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Abstract

In this master’s thesis, A one-way system GMM model is employed to examine the causal

effect of ambient air quality on green-tech innovation activity on a country level, using a cross-

sectional time-series dataset on major OECD countries worldwide over a period between

2015-2021. Additionally, we examine if this effect is greater in higher GDP countries, and

(non-)democratic countries, respectively. By doing this, the paper contributes to a growing

body of existing literature by trying to shed new perspective on the relationship between

environmental-related technological innovation and air quality. The findings suggest that

there is positive and significant relationship between air pollution and green-tech innovation

on a country level. Furthermore, our findings suggest that this effect is more pronounced for

low-income countries, compared to high-income countries. Finally, our findings also suggest

that the aforementioned effect is more pronounced for democratic countries, compared to

autocratic countries. Robustness analysis provides support for these findings.
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1 Introduction

One of the hallmarks of our generation, as well as one of the biggest challenges of the twenty-

first century, is illustrated by how our species faces the problems of pollution and climate

change. Today, much is being done to combat the adverse effects of man-made pollution, to

try and stop or reverse the effects of climate change, and raise global health in the process.

The ever-increasing struggle for humankind to achieve sustainability in its pursuits has

spawned the concept of green innovation. Urbaniec et al. [2021] defines green innovation

as a reduction in negative environmental impacts and more efficient use of resources. This

includes technological innovations in pollution prevention, environmental management, en-

ergy conservation, waste recycling, and green product design. This type of innovation is

typically identified by having a benefit for businesses and consumers alike, as opposed to

solely businesses, by significantly reducing the negative impact it places on its environment

[Karimi Takalo et al., 2021].

However, despite our best efforts, thus far, Particulate Matter (PM) and Green House Gas

(GHG) emission targets are not being met globally [Den Elzen et al., 2019]. Evidently, the

current rate of air pollution mitigation is not enough. Solomon et al. [2009]; Collins et al.

[2013] indicate the potential irreversibility of rising temperatures and, therefore, rising sea

levels. Moreover, according to World Health Organisation (WHO) [2014] in 2012 alone, poor

air quality has contributed to the deaths of approximately 7 million people worldwide.

Historically, to governments and companies around the world, short-term financial and eco-

nomic gains have long outweighed environmental concerns, and for years, they have priori-

tized their strategies accordingly. Only recently has this picture started to change. It seems

that, in today’s economy, prioritizing corporate social responsibility has started to reap its

own economic benefits, through increased profits and lower costs of compliance [Fraj-Andrés

et al., 2009; Brammer and Millington, 2008]. Still, despite this recent turnaround, it seems

the road ahead of us is long.

In 1956, The UK successfully passed the world’s first Clean Air act due to a tragic incident

in London, where a fog of black smoke killed an estimated 4,000-12,000 people and burdened

an estimated 100,000 with serious chronic illnesses [Bell and Davis, 2001]. In 2017, according

to Ebenstein et al. [2017] an estimated 4.5 billion people were exposed to particulate matter

(PM) levels at least twice the concentration that the World Health Organisation (WHO)

considers safe. Ambient air pollution is now fully acknowledged to be a significant public

health problem, responsible for a growing range of health effects and premature deaths that
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are well documented as a result of extensive research efforts conducted in many regions of

the world.

These severe health concerns and effects, may trigger a more immediate response for adequate

technological innovation, than the effects of climate change do. The reasoning being that

chronic illnesses and fatalities related to ambient air pollution are arguably more pressing

and more visible to the greater population than the gradual effects of climate change. This

in turn could put firms under more pressure to reduce PM-emmissions than GHG-emissions.

As we have previously mentioned, a great deal of research has been carried out to study the

effect that novel green-tech innovation has on mitigating the ever-deteriorating state of the

environment [Shan et al., 2021; Alvarez-Herranz et al., 2017]. However, to this day, very little

research has focused on studying how low air quality and other environmental hazards, in

association with macroeconomic and political factors, drive the rate at which green-tech inno-

vation is being carried out. One such study is Brunnermeier and Cohen [2003]. It researches

the relationship between pollution abatement expenditures and regulatory enforcement and

environmental innovation by US manufacturing industries, during the period 1983 through

1992. The authors focus on mechanisms that are purely socio-economic in nature. No direct

effect of air pollution was taken into account. While Su and Moaniba [2017] have found

a positive relationship between GHG-emissions and environmental innovation, insufficient

research has been carried out on the relationship between ambient PM-concentrations and

environmental innovation.

1.1 Thesis outline

In this master’s thesis, we examine the causal effect of yearly average air quality on the

rate of green-tech innovation on a country-level. We employ the current industry standard

of regression techniques for cross-sectional time-series data, otherwise known as panel data.

Specifically, we use a one-way system Generalised Method of Moments (GMM) estimator.

Additionally, we examine if the observed effect is greater in higher GDP countries and in

(non-)democratic countries. Green-tech innovation is a type of technological innovation

that can benefit both consumers and businesses alike, by significantly reducing negative

environmental impact. These include technological innovations in energy conservation, (air)

pollution prevention and removal, waste recycling, green product design and environmental

management. We understand low air quality to be polluted air with higher concentrations

of ground-level ozone, particle pollution (also known as particulate matter, including PM2.5

and PM10), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). A

consistent overall metric for air quality pollution is the U.S. Air Quality Index (AQI). Our
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panel dataset includes annual-mean Air Quality Indices of these particles over a period

between 2015-2021, on major OECD countries worldwide (the full list can be found in the

Appendix A). We use the annual number of environmental-related patents per country, as

a proxy for the rate of green-tech innovation. Furthermore, we provide robustness analysis

substituting the dependent and independent variables. To our knowledge, this is the first

study that analysis these relationships.

