]. This
indicates that when pricing products, the (indirect) impact on overall profits
should be accounted for; temporary price changes cause temporary market
share changes, whereas structural changes in prices as well as evolving prices
have permanent effects on market shares and hence profits. Firms should
also incorporate anticipations of their competitors’ reactions to their pricing
policy in the process of determining the optimal product pricing policy.

Finally, in case of known demand and uncertain supply, a responsive pric-
ing policy, in which the retail price is determined after observing the realized
supply yield, is shown to result in a higher expected profit than a pricing
policy in which the realized supply yield is not taken into account [38]. This
indicates, that modeling (expected or observed) supply-side behavior in the
product pricing process could contribute to profit maximization.

2.2 Details on the TAC SCM Game

As stated in Section 1.2, this thesis specifically focuses on the product pricing
process in the context of the TAC SCM game. This game considers a supply
chain for PCs, which consists of customers, traders and suppliers. The 16
PC types available through this supply chain can be classified into a high-
range, mid-range, and low-range market segment and vary in components
used. Each product consists of four components, each of which has multiple
variants and suppliers. In the TAC SCM game, six traders compete with
each other in a sales market for customers and in a procurement market
(consisting of eight suppliers) for computer components, the latter of which
are used in assembling the PCs requested by the customers. The agent with
the highest bank account balance at the end of the game wins the game.

2.2.1 Game Constraints

A typical TAC SCM game has a runtime of 220 days, where each day has a
duration of 15 seconds. Suppliers and customers are simulated by the game,
but the traders are software agents to be developed by the competing teams.
During a TAC SCM game, human intervention is not allowed. Banking,
production and warehousing services are provided.

Some costs in the game can be associated with the banking, production,
and warehousing services. Inventory storage costs are randomly chosen at
the beginning of the game, are equal for all agents, and remain fixed through-
out the game. As each trader starts with no inventory and an empty bank
account, traders are likely to be needing to loan money for creating some
initial inventory. Therefore, the trader’s bank account balance may be nega-
tive, in exchange for interest, charged on a daily basis. Positive bank account
balances however are rewarded with daily savings interest being paid.
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For each TAC SCM game run, a game server logs a vast amount of data,
including data on sales, procurement, and so on. However, not all data is
publicly available to the trading agents during a TAC SCM game, as this
would be rather unrealistic. In reality, a detailed and complete overview of
the market is nearly impossible. On-line available information is the only
information visible to a trading agent during a game and thus the only
information which can be directly incorporated into all kinds of decision
making processes. Other data could of course be approximated.

The data always available to the agent during a game consists of the re-
ceived RFQs and orders of the agent itself (up until the current game day),
the preceding day’s minimum and maximum price of each PC type, and
market reports issued every 20 game days [6]. These market reports include
four component type supply reports containing information about the ag-
gregate quantities shipped by all suppliers, the aggregate quantities ordered
from all suppliers, and the mean price per stock keeping unit (SKU) for
all component types (CPU, memory, hard disk, and motherboard) ordered.
Market reports also contain information on supplier production capacity
and customer demand data, including request volume, order volume, and
average price per PC type.

2.2.2 Customers

Every game day, customers issue RFQs for finished computers, on which
traders can bid. In these RFQs, a randomly chosen type of computer,
quantity, due date, reservation price, and a randomly chosen penalty for
late delivery are specified. Subsequently, customer demand is generated by
customers selecting from quotes thus submitted by traders. The customer
demand per market segment is in fact drawn from a Poisson distribution,
which has a reverting random walk as its input.

2.2.3 Traders

The requested products are subsequently assembled by the traders using
components procured from suppliers. Hereby, the four components of each
assembled PC are procured from eight suppliers. Table 2.1 [6] presents an
overview of all considered PC types and the components each type consists
of. These components are further specified in Table 2.2 [6]. A trading agent
may send up to five RFQs per day per supplier for each of the two products
offered by that supplier. In case of an order, a trader is immediately billed
for a portion of its order’s costs.

Traders are all endowed with an identical factory with a limited-capacity
assembly cell, in which any type of PC can be assembled. Furthermore,
each trader is equipped with an identical warehouse, in which components
as well as finished PCs can be stored. In order to properly operate this
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factory, a trader has to create daily production schedules for determining
how to allocate available component inventory and factory capacity to the
production of PCs. On a daily basis, a trading agent must also decide which
RFQs to bid on, which components to (attempt to) procure, and which
supplier offers to accept. Finally, trading agents must create daily delivery
schedules. These schedules define which assembled PCs are to be shipped
to which customers.

Orders are due to be delivered on the date specified in the negotiated
contracts, hereby taking into account that deliveries by definition take up
one day. Late deliveries lead to penalties and even order cancellations in
case deliveries are more than five days late. All pending orders after the
last game day are charged the remaining penalty as well. All these tasks
should be performed while serving one single goal: to maximize final bank
account balance over a game. The major challenge in this respect is the
limited visibility of the market environment; little data is available on-line
to a trading agent.

Product id Market segment Components
1 Low-range 100, 200, 300, 400
2 Low-range 100, 200, 300, 401
3 Mid-range 100, 200, 301, 400
4 Mid-range 100, 200, 301, 401
5 Mid-range 101, 200, 300, 400
6 High-range 101, 200, 300, 401
7 High-range 101, 200, 301, 400
8 High-range 101, 200, 301, 401
9 Low-range 110, 210, 300, 400

10 Low-range 110, 210, 300, 401
11 Low-range 110, 210, 301, 400
12 Mid-range 110, 210, 301, 401
13 Mid-range 111, 210, 300, 400
14 Mid-range 111, 210, 300, 401
15 High-range 111, 210, 301, 400
16 High-range 111, 210, 301, 401

Table 2.1: Specification of all PC types considered in the TAC SCM game.

Component id Supplier Description
100 Pintel Pintel CPU, 2.0 GHz
101 Pintel Pintel CPU, 5.0 GHz
110 IMD IMD CPU, 2.0 GHz
111 IMD IMD CPU, 5.0 GHz
200 Basus, Macrostar Pintel motherboard
210 Basus, Macrostar IMD motherboard
300 MEC, Queenmax Memory, 1 GB
301 MEC, Queenmax Memory, 2 GB
400 Watergate, Mintor Hard disk, 300 GB
401 Watergate, Mintor Hard disk, 500 GB

Table 2.2: Specification of all components considered in the TAC SCM game.
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2.2.4 Suppliers

All suppliers provide two components and every component type is provided
by two suppliers. Suppliers are revenue maximizing entities preferring to
serve traders with a good reputation on a make-to-order basis. A supplier’s
production capacity is determined on a daily basis using a random walk. In
case the production capacity does not enable due dates to be met, late orders
are given priority, whereas excess production capacity can be used to produce
already outstanding future orders. However, orders are not shipped before
their due dates. In case a supplier is not be able or willing to supply the
entire quantity requested by the due date, this supplier issues two amended
offers, each of which relaxes either quantity or due date; a partial offer
(embodying the delivery of only part of the quantity on the due date) and
an earliest complete offer (proposing the delivery of the entire quantity after
the due date).

2.3 Making Sales Decisions

In the TAC SCM game, trading agents must make a number of decisions on
a daily basis, as discussed in Section 2.2.3. With respect to sales, these deci-
sions can have a tactical nature (e.g., determining product pricing strategies
with respect to bidding on customer RFQs) as well as a strategic nature (e.g.,
product mix decisions – which translate into RFQ selection behavior – and
production planning).

Due to the specific characteristics of the TAC SCM game environment
detailed in Section 2.2, some research results in related work on product
pricing presented in Section 2.1 may not be directly applicable in the con-
text of the TAC SCM game. For instance, in [33], it is argued that sellers
must be aware of the fact that customer demand depends on price history,
quantified in perceived expensiveness. However, this extent of rationality
is not modeled in the TAC SCM game, where customer demand is ran-
domized (see Section 2.2.2). Also, in [8], the modeled price distribution is
considered to be constant in the observed time frame, whereas price dis-
tributions vary with the market characteristics within the TAC SCM game
environment [15, 16, 17]. The customer offer acceptance probability approx-
imation (and hence the product pricing process) should therefore be related
to market conditions, as also suggested in [35]. However, market conditions
are hard to detect in the TAC SCM game due to limited visibility.

Hence, this section discusses how to make sales decisions in the TAC
SCM game. An overview of mechanisms underlying the sales related decision
process in the context of the TAC SCM game as proposed in recent literature
is presented in Section 2.3.1. The strategy used by the MinneTAC agent is
elaborated in Section 2.3.2.
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2.3.1 TAC SCM Sales Strategies

With respect to the sales processes, several strategies are used by agents
developed for the TAC SCM game. The so-called Dummy agent is a fairly
non-complex agent that comes with the TAC SCM game and is used as
default competitor. With respect to sales, this agent only bids on those
RFQs, for which there is enough time to procure, manufacture, and deliver
the requested product. Furthermore, the agent does not want the reservation
prices to be too low compared to the production costs. For the selected
RFQs, prices are offered a random amount under the reservation prices,
depending on factory utilization level (the higher the utilization, the higher
the offered prices).

More complex approaches have been proposed in literature. For instance,
TacTex [29] predicts demand (using a Bayesian approach introduced by the
DeepMaize team [18]) and offer acceptance (using linear regression) and
adapts these offer acceptance estimations to its opponents’ behavior. An-
other approach is to directly model the behavior of the competing agents
and thus predict their offers [19]. Here, a genetic programming technique
reveals a priori the attributes most indicative of the price offered by an
arbitrary competitor. This information is subsequently used in order to
construct an artificial neural network aiming to determine this competitor’s
offered price. The SouthhamptonSCM [12] agent uses fuzzy reasoning for
daily price adaptation. For predicting whether a particular price for a par-
ticular product will be accepted by a customer, the CMieux agent [4] uses
probability distributions trained off-line. These distributions are used in
solving a continuous knapsack problem for selecting offers that maximize
expected revenue. Here, a knapsack is to be filled with items (RFQs), the
value of each of which considers the probability distributions for orders to
be accepted for the specified price.

On the other hand, some TAC SCM trading agents use less complex
techniques for their sales decisions. One of those agents is the Botticelli
agent [3]. This trading agent uses a hill climbing heuristic for determining
on what customer RFQs to bid. PhantAgent [37] does not use complex
optimization techniques either. Simple heuristics are used for determining
what to sell for what price.

In the context of using simple heuristics instead of more complex ap-
proaches when pricing products, it is argued in [37] that exact acceptance
probabilities for given prices are not very relevant and an average bid ac-
ceptance probability is used, hereby assuming all six competing agents to
have an equal market share on average. These assumptions are in contrast
with the MinneTAC approach, in which exact acceptance probabilities are
considered to be very valuable in the theoretical foundations of the economic
regime model used in MinneTAC, as discussed in Section 2.3.2.
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2.3.2 The MinneTAC Approach

Predicting sales prices is an important part of the decision process of trad-
ing agents [15, 16, 17]. This also holds for MinneTAC decision making
processes. The estimated sales prices used in the MinneTAC agent originate
from microeconomic conditions, which are characterized for each individual
market segment – economic regimes are identified and predicted. The use of
regimes is motivated by recent research showing that the ability of decision
makers to correctly identify the current regime and predict the onset of a
new regime is crucial in order to prevent over- or underreaction to market
conditions [23].

A regime can be considered to be a set of conditions, characterizing the
state of a system or process. Regimes provide an intuitive way of condi-
tioning behavior in different scenarios. In literature, several approaches to
regime identification and prediction have been proposed in different con-
texts. For instance, in the context of using real-time signals to determine
the state of the plasma used in a nuclear fusion reactor, a Mamdani type
of fuzzy logic system [22] and support vector machines have been consid-
ered [27]. The power of fuzzy techniques in the context of regimes has also
been demonstrated in [11]. Furthermore, a Markov switching approach to
modeling regime switches as proposed by Hamilton [10] is used in many ap-
proaches to predicting regime switches in electricity markets. Whereas the
original Hamilton model considers two regimes, three regimes are consid-
ered in [13]. In other approaches, the Hamilton model is modified in order
to support transition probabilities varying over time [2, 26].

In the MinneTAC agent, the regime of an arbitrary game day d for
good g can be identified using regime probabilities; the regime having the
highest probability, given the estimated normalized mean price of that day
is assumed to be the current dominant regime. This price estimate is a
smoothed normalized mid-range price, which is the average of the exponen-
tially smoothed normalized minimum and maximum price, both of which
are smoothed using double exponential smoothing (Brown linear exponen-
tial smoothing). To this end, prices are first of all normalized using

pdg =
preal
dg

cman
dg +

∑$g
j=1 c

nom
dgj

, (2.1)

where on game day d for good g, pdg is the normalized price, preal
dg is the real

price, cman
dg is the manufacturing cost, $g is the number of parts needed to

make good g, and cnom
dgj is the nominal cost of part j of good g on day d.

