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Abstract

Accurate credit scoring is critical for loan providers as it enables them to manage credit risk exposure

within strict regulatory limits. While Logistic Regression has traditionally been used for this pur-

pose due to its straightforward interpretability, tree-based ensemble models have been shown to be

more effective but lack transparency. Rule-based models, on the other hand, can extract important

relationships from tree-based models while remaining interpretable. In this thesis, we introduce

a novel model called 2-fold Unbiased Penalised Logistic Tree Regression (2-UPLTR) and compare it

to various existing rule-based models. Additionally, we introduce a new metric to quantify model

complexity and examine the relationship between model complexity and performance. Our results

from both simulation and empirical studies demonstrate that 2-UPLTR outperforms other models.

Therefore, we recommend that financial institutions adopt 2-UPLTR for their credit scoring needs

as it provides better predictions without sacrificing interpretability.

Keywords: Credit scoring, model interpretability, unbiased machine learning
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1 Introduction

Credit risk management is a critical aspect of banking, as loans pose the greatest risk for financial

institutions. Credit scoring models are used to evaluate the likelihood that loan applicants will be

able to fulfill their financial obligations, allowing banks to accept applicants with a low probability

of default (PD) and reject those with a higher PD. As banks hold billions of dollars in consumer

loans, even slight improvements in the performance of credit scoring models can result in significant

financial benefits.

Traditionally, the modelling of the PD has been done using Logistic Regression (LR) due to its

clear interpretability. However, LR fails to take nonlinear relationships between the features and the

target variable into account. As a result, various machine learning (ML) models have been shown

to be more effective credit scoring models, particularly tree-based ensemble models (Addo et al.,

2018; Gunnarsson et al., 2021; Lessmann et al., 2015; Petropoulos et al., 2019). In addition, with

the growth in computing power and data availability, ML models can increasingly achieve better

predictive performance, further surpassing LR.

Despite the benefits of ML models, financial institutions have been hesitant to adopt them due

to their lack of transparency. This reluctance has been compounded by the global financial crisis

of 2007, which increased the demand for insight into credit scoring models from credit regulators.

Furthermore, since the General Data Protection Regulation took effect as law across the EU in 2018,

algorithmic decisions about customers should be explainable to them (Goodman and Flaxman,

2017). That being said, the European Banking Authority recently acknowledged the benefits of

using ML for risk differentiation1. To leverage the superior predictive power of ML models, it is

necessary to cope with their lack of transparency. There is a growing body of literature on the topic

of intrinsically interpretable ML models, but a comprehensive comparison of these models for credit

scoring is currently lacking.

This research aims to fill this gap by comparing the most promising intrinsically interpretable

credit scoring models in terms of complexity and performance. As tree-based models have been

shown to be successful in credit scoring, we compare variations of the following interpretable tree-

based models to the industry standard LR: Penalised Logistic Tree Regression (PLTR), RuleFit and

RUle eXtraction (RUX). In addition, we analyse the tree-based ensemble models: Random Forest

(RF), Extremely Randomized Trees (ERT), Adaptive Boosting (AdaBoost) and eXtreme Gradient
1 https://www.eba.europa.eu/regulation-and-policy/model-validation/discussion-paper-machine-learning-irb-models
Date accessed: February 2, 2023.
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Boosting (XGBoost) as supplemental benchmarks. We introduce two unbiased versions of PLTR,

1-fold Unbiased PLTR (1-UPLTR) and 2-fold Unbiased PLTR (2-UPLTR). For RuleFit and RUX we

analyse the following versions: RF-RuleFit, Ada-Rulefit, RF-RUX and Ada-RUX. We compare the

models in a simulation and empirical study using the area under the receiver operating curve (AUC)

and the Brier score (BS). For the simulation study, we use data-generating processes (DGPs) that

are based on different degrees of non-linearity. For the empirical study, we use data that consists

of aggregated United States state-level data with LendingClub’s loan book covering the period from

2008 to 2019.

In short, our research makes the following contributions to the current literature:

• We provide a thorough comparison of the most promising intrinsically interpretable credit

scoring models using both a simulation and empirical study.

• We propose a novel intrinsically interpretable credit scoring model called Unbiased PLTR, and

demonstrate that it outperforms other existing interpretable models in the field.

• We introduce a new metric to quantify the complexity of credit scoring models.

• We investigate the relationship between model interpretability and predictive performance.

In the simulation study, we find 2-UPLTR to be the best-performing interpretable model across

different variations of complexity scores and DGPs. 2-UPLTR and RF-RuleFit are the only two in-

terpretable models that consistently significantly outperform LR. All ensemble models consistently

outperform LR as well. In the empirical study, we find 2-UPLTR to be the best-performing model

followed by 1-UPLTR and Ada-RUX. All models are ranked higher than LR, with the exception of RF-

RUX. Furthermore, when testing for significance, we find 2-UPLTR to significantly outperform both

PLTR and LR. Lastly, we provide an overview of the performance of the interpretable models for

different levels of complexity. For financial institutions that prefer models that are not more com-

plex than LR, we recommend using 2-UPLTR. For those that allow for models that can exceed LR

in terms of complexity, we recommend considering Ada-RuleFit and Ada-RUX as they demonstrate

the best performance in our empirical study.

This paper is structured in the following manner. In Section 2 we describe interpretability for

credit scoring models. Subsequently, in Section 3 we present a short literature overview regarding

credit scoring models. In Section 4, we describe our models and performance metrics. In Section

5 we introduce a score to quantify model complexity. Next, in Sections 6 and 7, we provide a

simulation and empirical study, respectively. Finally, we conclude our research in Section 8.
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2 Interpretability

Miller (2019) generally defines interpretability as the extent to which a human can understand

the cause of a decision in a given context. Then, in the case of credit scoring models, we define

interpretability to be the extent to which credit managers of banks and other stakeholders can

understand the underlying logic and decision-making processes of the model. There are three

key stakeholders in terms of model interpretability: credit managers, potential borrowers, and

regulators, who all aim for different types of interpretability. Namely, model interpretability can be

separated into two levels: global interpretability and local interpretability. Global interpretability

concerns the general impact of features on the output of the model, whereas local interpretability

concerns individual predictions.

The stakeholders of credit scoring models are shown in Figure 1. Credit managers of banks

seek both global and local interpretability, as this allows for careful model validation, in which the

model’s accuracy and reliability are assessed. This is typically achieved through the comparison of

the model’s predictions to the actual outcomes of the loans, allowing for the identification of any

potential issues or biases in the model. Potential borrowers are interested in local interpretability, as

they want to know how the model has determined their credit rating and how they can improve it.

This is especially the case for applicants who have been rejected. Hence, potential borrowers want

to get insight into relevant counterfactuals. For example: “ What would have happened to my credit

scoring if I had 10% higher income?" or “What would have happened to my credit scoring if I did not

have any outstanding loans?". Regulators prioritize global interpretability, as they want to see a clear

link between the risk drivers and the target variable, to determine whether the model makes sense

economically. It is important to note that model interpretability does not ensure trustworthiness, as

for determining model trustworthiness expert judgement is necessary. Model interpretability simply

ensures that experts have the necessary tools to determine model trustworthiness.
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Figure 1: The stakeholders of banks in terms of model interpretability.

The use of uninterpretable machine learning models in high-stakes decision-making fields has

prompted the development of methods for explaining them on a local level, such as LIME (Ribeiro

et al., 2016) and Shapley values (Bussmann et al., 2021), and on a global level, such as partial

dependence plots (Friedman, 2001) and accumulated local effects (Apley and Zhu, 2020). Rudin

(2019) states that trying to explain black box models, rather than creating models that are inter-

pretable in the first place, is likely to sustain bad practices and can potentially cause grave harm to

society. Namely, relying on post-hoc explanations of black box models can create a false sense of

understanding and trust in the model’s predictions. This can lead to a lack of critical scrutiny and

oversight, which can have serious consequences if the model is making decisions with significant

impacts on people’s lives, such as in the case of credit scoring models. Additionally, the lack of

interpretability in black box models can make it difficult or impossible to hold the creators of these

models accountable for their decisions and actions, which can undermine trust in the model and

the institutions using it.

The trade-off between model interpretability and performance is a common assumption in the

literature, as interpretability often comes at the cost of limiting the class of models that can be used.

However, this trade-off may not always hold in practice, particularly when the data is structured

and contains few or no noisy features (Razavian et al., 2015). As different fields have varying

requirements for model interpretability, interpretability needs to be defined in a domain-specific

manner. However, literature regarding metrics that quantify interpretability for specific fields is still

gravely lacking (Murdoch et al., 2019).
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3 Literature

The objective of credit scoring models is to differentiate between applicants that are likely and

unlikely to default. Consequently, credit risk problems can be approached as classification problems.

