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Abstract

Accurate credit scoring is critical for loan providers as it enables them to manage credit risk exposure
within strict regulatory limits. While Logistic Regression has traditionally been used for this pur-
pose due to its straightforward interpretability, tree-based ensemble models have been shown to be
more effective but lack transparency. Rule-based models, on the other hand, can extract important
relationships from tree-based models while remaining interpretable. In this thesis, we introduce
a novel model called 2-fold Unbiased Penalised Logistic Tree Regression (2-UPLTR) and compare it
to various existing rule-based models. Additionally, we introduce a new metric to quantify model
complexity and examine the relationship between model complexity and performance. Our results
from both simulation and empirical studies demonstrate that 2-UPLTR outperforms other models.
Therefore, we recommend that financial institutions adopt 2-UPLTR for their credit scoring needs

as it provides better predictions without sacrificing interpretability.
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1 Introduction

Credit risk management is a critical aspect of banking, as loans pose the greatest risk for financial
institutions. Credit scoring models are used to evaluate the likelihood that loan applicants will be
able to fulfill their financial obligations, allowing banks to accept applicants with a low probability
of default (PD) and reject those with a higher PD. As banks hold billions of dollars in consumer
loans, even slight improvements in the performance of credit scoring models can result in significant
financial benefits.

Traditionally, the modelling of the PD has been done using Logistic Regression (LR) due to its
clear interpretability. However, LR fails to take nonlinear relationships between the features and the
target variable into account. As a result, various machine learning (ML) models have been shown
to be more effective credit scoring models, particularly tree-based ensemble models (Addo et al.,
2018; Gunnarsson et al., 2021; Lessmann et al., 2015; Petropoulos et al., 2019). In addition, with
the growth in computing power and data availability, ML. models can increasingly achieve better
predictive performance, further surpassing LR.

Despite the benefits of ML models, financial institutions have been hesitant to adopt them due
to their lack of transparency. This reluctance has been compounded by the global financial crisis
of 2007, which increased the demand for insight into credit scoring models from credit regulators.
Furthermore, since the General Data Protection Regulation took effect as law across the EU in 2018,
algorithmic decisions about customers should be explainable to them (Goodman and Flaxman,
2017). That being said, the European Banking Authority recently acknowledged the benefits of

1. To leverage the superior predictive power of ML models, it is

using ML for risk differentiation
necessary to cope with their lack of transparency. There is a growing body of literature on the topic
of intrinsically interpretable ML models, but a comprehensive comparison of these models for credit
scoring is currently lacking.

This research aims to fill this gap by comparing the most promising intrinsically interpretable
credit scoring models in terms of complexity and performance. As tree-based models have been
shown to be successful in credit scoring, we compare variations of the following interpretable tree-
based models to the industry standard LR: Penalised Logistic Tree Regression (PLTR), RuleFit and

RUle eXtraction (RUX). In addition, we analyse the tree-based ensemble models: Random Forest

(RF), Extremely Randomized Trees (ERT), Adaptive Boosting (AdaBoost) and eXtreme Gradient

! https://www.eba.europa.eu/regulation-and-policy/model-validation/discussion-paper-machine-learning-irb-models
Date accessed: February 2, 2023.



Boosting (XGBoost) as supplemental benchmarks. We introduce two unbiased versions of PLTR,
1-fold Unbiased PLTR (1-UPLTR) and 2-fold Unbiased PLTR (2-UPLTR). For RuleFit and RUX we
analyse the following versions: RF-RuleFit, Ada-Rulefit, RE-RUX and Ada-RUX. We compare the
models in a simulation and empirical study using the area under the receiver operating curve (AUC)
and the Brier score (BS). For the simulation study, we use data-generating processes (DGPs) that
are based on different degrees of non-linearity. For the empirical study, we use data that consists
of aggregated United States state-level data with LendingClub’s loan book covering the period from
2008 to 2019.

In short, our research makes the following contributions to the current literature:

* We provide a thorough comparison of the most promising intrinsically interpretable credit

scoring models using both a simulation and empirical study.

* We propose a novel intrinsically interpretable credit scoring model called Unbiased PLTR, and

demonstrate that it outperforms other existing interpretable models in the field.
* We introduce a new metric to quantify the complexity of credit scoring models.

* We investigate the relationship between model interpretability and predictive performance.

In the simulation study, we find 2-UPLTR to be the best-performing interpretable model across
different variations of complexity scores and DGPs. 2-UPLTR and RF-RuleFit are the only two in-
terpretable models that consistently significantly outperform LR. All ensemble models consistently
outperform LR as well. In the empirical study, we find 2-UPLTR to be the best-performing model
followed by 1-UPLTR and Ada-RUX. All models are ranked higher than LR, with the exception of RF-
RUX. Furthermore, when testing for significance, we find 2-UPLTR to significantly outperform both
PLTR and LR. Lastly, we provide an overview of the performance of the interpretable models for
different levels of complexity. For financial institutions that prefer models that are not more com-
plex than LR, we recommend using 2-UPLTR. For those that allow for models that can exceed LR
in terms of complexity, we recommend considering Ada-RuleFit and Ada-RUX as they demonstrate
the best performance in our empirical study.

This paper is structured in the following manner. In Section 2 we describe interpretability for
credit scoring models. Subsequently, in Section 3 we present a short literature overview regarding
credit scoring models. In Section 4, we describe our models and performance metrics. In Section
5 we introduce a score to quantify model complexity. Next, in Sections 6 and 7, we provide a

simulation and empirical study, respectively. Finally, we conclude our research in Section 8.
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2 Interpretability

Miller (2019) generally defines interpretability as the extent to which a human can understand
the cause of a decision in a given context. Then, in the case of credit scoring models, we define
interpretability to be the extent to which credit managers of banks and other stakeholders can
understand the underlying logic and decision-making processes of the model. There are three
key stakeholders in terms of model interpretability: credit managers, potential borrowers, and
regulators, who all aim for different types of interpretability. Namely, model interpretability can be
separated into two levels: global interpretability and local interpretability. Global interpretability
concerns the general impact of features on the output of the model, whereas local interpretability
concerns individual predictions.

The stakeholders of credit scoring models are shown in Figure 1. Credit managers of banks
seek both global and local interpretability, as this allows for careful model validation, in which the
model’s accuracy and reliability are assessed. This is typically achieved through the comparison of
the model’s predictions to the actual outcomes of the loans, allowing for the identification of any
potential issues or biases in the model. Potential borrowers are interested in local interpretability, as
they want to know how the model has determined their credit rating and how they can improve it.
This is especially the case for applicants who have been rejected. Hence, potential borrowers want
to get insight into relevant counterfactuals. For example: “ What would have happened to my credit
scoring if  had 10% higher income?" or “What would have happened to my credit scoring if I did not
have any outstanding loans?". Regulators prioritize global interpretability, as they want to see a clear
link between the risk drivers and the target variable, to determine whether the model makes sense
economically. It is important to note that model interpretability does not ensure trustworthiness, as
for determining model trustworthiness expert judgement is necessary. Model interpretability simply

ensures that experts have the necessary tools to determine model trustworthiness.
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Figure 1: The stakeholders of banks in terms of model interpretability.

The use of uninterpretable machine learning models in high-stakes decision-making fields has
prompted the development of methods for explaining them on a local level, such as LIME (Ribeiro
et al., 2016) and Shapley values (Bussmann et al., 2021), and on a global level, such as partial
dependence plots (Friedman, 2001) and accumulated local effects (Apley and Zhu, 2020). Rudin
(2019) states that trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to sustain bad practices and can potentially cause grave harm to
society. Namely, relying on post-hoc explanations of black box models can create a false sense of
understanding and trust in the model’s predictions. This can lead to a lack of critical scrutiny and
oversight, which can have serious consequences if the model is making decisions with significant
impacts on people’s lives, such as in the case of credit scoring models. Additionally, the lack of
interpretability in black box models can make it difficult or impossible to hold the creators of these
models accountable for their decisions and actions, which can undermine trust in the model and
the institutions using it.

The trade-off between model interpretability and performance is a common assumption in the
literature, as interpretability often comes at the cost of limiting the class of models that can be used.
However, this trade-off may not always hold in practice, particularly when the data is structured
and contains few or no noisy features (Razavian et al., 2015). As different fields have varying
requirements for model interpretability, interpretability needs to be defined in a domain-specific
manner. However, literature regarding metrics that quantify interpretability for specific fields is still

gravely lacking (Murdoch et al., 2019).



