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Abstract

The Resource Planning Problem (RPP) combines multiple well-studied Vehicle Routing Problems (VRP) into one rich

problem. The problem consists of constructing a least-cost set of routes and finding the optimal resource assignment

given an extensive set of constraints. To our best knowledge, this comprehensive VRP variant has not been considered

before. We propose a Two-Stage Adaptive Memory Procedure (TSAMP), decomposing the problem into a route

construction and resource assignment phase. The first phase revolves around an Adaptive Memory Procedure, which

constructs routing plans by iteratively selecting routes from a memory. The second phase consists of assigning drivers,

trucks and trailers to the selected routes. Simulated Annealing is incorporated in order to intensify the search. The

algorithm has a flexible design and can be easily modified to other VRP variants. In order to assess the performance

of the TSAMP, a diverse set of benchmark instances is generated. For most of these instances, special purpose solver

CPLEX is not able to find feasible solutions, whereas the TSAMP finds competent solution within several minutes.

Furthermore, the TSAMP finds significantly improved solutions compared to a Greedy Randomized Adaptive Search

Procedure (GRASP), especially for larger instances.
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1 Introduction

The aim of this research is to develop an efficient algorithm for the Resource Planning Problem (RPP). The

RPP amounts to finding a routing plan and resource assignment such that each transport order is covered and

the costs are minimized. This research is conducted in cooperation with Adaption, an IT company offering

software solutions to logistic businesses.

In the RPP setting, the set of resources comprises of trucks, trailers and drivers, whereas a transport

order consists of one or multiple activities such as pickup and delivery of certain goods. The considered

RPP is a variant of the Vehicle Routing Problem (VRP) with additional constraints such as trailer capacity,

heterogeneous vehicles, pickup and delivery requirements, time windows, multiple routes per vehicle and

drivers’ regulations. By considering all these facets, the resulting algorithm is suitable for assisting transport

planners in decision making and resource management.

Several practical aspects touch upon the considered RPP features. First, deadhead kilometers (vehicles

driving without goods) are estimated to cover approximately 20% of the total kilometers in freight transport

(Terrazas, 2019). For intermodal transport with heavy load, the share of deadhead kilometers can even reach

to 35%. From both an environmental and an economic perspective, these percentages urge the need for an

efficient planning, where minimizing (deadhead) kilometers is one of the primary objectives. Second, in a

distressing report by the ETSC (European Transport Safety Council, 2001), it is stated that driver fatigue

plays a significant role in every fifth commercial road transport crash. Regulations for truck drivers is thus,

not surprisingly, still an ongoing topic in the European Union. Neglecting these regulations in the planning

stage might lead to excessive driving schedules, violation of the regulations and potential accidents. Last,

transport companies face various types of transport orders with different requirements. Fresh food needs to be

transported in a trailer with a cooling engine, airplane propellors have to be transported on an open low-loader

and some other orders might require a tailgate for fast unloading. These features and additional restrictions

as weight capacity and size of the load have to be considered in the planning stage in order to obtain a feasible

planning.

Despite the wide range of developed solving techniques in Operations Research for similar problems, most

transport planners still rely on experience and manually operate the planning. When the number of orders

and available resources are substantial, this manual planning process can be complex and time consuming.

An efficient planning tool could therefore benefit a transportation company in both planning efficiency and

decreased labor cost of human planners, which stresses the practical relevance of this research.

Several similar problems include subsets of the constraints considered in the RPP. However, to our best

knowledge, the RPP is not yet considered in the existing VRP literature. Hence, this work extends the

literature by presenting methodology on a new problem, that combines many VRP variants into one extensive

problem.

We propose a Two-Stage Adaptive Memory Procedure (TSAMP) inspired by the work of Rochat and

Taillard (1995), Gendreau et al. (1999) and Olivera and Viera (2007). The algorithm is flexible and can be

easily extended or simplified in order to include more or less restrictions. The TSAMP first constructs a
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routing plan by selecting solution parts (routes) from different solutions and then assigns drivers, trucks and

trailers to the routes. These two steps are iterated throughout the algorithm and enforced with Simulated

Annealing.

New benchmark instances are constructed using generation principles inspired by the research of Uchoa

et al. (2017). The instances vary from ten to 100 nodes and are diversified with respect to depot positioning,

customer positioning, demand distribution and fleet size. In total, thirty instances are generated in order to

assess the performance of the TSAMP.

From the computational results, we find that the performance of the TSAMP for small instances is mediocre.

Special purpose solver CPLEX finds better solutions for all small instances. Furthermore, for half of the small

instances, the TSAMP is not able to improve the starting solution, which is obtained by a randomized greedy

construction procedure. The TSAMP however surpasses the construction procedure for larger instances up

to 100 nodes. In contrary to the small instances, the TSAMP substantially improves the starting solution for

each of the large instances. The CPLEX solver is not able to find feasible solutions or lower bounds for any

of the large instances within a predefined time limit. Hence, the TSAMP outperforms the CPLEX solver in

terms of feasibility for larger instances. However, no inferences can be made regarding optimality gaps.

The remainder of this research is structured as follows. Section 2 is dedicated to literature on problems

related to the RPP. In Section 3, we explain the problem dynamics and introduce relevant mathematical

notation. Section 4 starts with a thorough explanation of the model formulation and then continues with an

elaboration on the TSAMP. Data generation, parameter tuning and computational results are presented in

Section 5. In the last section, the conclusion of this research is presented.

2 Literature Review

The VRP is introduced by Dantzig and Ramser (1959) and initially defined as a truck dispatching problem.

Their work ushered years of research into a plethora of related problem settings. In this section we highlight

literature on several VRP variants. Section 2.1 is devoted to literature on the classical Vehicle Routing

Problem and Sections 2.1.1 - 2.1.3 to relevant extensions. Subsection 2.2 is devoted to literature on drivers’

regulations in routing problems. In Section 2.3 we aim to determine whether this extensive VRP variant has

been considered before and which solution techniques have been proven successful.

2.1 Vehicle Routing Problem

The classical VRP with vehicle capacities is the most studied variant. According to Braekers et al. (2016),

90.5% of all published VRP papers in the period of 2009 to 2015 consider capacitated vehicles. In short, the

VRP consists of designing a set of least-cost routes for a homogeneous fleet such that all customers are visited

exactly once, each route starts and ends at a central depot and the accumulated demand of all customers on

any route does not exceed the vehicle capacity. Finding this optimal routing plan is NP-hard (Toth and Vigo,

2002). The same applies for the considered variants in the next subsections, since they are generalizations of

the VRP.
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There are three main types of Mixed Integer Programming (MIP) formulations that are commonly used

to model the problem. The Vehicle Flow formulation (Laporte and Nobert, 1983), the Commodity Flow

formulation (Baldacci et al., 2004) and the Set Partitioning formulation (Balinski and Quandt, 1964). The

first two formulations use binary variables to indicate arc traversing, which is particularly useful when the total

cost can be expressed as the aggregated cost of all traversed arcs. However, many practical applications cannot

be modelled using these formulations. The Set Partitioning formulation uses binary variables to indicate which

route is selected and allows for a general cost function, alongside many practical constraints. However, the

major drawback of this formulation is the exponential number of decision variables.

Exact branching algorithms have been widely used to tackle this problem. Toth and Vigo (2002) provide a

comprehensive overview of several Branch-and-Bound algorithms, whereas Laporte (2007) emphasizes Branch-

and-Cut algorithms based on all three MIP formulations. State-of-the-art branching algorithms are able to

solve instances up to approximately 100 customers (Laporte, 2009). Exact Dynamic Programming (DP) algo-

rithms are less successful and cannot compete with state-of-the-art branching algorithms. Christofides et al.

(1981) propose a DP algorithm with a state-space relaxation, which is able to solve instances up to 25 cus-

tomers. The area of DP algorithms seems extinguished and occurs more frequently in stochastic environments.

Due to the complexity of the problem, extensive research has been conducted in designing efficient meta-

heuristics. Evolutionary algorithms proposed by Prins (2004), Baker and Ayechew (2003) and Bell and Mc-

Mullen (2004) produce near-optimal solutions for large instances within a reasonable time. These algorithms

mimic organic processes and operate on a population of solutions. Moreover, a plethora of heuristics is based

on the concept of Local Search, which searches the solution space by considering small (local) changes. Gen-

dreau et al. (1994) construct a Tabu Search heuristic that repeatedly removes and reinserts vertices. The

algorithm proposed in Arnold and Sorensen (2019) completely revolves around Local Search, which is guided

by pruning and perturbation techniques.

2.1.1 Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) assumes that each customer requires a certain

time interval, in which visitation should take place. Usually, these time window restrictions are considered as

hard constraints, however some papers include time windows as soft constraints and use a cost-service tradeoff

as objective (Figliozzi, 2010). The problem is first introduced in Solomon (1987), in which a relatively easy

heuristic based on insertions is presented. Braysy and Gendreau (2005-a) and Braysy and Gendreau (2005-b)

give an excellent overview of algorithms considering this variant. In the latter research, it is concluded that

algorithms based on Tabu Search or evolutionary techniques perform best. Cordeau et al. (2001) provide a

robust Tabu Search heuristic, of which the strength lies in its simplicity and flexibility. Their heuristic is

able to deal with multiple depots and periodic planning. The two evolution strategies in Homberger and

Gehring (1999) produce new best solutions for several instances indicating the effectiveness of evolutionary-

based algorithms.
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2.1.2 Pickup and Delivery

In the literature on the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), two different model

settings are considered. Firstly, allowance of mixing of pickup and delivery within the same route and, secondly,

the possibility of both pickup and delivery requirements simultaneously at the same location. In this research,

we use the most general settings and allow for mixing and simultaneous pickup and delivery.

Nagy and Salhi (2005) propose a Local Search based heuristic. Ten different Local Search operators are

used to intensify and diversify the search. The authors allow for intermediate infeasibility, in which case the

search is guided towards a feasible solution. Chen and Wu (2006) follow a similar approach and iteratively

search different neighborhoods. To avoid solution cycling, a Tabu list is used to store previously obtained

solutions. In Ropke and Pisinger (2006), the pickup and delivery constraints are considered alongside time

window constraints. The authors propose a Large Neighborhood Search, which is based on the principle of

iteratively ruining and recreating the solution.

2.1.3 Heterogeneous Fleet

According to Gendreau et al. (1999), no exact algorithms exist for the Vehicle Routing Problem with Het-

erogeneous Fleet (HVRP). The authors propose a Tabu Search algorithm embedded in an Adaptive Memory

Procedure (AMP), which stores partial solutions and combines superior solution components into new solu-

tions. This principle can be seen as a generalization of Genetic algorithms. The authors in Choi and Tcha

(2007) use a Column Generation approach and outperform many of the existing heuristics in terms of solution

quality and computation time. Prins (2009) presents two different Memetic algorithms. These evolutionary

algorithms enforced with Local Search compete with state-of-the-art heuristics and even produce several new

best known solutions.

2.1.4 Multiple Trips

The concept of multiple trips is formally introduced in the work of Fleischmann (1990) and allows vehicles

to perform more than one trip within the planning horizon. This variant frequently occurs with additional

time window constraints. Exact algorithms are scant in the literature. However, branching algorithms seem

to be the most pursued direction. One of the first exact methods for the Multi-Trip Vehicle Routing Problem

(MVRP) appears in Koc and Karaoglan (2011). The authors construct a Branch-and-Cut algorithm and solve

instances up to 50 customers. Mingozzi et al. (2013) propose an advanced Branch-and-Price algorithm based

on two Set Partitioning formulations and find optimal solutions to 42 benchmark instances.

Tabu Search and population-based algorithms produce the best solutions for larger instances. Olivera and

Viera (2007) use an AMP within a Tabu Search framework. The authors generate solutions for the classical

VRP and use a Bin Packing approach to combine trips. The Memetic algorithm in Cattaruzza et al. (2014)

also initially considers the classical VRP. The chromosome construction and splitting is similar to Prins (2004).

A Dynamic Programming approach is used to transform the VRP solution into the best MVRP solution. For

a more detailed overview of exact and heuristical approaches, we refer to Cattaruzza et al. (2016).
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2.2 Drivers’ Regulations

The majority of literature on routing problems does not consider regulations regarding driving and working

hours. Considering these regulations is crucial in obtaining feasible driver schedules. This observation on

deficiency in most VRP literature is also stated in Archetti and Savelsbergh (2009). The authors propose

a polynomial time algorithm for verifying whether a feasible driver schedule exists for a given sequence of

pickup and delivery requests with time windows. Goel (2010) presents a Breath First Search algorithm that

is guaranteed to find a feasible driver schedule. The principle of such a Breath First Search is to find certain

nodes in tree-based data structures. The author has produced several papers on drivers’ regulations. In Goel

(2012), the problem of finding a feasible driver schedule with minimum duration is considered. The author

presents a flexible DP approach able to deal with legislation in both the EU and the US. In another research,

the author considers the integrated problem of simultaneously vehicle routing and driver scheduling (Goel,

2009). The author shows that methods for handling drivers’ regulations can be incorporated within a vehicle

routing algorithm and proposes a Large Neighborhood Search. In contrary to Goel (2009), the Dynamic

Programming heuristic in Kok et al. (2010) includes all legal rules that apply to a weekly planning period.

The authors show that incorporating modifications and exceptions on the set of basic rules, which are usually

neglected, allows for more flexible schedules and thus better solutions.

2.3 Discussion

The VRP variants discussed above are commonly combined into more general variants. For example, the time

window constraints are frequently considered in combination with pickup and delivery constraints (Lin, 2008)

or with allowance of multiple trips (Wang et al., 2014). However, we conclude, to our best knowledge, that

there exists no VRP literature on the extensive variant considered in this research. This finding underlines

the scientific relevance of this paper.

The two most successful heuristical approaches for VRP problems in general are evolutionary population-

based algorithms and Local Search frameworks such as Tabu Search or Iterated Local Search. Algorithms

following the evolutionary approach usually represent a single solution as a giant tour and use a splitting

procedure to convert the tour into a set of feasible VRP routes. Efficient splitting procedures are established

for both the MTVRP and the HVRP. We believe for this extensive variant that an evolutionary approach

could succeed, but would result in notoriously difficult splitting procedures. Local Search frameworks usually

do not need any intermediate procedure and are more straightforward in their design. Furthermore, efficient

metaheuristics revolving around Local Search show an excellent time-quality tradeoff. Hence, a framework

based on Local Search seems a promising direction for the highly constrained RPP.

3 Problem Description

The main goal of the RPP is to construct a routing plan and to determine which resources should be assigned

to which trips such that the total costs are minimized. This section gives a comprehensive description of
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the problem and is outlined as follows. In Section 3.1, we elaborate on the resources. Section 3.2 contains a

description on transport orders. The objective of the RPP is considered in Section 3.3 and in the last section

(3.4) we discuss all RPP restrictions.