The remainder of the master’s thesis is organized as follows. Section 2 presents a brief review

of the literature on the characteristics of green-tech innovation and factors that potentially

influence its innovation activity, including air pollution and socio-economic factors. In Sec-

tion 3, we present our theoretical framework and define the variables and sample to be used

in our empirical analysis. Next, the results and robustness analysis are presented in Sec-

tion 4. Our empirical findings and the limitations of our research are discussed in Section

5. Finally, Section 6 highlights the main conclusions, implications and contributions of this

thesis.

2 Literature review

Innovation in green technologies is a key factor in confronting man-made environmental dete-

rioration and maintaining the right balance within the fragile eco-system we live in. In recent

years, growing global environmental awareness is driving demand for policymakers and com-

panies to meet ever-higher standards in sustainability. This phenomenon is paving the way

for a new definition of success, where economic profitability and prosperity do not come at

the expense of, but rather, is partially driven by sustainability. As such, achieving sufficient

green innovation is becoming a major source of keeping a competitive advantage[Biswas and

Roy, 2016]. Accordingly, it is no surprise that the importance of green innovation is ever-

growing in today’s literature [Urbaniec et al., 2021; Karimi Takalo et al., 2021; Dı́az-Garćıa

et al., 2015].

Green, eco/ecological, sustainable, and environmental innovation in technologies are terms

that are generally used synonymously [Takalo et al., 2021]. Henceforth, we will refer to this

innovation type as Green-tech innovation. Its general definition boils down to technologi-

cal innovation in products or processes, that can benefit both consumers and business alike

by significantly reducing negative environmental impact. These innovations include tech-

nological innovations in energy conservation, (air) pollution prevention and removal, waste

recycling, green product design and environmental management. As such, green-tech inno-

vation yields double dividend. It reduces the burden on the environment while contributing
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to the technological modernisation of the economy.

The main analysis in this thesis is aimed at examining whether green-tech innovation activity

is driven by air pollution, and related socio-economic factors. However, to understand the

potential influence of air pollution on environmental innovation, we must elaborate on other

core drivers of environmental innovation in general. These three core drivers of green inno-

vation activity are considered to be government support and policy, and Corporate Social

Responsibility. Their respective effectiveness, however, is widely debated.

Because benefits from green-tech innovation are public, rather than private, customers’ will-

ingness to pay for these innovations has historically been quite low Biswas and Roy [2016].

As consequence, until recently, a large part of environmental responsibility has always been

pushed into the hands of governments and international institutions. Government envi-

ronmental support policies are aimed at reducing the negative environmental impact of a

country’s economic activity. These government policies mostly exist as grants, subsidies,

regulations, taxes, voluntary agreements, public funding, and other financial help and re-

strictions. According to Dı́az-Garćıa et al. [2015], there is general agreement in literature

that regulation drives green innovation and helps its diffusion. The authors propose that

policies are more effective when there is a consistent long-term mix of several combined poli-

cies. However, the authors find that policies are not universally effective. Environmental

regulations affect firms with varying innovation activity differently and affect some types

of green innovation more than others. Furthermore, the effectiveness of these regulations

may also be affected by many socioeconomic factors, such as the level of urbanisation and

economic development. Thus they propose that findings in this context are inconclusive or

incomplete, and require future research. Bernauer et al. [2007] summarised it best by arguing

“the jury is still out”, other words, statistical evidence of a positive relationship is still incon-

clusive, and that “win-win outcomes” are very rare. Conclusive evidence requires analysis

of a combination of the effects of many particular regulations and producer/consumer bene-

fits of particular environmental innovations alongside firm- internal and market conditions.

In China, a unique approach is taken in the form of green credit guidelines. Green credit

and similar policies are aimed at reducing the scale of debt financing, increasing the cost

of debt, and affecting the production and operation activities of enterprises. Using a DiD

model with data from Chinese listed companies between 2008 and 2019, Wang et al. [2022]’s

findings show that Green Credit Guidelines significantly improve the quality of enterprises’

green innovation. However, they do not shed light on the rate of green innovation. Finally,

effective government policies in turn may lead firms to imitate peer enterprises’ green inno-

vation decisions, so that they may avoid risks by learning from their success and mistakes.
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Fan et al. [2022] focus on the relationship between peer effect and government policies and

find that based on a peer effect, green innovation incentives, protection tax and innovation

subsidies are effective tools to promote green innovation diffusion. Nevertheless, although

the relationship between government policy and environmental innovation is very important

to the discussion within this thesis, they are not the main topic of analysis, but merely

an extension in discussing the larger mechanism. We are not interested in the relationship

between the effectiveness of a country’s environmental policy and its innovation activity.

Rather, we are interested in how low air quality can drive a country to put regulations in

place that in turn can induce environmental innovation. In this context, governmental policy

is a tool for inducing innovation and is one part of the mechanism we are interested in.

As mentioned earlier, customers’ willingness to pay for green innovations has historically been

quite low, because its benefits are public, rather than private. However, in the recent decade,

public awareness of sustainability has increased substantially, and as a result, a firm’s focus

on sustainability has become a key factor in keeping a competitive advantage and sustaining

profits [Biswas and Roy, 2016]. This phenomenon is best captured by a firm’s Corporate

Social Responsibility (CSR). CSR engagement requires firms to consider the interests of

stakeholders such as the environment, society and consumers during their operations. This

can be done through mandatory disclosure of CSR reports, or can be visible through internal

and external marketing of sustainability in firms products or processes. Kraus et al. [2020];

Shahzad et al. [2020]; Hao and He [2022] find that CSR is positively correlated with green

innovation. In China since 2008, there has been a regulatory requirement for publicly listed

firms to disclose CSR reports. This has in turn has led listed and unlisted companies to focus

on CSR issues to gain a unique competitive advantage. Using a DiD estimation approach

that exploits this regulation change, Ren et al. [2022] find that mandatory CSR reporting

firms show substantially higher green innovation performance than non-CSR reporting firms.