3 Literature

The objective of credit scoring models is to differentiate between applicants that are likely and
unlikely to default. Consequently, credit risk problems can be approached as classification problems.
Due to its simplicity and intrinsic interpretability, LR has remained the industry workhorse for the
last decades. LR has been compared to various ML models within the context of credit risk. It turns
out that individual classifiers show only limited added performance in comparison to LR (Baesens
et al., 2003; Yeh and Lien, 2009).

On the other hand, tree-based ensemble models, which combine the output of multiple individ-
ual decision trees (DTs), have been shown to be quite successful credit scoring models. Namely,
in a study comparing 41 credit scoring models, Lessmann et al. (2015) find ensemble models to
obtain the best performance and propose Random Forest (RF) as the benchmark instead of the
industry-standard LR. Moreover, Gunnarsson et al. (2021) find eXtreme Gradient Boosting (XG-
Boost) to be the best ranking classifier in their credit scoring study. Furthermore, Addo et al. (2018)
and Petropoulos et al. (2019) find tree-based models to be better credit scoring models than deep
learning models. Additionally, Gunnarsson et al. (2021) do not recommend the usage of deep
learning models for credit scoring as they do not outperform their shallower counterparts and have
substantially more computational costs.

Despite their superior performance as credit scoring classifiers, tree-based models are not widely
adopted by banks due to their lack of interpretability (Dumitrescu et al., 2022). In addition to a
local and global level, model interpretability can be separated into two types: intrinsic and agnos-
tic. The former restricts the complexity of the model to retain interpretability, whereas the latter
separates the explanations from the model by applying auxiliary methods that analyse the model
after training.

We primarily focus on intrinsically interpretable models due to their advantages on both a global
and local level. Specifically, the overall weight of each risk driver in determining the target variable
can easily be obtained and changed in these models. While some model-agnostic methods may
approximate the overall weight of each risk driver, they do not provide the same level of ease in
adjusting these weights as intrinsically interpretable models. As expert judgment regarding the
role of risk drivers plays a significant role in fine-tuning credit scoring models in practice, the ease
of manipulation provided by intrinsically interpretable models makes them particularly appealing.

Furthermore, intrinsically interpretable models can be directly interpreted on both a global and local



level, whereas different model-agnostic methods are required for local and global interpretation,
making the use of intrinsically interpretable models more efficient.

Recently, Dumitrescu et al. (2022) introduced Penalised Logistic Tree Regression (PLTR), an
intrinsically interpretable credit scoring model that compares competitively to RF. It operates by
combining two steps: first, it creates decision rules based on short-depth decision trees, and then
incorporates these decision rules as regressors, together with the original features, in a penalised
logistic regression. Decision rules are "[F-THEN" statements consisting of conditions followed by a
prediction; "IF" the conditions are met "THEN" make a certain prediction. For example: "IF loan >
5000 & age < 25, THEN default = true." As such, decision rules can be viewed as dummy variables.

Friedman and Popescu (2008) introduced another intrinsically interpretable classification model
named RuleFit, which is an ensemble of decision rules. This algorithm is an ensemble of decision
rules that operates similarly to PLTR, but obtains decision rules through a different process. Al-
though this algorithm has not been previously applied in a credit scoring study, it has been shown
to demonstrate comparable performance to tree-based ensemble models across 100 datasets. Fur-
thermore, Akyliz and Birbil (2021) proposed RUle eXtraction (RUX), an approach that extracts
interpretable rules from tree-based models using linear programming. This method allows for the
assignment of cost coefficients based on different attributes of the decision rules, such as rule length
(the number of conditions in a decision rule) and estimator weights.

As tree-based ensemble models have been demonstrated to be high-performing credit scoring
models, they form the central focus of this research. We compare the above-mentioned methods to
determine the optimal method for use in a credit scoring context. As a comparison between decision
rule-based methods is lacking in the current credit scoring literature, this research aims to provide

a comprehensive overview of different underlying levels of model complexity for these methods.

4 Methodology

This section presents an overview of the methods used in this thesis. We begin by discussing LR
and Decision Tree (DT) as standard models. LR serves as the baseline as it is currently the industry
standard for credit scoring, while DT functions as a benchmark as it is the fundamental component
of all tree-based models. Next, we present the "black-box" tree-based ensemble models. Lastly,
we discuss the intrinsically interpretable models PLTR, RuleFit and RUX, and introduce our novel

method: Unbiased PLTR.



4.1 Standard models

Let (z;,vyi),i = 1,...,n represent a sample of n independently and identically distributed obser-
vations, where x; € R? is a vector containing p features of borrower ¢, and y; is a binary variable
indicating whether borrower i defaults (i.e., y; = 1) or not (i.e., y; = 0). The objective of credit
scoring models is to estimate the posterior probability P(y; = 1|z;), which represents the probability

that borrower i defaults given their features x; (Dumitrescu et al., 2022).
4.1.1 Logistic Regression (LR)
The first baseline model is standard (LR), which models the posterior probability of default using

the logistic cumulative distribution function (CDF) F'(-) as:

1
" 1T+ exp(—n(zi; 9))

where 7(zi; 8) = Bo + 24—, Bjxij, and 3 = (Bo,...,Bp-1,0,) € RPT! represents the vector of

P(y; = 1|z;) = F(n(zi; B)) (¢h)

unknown parameters that can be estimated by maximizing the log-likelihood function:

n P P
L=%" {y log{F(n(as; 8))} + (1 — ) (1 — log{ F(n(x:: 6))})} Y BlHRY 8 @
i=1 i=0 i=0
where the hyperparameters A\; and A, control the strength of the elastic net penalty terms (Zou
and Hastie, 2005). The elastic net penalty terms are used to deal with data that contains a high
number of variables. The first term of Equation 2 is the L; norm, which uses the sum of the
absolute coefficients to shrink the regression coefficients of variables with a minor contribution to
the outcome towards zero. Similarly, the second term of Equation 2 is the Ly norm, which uses
the sum of the squared coefficients to shrink the regression coefficients of variables with a minor
contribution to the outcome close to zero.

The main advantage of LR is its interpretability, as it only searches for a single linear decision
boundary in the feature space. The core assumption for finding this boundary is that the function
n(z;; ) and the features are linearly related. As a result, the marginal contribution of each feature

to the probability of default can be obtained as:

OP(yi = 1z;)  ,  exp(n(z;B))

Oz 1+ exp(n(zi; 8))] >




4.1.2 Decision tree (DT)

DTs are non-parametric models that can capture non-linear relationships by recursively partitioning
the feature space into smaller regions. The partitions are chosen such that the observations in
each region are as similar as possible, which enables the final nodes, called leaves, to effectively
discriminate among the potential outcomes.

Let D,, contain the observations and 6,, = (jm,tm, ;) be a candidate split for a given node m,
where j,, = 1,2,...p specifies an according threshold value ¢,, ;. The Classification and Regres-
sion Tree (CART) algorithm (Breiman et al., 1984) separates the observations into two data sets

Dy 1(0,,) and Dy, 2(6,,,), where

Dy 1(0m) = (xi,yi)|zij < tmy; and Dy o(0m) = (24, yi)|zij > tmj, @

and 6,, is estimated as

~ PO 1

O = G fong) = argmax H(Dp) — 5 (’H(Dm,l(em)) n ’H(Dmg(em))). (5)

The best split is chosen by maximizing a criterion 7(-) that measures the diversity of the observa-

tions in the child nodes. We use the Gini impurity, which is defined as:

G = Zp(i)(l —p(i)), ©)

where C' denotes the number of classes and p(i) denotes the probability of randomly picking an
element of class ¢. Hence, the Gini impurity yields the likelihood of misclassifying a randomly
chosen observation, given that it is labelled according to the class distribution in the data set. By
minimizing the Gini impurity, we can find thresholds that succeed most in discriminating among
the potential outcomes.

To illustrate the workings of a decision tree, consider the example in Figure 2. The tree is
built using the features Income, Age, and Interest. The splits at the nodes are determined by
comparing the feature values to a threshold value. For example, at the first node, the tree splits the
observations into two groups based on whether the income is less than or equal to 30,000. This
process is repeated for each child node until the observations reach the leaf nodes. At the leaf nodes,

the tree calculates the percentage of defaults for the observations in that node. This percentage is



used to classify an unseen observation that ends up in that leaf as either a default or non-default.

Income < 30,000 Income = 30,000

| |
O

Age < 35 Age = 35 Interest < 0.05 Interest = 0.05

Figure 2: An example of a decision tree. At nodes A-C, the observations are branched to two nodes in the
next layer. At leaf nodes D-G, unseen observations are assigned classes based on majority rule.