Due to its simplicity and intrinsic interpretability, LR has remained the industry workhorse for the

last decades. LR has been compared to various ML models within the context of credit risk. It turns

out that individual classifiers show only limited added performance in comparison to LR (Baesens

et al., 2003; Yeh and Lien, 2009).

On the other hand, tree-based ensemble models, which combine the output of multiple individ-

ual decision trees (DTs), have been shown to be quite successful credit scoring models. Namely,

in a study comparing 41 credit scoring models, Lessmann et al. (2015) find ensemble models to

obtain the best performance and propose Random Forest (RF) as the benchmark instead of the

industry-standard LR. Moreover, Gunnarsson et al. (2021) find eXtreme Gradient Boosting (XG-

Boost) to be the best ranking classifier in their credit scoring study. Furthermore, Addo et al. (2018)

and Petropoulos et al. (2019) find tree-based models to be better credit scoring models than deep

learning models. Additionally, Gunnarsson et al. (2021) do not recommend the usage of deep

learning models for credit scoring as they do not outperform their shallower counterparts and have

substantially more computational costs.

Despite their superior performance as credit scoring classifiers, tree-based models are not widely

adopted by banks due to their lack of interpretability (Dumitrescu et al., 2022). In addition to a

local and global level, model interpretability can be separated into two types: intrinsic and agnos-

tic. The former restricts the complexity of the model to retain interpretability, whereas the latter

separates the explanations from the model by applying auxiliary methods that analyse the model

after training.

We primarily focus on intrinsically interpretable models due to their advantages on both a global

and local level. Specifically, the overall weight of each risk driver in determining the target variable

can easily be obtained and changed in these models. While some model-agnostic methods may

approximate the overall weight of each risk driver, they do not provide the same level of ease in

adjusting these weights as intrinsically interpretable models. As expert judgment regarding the

role of risk drivers plays a significant role in fine-tuning credit scoring models in practice, the ease

of manipulation provided by intrinsically interpretable models makes them particularly appealing.

Furthermore, intrinsically interpretable models can be directly interpreted on both a global and local
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level, whereas different model-agnostic methods are required for local and global interpretation,

making the use of intrinsically interpretable models more efficient.

Recently, Dumitrescu et al. (2022) introduced Penalised Logistic Tree Regression (PLTR), an

intrinsically interpretable credit scoring model that compares competitively to RF. It operates by

combining two steps: first, it creates decision rules based on short-depth decision trees, and then

incorporates these decision rules as regressors, together with the original features, in a penalised

logistic regression. Decision rules are "IF-THEN" statements consisting of conditions followed by a

prediction; "IF" the conditions are met "THEN" make a certain prediction. For example: "IF loan >

5000 & age < 25, THEN default = true." As such, decision rules can be viewed as dummy variables.

Friedman and Popescu (2008) introduced another intrinsically interpretable classification model

named RuleFit, which is an ensemble of decision rules. This algorithm is an ensemble of decision

rules that operates similarly to PLTR, but obtains decision rules through a different process. Al-

though this algorithm has not been previously applied in a credit scoring study, it has been shown

to demonstrate comparable performance to tree-based ensemble models across 100 datasets. Fur-

thermore, Akyüz and Birbil (2021) proposed RUle eXtraction (RUX), an approach that extracts

interpretable rules from tree-based models using linear programming. This method allows for the

assignment of cost coefficients based on different attributes of the decision rules, such as rule length

(the number of conditions in a decision rule) and estimator weights.

As tree-based ensemble models have been demonstrated to be high-performing credit scoring

models, they form the central focus of this research. We compare the above-mentioned methods to

determine the optimal method for use in a credit scoring context. As a comparison between decision

rule-based methods is lacking in the current credit scoring literature, this research aims to provide

a comprehensive overview of different underlying levels of model complexity for these methods.

4 Methodology

This section presents an overview of the methods used in this thesis. We begin by discussing LR

and Decision Tree (DT) as standard models. LR serves as the baseline as it is currently the industry

standard for credit scoring, while DT functions as a benchmark as it is the fundamental component

of all tree-based models. Next, we present the "black-box" tree-based ensemble models. Lastly,

we discuss the intrinsically interpretable models PLTR, RuleFit and RUX, and introduce our novel

method: Unbiased PLTR.
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4.1 Standard models

Let (xi, yi), i = 1, . . . , n represent a sample of n independently and identically distributed obser-

vations, where xi ∈ Rp is a vector containing p features of borrower i, and yi is a binary variable

indicating whether borrower i defaults (i.e., yi = 1) or not (i.e., yi = 0). The objective of credit

scoring models is to estimate the posterior probability P (yi = 1|xi), which represents the probability

that borrower i defaults given their features xi (Dumitrescu et al., 2022).

4.1.1 Logistic Regression (LR)

The first baseline model is standard (LR), which models the posterior probability of default using

the logistic cumulative distribution function (CDF) F (·) as:

P (yi = 1|xi) = F (η(xi;β)) =
1

1 + exp(−η(xi;β))
(1)

where η(xi;β) = β0 +
∑p

j=1 βjxi,j , and β = (β0, . . . , βp−1, βp) ∈ Rp+1 represents the vector of

unknown parameters that can be estimated by maximizing the log-likelihood function:

L =
n∑

i=1

{
yi log{F (η(xi;β))}+

(
1− yi

)(
1− log{F (η(xi;β))}

)}
+ λ1

p∑
i=0

|βi|+ λ2

p∑
i=0

β2
i . (2)

where the hyperparameters λ1 and λ2 control the strength of the elastic net penalty terms (Zou

and Hastie, 2005). The elastic net penalty terms are used to deal with data that contains a high

number of variables. The first term of Equation 2 is the L1 norm, which uses the sum of the

absolute coefficients to shrink the regression coefficients of variables with a minor contribution to

the outcome towards zero. Similarly, the second term of Equation 2 is the L2 norm, which uses

the sum of the squared coefficients to shrink the regression coefficients of variables with a minor

contribution to the outcome close to zero.

The main advantage of LR is its interpretability, as it only searches for a single linear decision

boundary in the feature space. The core assumption for finding this boundary is that the function

η(xi;β) and the features are linearly related. As a result, the marginal contribution of each feature

to the probability of default can be obtained as:

∂P (yi = 1|xi)
∂xi,j

= βj
exp(η(xi;β))

[1 + exp(η(xi;β))]2
, (3)
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4.1.2 Decision tree (DT)

DTs are non-parametric models that can capture non-linear relationships by recursively partitioning

the feature space into smaller regions. The partitions are chosen such that the observations in

each region are as similar as possible, which enables the final nodes, called leaves, to effectively

discriminate among the potential outcomes.

Let Dm contain the observations and θm = (jm, tm,j) be a candidate split for a given node m,

where jm = 1, 2, . . . p specifies an according threshold value tm,j . The Classification and Regres-

sion Tree (CART) algorithm (Breiman et al., 1984) separates the observations into two data sets

Dm,1(θm) and Dm,2(θm), where

Dm,1(θm) = (xi, yi)|xi,j < tm,j and Dm,2(θm) = (xi, yi)|xi,j ≥ tm,j , (4)

and θm is estimated as

θ̂m = (ĵm, t̂m,j) = argmax
θm

H(Dm)− 1

2

(
H(Dm,1(θm)) +H(Dm,2(θm))

)
. (5)

The best split is chosen by maximizing a criterion H(·) that measures the diversity of the observa-

tions in the child nodes. We use the Gini impurity, which is defined as:

G =

C∑
i=1

p(i)(1− p(i)), (6)

where C denotes the number of classes and p(i) denotes the probability of randomly picking an

element of class i. Hence, the Gini impurity yields the likelihood of misclassifying a randomly

chosen observation, given that it is labelled according to the class distribution in the data set. By

minimizing the Gini impurity, we can find thresholds that succeed most in discriminating among

the potential outcomes.

To illustrate the workings of a decision tree, consider the example in Figure 2. The tree is

built using the features Income, Age, and Interest. The splits at the nodes are determined by

comparing the feature values to a threshold value. For example, at the first node, the tree splits the

observations into two groups based on whether the income is less than or equal to 30,000. This

process is repeated for each child node until the observations reach the leaf nodes. At the leaf nodes,

the tree calculates the percentage of defaults for the observations in that node. This percentage is

8



used to classify an unseen observation that ends up in that leaf as either a default or non-default.

Figure 2: An example of a decision tree. At nodes A-C, the observations are branched to two nodes in the
next layer. At leaf nodes D-G, unseen observations are assigned classes based on majority rule.

