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Abstract 

Last 10 years was a period of huge advancement in the field of words vector representations 

techniques. Modern embeddings methods are used for a variety of tasks, for example text 

generation, speech recognition, language translation. Word embeddings can be also useful in such 

downstream tasks, as text classification and sentiment analysis. The latter application of 

embeddings methods supposed to be useful for any type of business, which deals with such textual 

input from its clients, as online reviews. Online reviews became the source of important 

information to management, which can help to analyze clients’ sentiments, relatedness to brand, 

tastes etc. Thus, the quality of words vector representations is a question related to such business 

needs.  

I make an overview and compare five different word embeddings models, each of which was a 

state-of-the-art at different point of time in the last 9 years: word2vec, GloVe, ELMo, GPT-2 and 

BERT. A comparison is made by means of intrinsic and extrinsic evaluation. For intrinsic 

evaluation similarity test was run, where GPT-2 and GloVe showed better results than other 

models. Extrinsic evaluation included text binary classification of online reviews – rating 

prediction. In this task BERT outperformed all other methods. In the same time, ELMo and 

word2vec skip-gram also demonstrated relatively good results. However, in order to generalize 

results of this research it is advised to make the comparison on datasets from other business 

domains.      

 

Keywords: word vector representation, static embeddings, contextual embeddings, sentiment 

analysis, text classification, online reviews 
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1. Introduction 

Transforming words into numeric values is an essential step for any type of text analysis. Word 

embedding is a method of representing words as vectors with numbers for text analysis. It is a 

widely used technique in natural language processing (NLP) tasks (Gutiérrez and Keith, 2019).  

Simple methods of words’ numeric representation include one-hot encoding, bag-of-words and 

term frequency.  

One-hot encoding assigns each word to a vector with a size of total number of unique words. The 

values in this vector are simply “0” and “1”. When a word, presented in the list of words, is 

encountered, “1” is assigned to that value, all other values are “0”. This method builds up words’ 

representation with high dimensionality, since they require going through every word in the text 

and assign zeros to all other words, apart from the chosen one. This results in huge sparse matrix, 

which makes calculations usually more computationally intensive, especially in case of large text 

data. 

Bag-of-words is the method, which also makes vectors that are of the size of all words in the 

corpus. This vector corresponds to each document. Values in the vector are assigned in the 

following way: each value in the vector represents the number of times this specific word occurs 

in the document. Such representation of words shows the number of times of their occurrence in a 

document. This method does not take into account order or structure of words. 

Instead of simply counting the number of words’ occurrence in the documents, it is possible to use 

other measures of the presence of words, such as term frequencies. Term frequency is the ratio of 

number of times a term (word) appears in a document divided by the total number of terms (words) 

in the document. In order to give more weight to rare, more meaningful words and less weight to 

frequent words, one can use TF-IDF (term frequency-inverse document frequency) representation 

of words. A TF-IDF score is a multiplication of term frequency by inverse document frequency 

(IDF). IDF can be described as specific weight for each word and is calculated by taking the natural 

logarithm of the ratio of total number of documents divided by number of documents with this 

specific term. This technique allows assigning weight to different words, but it is not capable of 

providing meaning of the word or capture the context. 

Thus, the shortcoming of these methods is that they do not incorporate necessary information in 

the space of representations. For example, one-hot encoding does not show relative closeness of 

words in the text and bag-of-words does not provide context nor order of the words. This is why 
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word embedding techniques become useful – they are not only capable of analyzing contextual 

similarity, but also provide dimensionality reduction.  

Word embedding helps computers to learn the context of a word and thus, to some extent, capture 

its meaning. It does this by creating a vector in a multidimensional space, which makes possible 

mathematical operations with other words’ vectors. In addition to this, word embeddings provide 

the base for learning relationships among words – an important step in many applications of text 

analytics. These models allow clustering of words with similar meanings. This creates, for 

example, opportunities for analysis such as finding synonyms or even identifying the meaning of 

a product (e.g. associations with product). 

By now, word embeddings have become one of the building blocks for many language models and 

they are used in many applications that involve text analytics and interpretation of human 

language, including machine translation, sentiment analysis, speech recognition, recommendation 

algorithms and text classification. Specifically, they can be used to obtain valuable insights from 

customer reviews. Such analysis is useful for many Business-to-Consumers companies, which sell 

goods or provide services to their customers. The analysis of online customer reviews can be 

automated, to make the analysis less time-consuming, and is very useful because it elicits product 

attributes and brand's relative positions (Lee and Bradlow, 2011).  

Due to the large amount of data, it is much more time-efficient to analyze reviews with machine 

learning methods and NLP applications, rather than explore them one by one. Word embeddings 

are very useful in such cases. When an analyst needs to conduct an analysis of verbatim comments, 

he or she, usually, creates an algorithm for mining reviews or comments. First thing to do, one 

should train word embeddings (vector representations) on the reviews data set being analyzed. 

This step can help to see a relationship between the reviews and the context within which they 

were made. Secondly, machine learning methods using word embeddings to determine actionable 

recommendations for a business can be implemented. Use of word embeddings have been shown 

to boost the performance of NLP and machine learning models, such as sentiment analysis or text 

classification (Zhao et al., 2015). 

Because of its importance in a variety of NLP applications, the topic of word embeddings was 

studied by a number of researchers in the recent years. This evolved in numerous methods by 

which embeddings can be created. Since many NLP models use pre-trained word embeddings, it 

is important to determine the optimal technique of words vector representations for a specific case. 

Choosing the most suitable word embeddings is crucial for optimizing machine learning model 

performance. At the same time, selecting the most appropriate word embedding technique is not a 

trivial problem, and the optimal choice can alter for different cases.   
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Each method has its own distinctive features, advantages and disadvantages, which makes it useful 

to make a comparison of different word embeddings methods on such specific, wide spread 

problem, as text classification, which is relevant to business. Firms can classify customers’ reviews 

and feedbacks in order to analyze their experience with their products or services or reaction to 

marketing campaigns and find ways to improve its products, services or campaigns (Liu et al. 

2020). 

The goal of this research is to explore different approaches for making word representations by 

means of different word embeddings techniques on specific machine learning task. I am making 

an overview of these methods, compare them, and, conclude with a method for choosing the best 

one in the task of classification of online customer reviews, Therefore, the main research question 

of this thesis is as follows: 

“Which word embeddings method is more effective for rating prediction of online reviews?” 

In order to answer this main question the flow of research will be based on following sub-

questions: 

(1) Do contextualized pre-trained word embeddings models outperform static embeddings 

methods based on intrinsic evaluation?   

(2) Is Bidirectional Encoder Representations from Transformers (BERT) more efficient in the 

context of rating prediction of online reviews than other contextualized word embeddings 

models? 

   

2. Related work and research design 

2.1 Related work 

One of the approaches of making words vector representation consists of methods, related to global 

matrix factorization, for example latent semantic analysis (LSA) (Dumais et al., 1988) (Deerwester 

et al., 1990). These methods make low-dimensional word representations by means of 

decomposing of large matrices, which represent corpus statistics (e.g. words pairs co-occurrence, 

or how many times a specific word appears in the document), with low-rank approximations. The 

disadvantage of these methods is comparatively higher influence of the most frequent words, 

which might not yield semantic relatedness measure between words.  

The development of modern word embeddings methods started in the beginning of 2000s with 

researches by Bengio et al. (2003), who used them as a part neural language model for word 

prediction and by Wild and Stahl (2006) who mapped bag-of-words representations of words into 
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a modified vector space to reflect semantic structure. Collobert and Weston (2008) used word 

embeddings in their convolutional neural network, which goal was making predictions considering 

language processing (for example, part-of-speech tags, named entity tags, semantic roles, 

semantically similar words).  Later Collobert et al. (2011) implemented windowing approach, 

trying to capture context of a word from both sides of it in their vector representation (instead of 

taking into account context only from the left side of a target word, which most of the language 

models do).  

Then this field was hugely advanced and became more popular in the NLP and machine learning 

community with the widely known article by Mikolov et al. (2013a), who developed the word2vec 

method. This paper presented a method for creating words vectors using a neural network model. 

The word2vec model is also based on the idea that computer will understand a specific word by 

means of its context (surrounding words). This will also help to depict words’ synonyms and 

antonyms, and to understand semantic and relationships between words. Linguistic patterns are 

represented by linear relationship between word embeddings. Word2vec is a feed-forward neural 

network that takes text as input and returns words in the form of vectors. These vectors are 

distributed numerical representation of such words’ features as context of each word. After that, 

word embeddings are represented in a multidimensional vector space and vectors of similar words 

can be grouped together. The usefulness of this method lies in that it creates logical association. 

For example, “apple” is to “cider” what “grape” is to “wine”. Such analogies can be calculated. 

Word2vec includes two different models, which create word embeddings. Skip-Gram model takes 

surrounding words (so called, window of neighboring words, it is defined by the user) as input and 

returns current word as output. Continuous bag-of-words (CBOW) takes current word as an input 

and returns surrounding words as an output.  

There were other models, which were directly derived from word2vec. For example, fastText 

(Bojanowski et al., 2016), which is based on Skip-gram model, but instead of operating on a word 

level it makes vectors for character n-grams and then sum them up in order to get a word 

representation. 

Apart from LSA other count-based methods for making words vector representations were 

developed, such as Hellinger-PCA (Lebret and Collobert, 2013), where dimensionality reduction 

is reached via principal component analysis. However, still, these methods suffer from 

disproportionate importance that is given to large counts (frequent words).  

In order to take the advantage of using entire co-occurrence statistics of the corpus next method, 

Global Vectors model (GloVe), presented by Pennington et al. (2014), combines word2vec 

algorithm with global matrix factorization technique, thus utilizing global statistics of the corpus. 
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The GloVe method is based not only on surrounding words, but also on co-occurrence matrix, 

which is made from the whole corpus, where rows are words and columns are context. In order to 

get lower-dimension representation this matrix is factorized.  

Peters et al. (2018) argued that words often have different meaning in different context, whereas 

static embeddings methods (like word2vec and GloVe) creates only one vector representation for 

each word.  They introduced their method, Embeddings from Language Models (ELMo), with 

entirely different approach of creating word vectors. ELMo is deep contextualized word 

representation. The model’s architecture contains two-layer bidirectional language model (Graves 

and Schmidhuber, 2005) (predicts the following word), where each layer is recurrent neural 

network with long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), each layer 

has forward and backward pass. The model obtains a representation of each word on all levels 

(input and two layers) and then takes weighted sum as a final word representation. Unlike 

word2vec and GloVe methods, ELMo algorithm creates vector of a word using all words in the 

sentence, where this word occurs. This approach assigns slightly different embeddings to the same 

word. 

McCann et al., (2017) also suggested a method for creating contextualized word embeddings with 

their CoVe model (context vectors), which is a neural machine translation encoder, using deep 

LSTM encoder. However, according to Peters et al. (2018) ELMo models outperforms CoVe, 

because it uses the combination of all layers, whereas CoVe takes only the top layer of LSTM.    

Transformer model with attention mechanism, presented by Vaswani et al. (2017) enhanced many 

NLP applications, including making word representations. Overall, transformer has encoder, 

which takes words input, transforms it and gives to decoder, which produces prediction for the 

words. One of the important characteristics of transformer is self-attention mechanism – ability to 

learn to pay attention to the context by depicting important words. This information about 

important context words is also transferred to decoder, which simplifies the further understanding 

of the context and prediction. 

Shortly after that, several words vector representation methods were developed based on that 

model. Radford et al. (2018) presented Generative Pre-trained Transformers (GPT), which is an 

adaptation of Transformer model. It uses several Transformer decoders stacked together and it is 

unidirectional (processes text from left to right, like standard language model). GPT consists of 

two stages: unsupervised stage – pre-training to learn a language model on large text corpora and 

supervised stage – fine-tuning of the model’s parameters for the specific task (processing new 

input through pre-trained model). GPT was followed by GPT-2 (Radford et al., 2019) with minor 
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changes in model architecture in its essence, but with implementing larger scale of pre-training 

and using more Transformer blocks. 

Another Transformer based model is Bidirectional Encoder Representations from Transformers 

(BERT) (Devlin et al., 2018). Similar to GPT, BERT is pre-trained model and can be fine-tuned 

on supervised stage without customizing network architecture for the specific task. The main 

difference with GPT is that BERT utilizes Transformer encoder blocks, instead of decoder blocks. 