Moreover, they find that the effect is stronger for firms with higher media coverage. They

find this to be the case for both positive and negative media coverage. Similarly, increased

customer awareness towards environmental improvement and green consumption push firms

to deliver environmentally friendly products or services and strengthen green market demand

[Flores and Jansson, 2022]. Such improvements directly impact business performance of the

firm [Pujari, 2006; Dangelico and Pujari, 2010]. However as Lin et al. [2014] point out, while

consumers are positively related to green product innovation, they are negatively related to

green process innovation. Additionally, they find that political capital plays a significant

but negative role in firm’s green product and process innovation performance. Finally, they

propose that competition effects do not have any significant effects on both green product
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and green process innovation.

2.1 Air quality & health hazards

Health hazards stemming from man-made pollution are by no means a novel global issue,

although they have become more publicly widespread, due to relatively recent discoveries in

science. Paleopathological discoveries dating from as far back as the ancient mummies show

cases of pneumonia, emphysema, pulmonary oedema, and atherosclerosis, likely caused by

daily inhalation of smoke from fuels used for warmth cooking, and lighting. [Zweifel et al.,

2009] Much later in the 19th century, the mystical chromatic fogs in industrialized cities,

created by at-the-time-unknown deadly toxins, gave an allure of the contemporary developed

cosmopolitan world, inspiring writers and painters alike. However, the perspective, quickly

shifted to something more sinister, when in December 1952, a smog resulted in the deaths

of an estimated 4,000-12,000+ people, as well as a sizable increase in respiratory and car-

diovascular complications Bell and Davis [2001]. This disaster resulted in the passing of the

Clean Air Act of 1956 (UK), the rest of the developed world followed suit. In the last few

years, both individual persons and policy-makers have been showing an increasing interest

in assessing air quality and in indices devoted to quantifying it. Clean air is an important

requirement for human health, which is why the World Health Organization (WHO) has

been concerned with air pollution and its impact on human health for more than 50 years,

publishing guidelines which aim to protect public health from the adverse effects of air pol-

lutants. The effects of inhaling PM on human health have been studied extensively and have

been found to be robustly associated with an elevated risk of heart disease, stroke and lung

cancer, and consequently premature death [Pope et al., 2011]. According to (OECD) Organ-

isation for economic Co-operation and development [2014], ambient air pollution has become

the main environmental cause of premature death, succeeding poor sanitation and a lack of

drinking water, contributing to the deaths of approximately 7 million people worldwide in

2012 World Health Organisation (WHO) [2014]. Geng et al. [2017] have found evidence that

current local air quality levels in China may shorten life expectancy by five life years, and

their estimates imply that bringing all of China into compliance with its Class I standards

for PM10 would save 3.7 billion life-years. Furthermore, Yu et al. [2020] show long-term

exposure of PM2.5 concentrations, much lower than current WHO standards, is consistently

associated with cardiovascular, respiratory, and non-accidental mortality. Sad to say, most

areas around the world do not comply to those same WHO air quality guidelines. With that

in mind, it is particularly disheartening that in recent years, improvements in air quality in

many urban areas around the world have miserably stalled. It is apparent that the existing
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evidence has not convinced countries sufficiently to adopt and enforce tough enough emission

standards. Current policies regarding PM also influence the probability that the world will

face disruptive climate change, because the combustion of fossil fuels that causes PM also

causes greenhouse gas emissions.

Air pollution measurement data is complex, however, environmental synthetic indices are

able to summarize complex situations in a single figure, allowing for comparisons in time

and space [Bruno and Cocchi, 2002]. Today, six primary air (quality) pollutants are recog-

nised and monitored by stations around the world. These include fine particulate matter

(PM2.5, 2.5 µm), respirable particulate matter (PM10, 10 µm), ground-level ozone (O3),

carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen (di)oxide(s) (NOx). Often these

pollutants are measured in µg/m3 within a 8 to 24 hours time span. Alternatively, for some

pollutants, a 24-hour average is measured. A better metric that conveys health-specific rele-

vant pollution thresholds is known as the Air Quality Index (AQI). Several of these indexes

fabricated by different agencies worldwide exist. However, the most commonly adopted is

the AQI developed by the United States Environmental Protection Agency (EPA). The U.S.

Air Quality Index (AQI) encompasses all six major pollutants that are regulated under the

U.S. Clean Air Act (1990) into one metric IQAir [2021]. This index is divided into six cat-

egories indicating increasing levels of health concern (0-50 → Green → Good, 51-100 →
Yellow → Moderate, 101-150 → Orange → Unhealthy for Sensitive Groups, 151-200 → Red

→ Unhealthy, 201-300 → Purple → Very Unhealthy, 301-500 → maroon → Hazardous).

Su and Moaniba [2017] show that GHG-emissions can have a significant positive influence

on the development of climate-related technologies. Similarly, we expect PM-emissions, and

consequently, low air quality to also positively influence air pollution-related technological

innovation. As mentioned earlier, we expect this positive effect to be more pronounced than

the effect of GHG-emissions, because we think it likely that chronic illnesses and fatalities

related to ambient air pollution are more pressing, as well as, more visible to the greater

population than the gradual effects of climate change. The resulting CSR would put firms

under more pressure to reduce PM-emmissions, than GHG-emissions. Similarly, it would

put government under more pressure to act in the form of environmental policies, which

in turn would stimulate firms to innovate further. Of course, this can only be the case

when the public is fully aware of the dangers imposed on them by air pollution. This means

that government and air quality measurement stations need to be transparent about local air

pollution levels. Zhang et al. [2022] used DiD estimation to show that air quality information

programs in China, significantly increased green innovation of domestic firms. Similarly, Du

et al. [2022] show that establishing additional local monitoring station positively affects
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green innovation, displaying a crowding-out effect. In trying to examine these relationship,

we formulate the following hypothesis:

• H1: Countries with higher levels of air pollution have a higher output in environment-

related patents per capita, compared to countries with lower levels of air pollution.