4.2 Tree-based ensemble models

Decision trees, while being simple and interpretable, can be prone to overfitting and high variance
due to their sensitivity to outliers. As a result, ensemble methods have been widely adopted in
practice as an alternative (Bramer, 2007). These methods include bagging techniques like Random
Forest and Extremely Randomized Trees, as well as boosting methods like eXtreme Gradient Boost-
ing and Adaboost. These ensemble methods have been shown to improve the overall performance
of the model by reducing the variance and bias of the base models, resulting in enhanced gen-
eralization performance. They have been proposed as a benchmark over traditional LR for credit

scoring applications.

4.2.1 Random Forest (RF)

RF is a widely used ensemble method that improves the predictive performance of a model by com-
bining the output of multiple independently grown decision trees. The method utilizes bootstrap
sampling, drawing with replacement from the full dataset, to grow each tree. To decrease corre-
lation among the trees, RF only selects a random subset of ,/p features of a data set containing p

features, for forming the splits in each tree. The final prediction is determined by majority voting



among the trees. The number of trees is a crucial hyperparameter to be optimized, as increasing

the number of trees improves the generalization error of the model (Breiman, 2001).

4.2.2 Extremely Randomized Trees (ERT)

ERT is an ensemble method that, like RF, combines the output of multiple decision trees. However,
while RF grows trees using bootstrap subsamples, ERT builds trees using the entire training set.
Additionally, instead of using the Gini impurity in Equation 6 to determine the best split, ERT
randomly selects cut-points for a subset of features and selects the best cut-point to split the data.

This approach tends to reduce variance but increases bias in the model.

4.2.3 Adaptive Boosting (AdaBoost)

Whereas the main goal of bagging models is to decrease the variance, the main goal of boosting
models is to decrease the bias. Boosting consists of growing decision trees recursively, where each
new tree aims to correct the errors made by the previously trained tree. AdaBoost is a popular
boosting algorithm that is primarily designed to tackle binary classification problems (Freund et al.,
1996). The algorithm begins by fitting a decision tree to the training data, with all samples initially
given an equal weight of w;; = 1/N, where w;; indicates the importance of correctly classifying
sample ; after fitting tree t. The misclassified data points are then assigned a higher weight, making
them more likely to be classified correctly in the next decision tree. This process is repeated until
the ensemble consists of 1" trees.

The impact of each decision tree ¢ is denoted by

1 1 — error
= _—log ———M.
at 2 8 error 7)

As shown in Figure 3, a tree with few misclassifications corresponds to a large positive impact,
whereas a tree with many misclassifications corresponds to a large negative impact. This allows the
boosting algorithm to assign higher weights to the observations that are misclassified by previous
trees, thus reducing the bias of the model. The updated weights are calculated using the following
equation:

wip—1exp(—ay), iy =y

Wt = (8)
wit—1 exp(oy), otherwise,

where 7j;; represents the predicted value of the target variable after the ¢" tree is fitted. When

10



an observation is correctly classified, a; is positive, resulting in a decrease in weight for that ob-
servation. On the other hand, when an observation is misclassified, a; is negative, resulting in an

increase in weight for that observation.

0 0.2 0.4 0.6 0.8 1
Error rate

Figure 3: Impact curve of decision trees.

4.2.4 eXtreme Gradient Boosting (XGBoost)

XGBoost is an ensemble method similar to AdaBoost, which combines decision trees to improve
the predictive performance of the model. Instead of using simple majority voting like AdaBoost,
XGBoost uses gradient descent to optimize the loss function and correct the errors made by previous
trees. This method is regularized to prevent overfitting and uses second-order gradients for more
efficient optimization. The loss function for node selection and splitting for a tree structure g is
given by

2
J iel, i
_ ;z::( <l ) ©)

Sier, it A

where J is the number of leaves in the tree, I; is the set of observations in leaf node j, g; is
the gradient of the loss function, h; is the hessian of the loss function, and A is a regularization
parameter.

Due to the computational hardship of enumerating through all possible tree structures in order

the find the optimal tree structure, a greedy algorithm that iteratively adds branches to a tree is

11



used instead (Chen and Guestrin, 2016). The loss reduction after the split is given by

(10)
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where I, and Iy are the sets containing the observations in the left and right nodes after the split,

respectively.

4.3 Intrinsically interpretable tree-based models

We describe PLTR, RuleFit and RUX, which all use tree-based models to extract decision rules and
then use these decision rules as features in a linear model. Additionally, we propose two unbiased

variants of PLTR.

4.3.1 Penalised Logistic Tree Regression (PLTR)

PLTR seeks to improve the predictive performance of LR while maintaining its interpretability. This
is accomplished by incorporating decision rules extracted from short-depth decision trees as addi-
tional features in a penalized LR model, alongside the original features. The interpretability of the
model is a crucial aspect of PLTR, and it is achieved by keeping the decision trees short. Decision
trees are known to be transparent and easy to interpret when they are short, but as the depth in-
creases, the transparency of the model decreases. As the depth of the tree increases, the number
of leaf nodes increases, making it more challenging to understand the underlying decision rules.
However, using decision trees with low depth can limit the performance of the model. To address
this issue, PLTR employs various decision trees with a maximum depth of two layers and combines
them in a penalized LR model. The method consists of two steps.

Step 1: extracting decision rules from one-split and two-split decision trees. One-split trees are
trees with only one layer. For example, the tree in Figure 2 is a two-split tree, but if nodes D-G were
removed, so that B and C form the leaf nodes, it would be a one-split tree. To extract decision rules
from one-split trees, a decision tree is fitted using each of the p features, resulting in two leaf nodes,
one of which is kept for the next step. For two-split trees, decision trees are fitted for each pair-wise
combination of the features. However, when one feature is more informative than the other, this
can result in redundant bivariate threshold effects. To avoid this, redundant threshold effects are

. . —1 . .
removed, resulting in at most % decision rules.

12



Step 2: incorporating the extracted decision rules in a logistic regression:

1
Py =1V, V5 0) = — 11
! 1+ exp(—n(Vi(fl),Vi(fz’k); 0)
where
n(zs; VE, VD 0) = o +Zang +Zm@ +Z Z Vi Vis, (12)
j=1k=j+1
which contains the vector © = (8, o1,...,0p,061,...,0p,71,2,-..,7p — 1,p) and binary variables

Vi(ﬂ), representing univariate threshold effects based on feature j and and bivariate threshold effects
based on features j and k, respectively. The parameter vector © can be estimated by maximizing
the log-likelihood:

n

L=23 {y log{ F(n(VY, V™ 0)} + (1= i) (1 — log{F(n(V} >,v<gk>;e>>})}. (13)

=1

As adding the decision rules based on short-depth trees as regressors results in a rather large number
of features, the adaptive lasso estimator of (Zou, 2006) is used to drop uninformative features.
Using fewer features means that the model output is dependent on fewer variables, and hence

increases model interpretability. Lasso estimates are obtained as

~

O alasso = arg min —E(VZ( 1), V(J k), 0) + )x\(:)(o)|_1\@|, (14)
C]

where the initial estimator §() is the value obtained from the logistic regression with a ridge penalty.

4.3.2 Unbiased Penalised Logistic Tree Regression (UPLTR)

PLTR uses all data points for extracting the decision rules in step 1 and fitting the penalized LR in
step 2. As this means that the information of each observation is used twice, this could lead to a
high bias in the model. To address this issue, we introduce two variants of PLTR: 1-fold Unbiased
PLTR (1-UPLTR) and 2-fold Unbiased PLTR (2-UPLTR).

In 1-UPLTR, the data is split into two distinct subsamples, A and B, where subset A is used for
extracting the decision rules and subset 5 for fitting the penalized LR. The roles of the subsamples
can then be reversed such that subset B is used for extracting the decision rules and subset .4 for
fitting the penalized LR. In 2-UPLTR, the LR coefficients of the two subsets are averaged, which

reduces the bias in the model. These unbiased variants of PLTR provide a more robust and reliable

13



solution to the bias issue while maintaining the interpretability of the model.

4.3.3 RuleFit

RuleFit fits a sparse linear model using decision rules extracted from a tree-based ensemble in
addition to the original features. Let S; be the set of all possible values for feature z;, and s;,, be a

specified subset that contains m of those values. Then each decision rule can be noted as:
n
rm(z) = H 1(z; € sjm), (15)
j=1

where 1(-) is an indicator function which is equal to 1 if its argument is satisfied. Consequently, the
decision rule is binary, being only equal to 1 if all of its input variables are within their respective
subsets {z; € s;n}{. For variables that assume orderable values, the subsets are taken to be
intervals s;,, = ({jm, w;m]. where l;,, and u;,, denote a lower and upper bound, respectively.