3.1 Resources

The vehicle resources consist of a heterogeneous set of trucks L and a heterogeneous set of trailers T . A

truck is a motor vehicle used to pull a trailer, while a trailer is an unpowered vehicle used to carry materials

and goods. It is assumed that the resources are stored at a central depot, from which they can start serving

transport order. Each trailer t (truck l) has a trailer (truck) type with specific characteristics such as steerable

axes or refrigeration mechanisms. Some of the truck-trailer combinations are excluded due to compatibility

issues. We define Lt as the set of trucks compatible with trailer t.

Trucks and trailers are not continuously available for planning purposes. Preventive maintenance, changing

tires or cleaning requirements are typical reasons for planning unavailability. Let El and Et be the set of external

events for truck l and trailer t respectively. Each external event has a fixed start and end time. Throughout

this paper we assume that all time variables and parameters are measured in hours after the start of the

planning horizon and that t = 0 is the start of the planning horizon.

All trucks l and trailers t have respective weight capacities Ql and Qt. The total weight capacity of a

combination of truck l and trailer t can be obtained by adding the individual weights capacities, Ql + Qt.

Another used capacity measure is the amount of load meters in a trailer (LDMt), a commonly used criteria in

freight transport. One LDM is equal to one meter of loading space of the trailer’s length and can be interpreted

as a simplified one-dimensional way to measure volume capacity.

The set of drivers is denoted by D. Each driver d has a certain skill level and possesses one or multiple

licences or certificates. For example, an ADR-certificate is required for transporting dangerous goods. Similar

to the vehicle resources, drivers can be unavailable for planning. The set of external events for drivers is

similar defined as the set for vehicle resources and is denoted by Ed for driver d with fixed start and end times.

However, the unavailability reasons for drivers are different then for vehicle resources and can, for example,

be holiday or maternity leave. In Table 1, an illustrative example of some fictional data is given.
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Trailers

Name Type Q LDM External Events Features

01-AB-CD Tautliner 100,000 10.5 Maintenance [55, 127]

02-EF-GH Flatbed 85,000 8 Cleaning [40,42] Tailgate

03-IJ-KL Standard 55,000 7 Refrigerated

Trucks

Name Type Q External Events Features

04-MN-OP Cab Over 50,000 Cleaning [40,42]

05-QR-ST Box Truck 25,000 Steerable axes

Drivers

Name External Events Features

John Doe Doctor [48,51] ADR License

Jane Doe Long Weekend [144,192]

Table 1: Example resource data for a small instance.

3.2 Transport Orders

A transport order, which we refer to as an order, is a request from a customer to have some goods transported.

We define the set of orders as O. Each order consists of an ordered set of activities Io, where each activity

represents a pickup or delivery subtask. Each activity i requires service time Si, for (un)loading, and specifies a

time window [Ei, Li], in which the service should be started. Ei represents the earliest start time (release) and

Li the latest start time (deadline). The time windows are agreed upon with the customers in a preplanning

stage. For early arrivals, we assume that the resources have to wait inoperative. The goods collected or

delivered at each activity i are quantified by measures weight Qi and load meters LDMi. We assume that the

distances Di,j and travel times Ti,j between each two activity nodes i and j are preprocessed and available in

a constant time lookup table.

We distinguish between two order types:

• |Io| = 1: order o consists of only one pickup (delivery) activity. The goods are collected (delivered) at the

activity node and stored at (distributed from) a central depot. The required service time at the pickup

(delivery) node is also incurred at the central depot for unloading (loading) on arrival (departure). It is

assumed that the (un)loading at the depot is performed by a working crew.

• |Io| = 2: order o consists of one pickup activity and one delivery activity, where the pickup node has to

be visited before the delivery node. No service time is needed at the central depot in this case.

For an order to be served, it needs a truck, trailer and driver assigned to it. Not all resources are allowed

to serve all orders. Some orders might require a specific trailer type, such as a ’Tautliner’, or some additional

features (i.e. cooling engine). This requirements can be specified by the planner based on experience or

requested by the customer. Furthermore, special driver licences might be necessary for certain goods and the
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planner can decide to set a required skill level for an order. The set of allowed trailers and drivers for order o

are denoted by To and Do, respectively.

In Figure 1 an example of an order is presented. Some machine part needs to be collected at node A

between 10:00 - 10:15 and delivered at node B between 12:00 - 12:30. Both collecting and delivering takes

15 minutes, which results in a total service time of half an hour. The distance between node A and B is 80

kilometer, which corresponds to one hour of driving. Suppose that the resources arrive at node A at 10:00

sharp, then node B can be visited 11:15 at the earliest. For early arrivals, we assume that the resources

have to wait inoperative. The trailer type has to be a ’Tautliner’ with a tailgate as additional feature. No

specifications on drivers are given, implying that every driver is allowed to serve this order.

Order #1 (05-01-2022)

Machine Part • 5 LDM • 6500 Kg

Trailer Type: Tautliner • Add. feature: Tailgate

Depot

A B

Pick up:

10:00-10:15 (15m)

Delivery:

12:00-12:30 (15m)

80km (1h)

Figure 1: Example of an order. The yellow rectangle shows some details of the order, whereas the right figure shows

a simplified geographical situation.

3.3 Objective

The objective of the RPP is to minimize the total cost, which consists of four parts similar to the fourfold cost

structure in Xu et al. (2003)

The first part amounts to the total mileage cost. In the heterogeneous fleet setting, we have that the cost

per kilometer is dependent on the used truck-trailer combination. Secondly, there is a fixed setup cost of using

a particular resource, which also varies across the different resources. We do not include costs associated with

assigning drivers to orders. We assume that drivers work on a contractual base and hence finding a feasible

driver schedule is sufficient. Thirdly, for intensive driver schedules, an overnight stay in a hotel might be

required. The costs resulting from arranging such sleeping accommodations are referred to as layover costs.

Lastly, waiting cost per time unit is incurred in case of early arrival. The waiting costs are the only non-tangible

costs and can be interpreted as penalty costs.

3.4 Restrictions

In this section, we discuss the considered RPP restrictions. Section 3.4.1 discusses order coverage constraints.

In the next section, we describe constraints regarding trips. Section 3.4.3 explains resource assignment restric-

tions and the last section discusses drivers’ regulations.
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3.4.1 Order Coverage

The most obvious constraint is that each order should be covered by exactly the required resources. This

amounts to exactly one truck, one trailer and one driver. It is possible that there exists no feasible solution

with complete order coverage. In this case, the planning tool should still provide a solution, where some orders

are put on hold. External resources can then be used to cope with this infeasibility.

3.4.2 Trip Restrictions

We define a trip as an ordered set of activities describing a route starting and ending at the central depot. We

say that a trip is locally feasible, when some necessary constraints are satisfied and the trip has the potential

to be part of RPP solution. To illustrate this, suppose that during the execution of trip v, a maximum of 12

LDM is attained and that the available resources are identical to the resources listed in Table 1. The maximum

LDM capacity is present at trailer 01-AB-CD and amounts to 10.5 LDM. Hence, trip v can never be part of an

RPP solution, since no trailer exists that potentially can serve this trip. In the remainder of this subsection,

the constraints for a trip to be locally feasible are described.

The time windows of each activity within the trip should be respected. Arriving too early is allowed,

however arriving after the specified time window of an activity yields an locally infeasible trip.

When an order consists of two activities, all activities should reside in the same trip and, moreover, the

visitation order within the trip should comply with precedence constraints (i.e. pickup before delivery). These

constraints are superfluous for orders with only one activity.

Following the example at the beginning of the section, the maximum attained weight and LDM during a

trip, should be supported by at least one truck-trailer combination. Otherwise, no resource combination exists

that is able to serve this trip.

The intersection of sets To and Do for each order o in a trip should be non-empty. For example, if a trip

contains both an order requiring refrigeration and an order requiring a tailgate, then no trailer in Table 1 is

able to serve this trip. Both features are present, however not at the same trailer. This implies that these two

orders cannot be together in one trip.

3.4.3 Resource Assignment Restrictions

Compatibility between trucks and trailers should be respected. Trucks and trailers that are incompatible can

thus not be assigned to the same trip.

When a truck-trailer combination is assigned to a trip, the capacity (in terms of weight and LDM) should

be sufficient. Suppose that a trip attains a maximum LDM of 10 and a maximum weight of 130,000, then

the combination of trailer 01-AB-CD and truck 04-MN-OP is the only combination from Table 1 that has

sufficient capacity. A combination of trailer 01-AB-CD and truck 05-QR-ST has sufficient LDM capacity, but

not enough weight capacity, since 100.000 + 25.000 < 130.000.

Next to the capacity constraints, the assigned trailer should possess all features incurred by the orders in

a trips. This concretely means that a trailer should be in the intersection of all sets To for all orders o in a
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certain trip. The same applies for drivers.

When assigning resources to trips, the availability of the resources have to be taken into account. We

distinguish between two types of availability. The external availability of resources depends on external events

that are unrelated to the trip assignments. To illustrate, driver Jane Doe from Table 1 is not available for

planning during [144, 192], since a long free weekend is planned during this time interval. The second type

of availability follows from the resource planning itself. In our multi-trip setting, resources may be assigned

to more than one trip. However, resources are not allowed to perform two distinct time-overlapping trips

simultaneously.

3.4.4 Drivers’ Regulations

In this research, we consider a subset of the regulations established by the European Union (European Union,

2006), since all customers of Adaption operate in this area. We assume that rules regarding small breaks and

driving uninterruptedly are incorporated by the planner in the travel times. The considered rules are listed

below.

• At most twice in a calendar week, it is allowed to drive for ten hours in one day. For the other days in

the same calendar week the maximum is nine hours.

• The maximum driving time per calendar week is 56 hours.

• The maximum driving time per any two consecutive calendar weeks is 90 hours.

• The maximum working time per calendar week is 60 hours. In the RPP, we assume that working time

includes driving time, service time at each activity and inoperative waiting at each activity node. The

driver is excluded from working time arising from service at the depot.

• The daily rest period should be at least eleven consecutive hours. At most 24 hours after the end of the

previous daily rest period, a new daily rest period should should be finished. We assume that a daily

rest period can be either taken during the execution of a trip or at home in between performing trips.

• At most 144 hours after the previous weekly rest period, a new weekly rest period of at least 45 consecutive

hours has to be started. We assume that a weekly rest period cannot be taken during the execution of

a trip, which implies that a trip cannot span more than 144 hours.

For the calculation of driving time per day, we assume that the total driving time between two activity nodes

is fully included in the calculation of driving hours for the day of departure. For example, if a driver leaves

activity node i at 22:00 on day k and arrives at the next activity node i + 1 at 01:00 on day k + 1, then the

three hours of driving time are fully included in the total driving hours for day k, whereas zero driving hours

are added to day k + 1. Furthermore, we assume that the working time emerging from inoperative waiting

and providing service is incurred at the day, where the service at the corresponding activity is started.

In Table 2, an overview of all regulation parameters is given. Let K be the set of days included in the

planning horizon and let W be the set of calendar weeks that (partly) coincide with the considered planning
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horizon. Subscripts w ∈ W and d ∈ D are added to the last four parameters to allow for tuning for individual

drivers and to cope with weeks that only partially fall in the planning horizon.

Symbol Value Description

Srest
day 11 hours Minimum duration of a daily rest period

Srest
week 45 hours Minimum duration of a weekly rest period

Hwork
consec 144 hours Maximum duration between the end and start of two consecutive weekly rest periods

Hdrive
day 9 hours Regular maximum driving hours per calendar day

Hext
day 1 hour Maximum extension of Hdrive

day

Nd,w 2 Maximum number of times that Hdrive
day can be extended per calendar week

Hwork
d,w 60 hours Maximum working hours per calendar week

Hdrive
d,w 56 hours Maximum driving hours per calendar week

Hdrive
d,w,w+1 90 hours Maximum driving hours per two consecutive calendar weeks

Table 2: Legislation parameters imposed by European Union (2006).

4 Methodology

The methodology used to solve the RPP is presented in this section. In Section A in the appendix, we give a

MIP formulation for the RPP and extensively elaborate on some modelling choices, model assumptions and

used notation. We strongly recommend to first read Section A before continuing to Section 4.1, since it gives

a deep understanding of the RPP. In Subsection 4.1, we propose an algorithm inspired by the AMP presented

in Olivera and Viera (2007). This technique is successfully implemented for several related problems and we

believe highly suitable for the tightly constrained RPP.

4.1 Two-Stage Adaptive Memory Procedure

In this section, we present a two-stage heuristic revolving around an Adaptive Memory Procedure (AMP): a

Two-Stage Adaptive Memory Procedure (TSAMP). The first stage consists of selecting trips from a memory

and the second stage consists of iteratively applying local search and assigning resources to the selected trips.

The main idea behind an AMP is to construct adequate solutions by combining parts from several good

solutions, which are stored in a dynamic memory. The first appearance of an AMP in the VRP setting is

in the research of Rochat and Taillard (1995). The authors conclude that the AMP technique can be used

for a wide range of problem settings. This is confirmed by successful implementations for the heterogeneous

(Gendreau et al., 1999) and multi-trip (Olivera and Viera, 2007) setting.

4.1.1 Outline Algorithm

The TSAMP framework yields similarities to the algorithm presented in Olivera and Viera (2007). However,

several aspects of the algorithm, such as the memory initialization, Local Search procedure and resource
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assignment are substantially different. The mathematical notation in this section is adopted from the used

notation in Olivera and Viera (2007) and extended, if necessary.

Memory M consists of a list of trips with corresponding labels indicating the quality of the trip. The list

is sorted according to the labels of the trips, where the best labels are put in the first positions. An example

of M for a small instance with four activity nodes is presented in Table 3. As Table 3 shows, memory M

contains parts (i.e. trips) of many different RPP solutions.

Trip Label

1→ 3→ 2 400

3→ 4 450

2→ 4 600

1→ 3→ 2→ 4 640

3→ 2→ 4 690

1 690

4→ 3 800

4 900

Table 3: Small example of memory M for four activity nodes.

We do not allow M to contain locally infeasible trips according to the constraints described in Section

3.4.2, which implies that the trips in M form a subset of V. In each TSAMP iteration, a routing plan sV RP

is constructed by selecting trips from memory M . The routing plan is subsequently transformed into an RPP

solution by assigning resources to the trips. In the second stage of the iteration, local search is applied to the

current solution in order to intensify the search. At the end of the iteration, each trip from the resulting RPP

solution is reinserted in memory M . General pseudocode for the complete TSAMP algorithm is presented in

Algorithm 1.

Algorithm 1 High-level Outline of the Two-Stage Adaptive Memory Procedure

1: initialize memory M using a Greedy Randomized Adaptive Search Procedure (Algorithm 2)

2: for i = 1 to TSAMP iter do

3: construct routing plan sV RP by probabilistically selecting trips from M (Algorithm 3)

4: apply local search & resource assignment and obtain sRPP (Algorithm 4)

5: update M using the trips in sRPP

6: end for

The expectation is that in the early stages, memory M contains a divers and potentially poor set of trips.