2.2 Politics & socioeconomics

The association between economic growth and innovation has been extensively documented.

As such, GDP per capita is generally positively associated with innovation [Ulku, 2004].

However, the relationship between economic development and green-tech innovation is less

clear-cut. Tudor and Sova [2021] indicate that GDP per capita promotes the use of energy

consumption generated by green technologies, or renewable energy consumption, when it

surpasses the 5,000 USD threshold. Studies similar in nature to ours, like Su and Moaniba

[2017], use GDP per capita as a control variable to isolate the effect of (GHG-)emissions

on innovation. However, we want to study the joint effect of GDP per capita and PM

pollution on innovation. A sufficient GDP per capita is potentially a major indicator that a

country and its citizens have the financial and knowledge capital required to fund green-tech

innovation. We assume that lower-income countries with low air quality overall, will have

fewer resources required to combat pollution, and more importantly, will favour easier &

more immediate economic growth over sustainable economic growth. In contrast, higher-

income countries with low air quality might prioritise sustainability to a greater extent,

than lower-income countries would. In trying to examine this relationship, we formulate the

following hypothesis:

• H2: For higher-income per capita countries, lower levels of air pollution have a larger

positive effect on the output of environment-related patents, compared to lower-income

countries with similar levels of air pollution.

Wang et al. [2021] investigate Popper’s Hypothesis. This hypothesis reads “democratic coun-

tries have advantages in fostering innovation performance”. They find evidence in support

of the hypothesis and show that democracies exert a significant positive influence on in-

novation in general, whereas an autocratic political regime inhibits innovation. Of course,

we are interested in green-tech innovation specifically. Zakari et al. [2022] find statistical

evidence that corruption has a significant and negative effect on green innovation in OECD

countries. Since, corruption is widely thought to be linked to autocratic regimes [Méndez

and Sepúlveda, 2006; Nur-Tegin and Czap, 2012; Chang and Golden, 2010], it is not hard to

suggest that a country’s political regime may affect its propensity to eco-innovate. In a sim-
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ilar way, an autocratic regime could potentially motivate opaqueness of public information

concerning air quality (evidence and possible consequences of this phenomenon are expanded

upon in section 5.2). As mentioned in Section 2.1, non-transparent reporting of air quality

information could be detrimental to the rate of development of green-tech innovation. In

contrast, an argument could be made that in a stable autocratic regime, knowledge & re-

sources can be directed towards a singular problem more efficiently. Nonetheless, we expect

that the potential negative effects of autocratic regimes outweighs the potential positives,

overall. In trying to examine this relationship, we formulate the final hypothesis:

• H3: A lower quality of air has a larger positive effect on the output of environment-

related patents over time for autocratic countries, compared to democratic countries

with similar levels of air quality pollution.

3 Model & data

Our objective is to study the nature of the relationship, if any, between air quality and

environmental innovation. Additionally, we would like to study the joint effect of national

GDP and air quality, as well as the joint effect of political regime and air quality, respectively,

on innovation. In particular, we estimate the following main reduced-form equation:

(PATENTSi,t) = γt + β1(AQIi,t)

+ β2(ln(GDPi,t))

+ β3(DEMOCRATICi,t)

+ β4(AQIi,t) · (ln(GDPi,t)) (1)

+ β5(AQIi,t) · (DEMOCRATICi,t)

+ β6(CONTROLSi,t)

+ αi + ϵi,t

where i indexes country, t indexes time (in years), PATENTS is the number of patents, AQI is

the EPA air quality index, GDP is the Gross Domestic Product per capita, DEMOCRATIC

is the dummy variable indicating political regime, CONTROLS is a vector of relevant control

variables, αi captures unobservable country heterogeneity, γt represents time effects, and ϵi,t

is a residual error term capturing all other effects. More elaboration on the variables and

data can be found in Section 3.1 through 3.5 The one-way system GMM regression results
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for this model specification can be found in Section 4.2 in Table 2 under model (3). Results

for variations of this model, substituting the main dependent and independent variables, can

be found in 4.3 in Table 3. We perform these additional analysis to make sure our findings

are robust.

3.1 Innovation

Conform to preceding research on the topic of innovation, we use successful environmentally

related patent applications per capita (PATENTS) as a proxy for environmental innovation.

As such, this is the main dependent variable in our model. This data was compiled from

a database maintained by The Organisation for Economic Co-operation and Development

(OECD) [OECD, 2017]. The database is called ‘Technology indicators’, and includes patent

applications filed in one or more jurisdictions. The database distinguishes several characteris-

tics related to the patent’s; date specification, country of residence and to or by which patent

office the patent was filed/granted. In our model we have selected ’Priority date’, ’inventor(s)

country(ies) of residence’, and filed under ’Patent Cooperation Treaty (PCT)’. The dataset

includes patents ranging from ‘environmental-related technologies’ to, ‘environmental man-

agement technologies’, ‘climate change mitigation technologies’, and ‘technologies related to

the capture, storage, sequestration or disposal of GHGs’. However, since we intend on cap-

turing an effect (if any) of air quality on environmental innovation, we will be focusing solely

on those patents in the dataset that include air quality innovation. Therefore we exclude

all climate change mitigation technologies and Capture, storage, sequestration or disposal of

GHGs technologies from our model. Furthermore, another variable present in this dataset is

environmental patents as a percentage of all technologies (PATENTS%ALL). This variable

will be used as second dependent variable in the robustness analysis (Section 4.3). Addi-

tionally, the control variables (CONTROLS) include four variables, captured from an adja-

cent OECD database called ‘Research & Development Statistics’, namely, Gross Domestic