For some variables, the subset of values appearing is equal to the full set of values such that

Sjm = Sj. As x; € sj,, will always be satisfied in this case, Equation 15 can be simplified to:

n
rm(z) = [ 1(z; € sjm). (16)
$jm#S;

Thus, the more variables there are that have a subset of values which is equal to the full set of
values (s;, = 5;), the shorter the decision rules are. Moreover, the shorter the decision rules are,

the easier they can be interpreted.
To generate an ensemble of decision rules, fast algorithms such as RF and AdaBoost can be used.
Let {fn(z)}M_, denote a tree ensemble containing M decision trees, each with output f,,(x). The
set of all decision rules derived from that ensemble is denoted as i (x)X_, where the total number

of rules is

M
K=> 2(n—1), a7

F(z) =do+ ) agr(x), (18)
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where

N K K
{Gr}k = arg minZ(L(yi, ap + Z akrk(xi)>+)\ Z lag], (19)
k=1 k=1

{ar}t =1

which uses the squared-error ramp loss
L(y, F) = [y — min(—1, max(1, F))]?, (20)

and hyperparameter \ for determining the impact of the Lasso penalty. Optimizing this loss function
has been shown to produce a comparable performance to other commonly used loss criteria but with

increased robustness against misclassified observations (Friedman and Popescu, 2008)

4.3.4 RUle eXtraction (RUX)

RUX extracts decision rules from trained ensemble models by using linear programming and hence
is scalable to large data sets. Let 7 be a group of decision rules and let rule j; € 7 assign the vector
Rj(x;) to observation z; if that observation is covered by rule j. To predict the class of observation
x; with the rules in group 7, a set of nonnegative weights w; are associated with the rules and the

following equation is evaluated:

Yi(z;) = arg max ( Z ai; R; (zi)w]) , (21
JjeJ
where a;; is equal to 1 if rule j covers observation ¢ and equal to O otherwise.

The hinge loss is used to determine the total classification loss, which is defined as
n
Zmax{l — Zaijw]',()}, (22)
i=1 jeg

where @;; = a;;R;(x;)"y;(x;). The use of this loss function allows for the formulation of a linear
programming model that aims to find the set of rules that minimize the total loss. To accomplish
this, auxiliary variables v; fori = 1,...,n, defined as v; > max{1 —)_ e a;;wj, 0}, are introduced.

The resulting problem can be formulated as follows:

N
minimize Z v; + Z cjw; (23)
i=1 jeT
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Subject to

Zaijwj+vi21, 1=1...n; (24)
JjeT
ZaijijE, i:1...n; (25)
JjET
i >0, i=1...m; (26)
wj 2 0, VESIVE 27)

where cost coefficients ¢; > 0,j € J prevent (1) rules from being too long and (2) involving many

non-zero weights.

4.4 Feature importance

To understand the role of different features in determining the final output of the model, we calcu-
late feature importance. This allows banks to identify the key drivers of the probability of default.
For interpretable models, this can be done directly by analyzing the decision rules that are gener-
ated, as they are transparent. However, for ensemble models, this transparency is not present and
feature importance can only be calculated for the original features, not the decision rules that are

created internally.

4.4.1 Feature importance of interpretable models

To understand the relative importance of different features in a linear model, Friedman and Popescu
(2008) propose calculating feature importance (FI) as the product of the absolute value of the
estimated coefficient and the standard deviation of the standardized data for the feature. This can
be represented mathematically as:

FI; = | 3] x o(i;), (28)

where B\j is the estimated coefficient of the model for feature j, o(-) is the standard deviation and
&; contains the standardized data instances of feature j.

For decision rules, the importance of the feature is calculated as

FI, = |Bi| x /s (1 — sp), (29)

where j; is the estimated coefficient of the model for decision rule k and sy, is the support of the
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feature in the data, which is defined as the ratio of data instances to which the decision rule applies.

The support of the feature can be calculated as:
S = — gn Dy(x;) (30)
k nz - k 1)

where Dy (z;) is equal to 1 if decision rule Dy, is applied to data instance ;.
To fully understand the working of our tree-based models, we analyze their interpretability on
a global and local level. Global explanations focus on the overall impact of features on the model’s

predictions, whereas local explanations focus on individual predictions.

4.4.2 Feature importance of ensemble models

To calculate feature importance for ensemble models, we use the Gini importance, also known
as the mean decrease in impurity, which is defined as the normalized total depletion of the Gini
impurity caused by the feature. To obtain feature importance, we first calculate the importance of
each node. Node importance (ni) can be calculated as:

left ~left right ~right
; Gj + w; Gj ,

ni; = w;G; +w (3D
where w; and G; denote the weight and Gini impurity of node j, respectively, and the left and right
superscripts refer to the left and right child node of node j, respectively. Feature importance (fi) for
feature 7 can then be calculated as the weighted fraction of node importances for which feature i is
responsible:

Zjej 1; ;ni;

fi, = -
Zjej ni;

5 (32)

where J denotes a set containing all nodes and the indicator function 1; ; is equal to 1 when node
j uses feature ¢ to split the data and O otherwise. Finally, the normalized feature importance (FI)

for feature 7 can be obtained as:

Fl, = &=—— (33)

where F denotes a set containing all features.
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4.5 Performance measures

Based on the findings of Lessmann et al. (2015), the performance of credit scoring models can
be evaluated using the area under the receiver operating characteristic curve (AUC) and the Brier
Score (BS). The AUC measures the model’s discriminatory ability and the BS assesses the accuracy

of the predicted probabilities.

4.5.1 Area under the receiver operating curve (AUC)

The AUC is used to compare the receiver operating characteristic (ROC) curves of different models.

ROC curves are based on the values of confusion matrices. An example is shown in Table 1.

Predicted class
Positive Negative
Positive True Positive (TP) | False Negative (FN)
Negative | False Positive (FP) | True Negative (TN)

Actual class

Table 1: A confusion matrix.

Confusion matrices offer a comprehensive representation of a model’s predicted and actual out-
comes. In the context of binary classification, such as credit scoring, True Positive (TP) and True
Negative (TN) are used to denote the number of observations that are correctly classified as positive
(default) and negative (non-default) respectively. Then, the sensitivity measures the proportion of

positive examples that are predicted to be positive:

TP
TP+FN’

Sensitivity = (34)

while the specificity measures the proportion of negative observations that are predicted to be

negative:
N

(35)

The ROC curve is a two-dimensional graph which is created by plotting the sensitivity against [1-
specifity], which is also known as the probability of false alarm, at various threshold settings.

Two representative Receiver Operating Characteristic (ROC) curves are illustrated in Figure 4.
To evaluate the performance of different models, the Area Under the Curve (AUC) is commonly
used as it provides a single scalar metric. The AUC can be interpreted as an approximation of
the probability that a randomly selected positive instance will be ranked higher than a randomly

selected negative instance. As such, it can be observed from Figure 4 that Model 1 exhibits superior
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discriminatory ability as its AUC is higher than that of Model 2. Additionally, it is important to note
that for an adequate model, the AUC should be significantly greater than 0.5, which corresponds to

the AUC of a random classifier

1 ry /
—— Model 1
—— Model 2

0.8 1

0.6 T gl

Sensitivity

0.4 1 e

0.2 | e

0 01 02 03 04 05 06 07 08 09 1
1-Specificity

Figure 4: The ROC-curve for two models.

Hanley et al. (1983) propose a method for determining the statistical significance of the differ-
ence in AUC between two models that are based on the same observations. The test statistic is given
by:

AUC, — AUC
Z = , 36)
\/SE% + SE}, — 2rSE.4SEp

where AUC); and SE;; are the mean of the observed AUCs and the estimated corresponding stan-
dard error for model M € {A, B}, respectively, and r is the estimated Pearson product-moment

correlation coefficient between the AUCs of models A and B.

4.5.2 Brier Score (BS)

The BS calculates the mean squared error between the predicted probabilities and the observed

values for the target variable:

1 N
=% Z ? (37)
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5 Complexity score

Interpretability is a crucial aspect in the selection of a credit scoring model, as it allows financial
institutions to understand and explain the model’s decision-making process. However, a lack of a
standardized metric for quantifying model complexity has hindered comparisons of interpretability
between models. To address this gap, we propose a novel complexity score for credit scoring models
that is based on the number and length of the decision rules used in the model. Our score captures
the idea that a model with a larger number of longer decision rules is more complex than one with
fewer and shorter rules. This relationship between complexity and predictive performance is crucial
for making informed recommendations to financial institutions.