4.2 Tree-based ensemble models

Decision trees, while being simple and interpretable, can be prone to overfitting and high variance

due to their sensitivity to outliers. As a result, ensemble methods have been widely adopted in

practice as an alternative (Bramer, 2007). These methods include bagging techniques like Random

Forest and Extremely Randomized Trees, as well as boosting methods like eXtreme Gradient Boost-

ing and Adaboost. These ensemble methods have been shown to improve the overall performance

of the model by reducing the variance and bias of the base models, resulting in enhanced gen-

eralization performance. They have been proposed as a benchmark over traditional LR for credit

scoring applications.

4.2.1 Random Forest (RF)

RF is a widely used ensemble method that improves the predictive performance of a model by com-

bining the output of multiple independently grown decision trees. The method utilizes bootstrap

sampling, drawing with replacement from the full dataset, to grow each tree. To decrease corre-

lation among the trees, RF only selects a random subset of
√
p features of a data set containing p

features, for forming the splits in each tree. The final prediction is determined by majority voting
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among the trees. The number of trees is a crucial hyperparameter to be optimized, as increasing

the number of trees improves the generalization error of the model (Breiman, 2001).

4.2.2 Extremely Randomized Trees (ERT)

ERT is an ensemble method that, like RF, combines the output of multiple decision trees. However,

while RF grows trees using bootstrap subsamples, ERT builds trees using the entire training set.

Additionally, instead of using the Gini impurity in Equation 6 to determine the best split, ERT

randomly selects cut-points for a subset of features and selects the best cut-point to split the data.

This approach tends to reduce variance but increases bias in the model.

4.2.3 Adaptive Boosting (AdaBoost)

Whereas the main goal of bagging models is to decrease the variance, the main goal of boosting

models is to decrease the bias. Boosting consists of growing decision trees recursively, where each

new tree aims to correct the errors made by the previously trained tree. AdaBoost is a popular

boosting algorithm that is primarily designed to tackle binary classification problems (Freund et al.,

1996). The algorithm begins by fitting a decision tree to the training data, with all samples initially

given an equal weight of wi,t = 1/N , where wi,t indicates the importance of correctly classifying

sample i after fitting tree t. The misclassified data points are then assigned a higher weight, making

them more likely to be classified correctly in the next decision tree. This process is repeated until

the ensemble consists of T trees.

The impact of each decision tree t is denoted by

αt =
1

2
log

1− error
error

. (7)

As shown in Figure 3, a tree with few misclassifications corresponds to a large positive impact,

whereas a tree with many misclassifications corresponds to a large negative impact. This allows the

boosting algorithm to assign higher weights to the observations that are misclassified by previous

trees, thus reducing the bias of the model. The updated weights are calculated using the following

equation:

wi,t =


wi,t−1 exp(−αt), if ŷi,t = yi;

wi,t−1 exp(αt), otherwise,
(8)

where ŷi,t represents the predicted value of the target variable after the tth tree is fitted. When

10



an observation is correctly classified, αt is positive, resulting in a decrease in weight for that ob-

servation. On the other hand, when an observation is misclassified, αt is negative, resulting in an

increase in weight for that observation.

0 0.2 0.4 0.6 0.8 1

−2

0

2

Error rate

al
ph

a t

Figure 3: Impact curve of decision trees.

4.2.4 eXtreme Gradient Boosting (XGBoost)

XGBoost is an ensemble method similar to AdaBoost, which combines decision trees to improve

the predictive performance of the model. Instead of using simple majority voting like AdaBoost,

XGBoost uses gradient descent to optimize the loss function and correct the errors made by previous

trees. This method is regularized to prevent overfitting and uses second-order gradients for more

efficient optimization. The loss function for node selection and splitting for a tree structure q is

given by

L(q) = −1

2

J∑
j=1

(∑
i∈Ij gi

)2∑
i∈Ij hi + λ

, (9)

where J is the number of leaves in the tree, Ij is the set of observations in leaf node j, gi is

the gradient of the loss function, hi is the hessian of the loss function, and λ is a regularization

parameter.

Due to the computational hardship of enumerating through all possible tree structures in order

the find the optimal tree structure, a greedy algorithm that iteratively adds branches to a tree is
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used instead (Chen and Guestrin, 2016). The loss reduction after the split is given by

Lsplit =
1

2

[
J∑

j=1

(∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
, (10)

where IL and IR are the sets containing the observations in the left and right nodes after the split,

respectively.

4.3 Intrinsically interpretable tree-based models

We describe PLTR, RuleFit and RUX, which all use tree-based models to extract decision rules and

then use these decision rules as features in a linear model. Additionally, we propose two unbiased

variants of PLTR.

4.3.1 Penalised Logistic Tree Regression (PLTR)

PLTR seeks to improve the predictive performance of LR while maintaining its interpretability. This

is accomplished by incorporating decision rules extracted from short-depth decision trees as addi-

tional features in a penalized LR model, alongside the original features. The interpretability of the

model is a crucial aspect of PLTR, and it is achieved by keeping the decision trees short. Decision

trees are known to be transparent and easy to interpret when they are short, but as the depth in-

creases, the transparency of the model decreases. As the depth of the tree increases, the number

of leaf nodes increases, making it more challenging to understand the underlying decision rules.

However, using decision trees with low depth can limit the performance of the model. To address

this issue, PLTR employs various decision trees with a maximum depth of two layers and combines

them in a penalized LR model. The method consists of two steps.

Step 1: extracting decision rules from one-split and two-split decision trees. One-split trees are

trees with only one layer. For example, the tree in Figure 2 is a two-split tree, but if nodes D-G were

removed, so that B and C form the leaf nodes, it would be a one-split tree. To extract decision rules

from one-split trees, a decision tree is fitted using each of the p features, resulting in two leaf nodes,

one of which is kept for the next step. For two-split trees, decision trees are fitted for each pair-wise

combination of the features. However, when one feature is more informative than the other, this

can result in redundant bivariate threshold effects. To avoid this, redundant threshold effects are

removed, resulting in at most p(p−1)
2 decision rules.
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Step 2: incorporating the extracted decision rules in a logistic regression:

P (yi = 1|V(j)
i,1 ,V

(j,k)
i,2 ; Θ) =

1

1 + exp(−η(V(j)
i,1 ,V

(j,k)
i,2 ; Θ)

, (11)

where

η(xi;V(j)
i,1 ,V

(j,k)
i,2 ; Θ) = β0 +

p∑
j=1

αjxi +

p∑
j=1

βjV(j)
i,1 +

p−1∑
j=1

p∑
k=j+1

γj,kVj,k
1,2 , (12)

which contains the vector Θ = (β0, α1, . . . , αp, β1, . . . , βp, γ1,2, . . . , γp− 1, p) and binary variables

V(j)
i,1 , representing univariate threshold effects based on feature j and and bivariate threshold effects

based on features j and k, respectively. The parameter vector Θ can be estimated by maximizing

the log-likelihood:

L =
1

n

n∑
i=1

{
yi log{F (η(V(j)

i,1 ,V
(j,k)
i,2 ; Θ))}+

(
1− yi

)(
1− log{F (η(V(j)

i,1 ,V
(j,k)
i,2 ; Θ))}

)}
. (13)

As adding the decision rules based on short-depth trees as regressors results in a rather large number

of features, the adaptive lasso estimator of (Zou, 2006) is used to drop uninformative features.

Using fewer features means that the model output is dependent on fewer variables, and hence

increases model interpretability. Lasso estimates are obtained as

θ̂alasso = argmin
Θ

−L(V(j)
i,1 ,V

(j,k)
i,2 ; Θ) + λ|Θ̂(0)|−1|Θ|, (14)

where the initial estimator θ̂(0) is the value obtained from the logistic regression with a ridge penalty.

4.3.2 Unbiased Penalised Logistic Tree Regression (UPLTR)

PLTR uses all data points for extracting the decision rules in step 1 and fitting the penalized LR in

step 2. As this means that the information of each observation is used twice, this could lead to a

high bias in the model. To address this issue, we introduce two variants of PLTR: 1-fold Unbiased

PLTR (1-UPLTR) and 2-fold Unbiased PLTR (2-UPLTR).

In 1-UPLTR, the data is split into two distinct subsamples, A and B, where subset A is used for

extracting the decision rules and subset B for fitting the penalized LR. The roles of the subsamples

can then be reversed such that subset B is used for extracting the decision rules and subset A for

fitting the penalized LR. In 2-UPLTR, the LR coefficients of the two subsets are averaged, which

reduces the bias in the model. These unbiased variants of PLTR provide a more robust and reliable
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solution to the bias issue while maintaining the interpretability of the model.

4.3.3 RuleFit

RuleFit fits a sparse linear model using decision rules extracted from a tree-based ensemble in

addition to the original features. Let Sj be the set of all possible values for feature xj , and sjm be a

specified subset that contains m of those values. Then each decision rule can be noted as:

rm(x) =

n∏
j=1

1(xj ∈ sjm), (15)

where 1(·) is an indicator function which is equal to 1 if its argument is satisfied. Consequently, the

decision rule is binary, being only equal to 1 if all of its input variables are within their respective

subsets {xj ∈ sjm}n1 . For variables that assume orderable values, the subsets are taken to be

intervals sjm = (ljm, ujm]. where ljm and ujm denote a lower and upper bound, respectively.

