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Abstract  

The application of machine learning algorithms to classification problems in 

imbalanced data has a range of different considerations with regards to data 

preparation, performance metrics and the reliability of its generated probability scores, 

when compared to cases in which datasets are balanced. This research aims to 

assess suitable combinations of machine learning algorithms with resampling and 

probability calibration techniques used to tackle the issues that arise from imbalanced 

data. Specifically, Random Forest and Support Vector Machine were combined in 

different ways with SMOTE, Platt Scaling and Isotonic Regression, using one real-

world and four generated datasets, all with different proportion of class imbalance. The 

performance of these combinations of techniques were measured in terms of ROC 

AUC, PR AUC, and Brier Score. It was found that, overall, Random Forest achieved 

superior results when compared to SVM. Furthermore, the combined use of Random 

Forest and Isotonic Regression provided the best results of PR AUC and Brier Score 

in all the five datasets analysed. 
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Introduction  

Binary classification tasks have a wide range of applications in different business 

sectors and have been continuously object of academic research. The cases of rare 

events, in which binary classification is performed using imbalanced data, are often 

examined. On these cases, conventional metrics for measuring classification 

performances might not be suitable to use. Classification of rare events using 

imbalanced data is applied in different sectors such as finance, medicine, and 

marketing, for instance. In marketing, one of the cases in which datasets are 

imbalanced usually involves the so-called database marketing models, which focus 

marketing efforts to existing clients aiming at growing customer loyalty. These efforts 

come under the assumption that enhancing the relationship with current customers 

brings more profit than acquiring new ones (Duman, Ekinci & Tanrıverdi, 2012). The 

classification models in database marketing focus on classifying customers as buyers 

and non-buyers in the context of cross selling or up selling. The former refers to finding 

a given existing customer who would be more likely to buy a new product he does not 

have, whereas the up selling refers to finding customers that may grow the volume of 

purchases of a given product they already buy. In medicine, one of the applications of 

classification tasks of rare events is on cancer detection where the patient is classified 

as ill or not ill, a problem which relies on the minority class samples (Fotouhi, Asadi & 

Kattan, 2019).  

This paper focuses on one of the applications in finance, namely credit card fraud 

detection, and aims at finding a suitable combination of techniques to address some 

of the matters that usually arise when classification of rare events is performed. 

Specifically, it will deploy Random Forest and Support Vector Machine, two machine 

learning models commonly used in classification of rare events, as will be shown in 

the literature review section below. Following that, it will assess combinations of a data 

resampling technique and two probability calibration techniques in order to enhance 

the performance of the classification model. 

In this section, the background of imbalanced classification applied in fraud detection 

for credit card transactions will be discussed, with emphasis on the overall effects it 

has on the credit card industry. Furthermore, the research objectives of this paper will 

be outlined, as well as the organizational structure it will follow.  
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Background 

The issuance of credit to economic agents is a vital part of the dynamism in any 

economy, being an essential driver of household consumption and entrepreneurship 

activities. The organic evolution of banks’ financial instruments led to the creation of 

credit cards as a portable way to purchase on credit. As it happens in other sectors, 

transactions involving credit cards are also subject to fraud. A report from the 

European Central Bank shows that in 2018, the value of credit card transactions that 

were fraudulent reached 1.8bn Euros, out of a total 4.84tr Euros in transactions that 

happened in the same period (European Central Bank, 2018). This encompasses 

those credit cards that were issued within the Single Euro Payments Area (SEPA). 

The same report shows that the value of fraudulent transactions grew at a higher rate 

than the value of overall credit card transactions between 2017 and 2018. The value 

in frauds for credit cards transactions increased by 13% year on year, whereas the 

overall value in transactions increased by 6.5% year on year.  

Currently, fraud in credit card transactions can be separated into two types: card-

present (CP) and card-not-present (CNP). The former refers to frauds in which the 

physical card is necessary such as in the case of transactions in ATM machines, 

whereas the latter refers to situations in which no physical card is required such as 

transactions on the internet. The aforementioned report by the European Central Bank 

points that in 2018, the frauds of type CNP represented 79.5% of the total value of 

frauds. Hence showing that nowadays frauds conducted remotely on the internet, mail 

or phone are more usual than the ones conducted physically.  

Financial institutions are increasingly using machine learning techniques to be able to 

cope with the large amount of data that is available nowadays and promote the drive 

towards automated credit card fraud detection. In the past few years, different studies 

have focused on the application of machine learning to credit card fraud detection 

(Adewumi & Akinyelu, 2017; Popat & Chaudhary, 2018; Priscilla & Prabha, 2019). 

Those studies used different machine learning algorithms to perform the classification 

task, such as Random Forest, Naïve Bayes, Neural Networks, Support Vector 

Machines and Logistic Regression, to name a few.  
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Rare events are those in which an outcome occurs with remarkedly less frequency 

than other more common outcomes (Maalouf & Trafalis, 2011). Credit card fraud is 

one of the examples of rare events, given the rare nature of fraudulent transactions 

when compared to those that are legit. Rare events can have a substantial impact on 

their related fields if not detected properly. For instance, consider the impact of a non-

diagnosed cancer on a patient or the effect of large frauds to a credit card company. 

Hence, the size of the effects of rare events makes their detection an important task, 

which can contribute to enhance their understanding and prevention. Decisions 

involving rare events usually present asymmetric costs (Byron, Wallace & Dahabreh, 

2012), and credit card detection is not an exception to that. The costs involving correct 

and incorrect classifications are different. When it comes to fraud detection, the main 

desired outcome is to accurately detect the frauds so that the costs associated with 

fraudulent activities are avoided. However, once a fraud is detected, there are also 

costs associated with the investigations or other measures that are taken to tackle the 

fraud. In addition to those, there are also costs involved for the cases of false positive 

and false negative outcomes, and they are also asymmetric. When false negative 

outcomes happen, the company incurs on the losses coming from the frauds, whereas 

in case of false positives it incurs on the costs involved with the measures it takes 

when frauds are detected, as well as the reputation cost arising from bothering clients 

due to misclassification of fraud. 

In imbalanced scenarios such as the case of credit card fraud, the errors tend to occur 

more often towards the minority class, if the classification methods are applied naively. 

That is, the model tends to classify an observation as belonging to the majority class, 

when in fact it belongs to the minority. In the case of credit card fraud, the model 

misclassifies a transaction as legitimate, when in fact it is fraudulent, which consists in 

a false negative. This situation happens because the classification models are trained 

in an imbalanced scenario in which most of the observations consist of legitimate 

transactions. The fact that in fraud detection for credit card transactions the costs 

associated with false negatives are usually larger than false positives highlights the 

importance of addressing the issue of classification under imbalanced data. 

