

Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis – MSc Data Science and Marketing Analytics

Comparison research of word embedding techniques used for rating

prediction of online reviews

Student: Iaroslav Darusenkov

Student number: 582495

Supervisor: Prof. dr. Andreas Alfons

Second assessor: Prof. dr. Erjen van Nierop

August 11, 2022

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

ii

Abstract

Last 10 years was a period of huge advancement in the field of words vector representations

techniques. Modern embeddings methods are used for a variety of tasks, for example text

generation, speech recognition, language translation. Word embeddings can be also useful in such

downstream tasks, as text classification and sentiment analysis. The latter application of

embeddings methods supposed to be useful for any type of business, which deals with such textual

input from its clients, as online reviews. Online reviews became the source of important

information to management, which can help to analyze clients’ sentiments, relatedness to brand,

tastes etc. Thus, the quality of words vector representations is a question related to such business

needs.

I make an overview and compare five different word embeddings models, each of which was a

state-of-the-art at different point of time in the last 9 years: word2vec, GloVe, ELMo, GPT-2 and

BERT. A comparison is made by means of intrinsic and extrinsic evaluation. For intrinsic

evaluation similarity test was run, where GPT-2 and GloVe showed better results than other

models. Extrinsic evaluation included text binary classification of online reviews – rating

prediction. In this task BERT outperformed all other methods. In the same time, ELMo and

word2vec skip-gram also demonstrated relatively good results. However, in order to generalize

results of this research it is advised to make the comparison on datasets from other business

domains.

Keywords: word vector representation, static embeddings, contextual embeddings, sentiment

analysis, text classification, online reviews

iii

Table of contents

1. Introduction ... 1

2. Related work and research design ... 3

2.1 Related work ... 3

2.2 Research design ... 6

3. Methodology .. 8

3.1 Static context-free word embeddings .. 8

3.1.1 word2vec ... 8

Basis of word2vec model .. 9

Skip-gram model ... 11

Continuous bag-of-words .. 13

3.1.2 Global Vectors for Words Representation .. 14

3.2 Contextualized embeddings .. 18

3.2.1 Embeddings from Language Models .. 18

3.2.2 Transformer based models .. 22

Transformer model and Attention mechanism .. 22

Generative Pre-trained Transformer - 2 .. 25

Bidirectional Encoder Representations from Transformers .. 26

3.3 Models evaluation ... 28

3.3.1 Intrinsic evaluation .. 28

3.3.2 Extrinsic evaluation ... 29

Logistic regression .. 29

Random Forest .. 30

Support Vector Machine ... 30

Evaluation metrics ... 31

4. Data and models implementation .. 32

4.1 Data preparation and exploratory data analysis .. 32

4.2 Models implementation ... 34

4.2.1 Python libraries ... 34

4.2.2 Word embeddings models ... 34

4.2.3 Synthetic Minority Oversampling Technique ... 35

4.2.4 Tuning the parameters ... 35

5. Results .. 37

5.1 Results of embeddings methods comparison based on intrinsic evaluation 37

5.2 Results of embeddings methods comparison based on extrinsic evaluation 40

5.3 Results elaboration .. 42

6. Conclusion .. 43

Appendix .. 45

References .. 46

iv

List of Tables

Table 1. (a) - word-word co-occurrence matrix with the counts. (b) - word-word co-occurrence matrix

with the conditional probabilities .. 15

Table 2. Pre-trained ELMo Models ... 22

Table 3. Types of pre-trained GPT-2 models depending on their size .. 26

Table 4. Types of pre-trained BERT models depending on their size .. 28

Table 5. Metrics used for evaluation of classification models .. 32

Table 6. Number of observation in the train and test sets ... 33

Table 7. Details of implementing word embeddings model ... 35

Table 8. Values of hyperparameter for grid search ... 36

Table 9. Hyperparameters chosen by the grid search .. 36

Table 10. Cosine similarity scores of a randomly chosen negative review with 10 randomly chosen

negative reviews (same across the methods) ... 37

Table 11. Cosine similarity scores of a randomly chosen positive review with 10 randomly chosen

positive reviews (same across the methods).. 38

Table 12. Average rated cosine similarity scores for negative reviews (a) and for positive reviews (b) 39

Table 13. Relative comparison of embeddings methods in case of negative reviews (a) and positive

reviews (b) ... 39

Table 14. Evaluation metrics from three classification methods that were run on word embeddings from

different models .. 40

Table 15. Share of static and contextualized embeddings, which were rated in Top-3 across all metrics of

three classification models .. 41

Table 16. Embeddings with highest number of appearances per each reating .. 42

Table 17. Rated MCC metrics for logistic regression (a), for Random Forest (b) and for Support Vector

Machine (c) ... 42

Table 18. Confusion matrices .. 45

List of Figures

Figure 1. Visualization of research concept .. 7

Figure 2. Visualization of a simple form of word2vec model ... 10

Figure 3. Skip-gram model architecture .. 12

Figure 4. CBOW model architecture ... 13

Figure 5. Weighting function of GloVe objective function (Pennington et al., 2014) 17

Figure 6. Example of bidirectional language model with one biLSTM layer ... 18

Figure 7. ELMo architecture ... 21

Figure 8. The Transformer model architecture (visualization is taken from the original paper Vaswani et

al. (2017)) .. 22

Figure 9. Scheme of attention mechanism .. 23

Figure 10. Distribution of reviews among the location ... 32

Figure 11. Number of reviews per each rating .. 33

Figure 12. Left – histogram of number of words per review in the train set, right – histogram of number of

words per review in the test set ... 34

file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108313
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108314
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108315
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108316
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108318
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108318
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108319
file:///C:/Users/Acer/Documents/education/_______Erasmus/Master/____Thesis/Work%20in%20progress/____Draft/Thesis%20-%20Word%20embeddings.v2.docx%23_Toc111108320

1

1. Introduction

Transforming words into numeric values is an essential step for any type of text analysis. Word

embedding is a method of representing words as vectors with numbers for text analysis. It is a

widely used technique in natural language processing (NLP) tasks (Gutiérrez and Keith, 2019).

Simple methods of words’ numeric representation include one-hot encoding, bag-of-words and

term frequency.

One-hot encoding assigns each word to a vector with a size of total number of unique words. The

values in this vector are simply “0” and “1”. When a word, presented in the list of words, is

encountered, “1” is assigned to that value, all other values are “0”. This method builds up words’

representation with high dimensionality, since they require going through every word in the text

and assign zeros to all other words, apart from the chosen one. This results in huge sparse matrix,

which makes calculations usually more computationally intensive, especially in case of large text

data.

Bag-of-words is the method, which also makes vectors that are of the size of all words in the

corpus. This vector corresponds to each document. Values in the vector are assigned in the

following way: each value in the vector represents the number of times this specific word occurs

in the document. Such representation of words shows the number of times of their occurrence in a

document. This method does not take into account order or structure of words.

Instead of simply counting the number of words’ occurrence in the documents, it is possible to use

other measures of the presence of words, such as term frequencies. Term frequency is the ratio of

number of times a term (word) appears in a document divided by the total number of terms (words)

in the document. In order to give more weight to rare, more meaningful words and less weight to

frequent words, one can use TF-IDF (term frequency-inverse document frequency) representation

of words. A TF-IDF score is a multiplication of term frequency by inverse document frequency

(IDF). IDF can be described as specific weight for each word and is calculated by taking the natural

logarithm of the ratio of total number of documents divided by number of documents with this

specific term. This technique allows assigning weight to different words, but it is not capable of

providing meaning of the word or capture the context.

Thus, the shortcoming of these methods is that they do not incorporate necessary information in

the space of representations. For example, one-hot encoding does not show relative closeness of

words in the text and bag-of-words does not provide context nor order of the words. This is why

2

word embedding techniques become useful – they are not only capable of analyzing contextual

similarity, but also provide dimensionality reduction.

Word embedding helps computers to learn the context of a word and thus, to some extent, capture

its meaning. It does this by creating a vector in a multidimensional space, which makes possible

mathematical operations with other words’ vectors. In addition to this, word embeddings provide

the base for learning relationships among words – an important step in many applications of text

analytics. These models allow clustering of words with similar meanings. This creates, for

example, opportunities for analysis such as finding synonyms or even identifying the meaning of

a product (e.g. associations with product).

By now, word embeddings have become one of the building blocks for many language models and

they are used in many applications that involve text analytics and interpretation of human

language, including machine translation, sentiment analysis, speech recognition, recommendation

algorithms and text classification. Specifically, they can be used to obtain valuable insights from

customer reviews. Such analysis is useful for many Business-to-Consumers companies, which sell

goods or provide services to their customers. The analysis of online customer reviews can be

automated, to make the analysis less time-consuming, and is very useful because it elicits product

attributes and brand's relative positions (Lee and Bradlow, 2011).

Due to the large amount of data, it is much more time-efficient to analyze reviews with machine

learning methods and NLP applications, rather than explore them one by one. Word embeddings

are very useful in such cases. When an analyst needs to conduct an analysis of verbatim comments,

he or she, usually, creates an algorithm for mining reviews or comments. First thing to do, one

should train word embeddings (vector representations) on the reviews data set being analyzed.

This step can help to see a relationship between the reviews and the context within which they

were made. Secondly, machine learning methods using word embeddings to determine actionable

recommendations for a business can be implemented. Use of word embeddings have been shown

to boost the performance of NLP and machine learning models, such as sentiment analysis or text

classification (Zhao et al., 2015).

Because of its importance in a variety of NLP applications, the topic of word embeddings was

studied by a number of researchers in the recent years. This evolved in numerous methods by

which embeddings can be created. Since many NLP models use pre-trained word embeddings, it

is important to determine the optimal technique of words vector representations for a specific case.

Choosing the most suitable word embeddings is crucial for optimizing machine learning model

performance. At the same time, selecting the most appropriate word embedding technique is not a

trivial problem, and the optimal choice can alter for different cases.

3

Each method has its own distinctive features, advantages and disadvantages, which makes it useful

to make a comparison of different word embeddings methods on such specific, wide spread

problem, as text classification, which is relevant to business. Firms can classify customers’ reviews

and feedbacks in order to analyze their experience with their products or services or reaction to

marketing campaigns and find ways to improve its products, services or campaigns (Liu et al.

2020).

The goal of this research is to explore different approaches for making word representations by

means of different word embeddings techniques on specific machine learning task. I am making

an overview of these methods, compare them, and, conclude with a method for choosing the best

one in the task of classification of online customer reviews, Therefore, the main research question

of this thesis is as follows:

“Which word embeddings method is more effective for rating prediction of online reviews?”

In order to answer this main question the flow of research will be based on following sub-

questions:

(1) Do contextualized pre-trained word embeddings models outperform static embeddings

methods based on intrinsic evaluation?

(2) Is Bidirectional Encoder Representations from Transformers (BERT) more efficient in the

context of rating prediction of online reviews than other contextualized word embeddings

models?

2. Related work and research design

2.1 Related work

One of the approaches of making words vector representation consists of methods, related to global

matrix factorization, for example latent semantic analysis (LSA) (Dumais et al., 1988) (Deerwester

et al., 1990). These methods make low-dimensional word representations by means of

decomposing of large matrices, which represent corpus statistics (e.g. words pairs co-occurrence,

or how many times a specific word appears in the document), with low-rank approximations. The

disadvantage of these methods is comparatively higher influence of the most frequent words,

which might not yield semantic relatedness measure between words.

The development of modern word embeddings methods started in the beginning of 2000s with

researches by Bengio et al. (2003), who used them as a part neural language model for word

prediction and by Wild and Stahl (2006) who mapped bag-of-words representations of words into

4

a modified vector space to reflect semantic structure. Collobert and Weston (2008) used word

embeddings in their convolutional neural network, which goal was making predictions considering

language processing (for example, part-of-speech tags, named entity tags, semantic roles,

semantically similar words). Later Collobert et al. (2011) implemented windowing approach,

trying to capture context of a word from both sides of it in their vector representation (instead of

taking into account context only from the left side of a target word, which most of the language

models do).

Then this field was hugely advanced and became more popular in the NLP and machine learning

community with the widely known article by Mikolov et al. (2013a), who developed the word2vec

method. This paper presented a method for creating words vectors using a neural network model.

The word2vec model is also based on the idea that computer will understand a specific word by

means of its context (surrounding words). This will also help to depict words’ synonyms and

antonyms, and to understand semantic and relationships between words. Linguistic patterns are

represented by linear relationship between word embeddings. Word2vec is a feed-forward neural

network that takes text as input and returns words in the form of vectors. These vectors are

distributed numerical representation of such words’ features as context of each word. After that,

word embeddings are represented in a multidimensional vector space and vectors of similar words

can be grouped together. The usefulness of this method lies in that it creates logical association.

For example, “apple” is to “cider” what “grape” is to “wine”. Such analogies can be calculated.

Word2vec includes two different models, which create word embeddings. Skip-Gram model takes

surrounding words (so called, window of neighboring words, it is defined by the user) as input and

returns current word as output. Continuous bag-of-words (CBOW) takes current word as an input

and returns surrounding words as an output.

There were other models, which were directly derived from word2vec. For example, fastText

(Bojanowski et al., 2016), which is based on Skip-gram model, but instead of operating on a word

level it makes vectors for character n-grams and then sum them up in order to get a word

representation.

Apart from LSA other count-based methods for making words vector representations were

developed, such as Hellinger-PCA (Lebret and Collobert, 2013), where dimensionality reduction

is reached via principal component analysis. However, still, these methods suffer from

disproportionate importance that is given to large counts (frequent words).