The routing plans in Step 3 are then expected to vary considerably among subsequent iterations. In this way,

the local search in Step 4 is diversified, yielding a search in various areas of the solution space. As the TSAMP

progresses, memory M is expected to contain more and more trips corresponding to good solutions. The local

search is then intensified to richer areas of the solution space.
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4.1.2 Memory Initialization

Memory M is initialized by a Greedy Randomized Adaptive Search Procedure (GRASP), which is an iterated

randomized version of a greedy construction heuristic. The used construction procedure is based on the famous

Savings Heuristic developed by Clarke and Wright (1964). Instead of a savings measure, we use a relatedness

measure R(oi, oj) between two orders oi, oj ∈ O, which includes relatedness regarding distance, time, weight,

LDM and the number of resources that are allowed to serve both orders.

Let v = {v1, ...vn} be the sub-trip resulting from first serving all activities in Ioi and then serving all

activities in Ioj , without starting and ending at the depot. Then we define total distance Doi,oj as Dv1,v2 +

...+Dvn−1,vn . Let Spanoi,oj , be the time between arriving at the first activity and leaving the last activity given

the tightest time schedule. In Sections B.3 and B.4 in the appendix, it is explained how the tightest schedule for

a given trip can be constructed. Let Arrivev1 be the time of arrival at first activity v1 and let Leavevn be the

departure time from the last activity vn, then the span can be calculated as Spanoi,oj ← Leavevn−Arrivev1 .

The parameters controlling the weights of the several relatedness measures are displayed as the first six

parameters in Table 8. The total distance and time span are generally smaller for two orders with only one

activity, than for two orders consisting of both two activities. Hence, subscript n is added to the first two

parameters in order to account for a varying number of activities per order.

Relatedness measure R(oi, oj) is defined as

R(oi, oj) =



αnDoi,oj + γnSpanoi,oj + θweight|Qoi −Qoj |+

θLDM |LDMoi − LDMoj |+ λD
(
1− |Doi

∩Doj
|

min{|Doi
|,|Doj

|}

)
+ if v is locally feasible

λV
(
1− |Toi

∩Toj
|

min{|Toi
|,|Toj

|}

)
∞ otherwise.

(1)

The weight and LDM relatedness is calculated by taking the absolute differences. The resource relatedness

for drivers and trailers is calculated by considering the intersection of allowed resources for both orders. The

denominator in the expression for trailers is added to compare the intersection size relative to the sizes of Toi
and Toj and not to the size of T . A similar reasoning applies to the relatedness for drivers. The lower the

relatedness measure, the more related the two orders. Note that in general it holds that R(oi, oj) ̸= R(oj , oi).

In the GRASP algorithm, we use a standardized version of R(oi, oj) denoted by R̂(oi, oj), where the distance,

span, weight and LDM measures are standardized such that they only take values in [0, 1]. In this way we

have R̂(oi, oj) ∈ [0, αn + γn + θweight + θLDM + λD + λT ].

Pseudocode for the GRASP algorithm is presented in Algorithm 2. Similar to the original Savings Heuristic,

the solution is initialized with a trip for each order in Step 3. Then the algorithm attempts to iteratively merge

orders that are highly related, where the selection of a relatedness label is the randomized greedy step. The

probability of selecting the ith label in R̃L is equal to 2 |R̃L|+1−i

|R̃L|(|R̃L|+1)
, which gives a higher probability to orders

that are more related. This probability distribution is obtained as follows. Suppose that list R̃L contains n

elements. Then we assign weight n+1− i to the ith element such that the first element has a weight of n and

the last element a weight of 1. The sum of all weights equals
∑n

i=1 n + 1 − i =
∑n

i=1 i =
n(n+1)

2 . Scaling all
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weights by this expression gives the used probability distribution. Parameter GRASP iter controls the number

of iterations and thus the number of solutions used to initialize memory M .

Algorithm 2 GRASP algorithm

Input: list of order -pairs RL sorted according to R̂(oi, oj) (ascending)

1: for i = 1 to GRASP iter do

2: R̃L← RL

3: initialize sV RP
i by constructing a trip for each order o ∈ O

4: while R̃L ̸= ∅ do

5: probabilistically select a relatedness label R̂(oi, oj) from R̃L

6: validate whether the merging the trips belonging to oi and oj results in a locally feasible trip (Steps

4 - 15 in Algorithm 11)

7: if possible to merge then

8: merge the two trips and update sV RP
i

9: remove labels R̂(oi, :), R̂(:, oj) and R̂(oj , oi) from R̃L

10: else

11: remove label R̂(oi, oj) from R̃L

12: end if

13: end while

14: end for

Output: sV RP
i for i = 1, ..., GRASP iter

4.1.3 Memory Management

The management of memory M is almost similar to the memory management in Olivera and Viera (2007).

Each trip in M is labelled according to the objective value of the corresponding RPP solution. Suppose trip

v belongs to solution sRPP , then trip v is labelled with f(sRPP ), where f(·) is defined as in (54). The trips

in M are ordered in ascending order based on their respective labels, which implies that trips corresponding

to good solutions reside in the first positions of the memory.

When the memory is updated at the end of a TSAMP iteration, the trips of the new RPP solution are

labelled accordingly and added to the memory, while maintaining the ascending sorting. In case of duplicates,

only the trip with the best label is retained. ParameterMsize limits the size of the memory. When the memory

size |M | exceeds this parameter, the surpassing trips with the highest labels are removed from the memory.
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Algorithm 3 Procedure for selecting trips from the memory

Input: memory M , iteration number i

1: Õ ← O

2: M̃ ←M

3: if mod {i, κ} = 0 then

4: draw integer Luncover probabilistically from interval [0, Luncover
max ]

5: randomly remove Luncover orders from Õ

6: remove all trips from M̃ that contain orders in set O \ Õ

7: end if

8: sV RP ← ∅

9: while M̃ ̸= ∅ and Õ ≠ ∅ do

10: probabilistically select trip v from M̃ and add to sV RP

11: remove all trips from M̃ that have orders in common with v

12: remove all orders from Õ that are contained in v

13: end while

14: solve one iteration of the GRASP algorithm with the unrouted orders in Õ

Output: routing plan sV RP

Pseudocode for the memory selection process is given in Algorithm 3. Routing plan sV RP is constructed

by probabilistically selecting trips from the memory (Step 10). In order to favor trips corresponding to good

solutions, the probability of selecting a certain trip is dependent on the relative position in the memory similar

to the selection of the relatedness labels in Algorithm 2.

Throughout the algorithm, it can happen that we are not able to find an RPP solution, where all orders

are served. It would then be myopic to always attempt to construct a routing plan from M containing all

orders. Therefore, we sometimes omit some randomly selected orders. This is done as follows: every κth

TSAMP iteration, a routing plan is constructed using a randomized subset of orders. This omitting of orders

is displayed in Steps 3 - 7.

When memory M̃ is empty and there are still unrouted orders in Õ, one iteration of the GRASP algorithm

is executed in order to create trips for the unrouted orders (Step 14).

4.1.4 Local Search Procedure

In each TSAMP iteration, we apply a Simulated Annealing (SA) procedure to the selected trips. The procedure

improves the constructed routing plan and avoids reinserting the same trips in the memory over and over again.

The main principle behind SA is to allow the incumbent solution to deteriorate in order to prevent getting

stuck in local optima. The probability of accepting worse solutions is gradually decreased such that the search

is diversified in the early stages and intensified in the later stages of the SA procedure.

We define neighborhood N(sV RP ) as the feasible routing plans, containing locally feasible trips only, that

can be obtained from incumbent solution sV RP by performing one of the local search moves listed below.
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• Relocation: This move attempts to relocate one order to another position. The new trip does not

necessarily have to be a different trip, however all activities of the relocated order have to be inserted in

the same trip.

• Exchange: This move tries to exchange two orders of two distinct trips. The new positions do not

necessarily have to be the respective former positions, hence this move also considers exchanges between

orders with an unequal number of activities

• Reinsertion: This move tries to reinsert an order that has been put on hold. All activities of the

considered order have to be reinserted in the same trip. Only orders that are put on hold during the

resource assignment procedures can be reinserted. Orders that are removed in Step 5 from Algorithm 3

are neglected throughout the entire TSAMP iteration.

All local search moves operate on an incumbent routing plan sV RP , which means that the assignment

of resources to trips, the exact amount of waiting time and the number of layovers are not yet determined.

Therefore, the real change in objective, as defined in (54), of a certain local search move cannot be calculated.

To overcome this problem, we adopt an alternative measure using the change in mileage, time span and

uncovered orders. Suppose that sV RP ′ ∈ N(sV RP ) and that this local search move modifies trips vi and vj

into trips vi
′
and vj

′
respectively. We define ∆(sV RP , sV RP ′

) as the cost of this local search move. For the

Relocation and Exchange move, this alternative measure is calculated as

∆(sV RP , sV RP ′
) =− (τSpanvi + min

l,t:feasible
{Cvi,l + Cvi,t}) (2)

+ (τSpanvi′ + min
l,t:feasible

{Cvi′ ,l + Cvi′ ,t})

− (τSpanvj + min
l,t:feasible

{Cvj ,l + Cvj ,t})

+ (τSpanvj′ + min
l,t:feasible

{Cvj′ ,l + Cvj′ ,t}).

Each subterm represents the alternative cost of a single trip consisting of the sum of the total time span, as

defined in (1), scaled by parameter τ and the assignment cost of the cheapest feasible truck-trailer combination.

For the Reinsertion move, the measure is calculated slightly different. Let vj be the trip that is used for the

reinsertion, then the alternative measure can be derived by substituting the first two terms in (2) by −Comit

Instead of determining a resource assignment at the end or beginning of the SA procedure, we compute

a resource assignment in each SA iteration directly after performing a single Local Search move. This comes

at the cost of additional computation time, but has two major advantages. First, all intermediate routing

plans are transformed into an RPP solution and thus evaluated in terms of the actual objective. Hence, no

potential good solutions are discarded. Second, without these intermediate resource assignments, the routing

plan may be optimized perfectly with respect to the alternative measure (2), but might require extensive

ad-hoc modifications in order to obtain a feasible RPP solution.

In Algorithm 4 below, the SA procedure is presented. From the initial routing plan, a RPP solution is

constructed in Steps 1 and 2.
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Algorithm 4 Simulated Annealing procedure for iteratively improving routing plan sV RP and assigning

resources

Input: routing plan sV RP

1: assign drivers to the trips in sV RP (Algorithm 5)

2: assign trucks and trailers to the trips in sV RP and obtain sRPP (Algorithm 9)

3: sV RP ← current routing plan in sRPP

4: T ← T0 & sRPP
best ← sRPP

5: for i = 1 to SAiter do

6: randomly select sV RP ′ ∈ N(sV RP )

7: if ∆(sV RP , sV RP ′
) < 0 then

8: accept sV RP ′
with probability 1

9: else

10: accept sV RP ′
with probability exp(−∆(sV RP , sV RP ′)/T )

11: end if

12: if accepted then

13: sV RP ← sV RP ′

14: assign drivers to the trips in sV RP (Algorithm 5)

15: assign trucks and trailers to the trips in sV RP and obtain sRPP (Algorithm 9)

16: sV RP ← current routing plan in sRPP

17: if f(sRPP ) < f(sRPP
best ) then

18: sRPP
best ← sRPP

19: end if

20: end if

21: T ← ψT

22: end for

Output: RPP solution sRPP
best

A routing plan before resource assignment may be different than the routing plan after resource assignment,

since it is not known in advance whether there exists a feasible resource assignment plan for a given routing

plan. Hence, some trips may have to be split or some orders have to be put on hold in order to obtain a feasible

RPP solution. Thus, after each resource assignment, routing plan sV RP is subtracted from the incumbent

RPP solution, which is done in Steps 3 and 16.

The for-loop in Steps 5 - 22 is similar to most SA frameworks. The number of iterations is controlled by

parameter SAiter. A new routing plan sV RP ′
is randomly selected from the neighborhood of sV RP in Step 6.

When sV RP ′
has a better objective in terms of the alternative measure, sV RP ′

is accepted as new incumbent

routing plan (Step 8). Otherwise, sV RP ′
is accepted with the probability shown in Step 10.

When the new routing plan is accepted, resource assignment is performed in order to obtain a RPP solution.

The best found RPP solution during the SA algorithm is stored in sRPP
best and updated in Step 18.
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Parameter T controlling the probability distribution in Step 10 is initialized with starting value T0 in Step

4 and updated in Step 21 using parameter ψ ∈ [0, 1].

4.1.5 Driver Assignment

The assignment of resources to trips in a given routing plan is split into a heuristic for drivers and a heuristic

for vehicle resources. The constraints regarding drivers’ regulations are quite extensive. Hence, the drivers are

assigned in a separate algorithm, where weekly driving and working limits are considered and rest periods are

iteratively incorporated. After the driver assignment phase, vehicle resources are assigned in a greedy way.

The used methodology for assigning drivers is less straightforward than, for example, the SA algorithm. For

that reason, we elaborate on the driver assignment heuristic (Algorithm 5) step by step using examples.

In Step 1 the tightest schedule for each trip in sV RP is calculated. The trips are then stored in list SL and

sorted in ascending order based on departure times from the depot (early departures first).

All variables that keep track of working and driving are initialized in Step 3. These variables are updated

when a drivers is assigned to a trip and are used to check constraints regarding drivers’ regulations. For the

sake of consistency, we adopt the notation used in the MIP formulation.

In the main while-loop in Steps 4 - 27, we iteratively attempt to assign drivers to trips. In each iteration

the trip in SL with the earliest departure time is selected (Step 5). If a trip cannot be served by any driver,

the trip is split and reinserted in SL preserving the sorting.

By considering the trips in ascending order based on departure times, we always attempt to assign trips

time-wise after trips assigned in previous iterations. In this way, arrival times at all nodes and start/end times

of rest periods can be fixed after each assignment, which means that only the time window feasibility of the

current trip has to be considered. Suppose, on the contrary, that we do allow to assign trips before or in

between previously assigned trips, then we might have to shift time schedules of the previously assigned trips

or incorporate some additional rest periods, which could result in cumbersome puzzle of considering multiple

schedules for several trips simultaneously.

The set of drivers that are allowed to serve trip v is obtained by the intersection of Do with o ∈ Ov and

stored in temporary set D̃v (Step 6). The drivers, that that are unavailable during the time span of the trip,

are discarded in Steps 8 and 9. Suppose that current trip v spans [25, 32], given the tightest schedule, and

that driver d ∈ D̃v has a private appointment during [30, 31], then driver d cannot perform this trip and is

discarded. Similarly, if a previously assigned trip for driver d ∈ D̃v ends at the depot at t = 27, this driver is

discarded.

The weekly service and weekly driving for each week w for trip v given the tightest schedule are calculated

in Step 10. Suppose we are given the tightest schedule in Table 4 and weeks w1 and w2 with respective

intervals [0, 168) and [168, 336). Despite the fact that the travel time from the depot to node 1 [166, 169]

overlaps with both weeks, this three hours of driving are fully incorporated in δv,w1 following the assumptions

made in Section 3.4.4. Hence we have that δv,w1 = 3 and δv,w2 = 2+2 = 4. The start times of service for both

nodes are in w2, which implies that σv,w1 = 0 and σv,w2 = 2.5. These calculated variables can subsequently

be used to check constraints in Steps 12 - 14 (bullet points 2 - 4 in Section 3.4.4). For each driver d, we add
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the driving/work hours for the current trip v to the driving/working hours incurred by previous assignments.