For some variables, the subset of values appearing is equal to the full set of values such that

sjm = Sj . As xj ∈ sjm will always be satisfied in this case, Equation 15 can be simplified to:

rm(x) =

n∏
sjm ̸=Sj

1(xj ∈ sjm). (16)

Thus, the more variables there are that have a subset of values which is equal to the full set of

values (sjm = Sj), the shorter the decision rules are. Moreover, the shorter the decision rules are,

the easier they can be interpreted.

To generate an ensemble of decision rules, fast algorithms such as RF and AdaBoost can be used.

Let {fm(x)}Mm=1 denote a tree ensemble containing M decision trees, each with output fm(x). The

set of all decision rules derived from that ensemble is denoted as rk(x)Kk=1, where the total number

of rules is

K =

M∑
m=1

2(lm − 1), (17)

where lm denotes the number of leaf nodes for tree m. The forecasts are then made using the model

F (x) = â0 +

K∑
k=1

âkrk(x), (18)
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where

{âk}k0 = argmin
{ak}k0

N∑
i=1

(
L(yi, a0 +

K∑
k=1

akrk(xi)
)
+λ

K∑
k=1

|ak|, (19)

which uses the squared-error ramp loss

L(y, F ) = [y −min(−1,max(1, F ))]2, (20)

and hyperparameter λ for determining the impact of the Lasso penalty. Optimizing this loss function

has been shown to produce a comparable performance to other commonly used loss criteria but with

increased robustness against misclassified observations (Friedman and Popescu, 2008)

4.3.4 RUle eXtraction (RUX)

RUX extracts decision rules from trained ensemble models by using linear programming and hence

is scalable to large data sets. Let J be a group of decision rules and let rule j ∈ J assign the vector

Rj(xi) to observation xi if that observation is covered by rule j. To predict the class of observation

xi with the rules in group J , a set of nonnegative weights wj are associated with the rules and the

following equation is evaluated:

ŷi(xi) = argmax

(∑
j∈J

aijRj(xi)wj

)
, (21)

where aij is equal to 1 if rule j covers observation i and equal to 0 otherwise.

The hinge loss is used to determine the total classification loss, which is defined as

n∑
i=1

max{1−
∑
j∈J

âijwj , 0}, (22)

where âij = aijRj(xi)
⊺yi(xi). The use of this loss function allows for the formulation of a linear

programming model that aims to find the set of rules that minimize the total loss. To accomplish

this, auxiliary variables vi for i = 1, . . . , n, defined as vi ≥ max{1−
∑

j∈J âijwj , 0}, are introduced.

The resulting problem can be formulated as follows:

minimize
N∑
i=1

vi +
∑
j∈J

cjwj (23)
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Subject to

∑
j∈J

âijwj + vi ≥ 1, i = 1 . . . n; (24)

∑
j∈J

aijwj ≥ ε, i = 1 . . . n; (25)

vi ≥ 0, i = 1 . . . n; (26)

wj ≥ 0, j ∈ J , (27)

where cost coefficients cj ≥ 0, j ∈ J prevent (1) rules from being too long and (2) involving many

non-zero weights.

4.4 Feature importance

To understand the role of different features in determining the final output of the model, we calcu-

late feature importance. This allows banks to identify the key drivers of the probability of default.

For interpretable models, this can be done directly by analyzing the decision rules that are gener-

ated, as they are transparent. However, for ensemble models, this transparency is not present and

feature importance can only be calculated for the original features, not the decision rules that are

created internally.

4.4.1 Feature importance of interpretable models

To understand the relative importance of different features in a linear model, Friedman and Popescu

(2008) propose calculating feature importance (FI) as the product of the absolute value of the

estimated coefficient and the standard deviation of the standardized data for the feature. This can

be represented mathematically as:

FIj = |β̂j | × σ(ẋj), (28)

where β̂j is the estimated coefficient of the model for feature j, σ(·) is the standard deviation and

ẋj contains the standardized data instances of feature j.

For decision rules, the importance of the feature is calculated as

FIk = |β̂k| ×
√
sk(1− sk), (29)

where β̂k is the estimated coefficient of the model for decision rule k and sk is the support of the
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feature in the data, which is defined as the ratio of data instances to which the decision rule applies.

The support of the feature can be calculated as:

sk =
1

n

n∑
i=1

Dk(xi), (30)

where Dk(xi) is equal to 1 if decision rule Dk is applied to data instance xi.

To fully understand the working of our tree-based models, we analyze their interpretability on

a global and local level. Global explanations focus on the overall impact of features on the model’s

predictions, whereas local explanations focus on individual predictions.

4.4.2 Feature importance of ensemble models

To calculate feature importance for ensemble models, we use the Gini importance, also known

as the mean decrease in impurity, which is defined as the normalized total depletion of the Gini

impurity caused by the feature. To obtain feature importance, we first calculate the importance of

each node. Node importance (ni) can be calculated as:

nij = wjGj + wleft
j Gleft

j + wright
j Gright

j , (31)

where wj and Gj denote the weight and Gini impurity of node j, respectively, and the left and right

superscripts refer to the left and right child node of node j, respectively. Feature importance (fi) for

feature i can then be calculated as the weighted fraction of node importances for which feature i is

responsible:

fii =

∑
j∈J 1i,jnij∑
j∈J nij

, (32)

where J denotes a set containing all nodes and the indicator function 1i,j is equal to 1 when node

j uses feature i to split the data and 0 otherwise. Finally, the normalized feature importance (FI)

for feature i can be obtained as:

FIi =
fii∑
i∈F fii

, (33)

where F denotes a set containing all features.
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4.5 Performance measures

Based on the findings of Lessmann et al. (2015), the performance of credit scoring models can

be evaluated using the area under the receiver operating characteristic curve (AUC) and the Brier

Score (BS). The AUC measures the model’s discriminatory ability and the BS assesses the accuracy

of the predicted probabilities.

4.5.1 Area under the receiver operating curve (AUC)

The AUC is used to compare the receiver operating characteristic (ROC) curves of different models.

ROC curves are based on the values of confusion matrices. An example is shown in Table 1.

Predicted class
Positive Negative

Actual class
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 1: A confusion matrix.

Confusion matrices offer a comprehensive representation of a model’s predicted and actual out-

comes. In the context of binary classification, such as credit scoring, True Positive (TP) and True

Negative (TN) are used to denote the number of observations that are correctly classified as positive

(default) and negative (non-default) respectively. Then, the sensitivity measures the proportion of

positive examples that are predicted to be positive:

Sensitivity =
TP

TP+FN
, (34)

while the specificity measures the proportion of negative observations that are predicted to be

negative:

Specificity =
TN

TN+FP
. (35)

The ROC curve is a two-dimensional graph which is created by plotting the sensitivity against [1-

specifity], which is also known as the probability of false alarm, at various threshold settings.

Two representative Receiver Operating Characteristic (ROC) curves are illustrated in Figure 4.

To evaluate the performance of different models, the Area Under the Curve (AUC) is commonly

used as it provides a single scalar metric. The AUC can be interpreted as an approximation of

the probability that a randomly selected positive instance will be ranked higher than a randomly

selected negative instance. As such, it can be observed from Figure 4 that Model 1 exhibits superior
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discriminatory ability as its AUC is higher than that of Model 2. Additionally, it is important to note

that for an adequate model, the AUC should be significantly greater than 0.5, which corresponds to

the AUC of a random classifier
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Figure 4: The ROC-curve for two models.

Hanley et al. (1983) propose a method for determining the statistical significance of the differ-

ence in AUC between two models that are based on the same observations. The test statistic is given

by:

Z =
AUCA − AUCB√

SE2
A + SE2

B − 2rSEASEB

, (36)

where AUCM and SEM are the mean of the observed AUCs and the estimated corresponding stan-

dard error for model M ∈ {A,B}, respectively, and r is the estimated Pearson product-moment

correlation coefficient between the AUCs of models A and B.

4.5.2 Brier Score (BS)

The BS calculates the mean squared error between the predicted probabilities and the observed

values for the target variable:

BS =
1

N

N∑
i=1

(ŷi − yi)
2, (37)
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5 Complexity score

Interpretability is a crucial aspect in the selection of a credit scoring model, as it allows financial

institutions to understand and explain the model’s decision-making process. However, a lack of a

standardized metric for quantifying model complexity has hindered comparisons of interpretability

between models. To address this gap, we propose a novel complexity score for credit scoring models

that is based on the number and length of the decision rules used in the model. Our score captures

the idea that a model with a larger number of longer decision rules is more complex than one with

fewer and shorter rules. This relationship between complexity and predictive performance is crucial

for making informed recommendations to financial institutions.

