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1 Introduction 

Since the popularization of human capital theory by Becker (1962), a wide range of research has 

centered around the subject. Such research is often interested in the returns to human capital 

investments in the form of education. For an overview of early quasi-experimental studies of this 

nature, see Card (1999). More recently, there has also been an interest in determining the effects of 

other factors that either positively or negatively influence human capital, particularly in early 

childhood. An overview of such studies is given by Currie and Almond (2011). Some of these studies 

focus on the effects of environmental factors, especially on children in utero. Almond et al. (2009), for 

example, study the effect of prenatal exposure to radioactive fallout in Sweden and find large negative 

effects on school outcomes, but not on health outcomes. Comparable results for scholastic 

performance have been found for early childhood lead exposure (see, e.g., Nilsson, 2009; Reyes, 2011). 

A more recent strand of literature has studied how air pollution can influence cognitive 

performance. Such research contributes to our scientific understanding of the determinants of human 

capital, as decreased cognitive performance can harm human capital accumulation. Besides that, it 

also has strong societal relevance. Governments are increasingly becoming aware of the negative 

effects of air pollution, mainly with regards to its health consequences (UNEP, 2021). Possible negative 

effects on cognitive ability can provide an additional rationale for (stronger) policies to fight air 

pollution. Furthermore, it provides insights into the externalities associated with the emission of air 

pollutants. Such information is useful when considering what the optimal taxation of these pollutants 

would be. My thesis contributes to this literature by using a quasi-experimental method, the 

difference-in-differences methodology, to study the effect of air pollution on primary school test 

scores. 

Previous studies in the field of economics have used student-fixed effects or instrumental 

variable models to investigate the effect of air pollution on test scores (see, e.g., Carneiro et al., 2021; 

Lavy et al., 2014; Zweig et al., 2009). Fixed effects models rely on the assumption that changes in air 

pollution levels are uncorrelated with other time-variant factors that affect test scores. This can be 

hard to justify when it is unclear what is causing the changes in air pollution levels. Carneiro et al. 

(2021) use wind as an instrumental variable for air pollution levels, with a necessary assumption being 

that wind direction only affects test scores through its effect on air pollution. This assumption is 

questionable, among others because wind direction can also affect the level of pollen in an area, which 

in turn can affect test scores (Bensnes, 2016). I take a novel approach in this area of research, by relying 

on a policy change in the form of environmental zones as an exogenous shift in air pollution levels. I 

hypothesize that such a policy lowers air pollution, and thereby improves test scores. 
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Environmental zones are areas in which certain (usually diesel) vehicles are prohibited from 

entering, with the aim of reducing the emission of harmful pollutants by these vehicles. I use a 

difference-in-differences model to assess the effects that environmental zones have on air pollution, 

and in turn what their effect is on test scores. For the effects on air pollution, I collect data from 

pollution measuring stations in the 40 largest cities in The Netherlands on monthly average values of 

PM10, PM2.5, NO2, NO, O3, and soot. I investigate the introduction of an environmental zone for cars 

in Rotterdam, Utrecht, and Arnhem, and use stations in cities with an environmental zone for trucks 

as control units. I argue that these serve as the best counterfactual for these cities, as Rotterdam, 

Utrecht, and Arnhem also had environmental zones for trucks in place before they introduced an 

environmental zone for cars. I consider all measuring stations in these three cities “treated” to capture 

potential spillover effects. I separately estimate the effects of each environmental zone on each 

pollutant using a “classical” difference-in-differences model, and informally test for parallel trends with 

event studies. I find evidence for a decrease of approximately 4% on PM10 concentrations in 

Rotterdam, and a decrease of approximately 4% on soot concentrations in Arnhem. I find no convincing 

evidence for the environmental zone in Utrecht. 

Next, I examine whether the environmental zones have any effects on test scores. I use scores 

on the tests that all primary school students in The Netherlands take at the end of their final year. 

There are five tests to choose from, with the CITO test being by far the most popular. I have data on 

the specific test taken by a school and the average test score for each school year from 2010/2011 to 

2018/2019. For these regressions, I employ the novel synthetic difference-in-differences methodology 

developed by Arkhangelsky et al. (2021). This method assigns weights to the control schools to make 

their average trend of test scores before the environmental zone parallel to the trend for the treated 

schools before the environmental zone. I again estimate the effects of the environmental zones for 

cars in Rotterdam, Utrecht, and Arnhem. Additionally, I can test the effect of an environmental zone 

for trucks in Arnhem. This environmental zone was introduced in 2014, which means that I can assess 

what effect this zone had on test scores. This was not possible for air pollution, as that dataset starts 

in 2014 and thus does not have a pre-intervention period. I first use standardized test scores for all 

tests as my dependent variable, and next only use schools that always take the most popular CITO test. 

I find non-significant results for all environmental zones, with the exception of the environmental zone 

for trucks in Arnhem. Here, I find a sizable and negative effect on standardized test scores of nearly 0.2 

standard deviations. When using CITO test scores, this effect is no longer statistically significant. 

However, I now find that the environmental zone for cars in Rotterdam had a significant and positive 

effect on test scores, also of nearly 0.2 standard deviations. Test scores for schools in Rotterdam seem 

to be increasing more rapidly than test scores for the control schools in the years before the 

environmental zone was introduced. This might indicate that, if Rotterdam had not introduced an 



5 
 

environmental zone, test scores in Rotterdam would have kept developing at a faster pace than the 

control schools did. This would lead to overestimation of the effect of the environmental zone on test 

scores.  Additionally, in my robustness checks I find that there are composition effects present, where 

Rotterdam saw a decrease in the share of students from lower socioeconomic backgrounds after the 

introduction of the environmental zone. These results indicate that the increase in test scores for 

Rotterdam was partly caused by composition effects. All in all, although I find some evidence that 

environmental zones lower local air pollution, I do not find convincing proof that this leads to increases 

in test scores. 

This thesis proceeds as follows. Section 2 contains the theoretical framework, which gives 

more background information on air pollution and past research on this topic. Section 3 describes the 

data that I have collected, and section 4 explains my methodology for both air pollution and test scores. 

Section 5 presents my results for the main regressions and multiple robustness checks. Finally, section 

6 discusses my findings, and section 7 concludes. 

2 Theoretical framework 

This chapter serves as the theoretical background for my hypotheses. Section 2.1 explains what air 

pollution is, and section 2.2 gives an overview of the sources of different air pollutants. Section 2.3 

then looks at how pollution can affect cognitive ability. Section 2.4 provides an overview of the 

different types of environmental zones and discusses the effects that environmental zones have on 

local air pollution. Finally, I formulate my hypotheses in section 2.5. 

2.1 What is air pollution? 

Before I start discussing the effects of air pollution, it is useful to explain what is meant by air pollution. 

The OECD defines air pollution as follows: “Air pollution is the presence of contaminant or pollutant 

substances in the air that do not disperse properly and that interfere with human health or welfare, or 

produce other harmful environmental effects” (OECD, 2001). Air pollution thus occurs when 

substances, or air pollutants, prevent some desired air quality from being reached. Five common air 

pollutants have standards set by the World Health Organization (WHO), with the goal of informing 

legislation and policy to reduce the health impacts of air pollution. These include particulate matter 

(PM), ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2) (World 

Health Organization, 2021). Of these, PM can be classified into the size of the particles. Here, PM10 

(particulate matter with a diameter smaller than 10 µm) and PM2.5 (particulate matter with a diameter 

smaller than 2.5 µm) are the most common categories. PM differs from the other criteria air pollutants 

because it is a composite measure rather than a single chemical entity. It can include particles such as 

dust, soot, and smoke, but also particles formed by a reaction between other pollutants such as SO2 

and NO2 (EPA, 2019; Vallero, 2014). Taken together, nitrogen dioxide and nitrogen monoxide (NO) are 
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often referred to as nitrogen oxides (NOx). Nitrogen dioxide is formed by a reaction of nitrogen 

monoxide with oxygen or ozone in the air (EEA, n.d.).  

2.2 Sources of air pollution 

The sources of pollution are numerous, and encompass both natural sources and man-made sources 

(Vallero, 2014). In addition to the air pollutants with WHO standards, I discuss soot separately here. 

For the composition of sources of each pollutant, I focus on The Netherlands, since this is the country 

of interest for my thesis.  

Particulate matter (PM) 

As mentioned, PM comprises many different substances. In 2016, the average concentrations of PM10 

and PM2.5 were 17.5 µg/m3 and 10.2 µg/m3, respectively. On average, more than three quarters of 

PM10 and nearly 90% of PM2.5 in outdoor air came from human sources. This can be even higher near 

busy roads and industrial sites (RIVM, n.d.-a). As a comparison, the WHO guidelines on air pollution 

recommend an annual concentration of 15 µg/m3 and 5 µg/m3, for PM10 and PM2.5 respectively (World 

Health Organization, 2021). 

Of all human emission sources of PM10 in 2015, the highest share came from traffic and 

transport (36%), followed by agriculture (22%) and non-specified industry (18%). Within the traffic 

source, a majority came from buses and touring cars (37%) and shipping (23%). Trucks also made up 

approximately one fifth of the total, divided into light trucks (15%) and heavy trucks (4%). Cars emitted 

12% of all traffic emissions. Compared to PM10, a larger share of PM2.5 comes from abroad and from 

road traffic (RIVM, n.d.-a). This might be caused by the fact that PM2.5 is more likely to travel long 

distances than PM10 due to its size and weight (Vallero, 2014). 

Nitrogen oxides (NOx) 

Of total NOx emissions in 2014, traffic and transport were the main source by a substantial margin 

(64%). In 2015, the average concentration of NO2 in outdoor air was 14.7 µg/m3. Of this concentration, 

the largest part came from other countries (37%), with road traffic (27%), other traffic (14%) and 

shipping (9%) being the main national sources. Around large cities, the share coming from foreign 

sources decreases. In contrast, the share coming from road traffic is much higher in Utrecht (45%), 

Amsterdam (36%) and Rotterdam (30%). Near busy roads, average annual concentrations can be 

higher than 40 µg/m3, with more than half of the total concentration coming from traffic (RIVM, n.d.-

a). The WHO guidelines recommend an annual concentration of 10 µg/m3 for NO2 (World Health 

Organization, 2021). 

Ozone (O3) 

O3 is not directly emitted but is formed by a reaction between NOx and volatile organic compounds. 

Sources of NOx thus indirectly contribute to O3 concentrations (RIVM, n.d.-a). O3 concentrations are 
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in the range of 40-55 µg/m3, compared to the WHO guideline of a daily 8-hour mean of 100 µg/m3 

during peak season (RIVM, n.d.-b; World Health Organization, 2021). Although it seems like decreases 

in the concentration of NOx would lead to decreases in the concentration of O3, the relationship does 

not appear to be as clear. For example, Jhun et al. (2015) find evidence that decreases in NOx led to 

decreases in peak O3, but that these NOx decreases were also associated with higher non-peak 

concentrations in O3. Similarly, Shi and Brasseur (2020) find that although PM2.5 and NO2 decreased 

during the COVID-19 lockdown in China, O3 concentrations increased. 

Carbon monoxide (CO) 

CO is mainly emitted through incomplete combustion, with traffic being the main source in 2012 (49%). 

Traffic emissions have been cut in halve between 1990 and 2013, and the 8-hour limit of 10,000 µg/m3 

has not been exceeded since 1994 (Compendium voor de Leefomgeving, 2014). 

Sulfur dioxide (SO2) 

SO2 is mainly emitted through the burning of coal and oil. Emissions from traffic have been reduced 

dramatically in recent decades due to decreases in the level of sulfur in fuels. Because of this, the share 

of SO2 emissions originating from traffic is less than 2%. The main emission sources are shipping (30%), 

refineries (25%) and electricity generation (19%) (RIVM, n.d.-a).  