If for a certain driver the accumulated driving/working hours exceed one of the three legal bounds, the driver

is discarded. Suppose that we have δv,w = 30 for current trip v and that driver d is already assigned to some

trips in week w resulting in δd,w = 40. Assigning trip v to driver d would result in 30 + 40 = 70 driving hours

in week w, which is not allowed according to the legal maximum of 56 hours.

Depot Node 1 Node 2 Depot

Si 0 1 1.5 0

Ti,j 3 2 2 -

Arrivei - 169 172 187.5

Waiti - 0 12 -

Starti - 169 184 -

Leavei 166 170 185.5 -

Table 4: Tightest schedule of a trip visiting nodes 1 and 2. The time windows are not presented, since they are not

relevant in this example.

We do not yet incorporate ωv,w, the waiting hours for the current trip, since daily rest periods are not yet

incorporated in the trip, whereas daily rest periods might consume a large part of the waiting. For example,

before node 2 in Table 4, there is enough waiting time to incorporate a daily rest period of eleven hours. Hence,

counting this twelve hours of waiting as working hours gives a biased image of the actual working hours and

leads to unnecessary discarding of drivers.

Constraints regarding daily driving hours are also not considered in this stage of the algorithm. Incor-

poration of daily rest periods is most likely to have a large influence on the driving hours per day. These

constraints are thus considered in a later stage, when all rest periods are incorporated.

The drivers in set D̃v are sorted based on the cardinality of SLd, the set of trips in SL that driver d is

allowed to perform (Steps 15 and 16). We want to favor drivers, where set SLd is small. To illustrate this,

when a driver d1 is allowed to only perform the current trip and another driver d2 is allowed to perform ten

other trips that are still in SL, then we prefer driver d1 for the current trip, since he or she cannot be assigned

to any other trip.

The for-loop in 17 - 23 attempts to assign drivers from D̃v to the current trip by validating whether daily

and weekly rest periods can be feasibly planned when performing the current trip. The algorithm for planning

all these rest periods is presented in Algorithm 7 and explained later. The number of iterations of this for-loop

is controlled by parameter Ndriver. The probabilistic selection of a driver in Step 18 is done using the same

probability distribution as selecting trips from memory M and selecting relatedness labels in the GRASP

algorithm. When Algorithm 7 indicates that a driver can perform trip v, the driver is assigned to the trip

in Step 21 and the variables from Step 3 are updated using the driving and working hours incurred by the

current trip.

When no driver can be assigned to the current trip, the trip is split into two new trips, which are reinserted
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in SL. The procedure for this splitting process is described in Algorithm 6.

Algorithm 5 Driver assignment

Input: routing plan sV RP

1: create tightest schedule for each trip in sV RP

2: sort the trips based on departure times from the depot (ascending) and store in sorted list SL

3: initialize variables for all drivers d: βd,k ← 0 (daily driving), zd,k ← 0 (extension), δd,w ← 0 (weekly

driving), ωd,w ← 0 (weekly waiting), σd,w ← 0 (weekly service)

4: while |SL| ≠ 0 do

5: v∗ ← trip in SL with earliest start time & SL← SL \ {v∗}

6: D̃v∗ ← Dv∗ , drivers that are allowed to perform this trip

7: let [tstartDv∗ , tendDv∗ ] be the full time span of trip v∗ given the tightest schedule

8: delete from D̃v∗ drivers d that have external events overlapping with [tstartDv∗ , t∗v
endD]

9: delete from D̃v∗ drivers d that have previously assigned trips overlapping with [tstartDv∗ , tendDv∗ ]

10: calculate δv∗,w (driving hours trip v∗ in week w) and σv∗,w (service hours trip v∗ in week w) given the

tightest time schedule and set ωv∗,w ← 0 (waiting hours trip v∗ in week w)

11: delete drivers d that satisfy one of the following three violations:

12: 1) δd,w + δv∗,w > Hdrive
d,w

13: 2) δd,w + δv∗,w + δd,w+1 + δv∗,w+1 > Hdrive
d,w,w+1

14: 3) δd,w + σd,w + ωd,w + δv∗,w + σv∗,w + ωv∗,w > Hwork
d,w

15: let SLd = {v ∈ SL : d ∈ Dv} be the trips in SL that driver d is allowed to perform

16: sort D̃v∗ based on |SLd| (ascending)

17: for i = 1, .., Ndriver do

18: probabilistically select driver d from D̃v

19: run Algorithm 7 to verify whether driver d can perform trip v∗ in a feasible way

20: if feasible then

21: assign driver d to trip v∗ and update all variables from Step 3

22: end if

23: end for

24: if no drivers can be assigned to v∗ then

25: split trip v∗ according to the procedure in Algorithm 6

26: end if

27: end while

Output: routing plan sV RP equipped with drivers

The trip splitting process in Algorithm 6 can be described as follows. If more than one order is present in

the trip, an attempt is made to split the trip at the most middle position possible in Step 2. Suppose we have

two orders o1 and o2 in trip v with both a pickup and a delivery activity : Io1 = {p1, d1} and Io2 = {p2, d2}.

For trip v = {p1, p2, d1, d2} no feasible splitting is possible, since all splits result in one of the two orders
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divided over two trips, which is not allowed. In this case, only trip v = {p1, d1, p2, d2} could potentially be

split. If no split is possible, then the first appearing order is removed and put in a newly created trip. The

new trip and reduced trip are reinserted in SL in Step 6.

When a trip cannot be assigned to any driver and the number of orders in the trip is one, no further

splitting is possible and the order is put on hold in Step 9.

Algorithm 6 Procedure for splitting a trip into two new trips

Input: trip v

1: if |Ov| > 1 then

2: let v = {v1, ..., vn}, then i∗ ← max {min{i, n− i} : trip v can be feasibly split at position i}

3: if v can be split in a feasible way then

4: split trip v at position i∗ and reinsert new trips in SL preserving the sorting

5: else

6: remove order o1 corresponding to first activity and add the reduced trip and the trip only containing

o1 back to SL preserving the sorting

7: end if

8: else

9: remove trip v from sV RP and put only order o ∈ Ov on hold

10: end if

Output: updated list SL

4.1.6 Insertion of Daily and Weekly Rest Periods

In Algorithm 7, it is validated whether a given driver can perform a given trip considering the daily and weekly

rest requirements. To summarize, a daily rest period should last at least eleven hours and should be finished

within 24 hours of the previous daily rest period (fifth bullet point in Section 3.4.4). A weekly rest period

should last at least 45 hours and the time between two consecutive rest period can be at most 144 hours (last

bullet point in Section 3.4.4). The presented algorithm is difficult to understand and read, hence the reader is

guided through the algorithm using an example.

Suppose that trip v and driver d in Table 5 are input to Algorithm 7. The parameters in Steps 1 - 3 are

presented in the most right column in Table 5.

In Steps 4 - 15 it determined when the next weekly rest period should planned. We have that the next

weekly rest period should be started before −35 + 144 = 109. The if-statement in Step 4 is true, since the

trip, given the schedule in Table 5, is finished at t = 79. Hence the new weekly rest period ρd,g can be safely

scheduled after this trip. The weekly rest period does not need to be planned yet, we only need to ensure that

the trip does end later than t′ = 109 (Step 5) such that the weekly rest period could theoretically be started

at this latest deadline.

Parameter tavailable denotes that start time at which the driver is available for the current trip and tdeadline

the respective end time. These parameters are used to determine how much the current schedule can be delayed
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or advanced without violating the driver’s availability. In Step 6 these parameters are set to tavailable ←

max{10,−70} = 10 and tdeadline ← min{109, 100} = 100, which means that driver d is available during

[10, 100] for the current trip.

Trip v Depot Node 1 Node 2 Depot Driver d

Si 0 1 1 0 tprevd 10

[Ei, Li] - [50,52] [75,78] - el [-80,-70]

Ti,j 5 9 3 - el+1 [100,150]

Arrivei - 52 62 79 ρd,f−1 [-5,6]

Waiti - 0 13 - ρd,g−1 [-80,-35]

Starti - 52 75 -

Leavei 47 53 76 -

Table 5: Tightest schedule of a trip visiting nodes 1 and 2 & needed information for driver d.

To illustrate Steps 7 - 14, suppose that ρd,g−1 would be planned during [−150,−105], then we have that

−105 + 144 = 39 < 79. In this case, the next weekly rest period should be planned before this trip. However,

the time between the previous trip and current trip is tstartDv − tprevd = 47 − 10 = 37 < 45 indicating that

there is not enough time-space for a weekly rest period. Hence, the assignment of driver d to the current trip

would be infeasible.

Since taking daily rest periods at home yields no layover costs, we attempt to schedule the next daily rest

period directly before starting the current trip. In Step 16 it is checked whether there is enough time-space

for a daily rest period. Since 47− 10 = 37 > 11, it is possible to schedule daily rest period ρd,f directly before

the trip. The start time and end times of ρd,f are set to t = 47 − 11 = 36 and t = 47 respectively (Step 17).

Technically, the constraint regarding consecutive daily rest periods is now violated. ρd,f−1 ends at t = 6 and

ρd,f ends at t = 47, which is more than 24 hours. However, driver d is not assigned to any trip in between

those two daily rest periods. Therefore, this two daily rest periods can be interpreted as one long rest period.

Parameter tavailable is updated to tavailable ← max{10, 10+11} = 21 in Step 18. It might seem more logical

to set tavailable to 47 in Step 18, since we scheduled a daily rest period during [36, 47]. However, the start and

end times of ρd,f are decided to be flexible such that they can be shifted together with the trip schedule. This

is clarified with the following simplified example. Suppose that we have a trip that starts at tstartDv = 50 and

that the previous assigned trip for driver d ends at tprevd = 35. Using only this information, tavailable will be

set to 35 and the remaining slack, in which the trip can be advanced, is initially 15 hours. However, since

50 − 35 = 15 > 11 (Step 16), a daily rest period is incorporated directly before the trip during [39, 50]. It

remains, that the trip and thus the daily rest period can be advanced at most fours hours, since the start time

of the daily rest period (t = 39) will otherwise overlap with the previous trip (ends at t = 35). This change

in availability can be captured by updating tavailable as in Step 18: tavailable = max{35, 35 + 11} = 46, which

gives the desired four hours of advancing slack compared to start time t = 50.

The incorporation of daily rest periods within the trip is described in the while-loop in Steps 21 - 57. Step
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22 calculates the deadline of the start time of the next daily rest period, which is 47 + 24 − 11 = 60. If this

deadline is after the end time of the current trip schedule, it is not necessary to incorporate any more daily

rest periods. The driver can simply take his or her rest period after finishing the trip. In the example, the

deadline tdeadlineρd,f
= 60 is before the end of the trip tendDv = 79, which means that at least one daily rest period

needs to be incorporated in order for driver d to feasibly perform this trip.

When presenting the MIP formulation in Section A in the appendix, we assumed that daily rest periods

during a trip can only be taken directly after leaving a node and thus not continuously on the interval between

two activity nodes. This assumption is highly limiting and likely to cause modelling issues. When, for example,

the travel time between two activity nodes is fifteen hours and it would not be possible to schedule a daily

rest period somewhere during this fifteen hours, this arc can most likely not be traversed without violating

the constraint of consecutive daily rest periods. To that extent, artificial nodes are included between each

two activity nodes in order to be more flexible in scheduling daily rest periods during a trip. A more detailed

explanation on the concept and generation of artificial nodes is given in Section B.2 in the appendix.

The set P in Step 26 contains all activity and artificial nodes in Ĩv, after which the next daily rest period

could potentially be taken.

The first constraint in the definition of P is straightforward, a rest period can only be scheduled after nodes,

which are departed from before the rest deadline. The second constraint avoids that the new daily rest period

can be inserted after nodes that are visited before the previous daily rest period. Instead of looking at the

arrival time of the current node, the constraint considers the arrival time at the succeeding node. Otherwise

it would not be possible to schedule two or more daily rest periods directly after the same node.

Figure 2 visualizes the trip including artificial nodes, where ANi,j denotes the jth artificial node after

activity i. All arrival and departure times for each node are displayed in Table 6 and obtained using the

current schedule in Table 5 and the travel times in Figure 2. Set P can subsequently easily be constructed

using Table 6: P ← {AN0,1, AN0,2,Node 1, AN1,1, AN1,2}.

Depot Node 1 Node 2 Depot

(T = 5) (T = 9) (T = 3)

Depot AN0,1 AN0,2 AN1,1 AN1,2 AN1,3 Depot

(T = 2.5) (T = 2.5) (T = 3) (T = 3) (T = 3) (T = 3)

Figure 2: Simplified representation of the trip in the example. The first black line shows only the activity nodes and

corresponding driving times. The second black line exhibits all artificial nodes. Nodes AN0,2 & Node 1 and AN1,3 &

Node 2 are located at the same geographical location.
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Depot AN0,1 AN0,2 Node 1 AN1,1 AN1,2 AN1,3 Node 2 Depot

Arrivei - 49,5 52 52 56 59 62 62 79

Leavei 47 49,5 52 53 56 59 62 76 -

Table 6: Arrival and departure times at each activity and artificial node given the current schedule.

Algorithm 7 Algorithm that validates whether rest periods can feasibly be taken

Input: driver d, trip v and corresponding schedulev

1: let tprevd be the end time of the previously assigned trip (from either this instance or from the previous

planning period)

2: let el, el+1 ∈ Ed be the external events enclosing schedulev

3: let ρd,f−1 and ρd,g−1 be the previous daily and weekly rest period respectively

4: if tendDρd,g−1
+Hwork

consec ≥ tendDv then

5: ρd,g can be planned after v, but should start no later than t′ = tendDρd,g−1
+Hwork

consec

6: tavailable ← max{tprevd , tendDel
} & tdeadline ← min{t′, tstartDel+1

}

7: else

8: if tstartDv − tprevd ≥ Srest
week then

9: schedule ρd,g before trip v with tendDρd,g
= tprevd + Srest

week

10: tavailable ← max{tprevd , tendDel
, tendDρd,g

} & tdeadline ← tendDel+1

11: else

12: feasible← false

13: break algorithm

14: end if

15: end if

16: if tstartDv − tprevd ≥ Srest
day then

17: tstartDρd,f
← tstartDv − Srest

day , t
endD
ρd,f

← tstartDv

18: tavailable ← max{tavailable, tprevd + Srest
day }

19: f ← f + 1

20: end if

21: while feasible = true do

22: ρd,f should start before tdeadlineρd,f
← tendDρd,f−1

+Hday − Srest
day

23: if tdeadlineρd,f
≥ tendDv then

24: break while-loop

25: end if

26: P ← {i ∈ Ĩv : Leavei ≤ tdeadlineρd,f
& Arrivei+1 ≥ tendDρd,f−1

}

27: foundPosition← false

The for-loop in Steps 28 - 52 loops over all nodes in P. Recall that a daily rest period during a trip yields
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layover costs, hence the for-loop iterates in reversed order over the elements in P such that each new daily rest

period is scheduled as late as possible. Node AN1,2 is used in the first iteration, since this is the last element

in P.