There is a wide range of techniques that can be used to tackle the issues of 

classification tasks on imbalanced data. Some of them focus on manipulating the data 
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itself, while others focus on tweaking the machine learning algorithms. The former type 

usually involves changing the training dataset through resampling so that the data gets 

a more balanced proportion of observations between the two classes. That can be 

applied through undersampling the majority class (e.g., random undersampling) or 

oversampling the minority class (e.g., SMOTE). The other sort of techniques 

encompasses cost-sensitive analysis and involve tweaking the machine learning 

algorithms so that it considers the different costs associated with each outcome. 

Another group of techniques used when classification is applied on imbalanced data 

is probability calibration techniques, which tackle the issue of predicted probabilities 

not matching the true probabilities. There are different methods used for calibrating 

probabilities, such as Platt Scaling and Isotonic Regression. These techniques will be 

further explained on the literature review and methodology sections.  

 

Research Objective 

In view of the background provided above and the current challenges involving the 

detection of credit card fraud, this paper will aim at analysing possible ways to improve 

the performance of machine learning models trained for fraud detection by combining 

resampling and probability calibration methods commonly used to handle issues 

arising from imbalanced data. Given the difficulty in finding public real-world data 

related to credit card frauds, this paper will simulate four datasets with different levels 

of imbalance, in addition to the use of one real-world dataset. Random Forest (RF) 

and Support Vector Machine (SVM) models will be trained, and different combinations 

of Platt Scaling, Isotonic Regression and the SMOTE technique will be subsequently 

applied on the different datasets used in this study. The steps taken aim at assessing 

whether SMOTE, Isotonic Regression and Platt Scaling can be used combined to 

improve the performances of RF and SVM models for the simulated datasets, and 

which combination performs the best for each proportion of class imbalance 

considered.  

Furthermore, by applying the methodology on four different imbalance scenarios, the 

research aims at giving results applicable under the normal highly imbalanced fraud 

scenario, as well as under exceptional ones, in which the rate of fraudulent detections 

would increase drastically compared to what has been usually observed by real-world 
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data. In that way, this paper also aims at detecting which combination of techniques 

are more suitable for each type of dataset, according to the level of imbalance it 

presents. Specifically, the level of imbalance on the first dataset was 10%. The other 

simulated datasets have a gradually decreased proportion of minority class, with 5%, 

1% and 0.2%, respectively. The latter proportion was specifically chosen to be close 

the imbalance of the real-world dataset used, which has around 0.17% of observations 

classified as fraud. 

Paper Structure 

Following this introduction section, this paper will present a literature review involving 

credit card fraud, as well as classification algorithms, resampling methods and 

probability calibration techniques previously implemented for that problem. After the 

literature review, a section about the data simulation will be exposed, focusing on the 

methodology used to simulate the dataset. Then, there will be a section explaining the 

methodology used for conducting the investigations of this paper. In particular, the 

machine learning models, resampling technique and calibration methods, as well as 

the performance measures will be explained. Then, the results obtained will be 

presented and the insights derived from them will be exposed. Finally, a general 

discussion section will explore the implications of the insights, as well as the limitations 

of this paper and the fields for future research. 
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Literature Review 

This section will go through the previous studies conducted about fraud detection, as 

well as past research about methods that are applied throughout the paper to reach 

the prediction of credit card fraud.  

Fraud Detection 

The problem of fraud detection has been widely investigated in previous research. 

Phua et al., (2010) presented an extensive review of studies addressing the issue of 

automated fraud detection in many domains. They identify the most common 

occasions in which fraud occurs, for instance, on medical and housing insurance, 

credit application, telecom subscription, credit card transactions, among others. 

In the specific field of fraud in credit card transactions, different investigations were 

conducted. Chen et al., (2004) proposed the so-called questionnaire-responded 

transaction (QRT) data, collected through online questionnaires, and then use SVMs 

to train the data and develop a model to predict new transaction. Maes et al., (2002) 

used Artificial Neural Networks (ANN) and Bayesian Belief Networks (BNN) to credit 

card fraud detection. They found that the use of BNN produces better results and has 

a faster training process, however, the process of fraud detection was found to be 

quicker using ANN.  

Bhattacharyya et al., (2011) further investigated the use of data mining techniques in 

credit card fraud by comparing the use of Random Forest, Support Vector Machine 

and Logistic Regression. They found that, overall, Random Forest models presented 

a better performance than SVM. They also emphasized that Logistic Regression had 

good performance, often better than the ones achieved using SVM. 

Chan et al., (1999) examines credit card fraud detection in the context of e-commerce, 

with a focus on the imbalance of data, the non-uniform nature of costs when 

classification errors occur, as well as the issue of distributed databases. They 

proposed combining multiple machine learning algorithms, training them on subsets 

distributed data in a distributed environment designed by the researchers. They also 

considered the asymmetry of costs by implementing a cost-sensitive version of the 

AdaBoost algorithm, the so-called AdaCost. They found their proposed methods were 
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effective in building fraud detectors, as well as scalable in a distributed environment. 

One limitation, however, is the necessity of determining the desired distribution of the 

training set in accordance with a cost model. 

Imbalanced data 

Real-world data sets used in binary classification problems are usually imbalanced, in 

the sense that the majority observations belong to one of the classes only. That 

happens in different applications, from medicine (e.g., cancer detection) to finance 

(e.g., fraud detection in credit card transactions). On imbalanced data sets, the target 

binary variable Y has unequal distribution of the classes, that is, one of the classes is 

over-represented whereas the other is under-represented. For instance, in the case of 

credit card transactions, most of the observations of transactions are classified as non-

fraudulent (Y=0) and represent the majority class, whereas the minority class 

encompasses the fraudulent transactions (Y=1), which are a low proportion of the 

overall data.  

The presence imbalance in the data classes make the accuracy of the model an 

unreliable metric of performance measure. Hence, if the algorithm is built on the 

assumption of maximising the accuracy, the machine learning model will generate 

unsatisfactory classifiers (Provost, 2000). For instance, in hypothetical data set which 

has 99% of the observations belonging to Y=0 and 1% belonging to Y=1, a model that 

predicts that all the observations in the test set would belong to Y=0 would have a 99% 

of accuracy. Hence, accuracy is not the most suitable measure for evaluate model 

performance in the case of imbalanced data.  

Sun, Wong & Kamel, (2009) addressed the use of evaluation metrics for classification 

under imbalanced data, emphasizing that different metrics can be used according to 

the learning objective of the classification task. They also point to the fact that accuracy 

is not an appropriate measure because the minority class has little impact on the 

accuracy, when compared to the majority class. The study mentions the fact that, 

when the performance of the positive class is important, the precision and recall are 

measures two important measures, also highlighting the link between the two 

measures and the F-measure, which would be the harmonic mean of these two 

metrics. They also mention the ROC AUC as a threshold-free metric that can be used 
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on these scenarios of classification under imbalance. In the research examining the 

relationships between ROC curves and PR curves, Davis & Goadrich, (2006) argue 

that in case of highly skewed dataset, the PR curve provides a more accurate portrait 

of the model’s performance. 

In view of the issues that imbalance data can bring to the model performance, different 

techniques can be applied to handle this situation. Examples of techniques are data 

resampling methods, cost-sensitive learning, and probability calibration.  