Soot 

Although soot is usually only considered as a part of PM, I discuss it separately here because the data 

for The Netherlands also report soot separately. Soot is mainly emitted through the burning of fossil 

fuels. Within transport, diesel vehicles are the main contributors to soot emissions. Average soot 

concentrations are in the range of 0.5-2.0 µg/m3, and concentrations can be twice as high around busy 

streets compared to urban areas on average (RIVM, n.d.-c). 

2.3 Air pollution and cognitive ability 

When PM is inhaled, these particles can travel from the lungs to other organs, including the brain 

(Peters et al., 2006). Multiple studies have shown that there is an association between long-term air 

pollution exposure, in the form of PM2.5, O3 and NO2, and risk of developing dementia and Alzheimer’s 

disease (see, e.g., Carey et al., 2018; Jung et al., 2015; Peters et al., 2006; Wang et al., 2021; Younan et 

al., 2021). With regards to SO2 and CO, research is somewhat limited, although epidemiological 

research does point to an increased risk of dementia associated with these pollutants (Fu and Yung, 

2020). It should be noted that, although these studies try to control for many relevant covariates, they 

are ultimately measuring correlations. They thus cannot claim with certainty that air pollution is the 

cause of higher rates of dementia. However, these studies are still relevant because it is generally 

infeasible to study this relationship with a randomized controlled trial, at least for humans. Animals 

who were exposed to air pollution in experiments have shown developments in the brain that are 
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similar to developments in the brains of humans which have been linked to Alzheimer’s disease 

(Calderón-Garcidueñas et al., 2020). These findings indicate that air pollution can have lasting 

consequences on the brain, making it likely that it can affect cognitive performance more generally. 

Indeed, long-term exposure to PM, SO2, CO, O3 and NO2 has been linked to a more general decline in 

cognitive performance (Chen and Schwartz, 2009; Park et al., 2022; Younan et al., 2020; Zhang et al., 

2021).  

For short-term exposure to air pollution, experiments are a more feasible research method. 

Regardless, experimental research on this topic is relatively scarce, with the best evidence on the effect 

on cognitive performance coming from Shehab and Pope (2019). These authors run two experiments 

where the subjects take three types of cognitive tests under low concentrations of PM, and the same 

tests under a higher level of PM. In the first experiment, subjects were exposed to candle burning for 

an hour, which is a source of different types of PM. In the second experiment, subjects commuted next 

to a busy road for thirty minutes. This meant that they were exposed to different pollutants, such as 

PM, NOx and CO. The results indicate that both sources of air pollution led to a decline in cognitive 

performance on the Mini-Mental State Examination, which is a test to measure overall cognitive ability. 

Because both experiments find very similar effect sizes, the authors argue that PM is the cause of this 

decline. They also find that the outdoor commuting experiment led to declines in automatic detection 

speed on a different test. For controlled search speed and a final test on colors and words, no effect is 

found for either source of pollution. 

There are also several papers from the economic literature that use observational data to link 

air pollution and cognitive performance. Lavy et al. (2014) have data on high school test scores and 

pollution in Israel from 2000-2002. Each student takes multiple tests at different locations at the end 

of each year, which means the authors can include city, school, and student fixed effects. They combine 

data on test scores with data on the average concentration of PM2.5 and CO on the day of the test in 

the city that each school is located in. These pollution concentrations are measured on the Air Quality 

Index (AQI), which ranges from 0 to 500, with values above 150 being considered unhealthy. This 

makes their results harder to compare to other findings, but they find that a 10 unit increase in the 

AQI for PM2.5 lowers test scores by 1.9% of a standard deviation. Similarly, they find that a 10 unit 

increase in the AQI for CO lowers test scores by 3.5% of a standard deviation. Carneiro et al. (2021) 

have data on test scores in Brazilian university entrance tests, which are spread out over two days. 

These tests are taken at exam venues in more than 250 municipalities, which allows the authors to 

combine test score data with data on the average concentration of PM10 and O3 in a municipality on 

the day of the test. Because the tests are spread out over two days, they can include student and exam 

fixed effects. They also include weather controls, in the form of wind speed, humidity, and 

temperature, as these factors can be correlated with pollution levels and also affect test scores. Using 
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this model, they find that a 10 μg/m3 increase in PM10 on examination days lowers test scores by 8% 

of a standard deviation. Next, they also use an instrumental variables model with wind direction as an 

instrumental variable for air pollution. Wind direction can influence the concentration of air pollution 

in a city by carrying air from a highly polluting area. Here, the assumption is that wind direction in a 

municipality on the day of the test only affects test scores in that municipality through its effect on air 

pollution in that municipality. With this model, they again find that a 10 μg/m3 increase in PM10 on 

examination days decreases test scores by 8% of a standard deviation. 

Although these studies form an important step in assessing the effects of air pollution on 

cognitive performance, there are reasons to question the reliability of their results. Fixed effects 

models rely on the assumption that changes in air pollution are not correlated with changes in any 

unobserved factors that influence test scores, which can be questionable when it is unclear where the 

variation in air pollution comes from. Using wind direction as an instrumental variable relies, amongst 

others, on the assumption that wind direction only affects test scores through its effect on air pollution 

levels. This assumption is questionable, for instance because wind direction can also influence the 

amount of pollen in an area, which has been shown to negatively influence test scores (Bensnes, 2016). 

Depending on the relative presence of pollen-producing plants near sources of air pollution, this could 

lead to either overestimation or underestimation of the true effect. 

2.4 Environmental zones and air pollution 

Environmental zones in The Netherlands can be broadly divided into three categories of vehicles they 

target: diesel cars and delivery vans, diesel trucks, and diesel buses. As of May 2022, there are four 

cities with an environmental zone for diesel cars and delivery vans, 15 cities with an environmental 

zone for diesel trucks, and four cities with an environmental zone for diesel buses (Milieuzones in 

Nederland, n.d.-a, n.d.-b, n.d.-c). On January 1, 2020, new standards were put in place to make 

environmental zones more comparable across cities. Before then, cities were largely able to set their 

own standards, which resulted in a variety of different rules among environmental zones. Regardless, 

these zones had the same overarching principle: vehicles below a certain emission class were not 

allowed to enter. These emission classes usually use different pollutants, such as PM, CO and NOx, to 

assign a value of how clean a vehicle is (ANWB, n.d.). Besides these main categories, there is also an 

environmental zone for mopeds in Amsterdam and The Hague (Gemeente Amsterdam, n.d.; Gemeente 

Den Haag, 2022). As I will explain in section 4, I use the introduction of environmental zones for cars 

in Utrecht, Arnhem and Rotterdam, and an environmental zone for trucks in Arnhem in my analysis. 

Table A1 provides a full overview of environmental zones for trucks and cars per city. 

Multiple reports have focused on predicting the effects of environmental zones on air 

pollution, as well as on assessing the actual effects after an environmental zone has been introduced. 
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I discuss a few of these reports here, to get an idea of the general findings of these studies. Additional 

focus will be given to the environmental zones in Utrecht, Arnhem and Rotterdam. Nieman et al. (2010) 

study the introduction of environmental zones for trucks in 11 cities in July of 2007. Based on license 

plate scans and model calculations, they find that in 2010, PM10 concentrations decreased by 0.15 to 

0.25 µg/m3 near roads with concentrations above EU standards. They predict that this effect size will 

stay similar in 2013 and 2015. On average, they find that PM10 concentrations are 0.02 to 0.08 µg/m3 

lower for streets inside the environmental zones. For NO2, they find no effect in 2010, but predict that 

there could be decreases up to 0.3 µg/m3 near roads with concentrations above EU standards. On 

average, they expect NO2 decreases of 0.02 to 0.09 µg/m3 inside environmental zones in 2013 and 

2015. The effects for PM10 and NO2 are both smaller than the predicted effects in 2007. This was 

caused by three factors: new trucks being less clean than was initially expected, diesel particulate 

filters that are encouraged by environmental zones increasing NO2 concentrations, and imperfect 

compliance. 

Eijk and Voogt (2016) assess the effect that the introduction of an environmental zone for cars 

in Utrecht in 2015 had on soot concentrations. Their analysis is twofold: they perform a license plate 

scan to see how the composition of cars has changed, and also use actual measures of soot 

concentrations. They compare data in 2014 with data in 2015 to assess the impact of the 

environmental zone, controlling for a prognosis of what the composition of cars in 2015 would have 

been without the environmental zone. The license plate scan revealed large differences in the 

composition of cars in Utrecht, which they estimate to have led to a decrease in PM (including soot) 

but not NOx. The results based on measured soot concentrations differ, however. Although they find 

that the contribution of traffic to soot concentrations decreased by 16%, they cannot conclude that 

this was caused by the environmental zone rather than by other factors. It is not clear why they do not 

find an effect of the environmental zone on air pollution. One organization appealed the decision to 

introduce the environmental zone in Utrecht by arguing that it led to traffic bottlenecks because of 

vehicles that had to take a detour (Trouw, 2017). Although this appeal was unsuccessful at preventing 

the environmental zone from being introduced, it might give a possible explanation for the limited 

effect on air pollution that is found. 

With regards to the environmental zone for cars that was introduced in Arnhem in 2019, no 

extensive analysis has been performed so far. However, there was a sharp decrease in the number of 

old diesels driving in the city center, from 1,800 in 2017 to 150 in 2019 (Van der Vegt, 2019). Van de 

Poll et al. (2017) calculated that an environmental zone for cars in Arnhem could result in decreases of 

17% for soot, nearly 10% for PM2.5, 3% for PM10, and 4% for NOx in 2020. 

In January 2016, Rotterdam extended the area of its environmental zone for trucks and 

simultaneously introduced an environmental zone for cars in this same area (Rubio, 2015). Based on 
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scans of the composition of cars in Rotterdam, the expected emissions were calculated in 2017 and 

compared to 2015. The policies were estimated to have led to a 13% decrease in soot emissions by 

traffic and a 4% decrease in NOx traffic emissions (Gemeente Rotterdam, 2018). In the year following 

the introduction of this environmental zone, the amount of old diesel cars in Rotterdam nearly 

decreased by half (CBS, 2017). In contrast to other cities, Rotterdam abolished its environmental zone 

for cars after some time. This was done in two stages, allowing old gasoline cars back from July 2018 

onwards and allowing old diesel cars back from January 2020 onwards (ANWB, 2019).  

2.5 Hypotheses 

Based on my theoretical framework, I formulate the following hypotheses: 

Hypothesis I: Environmental zones lower concentrations of air pollution. 

Hypothesis II: Environmental zones improve test scores. 

The second hypothesis follows naturally from the first hypothesis. Many of the studies that I have 

discussed, suggest that air pollution lowers cognitive performance. If environmental zones succeed in 

lowering air pollution, then they should also cause an increase in cognitive performance. I hypothesize 

that such an increase will be visible in improved test scores. The next section discusses the data that I 

have available to test these hypotheses.  

3 Data 

3.1 Air pollution data 

For air pollution, I use data from Luchtmeetnet. This website reports monthly values for a wide range 

of air pollutants, such as PM, O₃, NOx, SO₂ and CO, but only has data for measuring stations rather than 

averages for all municipalities. I collect data from all cities with an environmental zone, as well as all 

cities from the G40-network that did not implement an environmental zone (“40 steden”, n.d.). I do 

not collect data for air pollutants with very few measuring stations. This means I only have data on the 

monthly concentration of PM10, PM2.5, NO2, NO, O3, and soot, given in µg/m3. These data go back to 

2014 at the earliest, depending on the measuring station. However, most measuring stations have 

some missing data, either because they started measuring later than 2014 or because they do not 

measure a certain pollutant. As with test scores, I drop observations for 2020 and 2021 due to the 

COVID-19 crisis. I drop data from Amsterdam, due to multiple types of environmental zones being 

introduced in Amsterdam. In total, this leaves me with data for 37 measuring stations from 16 

municipalities. Of these stations, 11 are located in cities that introduce an environmental zone for cars, 

and 22 are located in cities that have an environmental zone for trucks at some point between 2014 

and 2019. Table A2 presents summary statistics for different groups of measuring stations. 
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3.2 Test score data 

My main dependent variable of interest is the result on the final exams for primary school students in 

The Netherlands. At the end of primary school, all students in The Netherlands (who are 11-12 years 

old at the time) are required to participate in a centralized test. Each school can choose which test to 

take each year, and they currently have five options to choose from (Ministerie van Algemene Zaken, 

n.d.). The test scores lead to a recommendation for the high school level the student should go to. If 

this recommendation is higher than the recommendation that was given by their teacher beforehand, 

the definitive recommendation can be adjusted upwards (Inspectie van het Onderwijs, n.d.). Annual 

data on which test a school chose and the average test score per school are publicized by Dienst 

Uitvoering Onderwijs (DUO). These data are available for the school years 2010/2011 to 2020/2021, 

with the exception of 2019/2020 when all tests were cancelled due to COVID-19. This means that I 

have access to data on average test scores at the school level taken in 10 years. This dataset also 

contains information on the number of students who took the test, for example. A more extensive 

dataset is available for the school years 2016/2017 to 2020/2021, which has additional information on 

the postal code area and municipality of a school, among others. Combining these two datasets allows 

me to use the more extensive data period of the former, but to also add information on the location 

of the school based on the latter. Here, I assume that in school years 2010/2011 to 2015/2016, the 

location of each school was the same as the location of the school in the school year 2016/2017. 