Equations (2.2) through (2.4) show how to smooth a day’s normalized
minimum price for a good pmin

dg using double exponential smoothing with
smoothing factor β = 0.5, the result of which is referred to as p̃min

dg . Here,
smoothing is done using two components, the first of which consists of a
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linear combination of a new observation and the previous first component.
The second component is a linear combination of the first component and
the previous second component. Then, a linear combination of the two
components yields the smoothed price. The same procedure is applied to
the normalized maximum price pmax

dg as well, which results in p̃max
dg . Finally,

the exponentially smoothed normalized price of game day d, p̃dg is defined
as shown in (2.5).

p̃min′
dg = βpmin

dg + (1− β)p̃min′

(d−1)g, (2.2)

p̃min′′
dg = βp̃min′

dg + (1− β)p̃min′′

(d−1)g, (2.3)

p̃min
dg = 2p̃min′

dg − p̃min′′
dg , (2.4)

p̃dg =
p̃min
dg + p̃max

dg

2
. (2.5)

In the TAC SCM game, price information is only available up until the
preceding game day. Hence, on game day d, the most up-to-date mean
price approximation for good g is p̃(d−1)g. This can be used as input for
an off-line trained model which predicts the mean price of day d using ex-
ponential smoothing prediction of p̃dg and subsequently returns the regime
probabilities for day d. As an economic regime is regarded as a distribu-
tion of prices over sales volume, acceptance probability densities associated
with given product prices are implicitly incorporated in this model. These
probabilities are in fact inverse cumulative price density functions.

In the training phase, a product-level price density function has been
modeled on historical normalized order price data using a Gaussian Mixture
Model with a sufficient number of Gaussians, reflecting a balance between
prediction accuracy and computational overhead. Clustering these price
distributions over time periods (using the k-means algorithm [21]) yielded
distinguishable statistical patterns, referred to as economic regimes. When
on game day d the exponentially smoothed prediction of p̃dg for good g
is supplied to the model, the individual Gaussians in the model are all
activated to a certain extent, thus generating an expected price distribution.
Subsequently calculating all clusters’ normalized price density enables the
regime probabilities, given prices, to be determined.

The behavior of the MinneTAC agent depends on expected future regimes
as well. With respect to regime prediction, for short-term prediction for
tactical decision making, the agent uses a Markov prediction process based
on the last normalized smoothed mid-range price, hereby utilizing Markov
transition matrices created off-line by a counting process over past games.
For long-term prediction for strategic decision making, the MinneTAC agent
uses a Markov correction-prediction process, where predictions are based on
all normalized smoothed mid-range prices up until the previous day instead
of the last normalized smoothed mid-range price only.
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Figure 2.1: Simplified schematic overview of the current MinneTAC sales
process configuration for an arbitrary product on an arbitrary game day.

In the Markov models, three basic states and two regimes character-
ized by extreme conditions are considered. These economic regimes can
be extreme scarcity, scarcity, a balanced situation, oversupply, or extreme
oversupply. Regimes can also be predicted based on exponentially smoothed
price predictions taking into account exponentially smoothed price trends.

When current or future regime probabilities have been determined, prod-
ucts are priced based on the likelihood of customer acceptance of these prices,
such that a sales quota is fulfilled. These processes of regime identification,
regime prediction, and product pricing, as well as other processes in the
MinneTAC trading agent, are supported by a configurable chain of evalua-
tors [7]. The software selects the optimal configuration of evaluators.

In the 2008 sales process configuration, depicted in Figure 2.1, price
trends are estimated by the regime model. The median price of a product
is estimated using a price-following approach implementing a Brown linear
exponential smoother. These trends, combined with the estimated median,
are used in the allocation process, where sales quotas are generated based
on – among other things – these price predictions. The curve represent-
ing the acceptance probability is approximated using the estimated median
price and the curve’s slope in that median, estimated using exponentially
smoothed prices. This acceptance probability is used for determining the
price to be offered in order for the sales agent to sell its desired quota.

In order to compensate for the uncertainty in generated predictions, in-
terval randomization is applied to offer prices, which adds a slight variability
to these prices. The estimated median is corrected using feedback derived
from the desired acceptance probability and the associated true acceptance
probability observed the next day. The error is computed as the difference
between the optimized offer price and the actual price. The latter price is
derived by solving the acceptance probability estimate to the observed prob-
ability. A major drawback here is the assumption that customer feedback
is in response to the optimized offer price, whereas this feedback in fact is
in response to a price randomized in an interval around this price.
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2.4 Summary

According to literature discussed in this chapter, the probability of accep-
tance of prices offered by sellers can be modeled and trained off-line. An-
other option is to model acceptance probabilities on-line using for example
linear regression or by explicitly modeling and learning the decision function
and/or behavior of buyers. Another approach is to base acceptance proba-
bility estimations on the (observed or estimated) inverse of the cumulative
distribution of prices customers are willing to pay.

In order for the probability of acceptance thus estimated to be useful
in product pricing, some other factors need to be taken into consideration.
First of all, product pricing strategies could be related to market conditions,
outside options, or maybe even other additional information. Furthermore,
modeling (expected or observed) supply-side behavior in the product pricing
process could contribute to profit maximization. When modeling behavior
of bidding parties, bids should not be considered equal to, yet related to
each bidder’s private value for the considered good.

Within the TAC SCM game, there are no daily direct indications of
market conditions, other than observed daily minimum and maximum order
prices for a product. Therefore, most product pricing approaches proposed
for the TAC SCM game just model the behavior of customers and com-
petitors in order to determine the optimal price for a product. MinneTAC
on the other hand does consider market conditions in the form of economic
regimes. However, this information is not directly linked to the product pric-
ing process yet; a straightforward price-following approach, only accounting
for the available order price information, is used for estimating acceptance
probabilities instead. This implies that, based on the findings in literature,
MinneTAC’s product pricing process could be improved when regime infor-
mation (as well as other additional information) is linked to the estimation
of acceptance probabilities.
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Chapter 3

Realization of Product Prices
in the TAC SCM Game

As MinneTAC’s regime model internally considers price distribution estima-
tions, these estimations could be connected to the product pricing process
in order for regime information to be utilized in this process, as suggested
in Chapter 2. Therefore, the connection of price distributions to the prod-
uct pricing process in the context of the TAC SCM game is modeled in
this chapter. To this end, Section 3.1 discusses how the general product
pricing process works in the TAC SCM game. Section 3.2 expands on the
characteristics of the associated price distributions. In Section 3.3, price
distributions are connected to the product pricing process by modeling the
probabilities that customers accept prices offered for their RFQs. These ac-
ceptance probability estimations can be used in the product pricing process
(see Chapter 2). Finally, the findings are summarized in Section 3.4.

3.1 From Requests to Orders

In the TAC SCM game, on each of 220 game days, customers issue RFQs, in
which they request specific quantities for any of the 16 available PC types.
Customers hereby express the maximum price they are willing to pay for
this order through a reservation price. Several customers may request some
quantity of a product, so each game day, multiple negotiation processes can
take place for one PC type. In such a negotiation process, traders may
respond to a customer’s RFQ by submitting their offers. The customer then
places an order with the trader offering at the lowest price, if this minimum
offer price does not exceed the customer’s reservation price.

Hence, in a typical TAC SCM game, the number of offers placed by
traders (and thus the number of offer prices) for a specific product may
amount to six times the number of RFQs issued by customers for that prod-
uct, in case all traders respond to all RFQs issued for the considered product.
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Figure 3.1: Distributions of the number of RFQs, offers, minimum offers,
and orders per product per day, aggregated over all games in the training
set.

The minimum offer prices per product form a subset of all offer prices. The
size of this subset equals at most the number of RFQs per product, as each
negotiation process – induced by a customer’s RFQ – is associated with its
own minimum price. In turn, the prices of the orders resulting from these
minimum offer prices form a subset of the latter prices, as best offers do not
necessarily result in orders due to the reservation price constraint.

Figure 3.1 visualizes the distributions of the number of RFQs, offers,
minimum offers, and orders per product per day, aggregated over all games
in the training set. A more detailed statistical description of these distribu-
tions can be found in Table A.1 in Appendix A. This table shows the mean
and standard deviation of the distribution of the number of RFQs, offers,
minimum offers, and orders per product per day on game level. On average,
the number of RFQs per product per day equals about 11. The number of
offers generated in reaction to these RFQs apparently roughly equals 34 per
product per day, whereas the number of minimum offers only equals about
10. Surprisingly, the average number of orders is even lower: 9.

The latter observation implies that in practice, for some RFQs holds
that none of the traders bidding on such an RFQ offers a valid price (a price
not exceeding the customer’s reservation price associated with that RFQ).
Tables A.2 and A.3 in Appendix A illustrate the magnitude of this problem.
The irrational pricing behavior occurred in the TAC SCM 2007 Semi-Finals
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and Finals games and was mainly caused by one trading agent. Per game in
the training set, up to about 10% (3% on average) of all offer prices is invalid
and would never be accepted by a customer. This irrational pricing behavior
can cause over 20% (5% on average) of all active negotiation processes not
to result in an order. Invalid prices exhibit less distortion with respect to
their associated reservation prices than valid prices do. This distortion can
be quantified by the standard deviation of observations with respect to their
benchmark values; the root mean squared deviation (RMSD):

RMSD =

√∑Ω
ω=1 (x̂ω − xω)2

Ω
. (3.1)

In (3.1), x̂ω is an observation (in a set of Ω observations), the associated
benchmark value of which is xω. The RMSD values of normalized prices
from their associated normalized reservation prices in Tables A.2 and A.3
indicate that invalid pricing behavior is overall not relatively more extreme
than valid pricing behavior. This implies that the pricing behavior of agents
placing invalid offers is more or less normal, except for that these agents
sometimes place offers which would never be accepted by a customer.

3.2 Price Distributions in the TAC SCM Game

The observations exhibited in Section 3.1 imply that for an arbitrary sample
of offered prices, the distribution of prices associated with placed orders is
related to the distribution of all offer prices through the distribution of all
valid offer prices. The distribution of the minimum valid offer prices is
equal to the distribution of the order prices. In order to facilitate a better
understanding of the characteristics of price distributions in the TAC SCM
game, this section discusses the most crucial features of the way prices are
typically distributed in the TAC SCM game.

Figure 3.2(a) depicts the mean price associated with orders for a low-
range, mid-range, and high-range market segment product in a typical TAC
SCM game. Clearly, product price distributions can be very distinctive
between market segments. However, within a market segment, price distri-
butions may also differ per product, as shown in Figure 3.2(b). Hence, price
distributions should be considered on product level. Figure 3.2 also suggests
a high volatility in distribution characteristics; distributions apparently are
not very stable over time. This observation is supported by the results of an
analysis of variance (ANOVA) in Table 3.1, which assesses for a typical low-
range, mid-range, and high-range market segment product the probabilities
of multiple subsequent order price samples to be drawn from a population
with the same mean. The initial probability of similar order price distribu-
tions within a window of 2 periods, which on average approximately equals
a mere 20%, turns out to decrease fast when window sizes increase.
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Figure 3.2: Normalized mean order prices for product 1, 3, and 7 (low-range,
mid-range, and high-range market segment products, respectively) over time
in a typical TAC SCM game (7308tac3) are depicted in (a), whereas (b)
visualizes normalized mean order prices for product 1, 2, 9, 10, and 11 (low-
range market segment products) over time in this game.
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Product 1 Product 3 Product 7
Window Mean Stdev Mean Stdev Mean Stdev

2 0.2009 0.2896 0.2014 0.2835 0.1922 0.2829
3 0.1162 0.2319 0.1209 0.2310 0.1070 0.2200
4 0.0725 0.1828 0.0818 0.1947 0.0689 0.1781
5 0.0467 0.1454 0.0581 0.1663 0.0471 0.1473
6 0.0320 0.1206 0.0424 0.1427 0.0334 0.1243
7 0.0232 0.1024 0.0302 0.1170 0.0254 0.1087
8 0.0173 0.0911 0.0224 0.0983 0.0186 0.0909
9 0.0120 0.0756 0.0167 0.0831 0.0136 0.0750

10 0.0089 0.0656 0.0126 0.0712 0.0103 0.0652

Table 3.1: Statistics on the probabilities of a distribution of order prices
to be constant within a window (sizes ranging from 2 to 10) for product 1,
3, and 7 (low-range, mid-range, and high-range market segment products,
respectively) for all days in all games in the training set.

Figure 3.3 depicts a typical distribution of several types of prices related
to a product on a TAC SCM game day: offer prices, minimum offer prices,
valid offer prices, and order prices. Offer prices and valid offer prices appear
to be nicely distributed, but due to data sparsity, distributions of minimum
offer prices and especially order prices are hard to estimate. Furthermore,
the dispersion of prices in the latter two distributions tends to be rather
small (often close to or equal to zero), as depicted in Figure 3.4.

3.3 Utilizing Price Distributions in Estimations of
Customer Offer Acceptance Probabilities

Taking into consideration the observations in Section 3.2, a mathemati-
cal framework for determining the customer offer acceptance probabilities,
based on estimations of order price distributions, can be constructed. An
order price distribution should be equal to the distribution of the minimum
valid offer prices and hence is directly linked to the distribution of all valid
offer prices. However, the combination of data sparsity and low dispersion of
prices implies that an order price distribution is likely to have a weaker link-
age to the distribution of all valid offer prices, when fit directly on available
order price data. Hence, distributions of order prices cannot be accurately
determined by directly fitting on the available data on order prices.

As data sparsity prevails due to the fact that window sizes cannot be
enlarged in order to increase the sample size (price distributions do not tend
to be stable over time), order price distributions are derived as the distri-
butions of minimum valid offer prices. The robustness thus introduced may
result in this approach to be preferable over other approaches involving di-
rect estimation of realized prices or estimation of individual competitors’
offers, such as proposed in [19]. Even more, incorporating offer price dis-
tributions (and the distributions of their minima) rather than individual
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Figure 3.3: Distribution of normalized offer prices, minimum offer prices,
valid offer prices, and order prices for product 14 on day 28 of a typical
TAC SCM game (7308tac3).
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prices, valid offer prices, and order prices for product 14 over time in a
typical TAC SCM game (7308tac3).
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offers into the framework can compensate for a drawback associated with
the latter approach, in which offer prices of competitors are predicted even
though these competitors may not actually bid. This structurally causes the
agent’s offers to be relatively low (i.e. lower than necessary in order to win
the bidding process). When reasoning in terms of offer price distributions
rather than individual offers, the phenomenon of taking into account non-
existing offers is better accounted for, as the offer price distributions are
formed by all offers actually done rather than offers all competitors would
make, should they actually bid.