Resampling Techniques 

The resampling techniques can be divided into undersampling, oversampling and 

hybrid. In general, they focus on resampling the training data to make the data set 

more balanced. 

Oversampling 

In oversampling, the minority class has its proportion of observations increased in the 

dataset. One of its forms is the so-called random oversampling (ROS), by which the 

observations are duplicated randomly. There are also more sophisticated approaches 

to oversampling, such as Synthetic Minority Oversampling Technique (SMOTE) and 

Adaptative Synthetic Sampling (ASASYN). In SMOTE, the oversampling of the 

minority class occurs by the generation of synthetic examples in the feature space 

(Chawla et al., 2002). The ASASYN, in turn, considers the data distribution and 

adaptatively generates synthetic samples belonging to the minority class. It considers 

the level of difficulty in learning the observations belonging to the minority class, hence 

generating more synthetic observations for the minority class examples that are 

relatively more difficult to learn (He et al., 2008). 

Undersampling 

The methods belonging to undersampling remove observations from the majority class 

to make it more balanced. Analogously to oversampling, the simplest method to 

conduct undersampling is to randomly remove these samples from the majority class, 

known as random undersampling (RUS). Other approaches for undersampling involve 

the use of the KNN method (Mani & Zhang, 2003), Tomek Links (Tomek, 1976) and 

the so-called Edited Nearest Neighbours (DL Wilson, 1972), all focusing on the 
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removal of observations from regions that overlap. Another technique involves 

undersampling with a cluster-based approach (SJ Yen, YS Lee 2009).  

Hybrid 

Hybrid techniques involving the combination of oversampling and undersampling 

techniques used together have also been proposed by previous research. Batista, 

Prati & Monard (2004), for instance, propose the combination of SMOTE with Tomek 

and ENN. 

Resampling Methods Applied in Fraud Detection 

Recent studies have applied resampling techniques in the context of credit card fraud 

transactions. Mrozek, Panneerselvam, Bagdasar (2020) applied random 

undersampling and the SMOTE methods into a real-world dataset, using Random 

Forests, Logistic Regression, K-Nearest Neighbours, as well as Stochastic Gradient 

Descent. They found that Random Forest in combination with Random Undersampling 

got the best recall score, when compared to just using the Random Forest without 

addressing the imbalance of the data. Sisodia, Reddy & Bhandari, (2017) applied 

different oversampling techniques (e.g., SMOTE, SMOTE ENN, SAFE SMOTE, 

SMOTE TL, and Random Oversampling), and then used cost-sensitive analysis on 

Adaboost and Bagging. They concluded that SMOTE ENN performs better in detecting 

frauds. 

Calibration of Probabilities  

In binary classification problems, it is not unusual that the probabilities obtained by the 

machine learning models applied do not match the true probabilities. That issue is 

particularly relevant when the dataset used is imbalanced, in which the costs of 

misclassification are commonly asymmetric (Wallace & Dahabreh, 2012). In particular, 

Niculescu-Mizil & Caruana (2005) demonstrate that models such as SVMs, boosted 

trees and boosted stumps usually push the predicted probabilities away from the 0 

and 1 threshold. 

The probability calibration of classification models has been examined in previous 

studies. In particular, methods which are applied after a given model is fit have 

received attention, the so-called post-processing calibration methods. Different 
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combinations of machine learning models and calibration methods have been applied 

by previous research. Zadrozny & Elkan, (2002) propose the use of a common 

algorithm used in Isotonic Regression, the so-called pair-adjacent violators (PAV) 

algorithm, to enable the learning of mapping from the ranking scores to the estimates 

of calibrated probabilities. They also use the PAV algorithm for the case of multiclass 

probabilities. 

Combining different calibration metrics with learning models, Niculescu-Mizil & 

Caruana, (2005) demonstrate that AdaBoost predicts probabilities that are distorted 

and apply three different calibration methods to handle this issue, namely, Platt 

Scaling, Isotonic Regression and Logistic Correction. They found that Platt Scaling 

and Isotonic Regression enhance the probabilities predicted by both Boosted Trees 

and Boosted Stumps, while Logistic Correction worked well only on Boosted Stumps. 

They also found that boosted full decision trees after calibrations perfom better 

probability predictions than SVMs, KNNs and Neural Nets. Wallace & Dahabreh, 

(2012) also address the problem of probability calibration in imbalanced datasets. 

They argue that in imbalanced scenarios, the estimator provides unreliable probability 

estimates when it comes to the minority class and propose the use of the so-called 

stratified Brier score metric to measure this issue. The solution they propose is to use 

balanced bootstrap samples of the training data to induce the probability calibration.  

In a recent research, Huang, et al., (2020) conducted a large experimental 

investigation on calibration under imbalanced datasets. They used Logistic 

Regression, Random Forests, Support Vector Machines and Gradient Boosting 

Decision Tree as classification models, and tested the calibration using different 

methods, namely, Platt Scaling, Histogram Binning, Isotonic Regression and Bayesian 

Binning into Quantiles. They concluded that Isotonic Regression has the best 

performance overall. 

In the context of the literature review presented in this section and the contributions 

made by the wide range of studies conducted in the field, this paper aims at addressing 

different issues that arise from classification under imbalanced data, within the same 

framework. Although the use of probability calibration methods was previously 

investigated to improve the match between predicted and true probabilities, and 

although methods of resampling were previously applied on imbalanced classification 
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tasks to improve their performance metrics, this research will expand their scope to 

the context of credit card fraud under different imbalance scenarios that were 

generated by simulation. In particular, it aims to combine the use of these two types 

of methods and provide a suitable choice combination so that both probability 

calibration metrics (i.e., Brier Scores) and measures related to multiple thresholds (i.e., 

the areas under the curve of ROC and PR curves) are optimised. 
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Data 

One of the main issues on the research about data mining applied to fraud detection 

is the scarce amount of publicly available real-world data that can be used to conduct 

the studies (Phua et al., 2020).  In the case of datasets regarding credit card fraud, 

this is specially the case due to confidentiality issues. Considering this matter, part of 

the datasets used in this paper are the results of data generation process. Four 

datasets were generated using different parameters to control for imbalance and how 

easily the classification could be done. Furthermore, one real-world dataset is also 

used with the aim to compare the results and assess whether the most suitable 

combination of methods obtained on the simulated datasets would also be applicable 

to this particular real-world data. The details of the datasets are explained below. 

Real-World Data  

The dataset used to represent a real-world scenario encompasses two days of 

transactions that occurred in September 2013 by cardholders in the European 

continent. In total, there were 284,807 transactions, out of which 492 were labelled as 

fraudulent, representing roughly 0.172% of the whole sample. The dataset has 31 

variables, with 28 of them being the result of Principal Component Analysis (PCA). 