Its training is bidirectional, meaning that model learns context representation to the left and to the 

right side of a word (GPT is limited to process text only from left to right). 

 

2.2 Research design 

For this research, I will compare following word embeddings techniques: 

1. word2vec (Mikolov et al. 2013), neural network1 based method. There are two versions of 

word2vec: 

a. Skip-Gram model – predicts the surrounding words (context) given a current word.  

b. Continuous bag of words (CBOW) – predicts the current word based on its context 

(surrounding words). 

2. Global Vectors model (GloVe) (Pennington et al. 2014), words matrix based method 

(extension of word2vec). 

3. Embeddings from Language Models (ELMo) (Peters et al. 2018), predicts the next word in 

a sequence of words (language modeling). 

4. Generative Pre-trained Transformers (GPT-2) (Radford et al. 2019), sentence completion 

modeling.  

5. Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al. 2018), 

sentence modeling. 

These five methods of making word vectors representations were chosen for this research, because 

they are considered state-of-the-art word embeddings techniques, and all corresponding papers are 

characterized by large amount of citations. In addition, they represent different approaches to the 

creation of word embeddings. For example, there is a difference in the way the meaning of a word 

across sentences is approached. Static methods (word2vec, GloVe) presume that a word’s meaning 

will be stable, which is not the case in the real life. Contextualized word embeddings methods 

                                                           
1 McCullough W. and Pitts W. first proposed neural networks in 1944. Later, in 1957, Rosenblatt F. demonstrated the 

first trainable neural network called “Perceptron” with one hidden layer with adjustable weights and thresholds. The 

idea of neural network was inspired by the mechanism of how human brain works (Haykin, 2008).   
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(ELMo, GPT-2, BERT) takes into account the difference in meaning of a single word across 

sentences. 

The steps of research design are presented in Figure 1. After data preprocessing and using of 

different word embedding models, I will analyze intrinsic evaluation of word embeddings models. 

The following task will be prediction of reviews ratings with logistic regression, Random Forest 

and Support Vector Machine on all new data sets, created using different word embeddings 

techniques. In the conclusion, I will make comparison analysis of metrics of the classifiers 

(extrinsic evaluation of word embedding models). 

The result of this research will be determining which word embeddings model is more optimal in 

the case of predicting online reviews. The comparison of word embedding models will be based 

on two types of evaluation measurements: 

 Intrinsic evaluation of word embeddings models – word vector similarities (Wang et al. 

2019). 

 Extrinsic evaluation of word embedding models – metrics for binary classification 

problem: accuracy, precision, recall, area under the curve (AUC), F1-score, Matthews 

correlation coefficient (MCC) (Hossin and Sulaiman, 2015) (Chicco1 et al., 2021).  

 

Figure 1. Visualization of research concept 

Based on the word embeddings methods’ description, there will be following two hypotheses for 

testing:  

 Hypothesis 1: contextualized word embeddings methods (ELMo, GPT, BERT) should give 

higher standard metrics for binary classification (accuracy, precision, recall, area under the 
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curve, F1-score) in the text classification problem, than static methods (word2vec, GloVe), 

since they allow assigning different word embeddings for the same word, by taking into 

account different possible word’s context; 

 Hypothesis 2: among contextualized word embedding methods BERT should give higher 

standard metrics for binary classification (accuracy, precision, recall, area under the 

curve, F-score, MCC) than ELMo and GPT-2 in text classification problem since it not 

only uses transformer to achieve better capture of long-term linguistic structure (which 

ELMo cannot do due to different architecture of the model), but also uses bidirectional 

transformer encoder (in comparison to unidirectional GPT-2).          

 

3. Methodology 

In this section, I will describe the architecture of all five methods of word embeddings, which are 

used for comparison in this research: word2vec, GloVe, ELMo, GPT-2 and BERT. In addition to 

this, a description of intrinsic and extrinsic evaluation methods are also provided in the end of this 

section (including classification methods that were used for calculating metrics for comparison).  

3.1 Static context-free word embeddings 

3.1.1 word2vec 

Overall, word2vec makes representations of words in corpus in a form of a set of real numbers in 

such a way so to capture their linguistic properties. That means that those words, that have similar 

meaning, will have similar encoding, and dissimilar words will be further away from each other 

in the multidimensional space of representations.     

This method was developed by Mikolov et al. (2013a) and relies on the concept of distributed 

representations of words in a vector space. Such approach of making word embeddings proved to 

be useful for natural language processing tasks. After training the word2vec model, each word in 

the text has its own representation in a vector form. Each vector has a specific number of 

dimensions, which is the same among all other vectors. Each dimension in such vector represents 

certain linguistic property of a word, linked to this vector – this property includes semantic and 

syntactic information. Such type of word representation allows to group similar words together, 

make analogies (“king” - “man” = “queen” - “woman”), find close words by means of cosine 

similarity.  
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Basis of word2vec model 

Distributed representations of words was not a new concept at the time of making word2vec, it 

was already used in language models before, such as neural language model made by Bengio et 

al. (2003). This language model was made to do the task of next word prediction, given inputs of 

words from the sentence that were before the target word. The final output of this model is 

probabilities of all words in the corpus. It means that in the end the model assesses all words in 

the text and assigns probability scores to each word – the output is a prediction vector. A word 

with the highest score will be the best guess of the model for predicting the next word. 

The work of this model can be split into three essential parts: making words embeddings, 

calculating predictions and projecting the output vocabulary. The model makes the use of the 

context window – how many words before the target word should be taken as an input (for example 

three words before the target word can be taken as an input for further prediction). During the 

training process the model makes the prediction and compare it with the target word, then 

calculates the error, which will help to update word embeddings and probability scores in the next 

iterations. Then the process goes to the next context window, sliding gradually through the whole 

text. After repeating the process for several epochs, error vector each time will help the model to 

lower the errors in making the predictions of right words. When the model is trained, it is possible 

to extract word embeddings matrix from it.  

The inconvenience of this method of obtaining word embeddings is due to high computational 

intensiveness. Operation of prediction will be done on every single sample, derived from sliding 

the context window. Mikolov et al. (2013a) were able concentrate efforts only on the first part of 

neural language model made by Bengio et al. (2003) – generating word embeddings without the 

other part of the model, which makes prediction of the next word.     

Model word2vec consists of input layer, one hidden layer and output layer. The amount of neurons 

in the input layer is the same as the number of words in the corpus, which was used for training 

the model. The output layer is of the same size as the input layer. The hidden layer has pre-specified 

number of neurons, which is equal to the number of word vectors dimensions. All neurons in 

hidden layer are linear. In the Mikolov et al. (2013a) hidden layer was also referred to as projection 

layer (there is no activation function).      

More formally, we can define the number of words in the corpus by 𝑊 and number of word 

vectors’ dimensions as 𝐷, then the conncection between input layer and hidden layer will be 

represented by matrix 𝐼, which has the size of 𝑊 × 𝐷 – rows of this matrix are words from the 
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corpus. Similarly, matrix 𝑂 of the size 𝐷 × 𝑊 is a connection between hidden layer and output 

layer. In the second matrix words are now represented in columns.  

One of the main hyperparameters of word2vec is the context window, which specify how many 

context words around the target word will be taken into account in the model training. For example, 

context window of the size 3 means that the model makes the use of three neighboring words to 

the left of target word and 3 words right after the target word. 

Overall mechanics of word2vec model can be described on the example of one context word, 

which will be used to predict the target word. Two matrices, I and O, are weights, which are 

initialized randomly at the beginning of training, and are updated during the training of the model. 

By making this prediction the model will train its word embeddings. Context word in the input 

layer is encoded in the form of the vector, where there will be one “1”, which correspond to the 

context word and the rest are “0’s”. 

 

Figure 2. Visualization of a simple form of word2vec model 

Input vector 𝑥 of dimensionality 𝑊, which stands for the vocabulary size, is one-hot encoded 

word. Input vector is multiplied by matrix 𝐼 resulting in the vector of values ℎ in hidden layer, 

which has dimensionality of 𝐷. This dimensionality represents the pre-determined dimensionality 

of word embeddings, which is one of another main hyperparameters along with the size of the 

context window. After that vector of values from hidden layer ℎ is multiplied by matrix 𝑂, 

resulting in the output vector of values in the output layer again of the length of vocabulary 𝑊. 

Values in the output layer are scores, that are assigned to each word in the corpus 𝑊. In order to 

obtain probability from these scores word2vec uses Softmax function (Bridle, 1989), which 

converts a vector of numbers into a probability distribution. Basically, Softmax function squashes 

values in a vector of numbers to values from 0 to 1. In neural network Softmax function can be 

used to convert values from output layer’s neurons into probabilities.  
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First, we can define the input to t-th neuron in the output layer as 𝑢𝑡 = 𝑤𝑡
𝑇 ∗ ℎ, where 𝑤𝑡

𝑇 is the t-

th column of matrix 𝑂 of the size 𝐷 × 𝑊. Then the output of the neuron, which represents 

probability score for the target word, is calculated in the following way with Softmax function:  

 

𝑦𝑡 = P(𝑤𝑜𝑟𝑑𝑡|𝑤𝑜𝑟𝑑𝑐𝑜𝑛𝑡𝑒𝑥𝑡) =
exp (𝑢𝑡)

∑ exp (𝑢𝑤)𝑊
𝑤=1

 .  (1) 

Having probability scores and target vector, the error vector for the output layer can be obtained 

by subtracting probability vector from the target vector. With the calculated error, the weights in 

the matrices I and O can be updated using backpropagation. Training of the model proceeds by 

sliding context window forward in the corpus, having new pair of context-target words. This 

mechanism of prediction of the target word by context word allows to train word embeddings and 

in the same time only to use the first part of Bengio et al.’s neural network language model.  

Mikolov et al. (2013a) developed two types of word2vec model: skip-gram model and continuous 

bag-of-words (CBOW). In the case of just one context word both of them work exactly in the same 

way – the difference can be observed, when there are more than one context words. Context 

window includes center word and the same number of context words to the left and to the right 

side of the center word. In skip-gram model the center word predicts context words and in case of 

CBOW context words predict center word. Both models goes through the corpus, sliding pre-

specified context window word by word. This process creates training data set for the both models. 

Skip-gram model, as well as CBOW, optimizes an objective function based on conditional 

distribution using gradient descent.  

Both models uses two vectors representation of one word – one representation, when the word is 

a center word, and another one, when a word is a context word. Word2vec uses the dot product of 

word vectors of the input and output word (center – context word or vice versa) as a similarity 

measure between them.  

 

Skip-gram model 

Skip-gram uses center word to predict surrounding context words. That means that input layer still 

consists of only one vector of “0’s” and “1”, which corresponds to this center word. The difference 

is that in the case of skip-gram model there will be several vectors of values in the output layer, 

according to the number of context words. That means that output layer of the neural network is 

duplicated multiple times to include specified number of context words. Similarly, to the basic 

model, described in the previous section, each part of output layer will have its own target, which 

will help to determine error after each training iteration. 
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In the skip-gram model, hidden (projection) layer is 

multiplied by the second matrix 𝑊′ (matrix 𝑂 from the 

previous section) for each context word separetely. In 

the Figure 1 the number of context words is 𝐶, 𝑉 is the 

number of words in the corpus and 𝑁 – number of 

embeddings dimensions (as well, as number of hidden 

layer neurons).     

Since there is more than one outputs of the model 

(depending on the number of context words), each 

output has its own error vector. All error vectors are 

summed up for the backpropagation purpose – this lets 

matrix 𝑊′ to stay identical during training. 

In essence, the objective of skip-gram model is to 

obtain such word representations after training, which will be helpful in predicting the context 

words of central words. The objective function of skip-gram model implies maximizing the 

following average log probability: 

 
1

𝑉
 ∑ ∑ log𝑃(𝑤𝑣+𝑗|𝑤𝑣)

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑉

𝑣=1

 ,  (2) 

where 𝑐 is the size of the context window,  𝑤1, 𝑤2, … , 𝑤𝑉 are the training words and 𝑃(𝑤𝑣+𝑗|𝑤𝑣) 

is defined with the Softmax function, described in the previous section. 

Mikolov et al. (2013b) have made useful adjustments in the follow up paper after the original one. 