This section continues with the formalization of the proposed approach in
Section 3.3.1. Subsequently, a distribution appropriate for use in the context
of the TAC SCM game is incorporated into this framework in Section 3.3.2.

3.3.1 General Framework

Let n randomly sampled valid normalized prices p offered for an arbitrary
RFQ be identically and independently distributed in accordance with a dis-
tribution f (p; θ) and a cumulative distribution F (p; θ), with 0 < p < 1.25
and θ a vector of unknown parameters. For such a distribution, the minimum
valid offer price (and thus the order price) p is distributed as follows [14]:

fp
(
p; θ
)

= n
(
1− F

(
p; θ
))n−1

f
(
p; θ
)
, 0 < p < 1.25, n > 0, (3.2)

Fp
(
p; θ
)

= 1−
(
1− F

(
p; θ
))n

, 0 < p < 1.25, n > 0. (3.3)

Let ndgr randomly sampled valid normalized prices offered on game day
d for product g for RFQ r (pdgr1, ..., pdgrndgr) be identically and indepen-
dently distributed and have an associated order price p

dgr
. Furthermore,

let t be the size of the observed time frame (i.e. the number of repeated
daily observations of valid offered prices), s the size of the set of considered
products, and bdg the number of bidding processes started for product g on
game day d. Then, the joint distribution of order prices in an s-sized set in
the t-period sample can be formulated as

fp

(
p

111
, ..., p

tsbts
; θ
)

=
t∏

d=1

s∏
g=1

bdg∏
r=1

ndgr

(
1− F

(
p
dgr

; θ
))ndgr−1

f
(
p
dgr

; θ
)
,

0 < p
dgr

< 1.25, ndgr > 0. (3.4)

The unknown parameters θ of the distribution of offer prices incorporated
in this framework can be estimated by minimizing L (θ; ~p), the negated log-
likelihood function of these parameters for a sample of prices ~p – in this case
the observed order prices (p

111
, ..., p

tsbts
) – as defined in (3.5).
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L
(
θ; p

111
, ..., p

tsbts

)
=

t∑
d=1

s∑
g=1

bdg∑
r=1

− ln
(
ndgr

(
1− F

(
p
dgr

; θ
))ndgr−1

f
(
p
dgr

; θ
))

,

0 < p
dgr

< 1.25, ndgr > 0. (3.5)

However, due to the sparseness of data on order prices, the unknown
parameters θ could best be estimated by fitting the distribution underlying
all prices offered for s products in t periods on the associated sample of
observed valid offer prices (p1111, ..., ptsbtsntsbts ), which is typically larger than
the associated sample of order prices (see Section 3.1). Assuming all prices
in the sample to be identically and independently distributed in accordance
with the distribution of offer prices f (p; θ), the joint distribution of all valid
offer prices in an s-sized set of product types in a t-period sample can be
formulated as

f
(
p1111, ..., ptsbtsntsbts ; θ

)
=

t∏
d=1

s∏
g=1

bdg∏
r=1

ndgr∏
i=1

f (pdgri; θ) ,

0 < pdgri < 1.25. (3.6)

Given (3.6), the parameters θ of the distribution from which all offer
prices are assumed to be originating can be estimated by minimizing the
negated log-likelihood function of these parameters for a sample of observed
offer prices (p1111, ..., ptsbtsntsbts ). This can be done by applying

L
(
θ; p1111, ..., ptsbtsntsbts

)
=

t∑
d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

− ln (f (pdgri; θ)) ,

0 < pdgri < 1.25. (3.7)

For an RFQ r for product g at game day d, the probability that a
customer will place an order with an agent, given its offer price p, P (o|p),
can be determined using the cumulative density function of the order price
as defined in (3.3). As Fp (p; θ) yields the fraction of order prices p realized at
or below p, the output of this function may be regarded as the probability
that an order o is placed with another agent offering a similar or better
deal. Hence, the probability that a customer accepts an offered price p can
be approximated using

P (o|p) = 1− Fp (p; θ) , 0 < p < 1.25

= (1− F (p; θ))ndgr , 0 < p < 1.25, ndgr > 0. (3.8)
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3.3.2 Incorporating a Log-Logistic Distribution

Equations (3.2) through (3.8) assume the prices to be distributed in accor-
dance with a distribution the type and parameters of which have not been
defined yet. For this purpose, a log-logistic distribution is proposed, as this
distribution is defined on the domain 0 < p < ∞ and covers a variety of
shapes depending on the parameters ϕ and χ. Another attractive feature is
that an analytical closed form expression exists for the cumulative density
function. The log-logistic distribution f(p;ϕ, χ) and its cumulative form
F (p;ϕ, χ) [25] can be described as follows:

f (p;ϕ, χ) =
ϕχpχ−1

(1 + ϕpχ)2 , 0 < p <∞, ϕ, χ > 0, (3.9)

F (p;ϕ, χ) = 1− 1
1 + ϕpχ

, 0 < p <∞, ϕ, χ > 0. (3.10)

The domain of the log-logistic distribution may in theory equal the range
of the prices possibly offered during a TAC SCM game, but in practice, all
valid normalized offer prices can only be in the interval [0, 1.25], because
all normalized reservation prices are in the interval [0.75, 1.25]. Hence, the
log-logistic distribution should in this case be double-bounded, such that the
upperbound u yields a distribution defined on the domain 0 < p < 1.25. This
can be accomplished by expressing the log-logistic distribution in relation
to the cumulative density at p = u, which yields

F (p;ϕ, χ) =
1− 1

1+ϕpχ

1− 1
1+ϕuχ

, 0 < p < u, ϕ, χ > 0

=
ϕ+ u−χ

ϕ+ p−χ
, 0 < p < u, ϕ, χ > 0, (3.11)

with u = 1.25 in order for the cumulative distribution to be ranging from
0 to 1 for valid offer prices in the interval [0, 1.25]. Inherently, the double-
bounded log-logistic probability density function can be defined as

f (p;ϕ, χ) =
(ϕ+ u−χ)χp−χ−1

(ϕ+ p−χ)2 , 0 < p < u, ϕ, χ > 0. (3.12)

Using (3.11), the median valid offer price (where the cumulative density
equals 0.5) can be derived as (ϕ+ 2u−χ)−

1
χ . Reparameterizing the distri-

bution, such that α represents the median and γ equals χ, yields

f (p;α, γ) =
(α−γ − u−γ) γp−γ−1

(α−γ − 2u−γ + p−γ)2 , 0 < p < u, α, γ > 0, (3.13)

F (p;α, γ) =
α−γ − u−γ

α−γ − 2u−γ + p−γ
, 0 < p < u, α, γ > 0. (3.14)
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The parameters of the distribution underlying all sampled valid normal-
ized offer prices of s product types in a period of t game days can be esti-
mated by minimizing the log-likelihood function specified in (3.7), hereby as-
suming an underlying log-logistic distribution as described in (3.13). Then,
the unknown parameters α (representing the median) and γ (quantifying
the distribution tightness) can be estimated on a routinely basis. The op-
timal values for α and γ are to be found, such that for the log-logistic
log-likelihood function defined in (3.15), the first order partial derivatives to
α and γ (defined in (3.16) and (3.17), respectively) equal 0:

L
(
α, γ; p1111, ..., ptsbtsntsbts

)
=

t∑
d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

− ln

 (α−γ − u−γ) γp−γ−1
dgri(

α−γ − 2u−γ + p−γdgri

)2

 ,

0 < pdgri < u, α, γ > 0, (3.15)

δL
(
α, γ; p1111, ..., ptsbtsntsbts

)
δα

=
t∑

d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

−γu2γ
(
αγ − pγdgri

)
α (αγ − uγ) (−2 (αpdgri)

γ + (αu)γ + (updgri)
γ)
,

0 < pdgri < u, α, γ > 0, (3.16)

δL
(
α, γ; p1111, ..., ptsbtsntsbts

)
δγ

=
t∑

d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

u2γ
(
αγ + pγ + γ

(
pγdgri − α

γ
)

(ln (α)− ln (pdgri))
)

γ (αγ − uγ)
(
uγ
(
αγ + pγdgri

)
− 2αγpγdgri

) +

t∑
d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

−αγγuγ
(
αγ − 3pγdgri

)
(ln (pdgri)− ln (u))

γ (αγ − uγ)
(
uγ
(
αγ + pγdgri

)
− 2αγpγdgri

)+

t∑
d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

αγuγ
(
−αγ − 3pγdgri

)
γ (αγ − uγ)

(
uγ
(
αγ + pγdgri

)
− 2αγpγdgri

)+

t∑
d=1

s∑
g=1

bdg∑
r=1

ndgr∑
i=1

2α2γpγdgri (1− γ (ln (pdgri)− ln (u)))

γ (αγ − uγ)
(
uγ
(
αγ + pγdgri

)
− 2αγpγdgri

) ,
0 < pdgri < u, α, γ > 0. (3.17)

28



Because of the non-linearity of the log-likelihood function and its first
order partial derivatives, constrained optimization of multiple parameters is
not a trivial task. To this end, algorithms like the constrained non-linear
optimization algorithm for problems with linear constraints implemented in
the fmincon function in the Optimization toolbox for MATLAB [39] could be
used. This algorithm is based on a variant of the Newton-Raphson method
described in [5] and basically is a trust-region method. This means that
the function to be minimized is approximated with a simpler function in a
neighborhood (the region of trust) around a point considered to be the
minimum. Each iteration, the simplified function is minimized and the
alleged minimum of the real function is updated with the minimization result
if this result truly yields a lower value for the real function. Otherwise, the
region of trust is reduced. This process is iterated until a minimum size of
the region of trust is reached.

When the α and γ parameters have been fit, the probability P (o|pdgr)
that a customer accepts a price pdgr offered by an agent for RFQ r for prod-
uct g on game day d, given the upper bound price u, can be approximated.
Following (3.8), the calculation of acceptance probabilities in case of an un-
derlying log-logistic offer price distribution is detailed in (3.18), where α and
γ are the distribution parameters, estimated using (3.15) through (3.17), and
ndgr represents the number of valid normalized prices offered on game day
d for product g for RFQ r:

P (o|pdgr) = 1−

(
1−

(
1− α−γ − u−γ

α−γ − 2u−γ + p−γdgr

)ndgr)
,

0 < pdgr < u, α, γ, ndgr > 0

=

(
1− α−γ − u−γ

α−γ − 2u−γ + p−γdgr

)ndgr
,

0 < pdgr < u, α, γ, ndgr > 0. (3.18)

The probability for an offer for a specific RFQ to be accepted, com-
puted using (3.18), can be theoretically verified and validated using (3.19)
and (3.20). Being defined for 0 < pdgr < u and α, γ, ndgr > 0, the range of
this function is in the interval [0, 1], which is exactly the desired property.
The function is also valid, as the behavior described by the function matches
the behavior expected in the game situation. Relatively low prices are more
likely to be accepted than relatively high prices.

lim
pdgr→0

(
1− α−γ − u−γ

α−γ − 2u−γ + p−γdgr

)ndgr
= 1, α, γ, ndgr > 0, (3.19)

lim
pdgr→u

(
1− α−γ − u−γ

α−γ − 2u−γ + p−γdgr

)ndgr
= 0, α, γ, ndgr > 0. (3.20)
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3.4 Summary

In the context of the TAC SCM game, analysis of historical game data in
this chapter shows that product price distributions can be very distinctive
between market segments, as well as on product level. Price distributions
in the TAC SCM game also do not tend to be very stable over time.

Given perfect information, distributions of order prices needed for the
product pricing process cannot be accurately determined by directly fitting
on the available data on order prices. This is caused by a combination of
data sparsity and low dispersion of prices. Enlarging the window size in
order to increase the sample size is not an option in this case due to the
volatility of price distribution characteristics over time.

Taking these observations into account, a method for determining the
probability that a customer accepts an offered price is proposed in this chap-
ter. This approach is based on daily, product-based estimations of distri-
butions of valid offer prices. The assumption here is that for an arbitrary
sample of offered prices, the distribution of associated order prices is related
to the distribution of all valid offer prices; the distribution of the minimum
of the valid offer price distribution equals the order price distribution.

Hence, the proposed approach involves firstly estimating the distribution
of prices offered for an arbitrary day for a specific product. These prices are
assumed to be distributed in accordance with a double-bounded log-logistic
distribution with parameters α (representing the median) and γ (quantifying
the distribution tightness). The distribution of order prices can subsequently
be derived. Then, the probability that a customer accepts an offered price
can be approximated by inverting the cumulative density function of the
order price distribution estimation.

