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Abstract

After-hours trading has given investors the opportunity to trade after markets have

closed. Returns can therefore be split into intraday and overnight returns. Overnight re-

turns outperform intraday returns when sorting on upside close-to-close volatility, which is

a proxy for retail investor attention. A possible explanation would be that retail investors

buy around the open, drive up opening prices, which causes higher overnight returns and

lower intraday returns. This effect is robust to the exact time of open and close. To corrob-

orate these findings I model intraday and overnight volatility using Dynamic Conditional

Score - EGARCH (DCS-EGARCH) models. The coupled-component DCS-EGARCH uses

a sequential estimation procedure of kernel technology and maximum likelihood. The two-

component DCS-EGARCH uses a simultaneous estimation procedure depending on only a

filter and a quadratic spline. Although the methodology of these models differ, they both

lead to the conclusion that intraday and overnight volatility differ significantly, in addition

to a relative importance increase of overnight volatility. All things considered, intraday and

overnight returns have different dynamics and should be modelled accordingly.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

The structure of overnight versus intraday prices of stocks and their return generating

process has been an extensively researched topic in finance, since the opportunity to trade

during market-closure (Berkman et al. (2012), Cooper et al. (2008), Kelly and Clark

(2011)). Many papers find outperformance of overnight returns, from close-to-open, in

comparison to intraday returns, from open-to-close, during the period around the dot-

com bubble, where overnight trading, also called after-hours trading, can be split in post-

market and pre-market trading. The predominant explanations for this phenomenon are

retail investor attention (Berkman et al., 2012) and the liquidity premium (Cooper et al.,

2008). Greater effects were found when sorting on higher close-to-close volatility, lower

institutional ownership, difficulty to value and positive investor sentiment.

If the effect observed in the literature is persistent, it should be robust to the exact start

and end of intraday trading. Otherwise the observed discrepancy could be wholly based

on the particular dynamics around the open and close. Estimation assumptions are of

great importance to the observed results, as the open and close are volatile moments. The

exact endpoints used for comparison between overnight and intraday returns influences

this estimation, especially considering the larger bid-ask spreads during market open and

close.

This research field is currently relevant with respect to the shift in balance between

retail investors and institutional investors. In the wake of the COVID-19 pandemic, ‘meme

stocks’ such as GameStop and AMC Entertainment proved to be a battleground between

retail investors and several large institutional investors. The literature suggests a possible

strange effect of this competition between retail and institutional investors. Aggregate

stock returns appear to be higher during overnight trading hours than intraday trading

hours. This could be due to retail investors pushing up prices during the open because they

can, in general, not trade overnight. Investors could make use of these characteristics, if

these results would appear significantly in the data, and consequently adjust their trading

strategies. A strategy including going long in the night and short in the day could be

profitable in such a situation.

Most papers pertaining to this effect date back from the period before the global

financial crisis. I therefore review this problem using a more recent data set and investigate

if overnight returns still outperform intraday returns and if this phenomenon is robust
3



to the exact starting or ending time of the trading day. Furthermore, I look into the

effects of sorting stocks in certain portfolios based on close-to-close upside volatility and

institutional ownership. The sorting process needs an estimate of this upside volatility

and I therefore forecast this using a relatively simple heterogeneous autoregressive (HAR)

model incorporating structural changes, proposed by Gong and Lin (2021).

I show that the difference between overnight and intraday returns is significantly differ-

ent from zero for the period 2016 to 2022 when using upside volatility sorting updated on

a daily basis. The pandemic plays an important role in this phenomenon. There seems to

be a change in retail investor behaviour in the last four to five years, which has accelerated

since the COVID-19 pandemic. Retail investors appear to follow momentum strategies,

assessed by sorting on close-to-close upside volatility. Retail investors, mostly only able

to trade during market hours, concentrate their purchases during the open, resulting in

high opening prices and higher overnight returns. This ‘overnight anomaly’ is most clearly

observed in S&P 500 stocks, but also holds for Nasdaq 100 stocks and Dow 30 stocks.

This phenomenon is robust to the exact start and end of the trading day and the anomaly

is therefore not caused by the dynamics and more volatile movements around open and

close. This robustness test uses the median of value weighted average minute prices for

an 30 minute interval. Furthermore, institutional ownership has a negative effect on this

occurred effect, which is motivated in the literature by Berkman et al. (2012).

This phenomenon in the data supports the notion of modeling overnight and intra-

day returns and their volatilities separately. Linton and Wu (2020) propose a semi-

parametric coupled component Dynamic Conditional Score - Exponential GARCH model

(coupled component DCS-EGARCH model). This model enables the overnight and in-

traday volatilities to have different dynamic properties, which are clearly observed in the

data including between these volatilities. I retrieve short and long run volatility series,

for both overnight and intraday, to make conclusions about their behaviour, especially

before, during and after the COVID-crash in March 2020. Linton and Wu (2020) use a

dependence structure based on overnight versus intraday dynamics until 2017. As dynam-

ics have changed, based on the data analysis, Iintroduce an adjusted base specification

of the coupled component DCS-EGARCH model using a different dependence structure.

Although this specification improves the model, it does not have an influence on the short

and long run components. Although no increase of efficiency is found after changing the
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base specification, it proves the robustness of the model to the used base specification.

Moreover, I use the methodology of Harvey and Lange (2018) to come up with a

different estimation technique for the long run volatilities. Instead of the coupled com-

ponent model, where I optimize the short and long run components sequentially, I only

use a filter in the so-called two-component DSC-EGARCH to estimate the short and long

run component simultaneously. I focus on 22 stocks in the Dow 30, because graphically

presenting 456 plots for each model is not feasible. This data set is similar to Linton and

Wu (2020). I extend the sample period from (1993-2017) to (1993-2022). The overnight

anomaly is also expressively present in this sample of stocks and therefore sufficient and

convenient for my analysis.

The DCS-EGARCH model proves to be robust to the used methodology. The results

from the coupled component and two-component model correspond to a great extent. The

long run component, total volatility and ratio (overnight to intraday) of total volatility

behave similar across models and the same conclusions can be drawn from them. These

conclusions include the relative importance increase from overnight volatilities to intraday

volatilities, which is caused by a decrease of intraday volatility, rather than an increase

of relative overnight volatility (on average). This effect is found for both the short run

and long run processes. Furthermore, intraday and overnight volatility peaks were the

same during the dot-com bubble and the financial crisis, but overnight volatility was

significantly higher than intraday volatility during the COVID-19 crash. Nevertheless,

overnight volatility remains smaller in absolute sense than intraday volatility over the

entire sample period, a phenomenon already shown in the literature. In addition to these

results, I find some short run dynamics. Overnight volatility is more leptokurtic. This

increased during the the last two years, namely due to overnight crashes. On the other

hand, intraday returns have even become more Gaussian during the last two years, which

is also supported by the data analysis of the difference in return during the pandemic. The

models also imply higher volatility after negative returns in general. Moreover, intraday

returns are negatively affected by previous night and day returns, and overnight returns

have a negative effect on subsequent negative returns.

All in all, I find a significant difference in return between overnight and intraday re-

turns when sorting on upside volatility for the period 2016 to 2022. This effect is most

striking since the COVID-19 pandemic. This upside volatility can already be forecast with
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simple methods, such as a HAR model with structural changes. The difference in dynam-

ics between intraday and overnight prices is, next to the return generating process, found

in the volatility process. I extend the semi-parametric coupled component DCS-EGARCH

model of Linton and Wu (2020) by using additional data and changing the base specifi-

cation. Furthermore, I develop a new model called the two-component DCS-EGARCH,

which uses a simultaneous optimization, instead of a sequential optimization, which is

more time-efficient. The two-component model uses the methodology from Harvey and

Lange (2018), is a parametric model and uses quadratic splines instead of kernel technol-

ogy. Modelling intraday and overnight volatility is proven to be model-robust, as both

models indicate the same results, namely a significant difference between intraday and

overnight volatility, including a relative importance increase of overnight volatility. All

results lead to the conclusion that intraday and overnight returns have different dynamics

and should be modelled accordingly.

The remainder of this paper is structured as follows. Section 2 relates this paper to the

existing literature. Section 3 informs about the data used and already gives some insights

into the structure of overnight versus intraday returns. Section 4 describes the models

from the literature, the new adjusted models and the evaluation measures. Next, we report

the results of the described methodology in Section 5. Lastly, Section 6 summarizes the

main results and provides ideas for further research.

2 Literature Review

After-hours trading and overnight returns are an interesting topic in the literature since

the introduction of electronic communication networks (ECN) in 1969. ECNs accommo-

date investors to trade when financial markets are closed and to participate in so-called

after-hours trading. After-hours trading became even more widespread in 1999, when

ECNs became more widely available to retail investors. Hong and Wang (2000) gives a

complete overview of the difference between overnight and intraday returns before after-

hours trading was more widely available. They find higher activity around the open and

close in combination with higher volatility during these periods of market closure and

opening. Additionally, they show empirically that intraday returns are higher and more

volatile than overnight returns.
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The return-generating process has according to some papers changed since after-hours

trading became more accessible to retail investors. Three papers, namely Berkman et al.

(2012), Cooper et al. (2008) and Kelly and Clark (2011), find a significant difference be-

tween overnight and intraday returns for the period 1993 to 2008 using different methods.

They claim that intraday returns are negative or zero, while overnight returns are signif-

icantly positive. All three papers list different reasons for this phenomenon, use different

data and differ in focus.

Berkman et al. (2012) use a sample of the 3000 largest US stocks for the period

1996-2008 and an abridged sample of NASDAQ stocks for the period 1997-2001 including

detailed information on the identity of market participants for each trade. They calculate

log returns using quote midpoints and construct various variables to explain the difference

in night versus day returns. These variables include two proxies for retail attention,

three measures of retail buying at the open, two proxies for short sale constraints and

three measures of transaction costs. Furthermore, they look at hard-to-value stocks and

sentiment. Berkman et al. (2012) conclude that the difference between the overnight and

intraday returns is caused by high opening prices. These high prices are caused by retail

investor attention. Moreover, the effect is more prominently present for hard-to-value

stocks, stocks with less institutional ownership and stocks with more sentiment.

Cooper et al. (2008) look at S&P 500 stocks, 14 exchange-traded funds (ETFs), 44

firms in the Amex Interactive Week Internet Index and S&P 500 E-mini futures. They

conclude that the US equity premium is solely due to overnight returns for the period 1993-

2006. They split the intraday returns in three periods and conclude that day reversals

after positive overnight returns are due to high opening prices which decline in the first

hour of trading. They perform robustness tests for calendar effects, growth of ECNs

and decimalization and try to explain the high difference in night versus day returns

by earnings announcements, liquidity effects and price pressure effects. Cooper et al.

(2008) refer to further research for a full explanation of the night versus day return,

as they can only explain a small portion of this effect by the illiquidity premium as

suggested by Longstaff (1995), and to a smaller amount to risk, earnings surprises, return

autocorrelation, decimalization and the growth of ECNs.

Thirdly, Kelly and Clark (2011) consider ETFs and differ from the previous two papers

by using risk-adjusted excess returns instead of raw returns. They also compute volume
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weighted average prices in comparison with the two other papers who use first/last traded

prices. Their focus is on long-short trading strategies by making use of the difference in

the night versus day returns for the period 1995-2006. One of five ETFs is profitable by

exploiting this difference using the long-short strategy. Significance of this difference is

determined by the Sharpe ratio test of Opdyke (2007), which has since been improved by

Ledoit and Wolf (2008).

A fourth paper, Lachance (2015), finds the same results for on average almost six

thousand stocks for the period 1995-2014. She claims that one out of five stocks has a

significantly positive difference between night and day returns, which pays two times the

market return for a volatility which is three times as small. These stocks also have an

average negative intraday return.

Where the previous four papers look specifically to the difference in return in the

US, other papers have looked at overnight volatility, different countries, other relations,

trading strategies, earnings announcements, intraday patterns and options. French and

Roll (1986) were among the first to look at overnight volatility and conclude that it was

lower than intraday volatility because of less public information, fewer informed investors

and fewer pricing errors. More recently, Linton and Wu (2020) show that the ratio of

overnight to intraday volatility has increased in the last two decades for Dow Jones stocks

and large stocks in the CRSP database. Linton and Wu (2020) use a coupled component

model, which enables differentiation of dynamics of overnight and intraday volatility. This

model is a dynamic conditional score model, for which Harvey (2013) laid the foundation.

They use a two step estimation procedure to optimize both long and short run components.

In addition to using this model, I adapt it with a part of the methodology from Harvey

and Lange (2018), which allows me to do a one step estimation. They modify the GARCH

filter to a two-component GARCH filter using a parameter restriction to create a long and

short run component. Where Linton and Wu (2020) focus on proposing their model and

applying it to past data, Harvey and Lange (2018) do not differentiate between overnight

and intraday returns and concentrates on forecasting ability.

Cai and Qiu (2009) find significantly higher overnight returns compared to daily re-

turns in 23 countries. They test the assertion of Miller (1977), which states that stocks

are overpriced due to divergence of opinions by the absence of short selling. Divergence

of opinions happens overnight, causes high opening prices and returns therefore are sig-
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nificantly higher overnight. Aretz and Bartram (2015) finds quite the opposite, when

conducting an analysis on 48,413 stock from 35 countries for the period 1993-2012. They

find higher day returns than night returns, both having a similar volatility. Hendershott

et al. (2020) studies the relation between stock prices and beta for both night and intraday

returns. They find that overnight returns are positively related to beta and vice versa

for intraday returns. This holds for beta-sorted portfolios, industry portfolios, book-to-

market portfolios, individual US stocks and international stocks. Branch and Ma (2006)

discover a negative correlation between overnight returns and intraday returns the follow-

ing day. Branch and Ma (2012) expands this paper and gives a more detailed elaboration

on the negative correlation. Lou et al. (2019) looks at multiple trading strategies for which

they claim that returns are earned entirely overnight or earned entirely intraday. They

link this behaviour to investor heterogeneity and claim that short-term investors could

profit from their discovery due to the large economic magnitudes of their results, but

that also long-term investors could profit by timing their orders either near the open or

during the close. Basdekidou et al. (2017) also look at different strategies and anomalies,

such as the overnight return temporal market anomaly. They also conclude that returns

are earned entirely overnight or entirely intraday. Jiang et al. (2012) look at earnings

announcements for S&P500 stocks from 2004-2008 released during after-hours and finds

that trading, price change and price discovery are heightened during and just after the

releases. The timing of earnings announcements is concentrated during market closure, as

firms prefer to use informed traders to start the price discovery, where informed traders

refer to traders with superior knowledge due to either access to private information or

skillful processing of public information. Wood et al. (1985) split their analysis in four

parts namely night, day, open and close. They find unusually high returns and volatitlities

during open and close, while day returns, with exclusion from open and close, are discov-

ered to behave normally. Muravyev and Ni (2020) investigate S&P500 index options and

find positive day returns and negative night returns. This is robust across all maturities

and moneyness classes, and also across equity options.

All in all, there is a lot of research on this topic. Many papers find the same dynamics,

but give different causes. This also depends on the markets and data samples used.

However, most papers are outdated and do not cover the period since the COVID-crash.

I will therefore use methods from several studies using more recent data and assess the
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several causes.

3 Data

This section evaluates the data, gives some descriptive statistics and already analyzes

the data with some more advanced methods. Firstly, it covers the used variables, then

describes all sample periods of the securities and their respective markets and finally

gives evidence of larger overnight returns in comparison with day returns when sorting

on particular variables.

3.1 Variable Assembly

The data consists of daily returns and price patterns around open and close. I decompose

the daily returns into intraday and overnight returns. Log returns are used for convenience

and do not alter the results. The intraday return is defined as the return from open to

close and the overnight return as the return form close to open. The exact definition of

open and close will be discussed hereafter. Log returns are defined as:

Close-to-Open return = CTOt = log(Opent/Closet−1)

Open-to-Close return = OTCt = log(Closet/Opent)

Close-to-Close return = CTCt = log(Closet/Closet−1)

Open-to-Open return = OTOt = log(Opent/Opent−1).