Variable flowmax
⇒ in Step 29 denotes the amount of time the schedule can be delayed after node p, which is

AN1,2 in the first iteration. Node 2 is the only time window restricted node after AN1,2. The arrival time at

node 2 is Arrive2 = 62 and the deadline is L2 = 78, which means that the time schedule after node AN1,2 can

be delayed at most 78− 62 = 16 hours. Recall that tdeadline = 100 (Step 6) and that the trip currently ends

at t = 79. Since tdeadline − tendDv = 100 − 79 = 21 > 16, the time window constraint at node 2 is dominant,

which means that flowmax
⇒ ← 16.

When, for example, tdeadline would have been 80, the end time of the trip can be delayed at most one hour,

since the current end time is t = 79. This implies that the driver can leave node 2 at t = 77 at the latest and

thus start the service at t = 76 at the latest. Given the current arrival time Arrive2 = 62, flowmax
⇒ would be

set to 76− 62 = 14.

flowmax
⇐ in Step 30 is the counterpart of flowmax

⇒ and holds the value of the maximum amount of time the

schedule can be advanced before and including node p. Only node 1 contains restricted time windows before

node AN1,2. We have that Start1 = 52 and that E1 = 50, which means that the schedule can be advanced at

most 52− 50 = 2 hours. Since tstartDv − tavailable = 47− 21 = 26, flowmax
⇐ is set to 2.

The if-statement in Step 31 checks whether the total available flow forward and backward is more than

the required eleven hours. If this is the case, the daily rest period is inserted after the current node p, which

is done in Steps 32 - 50.

Variable flow⇐ represents the actual advancement of the schedule. Since it is desirable to schedule rest

periods as late as possible, this variable is only positive, if the available flow forward only is not enough to fully

incorporate the daily rest period. As flowmax
⇒ is 16 in the example, flow⇐ is set to 0. If flow⇐ is positive,

the arrival times at all previous nodes and the current node are advanced with flow⇐ hours. Furthermore, all

previously incorporated daily rest periods during this call to Algorithm 7 are similarly advanced with flow⇐

hours.

flow⇒ in Step 34 represents the actual flow forward and is initialized as the maximum flow forward

incremented with with flow⇐. In the example flow⇐ = 0, which implies that flow⇒ = 16 + 0 = 16.

cumulativeWait in the next step describes the cumulative amount of waiting at all nodes after node p.

From Table 5 it can be obtained that at node 2 the driver has to wait for 13 hours, which is also immediately

the value of cumulativeWait. This variable is used to determine the length of the daily rest period, since

it might be beneficial to extend the rest period in order to consume some inoperative waiting. When there

is no (or few) cumulative waiting, the additional time arising from the incorporated daily rest period is not

consumed by inoperative waiting and leads to an delayed arrival at the depot. Therefore, we only want to

extend a daily rest period more than necessary, if it consumes waiting time.

If the cumulative waiting is less then the flow forward in Step 36, the value of flow⇒ is truncated to

cumulativeWait in Step 37. However, flow⇒ cannot be less than 11, since this is the minimum duration

of the rest period to be inserted. In the example flow⇒ = 16 is less then cumulativeWait = 13, hence
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flow⇒ ← max{13, 11} = 13.

The start and end times of the new daily rest period are determined in Steps 39 - 41. The start time is

set to the departure time of the current node p, provided that there is no daily rest period already directly

after p. If this is the case, the start time of ρd,f is set to the end time of the previous daily rest period. In

Step 39, tstartDρd,f
is set to max{59, 47} = 59. The duration of the rest period is set in Step 40. All available

flow forward is utilized with a maximum of λSrest
day . Recall from constraint set (26) in the MIP, that λ is

a parameter to control the length of daily rest periods. Suppose that λ = 1.3, then duration is set to

min{13, 1.3 ∗ 11} = min{13, 14.3} = 13. The end time in Step 40 is then set to 59 + 13 = 72

The block in 42 - 47 is executed when the current daily rest period is planned directly after the previous

daily rest period after the same node, which is not the case in the example. The remaining flow in calculated

in Step 43. The current daily rest period is subsequently shifted with shift hours. The current daily rest

period should still start before the deadline tdeadlineρd,f
from Step 22. Step 44 ensures that this deadline is not

violated given flow⇒. The reasoning behind this shift is that otherwise multiple daily rest periods could be

planned straight after each other, which yields more layover costs than necessary. For example, in 50 hours

time span usually two nights take place. When rest periods are planned without shifting, four rest periods

could be planned to cover this 50 hours. This concretely means that four hotel nights are booked for this 50

hours, whereas two nights would be enough.

The schedule of the trip is updated in Step 49. The arrival time at the next node is determined using the

end time of the inserted daily rest period and the still remaining travel time. The arrival time at the next

node A1,3 is calculated as ArriveAN1,3
= 72 + 3 = 75, after which the schedule from Table 6 can be updated

to the new schedule in Table 7. Since flow⇐ = 0, the schedule is not modified up to and including node

AN1,2. Suppose that we would not have truncated flow⇒ in Step 37 from 16 to 13, then we would have that

ArriveAN1,3
= Arrive2 = 75 + 3 = 78 and ArriveDepot = 79 + 3 = 82, which is an unnecessary delay of the

time schedule.

ρd,f Depot AN0,1 AN0,2 Node 1 AN1,1 AN1,2 ρd,f AN1,3 Node 2 Depot

Arrivei 36 - 49,5 52 52 56 59 59 75 75 79

Leavei 47 47 49,5 52 53 56 59 72 75 76 -

Table 7: Arrival and departure times at each activity and artificial node given the modified schedule after the daily

rest incorporation.

When it not possible to schedule a daily rest period after any node p ∈ P, the assignment of driver d to

trip is set to infeasible in Step 54 and the algorithm is terminated.

In the next iteration of the while-loop in Steps 21 - 57 we find that the deadline tdeadlineρd,f
for the next daily

rest period for driver d is 72 + 24 − 11 = 85, which is after the arrival time at the depot tendDv = 79 in Step

23. The while-loop is stopped and the assignment of driver d to the trip is feasible.

In Step 58 the daily driving (βv,k), weekly driving (δv,w), weekly service (σv,w) and weekly waiting (ωv,w)

are calculated given the modified schedule. This is done similarly to Step 10 in Algorithm 5.
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In the last step these calculated variables are used to check the constraints listed in Steps 12 - 14 in

Algorithm 5 and to check constraints (43) and (44) from the MIP regarding daily driving hours. These MIP

constraints obviously only need to be checked for the current driver d, since a new trip is assigned to driver d

only. This last step concludes the algorithm of inserting daily and weekly rest periods.
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Algorithm 8 Algorithm that validates whether rest periods can feasibly be taken (remainder of Algorithm

7)

28: for all activities p ∈ P in reversed visitation order do

29: flowmax
⇒ ← the maximum flow forward after p given time windows and tdeadline

30: flowmax
⇐ ← min{mini≤p{Starti − Ei}, tstartDv − tavailable} (maximum flow backwards)

31: if flowmax
⇒ + flowmax

⇐ ≥ Srest
day then

32: foundPosition← true

33: flow⇐ ← max{Srest
day − flowmax

⇒ , 0}, tdeadlineρd,f
← tdeadlineρd,f

− flow⇐

34: flow⇒ ← flow⇐ + flowmax
⇒

35: cumulativeWait←
∑

i>p max{Waiti0}

36: if cumulativeWait < flow⇒ then

37: flow⇒ ← max{cumulativeWait, Srest
day }

38: end if

39: tstartDρd,f
← max{Leavep, tendDρd,f−1

}

40: duration← min{flow⇒, λS
rest
day }

41: tendDρd,f
← tstartDρd,f

+ duration

42: if ρd,f is directly after ρd,f−1 then

43: flow⇒ ← flow⇒ − duration

44: shift← min{tdeadlineρd,f
− tstartDρd,f

, f low⇒}

45: tstartDρd,f
← tstartDρd,f

+ shift

46: tendDρd,f
← tendDρd,f

+ shift

47: end if

48: f ← f + 1

49: update schedule after p with Arrivep+1 ← tendDρd,f
+ Tp,p+1

50: break loop

51: end if

52: end for

53: if foundPosition = false then

54: feasible← false

55: break algorithm

56: end if

57: end while

58: calculate βv,k, δv,w, σv,w and ωv,w given the updated schedule with incorporated rest periods

59: check constraints 12 - 14 from Algorithm 5 & check constraints (43) and (44) (daily driving hours) from

the MIP formulation ⇒ store result in feasible

Output: boolean feasible and a modified schedulev with incorporated rest periods, if feasible.
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4.1.7 Truck-Trailer Assignment

The heuristic presented in this section is the final step in transforming a routing plan into an actual RPP

solution. The output of the driver assignment algorithm in Section 4.1.5 is input to this final algorithm. In

contrary to the driver assignment phase, the schedules of the trips are set to be fixed and can thus not be

advanced or delayed. Otherwise, all carefully constructed schedules from Algorithms 5 and 7 are disrupted,

which presumably leads to infeasible routing plans in terms of drivers’ regulations. Hence, this section is solely

concerned with assigning resources to fixed time slots. The pseudocode is presented in Algorithm 9.

In each iteration, the heuristic selects an uncovered trip based on two selection criteria, which are explained

later. The assignment of resources to the selected trip is then done is a greedy way. Namely, the cheapest

available truck-trailer combination is assigned to the current trip. If no truck-trailer combination is available

for the current trip, previous assignments are iteratively cancelled en restored in order to still find a feasible

assignment. When cancelling procedure fails to assign resources to the current trip, the trip is discarded from

the routing plan and all orders are put on hold.

In Steps 1 and 2 all trips in routing plan sV RP are stored in temporary set V ′ representing all uncovered

trips. The main while-loop in Steps 3 - 57 iteratively attempts to cover all trips until set V ′ is empty and all

trips are covered or discarded.

The selection criteria for selecting trips from V ′ are formulated in Steps 4 - 9. First, the trips covering

the most orders are selected, since not covering these trips could lead to excessive omitting costs. When

multiple trips contain the maximum amount of orders, ties are broken by considering the trip covering the

most distance (Step 6).

From the set of allowed trailers for trip v∗, we discard all trailers that are not available during the time

span of the trip (Step 11) . This unavailability can be caused by external events such as maintenance or by

previously assigned trips that overlap with the current trip.

The for-loop in Steps 13 - 20 loops over all trailers and searches for the cheapest truck-trailer combination

given the current trailer. All feasible combinations are stored in two-tuple set combi. The compatibility and

availability constraints are captured in Steps 14 and 15 respectively. The weight capacity of the truck-trailer

combination should be sufficient for the maximum attained weight during trip v∗, which is enforced in Step

16.

When set combi is not empty in Step 21, the cheapest combination from this set is assigned to the cur-

rent trip. If the set is empty, we attempt to assign the trip by iteratively cancelling and restoring previous

assignments in Steps 26 - 50.

We first explain the idea behind this cancelling and restoring procedure and then continue with elaborating

on the algorithm. Suppose that routing plan sV RP consists of three trips and that we have two trailers to our

disposal. After two iterations we obtain the situation displayed in Figure 3, where the gray bars depict the

time spans of the three trips. In the third iteration we still only have to assign the trip in the middle. Given

the current assignments, both trailer 1 and trailer 2 cannot serve the middle trip, since they both overlap with

previously assigned trips. When we would cancel the assignment of trailer 1 to the first trip, trailer 1 could
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be assigned to the middle trip. After executing this step, it remains to restore the assignment of the first trip.

Since the first and last trip do not overlap, trailer 2 can be feasibly assigned to the first trip, which concludes

the cancellation and restoring procedure.

Trailer 1

Trailer 2

Figure 3: Result of the truck-trailer assignment heuristic after two iterations.

Let ṽ be the trip that needs to be assigned in the current iteration of the cancellation procedure. This

trip is initialized with trip v∗ in Step 25, since v∗ is the reason for starting this cancellation procedure in

the first place. In each iteration, we first attempt to restore the assignment of trip ṽ (Step 28) without any

cancellations. This step is skipped in the first iteration, since ṽ is initialized with v∗, which currently cannot

be assigned to any resources.

If it is possible to serve v∗ without cancellations, feasible is set to true in Step 31, which terminates

the while-loop. When ṽ cannot be served, we iteratively cancel assignments in the for-loop in Steps 34 - 45

and anticipate that ṽ can be served after one of the assignment cancellations. If Step 36 reveals a feasible

assignment for trip ṽ after a cancellation, this assignment is executed and the cancelled trip becomes ṽ in

the next iteration of the cancellation procedure. When Step 36 finds no available truck-trailer combination,

the cancellation is reverted and the for-loop proceeds to the next potential cancellation. When none of the

cancellations results in an assignment for trip ṽ, the while-loop is terminated by setting counter to N cancel in

Step 47. Parameter N cancel is incorporated to control the number of cancellations that are actually executed

and to avoid that the algorithm runs indefinitely. When the cancellation procedure indicates that it is not

possible to serve current trip v∗ given the already assigned trips, the assignments are reverted to the situation

before the cancellation procedure in Step 52 and the orders in trip v∗ are put on hold (Step 53).
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Algorithm 9 Truck-trailer assignment

Input: routing plan sV RP , where each trip has an assigned driver and a fixed start and end time

1: let VsV RP be the incumbent trips in sV RP

2: initialize V ′ ← VsV RP

3: while V ′ ̸= ∅ do

4: let V∗ be the trip(s) covering the most orders: V∗ ← argmaxv∈V′{|Ov|}

5: if |V∗| > 1 then

6: let v∗ be the trip covering the most distance: v′ ← argmaxv∈V∗{Dv}

7: else

8: let v∗ be the only trip present in V∗

9: end if

10: let Tv∗ be the set of trailers allowed to perform trip v∗

11: discard from Tv∗ trailers that are not available during [tstartVv∗ , tendVv∗ ]

12: initialize two-tuple set (l, t) combi ← ∅

13: for all t ∈ Tv∗ do

14: let Lt be the set of trucks compatible with trailer t

15: discard from Lt trucks that are not available during [tstartVv∗ , tendVv∗ ]

16: find cheapest truck: l′ ← argminl∈Lt
{Cv∗,l : Qt +Ql ≥ Qmax

v∗ }

17: if l′ ̸= ∅ then

18: add (l′, t) to combi

19: end if

20: end for

21: if combi ̸= ∅ then

22: let (l′, t′) be the cheapest truck-trailer combination: (l′, t′)← argmin(l,t)∈combi{Cv∗,l + Cv∗,t}

23: assign truck l′ and trailer t′ to trip v∗

24: else
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Algorithm 10 Truck-trailer assignment (remainder of Algorithm 9)

25: initialize feasible← false, counter ← 0 & ṽ ← v∗

26: while counter < N cancel and feasible = false do

27: if counter > 0 then

28: verify whether trip ṽ can be served by running Steps 10 - 23

29: end if

30: if possible to serve then

31: feasible← true

32: else

33: initialize foundRemoval← false

34: for all trips v in VsV RP \ V ′ and while foundRemoval = false do

35: cancel current assignment of (l, t) to v

36: verify whether trip ṽ can be served by running Steps 10 - 23

37: if possible to serve then

38: let (l′, t′) be the cheapest available truck-trailer combination

39: foundRemoval← true & assign (l′, t′) to trip ṽ

40: V ′ ← V ′ ∪ {v} \ {ṽ} & ṽ ← v

41: counter ← counter + 1

42: else

43: reassign (l, t) to trip v

44: end if

45: end for

46: if foundRemoval = false then

47: counter ← N cancel

48: end if

49: end if

50: end while

51: if feasible = false then

52: restore the truck-trailer assignments and set V ′ as before Step 26

53: put orders in trip v∗ on hold

54: end if

55: end if

56: V ′ ← V ′ \ {v∗}

57: end while

Output: RPP solution
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5 Results

In this section, we perform a computational experiment in order to assess the performance of the TSAMP.