The approach considered in this chapter assumes all information to be
available; distributions are estimated by fitting onto all valid offer prices
for a specific product on a game day. However, in the TAC SCM game,
information on prices offered on an arbitrary day is not available on-line.
Therefore, Chapter 4 discusses how to translate the proposed approach into
a feasible on-line product pricing approach.
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Chapter 4

Towards an On-Line Product
Pricing Approach

During the TAC SCM game, the MinneTAC agent determines a sales quota
for each product type on a daily basis. Each product type is subsequently
priced, such that its sales quota is expected to be fulfilled, hereby taking
into account the likelihood of customer acceptance of this product price.
Multiple RFQs can be filed for a particular product type on an arbitrary
game day. All these RFQs are to be taken into account regarding the sales
quota for this product type. The number of RFQs filed for aproduct g on
day d, mdg, is on-line observable. However, the number of offers for an
RFQ r for product g on day d, ndgr, is not observable and should hence
be estimated. For now, let this number be approximated by ndg, the mean
number of offers per RFQ for product g on day d.

Using the framework presented in Chapter 3, the probability that a cus-
tomer accepts a price offered for his RFQ can be estimated. This RFQ-
oriented framework can be extended to the product level, in order for it to
be applicable in the MinneTAC agent’s decision logic. As the customer offer
acceptance probability of an arbitrary RFQ is determined using the cumu-
lative density function of the order price of this RFQ (see (3.8) and (3.18)),
the probability that an offered price gets accepted in case of multiple similar
RFQs can be determined using these RFQs’ joint cumulative distribution,
hereby assuming the associated order prices to be identically and indepen-
dently distributed. In this context, the customer offer acceptance probability
P (o|pdg) for product g on game day d in case of mdg RFQs with ndg offers
per RFQ can be approximated as

P (o|pdg) = 1−

1−

(
1− α−γ − u−γ

α−γ − 2u−γ + p−γdg

)ndgmdg

,

0 < pdg < u, α, γ,mdg, ndg > 0. (4.1)
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Now, let q∗dg be the sales quota for an arbitrary product type g on an
arbitrary day d, with mdg associated RFQs, for each of which ndg prices are
offered. This implies that P (o|pdg) for that product type on that game day
is required to be q∗dg. Using (4.1), the relation between q∗dg and the offer
price p∗dg yielding this quota can be expressed as

q∗dg = 1−

1−

(
1− α−γ − u−γ

α−γ − 2u−γ + p∗dg
−γ

)ndgmdg

,

0 < p∗dg < u, α, γ,mdg, ndg > 0. (4.2)

Equation (4.2) enables the normalized price to be offered on RFQs for
product g on game day d to be determined. The optimal offer price p∗dg
expected to yield the desired quota q∗dg can be approximated as follows:

p∗dg =

u
−γ
(
α−γ (uγ − 2αγ) ndg

√
1− mdg

√
1− q∗dg + 1

)
1− ndg

√
1− mdg

√
1− q∗dg


− 1
γ

,

0 < q∗dg < 1, α, γ,mdg, ndg, u > 0. (4.3)

The number of RFQs mdg used in the product pricing process described
above is observable on-line. The mean number of offers per RFQ ndg can
be estimated based on historical data. Given perfect information, the pa-
rameters of the distribution of valid offer prices underlying the customer
offer acceptance probability assumed in (4.3), α (representing the median)
and γ (quantifying the distribution tightness), can be estimated using (3.15)
through (3.17), while accounting for an upper bound price u of 1.25. For the
TAC SCM game, let the number of repeated (daily) observations of valid
offered prices t considered in this process equal 1, as the observations in
Section 3.2 indicate that price distributions are not likely to be stable for
more than 1 game day. Furthermore, let the number of considered products
s equal 1 as well, as price distributions tend to differ on product level (see
Section 3.2).

Unfortunately, the framework as formulated in Section 3.3 requires data
which is not publicly available during a TAC SCM game. Equations (3.15)
through (3.17) require offer prices to be available in order to fit distributions,
whereas these prices are not known at any given time during a game. This
problem could be solved by replacing (3.15) through (3.17) with some model
which estimates the α and γ parameter, based on information available on-
line to the agent. The mean number of offers per RFQ ndg should also
be approximated using on-line available information. In this context, an
artificial neural network could be used.
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Section 4.1 discusses artificial neural networks, whereas their applica-
bility to the parameter estimation problem regarding the customer offer
acceptance probability is discussed in Section 4.2. The on-line available in-
formation potentially indicative of the customer offer acceptance probability
and the associated underlying distributions of valid offer prices is discussed
in Section 4.3. Finally, findings are summarized in Section 4.4.

4.1 Artificial Neural Networks

An artificial neural network is a mathematical model inspired by biologi-
cal neural networks, which provides a general, practical method for learn-
ing real-valued, discrete-valued, and vector-valued functions over continuous
and discrete-valued attributes from examples in order to facilitate regression
or classification [24]. The model consists of interconnecting artificial neu-
rons (nodes), ordered into an input layer, hidden layers, and an output layer.
Each node in the hidden layers as well as the output layer computes a linear
combination of its inputs. Through an activation function, a threshold may
be applied to this weighted sum of inputs.

Due to the ability of an artificial neural network of capturing complex
nonlinear relations, which is a useful feature in case of learning functions
whose general form is unknown in advance, (3.15) through (3.17) could
nicely be represented by such a model, albeit with different inputs (on-line
available data). The relation between on-line available data and values of
the α and γ parameters is not known in advance. The relation between
on-line available data and the ndg values is also unknown and could hence
also be approximated using an artificial neural network in order to be able
to estimate ndg values on-line.

Representing the unknown relations between distribution parameters
and on-line available data using artificial neural networks also brings the
attractive feature of fast evaluation of these (modeled) functions, which is
crucial in the TAC SCM game environment. Other advantages include ro-
bustness to noise in the training data [24], the possibility to introduce adap-
tivity by adjusting the weights of each node’s inputs on-the-fly using newly
obtained examples (if any), and the fact that artificial neural networks have
proven to be useful for economic forecasts in various domains [19].

A disadvantage of artificial neural networks is the phenomenon of over-
fitting, which results in networks that generalize poorly to new data despite
excellent performance over training data [24]. However, several methods
have been developed in order to cope with this problem. For instance, cross-
validation methods can be used to estimate an appropriate stopping point
for the training process. Alternatively, a model can be optimized by eval-
uating the performance of this model on a sufficiently large, representative
test dataset.
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Despite the disadvantages, an artificial neural network would be a nice
substitution for (3.15) through (3.17) in order to be able to estimate offer
price distributions underlying customer offer acceptance probabilities on-
line. When also using an artificial neural network for estimating the mean
number of offers per RFQ, the complete bidding behavior could be modeled.

In literature, bidding behavior of agents in the TAC SCM game has
already been modeled using artificial neural networks [19]. The latter ap-
proach however uses artificial neural networks for modeling the behavior of
individual competing agents, whereas the approach proposed in this thesis
focuses on modeling the distribution of prices offered by all competitors and
the associated distribution of resulting order prices, aggregated on product
level, which facilitates decision making processes involving sales quota on
product levels (as is the case in the MinneTAC agent).

4.2 Incorporating Artificial Neural Networks into
the Framework

In the context of the parameter estimation problem regarding the customer
offer acceptance probability, an artificial neural network could be trained to
produce the parameters of the distributions underlying the customer offer
acceptance probability. To this end, all games in the training set should be
analyzed using the framework presented in Section 3.3, which yields data on
the α and γ parameters best describing the offer price distributions for each
game day, for all games in the training set, on product level. Simultaneously,
the mean number of offers per RFQ, ndg, could easily be derived for each
considered sample of prices offered for RFQs for a product by a counting
process.

The results of the analysis of the training set as described above can be
found in Figure 4.1 and Table 4.1. Figure 4.1 visualizes distributions of the
found α and γ parameter values, the associated ndg values, and the associ-
ated p-values for the Kolmogorov-Smirnov test. Apparently, for over 60% of
all considered samples, a log-logistic distribution described the distribution
of prices sufficiently, according to the latter test (yielding a p-value higher
than 0.05 in these cases). Statistics on the found values can be found in
Table 4.1.

These fit parameters can then be used as examples to train the network
on. The desired outputs should be presented to the network along with some
other features, which are assumed to be somehow related to the outputs.
Section 4.3 elaborates on such features, which are available on-line in the
TAC SCM game. The constructed artificial neural network thus uses on-
line available information to estimate α, γ, and ndg, hereby facilitating an
on-line approximation of the daily customer offer acceptance probabilities
per product.
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Figure 4.1: Distributions of the found α and γ parameter values for daily
distributions of valid offer prices (depicted in (a) and (b) respectively), the
associated mean number of offers per RFQ ndg for each day d and product
g (depicted in (c)), and the associated p-value for the Kolmogorov-Smirnov
test (depicted in (d)), aggregated over all games in the training set.

Variable Mean Stdev
α 0.8296 0.1466
γ 43.5372 61.0216

ndg 3.2663 1.5194
p-value 0.2208 0.2616

Table 4.1: Statistics on the found α and γ parameter values for daily distri-
butions of valid offer prices, the associated mean number of offers per RFQ
ndg for day d for product g, and the associated p-value for the Kolmogorov-
Smirnov test, aggregated over all games in the training set.
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A radial basis function network (RBFN) can be considered as a two-
layer artificial neural network consisting of a hidden layer and an output
layer. The activation function in each hidden unit h is a kernel function
Kh (d (xh, x)), the output of which approximates 0 as d (xh, x) – the (typi-
cally Euclidian) distance between an instance x (characterized by a vector
of features) and the kernel center xh – increases. The kernel functions in
the hidden layer typically are Gaussians, centered at xh with variance σ2

h.
The number of Gaussians H is subject to optimization and their centers
can be determined by clustering the data, using for example the k-means
algorithm [21]. The network’s output for an instance x, f̂ (x), is a linear
combination of the activation units, weighted for their weights wh, and a
bias w0 [24]:

f̂ (x) = w0 +
H∑
h=1

whKh (d (xh, x)) , (4.4)

Kh (d (xh, x)) = e
1

2σ2
h

d2(xh,x)
. (4.5)

Hence, an RBFN is a global approximation f̂ (x) of a target function
f (x), represented as a linear combination of local approximations of this
target function, as the contribution of each kernel is localized to a region
around its center. Because RBFNs can be designed and trained in a fraction
of the time it takes to train standard feed-forward backpropagation neural
networks [24], a radial basis function network would be a good approximator
for α, γ, and ndg.

However, one characteristic of the found optimal values for the γ pa-
rameter should be accounted for. The optimal values found for γ tend to
be distributed on an exponential scale. This implies that the relation be-
tween the tightness of the distribution and the γ parameter appears to be
exponential; because of the formulation of the double-bounded log-logistic
distribution (see Section 3.3.2), the increment in γ needed to tighten the
distribution increases as the distribution gets tighter. For instance, a distri-
bution with a γ value of 2 is much more different from one with a γ value
of 5 than a distribution with a γ value of 200 is from one with a γ value of
500, when all other parameters are fixed. Hence, as the required accuracy
decreases for increasing γ values, the network is to be trained to predict the
natural logarithm of γ.

4.3 Identifying Potentially Good Inputs

As the focus of this research is on adapting regime-based price distributions
in order for them to be useful in the daily product pricing process, these
regime-based price distributions should be used as artificial neural network
inputs. For now, let these distributions be described by their 10th, 50th,
and 90th percentile, as well as the spread of these percentiles.

36



As already observed in Section 3.2, order price distributions tend to differ
per product type. Hence, the product type itself might be indicative of the
characteristics of the order price distributions and hence the associated offer
price distributions. Furthermore, offered prices might also be related to the
game day, as for example in the first phase of the game, prices are more
likely to be relatively high due to scarcity of products, which is caused by
the fact that agents start with zero inventory.

Another good indicator for the offer price distribution of a specific prod-
uct type might be the number of RFQs for that product type, as in related
research, the number of simultaneously run similar auctions appeared to be
affecting the revenue generated from these auctions due to their (partial)
substitutivity [42]. This might be the case for the MinneTAC bidding sce-
nario as well, as each agent is restricted by its limited resources. Even more,
RFQs for the same product type could be considered to be (partial) substi-
tutes to some of the bidders (depending on their product pricing and RFQ
selection strategy). Not only the number of RFQs, but the characteristics of
these RFQs as well could be indicators of the pricing behavior they generate.
Hence, the mean and standard deviation of requested quantities, requested
leadtimes, and reservation prices could be taken into consideration.

Literature also suggests the predictive capabilities of prices realized on
the preceding day [19]. Obviously, this information is not available to the
agent in a game situation. However, for each product, the minimum and
maximum order prices realized on the preceding game day are available.
Using these prices, the mid-range price and the spread of the prices can be
determined as well. These minimum and maximum prices and their asso-
ciated mid-range and spread could be considered in a double exponentially
smoothed form as well, as this is likely to provide a good approximation of
the mean price of the preceding game day [15, 16, 17].

Table 4.2 shows that the on-line available information considered above
is indeed more or less (Pearson) correlated with the α and ndg parameters.
Therefore, these variables are good candidates for artificial neural network
inputs. However, the on-line available information is not clearly correlated
with the natural logarithm of the γ parameter. Hence, this parameter is
probably harder to estimate on-line. This could also hold for ndg.