Although this will likely not be factually correct for all schools, I believe errors will be small in size and 

essentially random, not biasing my estimates. Additional data on school characteristics are also 

available annually for the entire data period. These include the number of students by gender and non-

Dutch background, and a school weight that serves as an indication for the socioeconomic status of 

the student population for each school. Finally, I drop observations for the final school year 2020/2021, 

to prevent my findings from being driven by outliers caused by COVID-19. This means that the final 

school year I take into consideration is 2018/2019. 

Following Carneiro et al. (2021), standardized test scores will be calculated and used as the 

dependent variable. The approach taken here will differ because there are different tests available. 

For each school, the standardized test score will be calculated by taking the difference between the 

school’s average test score and the average test score across all schools for that test in that year, and 

dividing it by the standard deviation. Table A3 provides summary statistics on the data for test scores. 

4 Methodology 

This chapter is structured as follows. I first explain why using a standard OLS-regression is unlikely to 

retrieve the true causal effect of air pollution on test scores. I then introduce the basic idea of the 

strategy I use instead, namely the difference-in-differences methodology. Section 4.1 describes how I 



13 
 

use the difference-in-differences methodology to test my first hypothesis, that environmental zones 

lower air pollution, in more detail. Section 4.2 then discusses the synthetic difference-in-differences 

methodology I use to investigate my second hypothesis, that environmental zones improve test scores. 

This section starts with an explanation of the synthetic control method, as it is closely related to the 

synthetic difference-in-differences and can help to understand the method better. Furthermore, it is 

useful to discuss what the advantages are of the synthetic difference-in-differences over the synthetic 

control method that led me to use the former instead of the latter. I then proceed with a more in-

depth explanation of the synthetic difference-in-differences method as I use it. 

First, it is worthwhile to consider why I do not simply run an OLS-regression of the average test 

score on the average pollution level near a school. The main issue is that local pollution levels are 

correlated with other factors that affect test scores, such as socioeconomic status (Savelkoul et al., 

2010). Since socioeconomic status of parents affects school performance of children, this creates 

geographical variation in test scores that is correlated with air pollution but not caused by it.1 A simple 

OLS-regression would thus result in a biased estimate of the effect of air pollution on test scores, as 

this estimate would also capture these other factors that are correlated with air pollution and affect 

test scores. 

In order to get a more reliable causal estimate of the relationship, I use a difference-in-

differences approach to investigate the effect of environmental zones in cities in The Netherlands.  To 

test my first hypothesis, that environmental zones lower air pollution, I use a standard difference-in-

differences approach. To test my second hypothesis, that environmental zones improve test scores, I 

use the newer synthetic difference-in-differences method developed by Arkhangelsky et al. (2021). An 

explanation of the synthetic difference-in-differences method follows in section 4.2. 

The difference-in-differences methodology is used to estimate the effect of a certain policy, 

also referred to as intervention or treatment, on a certain outcome. In its most basic form, it is used 

when there are data on two groups and two time periods. The two groups can be single aggregate 

units such as states or countries, but also consist of multiple units such as firms or schools. One of the 

groups introduces the policy of interest, and is thus named the treatment group. The other group does 

not introduce the policy of interest, and is referred to as the control group. The two time periods will 

generally be two consecutive years or months, but could also be further apart. The important thing is 

that the policy of interest is introduced between the two time periods. This ensures that there is one 

time period when neither group is treated, and one time period after the treatment group has 

introduced the policy and has thus become treated. In order to retrieve the effect of the policy, or the 

 
1 See Zumbuehl & Dillingh (2020) for evidence on educational disparities between different socioeconomic 
groups. 
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treatment effect, you need to know what the counterfactual scenario is for the treatment group. In 

other words, what would the value of the outcome variable have been for the treatment group if it 

had not been treated? The difference-in-differences methodology estimates this counterfactual by 

assuming that, in the absence of treatment, the outcome variable would have evolved in a similar 

fashion in both groups. This is also known as the parallel trends assumption. This is a fundamentally 

untestable assumption, as the counterfactual scenario is never observed. After all, the treatment 

group cannot simultaneously be treated and untreated in the last time period (Cunningham, 2021). 

The treatment that I am interested in is the introduction of environmental zones. My analysis 

essentially consists of two parts. I first estimate the effect of environmental zones on air pollution to 

test my first hypothesis, and the second part investigates the effect of environmental zones on test 

scores to test my second hypothesis. The units of analysis are measuring stations for the first 

hypothesis, and schools for the second hypothesis. I consider a school or measuring station treated if 

it is located in a city with an active environmental zone. My reasoning to consider all schools and 

stations in one of these cities treated, as well as potential issues with this definition, are discussed 

further in section 4.1. Because the difference-in-differences methodology uses changes in treatment, 

there are four environmental zones of interest in my dataset for test scores, which covers 2011 until 

2019: an environmental zone for cars in Utrecht in 2015, an environmental zone for trucks in Arnhem 

in July 2014, an environmental zone for cars in Arnhem in 2019, and an environmental zone for cars in 

Rotterdam in 2016. Although there are also changes in the environmental zone in Amsterdam during 

this period, I would be unable to isolate the effect of one particular environmental zone in this city. I 

thus exclude Amsterdam from my sample.  

4.1 Air pollution methodology 

This section precedes as follows. I first provide the technical details of my difference-in-differences 

analysis for my first hypothesis. I then discuss the identifying assumption, the parallel trends 

assumption, more closely. Finally, I discuss potential issues with this analysis. 

The first regression I run investigates my first hypothesis, that environmental zones lower air 

pollution. The regression equation for this is as follows: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑚𝑡 = 𝛼0 + ∑ 𝛼𝑡
𝑇
𝑡=1 𝑚𝑜𝑛𝑡ℎ𝑜𝑓𝑦𝑒𝑎𝑟𝑡 + 𝛾𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑚𝑡 + 𝜇𝑚 + 𝜀𝑚𝑡,     (1) 

where 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑚𝑡  is the concentration of a certain type of air pollutant at monitoring station m in 

month t. These pollutants are PM10, PM2.5, NO2, NO, O3, and soot, in µg/m3, and there are T months 

in total in my dataset.  𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑚𝑡 is equal to one when a station is both in the 

city with the environmental zone of interest and that environmental zone is active in month t. 

𝑚𝑜𝑛𝑡ℎ𝑜𝑓𝑦𝑒𝑎𝑟𝑡 is a separate dummy variable for each month in my data period, since the air pollutant 

concentrations are monthly averages. These are the time fixed effects. Finally, 𝜇𝑚 are monitoring 
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station fixed effects, and the error terms 𝜀𝑚𝑡 are clustered at the municipality level. The parameter of 

interest is 𝛾, which gives the effect that the environmental zone of interest has on pollution levels. 

Based on my first hypothesis, I expect 𝛾 to be negative, as I hypothesized that the introduction of an 

environmental zone lowers air pollution concentrations.  

Due to missing data in 2014 for the monitoring stations in Arnhem, I cannot estimate the effect 

of the truck zone in Arnhem on air pollution. This means I run this regression three times in total, to 

get a separate effect for each of the car zones in Utrecht, Arnhem and Rotterdam. When estimating 

the effect of the car zone in Utrecht, I drop observations from Arnhem and Rotterdam, and vice versa. 

Before these cities implemented an environmental zone for cars, they all had an environmental zone 

for trucks in place. I therefore use monitoring stations in cities with an environmental zone for trucks 

as control units in all three regressions. I deem this to be the most appropriate counterfactual for each 

of the cities, as this corresponds to the situation in these cities before they introduced a car zone. The 

goal of the control stations is to serve as the counterfactual trend for how air pollution would have 

developed in the absence of the car zone. Cities that keep their truck zone when one of these cities 

adds an additional car zone seem more appropriate for this than cities that never had an environmental 

zone in the first place. It is important to note that all these control units have a truck zone in place in 

the entire data period, meaning that there are no changes in treatment status for them. I also drop 

data before July 2014 for the regression of Arnhem for this reason, as that is when Arnhem 

implemented its truck zone. 

There are multiple reasons why I choose to consider every station in a city with an active 

environmental zone, rather than only the stations actually within the zone, as treated. It is partly due 

to data limitations, as none of the measuring stations in Utrecht and Arnhem are located inside the 

environmental zone and only one school is in Arnhem, for example. Using treatment at the city-level 

thus allows for more data on treated units to estimate the treatment effects. It is also motivated by 

the fact that spillover effects are highly likely within cities, due to pollution being carried across the 

environmental zone borders and changes in vehicle composition also affecting other parts of these 

cities. In addition, this allows me to capture potential increases in air pollution in areas outside the 

environmental zones caused by vehicles having to take detours. Some opponents of environmental 

zones have claimed that environmental zones are ineffective for this reason, but based on previous 

studies I expect such effects to be small. Similarly, it limits potential composition changes, which could 

arise if wealthier families move to areas within a new environmental zone. I assume that these spillover 

and composition effects are only present within cities, and not across cities. Although this likely 

“waters down” potential effects of environmental zones, I consider this the most valid approach to 

use.  
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I choose to run a separate regression for each environmental zone instead of running the 

regression once on my full sample, where I would have variation in treatment timing due to Utrecht, 

Arnhem and Rotterdam implementing environmental zones in different years. Such a model would 

produce a single estimate of the variance-weighted average effect of environmental zones on the 

treated (Goodman-Bacon, 2021). My reasoning to instead run separate regressions is both practical 

and theoretical. It allows me to obtain distinct effects per city, which is particularly useful if effects are 

heterogenous across cities, as section 2.4 suggested they might be. Furthermore, Goodman-Bacon 

(2021) showed that variation in treatment timing can result in biased estimates when treatment 

effects are not constant over time, which is plausible in my set-up. By running separate regressions, 

treatment only occurs at one point in time, meaning that this bias cannot arise.  