The MIP formulation from Section A is solved using the commercial solver IBM ILOG CPLEX Optimization

Studio 22.1.0 and implemented in Java 12 using Eclipse IDE version 2022-3. The MIP computations are

performed locally on a laptop equipped with an Intel Core i7-8550U processor working at 1.99 GHz using

Windows 11 Home.

The TSAMP is fully integrated in the Adaption Logistics Cloud Suite, which operates on Oracle Database

18c. Section D in the appendix contains an introduction to this application including some examples. Pro-

cedural language PL/SQL is used to implement the TSAMP on the back-end. This language is designed by

Oracle and can be used to directly access and manipulate data from the database using functions and proce-

dures. The TSAMP calculations are performed on an external server equipped with an Intel Xeon E5-2660 v3

processor working at 2.59 GHz using Windows Server 2016 Standard.

Generally, the same programming language is used for all computations. However, no commercial MIP

solver exists for language PL/SQL. On the other hand, connecting Java to an Oracle database is rather

technical and thus decided to be out of scope for this research. The difference in both programming language

and processor unfortunately complicate the comparison of both models. In the remainder of this section,

the computation times obtained by CPLEX and the TSAMP are nonetheless compared. The reader should

however keep the comparison complications in mind.

The outline of this section is as follows. In Section 5.1, we elaborate on the data generation process. Section

5.2 discusses the parameter setting and tuning. The computational results are presented and discussed in

Section 5.3.

5.1 Data Instances

Since the RPP is a new problem, benchmark instances are generated in order to test the performance of the

TSAMP algorithm. In Uchoa et al. (2017), extensive research is conducted into generating a diverse set of

instances. Several generation mechanisms used in Uchoa et al. (2017) are therefore adopted and implemented

in this research. In Sections 5.1.1 - 5.1.7, all generation techniques are discussed. Table 16 in Section C in the

appendix exhibits a summary of all features per instance.

5.1.1 Instance Size

The considered instances consist of X ∈ {10, 50, 100} activity nodes. We iteratively select one of the three

following orders at random and add it to the instance.

• Order consisting of only one pickup activity (P)

• Order consisting of only one delivery activity (D)

• Order consisting of one pickup activity and one delivery activity (PD)
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This is repeated, until X activity nodes are included. Note that the number of considered orders in an

instance is generally less than the number of activity nodes, since some orders consist of two activities. For

each considered instance size X ∈ {10, 50, 100}, we generate ten different instances. The set of instances with

size X is denoted as nX and we refer to the ith instance of size X as nX-i with i ∈ {1, ..., 10}.

5.1.2 Node Positioning

We assume that the depot and all activity nodes are located in a two-dimensional grid defined by [−300, 300]×

[−300, 300]. The distances between each two activity locations can be obtained using the Euclidean distance

rounded to three decimals. The travel time between two activity is calculated using an average speed of 80

km/h. To illustrate, suppose Di,j = 200, then Ti,j = 200/80 = 2.5.

Three different depot positions are examined:

• Random (R): Depot is positioned at a random location.

• Central (CE): Depot is positioned at [0, 0].

• Corner (CO): Depot is positioned at [−300,−300].

For the activity positioning we also consider three different positioning mechanisms:

• Random (R): Each activity is located at a random positioning.

• Cluster (C): Randomly select S seed activities with S ∼ Unif(1, 0.2X), that will function as cluster

middle points. Next, each of the remaining X−S actitivies is randomly assigned to a seed activity. The

coordinates of an assigned activity are then obtained as follows. Suppose activity i is assigned to seed

activity s with coordinates (xs, ys). The coordinates of activity i are then calculated as (xs+Nx, ys+Ny)

with Nx ∼ Ny ∼ N(0, 40). Coordinates that fall outside range [−300, 300] are truncated, what could

result in some tight clusters in the corners. When a newly generated coordinate overlaps with another

coordinate, the coordinates are regenerated. This could, for example, happen when coordinates [350, 350]

are truncated to [300, 300] and coordinates [325, 330] are also truncated to [300, 300].

• Cluster-Random (CR): Half of the customers are positioned randomly. The other half is positioned

according to the above described procedure.

For each instance, we randomly select one of the three depot and activity positioning mechanisms.

5.1.3 Activity Features

The demand in terms of weight and LDM is generated according to one of the following three mechanisms:

• Unitary (U): All weight demands have value 25,000 and all LDM demands have value 2.5.

• Random (R): All weight demands are drawn from Unif(10, 000; 50, 000) and all LDM demands are drawn

from Unif(1, 5).
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• Random Small-Large (SL): 80% of activities gets weight from Unif(10, 000; 30, 000) and LDM from

Unif(1, 3). 20% of activities gets weight from Unif(50, 000; 100, 000) and LDM from Unif(5, 10).

Note that for orders consisting of two activities the generated weight and LDM are identical for both activities.

The planning horizon for each instance is assumed to span two weeks starting one a Monday such that two

full calendar weeks are considered. When an order consists of only one activity i, the release date Ei is drawn

from Unif(0, 336), since exactly 336 hours reside in two calendar weeks. Given Ei, Li is generated as Ei + T ,

where T is drawn from Unif(0.25, 8). When an order consists of two activities, the time windows for the first

activity i1 are generated identically to the case of only activity. A necessary condition for the time windows

of the second activity i2 is that Ei1 + Ti1,i2 ≤ Li2 . Otherwise, no feasible time schedule would exist for a trip

containing such an order. Hence, deadline Li2 is drawn from Unif(Ei1 + Ti1,i2 , Ei1 + Ti1,i2 + 5) and release

date Ei2 is drawn from Unif(Li2 − 8, Li2 − 0.25) given Li2 .

5.1.4 Resources Features

For all instances, we use an universal set of truck and trailer types with fixed weight and LDM capacities,

which is presented in Table 15 in Section C in the appendix. We distinguish between five trailer master types:

Tiny, Small, Normal, Large and Heavy. The weight capacities are identical for all trailer master types, while

the LDM capacity is shifted two units for each trailer master type. In Table 15 we have 25 ∗ 5 = 125 different

truck-trailer combinations. From these 125 combinations, we randomly make 0.2 ∗ 125 ≈ 37 combinations

incompatible.

For each instance we draw a proportion ptruck (ptrailer) in the interval [0.2, 0.5], after which ⌈ptruck ∗X⌉

trucks (⌈ptrailer ∗ X⌉ trailers) are selected from Table 15 and included in the instance. Suppose we have to

select three trucks, then for each truck we randomly select a truck type with repetition. This implies that

we could have multiple trucks of the same truck type in one instance. The same holds for trailers and trailer

types.

Similarly to trucks and trailer, proportion pdriver is drawn in interval [0.2, 0.5] and used to create a set of

drivers for each instance.

By using these proportions, the resource fleet size per instance is intentionally restrained. This is done for

the following reasons. First, several constraints in the MIP formulation appear per truck, trailer or driver.

With a a large set of resources, an exact approach is most likely not able to find a feasible solution for even

small instances sizes. Since we want to compare the performance of the TSAMP to an exact approach, the set

of available resources is restricted. Second, we are interested in whether the TSAMP is able to serve most or

all orders given a limited fleet size. Considering a large or unlimited fleet size would disregard the multi-trip

feature of the RPP, since it is then not necessary to reuse resources. Last, all customers of Adaption have

a fixed an relatively small set of resources. Hence those customers are represented best when using these

proportions.

For each driver, trailer and truck in each instance we use the following three scenarios for generating

external events:
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• Zero external events. This scenario has a probability of 0.5

• One external event. This scenario has a probability of 0.3

• Two external events. This scenario has a probability of 0.2

Similar to time windows, the start time of each external events is drawn uniformly from the considered planning

horizon of two weeks [0, 336]. The duration of each external event is uniformly drawn in interval [6, 72].

5.1.5 Allowed Resources

Sets To and Do containing all allowed resources for order o are generated using a relatively simple mechanism.

Each trailer (driver) in a given instance has a probability of 0.7 to be in set To (Do). When, unintentionally,

set To = ∅ (Do = ∅), one trailer (driver) is randomly selected from T (D) and added to To (Do).

5.1.6 Cost Parameters

For each instance we fix the waiting cost per hour Cwait to 10, the cost of not covering an order Comit to

100,000 and the layover costs Clayover to 100.

The kilometer tariff for trailer type Heavy Type 5 is decided to be 8. All kilometers tariffs for the remaining

trailer types are calculated according to the relative capacities. For example, the kilometer tariff for Normal

Type 1 is calculated as 8 ∗ 1
2 ∗ (

20,500
201,000 + 9

21 ) = 2.12. Similarly, the kilometer tariff for Truck Type 5 is set to

2, while the kilometer tariffs for the remaining truck types are calculated using the weight capacity relative to

Truck Type 5.

5.1.7 Remaining Characteristics

In this last subsection, we discuss two settings that are neither tangible instance attributes nor actual model

parameters. First, parameter λ controlling the length of a daily rest period in constraint (26) in the MIP is

set to 1.3, which concretely means that a daily rest period can last at most 1.3 ∗ 11 = 14.3 hours. Second,

splitting interval K for the creation of artificial nodes is decided to be 3. This implies that each arc between

any two activities is split into parts with travel times of at most 3 hours.

5.2 Model Parameters

The proposed TSAMP contains a plethora of parameters, which can be configured in order to improve the

performance of the algorithm. An overview of all parameters is given in Table 8. Tuning all parameters in

Table 8 is a time-consuming and cumbersome process. Therefore, several parameters that we believe to have

less effect on the performance than other parameters, are fixed using educated guesses or support from the

literature. Section 5.2.1 discusses the setting of those parameters. In Section 5.2.2, we discuss the tuning

procedure for the parameters we believe are most important to the performance of the TSAMP.
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Parameter Description

αn Controls the distance relatedness

γn Controls the time relatedness

θweight Controls the weight relatedness

θLDM Controls the LDM relatedness

λD Controls the relatedness of allowed drivers

λT Controls the relatedness of allowed trailers

TSAMP iter Number of iterations in the TSAMP (Algorithm 1)

GRASP iter The number of iterations in the GRASP heuristic

(Algorithm 2)

Msize Maximum size of memory M

κ Every κth TSAMP iteration, some randomly selected orders are put on hold

on purpose (Algorithm 3)

Luncover
max Upper bound on the number of orders that are left out of consideration

(Algorithm 3)

τ Controls the weight of the time span of a trip in the alternative

cost measure (Equation 2)

SAiter Number of iterations in the SA heuristic (Algorithm 4)

ψ Cooling parameter in the SA heuristic (Algorithm 4)

T0 Initial temperature in the SA heuristic (Algorithm 4)

Ndriver Number of attempts to assign a driver to a certain trip (Algorithm 5)

N cancel Number of cancellations in the truck-trailer assignment heuristic (Algorithm 9)

Table 8: Overview of all parameters used in the Two-Stage Adaptive Memory Procedure.

5.2.1 Parameter Settings

All values of parameters corresponding to the relatedness function are adopted from Ropke and Pisinger

(2006), which results in {αn, γn, θ
weight, θLDM , λD, λT } ← { 9

n−1 ,
3

n−1 , 2, 2, 5, 5}. As explained in Section 4.1.2,

subscript n is added to account for the different types of orders. When two orders consist of three activities

in total, we have that αn = α3 = 9/2 = 4.5 and γn = γ3 = 3/2 = 1.5.

The value of parameter GRASP iter, the number of iterations in the GRASP algorithm, can be interpreted

as the number of initial solutions used to initialize memory M . The value of this parameter is also adopted

from Olivera and Viera (2007) and thus set to 20.

Parameters κ and Luncover
max are respectively set to 10 and 0.2 ∗ |O|, which means that every tenth TSAMP

iteration at most 20% of the orders are discarded.

For a given instance, τ is obtained by adding the average truck kilometer tariff and the average trailer

kilometer tariff and multiplying this number by six. This concretely means that one time unit increase in

time span is as heavily penalized as the average increase in assignment cost culminating from six additional
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kilometers. This multiplication with six is added such that one additional kilometer is as heavily penalized a

60/6 = 10 minute increase in time span.

In most SA frameworks in the literature, cooling parameter ψ takes on values in range [0.9, 0.99]. In this

research, the value of ψ is set to 0.95. Initial temperature T0 is set such that in the first iteration of the SA

algorithm a 5% worse solution is accepted with a probability of 5%. To illustrate, suppose that after Step 2 in

the SA framework in Algorithm 4, the objective in terms of the alternative measure amounts to 10,000. Then

we want to find T0 such that 0.05 = exp( 10.000−10.500
T0

) = exp(−500
T0

), which can easily be obtained by taking

logarithms on both sides.

Parameters Ndriver and N cancel respectively controlling the driver assignment attempts and the number

of cancellations are both set to 20.

5.2.2 Parameter Tuning

TSAMP iter, Msize and SAiter are believed to be the three most important parameters. Hence, a grid search

is performed over three pre-selected lists of values: TSAMP iter & SAiter ∈ {100, 200, 500} and Msize = n|O|

with n ∈ {2, 4, 10}. The first two parameters are selected from a static list, whereas Msize depends on the

instance size. Larger instances generally contain more locally feasible trips, hence it seems rational to let the

maximum memory size depend on the instance size. Each parameter setting is evaluated using six benchmark

instances from Section 5.1. The selected instances are n10-1, n10-2, n50-1, n50-2, n100-1 and n100-2.

For each setting of TSAMP iter and SAiter, we found that increasing the maximum memory size leads to

an increase in the average objective value. Hence, Msize is fixed to 2 ∗ |O|. A possible explanation for this

result is that larger memories can potentially contain many trips corresponding to bad solutions and only a

few promising trips. Hence the probability of selecting bad trips in each TSAMP becomes considerably large,

when the maximum memory size is too large.