(1)

One thing is important to mention with regard to calculation. The night return (CTOt)

is followed by the intraday return (OTCt), when calculating the difference between both

series. This pattern is needed for calculation but has for a considerable time horizon, no

implications on the results. Figure 1 shows a clarifying timeline. I analyse the difference as

it would have direct implications on the (weak) efficient market hypothesis. The difference

is defined as:

Difference in return = Overnight return − day return = DIFFt = CTOt − OTCt. (2)

Descriptive statistics are evaluated by taking standard t-tests on the time series av-

erage of the difference (DIFFt). This is straightforward when evaluating an index, ETF

(exchange traded fund) or single stock. However, my analysis is mainly on multiple stocks.
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Therefore, I take the cross-sectional mean of all assets in the sample and thus calculating

the cross-sectional mean for each point in time. This method is used in Berkman et al.

(2012) to adjust for cross-sectional correlation as proposed in Bernard (1987). The mean

and variance of the computed time-series is subsequently used for the corresponding t-

tests. Newey-West standard errors (Newey and West, 1987) correct for serial correlation

in the created time-series of cross-sectional means.

Cooper et al. (2008), Kelly and Clark (2011) and Berkman et al. (2012) report sig-

nificance tests using tables. This forces them to look at only one period of time, as they

can only report those estimates. I differ in visualisation of the results by using a rolling

window and displaying the entire time series of DIFFt. This increases interpretability and

shows time variation. Next to that, it informs readers more extensively, as it gives far

more details, as for a time-series of four years, the reader gets one thousands times more

observations.

Inspired by Berkman et al. (2012), I use portfolio sorts based on volatility and insti-

tutional ownership. Berkman et al. (2012) link higher overnight returns to attention of

retail investors. A proxy for the presence of retail investors is the squared close-to-close

return of the previous day. The squared return is a rough measure for the volatility. We

refer to this proxy as VOLt−1:

VOLt−1 = Close-to-close volatility yesterday = CTC2
t−1, (3)

Berkman et al. (2012) use CTC2
t−1. However, from the analysis I discover that total

close-to-close volatility does not work as a good proxy in recent times, as sorting on this

metric does not give a significant difference in overnight minus intraday return. However,

upside close-to-close volatility is a good proxy and gives the same results for this era,

as Berkman et al. (2012) report for the dot-com bubble period. Therefore, I introduce

VOL+
t−1:

VOL+
t−1 = Upside close-to-close volatility yesterday = (max{CTCt−1, 0})2, (4)

where it is important to mention that sorting on this variable gives the same results as

sorting on close-to-close return directly. However, I choose to define it as upside volatility

for the purpose of the used forecasting procedure and the resemblance with the available

literature.
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Figure 1 gives a clear timeline of the used variables. It is important to realize that the

VOL+
t−1 is only known at CLOSEt−1. When sorting on this variable with the purpose of

following a related trading strategy at time point CLOSEt−1, the need to forecast VOL+
t−1

arises. The model used for the forecast will be discussed in the next section.

Another sorting variable used by Berkman et al. (2012) is Institutional Ownership

(IOt):

IOt = Institutional Ownership = shares outstanding hold by institutions
divided by total shares (5)

Data on institutional ownership comes from the the WRDS (Wharton Research Data

Services) Thomson Reuters Institutional Holdings (13F) Database. Data is available on

450 S&P500 stocks, as we lose six stocks due to different use of tickers, absence of differ-

entiation between series of the same stock, mergers and acquisitions during the research

or unavailability. I lose another 130 stocks due to incoherent data in the WRDS database.

Institutional Ownership exceeds 100% for these stocks, which is by definition impossible.

Details on the stocks used can be found in Appendix A. Institutional Ownership is a

quarterly reported variable.

Figure 1: Timeline returns and volatility

3.2 Markets and sample periods

This subsection covers the details of the markets and sample periods. The main sample I

use consists of constituents of the S&P500 index, but some preliminary research consists

of data from ETFs, the 30 stocks of the Dow Jones Industrial Average index and stocks

tracking the NASDAQ 100 index.
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3.2.1 ETFs

Kelly and Clark (2011) is one of few papers, which laid the foundation for the ‘overnight

anomaly’. They provide evidence of this anomaly using data on five ETFs, namely DIA,

IWM, MDY, QQQ and SPY, tracking respectively the Dow 30, the Russell 2000, the S&P

400 Midcap, the Nasdaq 100 and the S&P 500. DIA, QQQ and SPY cover stocks with

big market capitalization, MDY with medium market capitalization and IWM with small

market capitalization. Figure 19 and Figure 20 in Appendix B show the time series of the

DIFFt for each ETF. Table 5 reports the sample periods for each ETF. A rolling window

of eight years is used to be able to compare directly to the results of Kelly and Clark

(2011). Confidence intervals are based on Newey-West (Newey and West, 1987) standard

errors for a 5% level. The difference in return (DIFFt) is indeed significant for four out

of five ETFs for the period considered by Kelly and Clark (2011). The fifth is almost

significant, but the difference in result could be due to different estimation methods. This

period is actually approximately the first data point of each time series in the figures, as it

corresponds to the mean of that date and the eight years before. The anomaly disappears

for all ETFs quite rapidly after this period. Although a (small) increase in DIFFt is found

for all ETFs in the last eight to ten years, only IWM has a significant difference between

overnight and intraday returns recently.

3.2.2 Dow Jones Industrial Average

After finding no expressive anomaly in the ETFs, I first consider a small sample of stocks,

namely the Dow Jones Industrial Average, or Dow 30 for short. I find no direct evidence in

the descriptive statistics of this sample, thus I sort stocks on overnight return to examine

heterogeneity of overnight versus intraday prices. The overnight return for each stock

during the last five years determined the corresponding tercile, low, medium or high,

where a tercile contains one third of the stocks of a portfolio. The sample consists of 26

stocks (as four stocks had a horizon of less than 30 years), meaning six or seven stocks per

tercile. A rolling window of twelve years is used and significance is determined as before.

Figure 21 shows that stocks are heterogeneous in DIFFt for the Dow 30. It is important

to note that these results come by definition of the sorting and are purely used to show

for heterogeneity amongst stocks.

Figure 22 shows the overnight returns minus the intraday returns when sorted on
13



close-to-close upside volatility using a rolling window of five years. A clear pattern arises

since April 2021, which accounts for the period 2017 to 2022, where a high VOL+
t−1 gives

a higher return on day t, on average. This difference is significantly different from zero,

rejecting the null hypothesis of equal return. Sorting on upside close-to-close volatility

and proceeding in a long night short day strategy is thus profitable, without considering

transaction costs. For this strategy, positions need to be balanced twice a day, which

includes a lot of transaction costs. I will elaborate on this in the next section.

3.2.3 Nasdaq 100

The third sample includes the 123 largest stocks from the Nasdaq Exchange where large

refers to market capitalization. I exclude 21 firms who have less than 2461 data points,

which is almost 10 years of data as one year refers to 252 trading days. The initial sample

of 123 stocks ends up to have 102 stocks after data cleaning, which is close to 100 and

divisible by three. The last condition is important for the sorting process. More details

about the used stocks can be found in Appendix A. The 102 stocks are divided in terciles

of 34 stocks based on yesterdays upside close-to-close volatility (VOL+
t−1). This approach

is inspired by Berkman et al. (2012). By creating this variable I lose 2 observations per

stock. Figure 23 in Appendix B shows the difference in return (overnight - intraday

return) per tercile (high, medium and low VOL+
t−1 respectively) for a rolling window of

five years. Confidence bounds are calculated by computing standard errors by taking

cross-sectional means and using Newey-West standard errors of the time-series of means.

The high tercile has a significant difference in return, or in other words, the overnight

return is significantly larger than the intraday return. The medium and low tercile are

both insignificant. Berkman et al. (2012) claims that this is the result of retail investors

who buy at the open and thus raise opening prices. VOL+
t−1 is used as a proxy for

retail attention. This phenomenon, outperformance of overnight returns, observed by

several papers during the period around the dot-com bubble, has since the COVID-19

crisis risen to significant values, at least for large cap Nasdaq and Dow 30 stocks, when

sorting on a proxy for retail attention. This could be due to a change in retail investor

behaviour since the pandemic, as during the dot-com bubble, which is contrary to the

(weak) Efficient Market Hypothesis. Another interesting feature is the steep decline in

DIFFt−1. This means that, in comparison to the period before and after, during the first
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weeks of the COVID-19 pandemic night returns where smaller. Better said, crashes were

more concentrated in the overnight periods than in the intraday periods. Considering this,

the effect, as I use a rolling window of five years, is even larger when not considering the

first few weeks or months of the pandemic. The difference in return yields approximately

0.07% per day, when using a trading strategy of going long in the night and short in the

day without transaction costs, which means approximately 19% per year.

Figure 24 and Figure 25 show what happens when sorting in sextiles, meaning six

equal groups of 17 stocks, instead of terciles. In the highest sixtile (high), the phenoma is

far more significant and larger than before. The difference in return yields approximately

0.1% per day, when using a trading strategy of going long in the night and short in the

day without transaction costs, which means approximately 29% per year (for the last

five years). To compare, the annual return of the S&P500 was 8.9% the last five years

and 12.5% the last ten years. All other sextiles are insignicant from zero and decrease

per sextile, where high2 comes between high and medium. The lowest sextile however is

increasing with respect to the sextile above (low). Again, a rolling window of five years

is used and the begin of the pandemic is visible in each figure.

Trading costs should be taken into account when considering trading strategies. Trad-

ing costs are often divided in transaction costs and the bid-ask spread. The average

transaction cost per stock is approximately 0.01% per trade. As this strategy involves

selling at the open and buying at the close, 0.02% of the profit goes to the transaction

cost. The bid-ask spread is an issue when dealing with quote data. However, since I use

trade data, the bid-ask spread is already part of the price. I am thus left with a (large)

0.08% (0.10%-0.02%) profit per day. The question remains in which magnitude this strat-

egy can be implemented. The 0.08% profit is realistic when trading one stock of each

firm a day. Institutional investors are not interested in such quantities. The traded prices

include the bid-ask spread at that moment for that particular stocks. When institutional

investors want to trade in large volumes, the bid-ask spread could become larger as of the

current supply and demand. This will diminish the profit rapidly. The trading strategy

is thus profitable when trading small volumes, but will soon become unprofitable when

increasing the volumes.

Finally, Figure 26 and Figure 27 show respectively the OTCt−1 and CTOt−1. The day

returns, OTCt−1, are smallest for the high VOL+
t−1 and highest for the low VOL+

t−1, but
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all insignificant from zero. The night returns, CTOt−1, are (for the last five years, so May

2017 to May 2022) significantly different from zero for the high and low tercile, and almost

significant for the medium tercile. The small day returns for the high tercile thus cause

the DIFFt−1 to be largest for the high tercile. Another interesting feature is the influence

of the COVID-19 crisis on returns. Day returns are not affected at all by this crisis,

while night returns are affected negatively. To conclude, the negative returns during the

first few weeks of the corona pandemic and the dropping stock prices are located in the

overnight returns.

3.2.4 S&P500

The next sample consists of constituents of the S&P500 as of April 4 2022. This sample

includes 505 stocks from a wide variety of industries and sectors. I lose 49 stocks, which

have an initial public offering (IPO) in the last ten years, to ensure a minimum of ten

years data for each stock. The results are derived from the remaining 456 stocks. The

used stocks are clearly described in Appendix A. The analysis is the same as before.

Using a rolling window of five years, I compute the time series of cross-sectional means

and use Newey-West standard errors for significance tests. Figure 2 shows the descriptive

statistics of the S&P500 stocks.

Figure 2: Difference in return descriptive statistics for a five year rolling window

Whereas the difference in overnight versus intraday returns are not significantly dif-

ferent for the period 2013 to 2020, the steep increase in difference since the COVID-19

pandemic almost reaches significance for approximately the last five years, after a steep

increase since March 2020. This increase is remarkable in comparison to the full sam-
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ple period and indicates a change in overnight versus intraday price dynamics. For the

Nasdaq sample, portfolio sorting is necessary to find a significant difference. For S&P500

stocks, the overnight anomaly is present far more pronounced for the last five to six years.

There is again a large drop at March 2020, indicating that crashes found place mainly

during market closure when the COVID-19 crisis started.

Figure 3 displays three terciles, namely sorted per day on VOL+
t−1 (respectively high,

medium and low). There is a clear pattern. High upside close-to-close volatility yesterday

means a relatively high overnight and lower intraday return today due to higher opening

prices forced by higher retail investor attention. High VOL+
t−1 means a significant out-

performance of overnight returns. The medium tercile is almost significant and lower in

absolute value. The low tercile is even lower and more insignificant.

Once more, I use portfolio sorts on upside volatility to proxy for attention of retail

investors. As mentioned before, I use upside close-to-close volatility, whereas Berkman

et al. (2012) uses total close-to-close volatility. Using different proxies, we find the same

results. This could be explained as a shift in behaviour of retail investors. Reacting to

total volatility of a certain stock, during the dot-com period, could be explained by a

dichotomy of retail investors. One part of retail investors reacts to upside volatility, due

to for example the momentum argument, and the other part reacts to downside volatility,

due to for example the argument which states a cheaper entry point. The previous five to

six years, there is only a reaction to upside volatility. This could be explained by a shift

in behaviour of retail investors to momentum strategies.

Sorting on VOL+
t−1 is done daily. IO data is only available quarterly and it would

also not change the sorting drastically if available daily. Therefore it is expected that

these sorts do not influence the DIFFt−1 that much. However, it is still an interesting

sort, as IO is by definition negatively correlated with retail investing. Figure 4 gives the

three sorts of IO and plots the difference in return time-series. The green line is the low

IO sort and is thus expected to have a high amount of retail investors, which, by our

hypothesis, should have a bigger DIFFt−1. This behaviour is seen after the COVID-19

pandemic. The direct opposite happened before the pandemic. This hints to a shift in

behaviour of retail investors after the pandemic. This is the same conclusion as from the

three sorted portfolio on upside volatility. The low IO sort is always beneath the green

time-series after March 2020 and always above before March 2020. This is in line with our
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Figure 3: Difference in return for 3 sorts on different values of upside close-to-close volatil-

ity yesterday for a five year rolling window
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hypothesis. Appendix B includes the same plot with confidence bounds, namely Figure

28. The low and medium sort are significantly different from zero for the last five years,

as I use a rolling window of five years. Nevertheless, the sorts do not differ substantially

and are close to the descriptive statistics. Sorting on upside volatility will thus be more

profitable. It should be noted that I use a slightly different set of stocks.

Figure 4: Difference in return sorted on institutional ownership for a five year rolling

window

3.3 Robustness tests

Previous analysis uses first and last trade data for respectively the open and close. Open

and close are volatile moments and trading at exactly the open or close is near impossible.

Therefore I perform a robustness test to ensure that the difference in returns is not totally

based on the dynamics around open and close. Transtrend provides minute data on

approximately 120 stocks of the S&P500. Instead of one open price (first trade) and

one close price (last trade), I use the minute data to create four prices, namely a pre-

open price, post-open price, pre-close price and post-close price. I compute the Volume

Weighted Average Price (VWAP) of each minute. Kelly and Clark (2011) take the VWAP

of the first five minutes to compute the open and close prices. This method is not robust

to the often much higher volumes at exactly the open or close. The VWAP of the first
19



five minutes will therefore be very close to the first traded price. To tackle this problem,

I calculate the VWAP per minute for the 30 minutes before and after the open and close.

This way I get four vectors of 30 values each. To compute the four new prices I take

the median of each vector. Extreme observations are filtered out in this way and I get a

fair price that is possible to trade for. I do exactly the same analysis again calculating

the overnight return between the post-close and pre-open price. The intraday return is

calculated between the post-open and pre-close price. US exchanges open at 09.30 AM

and close at 04.00 PM. So exact definitions are:

PRE-OPENt = Median of the VWAMPm of minutes 09.00 AM - 9.30 AM on day t

POST-OPENt = Median of the VWAMPm of minutes 09.30 AM - 10.00 AM on day t

PRE-CLOSEt = Median of the VWAMPm of minutes 03.30 PM - 04.00 PM on day t

POST-CLOSEt = Median of the VWAMPm of minutes 04.00 PM - 04.30 PM on day t

where VWAMPm is the Volume Weighted Average Minute Price in minute m.