In particular, they introduced negative sampling within word2vec architecture. The idea of 

negative sampling is originated from noise contrastive estimation which was developed by 

Gutmann and Hyvärinen (2012). Each context window in skip-gram model makes a train data, 

where one center word is paired with every context word. Negative sampling add additional 

“noise” data to this train data – apart from true context word, center word is also paired with a 

number of other words, which were randomly taken from the corpus. The number of negative 

samples is a hyperparameter. For example, if the number of negative samples is set to 5, then each 

pair of center word and true context word will have additional 5 pairs of center word with “noise” 

words. Then the model is trained to predict the correct context word with the use of logistic 

regression, which helps to differentiate target word from the noise. 

 

Figure 3. Skip-gram model architecture 
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More formally, with the negative sampling every log 𝑃(𝑤𝑣+𝑗|𝑤𝑣) in the objective function (2) is 

replaced by the following: 

 

log 𝜎 (𝑧′𝑤𝑣+𝑗

𝑇 𝑧𝑤𝑣
) + ∑𝔼𝑤𝑖∼𝑃𝑛(𝑤)[𝑙𝑜𝑔𝜎(−𝑧′𝑤𝑖

𝑇 𝑧𝑤𝑣
)]

𝑘

𝑖=1

 ,  (3) 

where 𝑧𝑤are word vectors, 𝜎 is a sigmoid function (for logistic regression), 𝑃𝑛(𝑤) is the noise 

distribution and 𝑘 is the number of negative samples.  

 

Continuous bag-of-words 

Continuous bag-of-words architecture is the opposite to skip-gram model – context words, as an 

input, predict the center word, as an output. The model 

tries to predict the target word by trying to understand the 

context of the surrounding words. 

The name of the model means that it generates 

continuous representations of words and the order of 

words is not taken into account. The CBOW model 

architecture is shown on Figure 4. There are now several 

inputs according to the number 𝐶 of context words. These 

inputs are replicated to the hidden layer connection 𝐶 

times – input vectors corresponding to context words are 

averaged element-wise. The output layer makes a 

prediction score for the center word. Training mechanism 

of the model is similar to skip-gram model. 

This time the model is trained to maximize the average of the log probabilities of all words in the 

corpus given their context words. We can define window size as 𝑐 (number of words around the 

target word 𝑤𝑣 at each time step of the window slide). The objective function of CBOW is given 

below: 

 

𝐽𝜃 =
1

𝑉
∑log 𝑃(𝑤𝑣|𝑤𝑣−𝑐, … , 𝑤𝑣−1, 𝑤𝑣+1, … , 𝑤𝑣+𝑐)

𝑉

𝑣=1

 . (4) 

The same concept of negative sampling is used in CBOW model too. This time 𝑧𝐶𝑤
 is used to 

indicate context word: 

 

Figure 4. CBOW model architecture 
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log 𝜎 (𝑧′𝑤𝑣+𝑗

𝑇 𝑧𝐶𝑤𝑣
) + ∑𝔼𝑤𝑖∼𝑃𝑛(𝑤) [𝑙𝑜𝑔𝜎(−𝑧′𝑤𝑖

𝑇 𝑧𝐶𝑤𝑣
)]

𝑘

𝑖=1

 . (5) 

Word embeddings can be calculated from both word2vec models on a given text data. There is 

also pre-trained word2vec model trained on Google News dataset (about 100 billion words)2. 

 

3.1.2 Global Vectors for Words Representation 

Global Vectors for Words Representation (GloVe) is a count-based model and focuses on words 

co-occurrences in the whole data set. It was developed by Pennigton et al. (2014). GloVe also uses 

distance between word vectors as a measure of semantic similarity, as word2vec, and words with 

the same context will probably have the same meaning.     

Word2vec method is trying to capture co-occurrence of words one at a time – there is a separate 

update steps each time, when two words co-occur together during the process of moving the 

context window. Such an approach might be not very efficient and it does not use the statistics 

over all data set. One of the possible solution to this could be going through the entire corpus once 

and make co-occurrence matrix of all words with the count of how many times each pair of words 

from vocabulary co-occurred. After that, it would be possible to make one update step that captures 

the entire count instead of one sample at a time.  

This process of collecting counts can be implemented also with the use of moving the context 

window through the text as in word2vec without making any updates (stochastic gradient descent). 

In addition to this, using the context window helps to capture not only semantic but also syntactic 

information of each word (especially, parts of the speech – verbs will be going to be close to one 

another, than verbs with the nouns). 

After making word-word co-occurrence matrix it is possible to make operations on it. Such matrix 

would not be convenient for using it as vectors of words, because of high dimensionality and the 

fact that each new word will change the word vectors. To avoid sparsity issues a technique of 

singular value decomposition (SVD) can be implemented (Rohde et al., 2006). This approach can 

help to leave only the important information in a fixed number of dimensions of dense vectors. In 

the same time, there are problems with SVD in terms of computational cost in case of large co-

occurrence matrices and it gives disproportionate importance to the most frequent words. 

Moreover, SVD will captures only word similarity without other patterns in text, which are 

                                                           
2 Source: https://code.google.com/archive/p/word2vec/ 

https://code.google.com/archive/p/word2vec/
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captured by word2vec. From the other hand, SVD is more efficient, since it has to be computed 

only once.         

GloVe combines these advantages of both methods – with context window counting of words’ co-

occurrence and with calculations on overall statistic of the corpus. GloVe does not simply use 

word-word co-occurrence matrix, but transforms it into the conditional probabilities and takes the 

ratio of them in order to distinguish relevant and irrelevant words. 

For further analysis of this method, following notation is introduced. Let 𝑋 be the word-word co-

occurrence matrix. 𝑋𝑖𝑗 is the number of times word 𝑗 occurres in the context of word 𝑖 and 𝑋𝑖 =

∑ 𝑋𝑖𝑘𝑘  is the total number of times any word appears in the context of word 𝑖. Then 𝑃𝑖𝑗 will be the 

probability that word 𝑗 occurres in the context of word 𝑖 and can be calculated in the following 

way: 𝑃𝑖𝑗 = 𝑃(𝑗|𝑖) =
𝑋𝑖𝑗

𝑋𝑖
. This helps to transform simple counts of words’ co-occurrences into 

conditional probabilities. 

(a) 

 word 1 word 2 … word j … word k Total 

word 1 2 3 … 8 … 1 25 

word 2 7 5 … 2 … 3 36 

… … … … … … … … 

word i 4 9 … 5 … 2 41 

… … … … … … … … 

word k 6 1 … 1 … 2 14 

(b) 
 

  word 1 word 2 … word j … word k Total 

word 1 0.080 0.120 … 0.320 … 0.040 1 

word 2 0.194 0.139 … 0.056 … 0.083 1 

… … … … … … … … 

word i 0.098 0.220 … 0.122 … 0.049 1 

… … … … … … … … 

word k 0.429 0.071 … 0.071 … 0.143 1 

Table 1. (a) - word-word co-occurrence matrix with the counts. (b) - word-word co-occurrence matrix with the 

conditional probabilities 

For the next step Pennington et al. (2014) suggest for each pair of words to analyze the ratio of 

their conditional probabilities since it can give more information on relationship between words 

than just conditional probabilities. For example, following the notation from Table 1(b) if a word 

𝑗 in the column of the table is more related to the word 𝑖 than to word 𝑘, then the ratio 
𝑃𝑖𝑗

𝑃𝑘𝑗
⁄  

should be large (at least, larger than 1) and small otherwise (smaller than 1). This ratio will be 

equal or close to 1 in case when word 𝑗 is similarly related to words 𝑖 and 𝑘 or not related to both 

of them. Thus, it is considered that such relative odds ratios are more useful, than just the values 

of conditional probabilities, for distinguishing relevant words for word 𝑗 from irrelevant words 

and, moreover, to compare the level of relevance between relevant words. That is the authors’ 

reasoning behind using these ratios of co-occurrence probabilities in the learning process of word 

vectors. 
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In more general form the starting process of calculating word embeddings would the following 

expression: 𝐹(𝑤𝑖, 𝑤𝑘, 𝑤𝑗) =  
𝑃𝑖𝑗

𝑃𝑘𝑗
, where 𝑤𝑖 and 𝑤𝑘 are words vectors of the words, which are 

compared in terms of their relevance to the third word vector 𝑤𝑗. Authors then suggest to use the 

difference between vectors 𝑤𝑖 and 𝑤𝑘 to capture the information in linear word vector space: 

𝐹((𝑤𝑖 − 𝑤𝑘),𝑤𝑗) =  
𝑃𝑖𝑗

𝑃𝑘𝑗
. Then in order to keep the linear structure a dot product of arguments 

function 𝐹(∙) can be taken: 𝐹((𝑤𝑖 − 𝑤𝑘)
𝑇𝑤𝑗) =  

𝑃𝑖𝑗

𝑃𝑘𝑗
.  

Next step in deriving word embeddings is to be able to perform a label switch of context and target 

words (𝑤𝑗 with 𝑤𝑖 or 𝑤𝑘) without having an impact on mapping of function 𝐹.  

First, this function should be a homomorphism between addition in the domain space (ℝ;+) and 

multiplication in the positive target space (ℝ>0;×): 

𝐹((𝑤𝑖 − 𝑤𝑘)
𝑇𝑤𝑗) = 𝐹(𝑤𝑖

𝑇𝑤𝑗 − 𝑤𝑘
𝑇𝑤𝑗) 

⇔ 𝐹(𝑤𝑖
𝑇𝑤𝑗) × 𝐹( 𝑤𝑘

𝑇𝑤𝑗)
−1

⇔
𝐹(𝑤𝑖

𝑇𝑤𝑗)

𝐹( 𝑤𝑘
𝑇𝑤𝑗)

 

 

⇒ 𝐹((𝑤𝑖 − 𝑤𝑘)
𝑇𝑤𝑗) =

𝐹(𝑤𝑖
𝑇𝑤𝑗)

𝐹( 𝑤𝑘
𝑇𝑤𝑗)

=
𝑃𝑖𝑗

𝑃𝑘𝑗
 .  (6) 

Thus, from Equation (6) the following equality can be used: 𝐹(𝑤𝑖
𝑇𝑤𝑗) = 𝑃𝑖𝑗 =

𝑋𝑖𝑗

𝑋𝑖
 . By setting 

function 𝐹(∙) to be the function 𝑒𝑥𝑝(∙) it is possible to derive the equation (7): 

exp(𝑤𝑖
𝑇𝑤𝑗) =

𝑋𝑖𝑗

𝑋𝑖
⇒ 𝑤𝑖

𝑇𝑤𝑗 = log (
𝑋𝑖𝑗

𝑋𝑖
) 

 𝑤𝑖
𝑇𝑤𝑗 = log(𝑋𝑖𝑗) − log(𝑋𝑖) .  (7) 

Second, in order to make the solution (7) symmetric, so target and context words could be 

interchangeable, log(𝑋𝑖) is replaced with a bias 𝑏𝑖 for the word vector 𝑤𝑖 and additional bias 𝑏𝑗 

for the context word 𝑤𝑗, which gives GloVe model equation (8): 

 
𝑤𝑖

𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 = log(𝑋𝑖𝑗) .  (8) 

The possible issue of log(0), which is not defined, can be solved by adding 1 to 𝑋𝑖𝑗. 

Finally, the objective function of GloVe resembles weighted least squares regression model with 

the added weighting function 𝑓(𝑋𝑖𝑘): 
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𝐽𝜃 = ∑ 𝑓(𝑋𝑖𝑘)

𝑉

𝑖,𝑘=1

[𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − log(𝑋𝑖𝑗)]

2
 , (9) 

where 𝑉 stands for the size of the vocabulary. For each pair of vectors the goal of the objective 

function is to minimize the distance between the dot product of words’ vectors and the log count 

of these two words. The advantage compared to SVD method is that optimization in this case is 

done one count at a time. 

The weighting function 𝑓(𝑋𝑖𝑘) is used to decrease the relatively large impact of frequent words. 