In my context, the parallel trends assumption implies that the development of air pollution 

concentrations in Rotterdam, Utrecht, and Arnhem if they had not introduced an environmental zone 

for cars would have been the same as the actual development of air pollution in cities that only have 

an environmental zone for trucks. I perform two standard informal tests to check the validity of the 

assumption. These assumptions can give some degree of evidence for the parallel trends assumption, 

but are never able to prove it. After all, the counterfactual scenario of air pollution in Rotterdam, 

Utrecht, and Arnhem without the car zone is not observed in the periods when they have a car zone 

in place. The first test is that I run each regression again with a municipality-specific linear time trend 

added to the regression. This essentially relaxes the parallel trends assumption, as it allows treated 

and control municipalities to follow different linear air pollution trends (Angrist & Pischke, 2009). More 

specifically, this extrapolates any linear pre-treatment difference in trends between the treatment and 

control stations to the post-treatment periods (Rambachan and Roth, 2022). If the coefficients do not 

change much compared to the base model, this is generally considered to make the results more 

credible (Wing et al., 2018). However, this is still not unequivocal proof of the parallel trends 

assumption holding. It simply relaxes the assumption somewhat, to the assumption that any linear 

differences before an environmental zone is introduced would have remained in the absence of the 

environmental zone. Moreover, when the difference is not linear, this solution will not be valid 

(Rambachan and Roth, 2022). Secondly, I run an event study to examine the extent to which stations 

in Rotterdam, Utrecht, and Arnhem were already on a different air pollution trend compared to the 

control stations. This event study is essentially the same as the base difference-in-differences model, 

but it includes pre-treatment leads and post-treatment lags of the 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑚𝑡 

coefficient. The regression, based on Cunningham (2021), looks as follows: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑚𝑧 = 𝜂𝑚 + 𝜆𝑧 + ∑ 𝜃𝑧
−2
𝑧=−𝑞 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑚𝑧 +

∑ 𝛿𝑧
𝑛
𝑧=0 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑚𝑧 + ∊𝑚𝑧,                (2) 
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where treatment occurs at month z=0. 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑚𝑧 is equal to one when a 

monitoring station is in a city with an active environmental zone of interest. 𝜂𝑚 are monitoring station 

fixed effects, and 𝜆𝑧  are month fixed effects. q is the number of treatment leads, and n is the number 

of treatment lags. These are simply the number of months before and after the environmental zone is 

introduced, respectively. The error terms ∊𝑚𝑧  are clustered at the municipality level. If monitoring 

stations in Utrecht, Arnhem, and Rotterdam are on parallel trends to the control stations, 𝜃𝑧 would be 

expected to be equal to zero. 𝛿𝑧 give a treatment coefficient per month, and can thus show whether 

the effect of environmental zones on air pollution is dynamic and changes over time. Note that z=-1 is 

the reference month. The 𝜃𝑧 and 𝛿𝑧 coefficients thus show how much bigger or smaller the difference 

in air pollution is between the treatment and control stations for each month compared to this 

reference month, after accounting for month and station fixed effects. Standard errors are clustered 

at the municipality level.  

Event studies produce intuitive graphs that plot all of the 𝜃𝑧 and 𝛿𝑧 coefficients, which allows 

me to visually assess the parallel trends assumption. If the 𝜃𝑧 coefficients are equal to zero, this 

indicates that the treated monitoring stations were on a parallel trend for an air pollutant in the pre-

treatment period. This does not mean that all of these monitoring stations did not experience an 

increase or decrease in air pollution concentrations over time. It merely means that the difference 

between these groups stayed constant over time.  

As an example of what non-parallel pre-treatment trends mean, consider the example in Figure 

1. In Panel A of Figure 1, the pre-treatment lag coefficients 𝜃𝑧 are equal to zero. This means that the 

concentration of the air pollutant was changing by the same amounts in the treatment stations and 

control stations each period. As soon as the environmental zone is introduced in period 0, the 

treatment stations see a drop in the air pollutant concentration. Because there was no difference in 

trends between treatment and control stations in the pre-treatment period, it seems that the control 

stations provide a credible counterfactual for the treatment stations. The treatment effect that a 

difference-in-differences regression estimates then seems likely to be equal to the ”true” treatment 

effect. Note, again, that this is not definitive proof for the parallel trends assumption. Just because the 

two trends moved parallel before the environmental zone, does not necessarily mean that they would 

have continued to do so in the absence of the environmental zone. However, I can be more confident 

in this assumption than if the two trends already did not move parallel before the environmental zone. 

For an example of this, consider Panel B of Figure 1. Here, the 𝜃𝑧 pre-treatment lag coefficients are 

positive in the first time period and then decrease over time to the period when the environmental 

zone is introduced. I can then say that the treated stations are on a “downward trend” compared to 

the control stations. This means that pollution concentrations seemed to be decreasing more rapidly 

(increasing less rapidly) for the treated stations compared to the control stations. It then seems likely 



18 
 

that these treated stations would have continued to have more rapidly decreasing (less rapidly 

increasing) pollution concentrations after the treatment period, even if the environmental zone had 

not been introduced. This is indicated by the green dots, which show the actual counterfactual trend 

of the treated stations. The fact that the 𝛿𝑧 post-treatment lead coefficients are negative, is then partly 

due to stations in Utrecht being on a downward trend compared to the control stations rather than 

representing the actual effect of the environmental zone. This results in the difference-in-differences 

regression overestimating the treatment effect, as can be seen in Panel B. Consider, also, what the 

effect would be of including a municipality-specific linear time trend in the difference-in-differences 

regression, which is the first informal test I discussed. This would be successful in retrieving the ”true” 

treatment effect, since the difference in trends between the treatment and control stations is linear. 

To summarize, I investigate the effect of environmental zones on air pollution through a 

difference-in-differences model. I run a separate regression for each of the car zones in Utrecht, 

Arnhem, and Rotterdam. All monitoring stations in these cities are considered treated once the 

environmental zone for cars is introduced, and monitoring stations in cities with an environmental 

zone for trucks serve as control stations. I expect to find that environmental zones lower 

concentrations of air pollutants. I informally test the parallel trends assumption by adding municipality-

specific linear time trends and by running event studies.  

Figure 1: Illustration of parallel trends assumption with event study 

Panel A: Example of event study with parallel 

trends 

 

Panel B: Example of event study with non-

parallel trends 

 
Note: Event study regressions in the format of equation 2, constructed by the author based on simulated data. 

X-axis shows the number of months away from the introduction of the environmental zone, which happens in 

month 0. Vertical line is the last pre-treatment period, which is the reference period. Red dots indicate the 

estimated treatment lead and lag coefficients, green dots indicate the true counterfactual outcomes for the 

treatment stations. 

 

4.2 Test score methodology 

I now turn to my second hypothesis, that environmental zones improve test scores. For this part, I use 

my dataset with annual school-level data of scores on the final tests in primary schools. The research 
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method is the synthetic difference-in-differences, which is based on the classic difference-in-

differences methodology and the more recent synthetic control method. I first give a brief explanation 

of the synthetic control method, followed by an intuitive explanation of the synthetic difference-in-

differences methodology. This is followed by a more technical explanation of how this synthetic 

difference-in-differences model looks in my case. 

The synthetic control method (SCM) has been developed and popularized in the past two 

decades. The goal of this method is to investigate the effect of policies for a small number of large 

units, such as cities or countries, on an aggregate outcome (Abadie, 2021). For example, Abadie et al. 

(2010) study the effect of a form of anti-tobacco legislation in California on cigarette sales in California. 

This legislation was Proposition 99, which imposed a tax on packs of cigarettes, amongst others. The 

SCM can be seen as a type of comparative case study, where the effect of Proposition 99 is estimated 

by comparing the evolution of cigarette sales per capita in California to states that are similar but did 

not introduce anti-tobacco legislation. Before the SCM was introduced, a comparative case study 

would have likely picked one state to compare California to. However, it can be difficult to hand-pick 

a state that is a credible counterfactual for California. Instead, the SCM is built on the premise that a 

combination of unaffected states can serve as a better comparison than a single unaffected state. It 

does this by using a data-driven approach to construct a synthetic control state for California. The 

authors first select a set of states that serve as the candidate states, from which certain states will be 

selected as part of the synthetic control. These candidate states are states that did not introduce any 

large anti-tobacco legislation in the data period. They then select characteristics that predict cigarette 

sales per capita, such as GDP per capita, the price of cigarettes, the share of youths, and cigarette sales 

per capita itself in multiple years before Proposition 99 was introduced. The synthetic control is 

constructed by assigning different weights to each candidate state, with the weights summing to one. 

This linear combination of candidate states forms a synthetic control for California, with the weights 

being chosen to minimize the difference in the pre-intervention characteristics between the synthetic 

control and California. The goal is to make the cigarette sales per capita trend of the synthetic control 

equal to cigarette sales per capita in California, in the period before Proposition 99 was introduced. 

Including pre-intervention characteristics other than cigarette sales per capita itself help in ensuring 

that the synthetic California does not follow California’s cigarette sales per capita because of chance. 

Cigarette sales can be volatile, but these other characteristics make it more convincing that cigarette 

sales in California and the synthetic control  are driven by similar underlying factors. This makes it more 

likely that cigarette sales per capita would have evolved in a similar fashion if Proposition 99 had not 

been introduced. The treatment effect of Proposition 99 is then the observed difference in cigarette 

sales per capita, between California and its synthetic control, after Proposition 99 is introduced (Abadie 

et al., 2010; Abadie et al., 2015; Abadie, 2021).  
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The synthetic difference-in-differences (SDID) methodology combines characteristics of the 

classical difference-in-differences methodology with characteristics of the synthetic control method. 

The SDID can be used on panel data to compare multiple treated units, who become treated after 

some time period in this dataset, to multiple untreated units, who are never treated. The SDID then 

chooses unit weights, using a form of penalized least squares, so that the pre-treatment outcome 

trends of the untreated units run parallel to the pre-treatment outcome trends of the treated units. In 

contrast to the synthetic control method, only the outcome variable is used for this matching, and not 

any covariates.2 Additionally, the outcome trends only have to run parallel rather than be equal in 

levels. It also selects time weights, by solving for a form of least squares, to remove the importance of 

pre-treatment periods that are very different from the post-treatment periods. After those weights 

are chosen, it runs a standard difference-in-differences regression on the reweighted panel. The 

treatment effect, τ, is given by solving the following two-way fixed effects regression: 

(𝜏̂, 𝜇̂, 𝛼̂, 𝛽̂) = arg min
𝜏,𝜇,𝛼,𝛽

{∑ ∑ (𝑌𝑖𝑡 − 𝜇 − 𝛼𝑖 − 𝛽𝑡 − 𝑊𝑖𝑡𝜏)2𝜔̂𝑖
𝑇
𝑡=1

𝑁
𝑖=1 𝜆̂𝑡}.         (3) 

Here, 𝑌𝑖𝑡 is the average standardized test score for school i at time t, 𝜇 is an intercept, 𝛼𝑖  is a school-

fixed effect, and 𝛽𝑡 is a time-fixed effect. 𝑊𝑖𝑡 is a treatment indicator with a value of 1 if a school is in 

the city with the environmental zone of interest, and a value of 0 otherwise. 𝜔̂ are the unit weights 

and 𝜆̂ are the time weights (Arkhangelsky et al., 2021). I expect τ to be positive, as my second 

hypothesis is that environmental zones improve test scores. Before this regression can be run, 𝜔̂ and 

𝜆̂ have to be chosen. Arkhangelsky et al. (2021) provide a full overview of the methods that are used 

to choose each of those groups of weights, and I discuss them here in a more limited form.  

To choose the unit weights, the following equation is solved: 

(𝜔̂0, 𝜔̂𝑠𝑑𝑖𝑑) = argmin
𝜔0∈ℝ,𝜔∈Ω

∑ (∑ 𝜔𝑖𝑌𝑖𝑡 −
1

𝑁𝑡𝑟

𝑁𝑐𝑜
𝑖=1

∑ 𝑌𝑖𝑡
𝑁
𝑖=𝑁𝑐𝑜+1 + 𝜔0)

2
+ 𝜁2𝑇𝑝𝑟𝑒‖𝜔‖2

2𝑇𝑝𝑟𝑒

𝑡=1 .       (4) 

I discuss the main intuition of this equation here, with a full algebraic overview of these terms in 

Appendix B. I first focus on the first part of the equation. 𝑁𝑐𝑜  is the number of schools in cities without 

an environmental zone, 𝑁𝑡𝑟  is the number of schools in the city with the environmental zone of 

interest, and N is the total number of schools. This equation is solved by assigning a unit weight 𝜔𝑖  to 

each control school i.  As the first two terms between brackets show, this is done by minimizing the 

squared difference between the average test score of these reweighted control schools and the 

 
2 Covariates can also be used with the SDID, but they serve a different function compared to the synthetic 
control method. Covariates are not used in constructing the unit weights, as they are for the synthetic control. 
Instead, covariates can be included by running the SDID on the residual of the regression of the outcome 
variable on the covariates (Arkhangelsky et al., 2021). I also ran all my regressions with the share of migrants, 
share of females, and measures of the school weight included as covariates. These covariates did not change 
my results either quantitatively or qualitatively, but generally only increased my standard errors due to a lower 
number of observations because of missing values for these variables. I thus do not report the results of these 
regressions. 
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average test score in treated schools. The sum is taken over each of the 𝑇𝑝𝑟𝑒  years before the 

environmental zone of interest is introduced. However, there is also the additional 𝜔0 term. This is not 

a weight that is specific to each unit, but instead a simple constant that allows for a constant difference 

in average test scores between the two groups of schools. This weight relaxes the requirement that 

the trends in average test scores for the two groups have to be equal to each other, and instead only 

have to run parallel to each other. This is possible because the main regression equation includes 

school-fixed effects, which capture differences between schools that stay constant over time. The final 

term, which is outside brackets, is meant to put some restrictions on the unit weights that are chosen. 