Our complexity score is defined as the sum of the penalties for each decision rule, plus the

number of ordinary features (features that are not decision rules) in the model:

D
C=) Pi+F, (38)

d=1
where penalty P, is defined as the penalty for decision rule d, and D and F' are the number of

decision rules and ordinary features in the model, respectively. We consider three straight-forward

cases for decision rule penalty P,, resulting in the following complexity scores:

D Lg+F, ifk=1;
D
Crh=> Pix+F =P (Lg —05)+F, ifk=2; (39)
d=1
S oka-l 4 R ifk =3,

where rulelength L, is defined as the number of conditions in decision rule d. For example, the
decision rule loan > 5000 & age < 25 has a length of 2.

The baseline complexity score C1 treats the penalty of a decision rule of length 1 as equivalent
to the penalty of a single ordinary feature, implying that a decision rule of length 1, such as age <
25, has the same ease of interpretation as a single feature. The complexity score Cs, reduces the
penalty of a decision rule of length 1 to half the penalty of a single ordinary feature, implying that
a decision rule of length 1 has more ease of interpretation than a single feature. According to this
complexity score, a model with many short decision rules is preferred over a model with few but

long decision rules. The relative advantage of subtracting a half from the penalty decreases as the
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decision rule becomes longer, which means that compared to ', especially the short decision rules
are favoured when using C5, while the penalty for long decision rules remains approximately the
same. For the last complexity score ('3, longer decision rules are penalized exponentially harder,
while the penalty for short decision rules remains the same as for C';. An example of the penalties

of the complexity scores for decision rules of different lengths are shown in Table 2.

Table 2: Decision rule penalties for the different complexity scores.

Decision rule Ci1 Cy (3 | Rulelength
loan > 5000 1 05 1 1
loan > 5000 & age < 25 2 15 2 2
loan > 5000 & age < 25 & gender = male | 3 25 4 3

6 Simulation study

In this section, we evaluate the performance of all models across different complexity scores and
data generating processes (DGPs). The DGPs are designed to reflect varying levels of underlying
non-linearity, specifically by incorporating first, second, and third-degree feature interactions. For
each DGP, we report the AUC along with its 95% confidence interval. Due to computational limita-

tions, the number of simulations per DGP is restricted to 100.

6.1 Data-generating process (DGP)

We compare the performance of the models based on three different data-generating processes
(DGPs) using a set-up similar to that outlined in Dumitrescu et al. (2022). The data used for
this comparison consist of 10 standard normal features, designated as x; ; where j = 1,...,p and
i =1,...,n,with a sample size of 2,000. 80% of these observations are used to train the data, while
the remaining 20% are used for testing the models. The underlying functions in the DGPs contain
nonlinear effects using thresholds and interactions, as these are commonly seen in real-world data.
For example, in the context of credit scoring, an income threshold effect can be observed, where
the probability of default decreases significantly above a certain income level

The functions in the DGPs utilize a vector of parameters (5o, 1, - - -, Bp, 81,2, - - - Bp—1,p, 51,235 - - -
Bp—2.p—1,p) Which contains components that are randomly drawn from a uniform [-1,1] distribution
and a vector of threshold values (v1,...,7p,01,...,0p,01,...,6,) that are randomly selected from

the support of each feature after excluding the 10% highest and lowest values. The underlying
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functions for DGPs 1-3 are simulated as follows:

77(90@,5 BO+Z/BJ xzj<7])

7=1
p
CE,, /80+Zﬁj xzy§7] +Z Z B]k]- ‘rz]<5) (xz,kgék)7
J=lk=j+1
. (40)
:I:la /BO+ZBJ xzj<'7j +Z Z 5]](31 $1J<5) (xi,kgék)
J=1k=j+1

+ Z Bikal(ij < 05)1 (s < 0k)1(ziy < 0p),

where the indicator function 1(-) is equal to 1 if the restriction within brackets is satisfied and 0

otherwise. Subsequently, the default variable is simulated for DGPs k& = 1,2,3 as

L if Pu(yi = i) = mrogmmm > ™
Yik = LT e (41)

0, otherwise,

where 73, denotes the median of the generated probabilities for each DGP. As can be seen in Equation
40, the DGPs 1-3 include first, second and third-degree interactions among features, respectively.
By evaluating the performance of each model, we can determine the relative performance of each

model with respect to the nonlinearity present in the underlying DGP.

6.2 Results

The performance of interpretable models is presented in Figure 5 for varying levels of non-linearity
in the DGPs and complexity scores. As expected, the performance of the models deteriorates as the
non-linearity in the DGP increases. A complexity restriction of C < 20 is imposed on the models for
k = 1,2, 3, ensuring that their complexity score never exceeds double that of the LR. This restriction
is set to double the complexity of LR due to the limited number of features in the data. In situations
where the data comprises a large number of features, the complexity limit can be set equal to that
of LR.

When considering only the models with the baseline complexity score (Figure 5a), we observe
that 2-UPLTR consistently achieves the highest performance. For DGP 1, all models outperform LR,
with only RF-RUX and Ada-RUX having overlapping confidence intervals with LR. 2-UPLTR has the
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best performance, followed by 1-UPLTR and Ada-RuleFit. As the volatility in performance increases
for DGPs 2 and 3, all confidence intervals overlap. For DGP 2, all models still outperform LR, with
PLTR and 2-UPLTR having the best performance, followed by Ada-RuleFit. For DGP 3, not all models
outperform LR, with RF-RUX and Ada-RUX having lower performance. 2-UPLTR remains the best
performer among all models.

The performance of the models improves when using the second complexity score (Figure 5b)
which reduces the penalty for short decision rules. For DGP 1, all models outperform LR, with only
RF-RUX having overlapping confidence intervals with LR. 2-UPLTR has the best performance, fol-
lowed by 1-UPLTR and Ada-RuleFit. For DGP 2, all models still outperform LR, with PLTR having the
best performance followed by 2-UPLTR. For DGP 3, RF-RUX and Ada-RUX have lower performance
than LR. 2-UPLTR remains the best performer among all models.

Finally, when using the third complexity score (Figure 5c), which increases the penalty for long
decision rules, 2-UPLTR consistently has the highest performance. For DGP 1, all models outperform
LR, with RF-RUX and Ada-RUX having overlapping confidence intervals with LR. 2-UPLTR has the
best performance, followed by 1-UPLTR and Ada-RuleFit. For DGP 2, all models still outperform
LR, with 2-UPLTR having the best performance followed by Ada-RuleFit and PLTR. For DGP 3, all
models except RF-RUX and Ada-RUX outperform LR. 2-UPLTR again outperforms all others.

The performance of tree-based models without interpretability constraints is shown in Figure
6. From these ensemble models, it is observed that the boosting models consistently achieve the
highest performance. The relative order of performance remains consistent across the DGPs, with
RF consistently outperforming ET. However, the performance gap between RF and ET decreases for
DGP 3. When comparing the ensemble models to the interpretable models, it is observed that the
best-performing interpretable model, 1-UPLTR, performs similarly to the ensemble models. How-
ever, as the non-linearity in the underlying DGP increases, the gap in performance between the

interpretable and ensemble models widens.
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Figure 5: Simulation performance for interpretable model in terms of AUC per DGP, with 95% confidence
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Figure 6: Simulation performance for ensemble models in terms of AUC per DGP, with 95% confidence
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Table 3 presents the performance ranking for each model based on different complexity scores
for each DGP. For DGPs 1 and 3, the ranking based on the baseline complexity score ('} is consistent
with the average ranking. However, for DGP 2, the ranking based on the baseline complexity score
differs from the average ranking for 1-UPLTR and RF-RuleFit, which are ranked 4th and 5th respec-
tively based on the baseline complexity score and vice-versa for the average ranking. Overall, the
performance ranking of the models remains stable across the different complexity scores. There-
fore, for the remainder of this thesis, we focus solely on the results based on the baseline complexity

score (.

Table 3: Performance ranking of the models.

Ranking‘ LR PLTR 1-UPLTR 2-UPLTR RF-RuleFit Ada-RuleFit RF-RUX Ada-RUX

DGP 1
C1 8 5 2 1 4 3 7 6
Cc2 8 5 2 1 4 3 7 6
C3 8 4 2 1 5 3 7 6
Average | 8 5 2 1 4 3 7 6
DGP 2
C1 8 2 4 1 5 3 7 6
C2 8 1 5 2 4 3 7 6
C3 8 3 5 1 4 2 7 6
Average | 8 2 5 1 4 3 7 6
DGP 3
Cl 6 2 4 1 5 3 8 7
C2 6 2 4 1 5 3 8 7
C3 6 2 4 1 5 3 8 7
Average | 6 2 4 1 5 3 8 7

Table 4 presents the Z-statistics for all models to test whether there is a significant difference in
performance compared to the baseline model LR. We observe that among the interpretable models,
only 2-UPLTR and RF-RuleFit significantly outperform LR for all DGPs. With the exception of the
RUX models, all interpretable models outperform LR for DGPs 1 and 2. All ensemble models also

outperform LR for all DGPs.
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Table 4: Z-statistics for model performance in comparison to LR. Bold values indicate values that are signifi-
cant at a level of 5%.