4.4 Summary

In this chapter, the framework presented in Chapter 3 is incorporated in
an on-line product pricing approach on product level for the TAC SCM
game, as required by the current design of the decision logic implemented in
the MinneTAC agent. To this end, the customer offer acceptance probabil-
ity for individual RFQs obtained using the framework is used to formulate
a joint distribution of acceptance probability distributions for individual

37



Variable α ln (γ) ndg
todPredPerc10 0.9123 0.1546 -0.7083
todPredPerc50 0.9187 0.1532 -0.7184
todPredPerc90 0.9111 0.1544 -0.7173
todPredSpread 0.1187 0.0200 -0.1256

productNr -0.0758 -0.0152 0.0832
day -0.2895 -0.0885 0.0991

numRFQs 0.4136 0.0699 -0.3569
meanQuantity 0.0134 0.0037 -0.0323
stdevQuantity 0.1377 0.0032 -0.1079
meanLeadtime -0.0137 0.0070 0.0196
stdevLeadtime 0.1327 0.0071 -0.1266

meanReservePrice 0.0376 -0.0546 0.0940
stdevReservePrice 0.1437 -0.0363 -0.1407

yestMinPrice 0.9156 0.2493 -0.6480
yestMaxPrice 0.9515 0.1738 -0.7124
yestMRPrice 0.9552 0.2121 -0.6980

yestSpread 0.4983 -0.0714 -0.4473
yestESMinPrice 0.9256 0.2400 -0.6540
yestESMaxPrice 0.9535 0.1726 -0.7179
yestESMRPrice 0.9507 0.2048 -0.6964

yestESSpread 0.6388 -0.0676 -0.5892

Table 4.2: Correlations of found values for α and the natural logarithm of γ
for daily distributions of valid offer prices and their associated mean number
of offers per RFQ ndg with on-line available variables for all products for all
days in all games in the training set.

RFQs, such that the resulting acceptance probability distribution is defined
on product level. Hence, the considered acceptance probabilities still have
the desired properties, which include a range in the interval [0, 1] and an
acceptance probability which increases as prices decrease. Therefore, the
adjusted acceptance probabilities can still be verified and validated.

Product pricing can be done in a straightforward way after rewriting the
acceptance probability equation, such that the optimal price is expressed
as a function of the desired acceptance probability. The resulting closed-
form mathematical expression contains some parameters, the determination
of which requires data which is not publicly available during a TAC SCM
game: offer prices. In order to enable on-line applicability of the product
pricing approach, an RBFN (a type of artificial neural network) is proposed
for estimating these parameters, based on on-line available information.

Such a model could adapt regime-based price distributions estimations
using additional on-line available information on product type, game day,
RFQ characteristics, and observable prices. However, only one out of three
parameters (α, representing the median offer price) appears to be rather
nicely related to on-line available information. The other two parameters,
indicating the width of the offer price distribution (γ) and the mean number
of expected offers on day d for product g (ndg), appear to be harder to
approximate using on-line available data. The introduction of adaptivity
could help here, as detailed in Chapter 5.
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Chapter 5

Introducing Adaptivity

The product pricing approach introduced in Chapter 4 facilitates some form
of adaptivity in response to changes in the environment, as the considered
price distributions and related acceptance probability distributions are de-
pendent on RFQ characteristics and observable prices, as well as on product
type and game day. However, the proposed model itself is static and hence
does not adapt the modeled relations between price distributions and char-
acteristics of the environment to changing market conditions and market
responses. In order to facilitate a truly adaptive, on-line applicable product
pricing approach, this chapter presents several ways of introducing adaptiv-
ity into the model for estimating order price distributions and the associated
customer offer acceptance probabilities. Section 5.1 discusses how the prod-
uct pricing model can adapt to market disruptions. Section 5.2 deals with
feeding customer responses to the product pricing strategies back into the
model, in an attempt to adapt the model to the true customer offer accep-
tance probabilities. Findings are summarized in Section 5.3.

5.1 Coping With Market Disruptions

In [42], an English auction scenario is considered, in which bidders have
independent private values, all originating from the same distribution. These
private values result in bids up to the private values. The best (highest) bid
wins. A method is proposed for estimating the distribution of the private
values of the bidders using averaging and binary search techniques, combined
with simulations. Adaptivity to market disruptions is incorporated into
the model by assuming changes in bidding (and thus market disruptions)
to actually be a shift in the underlying value distribution. The estimated
distribution of private values is shifted accordingly.

The problem considered and the approach proposed in this thesis are
somewhat similar to the scenario and approach described in [42]. In the
TAC SCM game, trading agents bid on an RFQ. The best (lowest) bid
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wins. However, contrary to the English auction scenario, the TAC SCM
RFQ bidding process much more resembles a (reverse) sealed bid, first price
auction, as agents are not aware of bids of their competitors and the best bid
wins. Combined with the TAC SCM game rules, this introduces the prob-
lem of limited visibility to the auctioning process: agents do not know the
price resulting from an auction, unless they participate and win. Therefore,
changes in bidding behavior of the competing agents cannot be observed.

However, regime information might help here, as realized prices and
hence order probabilities tend to vary, depending on the economic regime [15,
16, 17]. Hence, changes in pricing behavior can be accounted for by in-
corporating regime information into the process of estimating order price
distributions and the associated customer offer acceptance probabilities. To
this end, individual parameter estimating RBFNs could be trained for each
dominant regime.

For dominant regime k, the probability that a customer accepts an offer
and hence places an order ok, given price pdgk for product g on game day d,
can now be defined as shown in (5.1), with u the upper bound pdgk. Here, let
αk and γk be the parameters of the log-logistic distribution underlying the
offer prices, in case of dominant regime k, and ndgk the associated number
of offers per RFQ, averaged over all mdg RFQs for product g on day d. As
the MinneTAC decision logic considers five economic regimes, let 1 ≤ k ≤ 5.

P (ok|pdgk) = 1−

1−

(
1−

α−γkk − u−γk

α−γkk − 2u−γk + p−γkdgk

)ndgkmdg

,

0 < pdgk < u, αk, γk,mdg, ndgk > 0. (5.1)

The desired sales quota q∗dg for product g on game day d can now be
expressed as a function of the offer price p∗dgk yielding this quota, given
dominant regime k. The relation between q∗dg and p∗dgk can be defined as

q∗dg = 1−

1−

(
1−

α−γkk − u−γk

α−γkk − 2u−γk + p∗dgk
−γk

)ndgkmdg

,

0 < p∗dgk < u, αk, γk,mdg, ndgk > 0. (5.2)

Equation (5.2) can be used to determine the optimal product price for
each dominant regime. The suggested product prices thus generated could
subsequently be weighted for the regime probabilities. To this end, let
P (Rdgk) be the probability for product g to be in regime k on game day d.
The offer price p∗dg for product g on game day d expected to yield a sales
quota q∗dg, weighted for regime probabilities, can then be approximated as
shown in (5.3) and (5.4).
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p∗dgk =

u
−γk

(
α−γkk

(
uγk − 2αγkk

)
ndgk

√
1− mdg

√
1− q∗dg + 1

)
1− ndgk

√
1− mdg

√
1− q∗dg


− 1
γk

,

0 < q∗dg < 1, αk, γk,mdg, ndgk, u > 0, (5.3)

p∗dg =
5∑

k=1

P (Rdgk) p∗dgk, 0 < p∗dgk < u. (5.4)

5.2 Feeding Back Market Responses

The weights in the RBFNs could be updated on-line, based on new data.
However, new training samples cannot be presented to the networks during
the game, as the target values of these samples would only be available
after the end of the game. Therefore, the models estimating the parameters
used for the daily approximations of customer offer acceptance probabilities
cannot be updated on-line.

However, these approximations can be adjusted by multiplying it by a
factor representing the ratio between the number of actually received orders
and the number of predicted orders, as proposed in [28]. If more orders
have been received than predicted, the acceptance probability is larger than
expected, to an extent equal to the ratio between received and predicted
number of orders. If less orders have been received than predicted, the
acceptance probability should be adjusted downwards. This ratio, which
can also be referred to as an error term ε, enables market responses to be
fed back to the model, as this ratio can be updated on-line. A smoothed
error term ε̃ can be used in order to prevent over- or undercompensation.

Customer offer acceptance probabilities P (ok|pdgk) for product g on
game day d under dominant regime k range from 0 to 1. Multiplying these
probabilities with the suggested ratio ε̃(d−1)gk (which depends on regime k
and has been updated using performance information up until day d − 1)
yields corrected probabilities P (ok|pdgk)

′
in the range

[
0, ε̃(d−1)gk

]
. This

implies that no suitable price can be found for q∗dg ≥ ε̃(d−1)gk, which is
an undesirable feature in case ε̃(d−1)gk < 1. However, when the corrected
customer offer acceptance probability P (ok|pdgk)

′
is defined as

P (ok|pdgk)
′

= P (ok|pdgk)ε̃(d−1)gk , 0 < pdgk < u, ε̃(d−1)gk > 0, (5.5)

offer acceptance probabilities continue to range from 0 to 1 for 0 < pdgk < u
after correction, which ensures the validity of the approach. Hence, market
responses to modeled acceptance probabilities can be fed back to the model
when the probability of acceptance is defined as shown in (5.6).
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P (ok|pdgk)
′

=

1−

1−

(
1−

α−γkk − u−γk

α−γkk − 2u−γk + p−γkdgk

)ndgkmdg
ε̃(d−1)gk

,

0 < pdgk < u, αk, γk,mdg, ndgk, ε̃(d−1)gk > 0. (5.6)

For each dominant regime k, (5.6) can be used to approximate the share
of received orders with respect to the total number of RFQs for product g
on game day d, generated by a specified price offered on all these RFQs.
Similarly, a desired sales quota q∗dg for product g on game day d, under
dominant regime k, can be expressed in terms of the associated corrected
offer price p∗

′

dgk:

q∗dg =

1−

1−

1−
α−γkk − u−γk

α−γkk − 2u−γk + p∗
′

dgk

−γk

ndgk
mdg


ε̃(d−1)gk

,

0 < p∗
′

dgk < u, αk, γk,mdg, ndgk, ε̃(d−1)gk > 0. (5.7)

Using (5.7), the optimal corrected product price for each dominant regime
can be determined, as shown in (5.8). When these corrected prices are sub-
sequently weighted for their associated regime probabilities, the corrected
price expected to yield the required quota can be obtained, as shown in (5.9).

p∗
′

dgk =


u−γk

(
α−γkk

(
uγk − 2αγkk

)
ndgk

√
1− mdg

√
1− ε̃(d−1)gk

√
q∗dg + 1

)

1− ndgk

√
1− mdg

√
1− ε̃(d−1)gk

√
q∗dg


− 1
γk

,

0 < q∗dg < 1, αk, γk,mdg, ndgk, u, ε̃(d−1)g > 0, (5.8)

p∗
′

dg =
5∑

k=1

P (Rdgk) p∗
′

dgk, 0 < p∗
′

dgk < u. (5.9)

The error terms should be assigned values such that under each dominant
regime k, the expected customer offer acceptance probabilities P

(
ok|p∗

′

(d−1)g

)
associated with an offer price p∗

′

(d−1)g are corrected by the unsmoothed expo-
nential error terms to the proportion of actually received number of orders
q(d−1)g. The found error terms can subsequently be smoothed. Hence, offer
price and customer response should be related as follows:

q(d−1)g = P
(
ok|p∗

′

(d−1)g

)ε(d−1)gk

,

0 < q(d−1)g < 1, 0 < p∗
′

(d−1)g < u, ε(d−1)gk > 0. (5.10)
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The error terms can be smoothed using Brown linear smoothing, where
for each new observation, the smoothing factor β is weighted for the associ-
ated regime probabilities in order for errors only to be attributed to the mod-
els responsible for these errors. For now, let this smoothing factor be equal
to the smoothing factor used in smoothing product prices. Equations (5.11)
through (5.14) describe the determination of error terms. Smoothing is
done using two components, the first of which (defined in (5.12)) consists
of a linear combination of the latest error (see (5.11)) and the previous first
component. The second component (see (5.13)) is a linear combination of
the first component and the previous second component. Then, a linear
combination of the two components yields the smoothed error (see (5.14)).

ε(d−1)gk =
ln
(
q(d−1)g

)
ln
(
P
(
ok|p∗

′

(d−1)g

)) ,
0 < q(d−1)g < 1, 0 < P

(
ok|p∗

′

(d−1)g

)
< 1, (5.11)

ε̃
′

(d−1)gk = βP
(
R(d−1)gk

)
ε(d−1)gk +

(
1−

(
βP
(
R(d−1)gk

)))
ε̃
′

(d−2)gk, (5.12)

ε̃
′′

(d−1)gk = βP
(
R(d−1)gk

)
ε̃
′

(d−1)gk +
(
1−

(
βP
(
R(d−1)gk

)))
ε̃
′′

(d−2)gk, (5.13)

ε̃(d−1)gk = 2ε̃
′

(d−1)gk − ε
′′

(d−1)gk. (5.14)

5.3 Summary

The product pricing approach as proposed in Chapter 4 is refined in this
chapter, in order for it to be capable of adapting to market disruptions,
which in the context of the TAC SCM game can be characterized using eco-
nomic regimes. The idea is to train separate parameter estimating RBFNs
for each dominant regime. This way, product prices can be determined,
given dominant regimes. These product prices can subsequently be weighted
for their associated regime probabilities in order to determine the optimal
product price expected to yield the desired quota. The relations between
price distributions and on-line available information are thus dynamically
modeled, depending on economic regimes.

Structural errors in the product pricing process can be accounted for
by feeding market responses to placed offers back into the product pricing
model. In order for the product pricing approach to remain valid, market
responses are fed back using an exponential error term, designed to trans-
form the estimated probability of acceptance function into a function better
approximating the true acceptance probability. This error term is corrected
using daily observations of expected and observed acceptance probabilities,
double exponentially smoothed with a smoothing factor weighted for the
associated regime probabilities. Through this feedback process, the product
pricing model can adapt to the true customer offer acceptance probabilities.
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Chapter 6

Adaptive Regime-Based
TAC SCM Product Pricing

The final framework as presented in Chapter 5 can be evaluated by imple-
menting the approach in the MinneTAC agent for the TAC SCM game. To
this end, product pricing should be done using (5.8) through (5.14). The αk,
γk, and ndgk parameters for product g on game day d for dominant regime
k are to be estimated using RBFNs.