This can be referred to as a penalization term, hence the name penalized least squares. This term is 

minimized by keeping the unit weights closer to zero. The goal of this term is to ensure that the set of 

weights that solve the equation is unique, as well as to get a more dispersed set of weights 

(Arkhangelsky et al., 2021). This is also known as regularization, and is particularly useful in situations 

with more control units than pre-treatment periods. Not including regularization can then result in an 

imprecise estimator (Doudchenko and Imbens, 2016). 

The time weights, on the other hand, are chosen by solving the following equation: 

(𝜆̂0, λ̂𝑠𝑑𝑖𝑑) = argmin
λ0∈ℝ,λ∈Λ

∑ (∑ λ𝑡𝑌𝑖𝑡 −
1

𝑇𝑝𝑜𝑠𝑡

𝑇𝑝𝑟𝑒

𝑡=1
∑ 𝑌𝑖𝑡

𝑇
𝑡=𝑇𝑝𝑟𝑒+1 + λ0)

2
𝑁𝑐𝑜
𝑖=1 .              (5) 

These time weights assign a weight to each year before the environmental zone is introduced. They do 

this by minimizing the squared sum of differences between the test score of each control school in the 

reweighted years and the average test score of this control school in the years after the environmental 

zone is introduced. However, there is again a constant term λ0 included as well, which allows for a 

constant difference between these averages (Arkhangelsky et al., 2021). Importantly, there is no 

regularization in the form of a penalization term here. One of the reasons for this is that the authors 

assume that units can be interchangeable in this setting, but time periods might not be (Athey, 2021). 

They thus allow the time weights to limit the importance of years before the environmental zone was 

introduced that differ substantially from the years after the environmental zone was introduced, which 

can improve precision (Arkhangelsky et al., 2021).  

Figure 2, taken from Arkhangelsky et al. (2021), shows the difference between the classical 

difference-in-differences, the synthetic control method, and the synthetic difference-in-differences, 

using the example of Proposition 99. The classical difference-in-differences simply compares California 

to the average of all other states, and calculates the treatment effect by assuming parallel trends. The 

synthetic control method first tries to construct a synthetic California that is very close in the level of 

cigarette sales per capita to California, and then calculates the treatment effect by taking the 

difference between their cigarette sales after Proposition 99 is introduced. Finally, the synthetic 

difference-in-differences merely tries to match the average trend of cigarette sales per capita of the 
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control states to the trend in California. The treatment effect is calculated by assuming that the 

reweighted control states are on a parallel trend to California. 

Figure 2: Comparison of classical difference-in-differences, synthetic control, and synthetic 

difference-in-differences 

 

Note: Adapted from “Synthetic Difference-in-Differences”, by D. Arkhangelsky, S. Athey, D.A. Hirshberg, G.W. 

Imbens, and S. Wager, 2021, American Economic Review, 111(12), p. 4095 

(https://doi.org/10.1257/aer.20190159). Copyright American Economic Association; reproduced with 

permission of the American Economic Review. Each graph shows the trend of cigarette sales per capita in 

California and control states per year. The vertical lines indicate the year Proposition 99 was introduced. 

Arrows indicate the estimated treatment effect for the method listed at the top of each graph. 

  

The main advantage of the SDID over a synthetic control method for my analysis is that the 

SDID can be used on panels with a large number of treated and control units, whereas the synthetic 

control method is usually applied to a small number of aggregate units. It would be possible to first 

calculate the mean test score per year for each city, and then apply the synthetic control method. 

However, this would substantially decrease my number of observations. Since I have data at the 

school-level, the SDID allows me to use my more extensive school panel data set to get more precise 

estimates. The main disadvantage of the difference-in-differences methodology over the SDID is that 

the treatment and control units might not have parallel trends using raw data, even before treatment 

occurs. In contrast, the SDID assigns weights to the control units to make the pre-intervention trends 

parallel to the treated units, and then applies the DID method on this reweighted panel (Arkhangelsky 

et al., 2021). I am only able to use the SDID for test scores, because the air pollution data have missing 

values for some periods. The SDID method will not work when the outcome variable has missing values. 

As in section 4.1, I consider every school in the city with the environmental zone of interest as 

treated to capture potential spillover effects. Here,  I do perform a robustness check where only those 

schools which are actually within the borders of the environmental zone are considered treated. This 

means I drop the schools within the treated cities that are not inside the borders of the environmental 
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zones. Not doing this would likely result in spillover effects within cities biasing my estimates 

(Cunningham, 2021).  

I run a separate regression for each environmental zone of interest. My test score data set 

covers more years than my air pollution data set, so that I also have test score data before an 

environmental zone for trucks was introduced in Arnhem in July 2014. This means that in addition to 

the three car zones in Utrecht, Arnhem, and Rotterdam, I can also investigate the effect of the truck 

zone in Arnhem for this section. Control units for the regressions of the car zones are schools in cities 

with environmental zones for trucks. This is based on the same logic as in section 4.1, as these cities 

had a truck zone in place before they introduced a car zone. For the regression of the truck zone in 

Arnhem, I use units without any environmental zone as controls because Arnhem did not have any 

environmental zone in place before it introduced its truck zone. Arnhem introduced its truck zone in 

July 2014, and its car zone in January 2019. I thus drop the period before July 2014 for my regression 

of the car zone, and I drop the period after December 2018 for my regression of the truck zone. Not 

doing this would result in multiple “treatments” occurring in Arnhem in each analysis.  

After this method produces an estimate of the treatment effect, I want to get some idea of 

how unlikely it is that this effect is actually due to chance. Just like the synthetic control method, the 

synthetic difference-in-differences method cannot use conventional standard errors to evaluate 

whether the result is statistically significant. Instead, Arkhangelsky et al. (2021) suggest three ways to 

calculate standard errors with this approach. I opt to use placebo standard errors, which, in contrast 

to the other two options, are also reliable if the number of treated schools is small. Calculating the 

standard errors by using placebo evaluations is also similar to the approach usually taken when using 

the synthetic control method. In essence, this method takes the control schools, assigns a fake 

treatment to some of them, and then repeats the main regression. This produces placebo treatment 

effects for these control schools. The reported p-value for the treatment effect of interest is then the 

proportion of placebo treatment effects that is larger in absolute size than the actual estimated 

treatment effect of interest (Abadie, 2021; Arkhangelsky et al., 2021). For example, assume I get an 

estimate of the treatment effect that is equal to 0.1. If all the placebo treatment effects are larger than 

0.1, the estimated treatment effect of interest was most likely a chance finding rather than the “true” 

treatment effect. This will be reflected by the p-value, which would then be equal to 1. Following 

conventional p-value thresholds of 0.01, 0.05 and/or 0.1, I would then conclude that I do not find 

evidence for an effect of an environmental zone on test scores. I run 200 placebo replications for each 

regression to calculate the p-value. 

To summarize, I investigate the effect of environmental zones on test scores by using the 

synthetic difference-in-differences method. I run a separate regression for each of the car zones in 

Utrecht, Arnhem, and Rotterdam, and for the truck zone in Arnhem. All monitoring stations in these 
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cities are considered treated once the environmental zone of interest is introduced. The control 

stations are stations in cities with a truck zone for the regression of car zones, and stations in cities 

without any environmental zone for the regression of the truck zone. The synthetic difference-in-

differences assigns weights to these control schools to match the average trend of test scores for 

treated schools before the environmental zone is introduced. In line with my second hypothesis, I 

expect to find that environmental zones lower concentrations of air pollutants. 

5. Results 

This section reports my results for both hypotheses. Section 5.1 shows my results of the effect of 

environmental zones on different air pollutants, and section 5.2 present my findings of the effect of 

environmental zones on test scores. Finally, section 5.3 includes robustness checks to see whether my 

results stand up to scrutiny. 

5.1 Air pollution results 

I start by reporting the results of the environmental zone in Utrecht. Table 1 reports the results 

of my standard regression, which is Equation 1. These findings indicate that the introduction of an 

environmental zone for cars in Utrecht had no significant effect on concentrations of NO2, NO and 

PM10. Surprisingly, I find that concentrations of PM2.5 and O3 actually increased by more than 2 µg/m3. 

Table 2 includes municipality-specific linear time trends and finds similar results. The sign of each 

coefficient is the same, but the effect is now significant for NO2 and PM10 and no longer significant for 

O3. My preferred specification is the one in table 2, as this is better able to account for possible 

diverging air pollution trends between Utrecht and other cities. As explained, this extrapolates any 

linear differences in air pollution trends that already existed before the environmental zone was 

introduced. Overall, these findings point towards a negative effect of the environmental zone on PM10 

concentrations, but a positive effect on NO2 and PM2.5 concentrations. 

Next, I investigate to what extent monitoring stations in Utrecht were on a parallel trend 

compared to stations from other cities by estimating an event study. These results are reported in 

Figure 3. The coefficient in the first month in Panel A of Figure 3 is approximately -4. The interpretation 

of this coefficient is that the difference in NO2 concentrations between the first month and the last 

month before the car zone is introduced, is 4 µg/m3 lower for monitoring stations in Utrecht than for 

the control stations. Overall, Figure 3 shows that the station- and time-fixed effects do not fully capture 

differences in pre-treatment trends for some pollutants. In particular, stations in Utrecht seem to be 

on an upward trend compared to the control stations for PM2.5, and for NO2 to a lesser extent. This 

can be seen by looking at the general pattern of the coefficients before the environmental zone is 

introduced. Pre-treatment trends do not show clear systematic divergences for NO, PM10 and O3. 

Visual inspection of the post-treatment coefficients seems to point towards a negative effect on PM10, 
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a positive effect for O3, and no effect for NO. However, it is hard to get a clear picture of the effects 

based on these event study graphs due to the time-fixed effects not fully picking up monthly patterns 

in pollutant concentrations. The upward pre-treatment trends for NO2 and PM2.5 might, however, 

explain why I found positive coefficients in Table 1, to the extent that this reveals non-parallel trends 

between these groups in the absence of treatment. Apparently, the municipality-specific trends in 

Table 2 are not able to fully capture these pre-treatment trend differences. In general, my conclusion 

from the findings for Utrecht is that there is some evidence for decreases in PM10, and less convincing 

evidence for increases in NO2 and PM2.5. I interpret these findings as the environmental zone in 

Utrecht having very moderate to no effects on air pollution, with possible decreases in PM10 

concentrations. 