Thus, infrequent words, which usually might have more meaning compared to frequent words 

(such as “the”, “a”), will have more impact on the objective function. Weighting function should 

satisfy the following three properties: it should equal 0, when 𝑋𝑖𝑘 = 0; it should be non-decreasing 

for larger counts to have more impact and it should be relatively small for reducing the impact of 

highly frequent words. The following notation for the weighting function was introduced by 

Pennington et al. (2014): 

 
𝑓(𝑥) = {

(𝑥/𝑥𝑚𝑎𝑥)
𝛼, 𝑥 < 𝑥𝑚𝑎𝑥

1, 𝑥 ≥ 𝑥𝑚𝑎𝑥
 ,  (10) 

where 𝑥𝑚𝑎𝑥 is the first hyperparameter, which was 

determined by the authors as 100, and 𝛼 is the second 

hyperparameter, which was set by the authors to the 

value of ¾ due to empirical motivation.  

Finally, stochastic gradient descent technique is used 

for word co-occurrence matrix factorization to update 

the parameters of the objective function. 

Co-occurrence matrix contains target words and context words and, thus, has two sets of vectors 

of one word. When the matrix is symmetric, words are randomly assigned to target-context 

options. As it was discussed above, these words are interchangeable. Since both these vectors of 

one word capture similar co-occurrence information, a solution would be to sum up these vectors 

in order to obtain the final word vector representation. 

Similar, to word2vec, it is possible to calculate vectors using GloVe model technique on a given 

text or to use one of the pre-trained GloVe models3, which might be more beneficial in this case, 

since the model is based on calculating statistics of overall corpus. 

                                                           
3 Source: https://nlp.stanford.edu/projects/glove/ 

 

Figure 5. Weighting function of GloVe objective 

function (Pennington et al., 2014)  

https://nlp.stanford.edu/projects/glove/


18 

3.2 Contextualized embeddings 

3.2.1 Embeddings from Language Models 

Since words representations in word2vec and GloVe are fixed (or static) no matter what is the 

context, there is only one word embedding for each word in the corpus in these models. There is a 

problem with such approach, because many words can have different semantic meanings 

depending on the context (for examples, “rock music” and “there is a beautiful rock in the 

garden”). Moreover, words can have different syntactic behavior (for example, different parts of 

speech – “my address is” and “can I address you?”) or different grammatical forms (for example, 

“I read this article yesterday” and “you can read the instructions below”). Static word embeddings 

models collapse all the possible meanings and connotations of a word into one word vector 

representation, whereas for better understanding the meaning of the textual information by 

computer it would be better to distinguish these meanings.    

That is exactly the purpose of so-called contextualized word embeddings models – to achieve a 

meaning of a word inside a particular context (sentence, part of the text). 

One of the first state-of-the-art contextualized embeddings model was ELMo, developed by Peters 

et al. (2018), and which stands for Embeddings from Language Models. This method learns words 

vector representations with the help of long context and not simply using context windows. That 

means that the method is taking into account all the previous words before and after target word.  

ELMo is based on language model 

architecture, which uses bidirectional Long 

Short-Term Memory (biLSTM) layers 

(Graves and Schmidhuber, 2005). The goal of 

language model is to predict the next word in 

the sequence of words. In essence, Long Short-

Term Memory (LSTM) (Hochreiter and 

Schmidhuber, 1997) is a type of recurrent 

neural network, which is able to “remember” 

to some extent (Houdt et al., 2020) the order 

dependencies for the prediction tasks in a 

sequence.   

Bidirectional LSTM means that one layer comprise two LSTMs – one LSTM goes through the 

sequence from left to right, and anoher LSTM does the opposite. The advantage of using forward 

and backward LSTM in one layer is that it becomes possible to improve a word prediction. In the 

 

Figure 6. Example of bidirectional language model with 

one biLSTM layer  
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context of next word prediction and understanding meaning of the word mix of forward and 

backward LSTM can help to make a more precise prediction. For example, given the sentence “I 

ran in the park yesterday” backward LSTM can bring information about past tense to the prediction 

of word “ran”. 

Mathematically forward LSTM can be expressed in the following way: 

 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑁) =  ∏𝑃(𝑥𝑖| 𝑥1

𝑁

𝑖=1

, 𝑥2, … , 𝑥𝑖−1) .  (11) 

The equation (11) states that the likelihood of a given sequence of tokens is the product of the 

greedy algorithm with the probabilities of any word given all the words that preceded it. Backward 

LSTM can be defined in the similar way: 

 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑁) =  ∏𝑃(𝑥𝑖| 𝑥𝑖+1

𝑁

𝑖=1

, 𝑥𝑖+2, … , 𝑥𝑁) .  (12) 

BiLSTM then sums them up and jointly maximizes their log likelihoods: 

∑(log𝑃(𝑥𝑖| 𝑥1, 𝑥2, … , 𝑥𝑖−1;  Θ𝑥 , Θ⃗⃗ 𝐿𝑆𝑇𝑀 , Θ𝑠) +

𝑁

𝑖=1

+ log𝑃(𝑥𝑖| 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑁;  Θ𝑥, Θ⃗⃗⃖𝐿𝑆𝑇𝑀 , Θ𝑠)) 
, 

(13) 

where Θ𝑥 is a word representation and Θ𝑠 is a softmax layer, where Softmax function is 

implemented. Similar to Peters et al. (2017) in the equation (13) parameters of word representation 

and Softmax layer are tied, and parameters for LSTM in each direction are separated. Peters et al. 

(2018) share weights between directions instead of using completely independent parameters. 

Figure 6 has the visualization of an example of bidirectional language model with one biLSTM 

layer. ELMo has three layers: layer of token input (words initial representation), layer of biLSTM 

and Softmax layer for generating a prediction score for the next word.  

First layer computes context-independent words representation (tokens input). Instead of one-hot 

encoding or word embeddings generated by other models, ELMo uses a character-level 

convolutional neural network (CNN) (LeCun et al. 2015) to generate initial word vectors, which 

was analyzed by Kim et al. (2016). In the beginning, each word is converted to vector 

representation using character embeddings. Then, character embedding is passed through a 

convolutional layer with a number of filters followed by Max-Pool layer. Character embeddings 
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are able to pick up morphological features, which can be overseen by word-level embeddings. In 

addition to this, they are able to make a useful representation even for out-of-vocabulary words.      

Then biLSTM layer outputs a context-dependent word representation: the forward LSTM contains 

information about a certain word and the context words before that word from the beginning of 

the input text. The backward LSTM contains information about the word and the context words 

after it until the end of the input text. Information from the forward and backward LSTM is given 

to the intermediate word vector by means of concatenation of forward and backward word 

representations. There might be several layers of biLSTM – each layer will generate its own 

concatenated word representation and pass it to the next biLSTM layer. Peters et al. (2018) used 

two biLSTM layers in the ELMo model. There is a residual connection between two LSTM layers, 

meaning that the input to the first layer is added to its output before being passed on as the input 

to the second layer. 

Finally, the output of the second biLSTM layer is used to predict the next word with a Softmax 

layer.    

The ability of biLSTM layer to learn the contextualized representations was evident before the 

developing of ELMo (Wan et al., 2016). Even unidirectional LSTM encoder can be used for 

training contextualized word embeddings (McCann et al., 2017). The key difference with ELMo’s 

word representations is that they are a function of all internal layers – ELMo uses all its layers in 

prediction.  

Roughly following the notation of original paper, general form of generating ELMo word 

embeddings can be described in the following way. Each word 𝑡𝑖 will have its vector 

representations ℎ𝑖 from every layer 𝑗: 

 
𝑅𝑖 = {𝑥𝑖

𝐿𝑀 , ℎ⃗ 𝑖,𝑗
𝐿𝑀, ℎ⃗⃖𝑖,𝑗

𝐿𝑀|𝑗 = 1,… , 𝐿} = {ℎ𝑖,𝑗
𝐿𝑀|𝑗 = 0,… , 𝐿} . (14) 

In case the model has 𝐿 layers, then each word will have 2𝐿 + 1 word representations – 2 

embeddings from each biLSTM layer plus word vector from token input layer. In equation (14) 

ℎ𝑖,0
𝐿𝑀 stands for vector from token layer and ℎ𝑖,𝑗

𝐿𝑀 = [ℎ⃗ 𝑖,𝑗
𝐿𝑀; ℎ⃗⃖𝑖,𝑗

𝐿𝑀] for each biLSTM layer. As 

discussed above, vectors from forward and backward LSTM are concatenated together, leaving 

three intermediate word vectors, given two biLSTM layers architecture of ELMo: context 

independent vector from token input layer and two context-dependent word vectors from biLSTM 

layers.  

ELMo makes one single vector as a linear combination of word representations across all layers 

of the model. After calculating vectors on all intermediate levels ELMo multiplies each vector by 
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normalized weights 𝑠𝑗 (each layer will have its own weight), which are optimized during training, 

and then sums up vectors from all layers. Resulting vector is multiplied by 𝛾𝑡𝑎𝑠𝑘, scalar parameter, 

for aiding the optimization process of the specific task:       

 

𝐸𝐿𝑀𝑜𝑖
𝑡𝑎𝑠𝑘 = 𝛾𝑡𝑎𝑠𝑘 ∑𝑠𝑗

𝑡𝑎𝑠𝑘ℎ𝑖,𝑗
𝐿𝑀

𝐿

𝑗=0

 .  (15) 

Training weights for different layers can be useful, because the two biLSTM layers might represent 

different information from a word (Peters et al., 2018). Lower layer is better for syntax related 

tasks (part-of-speech tagging, syntactic dependencies, named-entity recognition), and higher layer 

is more suitable for semantics related tasks (sentiment, question answering). 

If 𝛾𝑡𝑎𝑠𝑘 = 1 and 𝑠𝐿 = 1, then there is no difference with an average language model, since 

resulting embeddings will be just the output of the last biLSTM layer. 

 

Figure 7. ELMo architecture 

ELMo allows customization of embeddings for the specific task with 𝛾𝑡𝑎𝑠𝑘, representing a task-

specific scaling factor. Thus, there will be different word embeddings depending on the specific 

task.   

ELMo was pre-trained on 1 Billion Word Benchmark4 data set. There are several pre-trained 

models, depending on their size: 

                                                           
4 https://www.statmt.org/lm-benchmark/ 

https://www.statmt.org/lm-benchmark/
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 Small Medium Original Original (5.5B) 

Number of 

parameters, M 
13.6 28.0 93.6 93.6 

LSTM hidden size / 

output size 
1 024 / 128 2 048 / 256 4 096 / 512 4 096 / 512 

Number of highway 

layers 
1 1 2 2 

Table 2. Pre-trained ELMo Models 

  

3.2.2 Transformer based models 

Vaswani et al. (2017) proposed a new encoder-decoder model as an alternative to recurrent neural 

network (RNN) architecture. The new model was aiming to overcome such shortcomings of RNN-

based models, as sequential processing (change to parallelization) and hardships with long 

dependencies (proposed an attention mechanism to deal with long range of dependencies). 

Consequently, Transformer model (or part of it) became an essential part of different modern NLP 

models, including GPT-2 and BERT. Since both GPT-2 and BERT are based on Transformer 

model, first there will be a brief description of this model and its main blocks.   

Transformer model and Attention mechanism 

The Transformer is non-recurrent and sequence-to-sequence model, which initially was developed 

for the task of machine translation with parallel corpus 

and it predicts each translated word. The cost function 

of the model is a standard cross-entropy loss followed 

after a Softmax classifier. Figure 8 demonstrates the 

overall model architecture – the left part contains 

encoder blocks and the right part contains decoder 

blocks. The original Transformer model has six 

encoders and six decoders.  

One of the main novelties, which provides relatively 

good results by the model, is using of attention 

distributions, which is the core foundational 

mechanism of the model.  

Attention mechanism reflects the idea of self-attention 

– attend input (a word) to most important parts of the 

sequence. Representation of a word is sum of the 

context words representations (all other words in a 

 

Figure 8. The Transformer model architecture 

(visualization is taken from the original paper 

Vaswani et al. (2017))  
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given sequence), and self-attention helps to identify which context words should be given more 

weight in this summation.  

Input embeddings are the first layer of the model. On this stage they are incorporated with 

positional encoding, which helps the model to understand the position of each token in the textual 

input (sequence of text). This helps to avoid recurrence mechanism – position of each token is 

already added to input embeddings before further processing of embeddings. Vaswani et al. (2017) 

used sin and cosine functions for positional encoding. 