Every stock is traded with enough volume during the day. However, before opening

and after closure, data is scarce. After sorting the 120 stocks on available minute data, I

use two samples of respectively ten and twenty stocks. For the ten-stock sample, 60% of

the data is available if I only use days for which all ten stock have data. This improves

to 79% when using all days for which at least eight of ten stocks have data. Having

data means having at least one minute of data in all four intervals. For the twenty-stock

portfolio, only 35% of the trading days is available when using all stocks. This improves

to a decent percentage of 76 when using all days for which at least 16/20 stocks have

data. I perform the analysis for the 10 out of 10 (64%), 8 out of 10 (79%) and 16 out of

20 (76%) stock samples.

Figure 5, Figure 6 and Figure 7 give the three samples for the time period January

2013 to May 2022 for a rolling window of four years and give the DIFFt when using the

VWAP method and the first/last traded price method. The rolling window is smaller for

the simple reason that less data is available.
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Figure 5: Difference in return using VWAP and first/last traded price for a four year

rolling window. Using data on ten stocks. Only days with data on all ten stocks

Figure 6: Difference in return using VWAP and first/last traded price for a four year

rolling window. Using data on ten stocks. Only days with data on at least eight stocks
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Figure 7: Difference in return using VWAP and first/last traded price for a four year

rolling window. Using data on twenty stocks. Only days with data on at least sixteen

stocks

For all three figures it is important to note that significance of the results does not

change, at the minimum for the 5% level. Using VWAP instead of first/last trade does

thus not change the results. Dynamics around opening and closure do thus not account for

the overnight anomaly. It could be argued that these sample are too small, but the reality

teaches us that data during market closure is scarce. The VWAP uses only trade data

and is thus based on realized trades. Of course, quote data could be used to determine

pre-open or post-close prices, but the question arises how useful quotes are when not

traded upon.

4 Methodology

4.1 HAR-UV-SC

In the previous section, data results implied that sorting on upside close-to-close volatility

could be a profitable strategy. This upside close-to-close volatility needs to be forecasted

to use this long-short strategy in respectively the night and day. There is a wide variety

of volatility models in the literature. Nevertheless, upside/downside volatility is a less
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researched measure. One of few recent papers which do look into downside volatility is

Gong and Lin (2021). They propose a heterogeneous autoregressive model of downside

volatility (HAR-DV) and advise to use structural changes (HAR-DV-SC) when estimating

downside volatility. I use this model to convert it to an upside volatility model to estimate

the upside close-to-close volatility of S&P500 stocks.

The model uses upside realized semivariance to proxy for upside volatility. This idea

originates from Barndorff-Nielsen et al. (2008). Our model uses daily realized upside

volatility. Daily upside volatility is defined as follows:

UVD
t = I[rt > 0] r2

t , (6)

with

rt = Closet

Closet−1
− 1, (7)

where I[] is an indicator function and Closet−1 is the close price at (t-1 ). The weekly and

monthly upside realized volatility are defined as follows:

UVW
t = UVD

t + UVD
t−1 + · · · + UVD

t−4
5 , (8)

and

UVM
t = UVD

t + UVD
t−1 + · · · + UVD

t−21
22 . (9)

A week consists of five trading days, while a month, on average, consists of 22 trading

days. Gong and Lin (2021) follow Corsi (2009) by stating that short-, mid-, and long-term

downside volatilities affect short-term investors, mid- and long-term downside volatilities

affect mid-term investors and that long-term downside volatilities affect long-term in-

vestors. They finally come up with the HAR-DV model, in my case the HAR-UV model,

which is defined as:

UVt+h = c + α1UVD
t + α2UVW

t + α3UVM
t + ϵt+h, (10)

where UVt+h is the average upside volatility between days t and t + h and ϵt+h the error

term.

The model gets extended by adding structural changes parameters. This extension

makes the model more efficient, as shown in Gong and Lin (2021). This is done us-

ing dummy variables for certain time periods corresponding to the structural changes.

Dummy Di,t is 1 for structural changes i. The HAR-UP-SC is defined as follows:
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UVt+h = c + α1UVD
t + α2UVW

t + α3UVM
t +

S∑
i=1

(δiDi,t) + ϵt+h. (11)

Structural changes are determined using the Inclán-Tiao cumulative sum of squares

algorithm (ICSS algorithm), proposed in Inclan and Tiao (1994). This procedure works

as follows. They first compute the cumulative sum of squares of the first to n observations

of the return series:

Cn =
n∑

t=1
r2

t . (12)

They test for constant volatility by the following Dn statistic:

Dn = Cn

CT

− n

T
, (13)

with T being the total observations in the given time-series. They prove that this depends

on some F-statistics:

Dn = (T − n)n
T 2

(
1 − FT −n,n

n
T

+ T −n
T

FT −n,n

)
, (14)

with

FT −n,n = (CT − Cn)/(T − n)
Cn/n

. (15)

If the max |Dn| is larger than the critical value, the corresponding n is taken as

structural change, as the null hypothesis of equal variance is rejected. This algorithm is

done repeatedly until the max |Dn| is not larger than the critical value anymore. According

to Inclan and Tiao (1994), under variance homogeneity,
√

T/2Dk behaves like a Brownian

bridge asymptotically. The 5% critical value is therefore equal to 1.358. This procedure

is done on any stock to find structural changes in the in-sample time series.

4.2 Coupled component DCS-EGARCH

To model the ratio of overnight to intraday volatility, I use the coupled component dy-

namic conditional score exponential generalized autoregressive conditional heteroskedastic

model, proposed by Linton and Wu (2020). In the following, I refer to this model as the

coupled component.

Log returns are used in this model, defined as in equation (1). To increase inter-

pretability, CTOt = rN
t and OTCt = rD

t . Initially, I use the exact same model as Linton

and Wu (2020), which states:
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(
1
0

δ

1

)(
rD

t

rN
t

)
=
(

µD

µN

)
+
(

π11

π21

π12

π22

)(
rD

t−1
rN

t−1

)
+
(

uD
t

uN
t

)
, (16)

with the conditional shocks uD
t and uN

t with mean zero. The error process ut has an

exponential form and depends on the short run effects λ and the long run effects σ.

Therefore the process has conditional heteroskedasticity:

ut =
(

uD
t

uN
t

)
=
(

exp(λD
t ) exp(σD(t/T )) ϵD

t

exp(λN
t ) exp(σN(t/T )) ϵN

t

)
. (17)

The short run component λ evolves over time as follows:

λD
t = ωD(1 − βD) + βDλD

t−1 + γDmD
t−1 + ρDmN

t

+ γ∗
D(mD

t−1 + 1)sign(eD
t−1) + ρ∗

D(mN
t + 1)sign(eN

t ),
(18)

λN
t = ωN(1 − βN) + βNλN

t−1 + γNmN
t−1 + ρNmD

t

+ γ∗
N(mN

t−1 + 1)sign(eN
t−1) + ρ∗

N(mD
t−1 + 1)sign(eD

t−1),
(19)

where mk
t , for k ∈ {D, N}:

mk
t = (1 + νk)(ek

t )2

νk exp(2λk
t ) + (ek

t )2 .

I use ek
t = exp

[
−σ̃k

t

(
t
T

)]
uk

t . This provides the dynamic relation between the short

run process λ and the long run process σ. The exact definition of the innovation process

mk
t is based on a dynamic conditional score approach. For more details, I refer to Linton

and Wu (2020). The parameters in the λ process have the following interpretation. ωk

is the unconditional mean of the short run volatility and βk gives the perseverance of λ.

Where γ
(∗)
D captures the influence of intraday innovation yesterday on λD

t , ρ
(∗)
D captures the

effect of overnight innovations yesterday on λD
t . It is important to mention that yesterday

is defined as the previous period and the notation of t and t − 1 is solely based on the

assumption of having the overnight return (rN
t ) being followed by the intraday return

(rD
t ). The same interpretation holds for γ

(∗)
N and ρ

(∗)
N , which measures the effect of lagged

overnight shocks and previous period intraday shocks on the short run overnight volatility

today respectively. The parameters γ∗
D, γ∗

N , ρ∗
D and ρ∗

N allow for so-called leverage effects,

meaning that they use the sign of a direct (smoothed) innovation ek
t and are not reliable

on the sign of mk
t , as mk

t can not be smaller than minus one.

Let ϕ denote the parameter set as:

ϕ = (ωD, βD, γD, γ∗
D, ρD, ρ∗

D, νD, ωN , βN , γN , γ∗
N , ρN , ρ∗

N , νN)T ∈ Φ ⊂ R14 (20)
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The long run component σk
t , k ∈ {D, N}, is defined as follows, for s ∈ (0,1):

σ̃k(s) = 1
α

log
(

1
T

T∑
t=1

K(s − t/T )
∣∣∣∣uk

t

∣∣∣∣α
)

. (21)

K(·) is a kernel with support [−1, 1]. I use the Epanechnikov kernel as it has the

lowest mean square error of known kernels, and is therefore an often used kernel.

For identification purposes, I re-center σ(s)k:

σ̃k
(

t

T

)
= σ̃k

(
t

T

)
− 1

T

T∑
t=1

σ̃k
(

t

T

)
, (22)

where t
T

∈ (0,1) by definition , having the same domain as s.

After estimating the coefficients of the model in equation (16) using least squares, I

can retrieve ut. Using ut, I initialize σ̃k(s) and determine ek
t , for k ∈ {D, N}:

ek
t = exp

[
−σ̃k

t

(
t

T

)]
uk

t . (23)

The log-likelihood function for ϕ, where θ denotes the function σ̃k(s) for s ∈ (0, 1),

can then be written as:

lT (ϕ; θ̃) = 1
T

T∑
t=1

(
lD
t (ϕ; θ̃) + lN

t (ϕ; θ̃)
)

, (24)

lk
t = −λk

t (ϕ; θ̃) − νk + 1
2 ln

(
1 + (ẽk

t )2

νk exp(2λk
t (ϕ; θ̃))

)
+ ln Γ

(
νk + 1

2

)
− 1

2 ln νk − ln Γ
(

νk

2

)
.

Γ is the gamma function and I initialize λk
1 = ωk. ϕ is estimated by maximizing

λT (ϕ; θ̃) with respect to ϕ ∈ Φ and I get ϕ̃ and λ̃k
t . This is done using a so-called GARCH

filter. The likelihood is optimized using this filter and a non-linear optimizer. I will refer

to this optimization as the filter optimization. I then calculate η̃k
t as:

η̃k
t = exp(−λ̃k

t (ϕ̃; θ̃)) uk
t .

In the next step, I maximize the following log-likelihood with respect to σ̂k(s), where

σ̂k(s) is the optimized value of σ̃k(s) for each value of s separately:

Lk
T (σ̂k(s); ϕ̃, s) = − 1

T

T∑
t=1

K(s − t/T )
[
σ̂k(s) + ν̃k + 1

2 ln
(

1 + (η̃k
t exp(−σ̂k(s))2

ν̃k

)]
. (25)

This optimization is performed with the same non-linear optimizer and I will refer to

this optimization as the sigma optimization.
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I conduct both these optimizations, the filter and the sigma, repeatedly until conver-

gence. Convergence is defined as the difference in parameter values upon the previous

optimization and is, just as in Linton and Wu (2020), mathematically defined as:

∆r =
∑

j=D,N

∫ [
σ̂j,[r](u) − σ̂j,[r−1](u)

]2
du +

(
ϕ̂[r] − ϕ̂[r−1]

)T (
ϕ̂[r] − ϕ̂[r−1]

)
. (26)

The optimization procedure stops when ∆r ≤ τ for some small value τ .

4.3 Two-component DCS-EGARCH

Another way to specify both the short and long run is proposed by Harvey and Lange

(2018). They propose to split the short run component, see equations (18) and (19), in

two parts, where now one serves as the short run component and one as the long run

component. This means that equation (18) switches, for i ∈ {1, 2}, to:

λD
t = ωD + λD

1,t + λD
2,t, (27)

and

λD
i,t = βi,DλD

i,t−1 + γi,DmD
t−1 + ρi,DmN

t γ∗
i,D(mD

t−1 + 1)sign(eD
t−1)

+ ρ∗
i,D(mN

t + 1)sign(eN
t ).

(28)

Equation (19) changes, for i ∈ {1, 2}, to:

λN
t = ωN + λN

1,t + λN
2,t, (29)

and

λN
i,t = βi,NλN

t−1 + γi,NmN
t−1 + ρi,NmD

t + γ∗
i,N(mN

t−1 + 1)sign(eN
t−1)

+ ρ∗
i,N(mD

t−1 + 1)sign(eD
t−1).

(30)

This model is only defined for β1,k ̸=β2,k, for k ∈ {D, N}, where we define β1,k > β2,k

and thus λk
1,t being the long run component.

The estimation procedure changes as σk is replaced by λk
1,t. For that reason, equation

(23) changes to:

ek
t = uk

t . (31)

Equation (24) remains unchanged and is optimized using the same non-linear optimizer

as before. The short and long run components are optimized using the filter and at the

same time. This makes this procedure more time-efficient than the coupled component

model, as I do not need equation (25).
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4.3.1 Quadratic Spline

Harvey and Lange (2018) suggests to model the long run λk
1,t using exogenous variables by

way of a quadratic spline. This quadratic spline, introduced by Engle and Rangel (2008),

is defined, for t = 1, . . . , T , as:

λk
1,t = πk

0 +
K∑

i=1
πk

i max{t − ti−1, 0}2. (32)

T is split into K equally ranged intervals, where t0 = 0, t1 = T/K, t2 = 2T/K,. . . ,

tK = T . The optimal K is determined by a information criterion. Although Harvey and

Lange (2018) claim that the spline is less preferable from multiple points of view, it gives

a better visual representation of the long run component, which is more interpretable. In

addition, the long run components of both models are comparable in this way.

4.4 Adjusted model

The coupled component and the two-component model both use the same base specifi-

cation as given in equation (16). This specification allows overnight returns to depend

on lagged (overnight and intraday) returns. Intraday returns depend on lagged intraday

returns and and overnight returns with the same t. However, recent data indicates that

overnight and intraday returns can be explained by lagged upside close-to-close volatility.

For this reason, I include this variable in the base specification. As I use the squared

return for a proxy for (upside) volatility, it is in essence the same to use the max function

over zero and the lagged close-to-close return. Therefore the included variable rCTC,+
t is

defined as:

rCTC,+
t = max {0, rCTC

t }, (33)

where rCTC
t = (rD

t + rN
t ).

I let the overnight and intraday return depend on the new variable in equation (33)

and the remaining part of the model in equation (16) stays the same. The new base

specification therefore is:(
1
0

δ

1

)(
rD

t

rN
t

)
=
(

µD

µN

)
+
(

π11

π21

π12

π22

)(
rD

t−1
rN

t−1

)
+
(

ξD

ξN

)
rCTC,+

t−1 +
(

uD
t

uN
t

)
. (34)
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4.5 Constancy of ratio test

To statistically test the constancy of the ratio of long run overnight volatility to long run

intraday volatility, I use the constancy of ratio test considered by Linton and Wu (2020).

I test the following null hypothesis:

H0 : exp(σN
0 (s)) = ρ exp(σD

0 (s)).

The alternative hypothesis states a time varying ratio. The considered t-ratio t̂(s)

follows a standard normal distribution under the null hypothesis and is defined as:

t̂(s) =
√

Th(ρ̂(s) − ρ̂)√
ω̂(s)

,

with:

ρ̂(s) = exp(σ̂N(s))
exp(σ̂D(s)) ,

ρ̂ =
∫ 1

0

exp(σ̂N(s))
exp(σ̂D(s))ds,

ω̂(s) = ρ̂2∥K∥2
2

(
ν̂N + 3

2ν̂N

+ ν̂D + 3
2ν̂D

)
.

I plot the test statistic t̂(s) for s ∈ (0, 1) and determine the significance using confidence

intervals. ∥K∥2
2 is defined as:

∥K∥2
2=

∫
K(s)2ds,

where I use the Epanechnikov kernel. This kernel K(s) is defined as:

K(s) = 3
4
(
1 − s2

)
,

with s ∈ (0, 1). Therefore:
∫

K(s)2ds = 9
16

(
s − 2

3s3 + 1
5s5

)
.

The proof of the equation above can be found in Appendix D.

4.6 Evaluation measures

I evaluate the dynamics of the overnight and intraday volatilities considering the short

and long run components. The long run component of the coupled component is σk(s).
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This measure is demeaned for identification purposes in each step of the algorithm. The

long run component of the two-component, λk
1,t, does not have demeaning necessities.