Table 1 

Effects of the environmental zone for cars in Utrecht 

 (1) NO2 (2) NO (3) PM10 (4) PM2.5 (5) O3 

Car zone 0.996 

(0.812) 

0.334 

(0.671) 

-0.598 

(0.287) 

2.398*** 

(0.092) 

2.868** 

(0.816) 

Observations 722 730 614 410 507 

Station fixed effects Y Y Y Y Y 

Month of year fixed 

effects 

Y Y Y Y Y 

Municipality-specific 

trend 

N N N N N 

Note: Dependent variable is concentration of pollutant listed at the top of each column in µg/m3. Standard 

errors are reported between brackets. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 

Table 2 

Effects of the environmental zone for cars in Utrecht with municipality-specific trends 

 (1) NO2 (2) NO (3) PM10 (4) PM2.5 (5) O3 

Car zone 1.832** 

(0.418) 

0.193 

(0.262) 

-0.781** 

(0.251) 

2.241*** 

(0.116) 

0.413 

(0.325) 

Observations 722 730 614 410 507 

Station fixed effects Y Y Y Y Y 

Month of year fixed 

effects 

Y Y Y Y Y 

Municipality-specific 

trend 

Y Y Y Y Y 

Note: Dependent variable is concentration of pollutant listed at the top of each column in µg/m3. Standard 

errors are reported between brackets. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 
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Figure 3: Event studies of environmental zone for cars in Utrecht 

Panel A: Effect on NO2 in µg/m3 

 

Panel B: Effect on NO in µg/m3 

 

Panel C: Effect on PM10 in µg/m3 

 

Panel D: Effect on PM2.5 in µg/m3 

 

Panel E: Effect on O3 in µg/m3 

 

 

 

Note: Each panel represents an event study regression of the effect of the environmental zone for cars in 

Utrecht on the pollutant listed on the y-axis of each graph, using equation 2. The vertical line represents the 

last month before the environmental zone is introduced, which is the reference period. Dots before this line 

represent the treatment leads, and dots after this line represent the treatment lags. The lines around each 

dot represent the 95% confidence interval of the point estimate. 

 

Next, I examine the results of the environmental zone for cars in Arnhem. Table 3 reports the 

results of Equation 1, where I find statistically significant and negative results for all pollutants. In 

particular, this corresponds to decreases of approximately 9% for NO2, 2.5% for NO, 3.5% for PM10, 

and 13% for soot, compared to their pre-treatment means in Arnhem. When including municipality-
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specific linear time trends, the effect only remains negative and significant for PM10, although the 

estimated effect is now also larger in size. On the contrary, it becomes positive and significant for NO. 

For soot, the effect is similar in size, leading me to believe that its insignificance is driven by the large 

standard error rather than there actually not being an effect. Turning to Figure 4, there is a seemingly 

downward pre-treatment trend for NO2 and no clear visual effect of the environmental zone after it is 

introduced. For NO, the trends seem to be comparable in the 2-3 years before the car zone is 

introduced. I believe that the positive effect found in Table 4 is mainly driven by the outlier 4 months 

after the environmental zone is introduced, whereas there seems to be a visible decline in the last 

months of my data period. For PM10, trends move in a parallel fashion in the two years leading up to 

the environmental zone, but do not show any clear change afterwards. Finally, there is no evidence of 

a -trend difference for soot before the environmental zone is introduced, but there does seem to be a 

clear decrease in soot concentrations in the year after the environmental zone is introduced. All in all, 

I find evidence for a decrease in soot concentrations at Arnhem’s monitoring stations, but limited 

evidence for an effect on the other pollutants. The effect size for soot is somewhat smaller than the 

effect predicted by Van de Poll et al. (2017), which was 17%. 

Table 3 

Effects of the environmental zone for cars in Arnhem 

 (1) NO2 (2) NO (3) PM10 (4) Soot 

Car zone -3.032** 

(0.440) 

-0.620* 

(0.289) 

-0.748* 

(0.313) 

-0.200*** 

(0.004) 

Observations 452 454 498 249 

Station fixed effects Y Y Y Y 

Month of year fixed 

effects 

Y Y Y Y 

Municipality-specific 

trend 

N N N N 

Note: Dependent variable is concentration of pollutant listed at the top of each column in µg/m3. Standard 

errors are reported between brackets. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 
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Table 4 

Effects of the environmental zone for cars in Arnhem with municipality-specific trends 

 (1) NO2 (2) NO (3) PM10 (4) Soot 

Car zone 0.190 (0.254) 4.537*** (0.569) -2.801*** (0.543) -0.147 (0.073) 

Observations 452 454 498 249 

Station fixed effects Y Y Y Y 

Month of year fixed effects Y Y Y Y 

Municipality-specific trend Y Y Y Y 

Note: Dependent variable is concentration of pollutant listed at the top of each column in µg/m3. Standard 

errors are reported between brackets. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 

Figure 4: Event studies of environmental zone for cars in Arnhem 

Panel A: Effect on NO2 in µg/m3 

 

Panel B: Effect on NO in µg/m3 

 

Panel C: Effect on PM10 in µg/m3 

 

Panel D: Effect on soot in µg/m3 

 

Note: Each panel represents an event study regression of the effect of the environmental zone for cars in 

Arnhem on the pollutant listed on the y-axis of each graph, using equation 2. The vertical line represents the 

last month before the environmental zone is introduced, which is the reference period. Dots before this line 

represent the treatment leads, and dots after this line represent the treatment lags. The lines around each 

dot represent the 95% confidence interval of the point estimate. 

 

Finally, I examine the effects of the environmental zone in Rotterdam, where Table 5 presents 

the results of my main regression. These findings indicate that the environmental zone in Rotterdam 

led to decreases in PM10 and soot concentrations, but to an increase in the concentration of NO2. 
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When adding a municipality-specific time trend in Table 6, the sign of each effect remains the same. 

However, the effect for soot is no longer statistically significant. Since the coefficients are so similar, 

however, this might point towards the larger standard error being the culprit rather than there actually 

being no effect. The similarity of coefficients between these tables seems to indicate that the initial 

model was able to ensure parallel trends in the pre-treatment period fairly well already. I check this by 

looking at the event studies in Figure 5. For NO2, there seems to be somewhat of an upward trend 

visible in the pre-treatment period for Rotterdam compared to other stations. Again, this could explain 

why I find a positive coefficient here. For the other pollutants, the pre-treatment trends seem to run 

fairly parallel between the two groups. In terms of the post-treatment effects, both NO and soot show 

an initial decrease in concentrations in the first few months after treatment. However, this effect 

seems to fade away rather quickly. For PM10, on the other hand, concentrations seem to decrease in 

a slower but more persistent manner. Based on these event studies and my difference-in-difference 

regressions, I conclude that the environmental zone in Rotterdam seems to have decreased PM10 

concentrations, but not affected concentrations of other pollutants. Compared to the pre-treatment 

mean PM10 concentration in Rotterdam, the effect is equal to a decrease of approximately 4%. 

To summarize this section, I find very modest evidence for my first hypothesis, that 

environmental zones lower air pollution. For Utrecht, I find practically no effect, except for possible 

decreases in in PM10 concentrations. This effect size is in the range of -0.5 to -1 µg/m3. In Arnhem, 

there seems to be a small effect on soot concentrations, but no clear effects on other pollutants. The 

effect on soot concentrations is approximately -0.2 µg/m3. Finally, the environmental zone in 

Rotterdam only seems to have lowered PM10 concentrations by nearly 1 µg/m3. 
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Table 5 

Effects of the environmental zone for cars in Rotterdam 

 (1) NO2 (2) NO (3) PM10 (4) PM2.5 (5) O3  (6) Soot 

Car zone 0.765** 

(0.191) 

-0.382 

(0.251) 

-0.841*** 

(0.124) 

-0.527 

(0.296) 

-0.134 

(1.174) 

-0.026* 

(0.007) 

Observations 936 941 862 575 575 448 

Station fixed 

effects 

Y Y Y Y Y Y 

Month of year 

fixed effects 

Y Y Y Y Y Y 

Municipality-

specific trend 

N N N N N N 

Note: Dependent variable is concentration of pollutant listed at the top of each column in µg/m3. Standard 

errors are reported between brackets. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 

 

Table 6 

Effects of the environmental zone for cars in Rotterdam with municipality-specific trends 

 (1) NO2 (2) NO (3) PM10 (4) PM2.5 (5) O3 (6) Soot 

Car zone 0.980*** 

(0.110) 

-0.171 

(0.277) 

-0.952*** 

(0.132) 

-0.008 

(0.484) 

-0.620 

(0.925) 

-0.023 

(0.028) 

Observations 936 941 862 575 575 448 

Station fixed 

effects 

Y Y Y Y Y Y 

Month of year 

fixed effects 

Y Y Y Y Y Y 

Municipality-

specific trend 

Y Y Y Y Y Y 

Note: Dependent variable is concentration of pollutant listed at the top of each column in µg/m3. Standard 

errors are reported between brackets. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 
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Figure 5: Event studies of environmental zone for cars in Rotterdam 

Panel A: Effect on NO2 in µg/m3 

 

Panel B: Effect on NO in µg/m3 

 

Panel C: Effect on PM10 in µg/m3 

 

Panel D: Effect on PM2.5 in µg/m3 

 

Panel E: Effect on O3 in µg/m3 

 

Panel F: Effect on soot in µg/m3 

 

Note: Each panel represents an event study regression of the effect of the environmental zone for cars in 

Utrecht on the pollutant listed on the y-axis of each graph, using equation 2. The vertical line represents the 

last month before the environmental zone is introduced, which is the reference period. Dots before this line 

represent the treatment leads, and dots after this line represent the treatment lags. The lines around each 

dot represent the 95% confidence interval of the point estimate. 

 

5.2 Test score results 

After establishing the effects that the environmental zones had on air pollution in Utrecht, Arnhem 

and Rotterdam, I can now estimate the effect that these have had on test scores.  Table 7 reports the 

results of my regression following Equation 3, with the synthetic difference-in-differences approach. 
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The results of these regressions in Table 7 largely point to there being no effect of environmental zones 

on test scores, with the exception of the environmental zone for trucks in Arnhem. Unfortunately, I 

was not able to estimate the effect of this environmental zone on air pollution in section 5.1. This effect 

on test scores would point to the truck zone having increased local air pollution. Figure 6 allows me to 

assess the pre-treatment fit of the reweighted control schools for all regressions. These reweighted 

control schools are meant to have a parallel trend in test scores on average to the treated schools in 

the pre-treatment period. Visual inspection can indicate whether this synthetic diff-in-diff is able to 

match the treated schools well. The fits seem to be particularly good for the environmental zones in 

Arnhem and Rotterdam, where trends move in a parallel fashion in the pre-treatment period. The fit 

for Utrecht in Panel A is not as good, and the post-treatment effects do not show a clear pattern. Panel 

B of Figure 6 seems to indicate that standardized test scores diverge between Arnhem and the 

synthetic counterfactual immediately after the environmental zone is introduced. Panel C and D do 

not show any such effects.  

One other possibility is that these effects are not actually driven by a decrease in performance, 

but rather by changes in the test that is chosen. Schools in Arnhem might have switched to tests where 

they would have ranked lower in the distribution of test scores regardless of whether or not the 

environmental zone had been introduced. To investigate whether this explains these findings, I restrict 

my regressions to schools which always took the CITO test, which is the most popular test. This ensures 

a better comparability of test scores across years, both within schools and across schools, but also 

leads to less observations for my regressions. Doing this leaves me with 33 schools from Utrecht, 35 

schools from Arnhem, and 68 schools from Rotterdam. For these regressions, I calculate standardized 

test scores over the sample of schools that always use the CITO test. 

Table 7 

Effects of environmental zones on standardized test scores 

 (1) Car zone in 

Utrecht 

(2) Truck zone in 

Arnhem 

(3) Car zone in 

Arnhem 

(4) Car zone in 

Rotterdam 

Environmental 

zone 

-0.040 (0.067) -0.189* (0.097) 0.012 (0.137) 0.055 (0.063) 

Note: Dependent variable is average standardized test score on final exam. Each column represents a single 

regression to estimate the effect of one environmental zone in a city. Standard errors are reported between 

brackets and calculated using placebo replications. Stars indicate p-values, with the following values: *p<0.1 

**p<0.05 ***p<0.01. 
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Figure 6: Synthetic difference-in-difference estimates of environmental zones 

Panel A: Effect on environmental zone for cars in 

Utrecht on standardized test scores 

 

Panel B: Effect on environmental zone for truck in 

Arnhem on standardized test scores 

 

Panel C: Effect on environmental zone for cars in 

Arnhem on standardized test scores 

 

Panel D: Effect on environmental zone for cars in 

Rotterdam on standardized test scores 

 

Note: Each panel represents a synthetic difference-in-differences regression to estimate the effect of the 

environmental zone listed at the top of each panel on standardized test scores. The red line represents the 

last year before the environmental zone of interest becomes active. The green line shows the trend in 

average standardized test score for schools in the city where the environmental zone of interest is 

introduced. The blue line shows the trend in average standardized test score for the reweighted control 

schools. The red area at the bottom of each graph indicate the time weights and show which pre-treatment 

years receive more importance in the regression. 