In order to take the advantage of using entire co-occurrence statistics of the corpus next method,

Global Vectors model (GloVe), presented by Pennington et al. (2014), combines word2vec

algorithm with global matrix factorization technique, thus utilizing global statistics of the corpus.

5

The GloVe method is based not only on surrounding words, but also on co-occurrence matrix,

which is made from the whole corpus, where rows are words and columns are context. In order to

get lower-dimension representation this matrix is factorized.

Peters et al. (2018) argued that words often have different meaning in different context, whereas

static embeddings methods (like word2vec and GloVe) creates only one vector representation for

each word. They introduced their method, Embeddings from Language Models (ELMo), with

entirely different approach of creating word vectors. ELMo is deep contextualized word

representation. The model’s architecture contains two-layer bidirectional language model (Graves

and Schmidhuber, 2005) (predicts the following word), where each layer is recurrent neural

network with long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), each layer

has forward and backward pass. The model obtains a representation of each word on all levels

(input and two layers) and then takes weighted sum as a final word representation. Unlike

word2vec and GloVe methods, ELMo algorithm creates vector of a word using all words in the

sentence, where this word occurs. This approach assigns slightly different embeddings to the same

word.

McCann et al., (2017) also suggested a method for creating contextualized word embeddings with

their CoVe model (context vectors), which is a neural machine translation encoder, using deep

LSTM encoder. However, according to Peters et al. (2018) ELMo models outperforms CoVe,

because it uses the combination of all layers, whereas CoVe takes only the top layer of LSTM.

Transformer model with attention mechanism, presented by Vaswani et al. (2017) enhanced many

NLP applications, including making word representations. Overall, transformer has encoder,

which takes words input, transforms it and gives to decoder, which produces prediction for the

words. One of the important characteristics of transformer is self-attention mechanism – ability to

learn to pay attention to the context by depicting important words. This information about

important context words is also transferred to decoder, which simplifies the further understanding

of the context and prediction.

Shortly after that, several words vector representation methods were developed based on that

model. Radford et al. (2018) presented Generative Pre-trained Transformers (GPT), which is an

adaptation of Transformer model. It uses several Transformer decoders stacked together and it is

unidirectional (processes text from left to right, like standard language model). GPT consists of

two stages: unsupervised stage – pre-training to learn a language model on large text corpora and

supervised stage – fine-tuning of the model’s parameters for the specific task (processing new

input through pre-trained model). GPT was followed by GPT-2 (Radford et al., 2019) with minor

6

changes in model architecture in its essence, but with implementing larger scale of pre-training

and using more Transformer blocks.

Another Transformer based model is Bidirectional Encoder Representations from Transformers

(BERT) (Devlin et al., 2018). Similar to GPT, BERT is pre-trained model and can be fine-tuned

on supervised stage without customizing network architecture for the specific task. The main

difference with GPT is that BERT utilizes Transformer encoder blocks, instead of decoder blocks.

Its training is bidirectional, meaning that model learns context representation to the left and to the

right side of a word (GPT is limited to process text only from left to right).

2.2 Research design

For this research, I will compare following word embeddings techniques:

1. word2vec (Mikolov et al. 2013), neural network1 based method. There are two versions of

word2vec:

a. Skip-Gram model – predicts the surrounding words (context) given a current word.

b. Continuous bag of words (CBOW) – predicts the current word based on its context

(surrounding words).

2. Global Vectors model (GloVe) (Pennington et al. 2014), words matrix based method

(extension of word2vec).

3. Embeddings from Language Models (ELMo) (Peters et al. 2018), predicts the next word in

a sequence of words (language modeling).

4. Generative Pre-trained Transformers (GPT-2) (Radford et al. 2019), sentence completion

modeling.

5. Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al. 2018),

sentence modeling.

These five methods of making word vectors representations were chosen for this research, because

they are considered state-of-the-art word embeddings techniques, and all corresponding papers are

characterized by large amount of citations. In addition, they represent different approaches to the

creation of word embeddings. For example, there is a difference in the way the meaning of a word

across sentences is approached. Static methods (word2vec, GloVe) presume that a word’s meaning

will be stable, which is not the case in the real life. Contextualized word embeddings methods

1 McCullough W. and Pitts W. first proposed neural networks in 1944. Later, in 1957, Rosenblatt F. demonstrated the

first trainable neural network called “Perceptron” with one hidden layer with adjustable weights and thresholds. The

idea of neural network was inspired by the mechanism of how human brain works (Haykin, 2008).

7

(ELMo, GPT-2, BERT) takes into account the difference in meaning of a single word across

sentences.

The steps of research design are presented in Figure 1. After data preprocessing and using of

different word embedding models, I will analyze intrinsic evaluation of word embeddings models.

The following task will be prediction of reviews ratings with logistic regression, Random Forest

and Support Vector Machine on all new data sets, created using different word embeddings

techniques. In the conclusion, I will make comparison analysis of metrics of the classifiers

(extrinsic evaluation of word embedding models).

The result of this research will be determining which word embeddings model is more optimal in

the case of predicting online reviews. The comparison of word embedding models will be based

on two types of evaluation measurements:

 Intrinsic evaluation of word embeddings models – word vector similarities (Wang et al.

2019).

 Extrinsic evaluation of word embedding models – metrics for binary classification

problem: accuracy, precision, recall, area under the curve (AUC), F1-score, Matthews

correlation coefficient (MCC) (Hossin and Sulaiman, 2015) (Chicco1 et al., 2021).

Figure 1. Visualization of research concept

Based on the word embeddings methods’ description, there will be following two hypotheses for

testing:

 Hypothesis 1: contextualized word embeddings methods (ELMo, GPT, BERT) should give

higher standard metrics for binary classification (accuracy, precision, recall, area under the

8

curve, F1-score) in the text classification problem, than static methods (word2vec, GloVe),

since they allow assigning different word embeddings for the same word, by taking into

account different possible word’s context;

 Hypothesis 2: among contextualized word embedding methods BERT should give higher

standard metrics for binary classification (accuracy, precision, recall, area under the

curve, F-score, MCC) than ELMo and GPT-2 in text classification problem since it not

only uses transformer to achieve better capture of long-term linguistic structure (which

ELMo cannot do due to different architecture of the model), but also uses bidirectional

transformer encoder (in comparison to unidirectional GPT-2).

3. Methodology

In this section, I will describe the architecture of all five methods of word embeddings, which are

used for comparison in this research: word2vec, GloVe, ELMo, GPT-2 and BERT. In addition to

this, a description of intrinsic and extrinsic evaluation methods are also provided in the end of this

section (including classification methods that were used for calculating metrics for comparison).

3.1 Static context-free word embeddings

3.1.1 word2vec

Overall, word2vec makes representations of words in corpus in a form of a set of real numbers in

such a way so to capture their linguistic properties. That means that those words, that have similar

meaning, will have similar encoding, and dissimilar words will be further away from each other

in the multidimensional space of representations.

This method was developed by Mikolov et al. (2013a) and relies on the concept of distributed

representations of words in a vector space. Such approach of making word embeddings proved to

be useful for natural language processing tasks. After training the word2vec model, each word in

the text has its own representation in a vector form. Each vector has a specific number of

dimensions, which is the same among all other vectors. Each dimension in such vector represents

certain linguistic property of a word, linked to this vector – this property includes semantic and

syntactic information. Such type of word representation allows to group similar words together,

make analogies (“king” - “man” = “queen” - “woman”), find close words by means of cosine

similarity.

9

Basis of word2vec model

Distributed representations of words was not a new concept at the time of making word2vec, it

was already used in language models before, such as neural language model made by Bengio et

al. (2003). This language model was made to do the task of next word prediction, given inputs of

words from the sentence that were before the target word. The final output of this model is

probabilities of all words in the corpus. It means that in the end the model assesses all words in

the text and assigns probability scores to each word – the output is a prediction vector. A word

with the highest score will be the best guess of the model for predicting the next word.

The work of this model can be split into three essential parts: making words embeddings,

calculating predictions and projecting the output vocabulary. The model makes the use of the

context window – how many words before the target word should be taken as an input (for example

three words before the target word can be taken as an input for further prediction). During the

training process the model makes the prediction and compare it with the target word, then

calculates the error, which will help to update word embeddings and probability scores in the next

iterations. Then the process goes to the next context window, sliding gradually through the whole

text. After repeating the process for several epochs, error vector each time will help the model to

lower the errors in making the predictions of right words. When the model is trained, it is possible

to extract word embeddings matrix from it.

The inconvenience of this method of obtaining word embeddings is due to high computational

intensiveness. Operation of prediction will be done on every single sample, derived from sliding

the context window. Mikolov et al. (2013a) were able concentrate efforts only on the first part of

neural language model made by Bengio et al. (2003) – generating word embeddings without the

other part of the model, which makes prediction of the next word.

Model word2vec consists of input layer, one hidden layer and output layer. The amount of neurons

in the input layer is the same as the number of words in the corpus, which was used for training

the model. The output layer is of the same size as the input layer. The hidden layer has pre-specified

number of neurons, which is equal to the number of word vectors dimensions. All neurons in

hidden layer are linear. In the Mikolov et al. (2013a) hidden layer was also referred to as projection

layer (there is no activation function).

More formally, we can define the number of words in the corpus by 𝑊 and number of word

vectors’ dimensions as 𝐷, then the conncection between input layer and hidden layer will be

represented by matrix 𝐼, which has the size of 𝑊 × 𝐷 – rows of this matrix are words from the

10

corpus. Similarly, matrix 𝑂 of the size 𝐷 × 𝑊 is a connection between hidden layer and output

layer. In the second matrix words are now represented in columns.

One of the main hyperparameters of word2vec is the context window, which specify how many

context words around the target word will be taken into account in the model training. For example,

context window of the size 3 means that the model makes the use of three neighboring words to

the left of target word and 3 words right after the target word.

Overall mechanics of word2vec model can be described on the example of one context word,

which will be used to predict the target word. Two matrices, I and O, are weights, which are

initialized randomly at the beginning of training, and are updated during the training of the model.

By making this prediction the model will train its word embeddings. Context word in the input

layer is encoded in the form of the vector, where there will be one “1”, which correspond to the

context word and the rest are “0’s”.

Figure 2. Visualization of a simple form of word2vec model

Input vector 𝑥 of dimensionality 𝑊, which stands for the vocabulary size, is one-hot encoded

word. Input vector is multiplied by matrix 𝐼 resulting in the vector of values ℎ in hidden layer,

which has dimensionality of 𝐷. This dimensionality represents the pre-determined dimensionality

of word embeddings, which is one of another main hyperparameters along with the size of the

context window. After that vector of values from hidden layer ℎ is multiplied by matrix 𝑂,

resulting in the output vector of values in the output layer again of the length of vocabulary 𝑊.

Values in the output layer are scores, that are assigned to each word in the corpus 𝑊. In order to

obtain probability from these scores word2vec uses Softmax function (Bridle, 1989), which

converts a vector of numbers into a probability distribution. Basically, Softmax function squashes

values in a vector of numbers to values from 0 to 1. In neural network Softmax function can be

used to convert values from output layer’s neurons into probabilities.

11

First, we can define the input to t-th neuron in the output layer as 𝑢𝑡 = 𝑤𝑡
𝑇 ∗ ℎ, where 𝑤𝑡

𝑇 is the t-

th column of matrix 𝑂 of the size 𝐷 × 𝑊. Then the output of the neuron, which represents

probability score for the target word, is calculated in the following way with Softmax function:

𝑦𝑡 = P(𝑤𝑜𝑟𝑑𝑡|𝑤𝑜𝑟𝑑𝑐𝑜𝑛𝑡𝑒𝑥𝑡) =
exp (𝑢𝑡)

∑ exp (𝑢𝑤)𝑊
𝑤=1

 . (1)

Having probability scores and target vector, the error vector for the output layer can be obtained

by subtracting probability vector from the target vector. With the calculated error, the weights in

the matrices I and O can be updated using backpropagation. Training of the model proceeds by

sliding context window forward in the corpus, having new pair of context-target words. This

mechanism of prediction of the target word by context word allows to train word embeddings and

in the same time only to use the first part of Bengio et al.’s neural network language model.

Mikolov et al. (2013a) developed two types of word2vec model: skip-gram model and continuous

bag-of-words (CBOW). In the case of just one context word both of them work exactly in the same

way – the difference can be observed, when there are more than one context words. Context

window includes center word and the same number of context words to the left and to the right

side of the center word. In skip-gram model the center word predicts context words and in case of

CBOW context words predict center word. Both models goes through the corpus, sliding pre-

specified context window word by word. This process creates training data set for the both models.

Skip-gram model, as well as CBOW, optimizes an objective function based on conditional

distribution using gradient descent.

Both models uses two vectors representation of one word – one representation, when the word is

a center word, and another one, when a word is a context word. Word2vec uses the dot product of

word vectors of the input and output word (center – context word or vice versa) as a similarity

measure between them.

Skip-gram model

Skip-gram uses center word to predict surrounding context words. That means that input layer still

consists of only one vector of “0’s” and “1”, which corresponds to this center word. The difference

is that in the case of skip-gram model there will be several vectors of values in the output layer,

according to the number of context words. That means that output layer of the neural network is

duplicated multiple times to include specified number of context words. Similarly, to the basic

model, described in the previous section, each part of output layer will have its own target, which

will help to determine error after each training iteration.