The variables which are transformed using PCA usually display a wide range of 

behavioral and demographic information about the clients. The others are “Time”, 

“Amount” and “Class”. The latter is binary and labels the transaction as Fraud (Class 

= 1) or Non-Fraud (Class = 0). The variable “Amount” refers to the transaction amount, 

whereas “Time” refers to the number of seconds that have passed from the very first 

transaction computed and any other given one. This dataset was produced and 

collected as part of a partnership between the Machine Learning Group of the 

Université Libre de Bruxelles and the payment solutions company Worldline. 

Data Simulation 
 

The data generation process was conducted such that four datasets with different 

class imbalance were generated. The simulation was done using the 

make_classification function present in Python’s Scikit-learn library, which enables the 

creation of a random n-class classification problem, generating clusters of points 

normally distributed in a hypercube. The number of features generated was set to 30, 
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which is the same number of features used in the training of the real-world dataset, 

after the feature engineering performed. The features were generated to resemble the 

ones present in the real-world data described above, including the binary variable 

“Class”. The process generated 200,000 observations to resemble the number found 

in the real-world dataset. To control for ease with which the classification can be 

performed, the parameter class_sep was adjusted. This parameter multiplies the 

hypercube size, with larger values implying that the classes are more spread out in 

the hypercube and making the classification easier. The default for this parameter is 

1, but the value used was 0.5, so that the classification task is harder, and the models 

applied do not predict fraud perfectly, which wouldn’t be compatible with what happens 

in real-life. 

The control of the class imbalance was done by adjusting the parameter weights, 

which basically assigns the proportion of weights on each of the classes for the 

simulation. For the purposes of this research, four different proportions were 

considered in the data generation process, namely 10%, 5%, 1% and 0.2%. The 

choice of proportion in the highly imbalanced scenarios of 1% and 0.2% was done to 

resemble to the scenarios displayed in the reports by the European Central Bank, 

mentioned in the section above, in addition to be near the imbalance proportion of the 

real-world dataset used in this study. Hence, these two scenarios would be easier to 

observe, according to the reports on fraud publicly available currently. The other two 

less imbalanced scenarios, in which 10% and 5% of observations are frauds, aims at 

assessing how different the combination of methods would be in case of an improbable 

scenario in which the proportion of frauds increased drastically, compared to what is 

currently documented publicly.  
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Methodology 

In this methodology section the machine learning models, resampling technique, 

probability calibration methods, and performance metrics used in this paper will be 

explained one by one. Following that, the exact steps taken for conducting the 

investigation will be exposed, in order. Each step taken will be justified considering the 

methods explained in this section, as well as the previous approaches used to 

investigate credit card fraud, explained in the literature review section above. 

Machine Learning Models 
 

Support Vector Machine 

Support Vector Machine (SVM) will be one of the machine learning methods used to 

perform the detection of fraud in credit card transactions. It is a type of supervised 

learning that can be used for both classification and regression tasks. The main idea 

of the method is to discover a hyperplane in a N-dimensional hyperspace that can 

classify data points. The hyperplane (the classification function) is determined such 

that it has the maximal margin separating the classes (i.e., the maximum distance 

between the nearest data points and the hyperplane). This characteristic minimizes 

the risk of overfitting the training data. The hyperplane separating the different classes 

can be expressed as shown below. 

< 𝑤, 𝑥 >  + 𝑏 = 0 

Where < 𝑤, 𝑥 > is the dot product of the coefficient vector w and vector variable x. 

The SVM can use a Kernel function, which represents the dot product of two data 

points in a high-dimensional feature space. Hence, the SVM classification function can 

be expressed in terms of dot products of input data points in a high-dimensional feature 

space. SVM has some characteristics that make it appropriate to apply in classification 

problems with imbalanced data such as credit card fraud. Particularly, the fact that it 

is a linear classifier but can work properly in a high-dimensional feature space without 

the need of implementing further computational complexity (Bhattacharyya et al., 

2011).  
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Random Forest 

The other method used in this paper for fraud detection will be Random Forest (RF), 

which belongs to the class of the so-called ensemble models. The latter refer to the 

sort of methods that develop a set of models and aggregate the predictions made to 

determining the output class label for a given data point. In the case of Random 

Forests, the aggregation involves several decision trees. After the trees are generated, 

they vote for the most popular class for the input x (Breiman, 2001). Specifically, it 

addresses one of the drawbacks of decision trees, namely their sensitivity to specific 

training set, which can lead to overfit. The trees built in a Random Forest model are 

done on bootstrapped samples of the chosen training data. Another aspect of this 

method is that each time a node is built, only some previously selected subsamples of 

attributes are selected, randomly. That differs from the Bagging method, in which all 

the attributes of a model are considered when the node is built.  

Performance Measures 

The performance measures for classification problems, either binary or multi-class, 

take into consideration the so-called confusion matrix (aka contingency table). The 

confusion matrix shows the possible outputs of a classification model. In the case of 

fraud detection, which is a binary classification problem, the confusion matrix will be 

2x2 showing four possible outcomes. An illustration of confusion matrix for binary 

classification, as defined by Tharwat, A. (2020), is shown below.  

 𝑌0 𝑌1 

𝑌̂0 TN FN 

𝑌̂1 FP TP 

In the matrix, TN and TP represent true negative and true positive, respectively, 

whereas FP and FN refer to false positive and false negative. In the context of credit 

card fraud detection, a true positive instance would indicate that a transaction was 

predicted to be fraudulent, and it actually was. A false positive, in turn, means a given 

transaction was predicted as fraudulent but in fact it was legit. True negative refers to 

those that were predicted as genuine and were genuine, and finally false negative are 

those that are predicted as genuine but were actually fraudulent.  
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The imbalance present makes accuracy an unsuitable metric for measuring the 

performance of the machine learning models used. Accuracy is defined by the 

equation below:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

To illustrate this in the case of fraud detection in credit cards, if a model naïvely 

predicts all the observations in the test set to belong to the majority class of genuine 

transactions (Y=0), this model will have a high accuracy. However, a model like that 

would not be useful in practice, since the main interest of a fraud detection system is 

to identify the frauds, which would not happen in case all the observations were 

classified as legit. 

Other set of metrics are also used for measuring performance involves Sensitivity 

(True Positive Rate), Specificity (True Negative Rate), False Negative Rate, and False 

Positive Rate. All of them are based in the given probability threshold that is chosen 

in the problem, that is, if the threshold changes, so does the value computed by the 

metric. Each of them is briefly explained below. 

True Positive Rate 

The True Positive Rate (aka sensitivity, recall or hit rate) is computed as the number 

of true positive instances divided by the total number of positive samples, as shown in 

the equation below. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 Analogously, the False Negative Rate (FNR) is defined as 𝐹𝑁𝑅 = 1 − 𝑅𝑒𝑐𝑎𝑙𝑙 

True Negative Rate  

The True Negative Rate (aka specificity or inverse recall): is the ratio of correctly 

classified negative samples and the total number of negative instances, shown below. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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The False Positive Rate (FPR) is defined as 𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  

The metric Precision is also commonly used for evaluating the performance of models. 