Then embeddings enter encoder block. Encoder block consists of two main parts – attention layer 

and feed-forward neural network layer. Self-attention mechanism is performed in the attention 

layer – it makes three transformations to the original embeddings input, which correspond to query, 

key and value. Matrix of positional embeddings is multiplied independently three times by three 

different linear layers (weights matrices), which will result in three matrices: matrix 𝑄 (query), 

matrix 𝐾 (key) and matrix 𝑉 (value). In essence, each vector 𝑞 from matrix 𝑄 multiplied by 

corresponding vector 𝑘 of matrix 𝐾 will create weight for the value of each token, presented in the 

input, then these weights are multiplied by corresponding vector 𝑣 from matrix  𝑉 and finally the 

weighted values are summed up – this weighted sum of values represents an attention score to 

every context token in the input sequence. Dimensionality of 𝑞 and 𝑘 is the same (𝑑𝑘), 

dimensionality of 𝑣 is 𝑑𝑣 (the size of the input).  

Relevance of keys to each query is calculated via cosine similarity. Cosine similarity between two 

vectors 𝑞 and 𝑘 is calculated as 
𝑞×𝑘𝑇

‖𝑞‖ ‖𝑘‖
. It measures the similarity between two vectors by taking 

their dot product and scaling it by their length. The same principle of calculating similarity implies 

to matrices (in this case 𝑄 and 𝐾). Softmax is 

implemented on top of this similarity calculation, 

which results in the symmetric matrix with entries 

that reflect the relationship between the tokens – 

words that are related more to each other will have 

a higher weighting and, thus, higher attention. This 

attention weighting matrix has information for 

each token where to attend in the given sequence. 

Then this attention matrix is multiplied by matrix 

𝑉 to extract updated values of context tokens for 

each query according to weights. All context representations are summed up to get the 

 

Figure 9. Scheme of attention mechanism  



24 

representation of a query – context tokens with higher weights will have more share in there 

resulting representation.  

More formally, this process for each query can be represented as following: 

 

𝐴(𝑞, 𝐾, 𝑉) =  ∑
𝑒𝑞×𝑘𝑖

∑ 𝑒𝑞×𝑘𝑗
𝑗𝑖

× 𝑣𝑖 .  (16) 

In case of multiple queries Equation (16) becomes 𝐴(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 × 𝐾𝑇) × 𝑉. The 

final version of this equation has a scaling factor √𝑑𝑘 in order to solve the issue of decreasing 

gradient in case of large 𝑑𝑘: 

 

𝐴(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 × 𝐾𝑇

√𝑑𝑘

) × 𝑉 .  (17) 

This is an intuition behind the work of one attention head. In each attention layer there are several 

attention heads (8 in the original Transformer model) – each head is going to attend to different 

parts of the input in the same time. After calculation of all attentions heads they are concatenated: 

 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ) × 𝑊𝑜 ,  (18) 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 × 𝑊𝑖
𝑄 , 𝐾 × 𝑊𝑖

𝐾, 𝑉 × 𝑊𝑖
𝑉). First, matrices 𝑄, 𝐾 and 𝑉 are mapped 

to lower dimensional spaces via matrices 𝑊, which are projections (𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 , 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙). Then they are used for attention scores 

calculation and these attention scores are concatenated together, returning to the single-head 

attention full dimensionality.  

The output of multi-head attention layer is summed up with initial positional embeddings via 

residual connection, and then layer normalization is applied (Ba et al., 2016).  

The second part of encoder block is feed-forward 2-layer neural network (FFN), which consists of 

two linear transformations with ReLU activation in between: 𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 +

𝑏2. In the end, FFN has residual connection and layer normalization as well. 

Original transformer model has six encoder block stacked together vertically. Each block has the 

same matrices 𝑄, 𝐾 and 𝑉. 

The right part of Transformer model is a decoder block. The task of decoder block is to predict the 

word (in the original setting – actual translation of a word that was an input to the encoder part of 
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the model). Decoder block consists of three parts: masked multi-head attention, multi-head 

attention (encoder-decoder attention) and FFN.  

There are two key differences from encoder block. There is additional encoder-decoder attention, 

where queries come from previous decoder layer and keys and values come from output of 

encoder. The second difference is more relevant for this research – first multi-head attention layer 

uses masked self-attention mechanism. That means that it is only allowed to attend to the present 

and previous tokens – all attention scores for future tokens (to the right) are masked, meaning 

information from the tokens to the right is blocked. 

Decoder blocks are also repeated six times in the original Transformer model.  

  

Generative Pre-trained Transformer - 2 

GPT-2 was introduced by Radford et al. (2018) and stands for Generative Pre-trained Transformer. 

It uses decoder part of original Transformer model. Basically, GPT-2 does the similar task as a 

language model – predicts the word in the sequence of text. 

In comparison to original Transformer model, GPT-2 contains only masked multi-head attention 

and FFN. It does not use the middle part of the decoder – encoder-decoder attention, since it does 

not have encoder blocks inside its architecture. 

GPT-2 makes the use of Byte Pair Encoding (Sennrich et al., 2016) for the input before the first 

decoder block, which is a type of sub-word-based tokenization. It makes the representation of the 

common words as a single token, whereas rare words are split into two or more sub-words. Pre-

trained GPT-2 model provides embeddings matrix, which is used as a words representation for 

preparing an input for the model. Then it uses a positional encoding, as was discussed before. 

Capacity of GPT-2 positional vector is 1 024 positions.   

Model processes one token at a time. After getting the output this token is added to the sequence 

of inputs, which will be an input when the next token is processed. Each layer will keep the 

interpretations of previous tokens and will use them to generate the interpretation of the new token.    

Last decoder block outputs a vector which is multiplied by the embedding matrix – that gives a 

score for each word in the model’s vocabulary for making a prediction.   

Objective function of GPT-2 in pre-training stage is similar to the one of standard language model 

(Radford et al., 2018). Given the sequence of tokens 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} the following likelihood 

should be maximized: 
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∑𝑙𝑜𝑔𝑃(𝑢𝑖|𝑢𝑖−𝑘, … , 𝑢𝑖−1; Θ)

𝑖

 ,  (19) 

where 𝑘 is the size of the context window and 𝑃 is modelled as a neural network with parameters 

Θ. These parameters are trained using stochastic gradient descent. 

GPT-2 was trained on 40GB dataset WebText, which was web scraped by Radford et al. (2019). 

The number of decoder blocks, as well as model size varies.  

 
GPT-2 

Small 

GPT-2 

Medium 

GPT-2 

Large 

GPT-2 

Extra Large 

Number of layers 12 24 36 48 

Number of hidden states 

(embeddings dimensionality) 
768 1 024 1 280 1 600 

Number of parameters, M 117 345 774 1 558 

Table 3. Types of pre-trained GPT-2 models depending on their size 

The smallest model is equivalent to the original GPT model in terms of model size (Radford et al., 

2018). The difference in architecture between GPT-2 and GPT is mostly in changing the position 

of layer normalization (moved to the input of each block) and one more layer normalization was 

added after the last attention block.  

 

Bidirectional Encoder Representations from Transformers 

Bidirectional Encoder Representations from Transformers (BERT) was developed by Devlin et al. 

(2018). It uses encoder blocks from Transformer model for calculating word embeddings.  

The motivation for BERT was to be able to use the context jointly from both sides during the 

training phase.  GPT-2 and language models use only one side of the context – flow of calculations 

goes only in one side, left or right. The other goal is to avoid a situation when words are able to 

“see themselves” in bidirectional set up (outputs of one layer are stacked together and passed to 

the next layer – the next layer, thus, will know information from the other side of the context).  

BERT model comprises bidirectional context without words being able to “see themselves”. 

Devlin et al. (2018) came up with the solution to include following two objectives while using 

encoder blocks architecture from Transformer model.  

First objective is to use masked language model (MLM). In a given sequence of text 𝑘% of the 

input words will be masked. The task for the model then will be to predict these masked words. 

Authors decided to use the value of 15%, since this amount was chosen by the training data 
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generator. Little percent of masked words leads to more expensive training, whereas too much 

high share of masking does not provide enough context. 

When 15% of tokens were chosen, 80% of them are masked5, 10% are replaced by random token 

and 10% are left unchanged. Then the model is trained to predict masked words (𝑁𝑚𝑎𝑠𝑘 out from 

𝑁 tokens of the input) with cross entropy loss: 

 
𝐿𝑜𝑠𝑠𝑀𝐿𝑀 = ∑ −𝑙𝑜𝑔𝑃(𝑥𝑖)

𝑥𝑖∈𝑁𝑚𝑎𝑠𝑘

 .  (20) 

Second objective is to predict the right relationship between sentences – next sentence prediction 

(NSP). Two sentences are chosen for the task and model needs to predict if the second sentence 

actually goes after the first sentence in the given text or it is a random sentence6. Devlin et al. 

(2018) follows the formulation of Logeswaran and Lee (2018): 

 

𝑃(𝑠𝑐𝑎𝑛𝑑|𝑠, 𝑆𝑐𝑎𝑛𝑑) =
𝑒𝑥𝑝[𝑐(𝑓(𝑠), 𝑔(𝑠𝑐𝑎𝑛𝑑))]

∑ 𝑒𝑥𝑝[𝑐(𝑓(𝑠), 𝑔(𝑠′))]𝑠′∈𝑆𝑐𝑎𝑛𝑑

 ,  (21) 

where 𝑐 is a scoring classifier 𝑆𝑐𝑎𝑛𝑑 is a set of candidate sentences, 𝑠 is the context. The objective 

function then maximizes the probability of identifying if the next sentence is correct context 

sentence is as follows (𝐷 is a training data and 𝑠𝑐𝑡𝑥𝑡 is a context sentence for which candidate 

sentences 𝑆𝑐𝑎𝑛𝑑 are considered): 

 
∑ ∑ 𝑙𝑜𝑔𝑝(𝑠𝑐𝑡𝑥𝑡|𝑠, 𝑆𝑐𝑎𝑛𝑑)

𝑠𝑐𝑡𝑥𝑡∈𝑆𝑐𝑡𝑥𝑡𝑠∈𝐷

 
.  (22) 

BERT also uses sub-word-based tokenization for the input. This time it is WordPiece embeddings 

(Wu et al., 2016). The size of token vocabulary is 30 000 tokens.  

Devlin et al. (2018) used BooksCorpus (Zhu et al., 2015) with 800 million words and English 

Wikipedia with 2 500 million words for pre-training the model  There are two types of pre-trained 

BERT models.  

  BERT-Base BERT-Large 

Number of layers 12 24 

Number of hidden states 

(embeddings dimensionality) 
768 1 024 

                                                           
5 When textual input is tokenized, it means that the sentence instead of a form “I am running in the park” will be in 

the form “[I] [am] [running] [in] [the] [park]”. Then masked language model literally puts token [MASK] in the 

place of masked word.   
6 For this purpose model takes two tokenized sentences and separate them by additional token <SEP> to distinguish 

two sentences. 
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  BERT-Base BERT-Large 

Number of attention heads 12 16 

Number of parameters, M 110 345 

Table 4. Types of pre-trained BERT models depending on their size 

Pre-trained BERT models can be used for fine-tuning for particular task and also one can use 

BERT, along with GPT-2 and ELMo, to extract contextualized word embeddings and feed them 

to a machine learning model.  

 

3.3 Models evaluation  

3.3.1 Intrinsic evaluation 

Within implementation of embedding methods in order to convert a sequence of word embeddings 

in each review to one vector, I use mean-pooling operation. This technique aggregates all the 

vectors in a given review by calculating arithmetic mean of the vectors element-wise. Taking the 

mean is a linear operation, thus, resulting vectors per each review will be able to remain, at least, 

to some extent, semantic and syntactic information, that was captured by the word-level 

embeddings. Averaging embeddings to obtain aggregated vectors is popular technique, for 

example, fastText model use averaging of n-grams embeddings (Bojanowski et al., 2016). 

Resulting vectors are reviews representations. Just like in case of word-level embeddings with 

word similarity test (Wang et al., 2019), it is possible to analyze semantic similarity between pairs 

of reviews, which are represented by vectors of the same dimensionality. 