Model DGP1 DGP2 DGP3
PLTR 2.82 3.66 1.47
1-UPLTR 5.50 3.38 1.72
2-UPLTR 6.62 4.29 2.33

RF-RuleFit 4.40 3.38 2.44
Ada-RuleFit | 4.46 4.06 1.93

RE-RUX 1.37 0.25 -1.59
Ada-RUX 1.87 1.06  -0.79
RF 6.18 4.69 2.93
ET 5.05 4.07 2.67
AdaBoost 6.55 5.01 3.36
XGBoost 6.65 5.01 3.42

Figure 7 displays the minimum complexity score required for each interpretable model to achieve
an AUC that is at least as high as that of LR. We can see that as the underlying DGP increases in
its degree of nonlinearity, the complexity scores of the models increase. Additionally, we observe
that only 2-UPLTR is able to consistently achieve performance comparable to LR while maintaining a
lower or equal complexity score. When examining the results for DGP 1, we see that several models,
including 1-UPLTR, 2-UPLTR, RF-RUX and Ada-RUX, exhibit similar performance to LR while hav-
ing a significantly lower complexity score. PLTR also has a lower complexity score, while RF-RuleFit
and Ada-RuleFit have slightly higher scores. For DGP 2, we note that all models except RF-RUX
have complexity scores that are lower than that of LR. In particular, PLTR, 1-UPLTR, 2-UPLTR, and
Ada-RUX have low complexity scores. Finally, for DGP 3, we find that all models except 2-UPLTR
are unable to keep their complexity scores below that of LR. Notably, RF-RUX and Ada-RUX have
high complexity scores, exceeding even the complexity limit, which is set at twice the complexity

score of LR.
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Figure 7: The minimum complexity score required for the interpretable models to achieve performance
comparable to that of LR in terms of AUC.

7 Empirical study

In this section, we conduct an empirical evaluation of the models using real-world data. We compare
the performance of the models in terms of AUC and BS, and demonstrate how their performance
varies with different levels of complexity. Additionally, we provide an in-depth examination of the

interpretability of the models.

7.1 Data

The data that we use consists of aggregated United States (US) state-level data with LendingClub’s
loan book covering the period from 2008 to 2019. As one of the largest peer-to-peer (P2P) lending
platforms, LendingClub has amassed a total revenue of 1.2 billion USD in 20222. The dataset
includes 32 features and 2,703,430 observations, with 8% of the observations indicating defaulted
loans. The target variable is a binary indicator of loan status, with a value of 1 indicating default and
0 indicating otherwise. This dataset provides a valuable opportunity to examine the P2P lending
market within the context of macroeconomic variables, as it combines diverse loan, borrower, and

state-specific features (Nigmonov et al., 2022). The explanatory variables are described in Table 5.

2 https://irlendingclub.com/news/news-details/2022/LendingClub-Reports-Fourth-Quarter-and-Full-Year-2021-Results
Date accessed: February 2, 2023.
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Table 5: Description of the explanatory variables (Nigmonov et al., 2022).

Variable | Description
Loan specific variables

AMOUNT The total amount committed to the loan at that point in time.

INTRATE The interest rate on the loan.

INQLAST The number of inquiries in past 6 months.

OPENACC The number of open credit lines in the borrower’s credit file.

PUBREC The number of derogatory public records.

DESLENGTH The past-due amount owed for the accounts on which the borrower is now
delinquent.

PCTTL Percent of trades never delinquent.

TOTHI Total high credit/credit limit.

Loan type variables (categorical)

RATING The assigned loan grade.

TERM The number of payments on the loan. Values are in months and can be either
36 or 60.

PYMNTPLAN Indicates if a payment plan has been put in place for the loan.

PURPOSE A category provided by the borrower for the loan request.

TYPE Indicates whether the loan is an individual application or a joint application
with two co-borrowers.

INITIAL The initial listing status of the loan.

Borrower specific variables

INCOME The self-reported annual income provided by the borrower during registration.

DTI The average debt-to-income (DTI) score of borrower.

DELINQ The number of 30+ days past-due incidences of delinquency in the borrower’s
credit file for the past 2 years.

TAXLIENS The number of tax liens.

EMPLENGTH | The employment length in years. Possible values are between 0 and 10 where
0 means less than one year and 10 means ten or more years.

HOMEOWNER | The home ownership status provided by the borrower during registration or
obtained from the credit report.

VERIFTYPE Indicates if income was verified or not.

Economy specific variables

EARNINGS Average weekly earnings of all employees in each state (logarithm of values,
monthly, in U.S. dollars).

UNEMP Unemployment rate for each state (monthly, seasonally adjusted, percentage
points).

NEWBUS Share of established new businesses in total number of businesses in each
state (monthly).

INFLATION Monthly change in seasonally adjusted consumer price index (CPI) for all goods
by state (percentage points, proxied by urban centres and U.S. regions).

MUNIRATE One-year municipal bond yields for each state (monthly average of daily yield

rates).
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Table 5: Description of the explanatory variables (continued).

Variable Description
GDPCONTRIB | Contributions to percentage change in real GDP (quarterly, percentage points).
RISKPREM Risk premium on lending for banks in the USA (lending rate minus treasury bill
rate, percentage points).

Demographic variables

POPUL Estimated population for each state (logarithm of population estimates
reported for 2018).

INTUSER Number of internet users at any location by state for each year from 2008 to
2016 (logarithm of values, yearly).

REP Percentage of voters who voted for Republican candidate for each state (based

on US Presidential election results 2008, 2012 and 2016).
RELIGIOUS Percentage of adults who say they believe in God by state (time-invariant).

We preprocess the categorical features by applying one-hot encoding to the nominal features and
ordinal encoding to the ordinal features. This ensures a linear interpretability of these features by
creating binary indicator variables for each category, allowing for a clear and direct understanding
of the impact of each category on the model’s predictions.

0.27% of the data consists of missing values. We handle these missing values in the data by
utilizing k-nearest neighbor imputation. Specifically, we first initialize the missing values of each
variable as the mean. Then, we calculate the Euclidean distance between each of the observations.
Starting from the feature with the most missing values, we iteratively impute the missing values
using the average of the values from the &k nearest neighbors that have a value for that feature. We
choose a value of k = 15, as suggested by Troyanskaya et al. (2001). To ensure robustness, we
repeat this process for 3 imputation rounds.

Moreover, to balance the representation of defaults and non-defaults in the data, we employ
random undersampling. Specifically, we randomly select a subset of non-default observations to
remove, until the number of non-defaults is equal to that of defaults. This reduces the number of
observations to 433,244, while also reducing the computational cost of fitting the machine learning
models.

In order to ensure the representativeness of the sample, we follow a similar procedure to Addo
et al. (2018) by creating five distinct datasets, each of which is split into training, validation, and
test sets in a proportion of 60%, 20%, and 20%, respectively. To mitigate computational limitations,
we limit the size of each dataset to 5,000 observations. Additionally, we ensure that the ratio of
defaults to non-defaults remains consistent across all splits. The use of multiple test sets allows

us to evaluate the robustness of the models and test for significant differences in performance
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metrics. The specific hyperparameters used for tuning the models on the validation set are reported

in Appendix A.

7.2 Results

Table 6 presents the performance of the interpretable models in terms of AUC and BS. The com-
plexity score of each of the models is equal to that of LR. Both AUC and BS are used as performance
metrics, with higher AUC and lower BS indicating better performance. The results indicate that
2-UPLTR outperforms the other models, followed by 1-UPLTR and Ada-RUX. All models, except for
RF-RUX, outperform LR. Moreover, the AUC drives the difference in ranking between Ada-RuleFit,
PLTR and Ada-RUX, as these models all have the same BS. This indicates that even though these
models have similar accuracy, they have different discriminatory ability. Lastly, this ranking of in-
terpretable models align slightly more with the ranking for DGP 1 in the simulation study, which

contains a lower degree of nonlinearity, compared to DGPs 2 and 3.

Table 6: The average performance of the interpretable models.