The tuning results for the remaining parameter settings are displayed in Table 9. The first column exhibits

the considered parameter settings. The next three columns show the average objective, the average TSAMP

iteration of the best found solution and the average running time in seconds for the six tuning instances. In

the last three columns only instances n50-1, n50-2, n100-1 and n100-2 are considered, since instance n10-1

heavily influences the results. For this instance, the first parameter setting [100, 100] finds an excellent solution

with only order on hold, whereas most other parameter settings do not find such a solution. This leads to

excessive penalty costs for the other parameter settings and thus to the suggestion that parameter setting

[100, 100] outperforms the other settings, while paradoxically considering less iterations. The randomness of

the TSAMP, or even the chosen seed, could be the main culprit for this inconsistent result. Especially for

small instances, we believe that the impact of randomness can be large. To this extent, the tuning results

excluding the small instances are considered as the main tuning results.

The reduction in objective across the different parameter settings is marginal compared to the increase in

computation time. In set 2, the objective reduction between the first and last parameter setting is 8.90%,

whereas the increase in computation time is 163.58%. Depending on the available time and the preferences of

the planner, it could be argued whether this objective reduction is worth the additional computation time.
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The average iteration, at which the best objective is found, is 56.15% of TSAMP iter for set 1 and 78.82%

for set 2, from which we can conclude that the best objective for small instances is found early in the algorithm,

while for the larger instances it is beneficial to extend the number of iterations.

In this research, we assume that the objective is of primary interest and that the computation time, however

still important, is of secondary interest. To that extent, [TSAMP iter, SAiter] = [200, 500] is decided to be

the best parameter setting. The reported average objective is the third best obtained objective in set 2 and

approximately 4% worse than the best average objective in set 2 (last parameter setting). The decisive factor

is however the computation time. Namely, the 4% objective improvement is obtained at the cost of 68.93%

additional running time indicating that parameter setting [200, 500] yields the best objective-running time

tradeoff.

Set 1: Including n10-1 and n10-2 Set 2: Excluding n10-1 and n10-2

[TSAMP iter, SAiter] Objective Found Time (s) Objective Found Time (s)

[100, 100] 117,375.18 52.67 102 114,767.27 75.75 151

[100, 200] 147,355.88 54.00 107 114,664.78 70.00 158

[100, 500] 179,422.61 57.67 115 111,580.50 85.00 169

[200, 100] 130,525.17 137.00 135 113,597.70 159.00 199

[200, 200] 146,495.69 123.83 139 112,263.94 149.00 200

[200, 500] 127,632.92 142.00 162 108,623.10 184.75 237

[500, 100] 111,966.14 290.67 224 108,995.53 433.75 324

[500, 200] 144,016.92 248.50 236 107,740.66 372.75 343

[500, 500] 125,527.67 241.33 277 104,548.05 361.75 398

Table 9: Parameter tuning results. The middle block of columns considers all tuning instances, whereas the left block

of columns neglect the smallest two tuning instances.

5.3 Computational Results

The computational results obtained by the CPLEX solver, GRASP algorithm and TSAMP algorithm are

presented in this section. Section 5.3.1 elaborates on the performance of the CPLEX solver. In Sections

5.3.2 and 5.3.3, we respectively discuss the computational results of the GRASP algorithm and the TSAMP

algorithm.

5.3.1 Mixed Integer Program

The MIP defined by constraints (3) - (53) and objective (54) is used as a benchmark for the TSAMP. To limit

the computation time utilized by CPLEX, we allow 3,600 seconds of computation time per instance. The

results are shown in Table 10. Column ’UB’ contains the best found solution by CPLEX, whereas column

’LB’ contains the best found lower bound on the optimal solution. By default, the CPLEX solver executes

a Branch-and-Cut algorithm for Mixed Integer Programs. This algorithm obtains upper bounds and lower

bounds on the optimal solution and terminates when these two bounds coincide. When the algorithm is
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terminated prematurely after 3,600 seconds, the bounds might not have coincided. This indicates that it is

not definite whether the CPLEX solver found the optimal solution.

Columns ’On Hold’ and ’Trips’ respectively show the number of uncovered orders and the number of trips

of the best obtained solution. The computation time is reported in seconds and the optimality gap in ’Gap

%’ is calculated with respect to the lower bound: UB−LB
LB

CPLEX is not able to find feasible solutions or lower bounds for instances with activity size 50 and 100.

In some cases, the solver couldn’t find a feasible solution within 3,600 seconds, while in some other cases the

solver reports an out-of-memory error before the specified time limit. While it is unfortunate that we cannot

compare the performance of the TSAMP to CPLEX for larger instances, this outcome stresses the importance

of research into heuristical approaches for the RPP.

Within the predefined time limit, CPLEX finds optimal solutions for four instances with activity size ten,

three instances are solved to an optimality gap of less than 1% and three instances report larger gaps from

varying from 12% to 75%. The average optimality gap obtained by CPLEX amounts to 12% and the average

solving time amounts to 2202.4 seconds. This average solving is however quite misleading. CPLEX struggles

to close the gap for six instances and utilizes all available computation time, while for three other instances

the optimal solution is found within one percent of the predefined time limit.

Instance

Name

CPLEX

UB LB On Hold Trips Time (s) Gap %

n10-1 217,425.26 123,923.60 2 3 3,600 75.45

n10-2 119,667.39 119,667.39 1 3 35 0.00

n10-3 15,559.71 13,846.43 0 6 3,600 12.37

n10-4 112,958.23 112,848.23 1 4 3,600 0.10

n10-5 104,660.73 104,660.73 1 4 29 0.00

n10-6 105,851.39 105,851.39 1 4 327 0.00

n10-7 7,874.18 7,874.18 0 5 33 0.00

n10-8 13,007.16 12,973.23 0 4 3,600 0.26

n10-9 22,222.44 16,085.06 0 6 3,600 38.16

n10-10 208,447.23 208,316.96 2 2 3,600 0.06

Table 10: Computational results for all instances in n10 obtained by CPLEX.

5.3.2 GRASP Algorithm

The solution obtained by the GRASP algorithm is used as a second benchmark. Recall that memory M is

initialized with GRASP iter initial solutions in Algorithm 2. From these GRASP iter solutions, the best RPP

solution is selected as benchmark. The computational results are shown in the middle block of columns in

Table 11. For each instance, we report the objective, the number of uncovered orders, the number of trips,

the computation time in seconds and the optimality gap with with respect to the lower bound obtained by

CPLEX. Clearly, these gaps can only be calculated for instances in n10.
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The obtained optimality gaps for instances in n10 vary substantially from 0.32% to 94.04% with an average

gap of 45.29%. The obtained solutions are on average 34.38% worse than the objective found by CPLEX,

which indicates that CPLEX outperforms the GRASP algorithm in terms of objective value. This relatively

large performance disparity is mainly caused by instances n10-4 and n10-6, where the GRASP algorithm puts

one order more on hold then the CPLEX solution. The average GRASP computation time of 1.7 seconds is

however significantly less than the CPLEX solver. For instance n10-10 one could even argue that the overall

performance of the GRASP algorithm is better than CPLEX. The objective value is only 0.25% worse, while

the GRASP computation time is 99.94% less than the CPLEX solver computation time.

For larger instances, the running times rapidly increase in both relative and absolute terms. The average

running times for the instances in n50 and n100 respectively amount to 48.3 seconds and 165.8 seconds, which

is quite substantial given the fact that most construction heuristics are extremely fast. The reported running

times for the TSAMP algorithm include the GRASP running time, since this is used to initialize the memory.

For the instances in n10 the fraction of running time utilized by the GRASP algorithm with respect to the total

TSAMP running time is 9.34% on average. For instances n50 and n100, this fraction respectively amounts

to 43.88% and 47.85%. The main culprit for this increased running times could be Step 6 in Algorithm 2.

For each potential trip merge, it is validated whether the resulting merged trip is locally feasible (Steps 4 - 15

in Algorithm 11), which is relatively time-consuming. The number of calls to this procedure in Algorithm 2

is quadratic in the instance size, since we iterate over all order pairs in list RL. Thus, the time utilized by

this GRASP algorithm increases quadratically, while the remainder of the TSAMP is largely limited by static

hyperparameters.

5.3.3 Two-Stage Adaptive Memory Procedure

The computational results for the TSAMP are presented in the left block in Table 11. We will first compare

the performance of the TSAMP to respectively the CPLEX solver and the GRASP algorithm. Second, several

observations regarding the behaviour of the TSAMP are discussed.

Similar to the GRASP algorithm, the optimality gaps for the instances in n10 show large variation, namely

from 0.27% to 84.84%. The average optimality gap is 27.52%, which is an substantial improvement compared

to the 45.29% of the GRASP algorithm. On average, the objective found by the TSAMP is 14.11% worse

than the objective found by the CPLEX solver. Only for instance n10-4, the TSAMP is not able to cover the

same number of orders as CPLEX. Without this instance, the TSAMP performs only 6.27% worse in terms of

objective value. The TSAMP has an average computation time of 18.1 seconds, which is a 99.18% reduction

compared to the time utilized by the CPLEX solver. When the available time is limited, the average difference

of 14.11% with respect to the best found CPLEX objective is acceptable and the TSAMP is favored instead

of the CPLEX solver. When planners, for example, generate next week’s planning during the weekend and

the available time is less limited, the CPLEX solver outperforms the TSAMP for small instances. However, in

general, the TSAMP surpasses the CPLEX solver. The TSAMP provides solutions for all instances, whereas

the CPLEX solver fails to produce feasible solutions for all instances with size 50 and 100.

For half of the instances in n10, the TSAMP does not improve the initial GRASP solution. This indicates

43



that for small instances, the GRASP algorithm is already capable of finding high-quality solutions. On the

other hand, the TSAMP finds solutions covering more orders for instances n10-2 and n10-6 indicating that

extending the algorithm after the initialization may be beneficial. All in all, the average improvement for the

instances in n10 with respect to the GRASP algorithm is 11.43%, while the average running time increase is

1108.33%.

For the larger instances, the performance of the TSAMP compared to the GRASP algorithm has improved

tremendously. The average improvement in objective is 39.52% (38.08%) for the instances in n50 (n100),

while the average increase in running time amounts to only 137.72% (114.23%). In contrary to the instances

in n10, the TSAMP finds improvements for all instances in n50 and n100. The average computation times

for the instances in n50 and n100 amount to 108.9 seconds and 346.9 seconds respectively. In general, this

exceeds the computation time by most state-of-the-art algorithms for related VRP problems. However, given

the complexity of the RPP, the running times are within acceptable limits and contain no notable outliers.

Following the findings above, we conclude that the TSAMP algorithm surpasses the GRASP algorithm in

terms of overall performance. Especially for larger instances, the TSAMP significantly improves the initial

GRASP solution within reasonable computation time.

Figure 4 displays the evolution of the average objective for the three different instance sets and all instances

together. The red dashed line in the n10 figure reveals that for most n10 instances, only some marginal

improvements are found in the early stages of the algorithm. The sudden shifts in the blue line correspond

to the iterations, where the TSAMP finds a solution with increased order coverage for instances n10-2 and

n10-6. The n50 and n100 figures show a smoother objective evolution. However, for both instance sets the

most significant improvements are found in first fifty iterations of the algorithm. It is however still beneficial

to continue the search, since after iteration fifty the objective value still improves 5.62% (9.58%) on average

for the instances in n50 (n100).
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Instance

Name

TSAMP GRASP CPLEX

Best Obj. On hold Trips Time (s) Gap % Best Obj. On Hold Trips Time (s) Gap % Best Obj.

n10-1 218,995.34 2 3 18 76.72 219,772.92 2 4 2 77.35 217,425.26

n10-2 121,550.01 1 3 18 1.57 216,619.40 2 3 1 81.02 119,667.39

n10-3 17,499.88 0 5 19 26.39 21,369.67 0 5 3 54.33 15,559.71

n10-4 208,584.80 2 2 13 84.84 208,584.80 2 2 1 84.84 112,958.23

n10-5 105,081.38 1 4 22 0.40 105,081.38 1 4 2 0.40 104,660.73

n10-6 106,136.30 1 4 15 0.27 205,390.19 2 2 1 94.04 105,851.39

n10-7 8,832.86 0 5 18 12.17 8,832.86 0 5 2 12.17 7,874.18

n10-8 14,866.38 0 4 17 14.59 14,866.38 0 4 2 14.59 13,007.16

n10-9 25,400.08 0 5 21 57.91 26,350.90 0 4 1 63.82 22,222.44

n10-10 208,974.85 2 3 20 0.32 208,974.85 2 3 2 0.32 208,447.23

n50-1 46,832.87 0 32 114 - 71,514.70 0 16 55 - -

n50-2 59,543.76 0 31 112 - 88,169.29 0 17 56 - -

n50-3 38,255.94 0 31 95 - 53,062.07 0 24 40 - -

n50-4 95,373.23 0 23 117 - 121,497.54 0 15 51 - -

n50-5 46,560.44 0 37 116 - 85,501.09 0 16 61 - -

n50-6 95,050.84 0 24 87 - 201.986.05 1 17 28 - -

n50-7 50,058.70 0 29 126 - 71,743.07 0 21 73 - -

n50-8 43,169.08 0 32 99 - 65,662.80 0 20 47 - -

n50-9 21,690.40 0 23 71 - 39,778.08 0 11 23 - -

n50-10 78,699.93 0 24 152 - 266,058.16 2 12 49 - -

n100-1 109,459.25 0 67 379 - 153,029.87 0 31 184 - -

n100-2 220,462.44 1 61 366 - 557,998.84 4 27 197 - -

n100-3 212,002.91 0 46 288 - 292,518.11 1 29 134 - -

n100-4 175,094.57 0 47 284 - 592,639.56 4 30 165 - -

n100-5 58,753.47 0 59 313 - 96,685.41 0 25 128 - -

n100-6 212,289.86 0 55 449 - 439,353.29 2 31 222 - -

n100-7 417,159.99 2 47 351 - 540,747.74 3 27 167 - -

n100-8 181,147.11 1 61 285 - 243,978.77 1 31 122 - -

n100-9 267,276.38 0 55 363 - 370,629.14 1 33 208 - -

n100-10 335,820.48 1 44 391 - 456,888.26 2 34 131 - -

Table 11: Computational results for the TSAMP and GRASP algorithms.
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Figure 4: The average objective development over the TSAMP iterations for four different sets of instances: n10, n50, n100 and all instances.
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6 Conclusion

The purpose of this research is to investigate the Resource Planning Problem (RPP): an extensive variant

of the Vehicle Routing Problem (VRP) considering vehicle capacities, time windows, pickups and deliveries,

allowance of multiple trips per resource, a heterogeneous fleet and drivers’ regulations. A Mixed Integer

Program (MIP) formulation capturing all aspects is presented and explained. Due to the NP-hardness of the

RPP and the excessive number of constraints in the MIP formulation, the main focus is on developing an

efficient heuristic. To that extent, a Two-Stage Adaptive Memory Procedure (TSAMP) is presented. The

algorithm splits the problem into a trip construction part and a resource assignment part. The first part

probabilistically selects trips from a memory, which is used to store trips from different RPP solution. The

second part first assigns drivers to the selected trips and then iteratively assigns trucks and trailers in a greedy

way. Intermediate solutions are improved using a Simulated Annealing algorithm.