12

In the skip-gram model, hidden (projection) layer is

multiplied by the second matrix 𝑊′ (matrix 𝑂 from the

previous section) for each context word separetely. In

the Figure 1 the number of context words is 𝐶, 𝑉 is the

number of words in the corpus and 𝑁 – number of

embeddings dimensions (as well, as number of hidden

layer neurons).

Since there is more than one outputs of the model

(depending on the number of context words), each

output has its own error vector. All error vectors are

summed up for the backpropagation purpose – this lets

matrix 𝑊′ to stay identical during training.

In essence, the objective of skip-gram model is to

obtain such word representations after training, which will be helpful in predicting the context

words of central words. The objective function of skip-gram model implies maximizing the

following average log probability:

1

𝑉
 ∑ ∑ log𝑃(𝑤𝑣+𝑗|𝑤𝑣)

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑉

𝑣=1

 , (2)

where 𝑐 is the size of the context window, 𝑤1, 𝑤2, … , 𝑤𝑉 are the training words and 𝑃(𝑤𝑣+𝑗|𝑤𝑣)

is defined with the Softmax function, described in the previous section.

Mikolov et al. (2013b) have made useful adjustments in the follow up paper after the original one.

In particular, they introduced negative sampling within word2vec architecture. The idea of

negative sampling is originated from noise contrastive estimation which was developed by

Gutmann and Hyvärinen (2012). Each context window in skip-gram model makes a train data,

where one center word is paired with every context word. Negative sampling add additional

“noise” data to this train data – apart from true context word, center word is also paired with a

number of other words, which were randomly taken from the corpus. The number of negative

samples is a hyperparameter. For example, if the number of negative samples is set to 5, then each

pair of center word and true context word will have additional 5 pairs of center word with “noise”

words. Then the model is trained to predict the correct context word with the use of logistic

regression, which helps to differentiate target word from the noise.

Figure 3. Skip-gram model architecture

13

More formally, with the negative sampling every log 𝑃(𝑤𝑣+𝑗|𝑤𝑣) in the objective function (2) is

replaced by the following:

log 𝜎 (𝑧′𝑤𝑣+𝑗

𝑇 𝑧𝑤𝑣
) + ∑𝔼𝑤𝑖∼𝑃𝑛(𝑤)[𝑙𝑜𝑔𝜎(−𝑧′𝑤𝑖

𝑇 𝑧𝑤𝑣
)]

𝑘

𝑖=1

 , (3)

where 𝑧𝑤are word vectors, 𝜎 is a sigmoid function (for logistic regression), 𝑃𝑛(𝑤) is the noise

distribution and 𝑘 is the number of negative samples.

Continuous bag-of-words

Continuous bag-of-words architecture is the opposite to skip-gram model – context words, as an

input, predict the center word, as an output. The model

tries to predict the target word by trying to understand the

context of the surrounding words.

The name of the model means that it generates

continuous representations of words and the order of

words is not taken into account. The CBOW model

architecture is shown on Figure 4. There are now several

inputs according to the number 𝐶 of context words. These

inputs are replicated to the hidden layer connection 𝐶

times – input vectors corresponding to context words are

averaged element-wise. The output layer makes a

prediction score for the center word. Training mechanism

of the model is similar to skip-gram model.

This time the model is trained to maximize the average of the log probabilities of all words in the

corpus given their context words. We can define window size as 𝑐 (number of words around the

target word 𝑤𝑣 at each time step of the window slide). The objective function of CBOW is given

below:

𝐽𝜃 =
1

𝑉
∑log 𝑃(𝑤𝑣|𝑤𝑣−𝑐, … , 𝑤𝑣−1, 𝑤𝑣+1, … , 𝑤𝑣+𝑐)

𝑉

𝑣=1

 . (4)

The same concept of negative sampling is used in CBOW model too. This time 𝑧𝐶𝑤
 is used to

indicate context word:

Figure 4. CBOW model architecture

14

log 𝜎 (𝑧′𝑤𝑣+𝑗

𝑇 𝑧𝐶𝑤𝑣
) + ∑𝔼𝑤𝑖∼𝑃𝑛(𝑤) [𝑙𝑜𝑔𝜎(−𝑧′𝑤𝑖

𝑇 𝑧𝐶𝑤𝑣
)]

𝑘

𝑖=1

 . (5)

Word embeddings can be calculated from both word2vec models on a given text data. There is

also pre-trained word2vec model trained on Google News dataset (about 100 billion words)2.

3.1.2 Global Vectors for Words Representation

Global Vectors for Words Representation (GloVe) is a count-based model and focuses on words

co-occurrences in the whole data set. It was developed by Pennigton et al. (2014). GloVe also uses

distance between word vectors as a measure of semantic similarity, as word2vec, and words with

the same context will probably have the same meaning.

Word2vec method is trying to capture co-occurrence of words one at a time – there is a separate

update steps each time, when two words co-occur together during the process of moving the

context window. Such an approach might be not very efficient and it does not use the statistics

over all data set. One of the possible solution to this could be going through the entire corpus once

and make co-occurrence matrix of all words with the count of how many times each pair of words

from vocabulary co-occurred. After that, it would be possible to make one update step that captures

the entire count instead of one sample at a time.

This process of collecting counts can be implemented also with the use of moving the context

window through the text as in word2vec without making any updates (stochastic gradient descent).

In addition to this, using the context window helps to capture not only semantic but also syntactic

information of each word (especially, parts of the speech – verbs will be going to be close to one

another, than verbs with the nouns).

After making word-word co-occurrence matrix it is possible to make operations on it. Such matrix

would not be convenient for using it as vectors of words, because of high dimensionality and the

fact that each new word will change the word vectors. To avoid sparsity issues a technique of

singular value decomposition (SVD) can be implemented (Rohde et al., 2006). This approach can

help to leave only the important information in a fixed number of dimensions of dense vectors. In

the same time, there are problems with SVD in terms of computational cost in case of large co-

occurrence matrices and it gives disproportionate importance to the most frequent words.

Moreover, SVD will captures only word similarity without other patterns in text, which are

2 Source: https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

15

captured by word2vec. From the other hand, SVD is more efficient, since it has to be computed

only once.

GloVe combines these advantages of both methods – with context window counting of words’ co-

occurrence and with calculations on overall statistic of the corpus. GloVe does not simply use

word-word co-occurrence matrix, but transforms it into the conditional probabilities and takes the

ratio of them in order to distinguish relevant and irrelevant words.

For further analysis of this method, following notation is introduced. Let 𝑋 be the word-word co-

occurrence matrix. 𝑋𝑖𝑗 is the number of times word 𝑗 occurres in the context of word 𝑖 and 𝑋𝑖 =

∑ 𝑋𝑖𝑘𝑘 is the total number of times any word appears in the context of word 𝑖. Then 𝑃𝑖𝑗 will be the

probability that word 𝑗 occurres in the context of word 𝑖 and can be calculated in the following

way: 𝑃𝑖𝑗 = 𝑃(𝑗|𝑖) =
𝑋𝑖𝑗

𝑋𝑖
. This helps to transform simple counts of words’ co-occurrences into

conditional probabilities.

(a)

 word 1 word 2 … word j … word k Total

word 1 2 3 … 8 … 1 25

word 2 7 5 … 2 … 3 36

… … … … … … … …

word i 4 9 … 5 … 2 41

… … … … … … … …

word k 6 1 … 1 … 2 14

(b)

 word 1 word 2 … word j … word k Total

word 1 0.080 0.120 … 0.320 … 0.040 1

word 2 0.194 0.139 … 0.056 … 0.083 1

… … … … … … … …

word i 0.098 0.220 … 0.122 … 0.049 1

… … … … … … … …

word k 0.429 0.071 … 0.071 … 0.143 1

Table 1. (a) - word-word co-occurrence matrix with the counts. (b) - word-word co-occurrence matrix with the

conditional probabilities

For the next step Pennington et al. (2014) suggest for each pair of words to analyze the ratio of

their conditional probabilities since it can give more information on relationship between words

than just conditional probabilities. For example, following the notation from Table 1(b) if a word

𝑗 in the column of the table is more related to the word 𝑖 than to word 𝑘, then the ratio
𝑃𝑖𝑗

𝑃𝑘𝑗
⁄

should be large (at least, larger than 1) and small otherwise (smaller than 1). This ratio will be

equal or close to 1 in case when word 𝑗 is similarly related to words 𝑖 and 𝑘 or not related to both

of them. Thus, it is considered that such relative odds ratios are more useful, than just the values

of conditional probabilities, for distinguishing relevant words for word 𝑗 from irrelevant words

and, moreover, to compare the level of relevance between relevant words. That is the authors’

reasoning behind using these ratios of co-occurrence probabilities in the learning process of word

vectors.

16

In more general form the starting process of calculating word embeddings would the following

expression: 𝐹(𝑤𝑖, 𝑤𝑘, 𝑤𝑗) =
𝑃𝑖𝑗

𝑃𝑘𝑗
, where 𝑤𝑖 and 𝑤𝑘 are words vectors of the words, which are

compared in terms of their relevance to the third word vector 𝑤𝑗. Authors then suggest to use the

difference between vectors 𝑤𝑖 and 𝑤𝑘 to capture the information in linear word vector space:

𝐹((𝑤𝑖 − 𝑤𝑘),𝑤𝑗) =
𝑃𝑖𝑗

𝑃𝑘𝑗
. Then in order to keep the linear structure a dot product of arguments

function 𝐹(∙) can be taken: 𝐹((𝑤𝑖 − 𝑤𝑘)
𝑇𝑤𝑗) =

𝑃𝑖𝑗

𝑃𝑘𝑗
.

Next step in deriving word embeddings is to be able to perform a label switch of context and target

words (𝑤𝑗 with 𝑤𝑖 or 𝑤𝑘) without having an impact on mapping of function 𝐹.

First, this function should be a homomorphism between addition in the domain space (ℝ;+) and

multiplication in the positive target space (ℝ>0;×):

𝐹((𝑤𝑖 − 𝑤𝑘)
𝑇𝑤𝑗) = 𝐹(𝑤𝑖

𝑇𝑤𝑗 − 𝑤𝑘
𝑇𝑤𝑗)

⇔ 𝐹(𝑤𝑖
𝑇𝑤𝑗) × 𝐹(𝑤𝑘

𝑇𝑤𝑗)
−1

⇔
𝐹(𝑤𝑖

𝑇𝑤𝑗)

𝐹(𝑤𝑘
𝑇𝑤𝑗)

⇒ 𝐹((𝑤𝑖 − 𝑤𝑘)
𝑇𝑤𝑗) =

𝐹(𝑤𝑖
𝑇𝑤𝑗)

𝐹(𝑤𝑘
𝑇𝑤𝑗)

=
𝑃𝑖𝑗

𝑃𝑘𝑗
 . (6)

Thus, from Equation (6) the following equality can be used: 𝐹(𝑤𝑖
𝑇𝑤𝑗) = 𝑃𝑖𝑗 =

𝑋𝑖𝑗

𝑋𝑖
 . By setting

function 𝐹(∙) to be the function 𝑒𝑥𝑝(∙) it is possible to derive the equation (7):

exp(𝑤𝑖
𝑇𝑤𝑗) =

𝑋𝑖𝑗

𝑋𝑖
⇒ 𝑤𝑖

𝑇𝑤𝑗 = log (
𝑋𝑖𝑗

𝑋𝑖
)

 𝑤𝑖
𝑇𝑤𝑗 = log(𝑋𝑖𝑗) − log(𝑋𝑖) . (7)

Second, in order to make the solution (7) symmetric, so target and context words could be

interchangeable, log(𝑋𝑖) is replaced with a bias 𝑏𝑖 for the word vector 𝑤𝑖 and additional bias 𝑏𝑗

for the context word 𝑤𝑗, which gives GloVe model equation (8):

𝑤𝑖

𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 = log(𝑋𝑖𝑗) . (8)

The possible issue of log(0), which is not defined, can be solved by adding 1 to 𝑋𝑖𝑗.

Finally, the objective function of GloVe resembles weighted least squares regression model with

the added weighting function 𝑓(𝑋𝑖𝑘):

17

𝐽𝜃 = ∑ 𝑓(𝑋𝑖𝑘)

𝑉

𝑖,𝑘=1

[𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − log(𝑋𝑖𝑗)]

2
 , (9)

where 𝑉 stands for the size of the vocabulary. For each pair of vectors the goal of the objective

function is to minimize the distance between the dot product of words’ vectors and the log count

of these two words. The advantage compared to SVD method is that optimization in this case is

done one count at a time.

The weighting function 𝑓(𝑋𝑖𝑘) is used to decrease the relatively large impact of frequent words.

Thus, infrequent words, which usually might have more meaning compared to frequent words

(such as “the”, “a”), will have more impact on the objective function. Weighting function should

satisfy the following three properties: it should equal 0, when 𝑋𝑖𝑘 = 0; it should be non-decreasing

for larger counts to have more impact and it should be relatively small for reducing the impact of

highly frequent words. The following notation for the weighting function was introduced by

Pennington et al. (2014):

𝑓(𝑥) = {

(𝑥/𝑥𝑚𝑎𝑥)
𝛼, 𝑥 < 𝑥𝑚𝑎𝑥

1, 𝑥 ≥ 𝑥𝑚𝑎𝑥
 , (10)

where 𝑥𝑚𝑎𝑥 is the first hyperparameter, which was

determined by the authors as 100, and 𝛼 is the second

hyperparameter, which was set by the authors to the

value of ¾ due to empirical motivation.