However, to compare both components, I consider

λk,demeaned
1,t = λk

1,t − 1
T

T∑
t=1

λk
1,t (35)

throughout the whole next section, if not mentioned otherwise. Hence, I will use the

demeaned function above of λk
1,t.

Although both short and long run can be considered individually, the development

of the total volatility for both day and night is interesting as well. Therefore I take the

following equation as a measure for total volatility in the coupled component model, which

is a combination of the short and long run components:√
νk

νk − 2exp
[
2λk

t + 2σk
t

(
t

T

)]
. (36)

Notice that this measure depends on νk. When νk goes to infinity, the scalar upfront

goes to one. However, when νk is close to two, this scalar becomes larger than one and

penalizes the total volatility for the leptokurtic behaviour of the error distribution.

For the two-component model this equation changes. Harvey and Lange (2018) con-

siders exp(λk
2,t) for the short run and exp(ωk + λk

1,t) for the long run. I change the short

run to exp(ωk + λk
2,t) for comparison reasons with the other model due to demeaning.

As the estimation procedure of both models differs significantly, I take these measures to

compare the models. Notice that I did not use this in equation (35), for the simple reason

that demeaning will immediately get rid of this adjustment. Equation (36), for the total

volatility, changes for the two-component to:√
νk

νk − 2exp
[
2ωk + 2λk

1,t + 2λk
2,t

]
. (37)

Furthermore I consider the ratio of total volatility overnight to total volatility intraday

(for the coupled component): √
νN

νN −2exp
[
2λN

t + 2σN
t

(
t
T

)]
√

νD

νD−2exp
[
2λD

t + 2σD
t

(
t
T

)] , (38)

and for the two-component: √
νN

νN −2exp
[
2ωN + 2λN

1,t + 2λN
2,t

]
√

νD

νD−2exp
[
2ωD + 2λD

1,t + 2λD
2,t

] . (39)
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5 Results

In this section I discuss the results, which can be divided into two parts, namely the

in-sample estimates, out-of-sample estimates and results of the HAR-UV-SC model, and

the outcomes of the coupled component and the two-component model. Although the

latter two models are of higher importance, I will begin with the HAR-UV-SC model for

the simple reason of keeping a logically ordered narrative.

5.1 HAR-UV-SC

The HAR-UV-SC model consists of the estimation of the structural change parameters

and the autoregressive parameters. The structural change estimates are determined by

the ICSS algorithm. The sets of parameters are reported and visually shown for the in-

sample analysis. As the out-of-sample analysis estimates the parameter using a rolling

window, I only discuss the outcome of the use of these estimated upside volatilities in the

sorted portfolio analysis, as before.

5.1.1 ICSS algorithm

The ICSS algorithm is performed on every stock of the S&P500. Figure 8 shows the

results for the stocks Apple (AAPL), American Tower Corporation (AMT) and Akamai

Technologies (AKAM). AMT has the least structural changes, AKAM the most and

AAPL has an average amount of structural changes. The green and red lines give three

times the standard deviation of the returns series. For normally distributed variables this

should include 99% of the observations. Return series are not normally distributed, so a

smaller percentage should be expected between those bounds, because of the heavier tail

distributions.

Figure 8 shows that the ICSS algorithm depends heavily on the distribution of returns.

When this distribution has a higher kurtosis, meaning more large absolute returns, the

algorithm finds more structural changes. This is by definition, but can also be clearly

seen in the figure, as the shakier the time-series, the more structural changes are found.

Furthermore, the biggest outliers are found during the COVID-19 pandemic which is by

far the biggest crisis in this sample period.
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Figure 8: Structural changes found by the ICSS algorithm for respectively AAPL, AMT

and AKAM for a five year rolling window

5.1.2 In-sample analysis

In-sample estimates of the three stocks, AAPL, AMT and AKAM, are given in Table 1.

Significance levels for 0.1% are (***), 1% are (**), 5% are (*), and 10% are (·).
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Table 1: In-sample estimates for the HAR-UV-SC model for AAPL, AMT and AKAM

AAPL AMT AKAM AAPL AMT AKAM

c 0.00027*** 0.00012*** 0.00024*** δ12 0.00001 -0.00009

α1 0.07672 0.01135 -0.03199 δ13 -0.00013* -0.00018**

α2 -0.15291* 0.13315 -0.06130 δ14 0.00095** -0.00009

α3 -0.03769 -0.38181 -0.49393** δ15 0.00004 -0.00010·

δ1 -0.00008 -0.00003* 0.00084* δ16 -0.00016** 0.00007

δ2 0.00036 0.00154* 0.00014 δ17 0.01165***

δ3 -0.00016** 0.00012* 0.00093 δ18 0.00004

δ4 -0.00001 0.00006 δ19 0.00115

δ5 -0.00012* 0.00466 δ20 -0.00001

δ6 -0.00013* -0.00001 δ21 -0.00004

δ7 0.00001 0.00001 δ22 0.00215*

δ8 -0.00013· 0.00013 δ23 -0.00001

δ9 -0.00019** 0.00417 δ24 0.00015

δ10 -0.00004 0.00008 δ25 -0.00013*

δ11 -0.00017* -0.00012·

The constant is significant for all three stocks. α2 is significant and negative for AAPL.

This means that the lagged weekly upside volatility has a negative effect on the volatility

today. The same conclusion holds for AKAM for α3 and thus the lagged monthly upside

volatility. Furthermore, structural change dummies are regularly significant for all three

stocks.

5.1.3 Out-of-sample analysis

I use the rolling fixed-window prediction method for the out-of-sample estimation. This

method is also used in Gong and Lin (2021). This method uses a rolling window of

1000 observations for each estimation and prediction. This means that for every single

forecast, the ICSS algorithm is performed, as well as the estimation of the HAR-UV-SC

parameters. Having 2658 observations, I have 1658 upside volatility forecasts. These

volatility forecasts are used to sort the stocks into terciles every day. The same procedure
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is performed as before, where I use a rolling window of four years. This leaves us with

approximately two and a half years of output. Figure 9 shows the difference in return,

overnight vs intraday, for the three different terciles, which are sorted on high, medium

and low VOL+
t−1.

Figure 9 shows the difference in returns when sorting on the estimated upside volatil-

ities by the HAR-UV-SC model. Sorting on these estimates is profitable as the difference

is significantly different from zero for the high tercile. This means a non-zero profit, when

using this strategy for the last four years using the HAR-UV-SC estimates. The medium

tercile is not significantly different from zero for a 5% level and the low tercile is even

lower. Although the estimates enable a profit, the results is by far not as pronounced as

when using realized upside volatilities. This could be due to the simplicity of the HAR-

UV-SC model, which in fact only uses autoregressive terms and structural changes. This

model could easily be extended, although this is not the aim of the paper.

5.2 DCS-EGARCH

After finding thorough evidence of an overnight anomaly and the relatively easy forecast-

ing of upside volatility with the cause of exploiting this anomaly, I use the anomaly and

the interaction of overnight and intraday returns to model the overnight and intraday

volatility separately. For this purpose, I first estimate the base specification as given in

Linton and Wu (2020). Then I try to improve this model by adding information found

in the data section. I analyse the impact of the incorporation of the new variables. Then

I estimate the coupled component DCS-EGARCH model of Linton and Wu (2020). I

extend the coupled component from Linton and Wu (2020) in two dimensions. I first add

the data from 2017-2022 to the model. Secondly, I change this model with insights from

Harvey and Lange (2018) to model the long run (volatility) in a different way. This model

will be called the two-component DCS-EGARCH.

For this analysis I use stocks from the Dow 30, which have data available since 1993.

Eight stocks are removed from the sample due to few data (CRM, DOW, GS and V) and

incorrect/incomplete data before 2001 (BA, CAT, DIS and KO), which leads to biased

parameter estimates. The 22 stocks I use for the analysis are: AAPL, AMGN, AXP,

CSCO, CVX, HD, HON, IBM, INTC, JNJ, JPM, MCD, MMM, MRK, MSFT, NKE,

PG, TRV, UNH, VZ, WBA and WMT.
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Figure 9: Difference in return for 3 sorts on different values of upside close-to-close volatil-

ity yesterday using the HAR-UV-SC for a four year rolling window
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5.2.1 Standard base specification

I first estimate the standard base specification used by Linton and Wu (2020), as shown in

equation (16). Table 6 shows the parameters estimates for the standard base specification

for the period 4 Janaury 1993 until 3 August 2022. The values are close, but not identical,

to the estimates in Linton and Wu (2020), which is to be expected as five years of data

has been added. I generally draw the same conclusion, namely a positive δ for ten out

of twelve significant values. In combination with a negative π11 for all significant values,

which means that both overnight and intraday returns have a negative effect on subse-

quent intraday returns. π12 and π21 have, considering only significant estimates, seven

negative and five positive, and eight negative and three positive values respectively. No

unambiguous conclusion can be derived from those estimates. However, in contradiction

with Linton and Wu (2020), I find twelve negative out of twelve significant values for π22,

which means a negative effect of the overnight return on the subsequent overnight return.

This could be explained by the big crashes during the COVID-19 pandemic, which mostly

occurred overnight and were of relatively large magnitude, as seen in the data section.

Finally, the parameters estimates for µD and µN are positive for most stocks, 18 and 17

times respectively.

5.2.2 Adjusted base specification

The adjusted coupled component model has an adjustment on the base specification,

which can be found in equation (34). I incorporate insights from the data with this

specification, namely the overnight anomaly. As the overnight anomaly is only present

in abundance after the start of the COVID-19 pandemic, I first consider the parameter

estimates of this model with data from May 2020 to May 2022. Table 7 shows the

parameter estimates for the adjusted base specification for the period May 2020 until

May 2022. I see different dynamics for this specific period. Although δ is positive (seven

times out of seven significant estimates) and π11 is negative again (five times out of seven

significant estimates), I find a more pronounced pattern for π12, π21 and π22. π12 is positive

(six out seven) and π21 is negative (five out five). This means, for those particular stocks,

day returns have the same sign as night returns the day before and that day returns have

a negative effect on subsequent night returns. π22 is negative again (eight out of nine),

meaning a negative effect of the overnight return on the subsequent overnight return. The
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new parameters, ξD and ξN , follow my expectations. ξD is most of the time negative or

zero, and ξN is positive or zero. This explains the positive difference found in earlier (the

positive difference in the return due to close-to-close volatility), and the addition of these

parameters is in that sense valuable, as some parameters are significantly different from

zero.

Table 8 in Appendix C gives the parameter estimates of the adjusted model. I find

ten positive values out of 13 significant values. π11 is also negative again among most

stocks. This is all in line with earlier results. π12 and π21 have no clear pattern, just as in

the standard model for this time period. Also π22 is negative for ten out of ten significant

stocks and zero otherwise. The interesting thing is the number of significant values among

ξD and ξN . Although not consistent in sign, more than eight and thirteen significant

estimates are found respectively. The added variables are expected to have a particular

sign in the subsample beginning in 2020, but these variables thus also have predictable

power in the entire sample. This could potentially make the upcoming volatility models

more efficient.

To directly see the result of the potential efficiency increase, the used innovations,

namely uk
t , should be analysed from both base specifications. Figure 29 and Figure 30

show respectively the innovations uD
t and uN

t from both models plotted against each other

to see if the changed base specification gives rise to a different set of innovations. This is

interesting as the innovations are the only input to the DCS-EGARCH models, as can be

seen in equation (17).

The figures show that the innovations from both models are almost identical. This

could be seen as a trivial case, as both models look alike and only differ in two variables.

However, if I plot the innovations from the adjusted model against a model with only a

constant, the same pattern, innovations on the 45 degree line, evolves. I can thus conclude

that the base specification is not of big influence to the outcome of the eventual models.

Therefore I use the standard base specification in the upcoming models. On the other

hand, the absence of such a influence is beneficial in the way that the model is robust to

the chosen base specification.
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5.2.3 Coupled component

I estimate the coupled component model by optimizing the likelihood functions in equation

(24) and equation (25). After repeatedly optimizing these functions sequentially, I end

up with an optimized set of parameters ϕ, as in equation (20), and the long run function

σk(s). The parameters ϕ can be found in Table 9 and in Table 10. ωD is mostly positive

and always larger than ωN , which is always negative. It should be noted that I consider

an exponential model, and that ωk, the unconditional mean of the short run volatility, can

not be negative in exponential form. The intraday short run volatility is thus larger than

the overnight short run volatility. βD and βN are large, but significantly smaller than one,

indicating a stable, yet autoregressive, process. However, these terms are smaller than in

Linton and Wu (2020) suggesting less correlation in short term volatility in the period

2017 to 2022. γD and ρD are always positive and significant. The same holds for γN and

ρN . This implies, in combination with the significant and negative terms γ∗
D, ρ∗

D, γ∗
N and

ρ∗
N , that negative returns are followed by higher volatility. The values are roughly the

same as in Linton and Wu (2020). This does not apply to νD and νN . These parameters

refer to the degree of freedom from the distribution of volatilities. νD is lower on average

(value of 2.92) and νN is larger on average (value of 8.45). This means more leptokurtic

overnight volatilities and the other way around for intraday returns. The earlier seen data

already indicates that COVID-19 crashes mostly occurred during the night, giving rise to

a more leptokurtic distribution. In combination with smaller ωk for overnight returns, I

conclude that overnight returns are less volatile but their distribution has more kurtosis.

A more formal way of showing the difference in dynamics between overnight and in-

traday volatility is conducting a Wald test on the parameter estimates. The p-values of

these tests can be found in Table 11 just as the null hypothesis. The null hypothesis

states equality between the overnight and intraday parameters. The equality of the un-

conditional mean ωk and the degree-of-freedom parameter νk are rejected for all stocks.

The parameters γk, γ∗
k, ρk and ρ∗

k are seldom rejected. However, in contrast to Linton

and Wu (2020), I reject the equality of βk very often. This means that the autoregres-

sive dynamics have changed during the last five years, probably caused by the reversals

and crashes during March 2020. This results is also reflected in the p-values of the joint

null hypothesis, which is also more often rejected. Short term dynamics have therefore

diverged in the last couple of years for intraday versus overnight volatility.
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Figure 31 presents the long run component σk(s). This function is optimized repeat-

edly to convergence. It is important to remember that both functions, intraday and

overnight, are standardized multiple times. The intraday long run volatility is actually

higher than the overnight long run volatility. However, using this approach the long

run relative dynamics can be observed. For most stocks, the overnight component is

smaller than before the financial crisis (second vertical grey dotted line) and is higher

than the intraday component after. Another communal characteristic, for both intraday

and overnight, are the maxima around the crisis periods, indicated by the grey dotted

lines. The dynamics during the pandemic differ from the dynamics during the other two

crises periods. Relative overnight volatilities rise higher during this crisis, while rising to

the same relative level as intraday volatilities during the other two crises.

The ratio of total overnight to total intraday volatility, as given in equation (38), is

shown in Figure 32. The ratio is increasing for almost all stocks during the sample period.

Most stocks have the largest peak during the corona crisis, but another often appearing

peak is found around 2011/2012. This is the period when the long run (standardized)

overnight volatility became relatively larger than its intraday opposite. The interpretation

of the absolute value of the ratio, sometimes greater than one, is not that simple. The

ratio uses the total volatility, which is a combination of the long and short run component.

Although the short run component is reliable, the long run component is standardized

repeatedly and the ratio can therefore not be interpreted as a fair ratio. However, the

increase of this ratio does have a nice interpretation as a relative increase in overnight to

intraday volatility.

I consider the total volatility for each stock in Figure 33. The definition for the total

volatility is of great influence on the given results. The total volatility consists of both

the long and short run component. Both are in practice greater in magnitude for intraday

returns. The long run is however standardized. Although the short run is larger, the total

volatility does not differ that much in size. This is due to the scalar νk

νk−2 . This scalar

goes to one for ν going to infinity. Intraday returns have less kurtosis with a average

νD of 8.45. νN is 2.92 on average. As a result, the total overnight volatility is scaled by

3.2, while the total intraday volatility is scaled by 1.3. In the figure, this comes down to

a relative scaling of 1.6
(√

8.45/6.45√
2.92/0.92

)
in favour of the overnight volatility. Although the

scaling is reasonable, as it includes the heavy tails of the overnight returns, it remains
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the question if it should be included in a total volatility equation. Nevertheless, the most

important feature of the Figure is whether or not both time series converge, diverge or

remain at the same relative height. Basically every two time series converge over the

sample period. This is due to the decrease of total intraday volatility after the dot-com

bubble. The ratio of overnight to intraday total volatility increases as a result and is in

accordance with Figure 32. Overnight returns are also found to top intraday returns in

absolute magnitude during crises periods as indicated by the greater total volatility in

these time intervals.