One of the popular evaluator for measuring embeddings similarity is cosine similarity. Given two 

vectors 𝑣 and 𝑤 their cosine similarity score is defined by 

 

𝑐𝑜𝑠𝑠𝑖𝑚(𝑣,𝑤) =
𝑣 × 𝑤𝑇

‖𝑣‖ × ‖𝑤‖
 .  (23) 

In equation (23) similarity measure is normalized to unit length: ‖𝑣‖ × ‖𝑤‖ = √𝑣𝑣𝑇 × √𝑤𝑤𝑇, 

which is 𝐿2 normalization. Cosine similarity values belongs to the interval [−1,1]. It takes value 

1, when vectors have the same orientation (angle between them is equal 0). When cosine similarity 

equals 0, it means that two vectors are orthogonal, and when it is equal -1, it means that vectors 

are oriented in different directions. Thus, cosine similarity is testing distribution similarity among 

pairs of embeddings – similar words (or reviews as in case of this research) will be closer together 

in the semantic space (cosine similarity score is closer to 1 in this case).  
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3.3.2 Extrinsic evaluation 

One of the common way to test different embeddings methods is to use them directly in the 

downstream task, for example, text binary classification to determine the sentiment (Altowayan 

and Tao, 2019). In order to concentrate analysis only on the effect of vector representations, review 

embeddings will be the only independent variable in classification model. Sentiment score 

(positive / negative) will be a response variable (or dependent variable). Resulting metrics from 

confusion matrix can be used for comparison of different word embeddings methods.  

In order to check robustness of resulting metrics three different classification methods will be used: 

logistic regression, random forest and support vector machine 

Logistic regression 

Logistic regression model is a commonly used classification method because it is rather easy to 

implement and it provides interpretability. In case of binary classification its prediction of a 

variable of interest is based on maximum likelihood (loss function). This method makes an 

estimation of the probability of belonging to a certain class (positive / negative, 0 / 1) given certain 

characteristics of observation. The general logistic regression formula use sigmoid function and 

has the following form: 

 

𝑃(𝑌 = 1|𝑋) =  
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛
 .  (24) 

As it follows from Equation (24), the range of probabilities is from 0 to 1. 𝛽𝑛 denotes coefficients 

of predictors 𝑋𝑛 and 𝑃(𝑌 = 1|𝑋) is the probability the chosen sample belongs to class “1” given 

the value of 𝑋𝑛. 

Equation (24) in a transformation of Equation (25): 

 

log (
𝑃(𝑌 = 1|𝑋)

1 − 𝑃(𝑌 = 1|𝑋)
) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑛𝑋𝑛 .  (25) 

Equation (25) is referred to as log-odds, which can be used to interpret the model, because it is 

linear in 𝑋 – change of 1 unit in 𝑋𝑛 changes the log-odds by 𝛽𝑛.  

The main assumptions while implementing logistic regression include absence of multicollinearity 

among the predictors, linearity of logit of independent variables and response variable and 

independence of observations.  
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Random Forest 

Random forest is a tree-based classification algorithm developed by Breiman L. (2001). This 

ensemble learning method is widely used for classification problems, including text classification. 

It is considered to be fast and accurate method for document categorization (Kowsari et al. 2019). 

In addition to this, according to the research of Fernandez-Delgado et al. (2014) on 179 classifiers, 

Random Forest versions appeared to be most likely the best classifiers.    

Random forests is an ensemble methods, related to bagging ensemble learning. It takes many 

individual decision trees and aggregates their predictions (averaging predictions of all trees). The 

characteristic feature of random forest method is that it takes a random sample of the predictors 

from the dataset to be considered while making a split in the decision tree, thus solving the issue 

of correlation among trees due to strong predictors, which can be seen in bagging. When there are 

𝑝 number of independent variables, random forest will use 𝑛 < 𝑝 number of predictors for every 

individual tree. It ensures that each independent variable can be chosen for the tree. This technique 

helps to decrease correlation among the trees and, thus, lower down the prediction’s variance.   

Random forest is convenient in usage, because assumptions of non-linear relationship between 

independent and dependent variables does not have to be met. In addition to this, presence of high 

correlation among predictors is not a problem for random forest to solve classification task.   

Support Vector Machine 

Support Vector Machine (SVM) is another popular method for text classification and 

categorization tasks (Paass and Kindermann, 2004) (Basu et al., 2003). SVM was introduced by 

Vapnik V. (1995).  

SVM assigns observations to one of the classes by separating them with hyperplane in n-

dimensional space. SVM is based on maximal margin classifier and support vector classifier.  

Data points that are closest to hyperplane – they are called support vectors. Margin, which is a 

minimal distance between nearest data points to hyperplane from both its sides, determines the 

position of hyperplane. The goal is to increase the value of the margin, meaning that maximal 

margin classifier is searching for the hyperplane, where the margin is the largest, because it will 

improve model’s classification ability. 

Support vector classifier is an extension of maximal margin classifier, and it uses, so called, soft 

margin. “Soft” margin is a margin with a threshold that allows misclassification. Support vector 

classifier solves following problem: 



31 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝛽0,𝛽1,…,𝛽𝑝, {∑max [0,1 − 𝑦𝑖

𝑛

𝑖=1

𝑓(𝑥𝑖)] + 𝜆∑𝛽𝑗
2

𝑝

𝑗=1

} .  (26) 

The left part of Equation (26) represents maximal margin classifier and the right part is penalty 

term with a tuning parameter 𝜆, also called cost. Smaller value of 𝜆 makes the margin wider and 

increases the number of violations to the threshold that are tolerated inside the soft margin. This 

leads to higher variance and lower bias of the model. Similarly, lower value of 𝜆 makes the margin 

more narrow, which results in lower variance, but higher bias.   

SVM handles non-linear class boundaries. By increasing the number of dimensions SVM can map 

support vectors and is able to make a classification. SVM will increase the number of dimensions 

until hyperplane can make the distinction of observations. On each such step kernel functions help 

to find support vectors. Kernel functions calculate relationship between each pair of data points as 

if they were in higher dimensions without data transformation, which is called kernel trick.      

Kernel functions can be linear and non-linear. Linear kernel function relates to support vector 

classifier, whereas combination of support vector classifier and non-linear kernel is support vector 

machine. The popular non-linear kernel functions are radial kernel, polynomial kernel and sigmoid 

kernel.  

SVM classifies the data points, which are not linearly separable, and it is effective in a higher 

dimension. In addition to this it is characterized by high stability due to dependency on support 

vectors and not the data points, it does not get influenced by outliers and there are no assumptions 

made of the datasets. 

Evaluation metrics 

To measure the classification models performance I will use six metrics for determining the best 

classifier in each case. Most of the metrics chosen for this research are based on confusion matrix 

(Hossin and Sulaiman, 2015) (Chicco1 et al., 2021): accuracy, precision, recall, F1-score, 

Matthews correlation coefficient (MCC). These metrics include such values from a confusion 

matrix, as true positive (TP), true negative (TN), false positive (FP) and false negative (FN). The 

sixth metric is area under the curve (AUC) (Hossin and Sulaiman, 2015). 

Accuracy 

Measurement of how many predictions were 

classified correctly 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 

Proportion of true positives in the total number of 

predicted positives 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Recall 

Proportion of true positives in the total number of 

actual positives 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

Harmonic mean between precision and recall, 

analyzes the trade-off between correctness and 

coverage in classifying positive observations 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

MCC 

Measurement of the quality of classification, which 

takes into account possible issues with imbalanced 

data 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

AUC 

Measurement of the model ability to rank randomly 

chosen positive outcome higher than randomly 

chosen negative outcome 

Area under the receiver operating characteristics (ROC) 

Table 5. Metrics used for evaluation of classification models  

 

4. Data and models implementation  

4.1 Data preparation and exploratory data analysis 

The goal of this research is to compare different word embedding models. In order to do this 

comparison, five different word embeddings techniques will be implemented on the same text data 

set. For keeping the relevance of the research for marketing and business practitioners, the data set 

used for comparison should be represented by the set of online reviews, which also contains 

ratings, put by each reviewer.  

The dataset chosen for this research is “Disneyland 

Reviews7” from the website www.kaggle.com (this 

website hosts data for data science competitions). 

Total amount of reviews in the dataset is 42 000. It 

comprises the reviews from three Disneyland park, 

situated in Paris, California and Hong Kong, posted 

by visitors on Trip Advisor. Users could put the 

rating in a range from 1 to 5. 

There are no missing values in the dataset, every 

review has its rating. All reviews were written in 

English.  

                                                           
7 https://www.kaggle.com/datasets/arushchillar/disneyland-reviews 

 

Figure 10. Distribution of reviews among the 

location  

http://www.kaggle.com/
https://www.kaggle.com/datasets/arushchillar/disneyland-reviews
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Figure 11. Number of reviews per each rating 

As it follows from Figure 11, data is imbalanced. Positive reviews (rated 4 and 5) have 

disproportionally larger share in the dataset. 

For the purpose of building classification models, that predict sentiment (if review is positive or 

negative), reviews rated “3” are removed from the dataset, since they are more neutral. Reviews 

rated “4” and “5” are considered to be positive and combined in one group with a new label “0”. 

Similarly, reviews rated “1” and “2” are considered to be negative and combined in one group with 

a new label “1”. The reason of assigning “0” and “1” in that way is due to common practice in 

machine learning classification to assign “1” (“positive”) label to the minority class for better 

interpretation of evaluation metrics.  

After that dataset contains 37 547 reviews: 33 921 reviews labeled “0” and 3 626 reviews labeled 

“1”. 

Train / test split was set with proportion 80 / 20: 

 Train set Test set 

“0” (positive reviews) 27 079 6 842 

“1” (negative reviews) 2 958 668 

Total: 30 037 7 510 

Table 6. Number of observation in the train and test sets 

After train / test split train set was randomly reduced to 10 000 reviews: 9 026 reviews labeled “0” 

and 974 reviews labeled “1”. 

The proportion of negative reviews in train / test set is 9.7% and 8.9% respectively.  

Reviews have different number of words and the range is relatively high: 

 range of number of words per review in the train set – min 3, max 3 211, mean: 121, 

 range of number of words per review in the test set – min 3, max 3 731, mean: 120. 
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Figure 12. Left – histogram of number of words per review in the train set, right – histogram of number of words per 

review in the test set 

For higher interpretability of histograms in Figure 12 the maximum number of reviews was set to 

500, although both sets are skewed to the right with much longer tails. 

Further data processing included removing punctuation and tokenizing sentences for such word 

embeddings as word2vec, GloVe and ELMo. GPT-2 and BERT processed sentences with 

punctuation left and they have their own tokenization mechanisms. 

 

4.2 Models implementation  

4.2.1 Python libraries 

All models implementation for this research were done in Python (version Python 3.10.2) with the 

use of following libraries: 

 Pandas (McKinney, 2010) – for data manipulations, 

 Scikit-learn (Pedregosa et al., 2011) – for classification methods, 

 Imbalanced-learn (Lemaître et al., 2017) – for implementing SMOTE, 

 PyTorch (Paszke et al., 2019) – for making calculations inside neural networks, 

 Libraries for word embeddings – Gensim (Rehurek and Sojka, 2011), AllenNLP (Gardner 

et al., 2018), Transformers (Hugging Face)8 

 

4.2.2 Word embeddings models 

Information on word embeddings model is summarized in the Table 7: 

                                                           

8 Transformers library was released by company Hugging Face, which was founded by Delangue C. and Chaumond 

J. in 2016. Source of the library: https://huggingface.co/docs/transformers/index 

https://huggingface.co/docs/transformers/index
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Model 
Type of 

model used 

Name of pre-

trained model 

Embeddings 

dimensionality 
Hyperparameters 

Python 

libraries 

word2vec  

Skip-gram 

(trained) 
- 300 

window size = 5 

number of negative 

samples = 5 

Gensim 

CBOW 

(trained) 
- 300 

window size = 5 

number of negative 

samples = 5 

Gensim 

Pre-trained 
GoogleNews-

vectors-negative300 
300 - Gensim 

GloVe Pre-trained glove.6B.200d.txt 200 - Gensim 

ELMo Pre-trained “Original” 1 024 - AllenNLP 

GPT-2 Pre-trained 
“gpt2” (stands for 

GPT-2 Small) 
768 - 

Transformers 

(Hugging Face) 

BERT Pre-trained “bert-base-uncased” 
768 

- 
Transformers 

(Hugging Face) 

Table 7. Details of implementing word embeddings model 

Overall, there are 7 vector representations for comparison. Intrinsic and extrinsic evaluation are 

implemented for each of them. 