Metric RF-RUX LR  RF-RuleFit Ada-RuleFit PLTR Ada-RUX 1-UPLTR 2-UPLTR
AUC 0.749 0.757 0.806 0.811 0.813  0.817 0.825 0.832
BS 0.229  0.203 0.180 0.179 0.179  0.179 0.173 0.167
Ranking 8 7 6 5 4 3 2 1

Table 7 shows the performance of the ensemble models in terms of AUC and BS. Both metrics
lead to the same ranking of the models, with XGBoost achieving the highest performance, obtaining
a slightly higher AUC compared to AdaBoost, but with a particularly lower BS. The results are
consistent with those of the simulation study, with XGBoost being followed by AdaBoost, RF and

ERT, respectively. All ensemble models outperform the interpretable models.

Table 7: The average performance of the ensemble models.

Metric ERT RF AdaBoost XGBoost
AUC 0.841 0.872 0.878 0.879
BS 0.168 0.151 0.142 0.132
Ranking | 4 3 2 1
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Table 8 presents Z-statistics comparing the AUC performance of each combination of two mod-
els. It should be noted that due to multiple testing problems, these results should be interpreted
with caution. The results show that all models, except for RF-RUX, significantly outperform LR.
Furthermore, we find 2-UPLTR to significantly outperform PLTR and RF-RuleFit, while 1-UPLTR
outperforms RF-RuleFit. We observe no other significant differences among the interpretable mod-
els. Among the ensemble models, RF is found to significantly outperform ERT, while ERT is found
to significantly outperform PLTR, RF-RuleFit and Ada-RuleFit. Additionally, Adaboost and XGBoost
are found to significantly outperform all models except for RE-RUX. RF-RUX is the only interpretable
model that does not have any significant Z-statistics, likely due to its relatively volatile AUCs that
are weakly correlated with the AUCs of the other models.

In Figure 8, we present the performance of various interpretable models across varying levels
of complexity. We observe that 2-UPLTR exhibits the highest performance among all interpretable
models, reaching its peak at a complexity level of 30 before gradually decreasing due to overfitting.
At complexity scores below 60, 2-UPLTR is followed closely by 1-UPLTR and PLTR. As complexity
increases, 1-UPLTR surpasses PLTR in performance. All PLTR variants consistently outperform LR.
Beyond a complexity of 60, Ada-RuleFit obtains the highest performance, followed by Ada-RUX.
RF-RuleFit and RF-RUX eventually outperform LR but never outperform the remaining models. The
higher performance of AdaBoost variations in comparison to their RF counterparts aligns with pre-
vious findings that RF generally performs worse than AdaBoost. Additionally, we observe that the
performance curves of PLTR variants are relatively stable, while the performance of other models in-
crease significantly with increasing complexity. This can be attributed to the fact that PLTR variants
only incorporate decision rules of maximum length two, thus limiting the flexibility of the model

when fitting the data, in contrast to the other models that can incorporate longer decision rules.
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Table 8: Z-statistics for model performance of the row model in comparison to the column model in terms of AUC. Bold values indicate values that
are significant at a level of 5%. Positive values indicate that the row model outperforms the column model.

LR PLTR 1-UPLTR 2-UPLTR RF-RuleFit Ada-RuleFit RF-RUX Ada-RUX RF ERT AdaBoost
PLTR 9.16
1-UPLTR 5.13 1.10
2-UPLTR 7.11 2.05 0.79
RF-RuleFit 5.69 -0.86 -3.73 -3.07
Ada-RuleFit | 2.93 -0.14 -1.21 -1.64 0.34
RF-RUX -0.16 -1.07 -1.27 -1.28 -0.97 -1.09
Ada-RUX 2.10 0.15 -0.28 -0.61 0.40 0.18 0.79
RF 14.48 7.30 3.82 8.24 6.59 3.62 1.85 2.34
ERT 11.43 5.38 1.46 1.00 4.30 2.51 1.59 0.76 -3.44
AdaBoost 13.15 6.49 3.89 6.67 6.35 3.43 1.88 2.97 1.97 3.13
XGBoost 13.17 7.02 4.64 8.31 7.48 3.70 1.92 3.00 2.16 3.39 0.47
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Figure 8: The performance of the interpretable models in terms of AUC for different levels of complexity.

7.3 Feature interpretation

In this section, we conduct an analysis of feature importance for all interpretable models using one
of the data sets, with a complexity score of 10. The relative importance of each feature is quantified
by their standardized regression coefficients, and the results are presented in tables 9 - 16. The
findings reveal that the majority of models contain features related to INFLATION, RATING, and
RISKPREM. These feature rankings can be employed to interpret individual predictions, as they
allow us to comprehend how changes in specific feature values affect the predicted probability
of default (PD). This information can assist banks in identifying the main drivers of default for
individuals with a high PD, and can also provide borrowers with deeper insight into their credit
score.

As shown in Table 9, the RATING feature is the most significant risk driver for LR. This is ex-
pected, as RATING is the assigned loan grade to the borrower, and a higher value for RATING
indicates a higher risk of default. Additionally, features such as UNEMP, which represents the un-
employment rate for each state, and INFLATION, which represents the inflation rate, are positively
related to the predicted PD. This is because a higher unemployment rate or inflation rate can indi-

cate an adverse economic environment, increasing the likelihood of borrower default. Conversely,
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the feature NEWBUS, which represents the share of established new businesses relative to the total
number of businesses in each state, is negatively related to the PD. This is because an increase in
the share of established new businesses can indicate an improvement in the economy, resulting in a

decrease in the PD.

Table 9: Feature ranking of LR. Green indicates a feature which is positively related to the probability of

default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD is
given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 RATING 22
2 UNEMP 16
3 NEWBUS 15
4 INFLATION 13
5 INTRATE 8
6 RISKPREM 8
7 VERIFTYPE = VERIFIED 5
8 TOTHI 5
9 MUNIRATE 4
10 TYPE = INDIVIDUAL 4

The feature rankings for the PLTR variations are presented in Tables 10 - 12. The models show
that RATING is the most influential feature and the top three drivers are mainly responsible for the
predictions. For PLTR, the decision rule 0.18 <INFLATION <= 0.55, which represents a specific
range of high inflation levels, has a positive relationship with the PD. Additionally, the decision rule
15.09 <INTUSER <= 15.10, which indicates a specific number of internet users per state, has a
negative relationship with the predicted PD. This decision rule indicates a relatively high number
of internet users and applies to 46% of the observations in the data set. However, this decision rule
may be influenced by omitted variable bias as the data set does not include information on the state
of residence of the borrower. In 1-UPLTR, the decision rule INFLATION <= 0.18 has a negative
impact on the PD, consistent with the previously established relationship between inflation and PD
in PLTR. Furthermore, RISKPREM, which is the risk premium on lending for banks, has a positive
impact on the PD as it suggests that borrowers in states with high risk premia may have difficulty
repaying their loans. Lastly, in 2-UPLTR, the decision rule RISKPREM >3.21 & INTUSER <= 15.11
has a negative impact on the PD, indicating that borrowers in states with high risk premia and

moderate levels of internet users may have a lower PD.
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Table 10: Feature ranking of PLTR. Green indicates a feature which is positively related to the probability

of default, whereas red indicates the opposite.The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 RATING 47
2 0.18 <INFLATION <= 0.55 28
3 15.09 <INTUSER <= 15.10 20
4 RISKPREM >3.21 & TYPE = INDIVIDUAL 2
5 INTRATE<= 0.12 1
6 inf >0.00 & TYPE = INDIVIDUAL 1

Table 11: Feature ranking of 1-UPLTR. Green indicates a feature which is positively related to the probability

of default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking | Feature impact (%)
1 RATING 45
2 INFLATION <= 0.18 27
3 RISKPREM 11
4 INTUSER <= 15.09 5
5 RATING <= 2.50 4
6 RISKPREM >3.21 & INTUSER <= 15.11 3
7 RISKPREM >3.21 & inf <= 0.09 3
8 GDPCONTRIB <= 0.03 2

Table 12: Feature ranking of 2-UPLTR. Green indicates a feature which is positively related to the probability

of default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 RATING 34
2 INFLATION <= 0.18 26
3 RISKPREM >3.21 & INTUSER <= 15.11 20
4 RATING <= 2.50 9
5 INTUSER <= 15.09 4
6 RISKPREM >3.21 & Verified <= 0.50 3
7 RISKPREM 3
8 GDPCONTRIB <= 0.03 1
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Tables 13 - 14 present the feature rankings for the RuleFit models. In contrast to previous
models, the impact of features in RF-RuleFit is relatively evenly distributed. The primary driver is
the decision rule 0.16 <INFLATION <= 0.18 & INTUSER >15.09, which has a negative effect on
the PD. This rule pertains to a moderate level of inflation and a high number of internet users. In
the case of Ada-RuleFit, the features are generally shorter as no feature comprises more than two

conditions. Also, the first five features are responsible for the majority of the prediction.