Our complexity score is defined as the sum of the penalties for each decision rule, plus the

number of ordinary features (features that are not decision rules) in the model:

C =
D∑

d=1

Pd + F, (38)

where penalty Pd is defined as the penalty for decision rule d, and D and F are the number of

decision rules and ordinary features in the model, respectively. We consider three straight-forward

cases for decision rule penalty Pd, resulting in the following complexity scores:

Ck =

D∑
d=1

Pd,k + F =



∑D
d=1 Ld + F, if k = 1 ;∑D
d=1(Ld, − 0.5) + F, if k = 2 ;∑D
d=1 2

Ld,−1 + F, if k = 3 ,

(39)

where rulelength Ld is defined as the number of conditions in decision rule d. For example, the

decision rule loan > 5000 & age < 25 has a length of 2.

The baseline complexity score C1 treats the penalty of a decision rule of length 1 as equivalent

to the penalty of a single ordinary feature, implying that a decision rule of length 1, such as age <

25, has the same ease of interpretation as a single feature. The complexity score C2, reduces the

penalty of a decision rule of length 1 to half the penalty of a single ordinary feature, implying that

a decision rule of length 1 has more ease of interpretation than a single feature. According to this

complexity score, a model with many short decision rules is preferred over a model with few but

long decision rules. The relative advantage of subtracting a half from the penalty decreases as the
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decision rule becomes longer, which means that compared to C1, especially the short decision rules

are favoured when using C2, while the penalty for long decision rules remains approximately the

same. For the last complexity score C3, longer decision rules are penalized exponentially harder,

while the penalty for short decision rules remains the same as for C1. An example of the penalties

of the complexity scores for decision rules of different lengths are shown in Table 2.

Table 2: Decision rule penalties for the different complexity scores.

Decision rule C1 C2 C3 Rule length
loan > 5000 1 0.5 1 1
loan > 5000 & age < 25 2 1.5 2 2
loan > 5000 & age < 25 & gender = male 3 2.5 4 3

6 Simulation study

In this section, we evaluate the performance of all models across different complexity scores and

data generating processes (DGPs). The DGPs are designed to reflect varying levels of underlying

non-linearity, specifically by incorporating first, second, and third-degree feature interactions. For

each DGP, we report the AUC along with its 95% confidence interval. Due to computational limita-

tions, the number of simulations per DGP is restricted to 100.

6.1 Data-generating process (DGP)

We compare the performance of the models based on three different data-generating processes

(DGPs) using a set-up similar to that outlined in Dumitrescu et al. (2022). The data used for

this comparison consist of 10 standard normal features, designated as xi,j where j = 1, . . . , p and

i = 1, . . . , n, with a sample size of 2,000. 80% of these observations are used to train the data, while

the remaining 20% are used for testing the models. The underlying functions in the DGPs contain

nonlinear effects using thresholds and interactions, as these are commonly seen in real-world data.

For example, in the context of credit scoring, an income threshold effect can be observed, where

the probability of default decreases significantly above a certain income level

The functions in the DGPs utilize a vector of parameters (β0, β1, . . . , βp, β1,2, . . . , βp−1,p, β1,2,3, . . . ,

βp−2,p−1,p)
′ which contains components that are randomly drawn from a uniform [-1,1] distribution

and a vector of threshold values (γ1, . . . , γp, δ1, . . . , δp, θ1, . . . , θp)
′ that are randomly selected from

the support of each feature after excluding the 10% highest and lowest values. The underlying
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functions for DGPs 1-3 are simulated as follows:

η1(xi;β) = β0 +

p∑
j=1

βj1(xi,j ≤ γj),

η2(xi;β) = β0 +

p∑
j=1

βj1(xi,j ≤ γj) +

p−1∑
j=1

p∑
k=j+1

βj,k1(xi,j ≤ δj)1(xi,k ≤ δk),

η3(xi;β) = β0 +

p∑
j=1

βj1(xi,j ≤ γj) +

p−1∑
j=1

p∑
k=j+1

βj,k1(xi,j ≤ δj)1(xi,k ≤ δk)

+

p−2∑
j=1

p−1∑
k=j+1

p∑
l=j+2

βj,k,l1(xi,j ≤ θj)1(xi,k ≤ θk)1(xi,l ≤ θl),

(40)

where the indicator function 1(·) is equal to 1 if the restriction within brackets is satisfied and 0

otherwise. Subsequently, the default variable is simulated for DGPs k = 1,2,3 as

yi,k =


1, if Pk(yi = 1|xi) = 1

1+exp(−ηk(xi;β)
> πk;

0, otherwise,
(41)

where πk denotes the median of the generated probabilities for each DGP. As can be seen in Equation

40, the DGPs 1-3 include first, second and third-degree interactions among features, respectively.

By evaluating the performance of each model, we can determine the relative performance of each

model with respect to the nonlinearity present in the underlying DGP.

6.2 Results

The performance of interpretable models is presented in Figure 5 for varying levels of non-linearity

in the DGPs and complexity scores. As expected, the performance of the models deteriorates as the

non-linearity in the DGP increases. A complexity restriction of Ck ≤ 20 is imposed on the models for

k = 1, 2, 3, ensuring that their complexity score never exceeds double that of the LR. This restriction

is set to double the complexity of LR due to the limited number of features in the data. In situations

where the data comprises a large number of features, the complexity limit can be set equal to that

of LR.

When considering only the models with the baseline complexity score (Figure 5a), we observe

that 2-UPLTR consistently achieves the highest performance. For DGP 1, all models outperform LR,

with only RF-RUX and Ada-RUX having overlapping confidence intervals with LR. 2-UPLTR has the
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best performance, followed by 1-UPLTR and Ada-RuleFit. As the volatility in performance increases

for DGPs 2 and 3, all confidence intervals overlap. For DGP 2, all models still outperform LR, with

PLTR and 2-UPLTR having the best performance, followed by Ada-RuleFit. For DGP 3, not all models

outperform LR, with RF-RUX and Ada-RUX having lower performance. 2-UPLTR remains the best

performer among all models.

The performance of the models improves when using the second complexity score (Figure 5b)

which reduces the penalty for short decision rules. For DGP 1, all models outperform LR, with only

RF-RUX having overlapping confidence intervals with LR. 2-UPLTR has the best performance, fol-

lowed by 1-UPLTR and Ada-RuleFit. For DGP 2, all models still outperform LR, with PLTR having the

best performance followed by 2-UPLTR. For DGP 3, RF-RUX and Ada-RUX have lower performance

than LR. 2-UPLTR remains the best performer among all models.

Finally, when using the third complexity score (Figure 5c), which increases the penalty for long

decision rules, 2-UPLTR consistently has the highest performance. For DGP 1, all models outperform

LR, with RF-RUX and Ada-RUX having overlapping confidence intervals with LR. 2-UPLTR has the

best performance, followed by 1-UPLTR and Ada-RuleFit. For DGP 2, all models still outperform

LR, with 2-UPLTR having the best performance followed by Ada-RuleFit and PLTR. For DGP 3, all

models except RF-RUX and Ada-RUX outperform LR. 2-UPLTR again outperforms all others.

The performance of tree-based models without interpretability constraints is shown in Figure

6. From these ensemble models, it is observed that the boosting models consistently achieve the

highest performance. The relative order of performance remains consistent across the DGPs, with

RF consistently outperforming ET. However, the performance gap between RF and ET decreases for

DGP 3. When comparing the ensemble models to the interpretable models, it is observed that the

best-performing interpretable model, 1-UPLTR, performs similarly to the ensemble models. How-

ever, as the non-linearity in the underlying DGP increases, the gap in performance between the

interpretable and ensemble models widens.
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(a) Performance when using complexity score C1.
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(b) Performance when using complexity score C2
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(c) Performance when using complexity score C3

Figure 5: Simulation performance for interpretable model in terms of AUC per DGP, with 95% confidence
intervals based on 100 simulations.
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Figure 6: Simulation performance for ensemble models in terms of AUC per DGP, with 95% confidence
intervals based on 100 simulations.
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Table 3 presents the performance ranking for each model based on different complexity scores

for each DGP. For DGPs 1 and 3, the ranking based on the baseline complexity score C1 is consistent

with the average ranking. However, for DGP 2, the ranking based on the baseline complexity score

differs from the average ranking for 1-UPLTR and RF-RuleFit, which are ranked 4th and 5th respec-

tively based on the baseline complexity score and vice-versa for the average ranking. Overall, the

performance ranking of the models remains stable across the different complexity scores. There-

fore, for the remainder of this thesis, we focus solely on the results based on the baseline complexity

score C1.

Table 3: Performance ranking of the models.