 

4.2.3 Synthetic Minority Oversampling Technique 

After making word representations of train set, synthetic minority oversampling technique 

(SMOTE) (Chawla et al., 2002) was implemented. Usually, machine learning classification 

method has problems with learning from imbalanced data, resulting in rather low ability to predict 

minority class. When one class is underrepresented, classifier might have problems distinguishing 

two classes, which can lead to bias towards the majority class in predictions. 

One of the oversampling technique is SMOTE. Instead of simply copying the observations from 

minority class, SMOTE generates new data points that are similar to those from minority class. It 

randomly chooses an observation from minority class and then calculates K-nearest neighbors. 

Part of these K-nearest neighbors are chosen for the new synthetic data points.     

Amount of negative reviews was increased to be equal to the number of positive reviews. It is also 

possible to pre-specify the desired ratio (50/50 is just one of the options). 

 

4.2.4 Tuning the parameters 

In this research I used a grid search with 5-fold cross-validation for tuning the parameters of 

random forest and support vector machine individually for every word embedding method. Grid 

search means that each combination of tuning parameters was used for training the model. The set 

of parameters used for grid search was the same across all word embeddings methods.  
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Method Hyperparameter Values for grid search 

Random Forest  

The minimum number of samples 

required to be at a leaf node 

('min_samples_leaf') 

[1, 2, 5] 

The minimum number of samples 

required to split an internal node 

('min_samples_split') 

[1, 2, 5] 

The number of trees ('n_estimators') [50, 100, 200, 500] 

Support Vector 

Machines 

Kernel function (‘kernek’) ['linear', 'rbf'] 

Cost (‘C’) [0.1, 1, 10, 100] 

gamma [1, 0.1, 0.01, 0.001, 0.0001] 

Table 8. Values of hyperparameter for grid search 

Selected hyperparameter by grid search are presented in the following table: 

 Random Forest 
Support Vector 

Machine 

word2vec – 

Skip-gram 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500 

C=100,  

gamma=1,   

kernel=rbf 

word2vec – 

CBOW 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500 

C=100,  

gamma=1,   

kernel=rbf 

word2vec – 

pre-trained 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500 

C=100,  

gamma=1,   

kernel=rbf 

GloVe – 

pre-trained 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500 

C=100,  

gamma=1,   

kernel=rbf 

ELMo – 

pre-trained 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500 

C=10,  

gamma=0.1,  

kernel=rbf 

GPT-2 – 

pre-trained 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 500 

C=100,  

gamma=1,   

kernel=rbf 

BERT – 

pre-trained 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'n_estimators': 200 

C=10,  

gamma=0.1,  

kernel=rbf 

Table 9. Hyperparameters chosen by the grid search 
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5. Results 

Following this research design, the results of comparison are comprised from intrinsic and 

extrinsic evaluation of embeddings methods.  

5.1 Results of embeddings methods comparison based on intrinsic evaluation 

 First, I tested intrinsic evaluation of embeddings model. As it was described in Section 3.3.1, each 

review is represented by one vector representation. In order to test similarity measure I randomly 

picked up one negative review. After that, I randomly chose 10 other negative reviews and 

calculated cosine similarity with each of this negative reviews. 

For easier reading the results, I used coloring for visualizing Top-3 scores across each row of the 

tables with calculated cosine similarities: 

1 first place 

2 second place 

3 third place 

Results for similarity measure for a sample of negative reviews are presented in the Table 10:  

№ of the 

sentence 

word2vec GloVe  

pre-trained 
ELMo GPT-2 BERT 

skip-gram CBOW pre-trained 

1 0.93867800 0.72272000 0.84721100 0.96619180 0.75961850 0.96652925 0.88086920 

2 0.94282360 0.74200500 0.85881400 0.96619180 0.75539160 0.96597120 0.88462730 

3 0.95046777 0.76294120 0.87913746 0.96932685 0.75552905 0.96797570 0.83275270 

4 0.93112480 0.62935543 0.77784230 0.95888520 0.71025640 0.94937380 0.86026080 

5 0.93961500 0.69082934 0.82834870 0.96346200 0.69671166 0.96503610 0.88463290 

6 0.94466996 0.72387310 0.84480566 0.96301130 0.75260540 0.95687480 0.86166100 

7 0.92113185 0.58242320 0.80753670 0.95249580 0.67223920 0.95566344 0.87018514 

8 0.94222873 0.72091883 0.81447080 0.94716220 0.68974864 0.95963510 0.86800367 

9 0.92533165 0.63460076 0.82425654 0.95636490 0.67805480 0.95955867 0.85559640 

10 0.94061120 0.69852420 0.85863495 0.96233960 0.76156884 0.96427420 0.88440037 

Average: 0.93766826 0.69081911 0.83410581 0.96054315 0.72317241 0.96108923 0.86829895 

Table 10. Cosine similarity scores of a randomly chosen negative review with 10 randomly chosen negative reviews 

(same across the methods) 

After that the same procedure was done with a sample of positive reviews: one randomly chosen 

positive review was paired with ten other randomly chosen positive reviews. Results of these 

calculations are presented in the Table 11: 

№ of the 

sentence 

word2vec 
GloVe  

pre-trained 
ELMo GPT-2 BERT 

skip-gram CBOW 
pre-

trained 

1 0.96324110 0.79853100 0.89736370 0.97743136 0.78570116 0.97967290 0.90175813 

2 0.92791240 0.67473215 0.85716770 0.95761200 0.75889870 0.95633560 0.77004546 

3 0.97811030 0.86852556 0.94734200 0.98733747 0.90378946 0.98391527 0.85104436 

4 0.92833110 0.68147075 0.86195230 0.96203960 0.75030196 0.95911540 0.87829036 
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№ of the 

sentence 

word2vec 
GloVe  

pre-trained 
ELMo GPT-2 BERT 

skip-gram CBOW 
pre-

trained 

5 0.94503770 0.77243340 0.85455114 0.96413990 0.81142896 0.95265317 0.86626387 

6 0.95336320 0.76184570 0.88633480 0.97222537 0.81972516 0.96476430 0.87805300 

7 0.95584760 0.79832980 0.87475560 0.96115863 0.86563075 0.95941466 0.87897706 

8 0.96932405 0.83776960 0.93232890 0.98462390 0.83659273 0.97833990 0.88929400 

9 0.96379536 0.82468826 0.92529180 0.98330766 0.81550820 0.98432400 0.91529840 

10 0.95882326 0.76179680 0.91605630 0.97913945 0.79836690 0.97785770 0.88417120 

Average: 0.95437861 0.77801230 0.89531442 0.97290153 0.81459440 0.96963929 0.87131958 

Table 11. Cosine similarity scores of a randomly chosen positive review with 10 randomly chosen positive reviews 

(same across the methods) 

In both cases (negative and positive reviews), GPT-2 and GloVe have the highest similarities 

scores – in case of negative reviews, GPT-2 is slightly higher, in case of positive reviews GloVe 

is higher. In the same time, in both cases, word2vec skip-gram model is consistently on the third 

place. 

Thus, word2vec skip-gram and GloVe showed good results in this similarity test, despite the fact 

that they are the oldest one in a list of methods used in this research (2013 and 2014 respectively, 

others were developed in 2018-2019 years). Both these methods produce static, context-free 

embeddings. Moreover, skip-gram embeddings were trained on the corpus just from one dataset 

that was used in this research, and it showed better results than wod2vec pre-trained embeddings, 

even though the training of that model was done on huge corpus of about 100 billion words. 

In contrast to skip-gram model, CBOW demonstrated worst results among all other embedding 

methods that were used for comparison. It ended up on seventh place in both cases.    

Among the contextualized word embeddings, only GPT-2 could provide high enough similarities 

scores to be in Top-3. Whereas BERT is on fourth place in similarity scores for negative reviews 

and on fifth place in similarity scores for positive reviews. In addition to this, results of BERT in 

this similarity test are pretty close to the results of word2vec pre-trained model. Lastly, the third 

contextualized method, ELMo, is only on sixth place in both cases.  

Rated scores for all embeddings methods are presented in the following Table 12: 
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(a) Negative reviews 

№ Model 
Average 

similarity scores 

1 GPT-2 0.96108923 

2 
GloVe  

pre-trained 
0.96054315 

3 skip-gram 0.93766826 

4 BERT 0.86829895 

5 w2v pre-trained 0.83410581 

6 ELMo 0.72317241 

7 CBOW 0.69081911 
 

(b) Positive reviews 

№ Model 
Average 

similarity scores 

1 
GloVe  

pre-trained 
0.97290153 

2 GPT-2 0.96963929 

3 skip-gram 0.95437861 

4 w2v pre-trained 0.89531442 

5 BERT 0.87131958 

6 ELMo 0.81459440 

7 CBOW 0.77801230 
 

Table 12. Average rated cosine similarity scores for negative reviews (a) and for positive reviews (b)   

The average similarity score higher than 0.9 was observed only for the Top-3 embeddings methods 

in both cases of negative and positive reviews. After that, average similarity scores start rapidly to 

decline (Table 12). The difference between the first three embeddings methods is relatively low, 

as compared to the difference between the Top-3 methods and all other methods: 

(a) Negative reviews 

Models 
Relative 

difference 

GPT-2 compared to GloVe 0.06% 

GloVe compared to skip-gram 2.44% 

skip-gram compared to BERT 7.99% 

BERT compared to w2v pre-

trained 
4.10% 

w2v pre-trained compared to 

ELMo 
15.34% 

ELMo compared to CBOW 4.68% 
 

(b) Positive reviews 

Models 
Relative 

difference 

GloVe compared to GPT-2 0.34% 

GPT-2 compared to skip-gram 1.60% 

skip-gram compared to w2v 

pre-trained 
6.60% 

w2v pre-trained compared to 

BERT 
2.75% 

BERT compared to ELMo 6.96% 

ELMo compared to CBOW 4.70% 
 

Table 13. Relative comparison of embeddings methods in case of negative reviews (a) and positive reviews (b) 

As it can be seen from the Table 13, taking into account relative difference between embeddings 

methods, they can be grouped in three groups, where embedding methods share, more or less, 

similar scores: first group – GPT-2, GloVe, skip-gram; second group – BERT, word2vec pre-

trained; third group – ELMo, CBOW.        

Similarity scores indicate how close reviews vector representations are in the semantic space in 

relation to supposed to be other similar reviews (negative-negative, positive-positive). Although 

from business perspective it might be useful to be able to group together similar reviews, one 

should carefully assess the quality of words embeddings depending on that measure – there might 

be cases when similarity and relatedness could be messed up and related things can be grouped 

together even though they are not similar (Faruqui et al., 2016). In addition to this, results from 

intrinsic evaluation usually do not have strong correlation with the results of downstream tasks. 
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5.2 Results of embeddings methods comparison based on extrinsic evaluation 

Extrinsic evaluation showed different results. As discussed in the section 3.3.2, reviews 

embeddings were used as an independent variable for three different classification methods 

(logistic regression, Random Forest and Support Vector Machine) to predict the sentiment of 

reviews.  

After running three classification models on seven word embeddings methods and calculating six 

metrics for each classification model, BERT showed consistently best results across all three 

classifiers on most of the metrics (Table 14). ELMo is on the second place most of the time. 

Word2vec skip-gram is on the third place across majority of metrics.   

Corresponding confusion matrices are presented in Appendix (Table 18). Resulting metrics from 

classification models are summarized in the Table 14. 