Spending on R&D (R&D INTENSITY) [(OECD) Organisation for economic Co-operation

and development, 2017b], measured as a percentage of GDP, the total number of triadic

patent families (TRIADIC) [(OECD) Organisation for economic Co-operation and develop-

ment, 2017c], Foreign Direct Investment inflow in millions of US$ (FDI INFLOW) [(OECD)

Organisation for economic Co-operation and development, 2017a], and environmentally re-

lated taxes as a percentage of total domestic taxes (ENV TAX) [(OECD) Organisation for

economic Co-operation and development, 2019].
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3.2 Air pollution

Included in the model is data from the World Air Quality Index Project (WAQI), a database

from the Air Quality Open Data Platform IQAir [2021]. This dataset provides Air Quality

Data covering about 380 major cities from many countries worldwide, from between 2015-

2021, updated 3 times a day. The data for each major cities is based on the average (median)

of several stations, but also includes the minimum, maximum U.S. EPA AQI standard values

(i.e. no raw concentrations), and standard deviation for each of the air pollutants. Addition-

ally, this database includes some meteorological indicators (Wind, Temperature, etc.). Since

the dataset suffers from heavy, unbalanced attrition, we have opted to include in the model

only a single ordinal normalised Maximum AQI score (AQI) taken over all pollutants. The

consequences of this decision are elaborated upon in Section 5.1. This Maximum AQI score

(AQI) ranging from 0 to 5 (where 0 denotes ’good’ and 5 denotes ’hazardous’) is derived

from the U.S. EPA AQI values found in the WAQI Database.

3.3 Gross Domestic Product per capita

The World Bank offers an extensive database of many economic growth indicators [The

World Bank, 2021b]. In this case, the indicator best suited for this study is Gross Domestic

Product per capita constant 2015 US$ or (GDP). Since we are comparing many countries

worldwide over a time-span of several years, it is best to take into account population size,

and factor out any difference between currencies and account for inflation. Additionally,

for robustness analysis we include another indicators. Namely, GDP per capita constant

2017 US$ accounting for Purchasing Power Parity (2017PPP). The variables includes cross-

sectional time-series data of all 249 ISO recognised countries, between 1960-2021 with minor

attrition. To normalise we have taken the log of the variables.

3.4 Political regime

Classifying countries under types of political regimes is a reasonably complicated, and some-

what subjective, undertaking. Thankfully, databases exist that aim to make this practice less

ambiguous. One such initiative is the Varieties of Democracy (V-Dem) Research Project [von

Römer et al., 2022], created by the Department of Political Science, University of Gothen-

burg, Sweden. The project takes a data-driven comprehensive approach to understanding

democratization, encompassing core principles such as electoral, Liberal, majoritarian, con-

sensual, participatory, deliberative, and egalitarian. An analysis of the broader set of vari-

ables together combine to create a single ordinal variable that takes 0 for countries that can
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be considered a closed autocracy, 1 for electoral autocracy, 2 for electoral democracy, and 3

for liberal democracy. We have used this variable to generate a dummy variable (DEM) that

takes takes value 1 if the country is characterised by a mainly democratic political system,

and 0 mainly autocratic political system.

3.5 Health hazards

The World Health Organization (WHO) provides several datasets on the impact of low air

quality and the adverse effects on health worldwide [World Health Organisation (WHO),

2018]. One of the metrics included is annual mortality rates attributed to respiratory risk

from ambient air pollution (DEATHS). This variable are used in the robustness analysis

(section 4.3) as proxies of more tangible effect of poor air quality.

Table 1: Descriptive Statistics of most important variables

Variable N mean σ min max

PATENTS 127 16.36 19.98 0.100 76.26

AQI 113 1.460 0.846 0 4

GDP 127 31,304 21,064 6,126 108,570

ln(GDP) 127 10.12 0.707 8.720 11.60

DEM 127 0.921 0.270 0 1

R&D INTENSITY 127 1.737 1.017 0.261 4.797

TRIADIC 127 1,534 3,810 3.009 17,702

ln(TRAIDIC) 127 4.935 2.351 1.102 9.781

FDI IN 127 35,814 70,073 225.8 480,016

ln(FDI IN) 127 9.343 1.551 5.420 13.08

ENV TAX 127 2.275 0.932 0.610 4.640

DEATHS 127 4.338 3.181 0.616 17.95

GDP2017PPP 127 39,899 17,589 13,399 116,518

ln(GDP2017PPP) 127 10.50 0.448 9.503 11.67

4 Empirical results

Table 1 represents the summary statistics for all variables of interest. These statistics include

the number of observations, mean, standard deviation, minimum and maximum values across
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the countries-year observations in the sample.

4.1 Model testing

To assess which estimator will be unbiased, and therefore, the most suitable for our model,

we should first test for the presence of fixed or random effects in the panel dataset. We

can test if the data contains fixed effects by performing an F-test, which is based on loss of

goodness-of-fit. If H0 is rejected, it is possible to conclude that there is a significant fixed

effect or significant increase in goodness-of-fit in the fixed effect model; therefore, the fixed

effect model is better than pooled OLS. Performing the F-test results in a p-value of 0.000.

This means that we can reject the null hypothesis that all dummy parameters are zero and

that a significant fixed effect is present. Breusch and Pagan [1980] Lagrange Multiplier (B-P

LM) test examines if individual (or time) specific variance components are zero. If H0 is

rejected, it is possible to conclude that a significant random effect is present in the panel

data and that the random effect model is able to deal with heterogeneity better than the

pooled OLS model. Performing the B-P LM results in a p-value of 0.000. This means we

can reject the null hypothesis, indicating that a significant random effect is present.