Finally, stochastic gradient descent technique is used

for word co-occurrence matrix factorization to update

the parameters of the objective function.

Co-occurrence matrix contains target words and context words and, thus, has two sets of vectors

of one word. When the matrix is symmetric, words are randomly assigned to target-context

options. As it was discussed above, these words are interchangeable. Since both these vectors of

one word capture similar co-occurrence information, a solution would be to sum up these vectors

in order to obtain the final word vector representation.

Similar, to word2vec, it is possible to calculate vectors using GloVe model technique on a given

text or to use one of the pre-trained GloVe models3, which might be more beneficial in this case,

since the model is based on calculating statistics of overall corpus.

3 Source: https://nlp.stanford.edu/projects/glove/

Figure 5. Weighting function of GloVe objective

function (Pennington et al., 2014)

https://nlp.stanford.edu/projects/glove/

18

3.2 Contextualized embeddings

3.2.1 Embeddings from Language Models

Since words representations in word2vec and GloVe are fixed (or static) no matter what is the

context, there is only one word embedding for each word in the corpus in these models. There is a

problem with such approach, because many words can have different semantic meanings

depending on the context (for examples, “rock music” and “there is a beautiful rock in the

garden”). Moreover, words can have different syntactic behavior (for example, different parts of

speech – “my address is” and “can I address you?”) or different grammatical forms (for example,

“I read this article yesterday” and “you can read the instructions below”). Static word embeddings

models collapse all the possible meanings and connotations of a word into one word vector

representation, whereas for better understanding the meaning of the textual information by

computer it would be better to distinguish these meanings.

That is exactly the purpose of so-called contextualized word embeddings models – to achieve a

meaning of a word inside a particular context (sentence, part of the text).

One of the first state-of-the-art contextualized embeddings model was ELMo, developed by Peters

et al. (2018), and which stands for Embeddings from Language Models. This method learns words

vector representations with the help of long context and not simply using context windows. That

means that the method is taking into account all the previous words before and after target word.

ELMo is based on language model

architecture, which uses bidirectional Long

Short-Term Memory (biLSTM) layers

(Graves and Schmidhuber, 2005). The goal of

language model is to predict the next word in

the sequence of words. In essence, Long Short-

Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) is a type of recurrent

neural network, which is able to “remember”

to some extent (Houdt et al., 2020) the order

dependencies for the prediction tasks in a

sequence.

Bidirectional LSTM means that one layer comprise two LSTMs – one LSTM goes through the

sequence from left to right, and anoher LSTM does the opposite. The advantage of using forward

and backward LSTM in one layer is that it becomes possible to improve a word prediction. In the

Figure 6. Example of bidirectional language model with

one biLSTM layer

19

context of next word prediction and understanding meaning of the word mix of forward and

backward LSTM can help to make a more precise prediction. For example, given the sentence “I

ran in the park yesterday” backward LSTM can bring information about past tense to the prediction

of word “ran”.

Mathematically forward LSTM can be expressed in the following way:

𝑃(𝑥1, 𝑥2, … , 𝑥𝑁) = ∏𝑃(𝑥𝑖| 𝑥1

𝑁

𝑖=1

, 𝑥2, … , 𝑥𝑖−1) . (11)

The equation (11) states that the likelihood of a given sequence of tokens is the product of the

greedy algorithm with the probabilities of any word given all the words that preceded it. Backward

LSTM can be defined in the similar way:

𝑃(𝑥1, 𝑥2, … , 𝑥𝑁) = ∏𝑃(𝑥𝑖| 𝑥𝑖+1

𝑁

𝑖=1

, 𝑥𝑖+2, … , 𝑥𝑁) . (12)

BiLSTM then sums them up and jointly maximizes their log likelihoods:

∑(log𝑃(𝑥𝑖| 𝑥1, 𝑥2, … , 𝑥𝑖−1; Θ𝑥 , Θ⃗⃗ 𝐿𝑆𝑇𝑀 , Θ𝑠) +

𝑁

𝑖=1

+ log𝑃(𝑥𝑖| 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑁; Θ𝑥, Θ⃗⃗⃖𝐿𝑆𝑇𝑀 , Θ𝑠))
,

(13)

where Θ𝑥 is a word representation and Θ𝑠 is a softmax layer, where Softmax function is

implemented. Similar to Peters et al. (2017) in the equation (13) parameters of word representation

and Softmax layer are tied, and parameters for LSTM in each direction are separated. Peters et al.

(2018) share weights between directions instead of using completely independent parameters.

Figure 6 has the visualization of an example of bidirectional language model with one biLSTM

layer. ELMo has three layers: layer of token input (words initial representation), layer of biLSTM

and Softmax layer for generating a prediction score for the next word.

First layer computes context-independent words representation (tokens input). Instead of one-hot

encoding or word embeddings generated by other models, ELMo uses a character-level

convolutional neural network (CNN) (LeCun et al. 2015) to generate initial word vectors, which

was analyzed by Kim et al. (2016). In the beginning, each word is converted to vector

representation using character embeddings. Then, character embedding is passed through a

convolutional layer with a number of filters followed by Max-Pool layer. Character embeddings

20

are able to pick up morphological features, which can be overseen by word-level embeddings. In

addition to this, they are able to make a useful representation even for out-of-vocabulary words.

Then biLSTM layer outputs a context-dependent word representation: the forward LSTM contains

information about a certain word and the context words before that word from the beginning of

the input text. The backward LSTM contains information about the word and the context words

after it until the end of the input text. Information from the forward and backward LSTM is given

to the intermediate word vector by means of concatenation of forward and backward word

representations. There might be several layers of biLSTM – each layer will generate its own

concatenated word representation and pass it to the next biLSTM layer. Peters et al. (2018) used

two biLSTM layers in the ELMo model. There is a residual connection between two LSTM layers,

meaning that the input to the first layer is added to its output before being passed on as the input

to the second layer.

Finally, the output of the second biLSTM layer is used to predict the next word with a Softmax

layer.

The ability of biLSTM layer to learn the contextualized representations was evident before the

developing of ELMo (Wan et al., 2016). Even unidirectional LSTM encoder can be used for

training contextualized word embeddings (McCann et al., 2017). The key difference with ELMo’s

word representations is that they are a function of all internal layers – ELMo uses all its layers in

prediction.

Roughly following the notation of original paper, general form of generating ELMo word

embeddings can be described in the following way. Each word 𝑡𝑖 will have its vector

representations ℎ𝑖 from every layer 𝑗:

𝑅𝑖 = {𝑥𝑖

𝐿𝑀 , ℎ⃗ 𝑖,𝑗
𝐿𝑀, ℎ⃗⃖𝑖,𝑗

𝐿𝑀|𝑗 = 1,… , 𝐿} = {ℎ𝑖,𝑗
𝐿𝑀|𝑗 = 0,… , 𝐿} . (14)

In case the model has 𝐿 layers, then each word will have 2𝐿 + 1 word representations – 2

embeddings from each biLSTM layer plus word vector from token input layer. In equation (14)

ℎ𝑖,0
𝐿𝑀 stands for vector from token layer and ℎ𝑖,𝑗

𝐿𝑀 = [ℎ⃗ 𝑖,𝑗
𝐿𝑀; ℎ⃗⃖𝑖,𝑗

𝐿𝑀] for each biLSTM layer. As

discussed above, vectors from forward and backward LSTM are concatenated together, leaving

three intermediate word vectors, given two biLSTM layers architecture of ELMo: context

independent vector from token input layer and two context-dependent word vectors from biLSTM

layers.

ELMo makes one single vector as a linear combination of word representations across all layers

of the model. After calculating vectors on all intermediate levels ELMo multiplies each vector by

21

normalized weights 𝑠𝑗 (each layer will have its own weight), which are optimized during training,

and then sums up vectors from all layers. Resulting vector is multiplied by 𝛾𝑡𝑎𝑠𝑘, scalar parameter,

for aiding the optimization process of the specific task:

𝐸𝐿𝑀𝑜𝑖
𝑡𝑎𝑠𝑘 = 𝛾𝑡𝑎𝑠𝑘 ∑𝑠𝑗

𝑡𝑎𝑠𝑘ℎ𝑖,𝑗
𝐿𝑀

𝐿

𝑗=0

 . (15)

Training weights for different layers can be useful, because the two biLSTM layers might represent

different information from a word (Peters et al., 2018). Lower layer is better for syntax related

tasks (part-of-speech tagging, syntactic dependencies, named-entity recognition), and higher layer

is more suitable for semantics related tasks (sentiment, question answering).

If 𝛾𝑡𝑎𝑠𝑘 = 1 and 𝑠𝐿 = 1, then there is no difference with an average language model, since

resulting embeddings will be just the output of the last biLSTM layer.

Figure 7. ELMo architecture

ELMo allows customization of embeddings for the specific task with 𝛾𝑡𝑎𝑠𝑘, representing a task-

specific scaling factor. Thus, there will be different word embeddings depending on the specific

task.

ELMo was pre-trained on 1 Billion Word Benchmark4 data set. There are several pre-trained

models, depending on their size:

4 https://www.statmt.org/lm-benchmark/

https://www.statmt.org/lm-benchmark/

22

 Small Medium Original Original (5.5B)

Number of

parameters, M
13.6 28.0 93.6 93.6

LSTM hidden size /

output size
1 024 / 128 2 048 / 256 4 096 / 512 4 096 / 512

Number of highway

layers
1 1 2 2

Table 2. Pre-trained ELMo Models

3.2.2 Transformer based models

Vaswani et al. (2017) proposed a new encoder-decoder model as an alternative to recurrent neural

network (RNN) architecture. The new model was aiming to overcome such shortcomings of RNN-

based models, as sequential processing (change to parallelization) and hardships with long

dependencies (proposed an attention mechanism to deal with long range of dependencies).

Consequently, Transformer model (or part of it) became an essential part of different modern NLP

models, including GPT-2 and BERT. Since both GPT-2 and BERT are based on Transformer

model, first there will be a brief description of this model and its main blocks.

Transformer model and Attention mechanism

The Transformer is non-recurrent and sequence-to-sequence model, which initially was developed

for the task of machine translation with parallel corpus

and it predicts each translated word. The cost function

of the model is a standard cross-entropy loss followed

after a Softmax classifier. Figure 8 demonstrates the

overall model architecture – the left part contains

encoder blocks and the right part contains decoder

blocks. The original Transformer model has six

encoders and six decoders.

One of the main novelties, which provides relatively

good results by the model, is using of attention

distributions, which is the core foundational

mechanism of the model.

Attention mechanism reflects the idea of self-attention

– attend input (a word) to most important parts of the

sequence. Representation of a word is sum of the

context words representations (all other words in a

Figure 8. The Transformer model architecture

(visualization is taken from the original paper

Vaswani et al. (2017))

23

given sequence), and self-attention helps to identify which context words should be given more

weight in this summation.

Input embeddings are the first layer of the model. On this stage they are incorporated with

positional encoding, which helps the model to understand the position of each token in the textual

input (sequence of text). This helps to avoid recurrence mechanism – position of each token is

already added to input embeddings before further processing of embeddings. Vaswani et al. (2017)

used sin and cosine functions for positional encoding.

Then embeddings enter encoder block. Encoder block consists of two main parts – attention layer

and feed-forward neural network layer. Self-attention mechanism is performed in the attention

layer – it makes three transformations to the original embeddings input, which correspond to query,

key and value. Matrix of positional embeddings is multiplied independently three times by three

different linear layers (weights matrices), which will result in three matrices: matrix 𝑄 (query),

matrix 𝐾 (key) and matrix 𝑉 (value). In essence, each vector 𝑞 from matrix 𝑄 multiplied by

corresponding vector 𝑘 of matrix 𝐾 will create weight for the value of each token, presented in the

input, then these weights are multiplied by corresponding vector 𝑣 from matrix 𝑉 and finally the

weighted values are summed up – this weighted sum of values represents an attention score to

every context token in the input sequence. Dimensionality of 𝑞 and 𝑘 is the same (𝑑𝑘),

dimensionality of 𝑣 is 𝑑𝑣 (the size of the input).

Relevance of keys to each query is calculated via cosine similarity. Cosine similarity between two

vectors 𝑞 and 𝑘 is calculated as
𝑞×𝑘𝑇

‖𝑞‖ ‖𝑘‖
. It measures the similarity between two vectors by taking

their dot product and scaling it by their length. The same principle of calculating similarity implies

to matrices (in this case 𝑄 and 𝐾). Softmax is

implemented on top of this similarity calculation,

which results in the symmetric matrix with entries

that reflect the relationship between the tokens –

words that are related more to each other will have

a higher weighting and, thus, higher attention. This

attention weighting matrix has information for

each token where to attend in the given sequence.

Then this attention matrix is multiplied by matrix

𝑉 to extract updated values of context tokens for

each query according to weights. All context representations are summed up to get the

Figure 9. Scheme of attention mechanism

24

representation of a query – context tokens with higher weights will have more share in there

resulting representation.