Finally, I consider the t-statistics from the constancy of ratio test in Figure 34. The

pattern of these t-statistics is in line with the ratios of overnight to intraday volatility,

namely increasing over time. As the test is considered with respect to the mean, all t-

statistics cross the 95% confidence bounds in approximately one half on the time series.

Stocks, such as WBA and WMT, which have a rather constant ratio, fall between these

bounds for most periods and thus have a constant volatility ratio. However, most stocks

have an increasing volatility ratio and the null hypothesis of a constant ratio is rejected

for most periods.

5.2.4 two-component

The estimation procedure of the two-component differs from the coupled component.

Instead of optimizing the short and long run component sequentially, the short and long

run component are estimated simultaneously. This make it more time-efficient. Both

components are estimated using a filter. The long run from the coupled component

uses kernel technology giving it a relatively smooth function, although it is not perfectly

smooth as the wider the kernel, the smoother the function. A filter has by default a more

shaky pattern. To enable a fair comparison between both specifications (coupled and

two-component), I use a quadratic spline to transform the long run component λk
1,t into a

smooth function. The results of these transformations can be found in Figure 35. λk
1,t is

smoother than σk(s) due to previous mentioned reasons. λk
1,t follows σk(s) really well. The

overnight and intraday functions intersect at the same time and the dominant function

matches as well. A difference is the curvature of the overnight function. Where both

intraday and overnight have the same curvature in Figure 31, in Figure 35 the intraday

function has relatively more curvature. This is explained by the standardization. This
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happens multiple times in the coupled component estimation, but only once in the two-

component estimation. The overnight functions are flatter for that reason. The same

conclusions as for the coupled component hold. At approximately one half of the sample

period, the overnight long run component becomes larger than the intraday long run

component. Notice again that this is relative, as both functions have been standardized.

Intraday volatility is actually larger.

Figure 36 displays the ratios of overnight to intraday total volatility. The patterns are

roughly the same as for the coupled component model. Two things stand out. Firstly,

the ratios are smoother and denser, as direct consequence of the smoother long run com-

ponents. Secondly, the local minima and maxima do match up for both models. The

ratios are increasing over the total interval and again I find maxima for all stocks around

2011/2012, mainly due to the relative larger long run component since that time.

After all, Figure 37 gives the total volatility for the intraday and overnight returns. The

two-component model captures the total volatility well when using the coupled component

as benchmark. The functions look again denser and smoother due to the quadratic spline.

The value of K (see equation 32) equals 15, which captures the curvature nicely. Total

intraday volatility converges to total overnight volatility generally. The volatility values

on the y-axis for both models are not comparable and do not have a clear interpretation.

This is due to the estimation procedure. The total volatility depends on νk, the short

run component and the long run component. νk differs between models as it is optimized

simultaneously or sequentially. The long run component is standardized ones or several

times and the short run parameters also have a different dependece structure due to the

estimation procedures. Therefore, we should concentrate on the relative behaviour of the

overnight and intraday volatilities and the shape of the corresponding functions. These

are definitely comparable. Although both methodologies differ substantially, the results

are roughly the same in terms of pattern and relative dynamics. The results are thus

robust to the methodology, which provides a stronger conclusion.

5.2.5 Case study: Amgen and Microsoft

Although the long run, ratio and total volatility of both models have been compared and

discussed individually, it is interesting to zoom in on two particular stocks. In this way I

can directly compare the two models more efficiently and cover some other characteristics
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as well. The choice of these two stocks is random and could be replaced with any of the

stocks. Amgen (AMGN) and Microsoft (MSFT) are the considered stocks.

Figure 10 compares the long run components of AMGN, with σk(s) in the left subfigure

and λk
1,t on the right. The three vertical lines represent the following crises: dot-com

bubble (10 March 2000), financial crisis (16 September 2008) and the corona crisis (9

March 2020). These vertical lines are the same for all upcoming figures. The intersections

are almost parallel and the surpassion of the overnight long run volatility happens for

both models around 2006. The relative importance of overnight volatility has thus been

increasing over the sample period. The local maxima during the COVID-19 pandemic

shows that it is and still is important to differiate between intraday and overnight returns.

Extreme local values are visible in both subfigures and maxima are most of the time

reached during the crises moments. The spline smoothness parameter K has a value of

fifteen and manages to capture the same level of curvature.

Figure 10: The long run component σk(·), for k ∈ {D, N}, of the coupled component

(left) and the long run component λk
1,t, for k ∈ {D, N}, of the two-component (right).

The ratios of total volatilities can be found in Figure 11. The definition of these

ratios are given in equation (38) and equation (39). The coupled component (left) and

two-component (right) behave quite similar. The two-component is a bit smoother and

denser due to the smoothness of the quadratic spline in the long run component. Both

have maxima around 2009 and 2011. Both models capture an increasing trend and thus

a relative increase of overnight volatility to intraday volatility.
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Figure 11: The ratio of overnight to intraday volatility, where volatility is

measured as
√

νk

νk−2exp
[
2λk

t + 2σk
t

(
t
T

)]
for the coupled component (left) and as√

νk

νk−2exp
[
2ωk + 2λk

2,t + 2λk
1,t

]
for the two-component (right).

Although the (relative) ratio increase, it is interesting to plot both volatility sepa-

rately as well. Figure 12 shows the total volatility for both models. The patterns by

both EGARCH models are almost identical in terms of increase, decrease, local minima

and local maxima. The scale differs by a multiple, but this is due to the difference in

methodology. The scale is in any case not relevant, as the total volatility consists of

standardized variables and parameters, which are optimized to a lesser extent. For this

reason, the focus should lay on the dynamics. These are matches quite fairly. In both

figures there is convergence of the time series, indicating an importance increase of the

overnight volatility, already seen in Figure 11. Most maxima are during the crises periods

as expected.

Now I consider the same analysis for the Microsoft stock. Figure 13 shows the long

run components of both models, which have a lot of shared features. They have the

same local maxima/minima, intersect at the same moments in time and have maxima at

the indicated crises dates. The main difference is the level of smoothness. The long run

volatility of the stock is thus model robust.

The total volatility ratio of MSFT is shown in Figure 14. The ratios behave differently

at first sight. However, the maxima at 1998, 2005, 2012 and 2016 do match. One as well

as the other have a drop during the dot-com bubble and the financial crisis, which is quite

inconsistent with the other stocks, but consistent across models. In addition, the ratios

are increasing over the entire sample period, but seem to stabilize to a certain degree.
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Figure 12: Total intraday and overnight volatility, measured as
√

νk

νk−2exp
[
2λk

t + 2σk
t

(
t
T

)]
for the coupled component (left) and as

√
νk

νk−2exp
[
2ωk + 2λk

2,t + 2λk
1,t

]
for the two-

component (right).

Figure 13: The long run component σk(·), for k ∈ {D, N}, of the coupled component

(left) and the long run component λk
1,t, for k ∈ {D, N}, of the two-component (right).

The V-shape for the period 2020-2022 is not unusual, as seen in multiple stock ratios.

The total volatilities are depicted in Figure 15. Convergence of overnight and intraday

returns, higher intraday volatility in absolute value, higher intraday volatility before the

financial crisis in relative sense and the maxima during crises periods are all features of this

Figure and the before discussed total volatility plots. These features are clearly matched

in both models. The only difference is displayed in the scale, which is due the difference

in methodology and caused by the (under-)optimizing of the short run parameters, as the
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Figure 14: The ratio of overnight to intraday volatility, where volatility is

measured as
√

νk

νk−2exp
[
2λk

t + 2σk
t

(
t
T

)]
for the coupled component (left) and as√

νk

νk−2exp
[
2ωk + 2λk

2,t + 2λk
1,t

]
for the two-component (right).

long run components are actually matched in scale.

Figure 15: Total intraday and overnight volatility, measured as
√

νk

νk−2exp
[
2λk

t + 2σk
t

(
t
T

)]
for the coupled component (left) and as

√
νk

νk−2exp
[
2ωk + 2λk

2,t + 2λk
1,t

]
for the two-

component (right).

I will now cover some characteristics which, due to the use of multiple functions, are

hard to interpret when shown for all stocks at once as in Appendix C. These characteristics

focus on the two-component model. Figure 16 shows the unstandardized long run filter

λk
1,t with their corresponding splines for AMGN and MSFT. The difference in long run

volatility between intraday and overnight returns stands out. This provides the evidence
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that the total volatility (ratios) should be evaluated with care. Splines are fitted to the

filter with K equal to 5, 10 and 15. When K becomes larger, the spline is fitted to a

greater extent to the filter, which will cause an increase in curvature. The choice of K is

a typical bias-variance trade off when used for forecasting, but is solely based on linking

the two models to the best extent. It turns out that K equal to 15 has the best fit, as

this value is used among all long run components from the two-component model. The

estimation procedure of the two-component uses a filter as explained in the methodology

section. As a result, the long run filter λk
1,t is not a smooth function as shown in the

figure. In combination with the quadratic spline method, the long run component can be

matched to σk(s). The optimization procedure of the coupled component has this spline

feature thus build-in in the sequential likelihood optimization. The ‘smoothing’ process

in this likelihood optimization is caused by the kernel technology, which by definition uses

a weighted average of observations (rolling window) resulting in a (relatively) smoothed

function.

Figure 16: The long run filter λk
1,t (k ∈ {D, N}) with splines for K ∈ {5, 10, 15} of the

two-component.

The unstandardized long run filters of intraday and overnight returns are depicted in

Figure 17. This time in combination with the short run processes. The blue lines refer

to the intraday volatility, where the red lines refer to the overnight volatility. The short

run process λk
2,t is shaky and moves around the unconditional mean ωk of the short run

process, which is larger for the intraday returns for all stocks (table 10). The long run

filter λk
1,t is less shaky. For both stocks, λD

1,t converges to λN
1,t over the sample period.

The relative importance increase of overnight volatility is thus explained by a decrease of
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intraday long run volatility, rather than by an increase of overnight long run volatility.

This phenomenon is also visible for almost all stocks in Figure 33 and Figure 37. However,

in those figures, the long run component is standardized and the result is mainly driven

by the short run process and the relative change in long run volatility. Figure 17 displays

that also the long run process complements this phenomenon.

Figure 17: Short and long run component for intraday and overnight volatility of the

two-component.

Figure 18: T -statistics of the constancy of ratio test for the ratio of intraday and overnight

volatility of the coupled component.

Lastly, Figure 18 shows the t-statistics of the constancy of ratio test for the ratio of

intraday and overnight volatility of the coupled component for both AMGN and MSFT.

Both stocks have an increasing ratio and thus also an increasing t-statistic. Constancy is

rejected for both stocks before the dot-com bubble and numerous times for shorts periods
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after. Nevertheless, both stocks have a quite constant ratio since 2000. The constancy of

the ratio of MSFT is effected mostly by the COVID-19 crisis.

6 Conclusion

This study examines the difference between intraday and overnight returns. The empirical

results show that overnight minus intraday returns are significantly greater than zero for

the period 2016-2022 when sorting on upside close-to-close volatility. This indicates a

change of retail investor behaviour and activity. The difference in return is robust against

the dynamics around market opening and closure, which are volatile moments.

Adding multiple components to dynamic conditional score EGARCH models can pro-

vide for separately modelling the returns allowing for different dynamical properties. I

develop the two-component model, which nicely captures all features from the coupled

component model and is more time-efficient.

Overnight volatility increases in relative importance, which is caused by a decrease of

intraday volatility over the period 1993-2022. Overnight volatility however stays smaller

than intraday volatility in absolute terms, although overnight returns are more leptokurtic.

In conclusion, intraday and overnight returns have quite different dynamics and should

be modelled accordingly. This could be done using a DCS-EGARCH model, as these

models are robust to the exact specification.

This analysis could be extended in several directions. One interesting direction would

be to use retail investor data to test the direct relation between (upside) volatility and

retail investor strategies. Next to that, the analysis could be performed on several different

markets and products. Additionally, the assumptions of the kernel size, the curvature

parameter of the spline and the non-linear optimization could be investigated.
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T. Hendershott, D. Livdan, and D. Rösch. Asset pricing: A tale of night and day. Journal

of Financial Economics, 138(3):635–662, 2020.

H. Hong and J. Wang. Trading and returns under periodic market closures. The Journal

of Finance, 55(1):297–354, 2000.

C. Inclan and G. C. Tiao. Use of cumulative sums of squares for retrospective detection of

changes of variance. Journal of the American Statistical Association, 89(427):913–923,

1994.

C. X. Jiang, T. Likitapiwat, and T. H. McInish. Information content of earnings an-

nouncements: Evidence from after-hours trading. Journal of Financial and Quantitative

Analysis, 47(6):1303–1330, 2012.

M. A. Kelly and S. P. Clark. Returns in trading versus non-trading hours: The difference

is day and night. Journal of Asset Management, 12(2):132–145, 2011.

M.-E. Lachance. Night trading: Lower risk but higher returns? Unpublished working

paper. San Diego State University, 2015.

O. Ledoit and M. Wolf. Robust performance hypothesis testing with the Sharpe ratio.

Journal of Empirical Finance, 15(5):850–859, 2008.

O. Linton and J. Wu. A coupled component DCS-EGARCH model for intraday and

overnight volatility. Journal of Econometrics, 217(1):176–201, 2020.

50



F. A. Longstaff. How much can marketability affect security values? The Journal of

Finance, 50(5):1767–1774, 1995.

D. Lou, C. Polk, and S. Skouras. A tug of war: Overnight versus intraday expected

returns. Journal of Financial Economics, 134(1):192–213, 2019.

E. M. Miller. Risk, uncertainty, and divergence of opinion. The Journal of Finance, 32

(4):1151–1168, 1977.

D. Muravyev and X. C. Ni. Why do option returns change sign from day to night? Journal

of Financial Economics, 136(1):219–238, 2020.

W. K. Newey and K. D. West. A simple, positive semi-definite, heteroskedasticity and

autocorrelationconsistent covariance matrix. Econometrica, 55(3):703–708, 1987.

J. D. J. Opdyke. Comparing Sharpe ratios: So where are the p-values? Journal of Asset

Management, 8(5):308–336, 2007.

R. A. Wood, T. H. McInish, and J. K. Ord. An investigation of transactions data for

NYSE stocks. The Journal of Finance, 40(3):723–739, 1985.

51



Appendix A Data composition

A.1 S&P500

The main sample consists of the 504 S&P500 stocks as of April 4, 2022. This includes

the changes on April 4, 2022, when Camden (CPT) was added and People’s United

Financial (PBCT) was removed. Although the name of the S&P500 would anticipate

otherwise, the index contains 504 stocks, because five constituents have two share classes

(Alphabet, Discovery, Fox Corporation, News Corp, Under Armour). Table 2 gives the

exact composition of the sample.

Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

MMM 3M AOS A. O. Smith

ABT Abbott Laboratories ABBV AbbVie

ABMD Abiomed ACN Accenture

ATVI Activision Blizzard ADM ADM

ADBE Adobe AAP Advance Auto Parts

AMD Advanced Micro Devices AES AES Corp

AFL Aflac A Agilent Technologies

APD Air Products & Chemicals AKAM Akamai Technologies

ALK Alaska Air Group ALB Albemarle Corporation

ARE Alexandria Real Estate Equities ALGN Align Technology

ALLE Allegion LNT Alliant Energy

ALL Allstate Corp GOOGL Alphabet (Class A)

GOOG Alphabet (Class C) MO Altria Group

AMZN Amazon AMCR Amcor

AEE Ameren Corp AAL American Airlines Group

AEP American Electric Power AXP American Express

AIG American International Group AMT American Tower

AWK American Water Works AMP Ameriprise Financial

ABC AmerisourceBergen AME Ametek

AMGN Amgen APH Amphenol

ADI Analog Devices ANSS Ansys

ANTM Anthem AON Aon

APA APA Corporation AAPL Apple

Continued on Next Page

52



Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

AMAT Applied Materials APTV Aptiv

ANET Arista Networks AJG Arthur J. Gallagher & Co.