The Hausman test [Hausman, 1978] tests whether group- or time-specific effects are corre-

lated with any regressors. In this case, the Hausman test evaluates whether the random

effects estimate is insignificantly different from the unbiased fixed effect estimate and can,

therefore, be used to choose between fixed effects and random effects model. H0 indicates

that the random effects is the more efficient model. Alternatively, H1 indicates that fixed

effects model is the more consistent model. Performing the Hausman test results in a p-value

of 0.0000. This means that we reject the null hypothesis, that the errors are systematically

different on a 1% level, indicating that the Hausman test results support the random effects

model will be biased and inconsistent.

However, given our dataset is relatively small and unbalanced, possible concerns of endo-

geneity must be addressed. Several characteristics in datasets point to one-way system Gen-

eralised Method of Moments (GMM) being a more suitable estimator. The GMM [Hansen,

1982] estimators are generic methods for estimating parameters in statistical models, de-

signed to handle important modeling concerns, while avoiding dynamic panel bias. The

estimators are especially suitable for models with relatively short time dimensions (T) and

arbitrarily distributed fixed effects. GMM estimators flexibly accommodate unbalanced pan-

els and multiple independent variables that are not strictly exogenous (meaning they are

correlated with past and possibly current realisations of the error term). It does this by uses
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moment conditions that are functions of the model parameters and the data, so that their

expectation is zero at the parameters’ true values. In doing so, the estimator controls for

endogeneity of the lagged dependent variable in a dynamic panel model, omitted variable

bias, unobserved panel heterogeneity and measurement errors. All of these properties make

a strong argument for the use of one-way system GMM in our study.

4.2 Main analysis

A summary of the parameter estimate estimates and associated standard errors for all models

is presented in Table 2. Model (1) shows a model with only the controls, while model (2)

and (3) include the independent variables, with and without joint effects, respectively.

The inclusion of the joint effects influences the significance of most variables. In model (2)

we see that all parameter estimates of the main independent variables are positive, but only

DEM is significant. Model (2) suggests that having a mainly democratic political system is

associated with a 3.824 increase in PATENTS in the short-run, ceteris paribus. This effect

is statistically significant on a 10% level.

In model (3), the parameter estimate for AQI is positive and significant on a 5% level. This

suggests that a 1-point increase in AQI is associated with a 40.28 increase in PATENTS. The

parameter estimate for GDP is also positive and significant on a 5% level. This suggests that

a percentage change in GDP is associated with a 7.368 increase in PATENTS in the short-

run, ceteris paribus. However, the joint effect of GDP and AQI is negative and significant.

This result suggests that the effect of AQI on PATENTS is dependent on GDP, and vice

versa. In model (3), the parameter estimate for DEM is not significant on a 10% level.

Interestingly, however, the parameter estimate of the interaction term of DEM and AQI is

positive and significant on a 10% level. This suggests that the effect of DEM is dependent

on AQI, and vice versa.

All parameter estimates for the lagged dependent variables are positive and significant on

a 1% level. The signs and significance levels of the control variables in model (1) are as

expected. These parameter estimates stay mostly consistent in subsequent models. R&D

INTENSITY has a positive and significant effect on PATENTS (but is not significant on

a 10% level in model (2) ). Equally, TRIADIC has a positive and significant effect on

PATENTS. FDI IN has a negative and significant effect on PATENTS. While, the parameter

estimates of ENV TAX are positive in model (1) and (2), but negative in model (3), all three

parameter estimates are not significant on a 10% level. In the next section we will analyse

the robustness of our model.

16



Table 2: Main regression results of GMM estimation

Variable Model (1) Model (2) Model (3)

AQI 1.153 40.28**

(1.132) (18.63)

ln(GDP) 2.401 7.368**

(1.890) (3.514)

ln(GDP)*AQI -4.281**

(1.933)

DEM 3.824* -1.495

(2.085) (2.063)

DEM*AQI 3.030*

(1.502)

R&D INTENSITY 2.946** 2.717 3.254*

(1.333) (1.907) (1.603)

ln(TRAIDIC) 1.523** 1.968*** 2.360***

(0.709) (0.711) (0.781)

ln(FDI IN) -2.014** -2.561** -3.110***

(0.905) (0.943) (1.070)

ENV TAX -0.564 -0.238 0.506

(0.534) (0.969) (1.064)

L.PATENTS 0.680*** 0.599*** 0.585***

(0.0684) (0.0782) (0.0971)

Constant 12.52** -12.94 -56.75*

(5.954) (14.74) (30.36)

Year dummies Yes Yes Yes

Hansen-stat (chi2) 0.135 0.103 0.171

AR(2) (z) 0.794 0.861 0.911

F-stat 179.73 83.79 88.75

Number of instruments 9 12 14

Number of countries 37 34 34

Number of observations 127 113 113

***p<0.01, **p<0.05, *p<0.1 denote the statistical confidence levels. P-values are reported for AR(2) and Hansen statistic.

Models are estimated using the generalised methods of moments regression method. The dependent variable is PATENTS.

The regression coefficients are in the upper rows. t-statistics (in parentheses) are calculated using robust standard errors that

are heteroskedasticity-consistent.
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4.3 Robustness analysis

In this section we the robustness of our model by providing additional analysis and results.

Model (1), (3) and (5) use our main dependent variable PATENTS as the dependent variable,

while model (2), (4) and (6) use PATENTS%ALL as the dependent variable. Models (1), (2),

(5) and (6) use AQI as the main independent variable, while model (3) and (4) use DEATHS

as the main independent variable. Models (1), (2), (3) and (4) use GDP as the second

independent variable, while model (5) and (6) use GDP2017PPP as the second independent

variable.