It is given by the following formula. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

In the context of fraud detection, precision measures the proportion of transactions 

that are actually fraudulent, among those that were classified as frauds. 

There are applications of more metrics to address the model performance. However, 

this paper will keep the ones mentioned above as the main ones, as they are important 

for the understanding of the other two metrics that will be the main ones used in the 

methodology of this paper, as explained in the next sub-section. 

The methods explained above can only be calculated once a confusion matrix is 

designed and they depend on the probability threshold chosen for the problem. It is 

often valuable to also assess the performance of a model considering different 

thresholds. Fort that, two metrics will be explained, the Receiving Operating 

Characteristic (ROC) and the Precision-Recall (PR) curve. These two metrics can also 

be used for the selection of an optimal probability threshold for the classification 

problem, which will be explained below. 

Receiving Operating Characteristic 

The Receiving Operating Characteristic is a graph used for visualizing and selecting 

classifiers according to their performance Fawcett, (2006). It is obtained by plotting the 

TPR (y-axis) against the FPR (x-axis), considering different thresholds. The 

comparison between different classifiers in this case is done by using the area under 

the curve, the AUC ROC. The model with a higher ROC AUC is said to have a better 

average performance. Theoretically, the value of ROC AUC can be in the interval [0,1], 

but since the random classifier produced in the graph connects the coordinates (0,0) 

to (1,1), its AUC is 0.5 and no realistic model will have an area below that. Hence, 

ROC AUC value usually ranges in the interval [0.5,1]. The ROC AUC can be seen as 

the probability that a given classifier will rank a positive instance higher than a negative 
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one, both chosen randomly. Furthermore, ROC are monotonic functions, i.e., the TPR 

only increases if the FPR also increases.  

The ROC curve can be used for the selection of a probability threshold for the problem, 

which would visually be located the closest to the top-left part of the plot. The threshold 

corresponding to this point is the one with the largest value of the so-called Youden’s 

J statistic, defined by the equation below. 

𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

Precision-Recall Curve 

The Precision-Recall (PR) Curve is the plot of Precision (y-axis) and Recall (x-axis), 

considering different thresholds. One of the interesting points of PR curves in the 

context of credit card fraud detection is that it enables to highlight those classifiers that 

have both high Recall and high Precision (i.e., high TPR and low FPR), which is 

something desirable when obtaining a model to detect fraud. A detection system with 

high Recall and high Precision would generate many fraud alerts, and most of them 

would be correct. The performance is also assessed using the area under the curve. 

A model with a higher PR AUC is said to perform better, comparatively. For computing 

the PR AUC, the Average Precision (AP) is used as a metric. It is calculated by the 

formula below. 

𝐴𝑃 =  ∑(𝑅𝑛 − 𝑅𝑛−1) ∗ 𝑃𝑛

𝑛

 

Where 𝑅𝑛 and 𝑃𝑛 are the Recall and Precision, respectively, and the subscript n refers 

to the nth threshold. 

When using both ROC and PR curves for measurement of model performance, it 

makes easier to compare both by noting that in the PR curve the recall is in the x-axis, 

whereas in the ROC curve recall is in the y-axis. Although PR AUC does not have a 

statistical interpretation such as the ROC AUC, Davis & Goadrich, (2006) point that 

for a curve to dominate in the ROC space, it has necessarily to dominate in the PR 

space as well. However, the two plots also have differences. Unlike the ROC, the PR 

curve is not monotonic. Furthermore, while the ROC AUC value for the random 
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classifier is always 0.5, that is not the case for the PR AUC, as the value of the latter 

depends on how imbalanced the data is. 

In the case of imbalanced datasets, the PR curve is normally used as alternative to 

the ROC, as it can enables one to grasp some differences in classifiers’ performances 

that are not grasped by the ROC (Boyd, Eng, Page, 2013). Pointing to the same issue, 

Saito & Rehmsmeier, (2015) argue that PR curve plots provide a more intuitive and 

accurate interpretation of the performance of the classifier, as well as show the 

susceptibility of the models to the imbalanced dataset. Given that, the PR AUC will be 

the main method used for analysing the performance of the models in our problem. 

The PR AUC will be used to assess how the model changes its performance when 

probability calibration and/or SMOTE is done, that is, performance will be assessed 

before and after the proposed methods are applied.  

The PR curve can also be used to choose the best probability threshold in the 

classification problem. The best threshold is the one that provides the best balance of 

Precision and Recall, located the closest to the top-right part of the plot. This can be 

done by maximising the F-Measure, which is the harmonic mean of Precision and 

Recall, given by the equation below.  

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

Brier Score 

The Brier Score computes the fit of the probability estimates obtained by a given model 

to the true label (i.e., observed data). The metric is given by the equation below. 

∑ (𝑦𝑖 − 𝑃̂{𝑦𝑖|𝑥𝑖})2𝑁
𝑖=0

𝑁
 

Where N is the sample size and 𝑦  {0,1}. 

If the probability estimates diverge from the true label, the score is high. Analogously 

when the estimates are near the observed data, the score is low. Therefore, in case 

the calibration method generates enhanced probability estimators, the Brier Score 

should be smaller, when compared to the one obtained by uncalibrated models. 
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Resampling Technique - SMOTE 

One of the commonly used approaches to deal with imbalanced datasets involve the 

application of resampling techniques, aiming at making the target variables more 

equally distributed. In the context of credit card fraud, it implies that there is no such a 

big difference in the number of frauds and non-frauds in the dataset. As pointed out in 

the literature review, there are different ways to conduct resampling. To avoid 

unnecessary loss of information that might come from undersampling the majority 

class, this paper will focus on the application of oversampling. Given its extensive use 

in previous studies related to fraud detection, the SMOTE technique will be the one 

used in this research. This technique performs the synthetic oversampling of the 

minority class, which contrasts the other commonly used technique of random 

oversampling with replacement. To create the synthetic observations, the difference 

between the feature vector being considered and its nearest neighbour is taken, then 

this difference is multiplied by a random number in the [0:1] interval and following that 

the result is added to the feature vector that is being considered (Chawla et al., 2002). 

Hence, this technique introduces bias towards the minority class, which is something 

desirable in the context of credit card fraud. 

Probability Calibration 

In the context of fraud detection, and in many other real-world applications, it is also 

useful to obtain the class probabilities. In addition to the previously mentioned bias in 

the outputs towards the majority class, the use of imbalanced datasets for 

classification tasks also results in uncertainty regarding the probability calibration. 

Uncalibrated probabilities can also make the default decision thresholds not to be 

optimal. To address this issue, this paper will use two post-processing methods for 

calibrating the probabilities of the models, namely Platt Scaling and Isotonic 

Regression, explained below. 

Platt Scaling 

The Platt Scaling (Platt, 1999) is a probability calibration method, originally proposed 

to convert to posterior probabilities the outputs of SVMs by passing them through a 

sigmoid function, hence transforming the outputs from [-∞, +∞] to probabilities of 
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outcome. The transformation is expressed by the equation below, where 𝑓(𝑥) is the 

output of a given machine learning method, such as SVM. 