More formally, this process for each query can be represented as following:

𝐴(𝑞, 𝐾, 𝑉) = ∑
𝑒𝑞×𝑘𝑖

∑ 𝑒𝑞×𝑘𝑗
𝑗𝑖

× 𝑣𝑖 . (16)

In case of multiple queries Equation (16) becomes 𝐴(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 × 𝐾𝑇) × 𝑉. The

final version of this equation has a scaling factor √𝑑𝑘 in order to solve the issue of decreasing

gradient in case of large 𝑑𝑘:

𝐴(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 × 𝐾𝑇

√𝑑𝑘

) × 𝑉 . (17)

This is an intuition behind the work of one attention head. In each attention layer there are several

attention heads (8 in the original Transformer model) – each head is going to attend to different

parts of the input in the same time. After calculation of all attentions heads they are concatenated:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ) × 𝑊𝑜 , (18)

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 × 𝑊𝑖
𝑄 , 𝐾 × 𝑊𝑖

𝐾, 𝑉 × 𝑊𝑖
𝑉). First, matrices 𝑄, 𝐾 and 𝑉 are mapped

to lower dimensional spaces via matrices 𝑊, which are projections (𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 , 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙). Then they are used for attention scores

calculation and these attention scores are concatenated together, returning to the single-head

attention full dimensionality.

The output of multi-head attention layer is summed up with initial positional embeddings via

residual connection, and then layer normalization is applied (Ba et al., 2016).

The second part of encoder block is feed-forward 2-layer neural network (FFN), which consists of

two linear transformations with ReLU activation in between: 𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 +

𝑏2. In the end, FFN has residual connection and layer normalization as well.

Original transformer model has six encoder block stacked together vertically. Each block has the

same matrices 𝑄, 𝐾 and 𝑉.

The right part of Transformer model is a decoder block. The task of decoder block is to predict the

word (in the original setting – actual translation of a word that was an input to the encoder part of

25

the model). Decoder block consists of three parts: masked multi-head attention, multi-head

attention (encoder-decoder attention) and FFN.

There are two key differences from encoder block. There is additional encoder-decoder attention,

where queries come from previous decoder layer and keys and values come from output of

encoder. The second difference is more relevant for this research – first multi-head attention layer

uses masked self-attention mechanism. That means that it is only allowed to attend to the present

and previous tokens – all attention scores for future tokens (to the right) are masked, meaning

information from the tokens to the right is blocked.

Decoder blocks are also repeated six times in the original Transformer model.

Generative Pre-trained Transformer - 2

GPT-2 was introduced by Radford et al. (2018) and stands for Generative Pre-trained Transformer.

It uses decoder part of original Transformer model. Basically, GPT-2 does the similar task as a

language model – predicts the word in the sequence of text.

In comparison to original Transformer model, GPT-2 contains only masked multi-head attention

and FFN. It does not use the middle part of the decoder – encoder-decoder attention, since it does

not have encoder blocks inside its architecture.

GPT-2 makes the use of Byte Pair Encoding (Sennrich et al., 2016) for the input before the first

decoder block, which is a type of sub-word-based tokenization. It makes the representation of the

common words as a single token, whereas rare words are split into two or more sub-words. Pre-

trained GPT-2 model provides embeddings matrix, which is used as a words representation for

preparing an input for the model. Then it uses a positional encoding, as was discussed before.

Capacity of GPT-2 positional vector is 1 024 positions.

Model processes one token at a time. After getting the output this token is added to the sequence

of inputs, which will be an input when the next token is processed. Each layer will keep the

interpretations of previous tokens and will use them to generate the interpretation of the new token.

Last decoder block outputs a vector which is multiplied by the embedding matrix – that gives a

score for each word in the model’s vocabulary for making a prediction.

Objective function of GPT-2 in pre-training stage is similar to the one of standard language model

(Radford et al., 2018). Given the sequence of tokens 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} the following likelihood

should be maximized:

26

∑𝑙𝑜𝑔𝑃(𝑢𝑖|𝑢𝑖−𝑘, … , 𝑢𝑖−1; Θ)

𝑖

 , (19)

where 𝑘 is the size of the context window and 𝑃 is modelled as a neural network with parameters

Θ. These parameters are trained using stochastic gradient descent.

GPT-2 was trained on 40GB dataset WebText, which was web scraped by Radford et al. (2019).

The number of decoder blocks, as well as model size varies.

GPT-2

Small

GPT-2

Medium

GPT-2

Large

GPT-2

Extra Large

Number of layers 12 24 36 48

Number of hidden states

(embeddings dimensionality)
768 1 024 1 280 1 600

Number of parameters, M 117 345 774 1 558

Table 3. Types of pre-trained GPT-2 models depending on their size

The smallest model is equivalent to the original GPT model in terms of model size (Radford et al.,

2018). The difference in architecture between GPT-2 and GPT is mostly in changing the position

of layer normalization (moved to the input of each block) and one more layer normalization was

added after the last attention block.

Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) was developed by Devlin et al.

(2018). It uses encoder blocks from Transformer model for calculating word embeddings.

The motivation for BERT was to be able to use the context jointly from both sides during the

training phase. GPT-2 and language models use only one side of the context – flow of calculations

goes only in one side, left or right. The other goal is to avoid a situation when words are able to

“see themselves” in bidirectional set up (outputs of one layer are stacked together and passed to

the next layer – the next layer, thus, will know information from the other side of the context).

BERT model comprises bidirectional context without words being able to “see themselves”.

Devlin et al. (2018) came up with the solution to include following two objectives while using

encoder blocks architecture from Transformer model.

First objective is to use masked language model (MLM). In a given sequence of text 𝑘% of the

input words will be masked. The task for the model then will be to predict these masked words.

Authors decided to use the value of 15%, since this amount was chosen by the training data

27

generator. Little percent of masked words leads to more expensive training, whereas too much

high share of masking does not provide enough context.

When 15% of tokens were chosen, 80% of them are masked5, 10% are replaced by random token

and 10% are left unchanged. Then the model is trained to predict masked words (𝑁𝑚𝑎𝑠𝑘 out from

𝑁 tokens of the input) with cross entropy loss:

𝐿𝑜𝑠𝑠𝑀𝐿𝑀 = ∑ −𝑙𝑜𝑔𝑃(𝑥𝑖)

𝑥𝑖∈𝑁𝑚𝑎𝑠𝑘

 . (20)

Second objective is to predict the right relationship between sentences – next sentence prediction

(NSP). Two sentences are chosen for the task and model needs to predict if the second sentence

actually goes after the first sentence in the given text or it is a random sentence6. Devlin et al.

(2018) follows the formulation of Logeswaran and Lee (2018):

𝑃(𝑠𝑐𝑎𝑛𝑑|𝑠, 𝑆𝑐𝑎𝑛𝑑) =
𝑒𝑥𝑝[𝑐(𝑓(𝑠), 𝑔(𝑠𝑐𝑎𝑛𝑑))]

∑ 𝑒𝑥𝑝[𝑐(𝑓(𝑠), 𝑔(𝑠′))]𝑠′∈𝑆𝑐𝑎𝑛𝑑

 , (21)

where 𝑐 is a scoring classifier 𝑆𝑐𝑎𝑛𝑑 is a set of candidate sentences, 𝑠 is the context. The objective

function then maximizes the probability of identifying if the next sentence is correct context

sentence is as follows (𝐷 is a training data and 𝑠𝑐𝑡𝑥𝑡 is a context sentence for which candidate

sentences 𝑆𝑐𝑎𝑛𝑑 are considered):

∑ ∑ 𝑙𝑜𝑔𝑝(𝑠𝑐𝑡𝑥𝑡|𝑠, 𝑆𝑐𝑎𝑛𝑑)

𝑠𝑐𝑡𝑥𝑡∈𝑆𝑐𝑡𝑥𝑡𝑠∈𝐷

. (22)

BERT also uses sub-word-based tokenization for the input. This time it is WordPiece embeddings

(Wu et al., 2016). The size of token vocabulary is 30 000 tokens.

Devlin et al. (2018) used BooksCorpus (Zhu et al., 2015) with 800 million words and English

Wikipedia with 2 500 million words for pre-training the model There are two types of pre-trained

BERT models.

 BERT-Base BERT-Large

Number of layers 12 24

Number of hidden states

(embeddings dimensionality)
768 1 024

5 When textual input is tokenized, it means that the sentence instead of a form “I am running in the park” will be in

the form “[I] [am] [running] [in] [the] [park]”. Then masked language model literally puts token [MASK] in the

place of masked word.
6 For this purpose model takes two tokenized sentences and separate them by additional token <SEP> to distinguish

two sentences.

28

 BERT-Base BERT-Large

Number of attention heads 12 16

Number of parameters, M 110 345

Table 4. Types of pre-trained BERT models depending on their size

Pre-trained BERT models can be used for fine-tuning for particular task and also one can use

BERT, along with GPT-2 and ELMo, to extract contextualized word embeddings and feed them

to a machine learning model.

3.3 Models evaluation

3.3.1 Intrinsic evaluation

Within implementation of embedding methods in order to convert a sequence of word embeddings

in each review to one vector, I use mean-pooling operation. This technique aggregates all the

vectors in a given review by calculating arithmetic mean of the vectors element-wise. Taking the

mean is a linear operation, thus, resulting vectors per each review will be able to remain, at least,

to some extent, semantic and syntactic information, that was captured by the word-level

embeddings. Averaging embeddings to obtain aggregated vectors is popular technique, for

example, fastText model use averaging of n-grams embeddings (Bojanowski et al., 2016).

Resulting vectors are reviews representations. Just like in case of word-level embeddings with

word similarity test (Wang et al., 2019), it is possible to analyze semantic similarity between pairs

of reviews, which are represented by vectors of the same dimensionality.

One of the popular evaluator for measuring embeddings similarity is cosine similarity. Given two

vectors 𝑣 and 𝑤 their cosine similarity score is defined by

𝑐𝑜𝑠𝑠𝑖𝑚(𝑣,𝑤) =
𝑣 × 𝑤𝑇

‖𝑣‖ × ‖𝑤‖
 . (23)

In equation (23) similarity measure is normalized to unit length: ‖𝑣‖ × ‖𝑤‖ = √𝑣𝑣𝑇 × √𝑤𝑤𝑇,

which is 𝐿2 normalization. Cosine similarity values belongs to the interval [−1,1]. It takes value

1, when vectors have the same orientation (angle between them is equal 0). When cosine similarity

equals 0, it means that two vectors are orthogonal, and when it is equal -1, it means that vectors

are oriented in different directions. Thus, cosine similarity is testing distribution similarity among

pairs of embeddings – similar words (or reviews as in case of this research) will be closer together

in the semantic space (cosine similarity score is closer to 1 in this case).

29

3.3.2 Extrinsic evaluation

One of the common way to test different embeddings methods is to use them directly in the

downstream task, for example, text binary classification to determine the sentiment (Altowayan

and Tao, 2019). In order to concentrate analysis only on the effect of vector representations, review

embeddings will be the only independent variable in classification model. Sentiment score

(positive / negative) will be a response variable (or dependent variable). Resulting metrics from

confusion matrix can be used for comparison of different word embeddings methods.

In order to check robustness of resulting metrics three different classification methods will be used:

logistic regression, random forest and support vector machine

Logistic regression

Logistic regression model is a commonly used classification method because it is rather easy to

implement and it provides interpretability. In case of binary classification its prediction of a

variable of interest is based on maximum likelihood (loss function). This method makes an

estimation of the probability of belonging to a certain class (positive / negative, 0 / 1) given certain

characteristics of observation. The general logistic regression formula use sigmoid function and

has the following form:

𝑃(𝑌 = 1|𝑋) =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛
 . (24)

As it follows from Equation (24), the range of probabilities is from 0 to 1. 𝛽𝑛 denotes coefficients

of predictors 𝑋𝑛 and 𝑃(𝑌 = 1|𝑋) is the probability the chosen sample belongs to class “1” given

the value of 𝑋𝑛.

Equation (24) in a transformation of Equation (25):

log (
𝑃(𝑌 = 1|𝑋)

1 − 𝑃(𝑌 = 1|𝑋)
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑛𝑋𝑛 . (25)

Equation (25) is referred to as log-odds, which can be used to interpret the model, because it is

linear in 𝑋 – change of 1 unit in 𝑋𝑛 changes the log-odds by 𝛽𝑛.

The main assumptions while implementing logistic regression include absence of multicollinearity

among the predictors, linearity of logit of independent variables and response variable and

independence of observations.

30

Random Forest

Random forest is a tree-based classification algorithm developed by Breiman L. (2001). This

ensemble learning method is widely used for classification problems, including text classification.

It is considered to be fast and accurate method for document categorization (Kowsari et al. 2019).

In addition to this, according to the research of Fernandez-Delgado et al. (2014) on 179 classifiers,

Random Forest versions appeared to be most likely the best classifiers.

Random forests is an ensemble methods, related to bagging ensemble learning. It takes many

individual decision trees and aggregates their predictions (averaging predictions of all trees). The

characteristic feature of random forest method is that it takes a random sample of the predictors

from the dataset to be considered while making a split in the decision tree, thus solving the issue

of correlation among trees due to strong predictors, which can be seen in bagging. When there are

𝑝 number of independent variables, random forest will use 𝑛 < 𝑝 number of predictors for every

individual tree. It ensures that each independent variable can be chosen for the tree. This technique

helps to decrease correlation among the trees and, thus, lower down the prediction’s variance.

Random forest is convenient in usage, because assumptions of non-linear relationship between

independent and dependent variables does not have to be met. In addition to this, presence of high

correlation among predictors is not a problem for random forest to solve classification task.

Support Vector Machine

Support Vector Machine (SVM) is another popular method for text classification and

categorization tasks (Paass and Kindermann, 2004) (Basu et al., 2003). SVM was introduced by

Vapnik V. (1995).

SVM assigns observations to one of the classes by separating them with hyperplane in n-

dimensional space. SVM is based on maximal margin classifier and support vector classifier.