Ranking LR PLTR 1-UPLTR 2-UPLTR RF-RuleFit Ada-RuleFit RF-RUX Ada-RUX
DGP 1

C1 8 5 2 1 4 3 7 6
C2 8 5 2 1 4 3 7 6
C3 8 4 2 1 5 3 7 6
Average 8 5 2 1 4 3 7 6

DGP 2
C1 8 2 4 1 5 3 7 6
C2 8 1 5 2 4 3 7 6
C3 8 3 5 1 4 2 7 6
Average 8 2 5 1 4 3 7 6

DGP 3
C1 6 2 4 1 5 3 8 7
C2 6 2 4 1 5 3 8 7
C3 6 2 4 1 5 3 8 7
Average 6 2 4 1 5 3 8 7

Table 4 presents the Z-statistics for all models to test whether there is a significant difference in

performance compared to the baseline model LR. We observe that among the interpretable models,

only 2-UPLTR and RF-RuleFit significantly outperform LR for all DGPs. With the exception of the

RUX models, all interpretable models outperform LR for DGPs 1 and 2. All ensemble models also

outperform LR for all DGPs.
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Table 4: Z-statistics for model performance in comparison to LR. Bold values indicate values that are signifi-
cant at a level of 5%.

Model DGP 1 DGP 2 DGP 3
PLTR 2.82 3.66 1.47
1-UPLTR 5.50 3.38 1.72
2-UPLTR 6.62 4.29 2.33
RF-RuleFit 4.40 3.38 2.44
Ada-RuleFit 4.46 4.06 1.93
RF-RUX 1.37 0.25 -1.59
Ada-RUX 1.87 1.06 -0.79
RF 6.18 4.69 2.93
ET 5.05 4.07 2.67
AdaBoost 6.55 5.01 3.36
XGBoost 6.65 5.01 3.42

Figure 7 displays the minimum complexity score required for each interpretable model to achieve

an AUC that is at least as high as that of LR. We can see that as the underlying DGP increases in

its degree of nonlinearity, the complexity scores of the models increase. Additionally, we observe

that only 2-UPLTR is able to consistently achieve performance comparable to LR while maintaining a

lower or equal complexity score. When examining the results for DGP 1, we see that several models,

including 1-UPLTR, 2-UPLTR, RF-RUX and Ada-RUX, exhibit similar performance to LR while hav-

ing a significantly lower complexity score. PLTR also has a lower complexity score, while RF-RuleFit

and Ada-RuleFit have slightly higher scores. For DGP 2, we note that all models except RF-RUX

have complexity scores that are lower than that of LR. In particular, PLTR, 1-UPLTR, 2-UPLTR, and

Ada-RUX have low complexity scores. Finally, for DGP 3, we find that all models except 2-UPLTR

are unable to keep their complexity scores below that of LR. Notably, RF-RUX and Ada-RUX have

high complexity scores, exceeding even the complexity limit, which is set at twice the complexity

score of LR.
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Figure 7: The minimum complexity score required for the interpretable models to achieve performance
comparable to that of LR in terms of AUC.

7 Empirical study

In this section, we conduct an empirical evaluation of the models using real-world data. We compare

the performance of the models in terms of AUC and BS, and demonstrate how their performance

varies with different levels of complexity. Additionally, we provide an in-depth examination of the

interpretability of the models.

7.1 Data

The data that we use consists of aggregated United States (US) state-level data with LendingClub’s

loan book covering the period from 2008 to 2019. As one of the largest peer-to-peer (P2P) lending

platforms, LendingClub has amassed a total revenue of 1.2 billion USD in 20222. The dataset

includes 32 features and 2,703,430 observations, with 8% of the observations indicating defaulted

loans. The target variable is a binary indicator of loan status, with a value of 1 indicating default and

0 indicating otherwise. This dataset provides a valuable opportunity to examine the P2P lending

market within the context of macroeconomic variables, as it combines diverse loan, borrower, and

state-specific features (Nigmonov et al., 2022). The explanatory variables are described in Table 5.
2 https://ir.lendingclub.com/news/news-details/2022/LendingClub-Reports-Fourth-Quarter-and-Full-Year-2021-Results
Date accessed: February 2, 2023.
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Table 5: Description of the explanatory variables (Nigmonov et al., 2022).

Variable Description
Loan specific variables

AMOUNT The total amount committed to the loan at that point in time.
INTRATE The interest rate on the loan.
INQLAST The number of inquiries in past 6 months.
OPENACC The number of open credit lines in the borrower’s credit file.
PUBREC The number of derogatory public records.
DESLENGTH The past-due amount owed for the accounts on which the borrower is now

delinquent.
PCTTL Percent of trades never delinquent.
TOTHI Total high credit/credit limit.

Loan type variables (categorical)
RATING The assigned loan grade.
TERM The number of payments on the loan. Values are in months and can be either

36 or 60.
PYMNTPLAN Indicates if a payment plan has been put in place for the loan.
PURPOSE A category provided by the borrower for the loan request.
TYPE Indicates whether the loan is an individual application or a joint application

with two co-borrowers.
INITIAL The initial listing status of the loan.

Borrower specific variables
INCOME The self-reported annual income provided by the borrower during registration.
DTI The average debt-to-income (DTI) score of borrower.
DELINQ The number of 30+ days past-due incidences of delinquency in the borrower’s

credit file for the past 2 years.
TAXLIENS The number of tax liens.
EMPLENGTH The employment length in years. Possible values are between 0 and 10 where

0 means less than one year and 10 means ten or more years.
HOMEOWNER The home ownership status provided by the borrower during registration or

obtained from the credit report.
VERIFTYPE Indicates if income was verified or not.

Economy specific variables
EARNINGS Average weekly earnings of all employees in each state (logarithm of values,

monthly, in U.S. dollars).
UNEMP Unemployment rate for each state (monthly, seasonally adjusted, percentage

points).
NEWBUS Share of established new businesses in total number of businesses in each

state (monthly).
INFLATION Monthly change in seasonally adjusted consumer price index (CPI) for all goods

by state (percentage points, proxied by urban centres and U.S. regions).
MUNIRATE One-year municipal bond yields for each state (monthly average of daily yield

rates).
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Table 5: Description of the explanatory variables (continued).

Variable Description
GDPCONTRIB Contributions to percentage change in real GDP (quarterly, percentage points).
RISKPREM Risk premium on lending for banks in the USA (lending rate minus treasury bill

rate, percentage points).
Demographic variables

POPUL Estimated population for each state (logarithm of population estimates
reported for 2018).

INTUSER Number of internet users at any location by state for each year from 2008 to
2016 (logarithm of values, yearly).

REP Percentage of voters who voted for Republican candidate for each state (based
on US Presidential election results 2008, 2012 and 2016).

RELIGIOUS Percentage of adults who say they believe in God by state (time-invariant).

We preprocess the categorical features by applying one-hot encoding to the nominal features and

ordinal encoding to the ordinal features. This ensures a linear interpretability of these features by

creating binary indicator variables for each category, allowing for a clear and direct understanding

of the impact of each category on the model’s predictions.

0.27% of the data consists of missing values. We handle these missing values in the data by

utilizing k-nearest neighbor imputation. Specifically, we first initialize the missing values of each

variable as the mean. Then, we calculate the Euclidean distance between each of the observations.

Starting from the feature with the most missing values, we iteratively impute the missing values

using the average of the values from the k nearest neighbors that have a value for that feature. We

choose a value of k = 15, as suggested by Troyanskaya et al. (2001). To ensure robustness, we

repeat this process for 3 imputation rounds.

Moreover, to balance the representation of defaults and non-defaults in the data, we employ

random undersampling. Specifically, we randomly select a subset of non-default observations to

remove, until the number of non-defaults is equal to that of defaults. This reduces the number of

observations to 433,244, while also reducing the computational cost of fitting the machine learning

models.

In order to ensure the representativeness of the sample, we follow a similar procedure to Addo

et al. (2018) by creating five distinct datasets, each of which is split into training, validation, and

test sets in a proportion of 60%, 20%, and 20%, respectively. To mitigate computational limitations,

we limit the size of each dataset to 5,000 observations. Additionally, we ensure that the ratio of

defaults to non-defaults remains consistent across all splits. The use of multiple test sets allows

us to evaluate the robustness of the models and test for significant differences in performance
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metrics. The specific hyperparameters used for tuning the models on the validation set are reported

in Appendix A.