AIZ Assurant T AT&T

ATO Atmos Energy ADSK Autodesk

ADP Automatic Data Processing AZO AutoZone

AVB AvalonBay Communities AVY Avery Dennison

BKR Baker Hughes BLL Ball Corp

BAC Bank of America BBWI Bath & Body Works Inc.

BAX Baxter International BDX Becton Dickinson

BRKB.VI Berkshire Hathaway BBY Best Buy

BIO Bio-Rad Laboratories TECH Bio-Techne

BIIB Biogen BLK BlackRock

BK BNY Mellon BA Boeing

BKNG Booking Holdings BWA BorgWarner

BXP Boston Properties BSX Boston Scientific

BMY Bristol Myers Squibb AVGO Broadcom

BR Broadridge Financial Solutions BRO Brown & Brown

BF-B Brown–Forman CHRW C. H. Robinson

CDNS Cadence Design Systems CZR Caesars Entertainment

CPB Campbell Soup COF Capital One Financial

CAH Cardinal Health KMX CarMax

CCL Carnival Corporation CARR Carrier Global

CTLT Catalent CAT Caterpillar

CBOE Cboe Global Markets CBRE CBRE

CDW CDW CE Celanese

CNC Centene Corporation CNP CenterPoint Energy

CDAY Ceridian CERN Cerner

CF CF Industries CRL Charles River Laboratories

SCHW Charles Schwab Corporation CHTR Charter Communications

CVX Chevron Corporation CMG Chipotle Mexican Grill

CB Chubb CHD Church & Dwight

CI Cigna CINF Cincinnati Financial

CTAS Cintas Corporation CSCO Cisco Systems

C Citigroup CFG Citizens Financial Group

Continued on Next Page
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Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

CTXS Citrix Systems CLX Clorox

CME CME Group CMS CMS Energy

KO Coca-Cola Company CTSH Cognizant Technology Solutions

CL Colgate-Palmolive CMCSA Comcast

CMA Comerica CAG Conagra Brands

COP ConocoPhillips ED Consolidated Edison

STZ Constellation Brands CPRT Copart

GLW Corning CTVA Corteva

COST Costco CTRA Coterra

CCI Crown Castle CSX CSX

CMI Cummins CVS CVS Health

DHI D. R. Horton DHR Danaher Corporation

DRI Darden Restaurants DVA DaVita

DE Deere & Co. DAL Delta Air Lines

XRAY Dentsply Sirona DVN Devon Energy

DXCM DexCom FANG Diamondback Energy

DLR Digital Realty Trust DFS Discover Financial Services

DISCA Discovery (Series A) DISCK Discovery (Series C)

DISH Dish Network DG Dollar General

DLTR Dollar Tree D Dominion Energy

DPZ Domino’s Pizza DOV Dover Corporation

DOW Dow DTE DTE Energy

DUK Duke Energy DRE Duke Realty Corp

DD DuPont DXC DXC Technology

EMN Eastman Chemical ETN Eaton Corporation

EBAY eBay ECL Ecolab

EIX Edison International EW Edwards Lifesciences

EA Electronic Arts LLY Eli Lilly & Co

EMR Emerson Electric Company ENPH Enphase Energy

ETR Entergy EOG EOG Resources

EFX Equifax EQIX Equinix

EQR Equity Residential ESS Essex Property Trust

EL Estée Lauder Companies ETSY Etsy

RE Everest Re EVRG Evergy

Continued on Next Page
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Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

ES Eversource Energy EXC Exelon

EXPE Expedia Group EXPD Expeditors

EXR Extra Space Storage XOM ExxonMobil

FFIV F5 Networks FB Facebook

FAST Fastenal FRT Federal Realty Investment Trust

FDX FedEx FIS Fidelity National Information Services

FITB Fifth Third Bancorp FRC First Republic Bank

FE FirstEnergy FISV Fiserv

FLT Fleetcor FMC FMC Corporation

F Ford FTNT Fortinet

FTV Fortive FBHS Fortune Brands Home & Security

FOXA Fox Corporation (Class A) FOX Fox Corporation (Class B)

BEN Franklin Resources FCX Freeport-McMoRan

CEG Gap GRMN Garmin

IT Gartner GNRC Generac Holdings

GD General Dynamics GE General Electric

GIS General Mills GM General Motors

GPC Genuine Parts GILD Gilead Sciences

GPN Global Payments GL Globe Life

GS Goldman Sachs HAL Halliburton

SEDG Hanesbrands HAS Hasbro

HCA HCA Healthcare PEAK Healthpeak Properties

HSIC Henry Schein HES Hess Corporation

HPE Hewlett Packard Enterprise HLT Hilton Worldwide

HOLX Hologic HD Home Depot

HON Honeywell HRL Hormel

HST Host Hotels & Resorts HWM Howmet Aerospace

HPQ HP HUM Humana

HBAN Huntington Bancshares HII Huntington Ingalls Industries

IBM IBM IEX IDEX Corporation

IDXX Idexx Laboratories MOH IHS Markit

ITW Illinois Tool Works ILMN Illumina

INCY Incyte IR Ingersoll Rand

INTC Intel ICE Intercontinental Exchange

Continued on Next Page
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Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

IFF International Flavors & Fragrances IP International Paper

IPG Interpublic Group INTU Intuit

ISRG Intuitive Surgical IVZ Invesco

IPGP IPG Photonics IQV IQVIA

IRM Iron Mountain JBHT J. B. Hunt

JKHY Jack Henry & Associates J Jacobs Engineering Group

SJM JM Smucker JNJ Johnson & Johnson

JCI Johnson Controls JPM JPMorgan Chase

JNPR Juniper Networks EPAM Kansas City Southern

K Kellogg’s KEY KeyCorp

KEYS Keysight Technologies KMB Kimberly-Clark

KIM Kimco Realty KMI Kinder Morgan

KLAC KLA Corporation KHC Kraft Heinz

KR Kroger LHX L3Harris Technologies

LH LabCorp LRCX Lam Research

LW Lamb Weston LVS Las Vegas Sands

SBNY Leggett & Platt LDOS Leidos

LEN Lennar LNC Lincoln National

LIN Linde LYV Live Nation Entertainment

LKQ LKQ Corporation LMT Lockheed Martin

L Loews Corporation LOW Lowe’s

LUMN Lumen Technologies LYB LyondellBasell

MTB M&T Bank MRO Marathon Oil

MPC Marathon Petroleum MKTX MarketAxess

MAR Marriott International MMC Marsh & McLennan

MLM Martin Marietta Materials MAS Masco

MA Mastercard MTCH Match Group

MKC McCormick & Company MCD McDonald’s

MCK McKesson Corporation MDT Medtronic

MRK Merck & Co. MET MetLife

MTD Mettler Toledo MGM MGM Resorts International

MCHP Microchip Technology MU Micron Technology

MSFT Microsoft MAA Mid-America Apartments

MRNA Moderna MHK Mohawk Industries

Continued on Next Page
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Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

TAP Molson Coors Beverage Company MDLZ Mondelez International

MPWR Monolithic Power Systems MNST Monster Beverage

MCO Moody’s Corporation MS Morgan Stanley

MSI Motorola Solutions MSCI MSCI

NDAQ Nasdaq NTAP NetApp

NFLX Netflix NWL Newell Brands

NEM Newmont NWSA News Corp (Class A)

NWS News Corp (Class B) NEE NextEra Energy

NLSN Nielsen Holdings NKE Nike

NI NiSource NSC Norfolk Southern

NTRS Northern Trust NOC Northrop Grumman

NLOK NortonLifeLock NCLH Norwegian Cruise Line Holdings

NRG NRG Energy NUE Nucor

NVDA Nvidia NVR NVR

NXPI NXP ORLY O’Reilly Automotive

OXY Occidental Petroleum ODFL Old Dominion Freight Line

OMC Omnicom Group OKE Oneok

ORCL Oracle OGN Organon & Co.

OTIS Otis Worldwide PCAR Paccar

PKG Packaging Corporation of America PH Parker-Hannifin

PAYX Paychex PAYC Paycom

PYPL PayPal PENN Penn National Gaming

PNR Pentair CPT People’s United Financial

PEP PepsiCo PKI PerkinElmer

PFE Pfizer PM Philip Morris International

PSX Phillips 66 PNW Pinnacle West Capital

PXD Pioneer Natural Resources PNC PNC Financial Services

POOL Pool Corporation PPG PPG Industries

PPL PPL PFG Principal Financial Group

PG Procter & Gamble PGR Progressive Corporation

PLD Prologis PRU Prudential Financial

PTC PTC PEG Public Service Enterprise Group

PSA Public Storage PHM PulteGroup

PVH PVH QRVO Qorvo

Continued on Next Page
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Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

QCOM Qualcomm PWR Quanta Services

DGX Quest Diagnostics RL Ralph Lauren Corporation

RJF Raymond James Financial RTX Raytheon Technologies

O Realty Income Corporation REG Regency Centers

REGN Regeneron Pharmaceuticals RF Regions Financial Corporation

RSG Republic Services RMD ResMed

RHI Robert Half International ROK Rockwell Automation

ROL Rollins ROP Roper Technologies

ROST Ross Stores RCL Royal Caribbean Group

SPGI S&P Global CRM Salesforce

SBAC SBA Communications SLB Schlumberger

STX Seagate Technology SEE Sealed Air

SRE Sempra Energy NOW ServiceNow

SHW Sherwin-Williams SPG Simon Property Group

SWKS Skyworks Solutions SNA Snap-on

SO Southern Company LUV Southwest Airlines

SWK Stanley Black & Decker SBUX Starbucks

STT State Street Corporation STE Steris

SYK Stryker Corporation SIVB SVB Financial

SYF Synchrony Financial SNPS Synopsys

SYY Sysco TMUS T-Mobile US

TROW T. Rowe Price TTWO Take-Two Interactive

TPR Tapestry TGT Target Corporation

TEL TE Connectivity TDY Teledyne Technologies

TFX Teleflex TER Teradyne

TSLA Tesla TXN Texas Instruments

TXT Textron COO The Cooper Companies

HIG The Hartford HSY The Hershey Company

MOS The Mosaic Company TRV The Travelers Companies

DIS The Walt Disney Company TMO Thermo Fisher Scientific

TJX TJX Companies TSCO Tractor Supply Company

TT Trane Technologies TDG TransDigm Group

TRMB Trimble TFC Truist Financial

TWTR Twitter TYL Tyler Technologies

Continued on Next Page
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Table 2: Main sample: S&P500 constituents

Ticker Name Ticker Name

TSN Tyson Foods USB U.S. Bancorp

UDR UDR ULTA Ulta Beauty

UAA Under Armour (Class A) UA Under Armour (Class C)

UNP Union Pacific UAL United Airlines

UPS United Parcel Service URI United Rentals

UNH UnitedHealth Group UHS Universal Health Services

VLO Valero Energy VTR Ventas

VRSN Verisign VRSK Verisk Analytics

VZ Verizon Communications VRTX Vertex Pharmaceuticals

VFC VF Corporation VTRS Viatris

V Visa VNO Vornado Realty Trust

VMC Vulcan Materials WRB W. R. Berkley Corporation

GWW W. W. Grainger WAB Wabtec

WBA Walgreens Boots Alliance WMT Walmart

WM Waste Management WAT Waters Corporation

WEC WEC Energy Group WFC Wells Fargo

WELL Welltower WST West Pharmaceutical Services

WDC Western Digital FDS Western Union

WRK WestRock WY Weyerhaeuser

WHR Whirlpool Corporation WMB Williams Companies

WTW Willis Towers Watson WYNN Wynn Resorts

XEL Xcel Energy NDSN Xilinx

XYL Xylem YUM Yum! Brands

ZBRA Zebra Technologies ZBH Zimmer Biomet

ZION Zions Bancorp ZTS Zoetis

For the main analysis, stocks with less than ten years of data are removed. I end

up with 456 stocks. The removed 48 stocks are: ABBV, ALLE, AMCR, ANET, APTV,

BRKB.VI, CARR, CDAY, CDW, CEG, CFG, CTLT, CTVA, CZR, DOW, ENPH, EPAM,

ETSY, FANG, FB, FOX, FOXA, FTV, HLT, HPE, HWM, IQV, IR, KEYS, KHC, LW,

MRNA, NCLH, NOW, NWS, NWSA, OGN, OTIS, PAYC, PSX, PYPL, QRVO, SEDG,

SYF, TWTR, UA, WRK, ZTS.
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A.2 Institutional Ownership

When doing the analysis on institutional ownership, I lose, for mentioned reasons, six

stocks. Stocks lost in institutional ownership: BF-B, CMCSA, DISCA, DISCK, GOOGL,

MOS

A.3 Dow 30

The constituents of the Dow 30 can be found in Table 3. All stocks are present in the

S&P500 and can thus be searched by name in Table 2.

Table 3: Dow 30 constituents

Tickers Dow 30

MMM CAT GS JNJ NKE VZ

AXP CVX HD JPM PG V

AMGN CSCO HON MCD CRM WBA

AAPL KO INTC MRK TRV WMT

BA DOW IBM MSFT UNH DIS

Selecting only constituents for the analysis with at least 30 years of data, I lose: DOW,

GS, CRM and V.

A.4 Nasdaq 100

The 123 largest stock on the Nasdaq exchange can be found in Table 4. Most stocks are

presented in the S&P500 and can thus be searched by name in Table 2.
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Table 4: Nasdaq stocks

Tickers Nasdaq 123

AAPL ATVI COIN EQIX GOOGL LRCX NTES ROST TXN

ABNB AVGO COST ERIC HON LULU NVDA SBAC VOD

ADBE AZN CPRT EXC HZNP MAR NXPI SBUX VRSK

ADI BIDU CRWD EXPE IDXX MCHP ODFL SGEN VRTX

ADP BIIB CSCO FANG ILMN MDB ORLY SIRI WBA

ADSK BKNG CSGP FAST INTC MDLZ PANW SIVB WBD

AEP BKR CSX FB INTU MELI PAYX SNPS WDAY

ALGN BNTX CTAS FISV ISRG MNST PCAR SNY WTW

AMAT CCEP CTSH FITB JD MRNA PDD TEAM XEL

AMD CDNS DDOG FTNT KDP MRVL PEP TMUS ZM

AMGN CERN DLTR GFS KHC MSFT PYPL TROW ZS

AMZN CHTR DXCM GILD KLAC MU QCOM TSCO

ANSS CMCSA EA GMAB LCID NDAQ REGN TSLA

ASML CME EBAY GOOG LI NFLX RIVN TTD

Selecting only constituents for the analysis which meet the criteria, I lose 21 stocks:

PYPL, ABNB, JD, TEAM, MRNA, KHC, WDAY, CRWD, PDD, DDOG, BNTX, COIN,

LCID, RIVN, ZM, ZS, TTD, GFS, MDB, FANG and LI.