𝑃(𝑦 = 1 | 𝑓) =  
1

1 + exp (𝐴𝑓 + 𝐵)
 

Where A and B are parameters fitted with maximum likelihood estimation using a given 

training set (𝑓𝑖 , 𝑦𝑖). The parameters A and B are found by using the gradient descend, 

coming from the solution of a particular loss function. 

To avoid introducing bias and get good probability estimates, a different set should be 

used to perform the calibration. Hence, a validation set will be used to calibrate the 

probabilities, which is a different set from the training and test sets. 

Isotonic Regression 

The Isotonic Regression (Robertson et al., 1988) is a general method used for 

calibration of probabilities. This method requires that the mapping function should be 

monotonically increasing. The Isotonic Regression assumes the following: 

𝑦𝑖 = 𝑚(𝑓𝑖) + 𝜖𝑖. 

Where  𝑦𝑖 are the true values, 𝑓𝑖 are the predictions and 𝑚 is a given isotonic function. 

The regression itself is expressed as the optimization problem shown below, which 

finds the isotonic function 𝑚̂ for a train set (𝑦𝑖 , 𝑓𝑖): 

𝑚̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝑧(𝑓𝑖))2 

Like in the case of Platt Scaling, an independent validation set will be used to perform 

the Isotonic Regression, aiming to avoid bias. 

Research steps 

In view of the methodology presented above, as well as the approaches taken by 

previous studies in the field, this paper will conduct the investigations on five datasets 

using the framework presented in the data section – four simulated datasets with four 

different proportion of imbalance in the data, and a real-world dataset. Each of them 
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will be split into train, validation, and test data. The train data will be used to fit the 

machine learning methods deployed (i.e., RF and SVM), while the validation set will 

be used for implementing the probability calibration methods. Finally, the test set will 

be used for assessing the fit of the model and whether it has improved its performance 

after the resampling and calibration methods. The probability scores for Random 

Forest will be obtained by applying the predict_proba method in Python’s Scikit-learn 

library. In this case, the value of the predicted probabilities is obtained by calculating 

the mean predicted class probabilities of all the trees used in the Random Forest 

classifier. In each of the trees, the class probability is measured as the fraction of 

samples that belong to the same class in a given leaf. In the case of the SVM model, 

the probability scores will be obtained after the Platt Scaling and Isotonic Regression 

are applied. 

The train set will then be fit on RF and SVM models. This will be done in the original 

datasets, as well as the train set that is generated after SMOTE is applied. Prior to the 

implementation of calibration methods on the models, their performances will be 

measured by using both the ROC AUC and PR AUC. Then, probability calibration with 

Platt Scaling will be applied on the models trained with and without SMOTE. Following 

that, the same step will be repeated, but this time applying Isotonic Regression as the 

calibration method. The Brier Score will also be computed to check the quality of the 

probability estimates after calibration. Furthermore, ROC AUC and PR AUC will also 

be computed to assess whether the models have improved their classification 

performances. The steps mentioned will be done on each dataset separately.  
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Results 

This section will show the results obtained following the methods explained in the 

methodology section. As previously mentioned, the analysis was conducted on four 

different datasets that were generated using the same methodology. In addition, the 

same analysis was conducted in the real-world dataset about credit card fraud, whose 

details are also presented in the data section above. Apart from the different proportion 

of class imbalance, the generated datasets were simulated using the same 

parameters so that the comparison of performances could be more insightful.  

On each dataset, the performance measures will be presented for different 

combination of techniques. The first case considered is the one in which no resampling 

(SMOTE) and no probability calibration technique is applied, that is, a naïve 

application of Random Forest and Support Vector Machine is used on the imbalanced 

datasets.  

Another case considered is when SMOTE is applied but no probability calibration 

technique is conducted. This scenario enables the assessment of how well the model 

performs by only focusing on the application of SMOTE to the dataset to tackle the 

issue of imbalance.  

Similarly, it is also considered the cases in which probability calibration is applied but 

SMOTE is not. Specifically, Platt Scaling and Isotonic Regression are the two 

calibration techniques used.   

The last two cases will consist of the combination of all the techniques deployed in the 

scenarios mentioned above. One of them will be the application of SMOTE, followed 

by Platt Scaling, while in the other SMOTE will also be applied, but followed by Isotonic 

Regression instead. 

The performance measures used for assessing the best combination of techniques 

will be the ROC AUC, PR AUC, and the Brier Score. Furthermore, the best probability 

threshold for the classification problem on each case will be presented, alongside the 

F1-score that is achieved if the threshold is used. The choice of best threshold for 

each case was done using the PR curve so that the model presented the best 

precision-recall balance. That was achieved by applying maximisation on the F-Score, 
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as explained previously in the methodology section. As the performance measure of 

each dataset is presented, a table summarizing them will be shown, as well as the PR 

and ROC curves resulted from the best combination of techniques on each case. In 

the PR AUC graph, the point in which the best threshold is located is also highlighted.  

Dataset I (imbalance proportion: 10%) 

Random Forest 

The table below display the performance measures for each combination of 

techniques considered, applied on a Random Forest classifier. As can be noted, the 

case presenting the best results in terms of PR AUC and Brier Score is when Isotonic 

Regression is used solely. When it comes to ROC AUC, the case with highest AUC 

happens when SMOTE is applied, either in combination with Platt Scaling or used 

alone. The former case, however, comes with a better Brier Score since probability 

calibration is applied. 

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

threshold 

RF 0.8920 0.7129 0.0501 0.642 0.41 0.657 

RF + 

SMOTE 

0.9012 0.6811 0.0729 0.606 0.68 0.639 

RF + Platt 0.8920 0.7129 0.0502 0.645 0.3498 0.657 

RF + 

Isotonic 

0.8915 0.7131 0.0498 0.636 0.3437 0.657 

RF + 

SMOTE + 

Platt 

0.9012 0.6811 0.0537 0.630 0.4402 0.639 

RF + 

SMOTE + 

Isotonic 

0.9002 0.6793 0.0530 0.636 0.3648 0.639 
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Support Vector Machine 

In the case of Support Vector Machine, the use of Platt Scaling alone produces the 

highest ROC AUC. Similar to the case shown above, the best PR AUC and Brier Score 

are produced when the SVM classifier is calibrated with Isotonic Regression, without 

the application of SMOTE. 

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

Threshold 

SVM 0.8873 0.6976 - 0.577 0.3166 0.651 

SVM + 

SMOTE 

0.8725 0.6141 - 0.555 0.6757 0.576 

SVM + Platt 0.8873 0.6976 0.0517 0.614 0.3168 0.651 

SVM + 

Isotonic 

0.8854 0.6968 0.0515 0.616 0.3548 0.649 

SVM + 

SMOTE + 

Platt 

0.8725 0.6141 0.0603 0.514 0.2938 0.576 

SVM + 

SMOTE + 

Isotonic 

0.8721 0.6144 0.0603 0.485 0.2812 0.576 
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Dataset II (imbalance proportion: 5%) 

Random Forest 

The Random Forest applied in the dataset with class imbalance of 95% has the best 

ROC AUC when either SMOTE is used alone or in combination and Platt Scaling. The 

sole application of Isotonic Regression without SMOTE, on the other hand, produces 

the best measures for PR AUC and Brier Score. 