The same color scheme, as in section 5.1, is implemented here to indicate Top-3 scores per each 

row: 

1 first place 

2 second place 

3 third place 

 

Classification 

methods 

word2vec GloVe 

pre-trained 

ELMo 

pre-trained 

GPT-2 

pre-trained 

BERT 

pre-trained skip-gram CBOW pre-trained 

Logistic regression        

Accuracy 0.88935 0.85779 0.87949 0.87310 0.93688 0.88389 0.95060 

Precision 0.43877 0.36772 0.41481 0.39886 0.60232 0.42619 0.68088 

Recall 0.87425 0.83234 0.86377 0.84132 0.85479 0.88174 0.83683 

AUC 0.88254 0.84631 0.87240 0.85876 0.89984 0.88292 0.89927 

F1 score 0.58429 0.51009 0.56047 0.54117 0.70668 0.57463 0.75084 

MCC 0.57034 0.49169 0.54578 0.52319 0.68545 0.56260 0.72849 

Random Forest        

Accuracy 0.92796 0.91252 0.92197 0.91278 0.93236 0.91518 0.94660 

Precision 0.61483 0.50874 0.58913 0.51248 0.65209 0.53790 0.75723 

Recall 0.50898 0.47904 0.40569 0.39970 0.51347 0.32934 0.58832 

AUC 0.73893 0.71694 0.68903 0.68129 0.74336 0.65086 0.78495 

F1 score 0.55692 0.49345 0.48050 0.44912 0.57454 0.40854 0.66217 

MCC 0.52083 0.44586 0.44882 0.40621 0.54290 0.37849 0.63963 

SVM        

Accuracy 0.94021 0.92250 0.93808 0.93182 0.95260 0.94514 0.95739 

Precision 0.65755 0.58884 0.63847 0.62500 0.78889 0.68234 0.86864 

Recall 0.68413 0.42665 0.70060 0.58383 0.63772 0.71707 0.61377 

AUC 0.82467 0.69878 0.83093 0.77482 0.81053 0.84224 0.80236 

F1 score 0.67058 0.49479 0.66809 0.60372 0.70530 0.69927 0.71930 

MCC 0.63787 0.46090 0.63486 0.56686 0.68439 0.66936 0.70930 

Table 14. Evaluation metrics from three classification methods that were run on word embeddings from different 

models 
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Contextualized embeddings had the highest scores across metrics for all three classification models 

that were used for comparison. It is in line, to some extent, with Hypothesis 1 of this research, 

which assumed that contextualized embeddings (BERT, GPT-2, ELMo) would provide higher 

metrics for the binary classification, than static embeddings (word2vec, GloVe). Although it 

should be mentioned, that only two out three methods, BERT and ELMo, consistently 

outperformed static embeddings methods, whereas GPT-2 had more mixed results.  

Still, if to combine Top-3 scores across each metric, contextualized embeddings appeared more 

than two thirds of times in logistic regression and Random Forest and 78% of times in Support 

Vector Machine (Table 3): 

  
Static 

embeddings 

Contextualized 

embeddings 
Total 

Logistic regression 33% 67% 100% 

Random Forest 33% 67% 100% 

SVM 22% 78% 100% 

Table 15. Share of static and contextualized embeddings, which were rated in Top-3 across all metrics of three 

classification models 

Another important observation is that among the first places, which were taken by contextualized 

embeddings in each metric, BERT was the most common. Out of 18 metrics (six metrics per each 

of the three classification models) BERT appeared 14 times (or 78% of times). GPT-2 appeared 3 

times, and ELMo was observed one time. This observation is in line with Hypothesis 2 of this 

research, which assumption was that among the contextualized embeddings (BERT, GPT-2, 

ELMo) BERT would give higher metrics for the binary classification. 

As it was the case in similarity scores test, word2vec skip-gram performed relatively well. It was 

12 times out of 18 on the third place and one time on the second place. Moreover, again skip-

gram’s results were better than word2vec pre-trained model 16 times out of 18. Pre-trained model 

was on the fifth place 12 times out of 18.    

GloVe results can be characterized as rather poor. This type of embeddings were just on the sixth 

place 17 times, meaning that this result is consistent for all classification models.  

Another word2vec method, CBOW, had the worst performance among all other embeddings 

methods. It appeared 14 times on the last place across all metrics.  Slightly better results of 

CBOW were observed only in Random Forest.  

GPT-2 is characterized by the most inconsistent results compared to other embeddings method. 

GPT-2 has mixed results in different metrics, as well as among classification methods. For logistic 

regression 4 out of 6 metrics of GPT-2 ended up on fourth place, for Random Forest 4 out of 6 

metrics of GTP-2 ended up on the seventh place. Slightly better performance of GPT-2 was 
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observed for Support Vector Machine, where also 4 out of 6 of GPT-2 metrics were on the third 

place. 

Finally, two more ratings will be considered based on extrinsic evaluation metrics. First, per each 

rating from 1 to 7 the most frequent embeddings will be shown. Each metric in each classification 

model has a rating from 1 to 7, because of the total number of embeddings methods used for 

comparison. For each column, embedding method with highest number of appearances among 18 

rows will be depicted. The result of it is shown in the Table 16: 

Rating 1 2 3 4 5 6 7 

Method with highest 

number of appearances 
BERT ELMo 

skip-

gram 

skip-

gram 

word2vec 

pre-trained 
GloVe CBOW 

Number of appearances 14 14 12 5 12 17 14 

Table 16. Embeddings with highest number of appearances per each reating   

Table 16 shows that GPT-2 has a wide spread of metrics values, since it was not concentrated at 

any rating. The positon of all others embedding methods is in line to what was already described 

in this section, with BERT, ELMo and word2vec taking the first three places respectively, and 

GloVe and CBOW on the last two places.  

Second, Matthews correlation coefficient was used in the Table 17 to rate the metrics for 

embedding methods with one metric:  

(a) Logistic regression 

 MCC 

BERT 0.72849 

ELMo 0.68545 

skip-gram 0.57034 

GPT-2 0.56260 

w2v pre-trained 0.54578 

GloVe 0.52319 

CBOW 0.49169 
 

(b) Random Forest 

 MCC 

BERT 0.63963 

ELMo 0.54290 

skip-gram 0.52083 

w2v pre-trained 0.44882 

CBOW 0.44586 

GloVe 0.40621 

GPT-2 0.37849 
 

(c) Support Vector Machine 

 MCC 

BERT 0.70930 

ELMo 0.68439 

GPT-2 0.66936 

skip-gram 0.63787 

w2v pre-trained 0.63486 

GloVe 0.56686 

CBOW 0.46090 
 

Table 17. Rated MCC metrics for logistic regression (a), for Random Forest (b) and for Support Vector Machine (c)  

In logistic regression BERT outperformed second-best method by 6.3%, in Random Forest – by 

17.8% and in Support Vector Machine – by 3.6%. In addition to this, BERT was the only method, 

which reached MCC value more than 0.7 (in logistic regression and Support Vector Machine). 

 

5.3 Results elaboration 

With results from sections 5.1 and 5.2, it is possible to address main research question and sub-

questions. As results of extrinsic evaluation showed, BERT model appeared to be more effective 
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for rating prediction of online reviews from “Disneyland Reviews” dataset. This result is consistent 

across all three classification models used for comparison. 

In the same time, contextualized pre-trained embedding models did not outperform static 

embedding methods based on intrinsic evaluation. In fact, word2vec skip-gram and GloVe models 

were in Top-3 methods based on similarity score test and only one contextualized method, GPT-2 

was in Top-3. 

However, in the downstream task of rating prediction of online reviews BERT was more efficient 

than other contextualized embedding models.   

Thus, when choosing embedding method one should take into account the ending business task. 

For example, for similarity task in the context of this research GloVe method can be chosen. For 

the classification task BERT showed best results in predicting the positive / negative sentiment of 

online reviews.   

Some embedding methods did not show consistency among the metrics of different classification 

methods. Most of the metrics values from extrinsic evaluation of GPT-2 are on the fourth place of 

the rating for logistic regression, on seventh place for Random Forest and on the third place for 

Support Vector Machine. A bit of similar situation is with word2vec methods. Skip-gram metrics 

are mostly on the third place for logistic regression and Random Forest, whereas for Support 

Vector machine they are mostly on the fourth place. Pre-trained word2vec model and CBOW also 

demonstrates consistency among results of logistic regression and Support Vector Machine, but 

gives different results in Random Forest.   

It should be mentioned, that the goal of this research was not to obtain best possible metrics in 

classification models, but rather make a set up for valid comparison of different embeddings 

methods. Nonetheless, there were done several steps, which are considered to be common practice 

in such tasks, to achieve overall better performance of the models: text minor preprocessing, 

oversampling (balancing dataset), grid search of best parameters.  

 

6. Conclusion 

Five different word embeddings methods, which summed into seven different embeddings 

techniques, were analyzed and compared in this research. Intrinsic and extrinsic evaluation tests 

were implemented. For robustness of the research three different classification models were used 

to compare metrics of performance in downstream task. 
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In similarity scores test GPT-2 and GloVe demonstrated the best results and word2vec skip-gram 

was on the third place. That concludes the first sub-question of this research that contextualized 

embeddings method, in fact did not outperform static embeddings methods in intrinsic evaluation, 

but on the contrary, two out of three contextualized embedding methods performed worse than 

static embedding methods.   

In the task of text binary classification of online reviews BERT outperformed all other embeddings 

methods and proved to be state-of-the-art technique, which is in line with Hypothesis 2, which 

assumed that BERT would show better results in sentiment prediction than other contextualized 

embeddings methods.   

Surprisingly, GPT-2 demonstrated worse results in downstream task, than expected. Its results 

were lower in most metrics than those obtained by word2vec skip-gram or word2vec pre-trained 

models (apart from SVM). Even after 9 years after its creation word2vec skip-gram is on the third 

place in most of the metrics of intrinsic and extrinsic evaluations. 

Thus, the results for Hypothesis 1 can be considered as mixed. Hypothesis 1 assumed that all 

contextualized embeddings methods would be more efficient than static embeddings methods in 

the rating prediction. From one hand, two contextualized embeddings methods, BERT and ELMo, 

resulted mostly in higher metrics than word2vec and GloVe. From the other hand, GPT-2 model 

showed mostly better results than static embeddings methods only in Support Vector Machine 

classification. Overall, in this task of classification word2vec skip-gram appeared to be more 

efficient than GPT-2 in logistic regression, and all three word2vec models (skip-gram, CBOW, 

pre-trained) were more efficient in Random Forest.    

The goal of this research was to compare which embeddings will yield in better performance of 

text classification, not to obtain highest possible metrics. In the same time, word vector 

representations proved to be useful in the task of predicting reviews sentiment even in case of this 

research set up with highly imbalanced data and without any other predictors.  

In conclusion, although text of online reviews “Disneyland Reviews” that was used in this research 

is rather general (for example, no medicine or engineering terminology), still the results of this 

research should not be extended on all possible business domains with customer services, which 

have online reviews. Future study of this topic may include testing on other datasets from different 

types of businesses with more specific vocabulary and different length of reviews.    
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Appendix 

Confusion matrices: 

 Logistic regression Random forest Support vector machine 

word2vec – 

Skip-gram 

  Predicted 

  0 1 

Actual 
0 6 095 747 

1 84 584 
 

 Predicted 

0 1 

Actual 
0 6 629 213 

1 328 340 
 

 Predicted 

0 1 

Actual 
0 6 604 238 

1 211 457 
 

word2vec – 

CBOW 

 Predicted 

0 1 

Actual 
0 5 886 956 

1 112 556 
 

 Predicted 

0 1 

Actual 
0 6 533 309 

1 348 320 
 

 Predicted 

0 1 

Actual 
0 6 643 199 

1 383 285 
 

word2vec – 

pre-trained 

 Predicted 

0 1 

Actual 
0 6 028 814 

1 91 577 
 

 Predicted 

0 1 

Actual 
0 6 653 189 

1 397 271 
 

 Predicted 

0 1 

Actual 
0 6 577 265 

1 200 468 
 

GloVe – 

pre-trained 

 Predicted 

0 1 

Actual 
0 5 995 847 

1 106 562 
 

 Predicted 

0 1 

Actual 
0 6 588 254 

1 401 267 
 

 Predicted 

0 1 

Actual 
0 6 608 234 

1 278 390 
 

ELMo – 

pre-trained 

 Predicted 

0 1 

Actual 
0 6 465 377 

1 97 571 
 

 Predicted 

0 1 

Actual 
0 6 659 183 

1 325 343 
 

 Predicted 

0 1 

Actual 
0 6 728 114 

1 242 426 
 

GPT-2 – 

pre-trained 

 Predicted 

0 1 

Actual 
0 6 049 793 

1 79 589 
 

 Predicted 

0 1 

Actual 
0 6 653 189 

1 448 220 
 

 Predicted 

0 1 

Actual 
0 6 619 223 

1 189 479 
 

BERT – 

pre-trained 

 Predicted 

0 1 

Actual 
0 6 580 262 

1 109 559 
 

 Predicted 

0 1 

Actual 
0 6 716 126 

1 275 393 
 

 Predicted 

0 1 

Actual 
0 6 780 62 

1 258 410 
 

Table 18. Confusion matrices 
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