A.5 Robustness test

For this analysis I (can) only use a small sample of stocks. Figure 5 and Figure 6 use the

ten following stocks: AAPL, TSLA, AMZN, MSFT, PFE, NVDA, GOOGL, VZ, F and

WFC. Figure 7 uses the following stocks in addition to the previous named stocks: CVX,

DIS, CAT, CCL, WMT, IBM, JNJ, MS, PG and CSCO.
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Appendix B Preliminary Results

B.1 ETFs

Table 5: Sample periods ETFs

Sample Period

ETF Tracking From To

DIA Dow 30 20-01-1998 19-04-2022

IWM Russell 2000 29-12-2000 19-04-2022

MDY S&P400 Midcap 04-05-1995 19-04-2022

QQQ Nasdaq 100 10-03-1999 19-04-2022

SPY S&P500 02-01-1996 19-04-2022

Figure 19: Difference in return for ETFs (1)

Notes. Eight year rolling window
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Figure 20: Difference in return for ETFs (2)

Notes. Eight year rolling window
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B.2 Dow Jones Industrial Average

Figure 21: Difference in return by sorting on CTOt

Notes. Twelve year rolling window, sorted on five years
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Figure 22: Difference in return for 3 sorts on different values of upside close-to-close

volatility yesterday

Notes. Five year rolling window
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B.3 Nasdaq 102

Figure 23: Difference in return for 3 sorts on different values of upside close-to-close

volatility yesterday

Notes. Five year rolling window
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Figure 24: Difference in return for 6 sorts on different values of upside close-to-close

volatility yesterday

Notes. Five year rolling window
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Figure 25: Difference in return for 6 sorts on different values of upside close-to-close

volatility yesterday

Notes. Five year rolling window
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Figure 26: Day return for 3 sorts on different values of upside close-to-close volatility

yesterday

Notes. Five year rolling window
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Figure 27: Night return for 3 sorts on different values of upside close-to-close volatility

yesterday

Notes. Five year rolling window
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Figure 28: Difference in return sorted on institutional ownership with confidence bounds

Notes. Five year rolling window
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Appendix C Additional tables and figures

Table 6: Estimates of the standard base specification for the period 4 January 1993 - 3

August 2022

δ µD µN π11 π12 π21 π22

AAPL 0.0375 -0.0159 0.0892 -0.0632 0.0591 -0.0113 0.0045

(0.0151) (0.0261) (0.0201) (0.0116) (0.0151) (0.0089) (0.0116)

AMGN 0.1172 -0.0091 0.0598 -0.0228 0.0384 -0.0465 -0.0277

(0.0182) (0.0213) (0.0136) (0.0116) (0.0182) (0.0074) (0.0116)

AXP -0.0777 0.0179 0.0250 -0.0507 0.0096 -0.0118 -0.0497

(0.0186) (0.0213) (0.0133) (0.0116) (0.0186) (0.0072) (0.0116)

CSCO 0.0242 -0.0110 0.0631 -0.0681 0.0040 0.0179 -0.0307

(0.0175) (0.0244) (0.0161) (0.0116) (0.0175) (0.0076) (0.0116)

CVX -0.1066 0.0061 0.0230 -0.0689 -0.0237 -0.0175 -0.0435

(0.0182) (0.0161) (0.0102) (0.0116) (0.0183) (0.0073) (0.0116)

HD 0.0123 0.0206 0.0268 0.0108 -0.0764 0.0174 -0.0126

(0.0178) (0.0190) (0.0124) (0.0116) (0.0178) (0.0075) (0.0116)

HON 0.0510 0.0015 0.0371 -0.0078 -0.0350 0.0161 -0.0140

(0.0176) (0.0188) (0.0123) (0.0116) (0.0176) (0.0076) (0.0116)

IBM -0.0251 0.0380 -0.0036 -0.0389 0.0537 -0.0039 -0.0652

(0.0165) (0.0166) (0.0116) (0.0116) (0.0165) (0.0081) (0.0116)

INTC -0.0051 0.0006 0.0330 -0.0687 0.0364 -0.0107 -0.050

(0.0158) (0.0222) (0.0163) (0.0116) (0.0158) (0.0085) (0.0116)

JNJ 0.0637 0.0282 0.0092 -0.0177 -0.0221 0.0059 -0.0042

(0.0187) (0.0133) (0.0082) (0.0116) (0.0187) (0.0072) (0.0116)

JPM -0.0144 -0.0007 0.0317 -0.0740 -0.0033 0.0124 -0.0668

(0.0179) (0.0225) (0.0145) (0.0116) (0.0179) (0.0075) (0.0116)

MCD 0.0982 0.0438 -0.0007 -0.0319 -0.0193 -0.0186 0.0080

(0.0182) (0.0151) (0.0096) (0.0116) (0.0182) (0.0074) (0.0116)

MMM -0.0142 0.0146 0.0097 -0.0124 -0.0030 -0.0333 -0.0277

(0.0190) (0.0147) (0.0090) (0.0116) (0.0189) (0.0071) (0.0116)

MRK 0.0041 0.0282 -0.0086 -0.0048 -0.0346 -0.0001 -0.0038

(0.0172) (0.0165) (0.0111) (0.0116) (0.0172) (0.0078) (0.0116)

MSFT -0.0370 0.0263 0.0374 -0.0679 0.0137 -0.0092 -0.0397

(0.0172) (0.0188) (0.0126) (0.0116) (0.0172) (0.0078) (0.0116)

NKE 0.0295 0.0483 0.0026 0.0134 -0.0320 -0.0040 -0.0234

(0.0175) (0.0196) (0.0129) (0.0116) (0.0175) (0.0077) (0.0116)

PG 0.0869 0.0798 -0.0450 -0.0477 0.0329 -0.0351 -0.0330

(0.0166) (0.0139) (0.0097) (0.0116) (0.0166) (0.0081) (0.0116)

TRV 0.0843 0.0228 0.0089 -0.0583 -0.0973 -0.0223 -0.0466

(0.0203) (0.0182) (0.0104) (0.0116) (0.0203) (0.0066) (0.0116)

UNH -0.0295 0.0270 0.0413 0.0172 -0.0421 -0.0040 -0.0190

(0.0193) (0.0220) (0.0132) (0.0116) (0.0193) (0.0070) (0.0116)

VZ 0.0423 0.0078 0.0019 -0.0364 -0.0439 -0.0150 0.0012

(0.0203) (0.0157) (0.0090) (0.0116) (0.0203) (0.0066) (0.0116)

WBA 0.0802 0.0409 -0.0140 -0.0262 -0.0097 -0.0188 -0.0203

(0.0191) (0.0185) (0.0112) (0.0116) (0.0191) (0.0070) (0.0116)

WMT 0.0697 0.0043 0.0262 -0.0348 0.0069 -0.0099 0.0021

(0.0189) (0.0163) (0.0100) (0.0116) (0.0189) (0.0071) (0.0116)

average 0.0012 0.0181 0.0200 -0.0319 -0.0039 -0.0069 -0.024374



Table 7: Estimates of the adjusted base specification for the period 18 May 2020 - 10 May

2022

δ µD µN π11 π12 π21 π22 ξD ξN

AAPL 0.0126 0.1162 -0.0288 -0.0420 -0.0805 0.0140 -0.1513 -0.0928 0.1819

(0.0640) (0.1073) (0.0755) (0.0705) (0.0893) (0.0496) (0.0625) (0.1109) (0.0776)

AMGN 0.1176 -0.0067 0.0032 -0.0068 -0.0391 -0.0645 0.0811 -0.0071 0.0366

(0.0697) (0.0816) (0.0527) (0.0741) (0.0851) (0.0477) (0.0548) (0.1118) (0.0722)

AXP -0.0905 0.0870 0.0424 0.0525 0.2230 -0.0096 -0.1489 -0.1861 0.1439

(0.0513) (0.1026) (0.0901) (0.0646) (0.0813) (0.0567) (0.0711) (0.0954) (0.0836)

CSCO 0.1077 0.0454 -0.0442 -0.1035 0.0466 -0.0665 0.0129 0.0465 0.0005

(0.0532) (0.0769) (0.0651) (0.0658) (0.0677) (0.0556) (0.0573) (0.1021) (0.0864)

CVX 0.0137 -0.0111 0.0778 -0.1357 0.0092 0.0677 -0.0197 0.0812 -0.0211

(0.0518) (0.1030) (0.0895) (0.0692) (0.0759) (0.0601) (0.0660) (0.1028) (0.0894)

HD 0.0401 0.1476 0.0732 0.0601 0.2502 0.0507 0.0070 -0.2699 -0.0608

(0.0761) (0.0883) (0.0522) (0.0686) (0.0880) (0.0405) (0.0521) (0.1189) (0.0704)

HON 0.1213 -0.0664 0.0188 -0.0968 0.0401 0.0171 -0.1088 0.0998 0.1222

(0.0555) (0.0838) (0.0680) (0.0661) (0.0794) (0.0536) (0.0642) (0.1087) (0.0880)

IBM -0.0843 -0.0121 0.0243 -0.0475 0.0954 -0.0040 -0.0892 -0.0074 0.0186

(0.0562) (0.0762) (0.0611) (0.0646) (0.0669) (0.0518) (0.0534) (0.0960) (0.0769)

INTC -0.0052 0.2093 -0.0082 0.0880 0.1334 -0.0591 0.0513 -0.3767 -0.0082

(0.0487) (0.1005) (0.0931) (0.0629) (0.0545) (0.0582) (0.0504) (0.0980) (0.0907)

JNJ 0.1952 -0.0002 0.0021 -0.0393 -0.0344 -0.1242 -0.0887 0.0026 0.1139

(0.0659) (0.0618) (0.0423) (0.0741) (0.0901) (0.0504) (0.0614) (0.1192) (0.0813)

JPM 0.0137 0.0027 0.0621 -0.0165 0.1114 0.0475 -0.0513 -0.1124 0.0905

(0.0471) (0.0894) (0.0854) (0.0682) (0.0729) (0.0651) (0.0696) (0.0978) (0.0934)

MCD 0.2382 0.0592 0.1155 0.0137 0.2044 0.0275 -0.0457 -0.1568 -0.0922

(0.0665) (0.0667) (0.0449) (0.0766) (0.0873) (0.0518) (0.0591) (0.1191) (0.0805)

MMM 0.0875 -0.1076 0.0578 -0.1260 0.0614 0.0133 -0.0664 0.1113 -0.0161

(0.0668) (0.0795) (0.0535) (0.0694) (0.0807) (0.0468) (0.0543) (0.1142) (0.0770)

MRK 0.0572 -0.0866 0.0775 -0.0863 -0.1586 -0.0158 0.1250 0.1091 -0.0106

(0.0534) (0.0668) (0.0562) (0.0653) (0.0698) (0.055) (0.0585) (0.0956) (0.0806)

MSFT -0.0229 0.0770 -0.0245 -0.1117 0.0415 -0.0718 -0.0990 -0.0966 0.1369

(0.0664) (0.0954) (0.0647) (0.0689) (0.0870) (0.0466) (0.0589) (0.1121) (0.0758)

NKE 0.0359 -0.0650 0.1284 -0.0127 0.0904 0.0170 -0.0791 -0.0678 0.0290

(0.0479) (0.0899) (0.0843) (0.0631) (0.0766) (0.0593) (0.0720) (0.0972) (0.0914)

PG 0.2776 -0.0148 0.0502 -0.1644 -0.1319 -0.0456 -0.0044 0.1524 -0.0397

(0.0863) (0.066) (0.0344) (0.0761) (0.1102) (0.0397) (0.0575) (0.1281) (0.0669)

TRV 0.1320 -0.1412 -0.0084 -0.1686 -0.0037 -0.1294 -0.2026 0.2584 0.2058

(0.0636) (0.0922) (0.0653) (0.0736) (0.0884) (0.0518) (0.0620) (0.1150) (0.0810)

UNH 0.1955 0.1063 -0.0279 0.0544 0.1672 -0.1045 -0.1811 -0.1162 0.1910

(0.0661) (0.0845) (0.0575) (0.0781) (0.0936) (0.0530) (0.0632) (0.1175) (0.0795)

VZ 0.0290 -0.0105 0.0130 0.0322 0.2361 -0.0085 -0.0085 -0.0729 -0.0082

(0.0795) (0.0559) (0.0317) (0.0679) (0.0929) (0.0385) (0.0526) (0.1090) (0.0618)

WBA -0.0930 -0.0043 -0.0131 0.0336 0.1845 -0.0072 -0.1641 -0.0316 0.0716

(0.0798) (0.1115) (0.0629) (0.0748) (0.0932) (0.0422) (0.0521) (0.1116) (0.0629)

WMT 0.0804 0.0802 -0.0412 0.0639 0.1493 -0.0879 -0.1002 -0.1839 0.1769

(0.0785) (0.0693) (0.0397) (0.0817) (0.0948) (0.0467) (0.0542) (0.1192) (0.0679)

average 0.0613 0.0016 0.0301 -0.0401 0.0732 -0.0170 -0.0687 -0.0351 0.0588
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Table 8: Estimates of the adjusted base specification for the period 4 January 1993 - 3

August 2022

δ µD µN π11 π12 π21 π22 ξD ξN

AAPL 0.0367 0.0464 0.0589 -0.0293 0.0866 -0.0277 -0.0089 -0.0667 0.0324

(0.0151) (0.0350) (0.0269) (0.0172) (0.0182) (0.0132) (0.0140) (0.0250) (0.0193)

AMGN 0.1171 -0.0059 0.0204 -0.0205 0.0408 -0.0743 -0.0569 -0.0045 0.0546

(0.0182) (0.0293) (0.0186) (0.0184) (0.0235) (0.0117) (0.0150) (0.0278) (0.0177)

AXP -0.0776 -0.0037 0.0234 -0.0657 -0.0053 -0.0128 -0.0508 0.0296 0.0021

(0.0186) (0.0283) (0.0176) (0.0173) (0.0226) (0.0108) (0.0141) (0.0255) (0.0159)

CSCO 0.0241 -0.0073 0.0291 -0.0660 0.0062 -0.0020 -0.0504 -0.0044 0.0404

(0.0175) (0.0329) (0.0217) (0.0174) (0.0217) (0.0115) (0.0143) (0.0263) (0.0174)

CVX -0.1072 -0.0504 0.0317 -0.1171 -0.0674 -0.0102 -0.0368 0.0960 -0.0146

(0.0182) (0.0223) (0.0142) (0.0175) (0.0218) (0.0111) (0.0139) (0.0261) (0.0166)

HD 0.0121 0.0080 0.0466 0.0011 -0.0843 0.0326 -0.0003 0.0190 -0.0297

(0.0178) (0.0261) (0.0170) (0.0180) (0.0210) (0.0117) (0.0137) (0.0269) (0.0175)

HON 0.0503 -0.0341 0.0572 -0.0352 -0.0611 0.0316 0.0007 0.0554 -0.0312

(0.0176) (0.0254) (0.0167) (0.0176) (0.0216) (0.0116) (0.0142) (0.0266) (0.0175)

IBM -0.0246 0.0216 -0.0305 -0.0532 0.0407 -0.0274 -0.0865 0.0274 0.0450

(0.0165) (0.0226) (0.0158) (0.0177) (0.0205) (0.0124) (0.0144) (0.0257) (0.0180)

INTC -0.0053 0.0257 0.0184 -0.0531 0.0489 -0.0198 -0.0573 -0.0302 0.0176

(0.0158) (0.0310) (0.0228) (0.0177) (0.0191) (0.0130) (0.0140) (0.0261) (0.0191)

JNJ 0.0635 -0.0084 0.0122 -0.0591 -0.0596 0.0093 -0.0010 0.0800 -0.0067

(0.0187) (0.0184) (0.0114) (0.0185) (0.0228) (0.0114) (0.0141) (0.0277) (0.0172)

JPM -0.0147 -0.0672 0.0360 -0.1204 -0.0472 0.0154 -0.0639 0.0882 -0.0058

(0.0179) (0.0295) (0.0191) (0.0177) (0.0219) (0.0114) (0.0142) (0.0254) (0.0164)

MCD 0.0974 0.0121 0.0151 -0.0635 -0.0492 -0.0028 0.0229 0.0613 -0.0305

(0.0182) (0.0208) (0.0133) (0.0184) (0.0227) (0.0118) (0.0145) (0.0277) (0.0177)

MMM -0.0144 0.0081 0.0217 -0.0186 -0.0089 -0.0219 -0.0168 0.0125 -0.0232

(0.0190) (0.0204) (0.0124) (0.0178) (0.0229) (0.0109) (0.0140) (0.0273) (0.0167)

MRK 0.0043 -0.0006 -0.0153 -0.0297 -0.0536 -0.0059 -0.0083 0.0491 0.0116

(0.0172) (0.0228) (0.0153) (0.0179) (0.0201) (0.0120) (0.0135) (0.0268) (0.0180)

MSFT -0.0369 0.0101 0.0318 -0.0802 0.0022 -0.0135 -0.0437 0.0236 0.0082

(0.0172) (0.0260) (0.0175) (0.0179) (0.0214) (0.0121) (0.0144) (0.0263) (0.0177)

NKE 0.0291 0.0274 0.0254 -0.0028 -0.0471 0.0136 -0.0069 0.0307 -0.0335

(0.0175) (0.0266) (0.0176) (0.0181) (0.0219) (0.0120) (0.0145) (0.0266) (0.0176)

PG 0.0853 0.0573 -0.0056 -0.0722 0.0154 0.0077 -0.0024 0.0486 -0.0849

(0.0166) (0.0186) (0.0130) (0.0177) (0.0192) (0.0124) (0.0134) (0.0267) (0.0186)