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

threshold 

RF 0.8626 0.6028 0.0311 0.556 0.39 0.590 

RF + 

SMOTE 

0.8822 0.5464 0.0569 0.5 0.71 0.54 

RF + Platt 0.8626 0.6028 0.0308 0.564 0.3253 0.59 

RF + 

Isotonic 

0.8623 0.6031 0.0307 0.546 0.3207 0.587 

RF + 

SMOTE + 

Platt 

0.8822 0.5464 0.0340 0.532 0.3964 0.540 

RF + 

SMOTE + 

Isotonic 

0.8816 0.5488 0.0336 0.546 0.3842 0.538 
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Support Vector Machine 

The highest ROC AUC for the SVM classifier is obtained when Platt Scaling is used 

alone. The largest PR AUC in this case can be obtained by using two different 

combinations, both the Platt Scaling alone and the use of Isotonic Regression alone. 

Furthermore, the best Brier Score is also associated with the latter case of Isotonic 

Regression.  

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

Threshold 

SVM 0.8595 0.5785 - 0.374 0.2502 0.573 

SVM + 

SMOTE 

0.8343 0.4385 - 0.429 0.7001 0.452 

SVM + Platt 0.8595 0.5786 0.0321 0.505 0.2530 0.573 

SVM + 

Isotonic 

0.8579 0.5786 0.0319 0.507 0.3687 0.572 

SVM + 

SMOTE + 

Platt 

0.8343 0.4385 0.0388 0.323 0.2285 0.452 

SVM + 

SMOTE + 

Isotonic 

0.8332 0.4383 0.0387 0.374 0.2343 0.450 
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Dataset III (imbalance proportion: 1%) 

Random Forest 

The use of the Random Forest classifier in this case produces the best ROC AUC 

result when the SMOTE technique is applied, both alone and in combination with Platt 

Scaling. In terms of PR AUC, the use of both probability calibration techniques alone 

produces equally the best results, although the use of Isotonic Regression alone 

results in a slightly better Brier Score. 

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

threshold 

RF 0.7214 0.2891 0.0120 0.288 0.21 0.356 

RF + 

SMOTE 

0.7539 0.1779 0.0297 0.257 0.55 0.264 

RF + Platt 0.7214 0.2891 0.0119 0.316 0.1084 0.356 

RF + 

Isotonic 

0.7180 0.2891 0.0118 0.288 0.4864 0.345 

RF + 

SMOTE + 

Platt 

0.7539 0.1779 0.01323 0.115 0.1219 0.264 

RF + 

SMOTE + 

Isotonic 

0.7476 0.1784 0.01329 0.288 0.1265 0.263 
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Support Vector Machine 

The use of SVM in this dataset produces the best ROC AUC when Platt Scaling is 

used. The best PR AUC and Brier Score were obtained by using Isotonic Regression 

alone. In this dataset, the use of SMOTE with SVM did not produce superior results in 

any combination. 

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

Threshold 

SVM 0.6985 0.2140 -  0 0.1245 0.301 

SVM + 

SMOTE 

0.6335 0.1245 - 0.151 0.0100 0.167 

SVM + Platt 0.6985 0.2141 0.0129 0.120 0.1468 0.301 

SVM + 

Isotonic 

0.6984 0.2145 0.0127 0.215 0.25 0.301 

SVM + 

SMOTE + 

Platt 

0.6883 0.1207 0.0139 0.007 0.0853 0.167 

SVM + 

SMOTE + 

Isotonic 

0.6810 0.1155 0.0138 0.088 0.1428 0.165 
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Dataset IV (imbalance proportion: 0.2%) 

Random Forest 

In the scenario of this highly imbalanced dataset, the combination of Random Forest 

with SMOTE used alone and in combination with Platt Scaling produces the highest 

ROC AUC. Similar to the cases presented above, the largest PR AUC was obtained 

by using Isotonic Regression alone. In this data, the best Brier Score, however, 

resulted from the application of Platt Scaling alone.  

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

threshold 

RF 0.5581 0.0676 0.0072 0.065 0.11 0.119 

RF + 

SMOTE 

0.6026 0.0186 0.0152 0.041 0.34 0.077 

RF + Platt 0.5581 0.0676 0.00712 0.100 0.0518 0.119 

RF + 

Isotonic 

0.5565 0.0699 0.00715 0.088 0.1176 0.116 

RF + 

SMOTE + 

Platt 

0.6026 0.0186 0.00731  0 0.0274 0.077 

RF + 

SMOTE + 

Isotonic 

0.5677 0.0240 0.00732 0.088 0.0956 0.097 
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Support Vector Machine 

The case in which SVM is used as classification model, the combination with Platt 

Scaling alone produces the best results overall. ROC AUC, PR AUC, and Brier Score 

are the best when this technique is applied. 

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

Threshold 

SVM 0.5444 0.0277 -  0 0.0166 0.050 

SVM + 

SMOTE 

0.5180 0.0155 - 0.018 0.0001 0.032 

SVM + Platt 0.5444 0.0277 0.00732  0 0.0267 0.050 

SVM + 

Isotonic 

0.5297 0.0276 0.00736 0.39 0.043 0.047 

SVM + 

SMOTE + 

Platt 

0.5440 0.0104 0.007343  0 0.0124 0.033 

SVM + 

SMOTE + 

Isotonic 

0.5424 0.0098 0.007348  0 0.0195 0.027 
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Dataset V (Real world - imbalance proportion: 0.17%) 

Random Forest 

When Random Forest is used, the best ROC AUC is achieved when SMOTE is used 

alone or in combination with Platt Scaling. Regarding the PR AUC, the best case again 

was the one in which Isotonic Regression was used alone. The latter also results in 

the best Brier Score.  

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

threshold 

RF 0.94 0.8596 0.00037 0.879 0.49 0.893 

RF + 

SMOTE 

0.9678 0.8614 0.00048 0.864 0.66 0.879 

RF + Platt 0.9404 0.8596 0.00033 0.879 0.3412 0.893 

RF + 

Isotonic 

0.9403 0.8621 0.00032 0.893 0.75 0.893 

RF + 

SMOTE + 

Platt 

0.9678 0.86144 0.00036 0.879 0.5158 0.879 

RF + 

SMOTE + 

Isotonic 

0.9676 0.8626 0.00037 0.893 0.5 0.893 
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Support Vector Machine 

In the case when SVM is used, the best ROC AUC and Brier Score are obtained when 

Isotonic Regression is used on its own. The best PR AUC, on the other hand, is 

generated when Platt Scaling is used alone.  