7.2 Results

Table 6 presents the performance of the interpretable models in terms of AUC and BS. The com-

plexity score of each of the models is equal to that of LR. Both AUC and BS are used as performance

metrics, with higher AUC and lower BS indicating better performance. The results indicate that

2-UPLTR outperforms the other models, followed by 1-UPLTR and Ada-RUX. All models, except for

RF-RUX, outperform LR. Moreover, the AUC drives the difference in ranking between Ada-RuleFit,

PLTR and Ada-RUX, as these models all have the same BS. This indicates that even though these

models have similar accuracy, they have different discriminatory ability. Lastly, this ranking of in-

terpretable models align slightly more with the ranking for DGP 1 in the simulation study, which

contains a lower degree of nonlinearity, compared to DGPs 2 and 3.

Table 6: The average performance of the interpretable models.

Metric RF-RUX LR RF-RuleFit Ada-RuleFit PLTR Ada-RUX 1-UPLTR 2-UPLTR
AUC 0.749 0.757 0.806 0.811 0.813 0.817 0.825 0.832
BS 0.229 0.203 0.180 0.179 0.179 0.179 0.173 0.167
Ranking 8 7 6 5 4 3 2 1

Table 7 shows the performance of the ensemble models in terms of AUC and BS. Both metrics

lead to the same ranking of the models, with XGBoost achieving the highest performance, obtaining

a slightly higher AUC compared to AdaBoost, but with a particularly lower BS. The results are

consistent with those of the simulation study, with XGBoost being followed by AdaBoost, RF and

ERT, respectively. All ensemble models outperform the interpretable models.

Table 7: The average performance of the ensemble models.

Metric ERT RF AdaBoost XGBoost
AUC 0.841 0.872 0.878 0.879
BS 0.168 0.151 0.142 0.132
Ranking 4 3 2 1
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Table 8 presents Z-statistics comparing the AUC performance of each combination of two mod-

els. It should be noted that due to multiple testing problems, these results should be interpreted

with caution. The results show that all models, except for RF-RUX, significantly outperform LR.

Furthermore, we find 2-UPLTR to significantly outperform PLTR and RF-RuleFit, while 1-UPLTR

outperforms RF-RuleFit. We observe no other significant differences among the interpretable mod-

els. Among the ensemble models, RF is found to significantly outperform ERT, while ERT is found

to significantly outperform PLTR, RF-RuleFit and Ada-RuleFit. Additionally, Adaboost and XGBoost

are found to significantly outperform all models except for RF-RUX. RF-RUX is the only interpretable

model that does not have any significant Z-statistics, likely due to its relatively volatile AUCs that

are weakly correlated with the AUCs of the other models.

In Figure 8, we present the performance of various interpretable models across varying levels

of complexity. We observe that 2-UPLTR exhibits the highest performance among all interpretable

models, reaching its peak at a complexity level of 30 before gradually decreasing due to overfitting.

At complexity scores below 60, 2-UPLTR is followed closely by 1-UPLTR and PLTR. As complexity

increases, 1-UPLTR surpasses PLTR in performance. All PLTR variants consistently outperform LR.

Beyond a complexity of 60, Ada-RuleFit obtains the highest performance, followed by Ada-RUX.

RF-RuleFit and RF-RUX eventually outperform LR but never outperform the remaining models. The

higher performance of AdaBoost variations in comparison to their RF counterparts aligns with pre-

vious findings that RF generally performs worse than AdaBoost. Additionally, we observe that the

performance curves of PLTR variants are relatively stable, while the performance of other models in-

crease significantly with increasing complexity. This can be attributed to the fact that PLTR variants

only incorporate decision rules of maximum length two, thus limiting the flexibility of the model

when fitting the data, in contrast to the other models that can incorporate longer decision rules.
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Table 8: Z-statistics for model performance of the row model in comparison to the column model in terms of AUC. Bold values indicate values that
are significant at a level of 5%. Positive values indicate that the row model outperforms the column model.

LR PLTR 1-UPLTR 2-UPLTR RF-RuleFit Ada-RuleFit RF-RUX Ada-RUX RF ERT AdaBoost
PLTR 9.16
1-UPLTR 5.13 1.10
2-UPLTR 7.11 2.05 0.79
RF-RuleFit 5.69 -0.86 -3.73 -3.07
Ada-RuleFit 2.93 -0.14 -1.21 -1.64 0.34
RF-RUX -0.16 -1.07 -1.27 -1.28 -0.97 -1.09
Ada-RUX 2.10 0.15 -0.28 -0.61 0.40 0.18 0.79
RF 14.48 7.30 3.82 8.24 6.59 3.62 1.85 2.34
ERT 11.43 5.38 1.46 1.00 4.30 2.51 1.59 0.76 -3.44
AdaBoost 13.15 6.49 3.89 6.67 6.35 3.43 1.88 2.97 1.97 3.13
XGBoost 13.17 7.02 4.64 8.31 7.48 3.70 1.92 3.00 2.16 3.39 0.47
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Figure 8: The performance of the interpretable models in terms of AUC for different levels of complexity.

7.3 Feature interpretation

In this section, we conduct an analysis of feature importance for all interpretable models using one

of the data sets, with a complexity score of 10. The relative importance of each feature is quantified

by their standardized regression coefficients, and the results are presented in tables 9 - 16. The

findings reveal that the majority of models contain features related to INFLATION, RATING, and

RISKPREM. These feature rankings can be employed to interpret individual predictions, as they

allow us to comprehend how changes in specific feature values affect the predicted probability

of default (PD). This information can assist banks in identifying the main drivers of default for

individuals with a high PD, and can also provide borrowers with deeper insight into their credit

score.

As shown in Table 9, the RATING feature is the most significant risk driver for LR. This is ex-

pected, as RATING is the assigned loan grade to the borrower, and a higher value for RATING

indicates a higher risk of default. Additionally, features such as UNEMP, which represents the un-

employment rate for each state, and INFLATION, which represents the inflation rate, are positively

related to the predicted PD. This is because a higher unemployment rate or inflation rate can indi-

cate an adverse economic environment, increasing the likelihood of borrower default. Conversely,
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the feature NEWBUS, which represents the share of established new businesses relative to the total

number of businesses in each state, is negatively related to the PD. This is because an increase in

the share of established new businesses can indicate an improvement in the economy, resulting in a

decrease in the PD.

Table 9: Feature ranking of LR. Green indicates a feature which is positively related to the probability of
default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD is
given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 RATING 22
2 UNEMP 16
3 NEWBUS 15
4 INFLATION 13
5 INTRATE 8
6 RISKPREM 8
7 VERIFTYPE = VERIFIED 5
8 TOTHI 5
9 MUNIRATE 4
10 TYPE = INDIVIDUAL 4

The feature rankings for the PLTR variations are presented in Tables 10 - 12. The models show

that RATING is the most influential feature and the top three drivers are mainly responsible for the

predictions. For PLTR, the decision rule 0.18 <INFLATION <= 0.55, which represents a specific

range of high inflation levels, has a positive relationship with the PD. Additionally, the decision rule

15.09 <INTUSER <= 15.10, which indicates a specific number of internet users per state, has a

negative relationship with the predicted PD. This decision rule indicates a relatively high number

of internet users and applies to 46% of the observations in the data set. However, this decision rule

may be influenced by omitted variable bias as the data set does not include information on the state

of residence of the borrower. In 1-UPLTR, the decision rule INFLATION <= 0.18 has a negative

impact on the PD, consistent with the previously established relationship between inflation and PD

in PLTR. Furthermore, RISKPREM, which is the risk premium on lending for banks, has a positive

impact on the PD as it suggests that borrowers in states with high risk premia may have difficulty

repaying their loans. Lastly, in 2-UPLTR, the decision rule RISKPREM >3.21 & INTUSER <= 15.11

has a negative impact on the PD, indicating that borrowers in states with high risk premia and

moderate levels of internet users may have a lower PD.
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Table 10: Feature ranking of PLTR. Green indicates a feature which is positively related to the probability
of default, whereas red indicates the opposite.The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 RATING 47
2 0.18 <INFLATION <= 0.55 28
3 15.09 <INTUSER <= 15.10 20
4 RISKPREM >3.21 & TYPE = INDIVIDUAL 2
5 INTRATE<= 0.12 1
6 inf >0.00 & TYPE = INDIVIDUAL 1

Table 11: Feature ranking of 1-UPLTR. Green indicates a feature which is positively related to the probability
of default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking Feature impact (%)
1 RATING 45
2 INFLATION <= 0.18 27
3 RISKPREM 11
4 INTUSER <= 15.09 5
5 RATING <= 2.50 4
6 RISKPREM >3.21 & INTUSER <= 15.11 3
7 RISKPREM >3.21 & inf <= 0.09 3
8 GDPCONTRIB <= 0.03 2

Table 12: Feature ranking of 2-UPLTR. Green indicates a feature which is positively related to the probability
of default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 RATING 34
2 INFLATION <= 0.18 26
3 RISKPREM >3.21 & INTUSER <= 15.11 20
4 RATING <= 2.50 9
5 INTUSER <= 15.09 4
6 RISKPREM >3.21 & Verified <= 0.50 3
7 RISKPREM 3
8 GDPCONTRIB <= 0.03 1

36



Tables 13 - 14 present the feature rankings for the RuleFit models. In contrast to previous

models, the impact of features in RF-RuleFit is relatively evenly distributed. The primary driver is

the decision rule 0.16 <INFLATION <= 0.18 & INTUSER >15.09, which has a negative effect on

the PD. This rule pertains to a moderate level of inflation and a high number of internet users. In

the case of Ada-RuleFit, the features are generally shorter as no feature comprises more than two

conditions. Also, the first five features are responsible for the majority of the prediction.