Data points that are closest to hyperplane – they are called support vectors. Margin, which is a

minimal distance between nearest data points to hyperplane from both its sides, determines the

position of hyperplane. The goal is to increase the value of the margin, meaning that maximal

margin classifier is searching for the hyperplane, where the margin is the largest, because it will

improve model’s classification ability.

Support vector classifier is an extension of maximal margin classifier, and it uses, so called, soft

margin. “Soft” margin is a margin with a threshold that allows misclassification. Support vector

classifier solves following problem:

31

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝛽0,𝛽1,…,𝛽𝑝, {∑max [0,1 − 𝑦𝑖

𝑛

𝑖=1

𝑓(𝑥𝑖)] + 𝜆∑𝛽𝑗
2

𝑝

𝑗=1

} . (26)

The left part of Equation (26) represents maximal margin classifier and the right part is penalty

term with a tuning parameter 𝜆, also called cost. Smaller value of 𝜆 makes the margin wider and

increases the number of violations to the threshold that are tolerated inside the soft margin. This

leads to higher variance and lower bias of the model. Similarly, lower value of 𝜆 makes the margin

more narrow, which results in lower variance, but higher bias.

SVM handles non-linear class boundaries. By increasing the number of dimensions SVM can map

support vectors and is able to make a classification. SVM will increase the number of dimensions

until hyperplane can make the distinction of observations. On each such step kernel functions help

to find support vectors. Kernel functions calculate relationship between each pair of data points as

if they were in higher dimensions without data transformation, which is called kernel trick.

Kernel functions can be linear and non-linear. Linear kernel function relates to support vector

classifier, whereas combination of support vector classifier and non-linear kernel is support vector

machine. The popular non-linear kernel functions are radial kernel, polynomial kernel and sigmoid

kernel.

SVM classifies the data points, which are not linearly separable, and it is effective in a higher

dimension. In addition to this it is characterized by high stability due to dependency on support

vectors and not the data points, it does not get influenced by outliers and there are no assumptions

made of the datasets.

Evaluation metrics

To measure the classification models performance I will use six metrics for determining the best

classifier in each case. Most of the metrics chosen for this research are based on confusion matrix

(Hossin and Sulaiman, 2015) (Chicco1 et al., 2021): accuracy, precision, recall, F1-score,

Matthews correlation coefficient (MCC). These metrics include such values from a confusion

matrix, as true positive (TP), true negative (TN), false positive (FP) and false negative (FN). The

sixth metric is area under the curve (AUC) (Hossin and Sulaiman, 2015).

Accuracy

Measurement of how many predictions were

classified correctly
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision

Proportion of true positives in the total number of

predicted positives
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

32

Recall

Proportion of true positives in the total number of

actual positives
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-Score

Harmonic mean between precision and recall,

analyzes the trade-off between correctness and

coverage in classifying positive observations

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

MCC

Measurement of the quality of classification, which

takes into account possible issues with imbalanced

data

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

AUC

Measurement of the model ability to rank randomly

chosen positive outcome higher than randomly

chosen negative outcome

Area under the receiver operating characteristics (ROC)

Table 5. Metrics used for evaluation of classification models

4. Data and models implementation

4.1 Data preparation and exploratory data analysis

The goal of this research is to compare different word embedding models. In order to do this

comparison, five different word embeddings techniques will be implemented on the same text data

set. For keeping the relevance of the research for marketing and business practitioners, the data set

used for comparison should be represented by the set of online reviews, which also contains

ratings, put by each reviewer.

The dataset chosen for this research is “Disneyland

Reviews7” from the website www.kaggle.com (this

website hosts data for data science competitions).

Total amount of reviews in the dataset is 42 000. It

comprises the reviews from three Disneyland park,

situated in Paris, California and Hong Kong, posted

by visitors on Trip Advisor. Users could put the

rating in a range from 1 to 5.

There are no missing values in the dataset, every

review has its rating. All reviews were written in

English.

7 https://www.kaggle.com/datasets/arushchillar/disneyland-reviews

Figure 10. Distribution of reviews among the

location

http://www.kaggle.com/
https://www.kaggle.com/datasets/arushchillar/disneyland-reviews

33

Figure 11. Number of reviews per each rating

As it follows from Figure 11, data is imbalanced. Positive reviews (rated 4 and 5) have

disproportionally larger share in the dataset.

For the purpose of building classification models, that predict sentiment (if review is positive or

negative), reviews rated “3” are removed from the dataset, since they are more neutral. Reviews

rated “4” and “5” are considered to be positive and combined in one group with a new label “0”.

Similarly, reviews rated “1” and “2” are considered to be negative and combined in one group with

a new label “1”. The reason of assigning “0” and “1” in that way is due to common practice in

machine learning classification to assign “1” (“positive”) label to the minority class for better

interpretation of evaluation metrics.

After that dataset contains 37 547 reviews: 33 921 reviews labeled “0” and 3 626 reviews labeled

“1”.

Train / test split was set with proportion 80 / 20:

 Train set Test set

“0” (positive reviews) 27 079 6 842

“1” (negative reviews) 2 958 668

Total: 30 037 7 510

Table 6. Number of observation in the train and test sets

After train / test split train set was randomly reduced to 10 000 reviews: 9 026 reviews labeled “0”

and 974 reviews labeled “1”.

The proportion of negative reviews in train / test set is 9.7% and 8.9% respectively.

Reviews have different number of words and the range is relatively high:

 range of number of words per review in the train set – min 3, max 3 211, mean: 121,

 range of number of words per review in the test set – min 3, max 3 731, mean: 120.

34

Figure 12. Left – histogram of number of words per review in the train set, right – histogram of number of words per

review in the test set

For higher interpretability of histograms in Figure 12 the maximum number of reviews was set to

500, although both sets are skewed to the right with much longer tails.

Further data processing included removing punctuation and tokenizing sentences for such word

embeddings as word2vec, GloVe and ELMo. GPT-2 and BERT processed sentences with

punctuation left and they have their own tokenization mechanisms.

4.2 Models implementation

4.2.1 Python libraries

All models implementation for this research were done in Python (version Python 3.10.2) with the

use of following libraries:

 Pandas (McKinney, 2010) – for data manipulations,

 Scikit-learn (Pedregosa et al., 2011) – for classification methods,

 Imbalanced-learn (Lemaître et al., 2017) – for implementing SMOTE,

 PyTorch (Paszke et al., 2019) – for making calculations inside neural networks,

 Libraries for word embeddings – Gensim (Rehurek and Sojka, 2011), AllenNLP (Gardner

et al., 2018), Transformers (Hugging Face)8

4.2.2 Word embeddings models

Information on word embeddings model is summarized in the Table 7:

8 Transformers library was released by company Hugging Face, which was founded by Delangue C. and Chaumond

J. in 2016. Source of the library: https://huggingface.co/docs/transformers/index

https://huggingface.co/docs/transformers/index

35

Model
Type of

model used

Name of pre-

trained model

Embeddings

dimensionality
Hyperparameters

Python

libraries

word2vec

Skip-gram

(trained)
- 300

window size = 5

number of negative

samples = 5

Gensim

CBOW

(trained)
- 300

window size = 5

number of negative

samples = 5

Gensim

Pre-trained
GoogleNews-

vectors-negative300
300 - Gensim

GloVe Pre-trained glove.6B.200d.txt 200 - Gensim

ELMo Pre-trained “Original” 1 024 - AllenNLP

GPT-2 Pre-trained
“gpt2” (stands for

GPT-2 Small)
768 -

Transformers

(Hugging Face)

BERT Pre-trained “bert-base-uncased”
768

-
Transformers

(Hugging Face)

Table 7. Details of implementing word embeddings model

Overall, there are 7 vector representations for comparison. Intrinsic and extrinsic evaluation are

implemented for each of them.

4.2.3 Synthetic Minority Oversampling Technique

After making word representations of train set, synthetic minority oversampling technique

(SMOTE) (Chawla et al., 2002) was implemented. Usually, machine learning classification

method has problems with learning from imbalanced data, resulting in rather low ability to predict

minority class. When one class is underrepresented, classifier might have problems distinguishing

two classes, which can lead to bias towards the majority class in predictions.

One of the oversampling technique is SMOTE. Instead of simply copying the observations from

minority class, SMOTE generates new data points that are similar to those from minority class. It

randomly chooses an observation from minority class and then calculates K-nearest neighbors.

Part of these K-nearest neighbors are chosen for the new synthetic data points.

Amount of negative reviews was increased to be equal to the number of positive reviews. It is also

possible to pre-specify the desired ratio (50/50 is just one of the options).

4.2.4 Tuning the parameters

In this research I used a grid search with 5-fold cross-validation for tuning the parameters of

random forest and support vector machine individually for every word embedding method. Grid

search means that each combination of tuning parameters was used for training the model. The set

of parameters used for grid search was the same across all word embeddings methods.

36

Method Hyperparameter Values for grid search

Random Forest

The minimum number of samples

required to be at a leaf node

('min_samples_leaf')

[1, 2, 5]

The minimum number of samples

required to split an internal node

('min_samples_split')

[1, 2, 5]

The number of trees ('n_estimators') [50, 100, 200, 500]

Support Vector

Machines

Kernel function (‘kernek’) ['linear', 'rbf']

Cost (‘C’) [0.1, 1, 10, 100]

gamma [1, 0.1, 0.01, 0.001, 0.0001]

Table 8. Values of hyperparameter for grid search

Selected hyperparameter by grid search are presented in the following table:

 Random Forest
Support Vector

Machine

word2vec –

Skip-gram

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 500

C=100,

gamma=1,

kernel=rbf

word2vec –

CBOW

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 500

C=100,

gamma=1,

kernel=rbf

word2vec –

pre-trained

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 500

C=100,

gamma=1,

kernel=rbf

GloVe –

pre-trained

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 500

C=100,

gamma=1,

kernel=rbf

ELMo –

pre-trained

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 500

C=10,

gamma=0.1,

kernel=rbf

GPT-2 –

pre-trained

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 500

C=100,

gamma=1,

kernel=rbf

BERT –

pre-trained

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 200

C=10,

gamma=0.1,

kernel=rbf

Table 9. Hyperparameters chosen by the grid search

37

5. Results

Following this research design, the results of comparison are comprised from intrinsic and

extrinsic evaluation of embeddings methods.

5.1 Results of embeddings methods comparison based on intrinsic evaluation

 First, I tested intrinsic evaluation of embeddings model. As it was described in Section 3.3.1, each

review is represented by one vector representation. In order to test similarity measure I randomly

picked up one negative review. After that, I randomly chose 10 other negative reviews and

calculated cosine similarity with each of this negative reviews.

For easier reading the results, I used coloring for visualizing Top-3 scores across each row of the

tables with calculated cosine similarities:

1 first place

2 second place

3 third place

Results for similarity measure for a sample of negative reviews are presented in the Table 10:

№ of the

sentence

word2vec GloVe

pre-trained
ELMo GPT-2 BERT

skip-gram CBOW pre-trained

1 0.93867800 0.72272000 0.84721100 0.96619180 0.75961850 0.96652925 0.88086920

2 0.94282360 0.74200500 0.85881400 0.96619180 0.75539160 0.96597120 0.88462730

3 0.95046777 0.76294120 0.87913746 0.96932685 0.75552905 0.96797570 0.83275270

4 0.93112480 0.62935543 0.77784230 0.95888520 0.71025640 0.94937380 0.86026080

5 0.93961500 0.69082934 0.82834870 0.96346200 0.69671166 0.96503610 0.88463290

6 0.94466996 0.72387310 0.84480566 0.96301130 0.75260540 0.95687480 0.86166100

7 0.92113185 0.58242320 0.80753670 0.95249580 0.67223920 0.95566344 0.87018514

8 0.94222873 0.72091883 0.81447080 0.94716220 0.68974864 0.95963510 0.86800367

9 0.92533165 0.63460076 0.82425654 0.95636490 0.67805480 0.95955867 0.85559640

10 0.94061120 0.69852420 0.85863495 0.96233960 0.76156884 0.96427420 0.88440037

Average: 0.93766826 0.69081911 0.83410581 0.96054315 0.72317241 0.96108923 0.86829895

Table 10. Cosine similarity scores of a randomly chosen negative review with 10 randomly chosen negative reviews

(same across the methods)

After that the same procedure was done with a sample of positive reviews: one randomly chosen

positive review was paired with ten other randomly chosen positive reviews. Results of these

calculations are presented in the Table 11:

№ of the

sentence

word2vec
GloVe

pre-trained
ELMo GPT-2 BERT

skip-gram CBOW
pre-

trained

1 0.96324110 0.79853100 0.89736370 0.97743136 0.78570116 0.97967290 0.90175813

2 0.92791240 0.67473215 0.85716770 0.95761200 0.75889870 0.95633560 0.77004546

3 0.97811030 0.86852556 0.94734200 0.98733747 0.90378946 0.98391527 0.85104436

4 0.92833110 0.68147075 0.86195230 0.96203960 0.75030196 0.95911540 0.87829036

38

№ of the

sentence

word2vec
GloVe

pre-trained
ELMo GPT-2 BERT

skip-gram CBOW
pre-

trained

5 0.94503770 0.77243340 0.85455114 0.96413990 0.81142896 0.95265317 0.86626387

6 0.95336320 0.76184570 0.88633480 0.97222537 0.81972516 0.96476430 0.87805300

7 0.95584760 0.79832980 0.87475560 0.96115863 0.86563075 0.95941466 0.87897706

8 0.96932405 0.83776960 0.93232890 0.98462390 0.83659273 0.97833990 0.88929400

9 0.96379536 0.82468826 0.92529180 0.98330766 0.81550820 0.98432400 0.91529840

10 0.95882326 0.76179680 0.91605630 0.97913945 0.79836690 0.97785770 0.88417120

Average: 0.95437861 0.77801230 0.89531442 0.97290153 0.81459440 0.96963929 0.87131958

Table 11. Cosine similarity scores of a randomly chosen positive review with 10 randomly chosen positive reviews

(same across the methods)

In both cases (negative and positive reviews), GPT-2 and GloVe have the highest similarities

scores – in case of negative reviews, GPT-2 is slightly higher, in case of positive reviews GloVe

is higher. In the same time, in both cases, word2vec skip-gram model is consistently on the third

place.