 ROC AUC PR AUC Brier Score F-Score Best 

Threshold 

F-Score 

Best 

Threshold 

SVM 0.9087 0.8307 - 0.787 0.0034 0.863 

SVM + 

SMOTE 

0.9184 0.5901 - 0.152 0.9999 0.573 

SVM + Platt 0.9087 0.8307 0.00048 0.819 0.0053 0.863 

SVM + 

Isotonic 

0.9258 0.8301 0.00043 0.821 0.0203 0.863 

SVM + 

SMOTE + 

Platt 

0.9176 0.5901 0.000988 0.511 0.2466 0.573 

SVM + 

SMOTE + 

Isotonic 

0.9257 0.5880 0.000980 0.488 0.3151 0.525 
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Conclusion 

This section will proceed with a general discussion in view of the results obtained 

above, as well as exposing the limitations embedded in this paper and possibilities for 

future research on the topics analysed throughout this study. 

General Discussion 

The task of classification under imbalanced data applied in credit card fraud detection 

framework was investigated on this research. The background related to the detection 

of frauds in credit card transactions was exposed, as well as previous approaches that 

were taken to tackle the issues that arise in classification tasks under imbalance, such 

as resampling techniques and probability calibration. Both approaches were analysed 

in this paper, by using SMOTE, Platt Scaling and Isotonic Regression. The machine 

learning models were chosen in accordance with previous studies conducted in the 

field. Support Vector Machine, as well as ensemble models, which includes the 

Random Forest used, were applied in multiple research projects on the area.  

Simulations involving different class imbalances were used in this study so 

comparisons could be done regarding which combination of techniques would be more 

suitable for each case. The comparison of their results shows that datasets with 

different imbalance proportions present different combination of methods to reach the 

best performance.  

The first dataset analysed was the one in which 10% of the transactions were labelled 

as frauds. On this dataset, the performance of the Random Forest classifier was 

generally superior to the SVM in any combination of techniques applied. It is worth 

noting that in both classification models, the use of Isotonic Regression alone 

produced the best PR AUC and Brier Scores, which suggests this technique is the 

most suitable to be used for this class imbalance. 

On the second dataset analysed, in which the class imbalance was 5%, the Random 

Forest classifier also produced better results overall, when compared to SVM. In this 

case, the use of Isotonic Regression has also produced superior results in terms of 

PR AUC and Brier Score for both Random Forest and SVM. This also suggests that, 

under a class imbalance of 5%, using Isotonic Regression alone would be the best 
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course of action to tackle the issue of imbalance, under the framework considered in 

this paper. 

For the generated dataset with 1% of transactions classified as frauds, Random Forest 

again showed overall better results than SVM. Similarly, the use of Isotonic 

Regression was the best choice to obtain good PR AUC and Brier Score measures, 

regardless of Random Forest or SVM being used.  

The fourth dataset generated was highly imbalanced, with 0.2% of transactions being 

fraud. In this case, the Random Forest classifier has also been shown to generate 

better results than SVM overall. However, within each classification model, the best 

combination of techniques was different from the datasets with less class imbalance 

presented above. In this highly imbalanced scenario, Random Forest in combination 

with Isotonic Regression also produced the best result in terms of PR AUC, but the 

best Brier Score was obtained with Platt Scaling instead. In the case of SVM, however, 

the use of Platt Scaling alone produced the best results for all the performance 

measures considered. 

The same combination of methods was applied to the real-world dataset considered 

in this paper. In this case, 0.17% of the transactions were classified as fraudulent. As 

in all the other cases examined, Random Forest presented an overall superior 

performance than SVM. When used, the combination of RF and Isotonic Regression 

produced the best PR AUC and Brier Scores. When SVM was used the Isotonic 

Regression produced the best ROC AUC and Brier Score, but the best PR AUC was 

obtained with Platt Scaling. 

The results point that the use of Random Forest classifier is the most suitable in all the 

cases analysed. If the focus is on enhancing the performance of the model in 

classifying the minority class by using the PR AUC, as well as obtaining good 

probability calibration, then using Random Forest with Isotonic Regression is the best 

combination of methods to be used. If the focus is on enhancing primarily the ROC 

AUC and obtaining calibrated probabilities, however, the use of SMOTE and Platt 

Scaling is the most appropriate combination of techniques for obtained superior ROC 

AUC and Brier Scores for all the cases in which Random Forest was used. 
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In addition to that, the results also show that in most cases, it is better to consider 

changing the probability threshold used for the classification. Instead of the default of 

p = 0.5 used in the classification models, in most cases tweaking this threshold results 

in better precision-recall balance and higher F-Measure. It was observed that as the 

class imbalance proportion increases, the optimal decision threshold decreases. For 

instance, in the first dataset with 10% of imbalance proportion, the best threshold for 

the different scenarios is in the interval of p = [0.63, 0.65], whereas in the highly 

imbalanced case of the last dataset generated, p = [0.01, 0.04]. 

The report from the European Central Bank presented at the beginning of the paper 

showed that a very small proportion credit card transactions in the continent are fraud, 

representing less than 1% of overall transactions. That suggests the two generated 

datasets with high imbalance of 1% and 0.2% would match what is currently observed 

in the industry. Given that, and considering the pattern observed in the results obtained 

on these datasets, some advice and directions for researchers and practitioners 

aiming at implementing machine learning to detect fraud can be derived. Under the 

framework presented in this paper, Random Forest should be used instead of SVM, 

as the former showed superior performance than the latter in the datasets analysed. 

Furthermore, it is advisable to combine the use of Random Forest with Isotonic 

Regression for obtaining better calibrated probabilities and better PR AUC, as well as 

using the maximisation of the F-score to find the best probability threshold to use for 

the classification. 

Limitation 

One of the limitations of academic research on the context of credit card fraud 

detection is the scarcity of real-world datasets publicly available, which was mentioned 

in different sections of this paper. The few available datasets are often anonymized 

due to confidentiality issues, such as the one used in this research. The anonymous 

nature of the variables harms the interpretability of the model in case it is the interest 

to detect variable importance and how they affect the outcome.  

Other limitation for this paper arises from the lack of interpretability from black box 

models, such as the Random Forest and Support Vector Machine used. Since the 

main objective was to detect a combination of models that would yield the best 
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performance under different imbalance scenarios, the interpretability was not 

addressed. Different approaches could be taken to make machine learning models 

more interpretable, both towards global and local interpretability.  

Future Research 

Credit card fraud detection is a field in constant change, which reflects not only the 

continuous emergence of different fraud methods created by fraudsters but also 

reflecting the advances in the way machine learning models are used and tuned. In 

that context, there is a vast room for exploration for future research on the area. First, 

the combination of other machine learning models, other resampling and probability 

calibration methods could be explored in the context of simulated datasets.  

Furthermore, the exploration new methodologies for the simulation of data that are 

tailored for credit card fraud tasks is something that could bring great value for the 

academic research on this field, given the already mentioned scarcity of real-world 

data publicly available the field. 
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