 

I report the results of the regression with only CITO-schools in Table 8. The sign of each 

coefficient has stayed the same, but sizes have changed. In particular, I no longer find that the truck 

zone in Arnhem has had a statistically significant negative effect on test scores. On the other hand, I 

now find that the car zone in Rotterdam increased test scores by 0.2 standard deviations. Figure 7 

allows me to assess to what extent the synthetic difference-in-difference control is able to match the 

pre-intervention trend of the treated schools. For Utrecht, test scores seem to be on a somewhat 

downward trend compared to the reweighted control schools. The difference in 2011 is approximately 

0.1 standard deviation, which has nearly disappeared in 2014, the last pre-treatment year. If this trend 

is an indication of how Utrecht’s counterfactual of not having an environmental zone would have 
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evolved, the coefficient I find is a lower bound and should be expected to be higher in reality. For both 

environmental zones in Arnhem, in Panel B and C, the two trends move in a parallel fashion. This gives 

me more confidence that the effects I find are close to the true effects, although the negative 

coefficient for the truck zone remains puzzling. Finally, Panel D shows that test scores in Rotterdam 

are on an upward trend compared to the control schools. The difference is nearly 0.5 standard 

deviation in 2011, but less than 0.4 standard deviation in 2015. If this trend would have continued in 

the absence of the environmental zone, the coefficient in Table 8 is an upper bound for the effect of 

the car zone on test scores in Rotterdam. 

It should be noted that an effect size of 0.2 standard deviation is very sizable in the education 

literature. For example, Bloom et al. (2008) find that American students increase their test scores by 

approximately 0.4 SD from grade 5 to grade 6. These results are not entirely comparable, as they also 

mention that student-level deviations are generally larger than school-level standard deviations. 

However, they provide some indication of the effect size. 

Table 8 

Effects of environmental zones on standardized CITO test scores 

 (1) Car zone in 

Utrecht 

(2) Truck zone in 

Arnhem 

(3) Car zone in 

Arnhem 

(4) Car zone in 

Rotterdam 

Environmental 

zone 

-0.076 (0.085) -0.136 (0.097) 0.005 (0.135) 0.209*** (0.076) 

Note: Dependent variable is average standardized CITO test score on final exam. Each column represents a 

single regression to estimate the effect of one environmental zone in a city. Standard errors are reported 

between brackets and calculated using placebo replications. Stars indicate p-values, with the following values: 

*p<0.1 **p<0.05 ***p<0.01. 
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Figure 7: Synthetic difference-in-difference estimates of environmental zones 

Panel A: Effect on environmental zone for cars in 

Utrecht on standardized CITO test scores 

 

Panel B: Effect on environmental zone for truck in 

Arnhem on standardized CITO test scores 

 

Panel C: Effect on environmental zone for cars in 

Arnhem on standardized CITO test scores 

 

Panel D: Effect on environmental zone for cars in 

Rotterdam on standardized CITO test scores 

 

Note: Each panel represents a synthetic difference-in-differences regression to estimate the effect of the 

environmental zone listed at the top of each panel on standardized CITO test scores. The red line represents 

the last year before the environmental zone of interest becomes active. The green line shows the trend in 

average standardized test score for schools in the city where the environmental zone of interest is 

introduced. The blue line shows the trend in average standardized test score for the reweighted control 

schools. The red area at the bottom of each graph indicate the time weights and show which pre-treatment 

years receive more importance in the regression. 

 

5.3 Robustness checks 

This section serves to corroborate my findings of section 5.2 in particular, since the scope for testing 

the results of section 5.1 is very limited due to scarce data. The results of my robustness checks can be 

found in Appendix C.  

I first investigate the effect on schools that are actually located inside the environmental zones. 

As control units for the effects of environmental zones for cars, I use schools located in environmental 

zones for trucks in other cities. As control units for the effects of the environmental zone for trucks, I 

use schools that are never in an environmental zone. Table C1 shows the results of these regressions. 

Here, I find no statistically significant effect for any of the environmental zones. All effects are positive 

and small, with the exception of the environmental zone for trucks in Arnhem. That estimate is large 
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and negative, but still not statistically significant. Although Panel B of Figure C1 shows that the pre-

intervention fit is very good, the standard error is very large, most likely due to the fact that this 

regression only uses 1 school located inside the environmental zone in Arnhem. Overall, these results 

do not show any effects of the environmental zones on test scores. 

Next, I test whether the environmental zones caused compositional changes in the student 

populations of schools. For this, I use the variables relating to the school weight. Students are assigned 

a weight based on the education level of their parents, where the weight can take on the values 0, 0.3, 

and 1.2. A student receives a weight of 0.3 if both of their parents completed no more than one of the 

lower levels of secondary education. A weight of 1.2 is received when one parent has only completed 

primary education and the other parent has at a maximum completed one of the lower levels of 

secondary education. If a student does not fall into either category, they receive a weight of 0 (DUO, 

2014-2018). For each school, I calculate the number of students with a weight of 1.2 as a share of the 

total number of students in that school per year. If the type of sorting occurs where families of higher 

socioeconomic statuses move to areas with environmental zones, I would expect the share of students 

with a weight of 1.2 to decrease following the introduction of an environmental zone.  

The results of the synthetic difference-in-differences, where the share of students with the 

highest weight is the dependent variable, are shown in Table C2. The coefficients are negative but 

statistically insignificant, with the exception of Rotterdam in column 4. Figure C2 shows that pre-

treatment trends run parallel for all regressions, making it more likely that the parallel trends 

assumption holds. For Rotterdam, I find that there is a statistically significant decrease in the share of 

students with a weight of 1.2 following the introduction of the environmental zone for cars, in the 

order of 0.7 percentage points. This might explain why, in section 5.2, I found that the environmental 

zone led to an increase in CITO test scores in Rotterdam. It was not (only) through the mechanism of 

less air pollution improving cognitive performance, but rather by inducing a change in student 

composition towards more students of high socio-economic status, that the environmental zone 

increased test scores. 

6 Discussion 

Although I find some indications in section 5.1 that environmental zones lower air pollution, I do not 

find convincing proof that environmental zones improve test scores. This is contradictory to the 

findings of most studies on this topic, which show that air pollution lowers cognitive performance. This 

section discusses possible reasons for this discrepancy.  

One issue relates to the possible presence of anticipation effects. Anticipation effects can bias 

results, and one assumption of the synthetic control method is in fact that they are not present 

(Adabie, 2021). Although the assumptions of the synthetic difference-in-differences have not yet been 
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formalized as such, this seems like a necessary assumption for this method as well. In my setting, 

anticipation effects could arise if individuals already switch to cleaner vehicles before the 

environmental zone is introduced, or if families of higher socioeconomic status already move to areas 

inside environmental zones before the zone becomes active. My results in section 5.1 did not seem to 

show evidence of the former, as effects (where visible) only started after the intervention was put in 

place. The latter might be more concerning, if the synthetic difference-in-differences matches control 

units to the treated who already saw a change in test scores before the environmental zone was 

actually active. It could then be matching the treated schools to control schools that saw a similar 

shock in test scores by chance, rather than actually having similar processes affecting the development 

of test scores. I thus quickly discuss when the environmental zones of interest were announced, which 

provides an indication of whether anticipation effects were possible. The environmental zone in 

Utrecht was announced in November of 2013, which is six months before the final pre-treatment test 

in Utrecht (Het Parool, 2013). Arnhem’s environmental zone for trucks was only officially decided a 

week before it was enacted, and its car zone was announced just a month before the final pre-

treatment test (Besluit Milieuzone Arnhem, 2014; Van der Vegt, 2019a). Finally, the environmental 

zone in Rotterdam was announced one month after the final pre-intervention test (“Gemeenteraad 

stemt in”, 2015). This thus indicates that the scope for anticipation effects is likely limited in my 

analyses. 

Another possible explanation is that the average effect on air pollution in a city is different 

from the effect I find. This could be the case because the measuring stations for which I have data are 

not randomly chosen. Instead, they are usually put either near a street, or away from busy streets to 

serve as a background station. This choice of locations for measuring stations could thus either lead to 

underestimation or overestimation of the average effect of environmental zones on local air pollution. 

Furthermore, even if I were to assume that the locations of these stations are randomly chosen, my 

findings do not provide a full picture. This is caused by the fact that I have missing data for practically 

all measuring stations, which means I was unable to estimate the effect on all air pollutants of interest. 

Finally, because these stations are generally not actually located inside the environmental zone, I am 

unable to see whether there is a larger effect in the area covered by an environmental zone than in 

surrounding areas.  

A final explanation, which is a more fundamental problem, is that environmental zones have 

too limited of an effect on air pollution for them to affect test scores. I found that Rotterdam’s 

environmental zone caused concentrations of PM10 to decrease by approximately 0.9 µg/m3, and 

Arnhem’s environmental zone for cars caused concentrations of soot to decrease by 0.2 µg/m3. As a 

comparison, Carneiro et al. (2021) find that a 10 µg/m3 increase in PM10 lowers test scores by 8% of a 

standard deviation. If the effects are linear, this would imply that Rotterdam would see an increase in 
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test scores of 0.008 standard deviations due to its environmental zone. It might be the case that air 

pollution does not have a negative effect on cognitive performance below a certain threshold value, 

similar to the way that there are threshold values set for adverse impacts of pollutants on health. 

Contrarily, it might be the case that the effect is there, but that my research method is not the best 

way to find it. Average test scores for schools can fluctuate from year to year, and the difference-in-

difference model only finds the true effect if the parallel trends assumption holds. If the treated 

schools are not on a perfectly parallel trend to the control schools, it is questionable whether this 

method would be able to isolate an effect of just 0.008 SD. This is also reflected in the size of my 

standard errors, which in some regressions showed to be more than ten-fold this expected effect. 

7 Conclusion 

Does air pollution lower test scores? Experimental evidence on the effect of short-term exposure to 

air pollution by Shehab and Pope (2019) indicates that it would, but the effect of long-term exposure 

can only be tested using observational data. My thesis is not able to corroborate the findings of 

previous economic studies, which found that higher air pollution on test days lowers test scores. I find 

no clear evidence that the environmental zone in Utrecht had an effect on air pollution. I do find that 

the environmental zone in Rotterdam lowered concentrations of PM10, and that the environmental 

zone for cars in Arnhem lowered concentrations of soot. However, this does not seem to translate to 

increases in test scores. I do find positive results on test scores for Rotterdam, but these seem to be 

contaminated by non-parallel trends and composition effects. These findings thus indicate that 

environmental zones do not have the additional bonus of improving cognitive performance, besides 

their intended effects on human health.  