Thus, word2vec skip-gram and GloVe showed good results in this similarity test, despite the fact

that they are the oldest one in a list of methods used in this research (2013 and 2014 respectively,

others were developed in 2018-2019 years). Both these methods produce static, context-free

embeddings. Moreover, skip-gram embeddings were trained on the corpus just from one dataset

that was used in this research, and it showed better results than wod2vec pre-trained embeddings,

even though the training of that model was done on huge corpus of about 100 billion words.

In contrast to skip-gram model, CBOW demonstrated worst results among all other embedding

methods that were used for comparison. It ended up on seventh place in both cases.

Among the contextualized word embeddings, only GPT-2 could provide high enough similarities

scores to be in Top-3. Whereas BERT is on fourth place in similarity scores for negative reviews

and on fifth place in similarity scores for positive reviews. In addition to this, results of BERT in

this similarity test are pretty close to the results of word2vec pre-trained model. Lastly, the third

contextualized method, ELMo, is only on sixth place in both cases.

Rated scores for all embeddings methods are presented in the following Table 12:

39

(a) Negative reviews

№ Model
Average

similarity scores

1 GPT-2 0.96108923

2
GloVe

pre-trained
0.96054315

3 skip-gram 0.93766826

4 BERT 0.86829895

5 w2v pre-trained 0.83410581

6 ELMo 0.72317241

7 CBOW 0.69081911

(b) Positive reviews

№ Model
Average

similarity scores

1
GloVe

pre-trained
0.97290153

2 GPT-2 0.96963929

3 skip-gram 0.95437861

4 w2v pre-trained 0.89531442

5 BERT 0.87131958

6 ELMo 0.81459440

7 CBOW 0.77801230

Table 12. Average rated cosine similarity scores for negative reviews (a) and for positive reviews (b)

The average similarity score higher than 0.9 was observed only for the Top-3 embeddings methods

in both cases of negative and positive reviews. After that, average similarity scores start rapidly to

decline (Table 12). The difference between the first three embeddings methods is relatively low,

as compared to the difference between the Top-3 methods and all other methods:

(a) Negative reviews

Models
Relative

difference

GPT-2 compared to GloVe 0.06%

GloVe compared to skip-gram 2.44%

skip-gram compared to BERT 7.99%

BERT compared to w2v pre-

trained
4.10%

w2v pre-trained compared to

ELMo
15.34%

ELMo compared to CBOW 4.68%

(b) Positive reviews

Models
Relative

difference

GloVe compared to GPT-2 0.34%

GPT-2 compared to skip-gram 1.60%

skip-gram compared to w2v

pre-trained
6.60%

w2v pre-trained compared to

BERT
2.75%

BERT compared to ELMo 6.96%

ELMo compared to CBOW 4.70%

Table 13. Relative comparison of embeddings methods in case of negative reviews (a) and positive reviews (b)

As it can be seen from the Table 13, taking into account relative difference between embeddings

methods, they can be grouped in three groups, where embedding methods share, more or less,

similar scores: first group – GPT-2, GloVe, skip-gram; second group – BERT, word2vec pre-

trained; third group – ELMo, CBOW.

Similarity scores indicate how close reviews vector representations are in the semantic space in

relation to supposed to be other similar reviews (negative-negative, positive-positive). Although

from business perspective it might be useful to be able to group together similar reviews, one

should carefully assess the quality of words embeddings depending on that measure – there might

be cases when similarity and relatedness could be messed up and related things can be grouped

together even though they are not similar (Faruqui et al., 2016). In addition to this, results from

intrinsic evaluation usually do not have strong correlation with the results of downstream tasks.

40

5.2 Results of embeddings methods comparison based on extrinsic evaluation

Extrinsic evaluation showed different results. As discussed in the section 3.3.2, reviews

embeddings were used as an independent variable for three different classification methods

(logistic regression, Random Forest and Support Vector Machine) to predict the sentiment of

reviews.

After running three classification models on seven word embeddings methods and calculating six

metrics for each classification model, BERT showed consistently best results across all three

classifiers on most of the metrics (Table 14). ELMo is on the second place most of the time.

Word2vec skip-gram is on the third place across majority of metrics.

Corresponding confusion matrices are presented in Appendix (Table 18). Resulting metrics from

classification models are summarized in the Table 14.

The same color scheme, as in section 5.1, is implemented here to indicate Top-3 scores per each

row:

1 first place

2 second place

3 third place

Classification

methods

word2vec GloVe

pre-trained

ELMo

pre-trained

GPT-2

pre-trained

BERT

pre-trained skip-gram CBOW pre-trained

Logistic regression

Accuracy 0.88935 0.85779 0.87949 0.87310 0.93688 0.88389 0.95060

Precision 0.43877 0.36772 0.41481 0.39886 0.60232 0.42619 0.68088

Recall 0.87425 0.83234 0.86377 0.84132 0.85479 0.88174 0.83683

AUC 0.88254 0.84631 0.87240 0.85876 0.89984 0.88292 0.89927

F1 score 0.58429 0.51009 0.56047 0.54117 0.70668 0.57463 0.75084

MCC 0.57034 0.49169 0.54578 0.52319 0.68545 0.56260 0.72849

Random Forest

Accuracy 0.92796 0.91252 0.92197 0.91278 0.93236 0.91518 0.94660

Precision 0.61483 0.50874 0.58913 0.51248 0.65209 0.53790 0.75723

Recall 0.50898 0.47904 0.40569 0.39970 0.51347 0.32934 0.58832

AUC 0.73893 0.71694 0.68903 0.68129 0.74336 0.65086 0.78495

F1 score 0.55692 0.49345 0.48050 0.44912 0.57454 0.40854 0.66217

MCC 0.52083 0.44586 0.44882 0.40621 0.54290 0.37849 0.63963

SVM

Accuracy 0.94021 0.92250 0.93808 0.93182 0.95260 0.94514 0.95739

Precision 0.65755 0.58884 0.63847 0.62500 0.78889 0.68234 0.86864

Recall 0.68413 0.42665 0.70060 0.58383 0.63772 0.71707 0.61377

AUC 0.82467 0.69878 0.83093 0.77482 0.81053 0.84224 0.80236

F1 score 0.67058 0.49479 0.66809 0.60372 0.70530 0.69927 0.71930

MCC 0.63787 0.46090 0.63486 0.56686 0.68439 0.66936 0.70930

Table 14. Evaluation metrics from three classification methods that were run on word embeddings from different

models

41

Contextualized embeddings had the highest scores across metrics for all three classification models

that were used for comparison. It is in line, to some extent, with Hypothesis 1 of this research,

which assumed that contextualized embeddings (BERT, GPT-2, ELMo) would provide higher

metrics for the binary classification, than static embeddings (word2vec, GloVe). Although it

should be mentioned, that only two out three methods, BERT and ELMo, consistently

outperformed static embeddings methods, whereas GPT-2 had more mixed results.

Still, if to combine Top-3 scores across each metric, contextualized embeddings appeared more

than two thirds of times in logistic regression and Random Forest and 78% of times in Support

Vector Machine (Table 3):

Static

embeddings

Contextualized

embeddings
Total

Logistic regression 33% 67% 100%

Random Forest 33% 67% 100%

SVM 22% 78% 100%

Table 15. Share of static and contextualized embeddings, which were rated in Top-3 across all metrics of three

classification models

Another important observation is that among the first places, which were taken by contextualized

embeddings in each metric, BERT was the most common. Out of 18 metrics (six metrics per each

of the three classification models) BERT appeared 14 times (or 78% of times). GPT-2 appeared 3

times, and ELMo was observed one time. This observation is in line with Hypothesis 2 of this

research, which assumption was that among the contextualized embeddings (BERT, GPT-2,

ELMo) BERT would give higher metrics for the binary classification.

As it was the case in similarity scores test, word2vec skip-gram performed relatively well. It was

12 times out of 18 on the third place and one time on the second place. Moreover, again skip-

gram’s results were better than word2vec pre-trained model 16 times out of 18. Pre-trained model

was on the fifth place 12 times out of 18.

GloVe results can be characterized as rather poor. This type of embeddings were just on the sixth

place 17 times, meaning that this result is consistent for all classification models.

Another word2vec method, CBOW, had the worst performance among all other embeddings

methods. It appeared 14 times on the last place across all metrics. Slightly better results of

CBOW were observed only in Random Forest.

GPT-2 is characterized by the most inconsistent results compared to other embeddings method.

GPT-2 has mixed results in different metrics, as well as among classification methods. For logistic

regression 4 out of 6 metrics of GPT-2 ended up on fourth place, for Random Forest 4 out of 6

metrics of GTP-2 ended up on the seventh place. Slightly better performance of GPT-2 was

42

observed for Support Vector Machine, where also 4 out of 6 of GPT-2 metrics were on the third

place.

Finally, two more ratings will be considered based on extrinsic evaluation metrics. First, per each

rating from 1 to 7 the most frequent embeddings will be shown. Each metric in each classification

model has a rating from 1 to 7, because of the total number of embeddings methods used for

comparison. For each column, embedding method with highest number of appearances among 18

rows will be depicted. The result of it is shown in the Table 16:

Rating 1 2 3 4 5 6 7

Method with highest

number of appearances
BERT ELMo

skip-

gram

skip-

gram

word2vec

pre-trained
GloVe CBOW

Number of appearances 14 14 12 5 12 17 14

Table 16. Embeddings with highest number of appearances per each reating

Table 16 shows that GPT-2 has a wide spread of metrics values, since it was not concentrated at

any rating. The positon of all others embedding methods is in line to what was already described

in this section, with BERT, ELMo and word2vec taking the first three places respectively, and

GloVe and CBOW on the last two places.

Second, Matthews correlation coefficient was used in the Table 17 to rate the metrics for

embedding methods with one metric:

(a) Logistic regression

 MCC

BERT 0.72849

ELMo 0.68545

skip-gram 0.57034

GPT-2 0.56260

w2v pre-trained 0.54578

GloVe 0.52319

CBOW 0.49169

(b) Random Forest

 MCC

BERT 0.63963

ELMo 0.54290

skip-gram 0.52083

w2v pre-trained 0.44882

CBOW 0.44586

GloVe 0.40621

GPT-2 0.37849

(c) Support Vector Machine

 MCC

BERT 0.70930

ELMo 0.68439

GPT-2 0.66936

skip-gram 0.63787

w2v pre-trained 0.63486

GloVe 0.56686

CBOW 0.46090

Table 17. Rated MCC metrics for logistic regression (a), for Random Forest (b) and for Support Vector Machine (c)

In logistic regression BERT outperformed second-best method by 6.3%, in Random Forest – by

17.8% and in Support Vector Machine – by 3.6%. In addition to this, BERT was the only method,

which reached MCC value more than 0.7 (in logistic regression and Support Vector Machine).

5.3 Results elaboration

With results from sections 5.1 and 5.2, it is possible to address main research question and sub-

questions. As results of extrinsic evaluation showed, BERT model appeared to be more effective

43

for rating prediction of online reviews from “Disneyland Reviews” dataset. This result is consistent

across all three classification models used for comparison.

In the same time, contextualized pre-trained embedding models did not outperform static

embedding methods based on intrinsic evaluation. In fact, word2vec skip-gram and GloVe models

were in Top-3 methods based on similarity score test and only one contextualized method, GPT-2

was in Top-3.

However, in the downstream task of rating prediction of online reviews BERT was more efficient

than other contextualized embedding models.

Thus, when choosing embedding method one should take into account the ending business task.

For example, for similarity task in the context of this research GloVe method can be chosen. For

the classification task BERT showed best results in predicting the positive / negative sentiment of

online reviews.

Some embedding methods did not show consistency among the metrics of different classification

methods. Most of the metrics values from extrinsic evaluation of GPT-2 are on the fourth place of

the rating for logistic regression, on seventh place for Random Forest and on the third place for

Support Vector Machine. A bit of similar situation is with word2vec methods. Skip-gram metrics

are mostly on the third place for logistic regression and Random Forest, whereas for Support

Vector machine they are mostly on the fourth place. Pre-trained word2vec model and CBOW also

demonstrates consistency among results of logistic regression and Support Vector Machine, but

gives different results in Random Forest.

It should be mentioned, that the goal of this research was not to obtain best possible metrics in

classification models, but rather make a set up for valid comparison of different embeddings

methods. Nonetheless, there were done several steps, which are considered to be common practice

in such tasks, to achieve overall better performance of the models: text minor preprocessing,

oversampling (balancing dataset), grid search of best parameters.