TRV 0.0881 -0.0639 -0.0170 -0.1338 -0.1703 -0.0448 -0.0684 0.1495 0.0448

(0.0203) (0.0239) (0.0137) (0.0178) (0.0242) (0.0102) (0.0138) (0.0269) (0.0154)

UNH -0.0295 0.0277 -0.0059 0.0177 -0.0417 -0.0357 -0.0441 -0.0010 0.0644

(0.0193) (0.0292) (0.0176) (0.0174) (0.0218) (0.0104) (0.0131) (0.0263) (0.0158)

VZ 0.0423 0.0060 0.0183 -0.0381 -0.0454 0.0008 0.0153 0.0032 -0.0303

(0.0203) (0.0220) (0.0126) (0.0189) (0.0243) (0.0108) (0.0139) (0.0286) (0.0163)

WBA 0.0800 0.0256 -0.0003 -0.0385 -0.0206 -0.0078 -0.0105 0.0241 -0.0215

(0.0191) (0.0258) (0.0157) (0.0185) (0.0231) (0.0112) (0.0140) (0.0284) (0.0172)

WMT 0.0693 0.0168 0.0045 -0.0231 0.0179 -0.0302 -0.0170 -0.0225 0.0389

(0.0189) (0.0225) (0.0138) (0.0186) (0.0233) (0.0114) (0.0143) (0.0278) (0.0170)

average 0.0009 0.0064 0.0157 -0.0426 -0.0138 -0.0088 -0.0264 0.0208 0.0038
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Table 9: Estimates of the intraday dynamic (short run) parameters in the coupled com-

ponent model

ωD βD γD γ∗
D ρD ρ∗

D νD

AAPL 0.5120 0.9224 0.0445 -0.0090 0.0379 -0.0095 8.9697

(0.0178) (0.0098) (0.0040) (0.0023) (0.0049) (0.0027) (0.7261)

AMGN 0.3015 0.9401 0.0433 -0.0062 0.0413 -0.0006 7.9214

(0.0201) (0.0073) (0.0037) (0.0022) (0.0047) (0.0025) (0.5848)

AXP 0.2427 0.9505 0.0453 -0.0117 0.0393 -0.0161 9.6933

(0.0225) (0.005) (0.0035) (0.0021) (0.0039) (0.0025) (0.8454)

CSCO 0.3771 0.9476 0.0398 -0.0098 0.0388 -0.0177 10.9149

(0.0202) (0.0054) (0.0033) (0.0021) (0.0040) (0.0024) (0.9721)

CVX 0.1010 0.9566 0.0393 -0.0087 0.0319 -0.0143 12.2095

(0.0222) (0.0047) (0.0032) (0.0020) (0.0036) (0.0023) (1.3019)

HD 0.2088 0.9405 0.0424 -0.0104 0.0442 -0.0165 8.9748

(0.0200) (0.0066) (0.0037) (0.0023) (0.0045) (0.0027) (0.7057)

HON 0.1458 0.9316 0.0457 -0.0140 0.0504 -0.0149 8.2666

(0.0196) (0.0071) (0.0041) (0.0024) (0.0045) (0.0028) (0.6201)

IBM 0.0407 0.9438 0.0420 -0.0058 0.0454 -0.0084 7.3982

(0.0204) (0.0067) (0.0039) (0.0022) (0.0047) (0.0026) (0.4915)

INTC 0.4081 0.9601 0.0312 -0.0044 0.0325 -0.0100 12.1822

(0.0210) (0.0044) (0.0028) (0.0017) (0.0038) (0.0022) (1.2472)

JNJ -0.1855 0.9431 0.0462 -0.0037 0.0447 -0.0114 7.1226

(0.0213) (0.0059) (0.0037) (0.0023) (0.0043) (0.0026) (0.4638)

JPM 0.2474 0.9610 0.0440 -0.0068 0.0413 -0.0106 7.9424

(0.0258) (0.0038) (0.0035) (0.0021) (0.0039) (0.0023) (0.5833)

MCD -0.0319 0.9259 0.0390 -0.0059 0.0504 -0.0099 7.9088

(0.0180) (0.0101) (0.0044) (0.0023) (0.0052) (0.0028) (0.5602)

MMM -0.0632 0.9509 0.0365 -0.0092 0.0432 -0.0108 6.8735

(0.0207) (0.0056) (0.0036) (0.0022) (0.0045) (0.0026) (0.4265)

MRK 0.0681 0.9253 0.0457 -0.0032 0.0453 -0.0108 6.8977

(0.0183) (0.0107) (0.0045) (0.0026) (0.0053) (0.0028) (0.4164)

MSFT 0.2224 0.9417 0.0435 -0.0041 0.0541 -0.0095 10.5668

(0.0211) (0.0062) (0.0036) (0.0021) (0.0047) (0.0025) (0.9601)

NKE 0.2109 0.9490 0.0388 -0.0057 0.0373 -0.0080 7.1371

(0.0203) (0.0066) (0.0038) (0.0023) (0.0047) (0.0025) (0.4686)

PG -0.1294 0.9369 0.0431 -0.0044 0.0421 -0.0141 7.9902

(0.0194) (0.0074) (0.0038) (0.0023) (0.0044) (0.0027) (0.5637)

TRV 0.0780 0.9375 0.0514 -0.0068 0.0509 -0.0135 8.0345

(0.0215) (0.0070) (0.0042) (0.0025) (0.0049) (0.0027) (0.5940)

UNH 0.3059 0.9455 0.0430 -0.0046 0.0405 -0.0121 6.9643

(0.0207) (0.0070) (0.0038) (0.0024) (0.0048) (0.0027) (0.4471)

VZ 0.0316 0.9440 0.0338 -0.0056 0.0401 -0.0157 9.6899

(0.0188) (0.0068) (0.0035) (0.0021) (0.0042) (0.0025) (0.8191)

WBA 0.2059 0.9296 0.0370 -0.0059 0.0527 -0.0092 7.1348

(0.0183) (0.0109) (0.0043) (0.0025) (0.0055) (0.0028) (0.4771)

WMT 0.0037 0.9448 0.0387 -0.0022 0.0381 -0.0129 7.5265

(0.0197) (0.0072) (0.0036) (0.0021) (0.0044) (0.0026) (0.5068)

average 0.1458 0.9457 0.0413 -0.0066 0.0424 -0.0118 8.4471
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Table 10: Estimates of the overnight dynamic (short run) parameters in the coupled

component model

ωN βN γN γ∗
N ρN ρ∗

N νN

AAPL -0.3529 0.9130 0.0668 -0.0163 0.0722 -0.0147 2.7968

(0.0215) (0.0088) (0.0067) (0.0037) (0.0052) (0.0032) (0.0824)

AMGN -0.6651 0.9442 0.0464 -0.0085 0.0492 -0.0114 2.9895

(0.0224) (0.0061) (0.0050) (0.0028) (0.0043) (0.0025) (0.0941)

AXP -0.5432 0.9604 0.0453 -0.0227 0.0419 -0.0171 3.8124

(0.0263) (0.0036) (0.0042) (0.0027) (0.0036) (0.0023) (0.1517)

CSCO -0.4062 0.9515 0.0429 -0.0177 0.0420 -0.0156 3.2009

(0.0226) (0.0051) (0.0046) (0.0026) (0.0038) (0.0025) (0.1036)

CVX -0.6673 0.9704 0.0332 -0.0141 0.0293 -0.0085 4.2939

(0.0257) (0.0029) (0.0034) (0.0021) (0.0029) (0.0018) (0.1947)

HD -0.6194 0.9471 0.0563 -0.0228 0.0407 -0.0135 3.2386

(0.0239) (0.0054) (0.0049) (0.0031) (0.0040) (0.0028) (0.1158)

HON -0.6042 0.9535 0.0511 -0.0221 0.0402 -0.0169 3.4149

(0.0246) (0.0046) (0.0045) (0.0028) (0.0040) (0.0026) (0.1251)

IBM -0.7911 0.9561 0.0529 -0.0149 0.0391 -0.0152 2.7288

(0.0254) (0.0046) (0.0050) (0.0028) (0.0040) (0.0025) (0.0825)

INTC -0.4058 0.9522 0.0426 -0.0154 0.0366 -0.0091 2.9076

(0.0222) (0.0070) (0.0056) (0.0030) (0.0041) (0.0023) (0.0886)

JNJ -0.8996 0.9553 0.0411 -0.0169 0.0404 -0.0141 3.8619

(0.0231) (0.0047) (0.0042) (0.0026) (0.0038) (0.0024) (0.1558)

JPM -0.4007 0.9645 0.0431 -0.0230 0.0382 -0.0120 4.0353

(0.0266) (0.0032) (0.0040) (0.0023) (0.0036) (0.0021) (0.1655)

MCD -0.7882 0.9450 0.0458 -0.0182 0.0428 -0.0146 3.3642

(0.0218) (0.0057) (0.0047) (0.0029) (0.0042) (0.0025) (0.1198)

MMM -0.8937 0.9618 0.0432 -0.0122 0.0377 -0.0131 3.0316

(0.0255) (0.0040) (0.0043) (0.0028) (0.0040) (0.0024) (0.1051)

MRK -0.7276 0.9410 0.0492 -0.0147 0.0484 -0.0127 3.0998

(0.0221) (0.0072) (0.0052) (0.0030) (0.0047) (0.0027) (0.1055)

MSFT -0.6351 0.9395 0.0615 -0.0127 0.0497 -0.0059 3.0077

(0.0235) (0.0066) (0.0057) (0.0031) (0.0043) (0.0026) (0.0933)

NKE -0.7892 0.9421 0.0482 -0.0215 0.0500 -0.0130 2.3774

(0.0225) (0.0068) (0.0055) (0.0032) (0.0048) (0.0030) (0.0675)

PG -0.9665 0.9423 0.0389 -0.0218 0.0431 -0.0133 3.3955

(0.0204) (0.0059) (0.0045) (0.0028) (0.0041) (0.0026) (0.1217)

TRV -0.8770 0.9595 0.0532 -0.0176 0.0423 -0.0110 3.0239

(0.0273) (0.0043) (0.0050) (0.0028) (0.0040) (0.0024) (0.1012)

UNH -0.7343 0.9411 0.0583 -0.0152 0.0540 -0.0108 2.4406

(0.0244) (0.0066) (0.0059) (0.0034) (0.0049) (0.0031) (0.0734)

VZ -0.8247 0.9546 0.0460 -0.0207 0.0378 -0.0067 3.3764

(0.0237) (0.0049) (0.0048) (0.0028) (0.0037) (0.0024) (0.1237)

WBA -0.7554 0.9444 0.0524 -0.0191 0.0347 -0.0132 2.9146

(0.0221) (0.0064) (0.0052) (0.0031) (0.0042) (0.0026) (0.0933)

WMT -0.8219 0.9548 0.0359 -0.0140 0.0386 -0.0078 3.1159

(0.0218) (0.0053) (0.0046) (0.0026) (0.0037) (0.0023) (0.1040)

average -2.3158 0.9534 0.0538 -0.0172 0.0431 -0.0111 2.9224
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Table 11: P-values of several Wald tests for equivalence of intraday and overnight param-

eters

(βD, γD, γ∗
D, ρD, ρ∗

D)

ωD = ωN βD = βN γD = γN γ∗
D = γ∗

N ρD = ρN ρ∗
D = ρ∗

N νD = νN = (βN , γN , γ∗
N , ρN , ρ∗

N)

AAPL 0.0000 0.0383 0.0002 0.0602 0.6333 0.4958 0.0000 0.0004

AMGN 0.0000 0.0135 0.0847 0.4483 0.5638 0.9770 0.0000 0.0712

AXP 0.0000 0.0038 0.3198 0.4366 0.6111 0.7747 0.0000 0.0174

CSCO 0.0000 0.4678 0.0687 0.4818 0.7708 0.9134 0.0000 0.5013

CVX 0.0000 0.0005 0.8338 0.8613 0.3071 0.5348 0.0000 0.0000

HD 0.0000 0.0214 0.0823 0.2431 0.4522 0.8383 0.0000 0.0388

HON 0.0000 0.0000 0.6198 0.5625 0.4696 0.8084 0.0000 0.0000

IBM 0.0000 0.0000 0.1462 0.4487 0.3018 0.9004 0.0000 0.0000

INTC 0.0011 0.0000 0.0001 0.0782 0.6772 0.9067 0.0000 0.0000

JNJ 0.0000 0.0104 0.5033 0.6873 0.4442 0.7145 0.0000 0.0195

JPM 0.0178 0.1913 0.4605 0.7202 0.6614 0.8045 0.0000 0.6930

MCD 0.0000 0.0000 0.6827 0.4688 0.1335 0.7570 0.0000 0.0000

MMM 0.0000 0.0014 0.3625 0.4237 0.4467 0.7678 0.0000 0.0005

MRK 0.0000 0.0000 0.3137 0.5681 0.3690 0.9049 0.0000 0.0000

MSFT 0.0000 0.3791 0.0031 0.1797 0.5895 0.9612 0.0000 0.0004

NKE 0.0000 0.6250 0.0138 0.1773 0.8798 0.4279 0.0000 0.0055

PG 0.0158 0.0021 0.2876 0.4449 0.5844 0.8589 0.0000 0.0037

TRV 0.0000 0.0000 0.2641 0.6783 0.1740 0.6906 0.0000 0.0000

UNH 0.0000 0.3858 0.0032 0.1498 0.8052 0.5753 0.0000 0.0186

VZ 0.0000 0.0002 0.0662 0.3118 0.4195 0.9303 0.0000 0.0002

WBA 0.0000 0.0000 0.2483 0.3740 0.0446 0.8408 0.0000 0.0000

WMT 0.0000 0.0002 0.1928 0.4695 0.3049 0.6820 0.0000 0.0000
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Figure 29: Intraday innovations from the standard base specification plotted against

intraday innovations from the adjusted base specification.
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Figure 30: Overnight innovations from the standard base specification plotted against

overnight innovations from the adjusted base specification.
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Figure 31: The long run component σk(·), for k ∈ {D, N}, of the coupled component

model. The three vertical lines represent the following crises: dot-com bubble (10 March

2000), financial crisis (16 September 2008) and the corona crisis (9 March 2020).
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Figure 32: The ratio of overnight to intraday volatility, where volatility is measured as√
νk

νk−2exp
[
2λk

t + 2σk
t

(
t
T

)]
, of the coupled component model. The three vertical lines rep-

resent the following crises: dot-com bubble (10 March 2000), financial crisis (16 September

2008) and the corona crisis (9 March 2020).
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Figure 33: Total intraday and overnight volatility, measured as
√

νk

νk−2exp
[
2λk

t + 2σk
t

(
t
T

)]
,

of the coupled component model. The three vertical lines represent the following crises:

dot-com bubble (10 March 2000), financial crisis (16 September 2008) and the corona

crisis (9 March 2020).
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Figure 34: T-statistics of the constancy of ratio test of the coupled component model.

The horizontal lines represent the 95% confidence intervals.
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Figure 35: The long run component λk
1,t, for k ∈ {D, N}, of the two component model.

The three vertical lines represent the following crises: dot-com bubble (10 March 2000),

financial crisis (16 September 2008) and the corona crisis (9 March 2020).
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Figure 36: The ratio of overnight to intraday volatility, where volatility is measured as√
νk

νk−2exp
[
2ωk + 2λk

1,t + 2λk
2,t

]
, of the two component model. The three vertical lines rep-

resent the following crises: dot-com bubble (10 March 2000), financial crisis (16 September

2008) and the corona crisis (9 March 2020).
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Figure 37: Total intraday and overnight volatility, measured as√
νk

νk−2exp
[
2ωk + 2λk

1,t + 2λk
2,t

]
, of the two component model. The three vertical

lines represent the following crises: dot-com bubble (10 March 2000), financial crisis (16

September 2008) and the corona crisis (9 March 2020).
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Appendix D Proofs

To find
∫

K(s)2 I use:

K(s) = 3
4
(
1 − s2

)
,

with s ∈ {0, 1}. Now compute the integral:
∫

K(s)2 =
∫ [3

4
(
1 − s2

)]2
ds,

=
∫ 9

16
(
1 − s2

)2
ds,

=
∫ 9

16
(
1 − 2s2 + s4

)
ds,

= 9
16

∫ (
1 − 2s2 + s4

)
ds,

= 9
16

(
s − 2

3s3 + 1
5s5

)
.
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