Experiments related to training these types of artificial neural networks
are described in Section 6.1. The implementation of the approach in the
MinneTAC agent is detailed in Section 6.2. The performance of this up-
graded MinneTAC version is benchmarked against the performance of the
current model in Section 6.3. Finally, results are summarized in Section 6.4.

6.1 Training the Artificial Neural Networks

As argued in Section 5.1, for each dominant regime k, an RBFN needs to be
trained for estimating the αk, γk, and ndgk parameters for product g on game
day d, using the inputs discussed in Section 4.3 as predictors. Therefore,
training and test datasets must be split into datasets per dominant regime.
This dominant regime is the dominant regime of the game day, as identified
by the current regime model using an exponentially smoothed predicted
price as input (as would be the case on-line).

In this case, training data consists of the data resulting from fitting price
distributions on historical data of games in the training set, as presented in
Section 4.2, along with the associated values for the predictors. After ana-
lyzing the test set (specified in Section 1.4) using the framework presented
in Section 3.3, the performance of trained models can be evaluated on the
games in the test set, as this set is sufficiently large and representative [24].
An average training dataset thus generated contains over 15,000 samples,
whereas an average test dataset contains over 8,000 samples.

45



Using Weka [43], the RBFNs can be trained relatively easily. The results
can subsequently be saved as serialized Java objects, which enables them to
be used in Java software like the MinneTAC agent. One drawback of using
Weka is that the Weka implementation of an RBFN, RBFNetwork, can only
have one output. Hence, a network is to be trained per dominant regime
per parameter.

Some parameters can be adjusted in the RBFNetwork implementation.
First of all, one can define the random seed used in the clustering process
used to determine the centers of the Gaussians in the networks. Let this clus-
ter seed be 0 for all networks. A so-called ridge value can also be specified.
This value indicates how much the regression error in estimating model pa-
rameters may diverge from the least squares measure. For all networks, this
value is left at its default value, 1E-08. Other parameters are the number
of clusters and the minimum standard deviation of these clusters.

The configurations of the latter two parameters can be determined by
systematically evaluating all combinations of different values. The configu-
rations yielding the lowest RMSD (see (3.1)) on the test set are selected [24].
The optimal number of clusters could be anything between relatively small
and rather large. Using too many clusters would cause the model to not gen-
eralize very well. Hence, taking into account the size of the dataset, the set
of number of clusters considered is {25, 50, 100, 150, 200, 300}. Depending on
the number of clusters and the dataset, the minimum standard deviation of
the clusters could also be high or low. Hence, standard deviations in the set
{1, 2, 5, 10, 15} are considered. Apparently, αk can be estimated relatively
well, whereas ndgk and ln (γk) cannot (see Table 6.1).

Parameter Regime Clusters MinStdev RMSD
αk 1 25 15 0.0448
αk 2 50 10 0.0346
αk 3 100 5 0.0366
αk 4 50 5 0.0386
αk 5 300 5 0.0400

ln (γk) 1 100 15 0.7713
ln (γk) 2 150 5 0.6903
ln (γk) 3 150 5 0.6481
ln (γk) 4 200 5 0.6370
ln (γk) 5 150 2 0.6732
ndgk 1 50 15 1.0036
ndgk 2 25 5 1.0773
ndgk 3 200 5 0.9974
ndgk 4 300 2 0.9395
ndgk 5 100 5 0.8090

Table 6.1: Optimized configuration of number of clusters and minimum
standard deviation of clusters for radial basis function networks for estimat-
ing the α parameter, the natural logarithm of the γ parameter, and the
ndg parameter, given a dominant regime k. The table also quantifies the
root mean squared deviation (RMSD) of parameter values predicted by the
trained models from the parameter values in the test set.
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6.2 Implementation in the MinneTAC Agent

In an attempt to improve the product pricing process by combining regime
information with other on-line available information, the sales model of the
2008 MinneTAC configuration as described in Section 2.3.2 is replaced with a
system designed for Product Pricing using Adaptive Real-time Regime-based
Probability of Acceptance Estimations: PPARRPAE. The algorithm (de-
scribed in Algorithm 1) involves parameter estimation using the RBFNs dis-
cussed in Section 6.1 and subsequently pricing products using (5.8) and (5.9).
An error term is also considered, following (5.11) through (5.14). Figure 6.1
visualizes the relations between logical components involved in this process.

The main idea is to leave the regime model intact and to build an adapter,
which combines the characteristics of the price distribution estimated by the
regime model with characteristics of RFQs, as well as with more detailed
information on prices, the day, and the considered product (see Section 4.3).
Using the RBFNs trained in Weka, the adapter transforms this data into
a parameterized customer offer acceptance probability distribution function
per dominant regime and assigns weights to these distributions, equal to
their associated regime probabilities.

foreach d in days do
foreach g in products do

// Update error using last feedback, following
// (5.11) through (5.14)
error = updateError(getFeedback(d− 1, g));
// Retrieve product-level data from regime model
regProbs = getRegProbs(d, g);
regPriceDistr = getRegPriceDistr(d, g);
trends = getTrends(d, g);
// Estimate parameters using RBFNs, as detailed
// in Section 6.1
priceDistr = estParams(regPriceDistr, getData(d, g));
// Determine median price using (5.8) and (5.9)
median = priceForProb(0.5, priceDistr, error, regProbs);
// Retrieve allocated quota
quota = getQuota(d, g, median, trends);
// Determine optimal price expected to yield quota
// using (5.8) and (5.9)
price = priceForProb(quota, priceDistr, error, regProbs);
// Bid optimized price on selected RFQs
priceProduct(d, g, price);

end
end

Algorithm 1: Product pricing in the PPARRPAE approach.
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Figure 6.1: Simplified schematic overview of the proposed PPARRPAE sales
process configuration for an arbitrary product on an arbitrary game day.

This adapted distribution can subsequently be used in the product pric-
ing process for an arbitrary product on an arbitrary game day, as proposed
in Chapter 5. Given a quota specified by the allocation component, the
product pricing component uses the adapter to compute the price expected
to yield this quota per dominant regime and weighs the suggested prices for
their associated regime probabilities. The thus generated optimal price is
then offered on all selected RFQs for the considered product. The market
responses to these offers are directly fed back to the adapter, which learns
from its errors (see Section 5.2). Therefore, in order for this information not
to be biased, interval randomization is not applied on the generated optimal
price, as opposed to the existing approach (see Section 2.3.2).

The allocation model bases its decisions among other things on price
predictions, which consist of an estimate of the median price of the con-
sidered game day and trends representing expected future deviations from
this median. In the existing sales model, the trends are estimated using
the regime model, whereas the median is estimated using a price-follower
approach. This price-following component is also used in the estimation of
the daily probability of acceptance function and can thus be updated using
market responses. Since in the proposed approach, market responses are
not related to the price-following median, but are fed back to the adapter,
the prediction of the median price should in this case be provided to the
allocation component by the adapter.

6.3 Performance in the TAC SCM Game

By running and analyzing a number of games, the performance of the PPAR-
RPAE system proposed in Section 6.2 can be compared with the benchmark
configuration of the MinneTAC agent, which implements the regime model
for price trend prediction and a price-following approach for estimating me-
dian prices, as detailed in Section 2.3.2. In Section 6.3.1, the experimental
set-up for analyzing the performance of the proposed model is described.
The results of these experiments are presented in Section 6.3.2.

48



6.3.1 Experimental Set-Up

In this experimental set-up, games are in accordance with the TAC SCM
game specifications of 2006 [6], as discussed in Section 2.2. The randomness
incorporated in several facets of the game is an inconvenient characteristic
for a testing environment in which two approaches are to be compared, as
this randomness in market conditions implies that many experiments should
be run in order to obtain results with any statistical significance.

The issue of randomness in the testing environment is tackled by a con-
trolled TAC SCM game server, in which random seeds used for generating
market conditions can be controlled. Random elements in decision processes
of competing agents cannot be controlled. Hence, multiple runs with the
same random seeds for market conditions could still yield different results.
However, under controlled market conditions, such uncontrolled stochastic
behavior of participating trading agents does not have a significant impact
on the agent profit levels [34]. The results presented in [34] also indicate that
most significant profit differences between agents can already be detected in
approximately 40 games.

The performance of the PPARRPAE system can hence be evaluated in
40 experiment sets on a controlled server. Each experiment set consists of a
paired evaluation of the performance of the benchmark and the PPARRPAE
system under equal market characteristics. For now, let the competitors be
Dummy agents, in order for the potential of change in performance to be
as apparent as possible, and not to be (partially) concealed by complex
behavior of other competitors.

In each evaluation, the final bank account balance can be considered, as
well as the sales performance. To this end, the mean and standard deviation
of account balances over all games can be computed. Furthermore, the
overall deviation of the final account balance of PPARRPAE with respect to
the benchmark is to be analyzed. The number of obtained orders should be
considered in the analysis as well. As for the sales performance, the RMSD
of desired acceptance probabilities to acceptance probabilities derived from
actual responses to set product prices can be analyzed. This error can be
put into context when the number of times the market is polled – i.e., the
number of times the agent proceeds to actually bidding on RFQs, given an
expected probability of acceptance – is analyzed as well.

Performance differences should also be assessed with respect to their
statistical relevance. This can be done with a paired, two-sided Wilcoxon
signed-rank test. This is a non-parametric test, which tests the hypothe-
sis that the differences between paired observations are symmetrically dis-
tributed around a median equal to 0. If this null hypothesis is rejected (at a
significance level below 0.05), the compared sets of samples can be assumed
to be significantly different. This test would be suitable in this experimental
set-up, as the distribution of the values to be compared is unknown.

49



6.3.2 Experimental Results

Over all experiments, the benchmark configuration of the MinneTAC trading
agent usually outperforms the Dummy agents with respect to final bank
account balance. However, this configuration on average does not manage to
win more bidding processes than its competitors. PPARRPAE outperforms
the benchmark with respect to final bank account balance and the number
of obtained orders.

Tables 6.2 and 6.3 and Figure 6.2 support these observations, as they
indicate a clear deviation between the benchmark and the PPARRPAE ap-
proach; generally, PPARRPAE yields higher profits and more orders, both
values of which tend to be more stable over all games run. This deviation
is quantified per game in Tables A.4 and A.5 in Appendix A. Table 6.4
summarizes the overall deviation. Here, the p-value for the Wilcoxon test
for both final account balances and number of orders obtained confirms the
significance of the difference in performance.

Benchmark PPARRPAE
Agent Mean Stdev Mean Stdev

MinneTAC 19.2614 12.4207 49.3933 2.7053
Dummy 12.9194 3.2799 14.0436 2.9310

Dummy-2 13.0250 3.3152 14.1313 3.1668
Dummy-3 12.7687 3.3184 14.1034 2.7711
Dummy-4 12.8552 3.4148 14.3529 2.9034
Dummy-5 13.0803 3.2224 14.2307 2.9874

Table 6.2: Mean and standard deviation of final bank account balance per
agent, calculated over all experiments. Values are expressed in millions.

Benchmark PPARRPAE
Agent Mean Stdev Mean Stdev

MinneTAC 3.0865 1.0178 4.6474 0.4507
Dummy 3.2615 0.3367 3.0498 0.3129

Dummy-2 3.2615 0.3291 3.0571 0.3448
Dummy-3 3.2452 0.3386 3.0364 0.3267
Dummy-4 3.2198 0.3292 3.0387 0.3172
Dummy-5 3.2504 0.3480 3.0437 0.3301

Table 6.3: Mean and standard deviation of number of obtained orders per
agent, calculated over all experiments. Values are expressed in thousands.

Statistic Balance Orders
Deviation 30.1319 1.5608

Relative deviation 1.5644 0.5057
Wilcoxon p-value 0.0000 0.0000

Table 6.4: Overall deviation of values for final bank account balance and
number of obtained orders of the PPARRPAE approach, compared to the
benchmark. Balance deviation is expressed in millions, whereas the devia-
tion in the number of obtained orders is expressed in thousands.
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Figure 6.2: Final bank account balances for the two considered MinneTAC
variants over all experiments. The separate values for each experiment are
depicted in (a), whereas (b) shows final bank account balance distributions.
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Figure 6.3: Increase in profit of the PPARRPAE approach compared to the
benchmark, depicted in relation to the associated relative increase in the
number of obtained orders per experiment.

51



Statistic RMSD PA Market polls
Deviation -0.0011 726.0500

Relative deviation -0.0024 0.7889
Wilcoxon p-value 0.8297 0.0000

Table 6.5: Overall deviation of values for the root mean squared deviation of
estimated probability of acceptance (RMSD PA) and the number of market
polls of the PPARRPAE approach, compared to the benchmark.

With PPARRPAE, final bank account balances significantly exceed those
of the benchmark in each experiment; balances increase with about 160%.
Overall, the number of orders obtained with PPARRPAE significantly ex-
ceeds the number of orders obtained by the benchmark with over 50%. Fig-
ure 6.3 visualizes the relation between relative deviation of the number of
obtained orders and the associated balance increase for each experiment.
Balance increase does not appear to be fully explained by an increase in
obtained orders; small increases or decreases can also yield higher balances.