The sign and significance levels of the parameter coefficients across the these models are fairly

consistent. AQI and DEATHS seem to have a similar effect on the dependent variables, while

the same can be said both GDP per capita indicators. However, R&D intensity behaves

somewhat differently across the 2 dependent variables.
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Table 3: Robustness analyses of GMM estimation

Variable (1) (2) (3) (4) (5) (6)

AQI DEATHS GDP2017PPP

AQI/DEATHS 40.28** 1.330* 34.82** 0.952** 62.82** 1.963

(18.63) (0.706) (16.76) (0.451) (29.81) (1.242)

ln(GDP) 7.368** 0.362** 19.36 0.906*** 11.80** 0.527**

(3.514) (0.140) (13.21) (0.320) (5.513) (0.244)

DEM -1.495 0.258 -22.68 -0.535 -0.680 0.345**

(2.063) (0.161) (14.17) (0.385) (2.838) (0.152)

×GDP -4.281** -0.121 -3.818** -0.0972* -6.249** -0.174

(1.933) (0.0734) (1.813) (0.0495) (2.909) (0.121)

×DEM 3.030* 0.00194 4.338* 0.160*** 3.015 -0.0243

(1.502) (0.0702) (2.449) (0.0581) (2.059) (0.0674)

R&D INTENSITY 3.254* -0.0790 3.860 -0.0930* 3.124* -0.0747

(1.603) (0.0532) (2.426) (0.0524) (1.656) (0.0514)

ln(TRAIDIC) 2.360*** 0.0492 2.262* 0.00968 2.589*** 0.0555*

(0.781) (0.0323) (1.261) (0.0301) (0.837) (0.0327)

ln(FDI IN) -3.110*** -0.0948** -3.059* -0.0811** -3.278*** -0.0926**

(1.070) (0.0376) (1.508) (0.0345) (1.053) (0.0366)

ENV TAX 0.506 -0.0168 1.071 -0.0290 0.535 -0.0223

(1.064) (0.0454) (1.830) (0.0449) (1.219) (0.0491)

L.Y 0.585*** 0.236 0.501*** 0.451*** 0.560*** 0.276

(0.0971) (0.188) (0.170) (0.161) (0.0919) (0.184)

Constant -56.75* -1.450 -162.4 -6.968** -106.1* -3.545

(30.36) (1.204) (117.5) (3.038) (53.43) (2.340)

Hansen-stat (chi2) 0.171 0.107 0.159 0.139 0.175 0.095

AR(2) (z) 0.911 0.326 0.624 0.194 0.807 0.277

F-stat 88.75 4.38 29.70 15.32 74.61 5.03

Instruments 14 14 14 14 14 14

Observations 113 113 113 113 113 113

Countries 34 34 34 34 34 34

Models are estimated using the generalised methods of moments regression method. ***p<0.01, **p<0.05, *p<0.1 denote the

statistical confidence levels. × denotes the interaction term with AQI/DEATHS. P-values are reported for AR(2) and Hansen

statistic. The dependent variable is PATENTS in models (1), (3) and (5), while it is PATENTS%ALL in model (2), (4) and

(6). The regression coefficients are in the upper rows. Year dummies used. t-statistics (in parentheses) are calculated using

heteroskedasticity-consistent robust standard errors. 19



5 Discussion

Concerning the findings from table 2 in Section 4.2, model (2), on its own, does not pro-

vide support for H1 (countries with higher levels of air pollution have a higher output in

environment-related patents per capita, compared to countries with lower levels of air pol-

lution), since the parameter estimate of AQI in model (2) is not significant on a 10% level.

However, the results of model (3) do provide support for H1, since the parameter estimate

of AQI in model (3) is positive and significant on a 5% level. Model (3) suggests that there

is a positive and significant relationship between air pollution and green-tech innovation on

a country level. These findings are similar to those of Su and Moaniba [2017], in that they

find a positive and significant relationship between air pollution (GHG instead of PM) and

environmental innovation. However, this finding should not be taken at face value, given the

parameter estimate of model (2) is not significant.

Model (3) does not provide support for H2 (For higher-income per capita countries, lower

levels of air pollution have a larger positive effect on the output of environment-related

patents, compared to lower-income countries with similar levels of air pollution), since the

parameter estimate for the joint effect ln(GDP)*AQI is negative and significant on a 5%

level. Rather, it provides support for the opposite. It seems that the positive relationship

between air pollution and green-tech innovation is more pronounced for low-income countries,

compared to high-income countries. At first glance, one would assume that high-income

countries possess more financial and intellectual resources to innovate in general and would,

thus, have a higher green innovation activity when confronted with low air quality, compared

with low-income countries. However, there might be some logic to our findings yet. It

could be the case, that health risks from air pollution in developing countries are even

more apparent to the greater population, while at the same time healthcare might be less

able to ease this burden, and thus, drive its propensity to eco-innovate even more. This

idea is further supported by the robustness analysis (Table 3 Section 4.3), where the main

independent AQI is substituted for DEATHS.

Model (3) provides some support for H3 (A lower quality of air has a larger positive effect on

the output of environment-related patents over time for autocratic countries, compared to

democratic countries with similar levels of air quality pollution), since the parameter estimate

for the joint effect DEM*AQI is positive and significant on a 10% level. These findings align

well with Popper’s Hypothesis (democratic countries have advantages in fostering innovation

performance).
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5.1 Limitations

By all accounts there are several limitations to our model and the findings it suggests. For

one, GMM estimation, while good at dealing with omitted variable bias and reverse causality,

is highly sensitive to model specification.

Furthermore, unfortunately, there is no patent data available exclusively for air pollutant

mitigation technologies innovation within the OECD database. Although we exclude all

patents that are classified under ‘technologies related to the capture, storage, sequestration

or disposal of GHGs’ and ‘climate change mitigation technologies’, much of the remaining

patents fall under considerably broad categories, namely ‘environmental-related technolo-

gies’ and ‘environmental management technologies’. Given a patent specifying for solely air

quality related technologies, it would be much easier to isolate and reliably estimate the

specific effect of air quality on the innovation activity related to air pollution mitigation

technologies. However, from the data available, the currently employed innovation indicator

is that which resembles this hypothetically ideal dataset most closely.