6. Conclusion

Five different word embeddings methods, which summed into seven different embeddings

techniques, were analyzed and compared in this research. Intrinsic and extrinsic evaluation tests

were implemented. For robustness of the research three different classification models were used

to compare metrics of performance in downstream task.

44

In similarity scores test GPT-2 and GloVe demonstrated the best results and word2vec skip-gram

was on the third place. That concludes the first sub-question of this research that contextualized

embeddings method, in fact did not outperform static embeddings methods in intrinsic evaluation,

but on the contrary, two out of three contextualized embedding methods performed worse than

static embedding methods.

In the task of text binary classification of online reviews BERT outperformed all other embeddings

methods and proved to be state-of-the-art technique, which is in line with Hypothesis 2, which

assumed that BERT would show better results in sentiment prediction than other contextualized

embeddings methods.

Surprisingly, GPT-2 demonstrated worse results in downstream task, than expected. Its results

were lower in most metrics than those obtained by word2vec skip-gram or word2vec pre-trained

models (apart from SVM). Even after 9 years after its creation word2vec skip-gram is on the third

place in most of the metrics of intrinsic and extrinsic evaluations.

Thus, the results for Hypothesis 1 can be considered as mixed. Hypothesis 1 assumed that all

contextualized embeddings methods would be more efficient than static embeddings methods in

the rating prediction. From one hand, two contextualized embeddings methods, BERT and ELMo,

resulted mostly in higher metrics than word2vec and GloVe. From the other hand, GPT-2 model

showed mostly better results than static embeddings methods only in Support Vector Machine

classification. Overall, in this task of classification word2vec skip-gram appeared to be more

efficient than GPT-2 in logistic regression, and all three word2vec models (skip-gram, CBOW,

pre-trained) were more efficient in Random Forest.

The goal of this research was to compare which embeddings will yield in better performance of

text classification, not to obtain highest possible metrics. In the same time, word vector

representations proved to be useful in the task of predicting reviews sentiment even in case of this

research set up with highly imbalanced data and without any other predictors.

In conclusion, although text of online reviews “Disneyland Reviews” that was used in this research

is rather general (for example, no medicine or engineering terminology), still the results of this

research should not be extended on all possible business domains with customer services, which

have online reviews. Future study of this topic may include testing on other datasets from different

types of businesses with more specific vocabulary and different length of reviews.

45

Appendix

Confusion matrices:

 Logistic regression Random forest Support vector machine

word2vec –

Skip-gram

 Predicted

 0 1

Actual
0 6 095 747

1 84 584

 Predicted

0 1

Actual
0 6 629 213

1 328 340

 Predicted

0 1

Actual
0 6 604 238

1 211 457

word2vec –

CBOW

 Predicted

0 1

Actual
0 5 886 956

1 112 556

 Predicted

0 1

Actual
0 6 533 309

1 348 320

 Predicted

0 1

Actual
0 6 643 199

1 383 285

word2vec –

pre-trained

 Predicted

0 1

Actual
0 6 028 814

1 91 577

 Predicted

0 1

Actual
0 6 653 189

1 397 271

 Predicted

0 1

Actual
0 6 577 265

1 200 468

GloVe –

pre-trained

 Predicted

0 1

Actual
0 5 995 847

1 106 562

 Predicted

0 1

Actual
0 6 588 254

1 401 267

 Predicted

0 1

Actual
0 6 608 234

1 278 390

ELMo –

pre-trained

 Predicted

0 1

Actual
0 6 465 377

1 97 571

 Predicted

0 1

Actual
0 6 659 183

1 325 343

 Predicted

0 1

Actual
0 6 728 114

1 242 426

GPT-2 –

pre-trained

 Predicted

0 1

Actual
0 6 049 793

1 79 589

 Predicted

0 1

Actual
0 6 653 189

1 448 220

 Predicted

0 1

Actual
0 6 619 223

1 189 479

BERT –

pre-trained

 Predicted

0 1

Actual
0 6 580 262

1 109 559

 Predicted

0 1

Actual
0 6 716 126

1 275 393

 Predicted

0 1

Actual
0 6 780 62

1 258 410

Table 18. Confusion matrices

46

References

Fridolin Wild, Christina Stahl: Investigating Unstructured Texts with Latent Semantic Analysis.

Conference: Advances in Data Analysis, Proceedings of the 30th Annual Conference of the

Gesellschaft für Klassifikation e.V., Freie Universität Berlin, March 8-10, 2006,

DOI: 10.1007/978-3-540-70981-7_43

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin: A Neural Probabilistic

Language Model. February 2003. Journal of Machine Learning Research 3 (2003) 1137–1155

Luis Gutiérrez, Brian Keith: A systematic literature review on word embeddings. January 2019.

Proceedings of the 7th International Conference on Software Process Improvement (CIMPS

2018)

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean: Efficient estimation of word

representations in vector space. September 2013. arXiv:1301.3781v3 [cs.CL]

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean: Distributed

Representations of Words and Phrases and their Compositionality. October 2013.

arXiv:1310.4546v1 [cs.CL]

Jeffrey Pennington, Richard Socher, Christopher D. Manning: GloVe: Global Vectors for Word

Representation. October 2014. Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP)

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova: BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. October 2018. arXiv:1810.04805v2

[cs.CL]

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever: Improving Language

Understanding by Generative Pre-Training. June 2018. Technical report, OpenAi

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever: Language

Models are Unsupervised Multitask Learners. February 2019. Technical report, OpenAi

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

Luke Zettlemoyer: Deep contextualized word representations. March 2018.

arXiv:1802.05365v2

Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, Russell Power: Semi-supervised

sequence tagging with bidirectional language models. July 2017. Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes,

Donald Brown: Text Classification Algorithms: A Survey. April 2019. Information (MDPI),

10, 150; doi:10.3390/info10040150

47

Thomas Y. Lee, Eric T. Bradlow: Automated Marketing Research Using Online Customer

Reviews. October 2011. Journal of Marketing Research, Vol 48, Issue 5, 2011

Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, C.-C. Jay Kuo: Evaluating word

embedding models: methods and experimental results. July 2019. APSIPA Transactions on

Signal and Information Processing (Cambridge University Press), ISSN: 2048-7703

(Print), 2048-7703 (Online)

Breiman, L. Random Forests. October 2001. Machine Learning, 45, pages 5–32 (2001)

Hossin M., Sulaiman M.: A review on evaluation metrics for data classification evaluations. March

2015. International Journal of Data Mining & Knowledge Management Process, DOI:

10.5121/ijdkp.2015.5201

Davide Chicco1, Niklas Tötsch, Giuseppe Jurman: The Matthews correlation coefficient

(MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in

two-class confusion matrix evaluation. February 2021. BioData Mining 14(1), DOI:

10.1186/s13040-021-00244-z

Jiang Zhao, Man Lan, Zheng-Yu Niu, Yue L: Integrating word embeddings and traditional NLP

features to measure textual entailment and semantic relatedness of sentence pairs. July 2015.

International Joint Conference on Neural Networks (IJCNN),

DOI: 10.1109/IJCNN.2015.7280462

Jingfang Liu, Yingyi Zhou, Xiaoyan Jiang, Wei Zhang: Consumers’ satisfaction factors mining

and sentiment analysis of B2C online pharmacy reviews. August 2020. BMC Medical

Informatics and Decision Making, 20, article number: 194 (2020)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, Illia Polosukhin: Attention Is All You Need. June 2017. arXiv:1706.03762v5

[cs.CL]

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov: Enriching Word Vectors with

Subword Information. July 2016. arXiv:1607.04606v2 [cs.CL]

Rémi Lebret, Ronan Collobert: Word Emdeddings through Hellinger PCA. December 2013.

arXiv:1312.5542v3 [cs.CL]

Bryan McCann, James Bradbury, Caiming Xiong, Richard Socher: Learned in Translation:

Contextualized Word Vectors. December 2017. Proceedings of the 31st International

Conference on Neural Information Processing Systems

Manuel Fernandez-Delgado, Eva Cernadas, Sen´en Barro: Do we Need Hundreds of Classifiers to

Solve Real World Classification Problems? October 2014. Journal of Machine Learning

Research 15 (2014) 3133-3181

48

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman:

Indexing by latent semantic analysis. September 1990. Journal of the American Society for

Information Science

Ronan Collobert, Jason Weston: A Unified Architecture for Natural Language Processing: Deep

Neural Networks with Multitask Learning. July 2008. Proceedings of the 25th international

conference on Machine learning

Ronan Collobert, Jason Weston, L ́eon Bottou, Michael Karlen, Koray Kavukcuoglu: Natural

Language Processing (Almost) from Scratch. February 2011. Journal of Machine Learning

Research

Sepp Hochreiter and Jürgen Schmidhuber. Long Short Term Memory. Technical Report FKI-207-

95. November 1997. Neural Computation, Volume 9, Issue 8

Susan T. Dumais, George Furnas, Thomas K. Landauer, Scott Deerwester, Richard Harshman:

Using Latent Semantic Analysis to Improve Access to Textual Information. May 1988.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

Michael U. Gutmann and Aapo Hyvärinen: Noise-Contrastive Estimation of Unnormalized

Statistical Models, with Applications to Natural Image Statistics. February 2012. Journal of

Machine Learning Research, 13 (2012) 307-361

Douglas L. T. Rohde, Laura M. Gonnerman, David Plaut: An Improved Model of Semantic

Similarity Based on Lexical Co-Occurrence. 2006. Communications of the ACM, 8:627–633

Greg Van Houdt, Carlos Mosquera, Gonzalo Nápoles: A review on the long short-term memory

model. May 2020. Artificial Intelligence Review volume 53, pages 5929–5955

Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush: Character-Aware Neural Language

Models. 2016. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence

(AAAI-16)

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng: A deep

architecture for semantic matching with multiple positional sentence representations.

February 2016. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,

pages 2835–2841

Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton: Layer Normalization. July 2016.

arXiv:1607.06450v1

Rico Sennrich, Barry Haddow, Alexandra Birch: Neural Machine Translation of Rare Words with

Subword Units. August 2016. Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers)

Lajanugen Logeswaran and Honglak Lee: An efficient framework for learning sentence

representations. March 2018. arXiv:1803.02893v1

49

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.: Google’s neural

machine translation system: Bridging the gap between human and machine translation.

September 2016. arXiv:1609.08144v2

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio

Torralba, Sanja Fidler: Aligning Books and Movies: Towards Story-like Visual Explanations

by Watching Movies and Reading Books. June 2015. arXiv:1506.06724v1

A. Aziz Altowayan, Lixin Tao: Evaluating Word Similarity Measure of Embeddings Through

Binary Classification. October 2019. Journal of Computer Science Research

Gerhard Paass, Jörg Kindermann, Edda Leopold: Text Classification of News Articles with

Support Vector Machines. January 2004. Text Mining and its Applications, DOI:

10.1007/978-3-540-45219-5_5

Atreya Basu, Carolyn Watters, Michael Shepherd: Support Vector Machines for Text

Categorization. January 2003. Proceedings of the 36th Annual Hawaii International

Conference System Sciences

Vladimir N. Vapnik: The Nature of Statistical Learning Theory. 1995. Springer, New York (1995)

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P.: SMOTE: synthetic minority

over-sampling technique. June 2002. Journal of artificial intelligence research, Vol. 16, p.

321–357.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer: Problems with evaluation of

word embeddings using word similarity tasks. August 2016. Proceedings of the 1st Workshop

on Evaluating Vector-Space Representations for NLP

Simon Haykin: Neural Networks and Learning Machines. November 2008. Prentice Hall, ISBN-

10: 0131471392

John S. Bridle: Probabilistic Interpretation of Feedforward Classification Network Outputs, with

Relationships to Statistical Pattern Recognition. 1989. Neurocomputing: Algorithms,

Architectures and Applications (1989). NATO ASI Series (Series F: Computer and Systems

Sciences), 68, doi:10.1007/978-3-642-76153-9_28

Alex Graves, Jürgen Schmidhuber: Framewise phoneme classification with bidirectional LSTM

and other neural network architectures. July–August 2005. Neural Networks, Volume 18,

Issues 5–6, pages 602-610

Wes McKinney: Data structures for statistical computing in python. January 2010. In Proceedings

of the 9th Python in Science Conference, Vol. 445, pages 51–56

Fabian Pedregosa, Gael Varoquaux. Alexandre Gramfort. Gilles Louppe et al.: Scikit-learn:

Machine Learning in Python. November 2011, The Journal of Machine Learning

ResearchVolume 122/1/2011, pages 2825–2830

https://link.springer.com/chapter/10.1007/978-3-642-76153-9_28#auth-John_S_-Bridle
https://dl.acm.org/toc/jmlr/2011/12/null

50

Guillaume Lemaître, Fernando Nogueira, Christos K. Aridas: Imbalanced-learn: A Python

Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. January 2017.

Journal of Machine Learning Research 18 (2017) 1-5

Adam Paszke, Sam Gross, Francisco Massa: PyTorch: An Imperative Style, High-Performance

Deep Learning Library. December 2019. Advances in Neural Information Processing Systems

32 (NeurIPS 2019)

Radim Rehurek, Petr Sojka: Gensim – python framework for vector space modelling. 2011. NLP

Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2)

Matt Gardner, Joel Grus, Mark Neumann, Luke Zettlemoyer: AllenNLP: A Deep Semantic Natural

Language Processing Platform. March 2018. Allen Institute for Artificial Intelligence

Yann LeCun, Y. Bengio, Geoffrey Hinton: Deep Learning. May 2015. Nature volume 521, pages

436–444