For future research, my thesis indicates that policy introductions are not the best approach to 

estimate the causal effect of air pollution on cognitive performance going forward. Environmental 

zones are one of the primary policies to combat local air pollution, but they seem to have too limited 

of an effect to credibly estimate their impact on test scores. This thus indicates that other exogenous 

sources of variation in air pollution will have to be used in future research to retrieve the causal effect 

of air pollution on test scores, or cognitive performance more generally. In this regard, I believe the 

approach taken by Carneiro et al. (2021) to be promising. Wind direction can lead to plausibly 

exogenous variation in air pollution, if they can isolate this relationship from other mechanisms 

through which wind direction influences test scores, such as its effect on pollen levels. I look forward 

to seeing what this exciting literature brings in the coming years. 
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Appendix A: Data summary 

Table A1 

Overview of environmental zones 

Municipality Environmental zone for trucks Environmental zone for cars 

Alkmaar - - 

Almelo - - 

Almere - - 

Alphen aan den Rijn - - 

Amersfoort - - 

Apeldoorn - - 

Arnhem July 1, 2014 January 1, 2019 

Assen - - 

Breda July 1, 2007 - 

Delft January 1, 2010 - 

Den Bosch September 1, 2007 - 

Den Haag April 16, 2008 - 

Deventer - - 

Dordrecht - - 

Ede - - 

Eindhoven July 1, 2007 - 

Emmen - - 

Enschede - - 

Gouda - - 

Groningen - - 

Haarlem January 1, 2022 - 

Haarlemmermeer - - 

Heerlen - - 

Helmond - - 

Hengelo - - 

Hilversum - - 

Hoorn - - 

Leeuwarden - - 

Leiden January 1, 2010 - 



46 
 

Lelystad - - 

Maastricht March 1, 2010 - 

Nijmegen - - 

Oss - - 

Rijswijk September 10, 2010 - 

Roosendaal - - 

Rotterdam September 16, 2007 January 1, 2016 

Schiedam - - 

Sittard-Geleen - - 

Tilburg September 1, 2007 - 

Utrecht July 1, 2007 January 1, 2015 

Venlo - - 

Zaanstad - - 

Zoetermeer - - 

Zwolle - - 

Note: Overview of G40 cities and other cities that introduced environmental zones. Amsterdam and Maasvlakte 

Rotterdam are not included. Table contains date of introduction for each type of environmental zone per city. 

Table A2 

Data summary for air pollution 

Panel A: Stations in Utrecht 

Variable Observations Mean Standard deviation Minimum Maximum 

PM10 127 19.550 4.510 12.64 32.19 

PM2.5 125 11.171 4.692 1.96 22.8 

NO2 205 26.614 8.035 10.33 61.14 

NO 209 10.945 7.912 1.04 43.32 

O3 137 41.111 16.332 9.19 78.15 

Soot - - - - - 

Panel B: Stations in Arnhem 

Variable Observations Mean Standard deviation Minimum Maximum 

PM10 92 22.052 6.364 5.19 39.29 

PM2.5 - - - - - 

NO2 57 33.318 8.014 20.72 52 

NO 57 24.936 10.684 9.97 53.23 

O3 - - - - - 
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Soot 50 1.452 0.385 0.8 2.47 

Panel C: Stations in Rotterdam 

Variable Observations Mean Standard deviation Minimum Maximum 

PM10 375 21.801 5.097 9.76 40.84 

PM2.5 290 12.872 4.650 4.68 27.04 

NO2 419 33.665 8.928 15.27 58.07 

NO 420 15.884 12.360 0.88 67.43 

O3 205 39.065 14.653 7.29 74.56 

Soot 246 1.534 0.623 0.5 3.58 

Panel D: Stations in cities with only a truck zone 

Variable Observations Mean Standard deviation Minimum Maximum 

PM10 870 20.763 4.588 8.76 36.08 

PM2.5 609 12.776 4.682 2.62 28.24 

NO2 1,203 30.068 10.420 10.81 63.05 

NO 1,208 14.886 14.416 0.1 88.1 

O3 575 43.736 15.418 9.86 88.78 

Soot 602 1.328 0.591 0.4 3.92 

Note: Summary statistics for air pollution. One observation corresponds to one station in one year. Values are 

given in µg/m3. Each panel corresponds to a separate group of observations. 

Table A3 

Data summary for test scores 

Panel A: Schools in Utrecht 

Variable Observations Mean Standard deviation Minimum Maximum 

CITO score 685 534.955 4.737 518.33 547.87 

Route 8 score 22 205.942 12.878 179 225.43 

AMN score 1 393.42 - 393.42 393.42 

Dia score 5 360.376 7.474 350.38 370.21 

IEP score 70 80.613 5.031 65.8 89.92 

Standardized 

score 

780 -0.031 1.080 -4.097 3.197 

Share 

migrants 

791 0.291 0.282 0 0.997 
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Share with 

weight 1.2 

791 0.127 0.169 0 0.734 

School weight 791 30.963 57.392 0 361 

Panel B: Schools in Arnhem 

Variable Observations Mean Standard deviation Minimum Maximum 

CITO score 387 534.178 4.157 518.93 543.61 

Route 8 score 3 211.79 13.499 197.62 224.5 

AMN score 1 412.91 - 412.91 412.91 

Dia score - - - - - 

IEP score 4 82.263 5.482 75.21 88.19 

Standardized 

score 

395 -0.216 0.967 -3.843 2.194 

Share 

migrants 

398 0.223 0.239 0 0.937 

Share with 

weight 1.2 

398 0.072 0.105 0 0.515 

School weight 398 15.073 35.105 0 228 

Panel C: Schools in Rotterdam 

Variable Observations Mean Standard deviation Minimum Maximum 

CITO score 1,200 532.718 4.990 513.2 546.15 

Route 8 score 5 208.808 14.961 186.64 227.16 

AMN score 2 391.67 14.326 381.54 401.8 

Dia score 6 356.038 3.555 349.31 358.69 

IEP score 183 77.400 5.200 63.61 89.75 

Standardized 

score 

1,391 -0.521 1.114 -5.504 2.790 

Share 

migrants 

1,425 0.394 0.266 0 1 

Share with 

weight 1.2 

1,425 0.167 0.162 0 0.772 

School weight 1,425 44.701 57.021 0 396 

Panel D: Schools in cities with only a truck zone 

Variable Observations Mean Standard deviation Minimum Maximum 

CITO score 4,387 534.568 4.774 515.1 546.92 
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Route 8 score 241 202.664 10.397 171.92 226.93 

AMN score 14 410.315 26.211 358 449.7 

Dia score 29 359.037 4.555 348.25 366.63 

IEP score 434 79.975 4.995 61.83 93.47 

Standardized 

score 

5,090 -0.128 1.084 -5.130 2.963 

Share 

migrants 

5,300 0.309 0.279 0 1 

Share with 

weight 1.2 

5,300 0.116 0.143 0 0.772 

School weight 5,300 29.613 47.952 0 497 

Panel E: Schools in cities with no environmental zone 

Variable Observations Mean Standard deviation Minimum Maximum 

CITO score 7,145 534.589 3.994 515.4 546.78 

Route 8 score 573 203.851 10.384 170.5 235.88 

AMN score 26 421.771 39.695 355.25 572.29 

Dia score 58 359.5878 3.509 352.15 366.42 

IEP score 1,315 80.122 5.031 57.52 92.55 

Standardized 

score 

9,059 -0.114 0.936 -4.865 3.061 

Share 

migrants 

9,780 0.153 0.198 0 1 

Share with 

weight 1.2 

9,780 0.059 0.095 0 0.924 

School weight 9,780 10.666 24.557 0 279 

Note: Summary statistics for test scores. One observation corresponds to one school in one year. Each panel 

corresponds to a separate group of observations. 
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Appendix B: SDID methodology 

The equations in this Appendix are all provided by Arkhangelsky et al. (2021). The unit weights 

are chosen as follows: 

(𝜔̂0, 𝜔̂𝑠𝑑𝑖𝑑) = argmin
𝜔0∈ℝ,𝜔∈Ω

∑ (∑ 𝜔𝑖𝑌𝑖𝑡 −
1

𝑁𝑡𝑟

𝑁𝑐𝑜
𝑖=1

∑ 𝑌𝑖𝑡
𝑁
𝑖=𝑁𝑐𝑜+1 + 𝜔0)

2
+ 𝜁2𝑇𝑝𝑟𝑒‖𝜔‖2

2𝑇𝑝𝑟𝑒

𝑡=1 , with 

Ω =  {𝜔 ∈ ℝ+
𝑁: ∑ 𝜔𝑖

𝑁𝑐𝑜
𝑖=1 = 1, 𝜔𝑖 = 𝑁𝑡𝑟

−1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =  𝑁𝑐𝑜 + 1, . . . , 𝑁}, where ℝ+ is the positive 

real line. 

The regularization parameter 𝜁 is set as follows: 𝜁 = (𝑁𝑡𝑟𝑇𝑝𝑜𝑠𝑡)1/4𝜎̂, with 

𝜎̂2 =
1

𝑁𝑐𝑜(𝑇𝑝𝑟𝑒−1)
∑ ∑ (Δ𝑖𝑡 − Δ̅)2𝑇𝑝𝑟𝑒−1

𝑡=1
𝑁𝑐𝑜
𝑖=1 ,  Δ𝑖𝑡 = 𝑌𝑖(𝑡+1) − 𝑌𝑖𝑡, and Δ̅ =

1

𝑁𝑐𝑜(𝑇𝑝𝑟𝑒−1)
∑ ∑ Δ𝑖𝑡

𝑇𝑝𝑟𝑒−1

𝑡=1
𝑁𝑐𝑜
𝑖=1 . 

The time weights are chosen as follows: 

(𝜆̂0, λ̂𝑠𝑑𝑖𝑑) = argmin
λ0∈ℝ,λ∈Λ

∑ (∑ λ𝑡𝑌𝑖𝑡 −
1

𝑇𝑝𝑜𝑠𝑡

𝑇𝑝𝑟𝑒

𝑡=1
∑ 𝑌𝑖𝑡

𝑇
𝑡=𝑇𝑝𝑟𝑒+1 + λ0)

2
𝑁𝑐𝑜
𝑖=1 , with 

Λ =  {λ ∈ ℝ+
𝑇 : ∑ λ𝑡

𝑇𝑝𝑟𝑒

𝑡=1 = 1, λ𝑡 = 𝑇𝑝𝑜𝑠𝑡
−1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 =  𝑇𝑝𝑟𝑒 + 1, . . . , 𝑇}.       
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Appendix C: Robustness checks 

Table C1 

Effects of environmental zones on standardized test scores for schools located inside environmental 

zone 

 (1) Car zone in 

Utrecht 

(2) Truck zone in 

Arnhem 

(3) Car zone in 

Arnhem 

(4) Car zone in 

Rotterdam 

Environmental 

zone 

0.244 (0.268) -0.780 (0.615) 0.082 (0.780) 0.064 (0.175) 

Note: Dependent variable is average standardized test score on final exam. Each column represents a single 

regression to estimate the effect of one environmental zone in a city. Standard errors are reported between 

brackets and calculated using 200 placebo replications, with the exception of column 4 which uses 

bootstrapping. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 ***p<0.01. 

Figure C1: Synthetic difference-in-difference estimates of environmental zones 

Panel A: Effect on environmental zone for cars in 

Utrecht on standardized test scores 

 

Panel B: Effect on environmental zone for truck in 

Arnhem on standardized test scores 

 

Panel C: Effect on environmental zone for cars in 

Arnhem on standardized test scores 

 

Panel D: Effect on environmental zone for cars in 

Rotterdam on standardized test scores  
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Table C2 

Effects of environmental zones on the share of students with the highest weight 

 (1) Car zone in 

Utrecht 

(2) Truck zone in 

Arnhem 

(3) Car zone in 

Arnhem 

(4) Car zone in 

Rotterdam 

Environmental 

zone 

-0.006 (0.005) -0.002 (0.006) -0.002 (0.002) -0.007* (0.004) 

Note: Dependent variable is share of students with a weight of 1.2. Each column represents a single regression 

to estimate the effect of one environmental zone in a city. Standard errors are reported between brackets and 

calculated using 200 placebo replications. Stars indicate p-values, with the following values: *p<0.1 **p<0.05 

***p<0.01. 

Figure C2: Synthetic difference-in-difference estimates of environmental zones 

Panel A: Effect of environmental zone for cars in 

Utrecht on share of students with highest weight 

 

Panel B: Effect of environmental zone for truck in 

Arnhem on share of students with highest weight 

 

Panel C: Effect on environmental zone for cars in 

Arnhem on share of students with highest weight 

 

Panel D: Effect on environmental zone for cars in 

Rotterdam on share of students with highest weight 

 

 

 