Finally, the sample size of the time component in the main analysis is arguably too small

to consider the regression predictions accurate. Although the unbalanced dataset overall is

quite large, when all variables of interest are included in the model, the sample only in-

cludes nT = 127 observations, n = 37 countries, measured over an average t = 3.4 years,

between 2015-2021. These numbers can also be found in Table 2, Section 4.2. Additionally,

the limited number of year observations inhibits imposing a lag-structure in the model any

further than 1 year. Naturally, this is an all too common problem within the scientific com-

munity that work with yearly country-level data. Naturally, there are only 249 countries

(193 recognised by the U.N.) in the world today according to the International Organiza-

tion for Standardization (ISO) [International Organization for Standardization, 2022]. Only

81 of which can be considered industrialised or developed, according to The World Bank

[2021a]. Digital measurement of air pollution wasn’t pioneered until 1987, and consistent

measurement of local ambient air pollution hasn’t started to gain traction internationally

until 2015. Technically, however, this issue is exacerbated as a consequence of a different

problem, namely, attrition. Since the AQI database takes averages from independent weather

stations all over the world, attrition is quite large. However, potential concerns for attrition

bias seem quite unlikely. Once a connection to the WAQI platform is made, data-reporting

happens autonomously. In that sense, human error can be largely excluded. As such, there

is no serious concern of attrition bias. That is to say, there would be no concern for attrition

bias, except for one condition. Intentional omission of data or misreporting.
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5.2 Evidence of misreporting in China

By all accounts, sample size and attrition are only minor concerns in the face of serious

misreporting bias. In 2012, Chen et al. [2012] presented statistical verification of significant

air quality misreporting by government official-owned monitoring stations. The authors

report a much higher-than-expected frequency of API values just below 100 AQI (and a

correspondingly lower-than-expected frequency just above 100 AQI). This and other accu-

sations prompted the government to restructure China’s air quality monitoring system, to

discourage local officials from misreporting data. Post-2012, Turiel and Kaufmann [2021]

have provided statistical evidence of significant misreporting once more, albeit to a differ-

ent extent. The authors state that statistically significant divergences exist between PM2.5

levels reported by government-owned monitoring stations, and neighbouring U.S. embassy

monitoring stations, respectively. specifically, they observe that these divergences are more

likely to occur during hours when air pollution concentration is high, and are more frequent,

as well as more positive, than can be expected by random chance. In other words, relative

to U.S.-controlled monitoring stations, government-controlled stations systematically under-

report pollution levels when local air quality is poor. While this is a grave accusation, it

should not be taken lightly. One can only wonder about the validity of air quality data from

other stations in the world. Crucially, despite this genuine concern, excluding the People’s

Republic of China (PRC), from the model, does not yield remarkably different results.

6 Conclusion

This master thesis investigates the relationship between air quality and the rate of green-

tech innovation, on a country-level. Additionally, it examines the added effect of a country’s

GDP per capita and political regime. By doing this, the paper contributes to a growing

body of existing literature by trying to shed new perspective on the relationship between

green technological innovation and air quality.

A one-way system GMM model was estimated using a cross-sectional time-series dataset.

The findings suggest that there is a positive and significant relationship between air pollution

and green-tech innovation on a country level. However, this finding is only supported in our

models that introduce a joint effect of air pollution and GDP per capita, as well as the joint

effect of air pollution and political regime. Furthermore, our findings suggest that this effect

is more pronounced for low-income countries, compared to high-income countries. This is

the opposite of what we expected. Finally, our findings also suggest that the aforemen-

tioned effect is more pronounced for democratic countries, compared autocratic countries.
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Robustness analysis provides support for these findings.

The findings presented in this thesis could help policy-makers from international and domes-

tic institutions understand how to tackle air pollution globally, for countries with varying

environmental and socioeconomic characteristics. For example, policy-makers and inter-

national institutions should aim to be transparent about ambient air quality levels and

inform the public on consequent health-related issues. This seems to be especially vital

in low-income countries and democratic regimes. This in turn could drive domestic firm’s

Corporate Social Responsibility, which in turn should drive green-tech innovation.

In conducting our research we have contributed to existing literature on the determinants of

green-tech innovation activity. Moreover, this thesis adds to prior research that investigates

the relationship between air pollution and environmental innovation. To our knowledge, this

is the first body of scientific work that empirically analyses the relationship between ambient

particle matter and green-tech innovation activity.

Future research could expand on this topic by using new datasets with more data points

with, specifically, a longer time component. Furthermore, we would suggest using datasets

that use patents or other innovation indicators that relate to PM specifically, and, thus,

exclude GHG.
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A Appendix

Country observations percentage

Argentina 4 3.15

Australia 2 1.57

Austria 3 7.09

Belgium 2 1.57

Chile 4 3.15

China 4 3.15

Colombia 4 3.15

Czech Republic 4 3.15

Denmark 4 3.15

Estonia 4 3.15

Finland 3 2.36

France 4 3.15

Germany 4 3.15

Greece 4 3.15

Hungary 3 2.36

Ireland 3 2.36

Israel 3 2.36

Italy 4 3.15

Japan 4 3.15

Latvia 2 1.57

Lithuania 4 3.15

Luxembourg 2 1.57

Mexico 4 3.15

Netherlands 3 2.36

New Zealand 2 1.57

Norway 2 1.57

Poland 4 3.15

Portugal 4 3.15

Slovakia 4 3.15

Slovenia 4 3.15

South Africa 4 3.15

Spain 4 3.15

Sweden 4 3.15

Switzerland 1 0.79

Turkey 4 3.15

United Kingdom 4 3.15

United States Of America 4 3.15
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