With respect to sales performance, the RMSD of desired probabilities
of acceptance to realized probabilities, derived from actual responses to set
product prices, can be analyzed as well. Table 6.5 summarizes the overall
extent to which the error of the model for estimating acceptance proba-
bilities implemented in PPARRPAE deviates from the error in acceptance
probability estimates by the benchmark configuration of MinneTAC. Statis-
tics per experiment can be found in Table A.6 in Appendix A. Apparently,
the acceptance probability estimation for products actually bid for is not
significantly improved by PPARRPAE.

Table 6.5 also summarizes deviations in the number of times the con-
sidered MinneTAC configurations actually bid on one or more RFQs for
a specific product type and hence are able to poll the market in order to
check whether the estimated probability of acceptance is correct. Statis-
tics per experiment can be found in Table A.7 in Appendix A. Overall, the
PPARRPAE approach appears to lead to a significant approximately 80%
increase of cases in which the estimated acceptance probabilities are good
enough for the trading agent to take a chance.

6.4 Summary

In this chapter, the adaptive regime-based product pricing approach pro-
posed in Chapter 5 is implemented and tested in the context of the TAC
SCM game. To this end, following suggestions done in Section 5.1, RBFNs
are first of all trained for estimating the αk, ln (γk), and ndgk parameters for
product g on game day d per dominant regime k, using the inputs discussed
in Section 4.3 as predictors. The αk parameter can be estimated relatively
well, but ndgk and especially ln (γk) cannot easily be closely approximated.
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The sales model of the 2008 MinneTAC configuration as described in
Section 2.3.2 is then replaced with a system designed for Product Pricing
using Adaptive Real-time Regime-based Probability of Acceptance Estima-
tions: PPARRPAE. This system basically implements (5.8) through (5.14),
the parameters of which are estimated using the trained RBFNs. By doing
so, the price distribution estimated by the regime model is transformed into
parameterized customer offer acceptance probability distribution estimates
per dominant regime, based on on-line available data. When pricing prod-
ucts, these distributions are used in a dynamic combination, which depends
on estimated economic regime probabilities. Also, these distributions are
corrected using a dynamically updated error term.

The MinneTAC configuration implementing the PPARRPAE approach
is benchmarked against the current MinneTAC configuration by a paired
evaluation of the performance of these approaches in 40 TAC SCM games
run on a controlled server, hereby using fairly non-complex Dummy agents
as competitors. PPARRPAE turns out to outperform the benchmark with
respect to final bank account balance and the number of obtained orders.
Final balances significantly increase with about 160% and the number of
orders significantly increases with over 50% with respect to the benchmark.
The acceptance probability estimation for products actually bid for does not
appear to be significantly improved by PPARRPAE, but using the PPAR-
RPAE approach significantly increases the number usable acceptance prob-
ability estimations with approximately 80%.
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Chapter 7

Discussion

The relation between the product pricing process and daily price distribu-
tions is modeled in Chapter 3. The main idea is that product pricing can
be done by taking into consideration the probability that an offered price
is accepted by a customer. This probability of acceptance function can be
regarded as the inverse cumulative density function of all order prices, as
this cumulative density function yields the fraction of order prices realized
at or below a specific value, which thus is similar to the probability that an
order is placed with another agent offering a similar or better deal.

The proposed approach involves explicit modeling of the distribution of
normalized order prices of a game day, as opposed to current TAC SCM
product pricing approaches, which directly model acceptance probabilities,
explicitly model individual competitor’s behavior, or do not explicitly model
any sales side behavior at all. Daily distributions of valid offer prices should
provide a close approximation of order price distributions, as the latter are
distributions of the minimum of the former distributions. Historical game
data apparently contains sufficient data to fit daily offer price distributions,
as opposed to order price data, which suffers from sparsity and low disper-
sion. Hence, in the proposed approach, the daily order price distribution is
modeled using the daily distribution of valid offer prices.

The log-logistic distribution assumed to be underlying the offer prices
(and thus the order prices) is defined in the domain [0,∞], whereas order
prices are only expected to be in the range [0, 1.25]. Hence, product pricing
using the customer offer acceptance probabilities modeled using this distri-
bution might yield normalized prices higher than 1.25, which is an unde-
sirable feature. After truncating the log-logistic distribution into a double-
bounded distribution defined in the domain [0, 1.25], it still sufficiently cap-
tures the real distribution of these prices most of the time, according to the
Kolmogorov-Smirnov test results.

In order for the product pricing approach to be applicable on-line, arti-
ficial neural networks are proposed in Chapter 4. As the relation between
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product pricing and daily price distribution is modeled in a parametric way,
these neural networks can be used for real-time approximation of the pa-
rameters of the acceptance probability distribution, using on-line available
information. However, the performance of these networks is somewhat dis-
appointing. One out of three parameters (representing the median offer
price) can be estimated rather nicely, but the other two parameters, indi-
cating the width of the offer price distribution and the number of expected
offers, appear to be hard to approximate using on-line available data.

Limited on-line available information thwarts the introduction of adap-
tivity in Chapter 5 as well. Observing changes in bidding behavior of com-
petitors is argued to be valuable for estimating price distributions, but the
TAC SCM game specifications obstruct agents from doing so. Therefore,
regime information is incorporated into the model, as realized prices and
hence order probabilities tend to vary with the economic regime. The rela-
tions between price distributions and on-line available information are dy-
namically modeled; using regime probabilities, the overall model uses a mix
of models, each of which has been trained for a dominant regime. This
enables the model to adapt to market disruptions by adopting different be-
havior, depending on the expected market conditions.

However, structural errors in the parameter estimating models are not
corrected in this way. An obvious way to introduce adaptivity to each indi-
vidual neural network used for parameter estimation would be updating the
internal weights in these networks, but this is impossible due to the lack of
on-line available information on the true parameters of daily price distribu-
tions. Therefore, for each dominant regime, the probability of acceptance
approximations based on parameter estimations of daily offer price distribu-
tions are corrected using an error term. This error term is updated on-line
using approximations of the real probability of acceptance, based on market
responses to offered prices. This way, instead of correcting each parameter
individually, the complete distribution is reshaped by one error term.

The thus obtained approach of product pricing using adaptive regime-
based probability of acceptance estimations is implemented in the Min-
neTAC agent in Chapter 6, such that it replaces the current price-following
approach of probability of acceptance estimation. Therefore, product pricing
is done on product level, as the price expected to yield the desired demand
for that product is calculated using a quota (desired acceptance probability)
on product level. Product pricing on RFQ level might improve the perfor-
mance, as acceptance probabilities could then be estimated or fine-tuned
on RFQ level. However, the desired acceptance probability should then
be provided for each individual RFQ. This would require a redesign of the
allocation process as well and hence falls outside the scope of this thesis.

The new pricing approach is benchmarked against the current approach.
The significance of differences in performance is assessed using the Wilcoxon
test. Even without a mechanism to price on RFQ level, the new product
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pricing approach yields a significantly higher final bank account balance than
the current approach does; profits are more than doubled. The performance
of the newly proposed approach appears to be more stable than the current
approach as well, as the standard deviation is lower and the profit shows
less fluctuation over all experiments.

The performance boost may be explained by the observation that the
new approach yields significantly more orders, provided that the prices as-
sociated with these orders are high enough. However, the profit increase
can only be explained to a certain extent by the increase in the number of
obtained orders. In some experiments, a small increase (or even a decrease)
in the number of obtained orders still results in doubled profits. This indi-
cates that not only more orders are obtained, but orders are better priced
as well. This could be caused by prices of obtained orders to be closer to
second-lowest prices, instead of being significantly lower, which results in a
reduced margin between customers’ reserve prices and realized order prices.

One observation appears to contradict this hypothesis: the quality of
probability of acceptance estimations is not significantly improved at all.
The key here is in the realization of this statistic. Each game day, the
agent estimates a probability of acceptance function for each product and
bases its product pricing decisions on that function; the function generates
the optimal price, which is assumed to yield the desired demand. If this
generated price is higher than the reservation prices associated with the
RFQs considered by the agent, the agent does not bid, as the approximation
of probability of acceptance would yield an invalid offer in this case.

Hence, each time that the agent does not place any bids on RFQs for a
particular product, even though a quota has been allocated, could be inter-
preted as an indication of a very unrealistic acceptance probability estima-
tion. These occasions do however not directly show up in the statistics, as
the magnitude of the error in the acceptance probability estimation cannot
be determined, because the estimation is never put to the test in the mar-
ket. Luckily, the observation that the agent implementing the new product
pricing approach polls the market a significant 70% more often could imply
that the estimated acceptance probabilities are more often good enough for
the trading agent to take a chance.

This does however not explain why acceptance probability estimations
that are put to the test in the market are not significantly improved at
all. This lack of improvement may be caused by a structural error inherent
to the characteristics of the sales process. The true acceptance probability
associated with an offered price is assumed to be the ratio of the total
quantity of obtained orders to the total quantity associated with the RFQs
offered on. Within the TAC SCM game, it is impossible to agree to only
partially commit to fulfill a customer’s request. Hence, the true acceptance
probability tends to be discrete, which makes it hard to match with a desired
acceptance probability defined in a continuous approximation of reality.
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Despite the discussed imperfections, the in-game performance against
fairly non-complex competitors of the approach proposed in this thesis is
very promising. The evident performance improvement induced by this
approach will hopefully also become apparent when competing against more
complex trading agents.
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Chapter 8

Conclusions

In the context of product pricing, daily price distributions can be taken into
account. In this thesis, the relation between product pricing and price distri-
butions is modeled by a parametric price distribution estimation approach,
in which a double-bounded log-logistic function is assumed to be underlying
the prices offered (and hence the related order prices) for a product on an
arbitrary day. The inverse of the cumulative order price distribution thus
approximated can be considered as an estimation of a customer offer accep-
tance probability function. Using this closed form mathematical expression,
the price expected to yield the desired sales quota can easily be computed.

Artificial neural networks can be trained on historical data to deter-
mine the parameters of the price distributions in real-time on a daily basis.
These networks base their approximations on a price distribution estimated
by MinneTAC’s regime model, which is based on a Gaussian Mixture Model.
Using additional information on product type, game day, RFQ characteris-
tics, and observable prices, the networks transform this distribution into a
parametric price distribution and related acceptance probability estimate,
hereby facilitating a real-time applicable product pricing process.

The price distribution and related customer offer acceptance probability
function thus estimated can be adapted to dynamic market characteristics by
incorporating regime information and by introducing an error term, which is
updated on-line. Regime information can be incorporated by training sepa-
rate models per dominant regime. Each game day, outputs as well as error
corrections can then be weighted for the associated regime probabilities.

Implementation of the proposed approach in the MinneTAC trading
agent leads to promising results in the TAC SCM game. Although ap-
parently not capable of significantly reducing a possibly structural error
in customer offer acceptance probabilities used in actual product pricing
processes, the proposed approach does yield probability of acceptance esti-
mations of acceptable quality more often than the current price-following
product pricing model. This approximately 80% increase in the number of

59



useable estimations results in significantly more obtained orders: the num-
ber of bidding processes won turns out to increase with over 50%, when the
proposed approach is compared to the current approach under equal market
conditions. Even more, obtained orders appear to be associated with higher
prices, which implies that margins between customers’ reservation prices and
realized order prices are reduced due to exploitation of better estimations of
behavior of bidding parties, in relation to the customers’ reservation prices.

The observed changes yield an evident performance improvement: in the
considered experimental set-up with fairly non-complex competitors, final
bank account balances and hence profits are overall more than doubled. This
performance improvement appears to be structural; in every single experi-
ment, the new approach outperforms the benchmark with respect to profits
as well as the number of orders obtained. Moreover, a decreased standard
deviation indicates that the MinneTAC agent implementing the approach
proposed in this thesis performs more consistently than the benchmark.

Hence, economic regime estimations, which characterize market condi-
tions, turn out to contribute to profit maximization when they are used to
differentiate product pricing strategies. To this end, when product pricing
strategies are linked to price distribution estimations taking into account
on-line available information, the relation between this information and the
distribution estimates should depend on economic regimes.

Even though the performance of the proposed model already is very
promising, some aspects still require more research. First of all, the type
and parameterization of models for on-line price distribution and acceptance
probability approximation could be revised, as the artificial neural networks
used in this research do not perform very satisfactorily. To this respect, other
possible predictors for acceptance probabilities could be considered as well.
These predictors do not necessarily have to be data directly related to sales;
procurement information might be a good candidate, as costs associated
with specific orders could theoretically easily influence the price, dependent
on the cost allocation applied in the participating trading agents.

Another option for future research is in the design of the MinneTAC trad-
ing agent. For instance, a model for product pricing on RFQ level instead
of on product level could be taken into consideration. Furthermore, as the
adapter introduced in this thesis appears to perform so well, the adapter
could maybe be extended in order for it to encapsulate the entire regime
model, which could improve the quality of predicted price distributions and
price trends. Also, the improved acceptance probability estimations could
be used in the allocation or RFQ selection process.

Finally, the approach of product pricing using adaptive regime-based ac-
ceptance probability estimations proposed in this thesis could be challenged
in a situation with strong competitors with complex decision logics. If the
MinneTAC agent could deal with those agents as with the agents considered
in this research, MinneTAC would be more competitive than ever.
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Appendix A

Detailed Experimental
Results

This appendix contains tables with results from the experiments described
in Chapters 3, 4, and 6. These results are specified per game or experiment.