Table 13: Feature ranking of RF-RuleFit. Green indicates a feature which is positively related to the proba-

bility of default, whereas red indicates the opposite. The impact of each of the features on the final predicted
PD is given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 0.16 <INFLATION <= 0.18 & INTUSER >15.09 22
2 NEWBUS 17
3 RATING 17
4 INFLATION >0.18 16
5 UNEMP 15
6 INFLATION <= 0.16 & INTRATE >0.12 & INTUSER <= 15.09 13

Table 14: Feature ranking of Ada-RuleFit. Green indicates a feature which is positively related to the

probability of default, whereas red indicates the opposite. The impact of each of the features on the final
predicted PD is given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 RATING 29
2 INFLATION >0.18 14
3 NEWBUS 13
4 UNEMP 12
5 INFLATION >0.14& INFLATION <= 0.18 11
6 INTRATE 8
7 INFLATION 6
8 TYPE = INDIVIDUAL 3
9 TOTHI 2
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the RUX models. For both models, there are no dominant features in terms of impact, as the
impact of the features gradually decreases along the ranking. In the case of RF-RUX, the decision
rule 10.90 <DTI <= 11.00 is the primary driver, which is negatively related to the PD. DTI repre-
sents the average debt-to-income ratio of the borrower. As the decision rule pertains to a relatively
low debt-to-income ratio, it indicates a less risky borrower and, thus, results in a lower PD. For
Ada-RUX, the decision rule 0.14 <INFLATION <= 0.16 is the primary driver, which is positively
related to the PD. The second most important feature is the decision rule TOTHI <= 16641.00 &
GDPCONTRIB >0.08, which is positively related to the PD. TOTHI represents the credit limit for the
borrower and GDPCONTRIB represents the contribution to the percentage change in the real GDP.
As a low credit limit indicates that the bank perceives the borrower as too risky to grant a larger
loan, it makes sense that this results in an increased PD. It appears that this effect is magnified if

the borrower resides in a state with a high GDP contribution.

Table 15: Feature ranking of RE-RUX. Green indicates a feature which is positively related to the probability

of default, whereas red indicates the opposite. The impact of each of the features on the final predicted PD
is given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 10.90 <DTI <= 11.00 21
2 INFLATION>0.55 20
3 RISKPREM >3.21 & INFLATION <= 0.18 17
4 INFLATION >0.09 & RISKPREM>3.21 16
5 PURPOSE = WEDDING >0.50 & INFLATION >0.18 14
6 INFLATION <= 0.18 12

Table 16: Feature ranking of Ada-RUX. Green indicates a feature which is positively related to the probabil-

ity of default, whereas red indicates the opposite. The impact of each of the features on the final predicted
PD is given in percentage points and is based on the feature coefficients.

Ranking | Feature Impact (%)
1 0.14 <INFLATION <= 0.16 26
2 TOTHI<= 16641.00 & GDPCONTRIB >0.08 23
3 INFLATION >0.55 16
4 AMOUNT <= 1950.00 12
5 PURPOSE = MEDICAL >0.50 & NEWBUS<= 15788.50 12
6 INTRATE< = 0.06 12
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Table 17 presents the top five drivers for ensemble models. Unlike previous models, which pos-
sess inherent interpretability, it is not possible to demonstrate the direct relationship between fea-
tures and internally generated decision rules with the PD due to a lack of transparency. Therefore,
we only display the most significant original features for the models. All models have INFLATION
as their primary driver. RISKPREM and INTRATE are the next most crucial drivers. INFLATION and

RISKPREM were also the most vital underlying drivers for interpretable models.

Table 17: Top five drivers of ensemble models. Bold features indicate features that are present across all
models.

Ranking | RF ERT AdaBoost XGBoost

1 INFLATION INFLATION INFLATION INFLATION
2 INTRATE RISKPREM  RISKPREM INTRATE

3 RISKPREM  RATING RATING TOTHI

4 INTUSER INTRATE INTRATE DTI

5 RATING INTUSER TOTHI RISKPREM

8 Conclusion

In this thesis, we have examined the use of various interpretable machine learning models for
credit scoring, and compared their performance to that of the industry standard Logistic Regression
(LR). We have evaluated variations of Penalised Logistic Tree Regression (PLTR), RuleFit, and Rule
eXtraction (RUX), as well as tree-based ensemble models: Random Forest (RF), Extremely Ran-
domized Trees (ERT), Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost).
Additionally, we have introduced two unbiased versions of PLTR, namely 1-fold Unbiased PLTR
(1-UPLTR) and 2-fold Unbiased PLTR (2-UPLTR), and specifically analysed the performance of RF-
RuleFit, Ada-Rulefit, RF-RUX and Ada-RUX versions of RuleFit and RUX. To facilitate the comparison
of the interpretable models, we have introduced a complexity score, which can be used to evaluate
the complexity of rule-based models relative to that of LR.

Through a simulation study, we have employed three data generating processes (DGPs) based
on different degrees of underlying non-linearity to compare the performance of the models in terms
of the area under the receiver operating characteristic curve (AUC). Our findings indicate that 2-
UPLTR is the best performing interpretable model for different variations of complexity scores and
DGPs. We have also found that 2-UPLTR and RF-RuleFit are the only interpretable models that
consistently outperform LR, while all ensemble models consistently outperform LR.

In addition, we have conducted an empirical study using aggregated United States state-level
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data with LendingClub’s loan book covering the period from 2008 to 2019. Our results reveal that
when ranking the interpretable models in terms of AUC and Bries Score (BS), 2-UPLTR was the
best performing model, followed by 1-UPLTR and Ada-RUX. All models were ranked higher than
LR except RF-RUX. Furthermore, all ensemble models were ranked higher than the interpretable
models, particularly the boosting models. In terms of statistical significance, we have found that
2-UPLTR significantly outperforms both PLTR and LR.

We have also provided an overview of the performance of the interpretable models for different
levels of complexity. We have found that 2-UPLTR obtains the highest performance when the model
complexity is limited to that of LR. However, for higher complexity levels, Ada-RuleFit and Ada-
RUX were found to obtain the highest performance. Additionally, we have demonstrated how the
models can be interpreted, showing the relationship of features with the predicted probability of
default and their impact on the final prediction, which allows for a check on whether the features
are used in the model in alignment with economic reasoning. We found that most interpretable
models use features related to inflation, the loan grade of borrowers assigned by LendingClub, and
the risk premium on lending for banks.

In conclusion, we recommend that banks use intrinsically interpretable machine learning for
credit scoring, as it provides direct interpretability for stakeholders, including local interpretability
for borrowers and global interpretability for regulators. For banks that prefer models that are not
more complex than LR, we recommend using 2-UPLTR. For banks that allow for models that can ex-
ceed LR in terms of complexity, we recommend considering Ada-RuleFit and Ada-RUX. However, it
is possible that banks may prefer a complexity score that is substantially different from our proposed
complexity score, in which case other models may be more suitable.

For future research we recommend conducting a survey study among credit managers of banks
regarding their ability to understand decision rules of different lengths. This would allow creating
a complexity score which is truly tailored to human cognitive behaviour. As financial regulators
and borrowers are also stakeholders of model interpretability, such a survey could be extended
to include them as well. Moreover, in our simulation study, we were limited to using only three
different complexity scores and DGPs on a relatively small data set due to computational constraints.

In future research this simulation could be extended.
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Appendix

A Hyperparameter tuning

Table A1 displays the hyperparameters that are tuned for the models. All hyperparameters are
tuned on the validation set. The candidate values are created around the default values for the

hyperparameters.

Table Al: The tuned hyperparameters per model and their candidate values.

Model Hyperparameter Type Lower Upper Step Size
LR elastic net numeric 0 1 0.1
PLTR lasso numeric  0.01 0.5 0.0025
1-UPLTR lasso numeric  0.01 0.5 0.0025
2-UPLTR lasso numeric  0.01 0.5 0.0025
RF-RuleFit | tree size integer 2 10 1
Ada-RuleFit | tree size integer 2 10 1
RF-RUX maximum depth integer 2 10 1
Ada-RUX maximum depth integer 2 10 1
RF number of trees  integer 100 1500 200
ET number of tress  integer 100 1500 200
AdaBoost number of trees  integer 100 1500 200
XGBoost number of trees  integer 100 1500 200
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