Table 13: Feature ranking of RF-RuleFit. Green indicates a feature which is positively related to the proba-
bility of default, whereas red indicates the opposite. The impact of each of the features on the final predicted
PD is given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 0.16 <INFLATION <= 0.18 & INTUSER >15.09 22
2 NEWBUS 17
3 RATING 17
4 INFLATION >0.18 16
5 UNEMP 15
6 INFLATION <= 0.16 & INTRATE >0.12 & INTUSER <= 15.09 13

Table 14: Feature ranking of Ada-RuleFit. Green indicates a feature which is positively related to the
probability of default, whereas red indicates the opposite. The impact of each of the features on the final
predicted PD is given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 RATING 29
2 INFLATION >0.18 14
3 NEWBUS 13
4 UNEMP 12
5 INFLATION >0.14& INFLATION <= 0.18 11
6 INTRATE 8
7 INFLATION 6
8 TYPE = INDIVIDUAL 3
9 TOTHI 2
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the RUX models. For both models, there are no dominant features in terms of impact, as the

impact of the features gradually decreases along the ranking. In the case of RF-RUX, the decision

rule 10.90 <DTI <= 11.00 is the primary driver, which is negatively related to the PD. DTI repre-

sents the average debt-to-income ratio of the borrower. As the decision rule pertains to a relatively

low debt-to-income ratio, it indicates a less risky borrower and, thus, results in a lower PD. For

Ada-RUX, the decision rule 0.14 <INFLATION <= 0.16 is the primary driver, which is positively

related to the PD. The second most important feature is the decision rule TOTHI <= 16641.00 &

GDPCONTRIB >0.08, which is positively related to the PD. TOTHI represents the credit limit for the

borrower and GDPCONTRIB represents the contribution to the percentage change in the real GDP.

As a low credit limit indicates that the bank perceives the borrower as too risky to grant a larger

loan, it makes sense that this results in an increased PD. It appears that this effect is magnified if

the borrower resides in a state with a high GDP contribution.

Table 15: Feature ranking of RF-RUX. Green indicates a feature which is positively related to the probability
of default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 10.90 <DTI <= 11.00 21
2 INFLATION>0.55 20
3 RISKPREM >3.21 & INFLATION <= 0.18 17
4 INFLATION >0.09 & RISKPREM>3.21 16
5 PURPOSE = WEDDING >0.50 & INFLATION >0.18 14
6 INFLATION <= 0.18 12

Table 16: Feature ranking of Ada-RUX. Green indicates a feature which is positively related to the probabil-
ity of default, whereas red indicates the opposite. The impact of each of the features on the final predicted
PD is given in percentage points and is based on the feature coefficients.

Ranking Feature Impact (%)
1 0.14 <INFLATION <= 0.16 26
2 TOTHI<= 16641.00 & GDPCONTRIB >0.08 23
3 INFLATION >0.55 16
4 AMOUNT <= 1950.00 12
5 PURPOSE = MEDICAL >0.50 & NEWBUS<= 15788.50 12
6 INTRATE<= 0.06 12
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Table 17 presents the top five drivers for ensemble models. Unlike previous models, which pos-

sess inherent interpretability, it is not possible to demonstrate the direct relationship between fea-

tures and internally generated decision rules with the PD due to a lack of transparency. Therefore,

we only display the most significant original features for the models. All models have INFLATION

as their primary driver. RISKPREM and INTRATE are the next most crucial drivers. INFLATION and

RISKPREM were also the most vital underlying drivers for interpretable models.

Table 17: Top five drivers of ensemble models. Bold features indicate features that are present across all
models.

Ranking RF ERT AdaBoost XGBoost
1 INFLATION INFLATION INFLATION INFLATION
2 INTRATE RISKPREM RISKPREM INTRATE
3 RISKPREM RATING RATING TOTHI
4 INTUSER INTRATE INTRATE DTI
5 RATING INTUSER TOTHI RISKPREM

8 Conclusion

In this thesis, we have examined the use of various interpretable machine learning models for

credit scoring, and compared their performance to that of the industry standard Logistic Regression

(LR). We have evaluated variations of Penalised Logistic Tree Regression (PLTR), RuleFit, and Rule

eXtraction (RUX), as well as tree-based ensemble models: Random Forest (RF), Extremely Ran-

domized Trees (ERT), Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost).

Additionally, we have introduced two unbiased versions of PLTR, namely 1-fold Unbiased PLTR

(1-UPLTR) and 2-fold Unbiased PLTR (2-UPLTR), and specifically analysed the performance of RF-

RuleFit, Ada-Rulefit, RF-RUX and Ada-RUX versions of RuleFit and RUX. To facilitate the comparison

of the interpretable models, we have introduced a complexity score, which can be used to evaluate

the complexity of rule-based models relative to that of LR.

Through a simulation study, we have employed three data generating processes (DGPs) based

on different degrees of underlying non-linearity to compare the performance of the models in terms

of the area under the receiver operating characteristic curve (AUC). Our findings indicate that 2-

UPLTR is the best performing interpretable model for different variations of complexity scores and

DGPs. We have also found that 2-UPLTR and RF-RuleFit are the only interpretable models that

consistently outperform LR, while all ensemble models consistently outperform LR.

In addition, we have conducted an empirical study using aggregated United States state-level
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data with LendingClub’s loan book covering the period from 2008 to 2019. Our results reveal that

when ranking the interpretable models in terms of AUC and Bries Score (BS), 2-UPLTR was the

best performing model, followed by 1-UPLTR and Ada-RUX. All models were ranked higher than

LR except RF-RUX. Furthermore, all ensemble models were ranked higher than the interpretable

models, particularly the boosting models. In terms of statistical significance, we have found that

2-UPLTR significantly outperforms both PLTR and LR.

We have also provided an overview of the performance of the interpretable models for different

levels of complexity. We have found that 2-UPLTR obtains the highest performance when the model

complexity is limited to that of LR. However, for higher complexity levels, Ada-RuleFit and Ada-

RUX were found to obtain the highest performance. Additionally, we have demonstrated how the

models can be interpreted, showing the relationship of features with the predicted probability of

default and their impact on the final prediction, which allows for a check on whether the features

are used in the model in alignment with economic reasoning. We found that most interpretable

models use features related to inflation, the loan grade of borrowers assigned by LendingClub, and

the risk premium on lending for banks.

In conclusion, we recommend that banks use intrinsically interpretable machine learning for

credit scoring, as it provides direct interpretability for stakeholders, including local interpretability

for borrowers and global interpretability for regulators. For banks that prefer models that are not

more complex than LR, we recommend using 2-UPLTR. For banks that allow for models that can ex-

ceed LR in terms of complexity, we recommend considering Ada-RuleFit and Ada-RUX. However, it

is possible that banks may prefer a complexity score that is substantially different from our proposed

complexity score, in which case other models may be more suitable.

For future research we recommend conducting a survey study among credit managers of banks

regarding their ability to understand decision rules of different lengths. This would allow creating

a complexity score which is truly tailored to human cognitive behaviour. As financial regulators

and borrowers are also stakeholders of model interpretability, such a survey could be extended

to include them as well. Moreover, in our simulation study, we were limited to using only three

different complexity scores and DGPs on a relatively small data set due to computational constraints.

In future research this simulation could be extended.
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Appendix

A Hyperparameter tuning

Table A1 displays the hyperparameters that are tuned for the models. All hyperparameters are

tuned on the validation set. The candidate values are created around the default values for the

hyperparameters.

Table A1: The tuned hyperparameters per model and their candidate values.

Model Hyperparameter Type Lower Upper Step Size
LR elastic net numeric 0 1 0.1
PLTR lasso numeric 0.01 0.5 0.0025
1-UPLTR lasso numeric 0.01 0.5 0.0025
2-UPLTR lasso numeric 0.01 0.5 0.0025
RF-RuleFit tree size integer 2 10 1
Ada-RuleFit tree size integer 2 10 1
RF-RUX maximum depth integer 2 10 1
Ada-RUX maximum depth integer 2 10 1
RF number of trees integer 100 1500 200
ET number of tress integer 100 1500 200
AdaBoost number of trees integer 100 1500 200
XGBoost number of trees integer 100 1500 200
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