RFQs Offers Minimum offers Orders
Game Mean Stdev Mean Stdev Mean Stdev Mean Stdev

9323tac5 12.0764 6.3269 32.1651 17.9330 11.2807 6.1414 9.8185 5.1603
9324tac5 9.4676 5.2862 30.2744 18.2357 9.1668 5.2918 8.8060 5.0906
9325tac5 11.5886 6.0218 34.3358 18.1536 10.8798 5.7728 10.0043 5.2015
9326tac5 12.8906 6.6669 34.0080 20.1186 11.9830 6.5375 10.5736 5.6623
9327tac5 10.3804 6.0814 33.6080 17.4197 9.8733 5.6831 9.1602 4.9966
7308tac3 13.3730 6.0040 40.8477 23.0691 11.7756 5.7080 9.9813 4.8246
7309tac3 13.4250 6.2315 43.1662 26.2167 12.2449 6.2381 9.7406 5.2744
7310tac3 12.2420 6.2338 41.3926 25.0991 11.3315 6.0380 9.9023 5.3857
7311tac3 11.1483 6.2349 46.5145 28.0801 10.6946 6.0885 10.2770 5.9160
7312tac3 11.6991 5.7714 45.1634 26.2521 10.9125 5.7379 9.7923 5.2786
763tac02 10.5429 6.4178 20.4696 14.3590 8.3224 5.0486 8.3224 5.0486
764tac02 12.9278 6.1818 19.4688 13.6319 9.0071 4.9651 9.0071 4.9651
765tac02 11.5832 6.3899 26.2659 17.6138 9.5537 5.4567 9.5537 5.4567
766tac02 13.8310 6.1400 27.0628 15.5303 10.2844 4.8285 10.2844 4.8285
767tac02 10.7131 6.3423 24.2165 16.3958 8.5793 5.1237 8.5793 5.1237
768tac02 11.4946 6.0492 26.7875 18.5988 9.4722 5.4665 9.4722 5.4665
794tac01 10.2946 6.1801 36.7739 23.0839 9.0227 5.5712 9.0227 5.5712
795tac01 10.0074 5.6986 41.2977 26.0354 9.4071 5.4980 9.4071 5.4980
796tac01 11.1804 6.5138 38.3506 24.7362 9.9457 6.0086 9.9457 6.0086
797tac01 11.3318 6.1276 41.8895 26.1851 10.0875 5.6947 10.0875 5.6947
798tac01 8.4523 4.6021 37.9932 20.6528 8.1608 4.5408 8.1608 4.5408
799tac01 9.4216 6.0347 36.6420 22.4467 8.5324 5.3909 8.5324 5.3909

Aggregated 11.3669 6.2385 34.4861 22.6736 10.0235 5.7305 9.4741 5.3440

Table A.1: Statistics on the number of RFQs, offers, minimum offers, and
orders per product per day: mean and standard deviation (Stdev) per game,
as well as over all games in the training set aggregated.
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Game Total Invalid RMSD valid RMSD invalid
9323tac5 113,221 0.1015 0.2265 0.1770
9324tac5 106,566 0.0429 0.2814 0.1410
9325tac5 120,862 0.0555 0.2731 0.1688
9326tac5 119,708 0.1003 0.2105 0.1732
9327tac5 118,300 0.0473 0.3164 0.1689
7308tac3 143,784 0.0613 0.2451 0.1719
7309tac3 151,945 0.0807 0.2452 0.1876
7310tac3 145,702 0.0554 0.2411 0.1848
7311tac3 163,731 0.0190 0.2878 0.1402
7312tac3 158,975 0.0416 0.2731 0.1660
763tac02 72,053 0.0000 0.2497 0.0000
764tac02 68,530 0.0000 0.1502 0.0000
765tac02 92,456 0.0000 0.2455 0.0000
766tac02 95,261 0.0000 0.1775 0.0000
767tac02 85,242 0.0000 0.3044 0.0000
768tac02 94,292 0.0000 0.2667 0.0000
794tac01 129,444 0.0000 0.2992 0.0000
795tac01 145,368 0.0000 0.3256 0.0000
796tac01 134,994 0.0000 0.2714 0.0000
797tac01 147,451 0.0000 0.2920 0.0000
798tac01 133,736 0.0000 0.3437 0.0000
799tac01 128,980 0.0000 0.3342 0.0000

Aggregated 2,670,601 0.0297 0.2750 0.1730

Table A.2: Statistics on the number of offers and the extent to which these
offers are invalid. This table also quantifies the root mean squared deviation
(RMSD) from the normalized reservation prices for both valid and invalid
normalized offer prices. These statistics are calculated per game, as well as
over all games in the training set aggregated.
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Game Total Invalid RMSD valid RMSD invalid
9323tac5 39,708 0.1296 0.2348 0.2174
9324tac5 32,267 0.0394 0.2971 0.1813
9325tac5 38,297 0.0805 0.2802 0.2003
9326tac5 42,180 0.1176 0.2246 0.2042
9327tac5 34,754 0.0722 0.3310 0.2066
7308tac3 41,450 0.1524 0.2587 0.1893
7309tac3 43,102 0.2045 0.2598 0.2124
7310tac3 39,887 0.1261 0.2587 0.2076
7311tac3 37,645 0.0390 0.3169 0.1744
7312tac3 38,412 0.1027 0.2902 0.1964
763tac02 29,295 0.0000 0.2605 0.0000
764tac02 31,705 0.0000 0.1638 0.0000
765tac02 33,629 0.0000 0.2548 0.0000
766tac02 36,201 0.0000 0.1936 0.0000
767tac02 30,199 0.0000 0.3155 0.0000
768tac02 33,342 0.0000 0.2859 0.0000
794tac01 31,760 0.0000 0.3245 0.0000
795tac01 33,113 0.0000 0.3594 0.0000
796tac01 35,009 0.0000 0.2896 0.0000
797tac01 35,508 0.0000 0.3167 0.0000
798tac01 28,726 0.0000 0.3846 0.0000
799tac01 30,034 0.0000 0.3629 0.0000

Aggregated 776,223 0.0548 0.2878 0.2034

Table A.3: Statistics on the number of minimum offers and the extent to
which these minimum offers are invalid. This table also quantifies the root
mean squared deviation (RMSD) from the normalized reservation prices
for valid and invalid normalized minimum offer prices. These statistics are
calculated per game, as well as over all games in the training set aggregated.
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Experiment Benchmark PPARRPAE Relative deviation
1 22.3808 46.8987 1.0955
2 6.3948 47.8112 6.4765
3 16.9663 45.9162 1.7063
4 31.9214 47.3017 0.4818
5 35.5960 51.8664 0.4571
6 9.8478 54.4973 4.5339
7 -7.9483 46.3227 6.8280
8 26.5347 50.9251 0.9192
9 -1.5760 53.7920 35.1314

10 35.3067 49.4758 0.4013
11 17.8575 47.6696 1.6695
12 25.4310 50.4246 0.9828
13 19.1308 49.4091 1.5827
14 28.0204 48.7326 0.7392
15 15.5909 53.6205 2.4392
16 19.4944 51.1878 1.6258
17 14.6102 45.4497 2.1108
18 10.1712 48.1132 3.7303
19 20.4764 52.3903 1.5586
20 24.2783 50.7384 1.0899
21 29.5051 46.5686 0.5783
22 28.6080 54.6886 0.9117
23 31.4340 44.3995 0.4125
24 21.9394 48.7604 1.2225
25 -9.9027 46.1636 5.6617
26 34.9400 51.7080 0.4799
27 23.5693 49.5133 1.1008
28 -3.5125 50.2345 15.3017
29 34.7362 54.6371 0.5729
30 26.6605 50.0827 0.8785
31 30.1376 48.3689 0.6049
32 19.2111 51.1211 1.6610
33 9.5348 47.0312 3.9326
34 25.6683 49.9390 0.9456
35 28.2874 45.5603 0.6106
36 33.1365 46.7110 0.4097
37 23.9364 49.4190 1.0646
38 15.3969 52.3362 2.3991
39 -4.2309 48.4070 12.4414
40 0.9167 47.5390 50.8611

Table A.4: Final bank account balances per experiment for the two consid-
ered MinneTAC variants, along with the relative deviation of the PPAR-
RPAE value from the benchmark value. Balance values are expressed in
millions.
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Experiment Benchmark PPARRPAE Relative deviation
1 3.0600 4.2480 0.3882
2 2.1990 4.3860 0.9945
3 3.0630 4.3970 0.4355
4 3.6990 4.4760 0.2101
5 3.7790 4.6700 0.2358
6 2.6140 5.0600 0.9357
7 1.4480 4.2710 1.9496
8 3.7750 4.7400 0.2556
9 1.6090 7.1290 3.4307

10 3.6000 4.5270 0.2575
11 3.0190 4.3580 0.4435
12 4.1090 4.6250 0.1256
13 3.1870 4.5850 0.4387
14 3.2290 4.5090 0.3964
15 3.0190 4.9020 0.6237
16 3.6600 4.8220 0.3175
17 2.9020 4.4250 0.5248
18 2.8420 4.3360 0.5257
19 4.7180 4.7060 -0.0025
20 3.2250 4.8620 0.5076
21 3.4180 4.3970 0.2864
22 3.5290 4.9420 0.4004
23 3.9860 4.2300 0.0612
24 3.4870 4.4930 0.2885
25 1.3340 4.2930 2.2181
26 3.9790 4.7670 0.1980
27 3.6860 4.7240 0.2816
28 0.3130 4.6360 13.8115
29 4.9730 4.8470 -0.0253
30 4.4150 4.6800 0.0600
31 3.5290 4.5160 0.2797
32 2.8470 4.7130 0.6554
33 2.8720 4.5760 0.5933
34 3.7670 4.7090 0.2501
35 3.1980 4.1490 0.2974
36 3.5890 4.4630 0.2435
37 3.0550 4.7610 0.5584
38 3.0220 4.7700 0.5784
39 0.5030 4.7280 8.3996
40 1.2030 4.4660 2.7124

Table A.5: Number of orders obtained per experiment for the two considered
MinneTAC variants, along with the relative deviation of the PPARRPAE
value from the benchmark value. Values for the number of obtained orders
are expressed in thousands.
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Experiment Benchmark PPARRPAE Relative deviation
1 0.4494 0.4536 0.0093
2 0.4233 0.4775 0.1278
3 0.4699 0.4758 0.0125
4 0.5091 0.4584 -0.0996
5 0.4821 0.4677 -0.0299
6 0.4502 0.4539 0.0083
7 0.4035 0.4609 0.1423
8 0.4866 0.4725 -0.0291
9 0.3954 0.4321 0.0927

10 0.4928 0.4487 -0.0895
11 0.4654 0.4686 0.0070
12 0.4837 0.4898 0.0127
13 0.4364 0.4677 0.0719
14 0.4461 0.4516 0.0122
15 0.4413 0.4731 0.0721
16 0.4890 0.4612 -0.0568
17 0.4809 0.4600 -0.0434
18 0.4308 0.4846 0.1248
19 0.5032 0.4927 -0.0207
20 0.4740 0.4489 -0.0531
21 0.4526 0.4654 0.0284
22 0.4529 0.4717 0.0416
23 0.4732 0.4486 -0.0520
24 0.5216 0.4815 -0.0767
25 0.4222 0.4731 0.1205
26 0.4598 0.4574 -0.0053
27 0.4927 0.4755 -0.0350
28 0.4524 0.4659 0.0298
29 0.4818 0.4834 0.0033
30 0.4815 0.4711 -0.0216
31 0.4793 0.4662 -0.0274
32 0.4310 0.4562 0.0585
33 0.5622 0.4637 -0.1752
34 0.4931 0.4651 -0.0568
35 0.4981 0.4619 -0.0726
36 0.4445 0.4442 -0.0007
37 0.4700 0.4646 -0.0114
38 0.4700 0.4652 -0.0102
39 0.4182 0.4739 0.1332
40 0.5033 0.4744 -0.0576

Table A.6: Root mean squared deviation of estimated probability of accep-
tance per experiment for the two considered MinneTAC variants, along with
the relative deviation of the PPARRPAE value from the benchmark value.

72



Experiment Benchmark PPARRPAE Relative deviation
1 1,091 1,463 0.3410
2 693 1,613 1.3276
3 807 1,679 1.0805
4 1,375 1,705 0.2400
5 1,398 1,700 0.2160
6 681 1,724 1.5316
7 506 1,491 1.9466
8 1,143 1,661 0.4532
9 523 789 0.5086

10 1,579 1,700 0.0766
11 931 1,531 0.6445
12 1,085 1,717 0.5825
13 857 1,695 0.9778
14 1,081 1,529 0.4144
15 816 1,811 1.2194
16 851 1,751 1.0576
17 924 1,696 0.8355
18 739 1,547 1.0934
19 845 1,702 1.0142
20 1,072 1,800 0.6791
21 1,258 1,582 0.2576
22 1,232 1,834 0.4886
23 1,238 1,616 0.3053
24 1,082 1,626 0.5028
25 494 1,552 2.1417
26 1,232 1,656 0.3442
27 1,154 1,702 0.4749
28 113 1,675 13.8230
29 835 1,754 1.1006
30 700 1,719 1.4557
31 1,249 1,654 0.3243
32 1,075 1,686 0.5684
33 490 1,774 2.6204
34 996 1,768 0.7751
35 1,303 1,542 0.1834
36 1,387 1,595 0.1500
37 1,093 1,740 0.5919
38 840 1,709 1.0345
39 10 1,706 169.6000
40 37 1,663 43.9459

Table A.7: Number of market polls per experiment for the two considered
MinneTAC variants, along with the relative deviation of the PPARRPAE
value from the benchmark value.
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