The performance of the TSAMP is compared to the performance of an iterated randomized construction

heuristic (GRASP) and special purpose solver CPLEX, where the CPLEX solver is given a limit of 3,600

seconds. For small instances with only ten nodes, the TSAMP performs moderately. On average, the TSAMP

performs almost 15% worse then the CPLEX solver. Furthermore, the TSAMP is not able to improve the

initial GRASP solution for half of the small instances, while the GRASP algorithm is more than ten times faster

on average. However, for larger instances containing 50 and 100 nodes, the TSAMP significantly outperforms

the GRASP algorithm. For these instances, the TSAMP improves the GRASP solution with almost 40% on

average, while the average increase in computation time is limited to 140%. The CPLEX solver is not able to

produce solutions for larger instances, since out-of-memory errors are raised before the time limit passes. The

TSAMP can thus unfortunately not be compared to the CPLEX solver. However, this incapability of CPLEX

emphasizes the relevance of research into heuristical approaches for the RPP.

The resulting TSAMP is a reliable and robust algorithm able to generate adequate solutions within several

minutes for instances up to 100 nodes. The algorithm setup is highly flexible. By redefining, extending or

limiting the definition of a locally feasible trip, multiple VRP variants can be solved using this technique.

Furthermore, the driver assignment part can easily be disabled such that the problem simplifies to routing and

solely assigning vehicle resources. Many transport planners facing various types of restrictions can thus adopt

this TSAMP algorithm and extend or adjust it to their specific needs.

For future research, several aspects can be investigated further. First, the constraints regarding driver’s

regulations complicate the problem significantly. The used driver assignment heuristic in the TSAMP is

extremely ad-hoc, whereas a mathematical programming based heuristic, such as Lagrangian Relaxation,

might be more suitable. When researchers are not limited to a certain programming language, the use of such

heuristics can be examined further. Second, the steep decrease of the average objective in the first quarter

of the algorithm (see Figure 4) might indicate that the current TSAMP search is intensified too premature.

Developing a new mechanism for selecting trips from the memory in a more diverse way has the potential

to resolve this issue. Another possibility is to extend the Local Search phase with a Large Neighborhood

Search, where the solution is improved by iteratively destroying an repairing the solution. Lastly, the MIP
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formulation could be reviewed. The used Set Partitioning formulation is suitable for capturing all constraints

in a relatively concise way. However, the number of constraints and variables is extremely large. With some

thorough modelling, the formulation could be rewritten with, for example, arc flow variables instead of trip

selection variables. Furthermore, the use of artificial nodes could be revised such that daily rest periods could

be taken continuously on the interval between two activity nodes.
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Appendices

A Mathematical Formulation

Capturing both the fourfold objective and the complex drivers’ constraints using an arc flow formulation

would probably result in a cumbersome use of notation. A Set Partitioning type of formulation is, despite its

exponential number of variables, more suitable for modelling all RPP aspects. For the sake of readability, we

present the MIP formulation into several related parts and elaborate on the constraints one by one. First,

constraints regarding vehicle resources and time variables are presented. Second, constraints regarding drivers

and drivers’ regulations are discussed. Finally, the objective of the MIP is shown.

A.1 Vehicle Resource Constraints

Binary variables uv ∈ B reflect the inclusion of a particular trip v ∈ V in the solution, where V is the set

of locally feasible trips. These trips satisfy the constraints described in Section 3.4.2 and are generated in a

preoptimization stage. Pseudocode and explanation of the trip construction process are given in the appendix

in Section B.3.

Each order o should either be covered by exactly one trip or put on hold, after which outsourcing can be

used to deal with the uncovered order. Let Vo be the set of trips that cover order o and let γo ∈ B be a binary

decision variable indicating whether order o is put on hold or not. The constraints in (3) reflect the order

coverage constraints. ∑
v∈Vo

uv + γo = 1 ∀ o ∈ O (3)

Every trip v needs to be equipped with a truck and a trailer, if and only if this trip is selected. Let

Ov be the set of orders covered by trip v. The set of allowed trailers for trip v can then be constructed as

Tv = ∩o∈Ov
To. In the multi-trip setting, resources can be assigned to more than one trip. Concretely, this

means that after finishing trip v1, the assigned resources can be assigned to a new trip v2, however, only if

the start time of trip v2 is after the end time of trip v1. To deal with these multiple assignments we define

the set of integers Rl (Rt) and binary decision variables xrv,l (x
r
v,t) ∈ B to indicate whether truck l (trailer t)

is assigned to trip v using the rth assignment position with r ∈ Rl (Rt). The exact number of assigned trips

per resource is output of the model and thus not known in advance. We will construct an upper bound on the

number of assignments later in this section. The constraints regarding the assignment of vehicle resources to

trips are given in (4) for trucks and trailers respectively.∑
l∈L

∑
r∈Rl

xrv,l = uv,
∑
t∈Tv

∑
r∈Rt

xrv,t = uv ∀ v ∈ V (4)

Next to trips, vehicle resources have to be assigned to their planned external events. This may sound

trivial, however it becomes important for later constraints. The constraints in (5) guarantee that exactly one

assignment position r is reserved for each external event for all trucks and trailers respectively. For the sake
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of conciseness, we slightly abuse notation for the vehicle assignment decision variables x and use different

subscripts interchangeably (v and e).

A vehicle resource can be assigned to at most |O| trips, since this is an upper bound on the number of

selected trips in the solution. The number of external events for truck l is known in advance and equals |El|.

Set Rl can thus safely be defined as {1, 2, ..., |O|+ |El|}, where |O|+ |El| is an upper bound on the number of

assignments for truck l. A similar upper bound can be obtained for trailers.

∑
r∈Rl

xre,l = 1 ∀ l ∈ L, e ∈ El
∑
r∈Rt

xre,t = 1 ∀ t ∈ T , e ∈ Et (5)

To guarantee that each assignment position r can be used for at most one assignment (trip or external

event), we include the constraints in (6) for all trucks and trailers.

∑
v∈V

xrv,l +
∑
e∈El

xre,l ≤ 1 ∀ l ∈ L, r ∈ Rl

∑
v∈V

xrv,t +
∑
e∈Et

xre,t ≤ 1 ∀ t ∈ T , r ∈ Rt (6)

Compatibility between trucks and trailers in guaranteed in constraint set (7). Whenever the left-hand side

is equal to one (trailer t is assigned to trip v), the constraint becomes active and a truck from compatibility

set Lt has to be assigned to trip v. Together with the constraints in (4), it is ensured that an incompatible

combination is never selected.

∑
r∈Rt

xrv,t ≤
∑
l∈Lt

∑
r∈Rl

xrv,l ∀ v ∈ V, t ∈ Tv (7)

We define Qmax
v as the maximum load weight that is carried while serving the activities of trip v. The

weight capacity constraint for each truck-trailer combination is captured in (8). The constraint is only active

if trip v is part of the solution.∑
l∈L

∑
r∈Rl

Qlx
r
v,l +

∑
t∈Tv

∑
r∈Rt

Qtx
r
v,t ≥ Qmax

v uv ∀ v ∈ V (8)

Each locally feasible trip should have at least one feasible time schedule satisfying all activity time windows.

However, the exact service start times and departure times at each activity or depot for a given trip cannot be

fixed in a preprocessing phase, due to the multi-trip feature. It may, for example, be beneficial to start a trip

sooner in order to be in time for the next trip or to create enough slack for a daily rest period during a trip.

Thus, despite the Set-Partitioning formulation, we still need to include constraints regarding time windows.

Let Iv be the set of activities visited in trip v and let Av be the set of arcs traversed in trip v. We define

tv,i ≥ 0 as the start time of service at activity i in trip v and wv,i ≥ 0 as the waiting time before the start of

service at activity i in trip v. Furthermore, we define tstartVv ≥ 0 and tendVv ≥ 0 (tstartDv ≥ 0 and tendDv ≥ 0) as

the start and end time of trip v for the vehicle resources (drivers). The reason for distinguishing between start

and end times for drivers and vehicle resources is the service time at the depot, where the driver is excluded
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from. Obviously, the vehicle resources are not excluded from this service time, since they are subjected to the

(un)loading process.

In constraints (9) - (11), the computation of the time variables at the depot and activities are modelled.

In the literature (Ropke and Pisinger, 2006, Cattaruzza et al., 2016) these constraints generally appear with

a ’≤’-sign. We use an equivalent formulation with waiting time variable wv,i functioning as a slack variable.

In constraint set (12), the start and end times for the vehicles resources are computed. The parameter Sload
v

(Sunload
v ) follows from the accumulated service times of all orders consisting of only one delivery (pickup)

activity and represents the service time at the depot at departure (arrival). The time window constraints are

imposed in (13). When a trip v is not selected, (13) ensures that all time variables corresponding to this trip

are set to zero.

tstartDv + T0,juv = tv,j − wv,j ∀ v ∈ V, (0, j) ∈ Av (9)

tv,i + (Si + Ti,j)uv = tv,j − wv,j ∀ v ∈ V, (i, j) ∈ Av i, j ̸= 0 (10)

tv,i + (Si + Ti,0)uv = tendDv ∀ v ∈ V, (i, 0) ∈ Av (11)

tstartVv = tstartDv − Sload
v uv, t

endV
v = tendDv + Sunload

v uv ∀ v ∈ V (12)

Eiuv ≤ tv,i ≤ Liuv ∀ v ∈ V, i ∈ Iv (13)

Using the computed time variables we can formulate constraints that ensure that consecutive trips do not

overlap, when assigned to the same resource. For the sake of conciseness, we again abuse the notation of the

decision variables. If j corresponds to a trip in V, then tstartVj is a decision variable corresponding to the

start time of trip j for the vehicle resources, similar to the constraints in (12). However, if j corresponds

to an external event in El for truck l, then tstartVj is a parameter corresponding to the fixed start time of

external event j. Thus, we read tstartVj (and tendVj ) as we need it. The constraints in (14) enforce that trips or

external events assigned to each truck do not overlap, where M is a sufficiently large integer. The constraint

is active only if j1 and j2 are both assigned to the same truck, with j2 assigned at a later position than j1.

The constraints in (15) for trailers have an analogous explanation.

tendVj1 ≤ tstartVj2 +M(2− xrj1,l −
|Rl|∑

i=r+1

xij2,l) ∀ l ∈ L, j1, j2 ∈ V ∪ El, r ∈ Rl (14)

tendVj1 ≤ tstartVj2 +M(2− xrj1,t −
|Rt|∑

i=r+1

xij2,t) ∀ t ∈ T , j1, j2 ∈ V ∪ Et, r ∈ Rt (15)

The RPP is usually solved sequentially for consecutive planning horizons. Therefore, trips starting in the

previous planning horizon could overlap with the current planning horizon. Let tprevl (tprevt ) be a parameter

corresponding to the end time of the last assigned trip for truck l (trailer t). The constraints in (16) and (17)

ensure that all trips assigned to each truck or trailer have a start time later than the end time of the last

assigned trip from the previous planning horizon.
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tprevl ≤ tstartVv +M(1−
|Rl|∑
i=1

xiv,l) ∀ l ∈ L, v ∈ V (16)

tprevt ≤ tstartVv +M(1−
|Rt|∑
i=1

xiv,t) ∀ t ∈ T , v ∈ V (17)

A.2 Drivers’ Constraints

In addition to the vehicle resources, every selected trip needs to be equipped with a driver. Let yrv,d ∈ B be

a binary variable indicating whether driver d is assigned to trip v as rth assignment with r ∈ Rd, where Rd

is an integer set similar to sets Rl and Rt. Again, we do not know the number of assignments in advance.

We will construct an upper bound on |Rd| later in this section. The constraint set in (18) is similar to the

constraint set in (4) for vehicle resources and states that each trip needs a driver assigned, if and only if this

trip is selected.

∑
d∈Dv

∑
r∈Rd

yrv,d = uv ∀ v ∈ V (18)

The constraints in (19) enforce that each driver d is assigned to all its external events at exactly one

assignment position r. Again, we slightly abuse notation for the binary decision variables and use subscript

indices interchangeably. ∑
r∈Rd

yre,d = 1 ∀ d ∈ D, e ∈ Ed (19)

Daily rest periods for drivers can be taken in two different ways. The first way is to take a daily rest

period in between performing trips. In this case, the driver can return to his or her home to rest. The second

way amounts to taking a daily rest period during the execution of a trip. In this case, costs for arranging a

sleeping accommodation are incurred. In advance, we do not know the number of daily rest periods per driver

exactly, since it may, for example, be beneficial to take a daily rest period sooner than necessary. We can,

however, safely upper bound the number of daily rest periods by ceil(|K| ∗Hday/S
rest
day ), where Hday represents

the number of hours (24) in a calendar day. This upper bound of daily rest periods is only met if all daily rest

periods are taken directly after finishing the previous daily rest period. Incorporating more daily rest periods

than necessary does not affect the solution quality, since superfluous rest periods can just be scheduled after

all trips are performed and removed in a post-optimization stage.

Let F be a set of positive integers reflecting the daily rest periods and let ρd,f denote the f th daily rest

period for driver d with f ∈ F . The cardinality of F is fixed to the upper bound constructed in the previous

paragraph: |F | = ceil(|K| ∗Hday/S
rest
day ). Let tendDρd,f

be a fixed parameter for f = 0 representing the end time

of the last daily rest period from the previous planning period. Lastly, we define tstartDρd,f
≥ 0 and tendDρd,f

≥ 0

with f ≥ 1 as the respective start and end times of daily rest period ρd,f for driver d.

In constraint set (20), it is enforced that all daily rest periods have a duration of at least eleven hours. In

(21), it is ensured that within 24 hours of the previous daily rest period a new daily rest period should be
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finished. However, this constraint is formulated differently, since it states that within 24 − 11 = 13 hours a

new daily rest period should be started. This formulation is equivalent and allows rest periods to be longer

than eleven hours. To illustrate, suppose that the previous daily rest period ends at t = 50 for driver d, then

(21) enforces that the next daily rest period should start before 50 + 24 - 11 = 63. Constraint (20) now states

that the end time should be at least 11 hours later, which means that [63, 76] could, for example, be the new

daily rest period with a duration of thirteen hours. When (21) would be formulated as tendDρd,f
≤ tendDρd,f−1

+Hday,

the end time would less flexible, since the end time is now enforced to be before 50 + 24 = 74.

Constraint set (22) is added to ensure that successive daily rest periods are taken at consecutive moments

in time. Let tprevd be a parameter representing the end time of the last assigned trip from the previous planning

horizon for driver d, then (23) ensures that the first daily rest period for driver d is taken after the end of the

last assigned trip.

tstartDρd,f
+ Srest

day ≤ tendDρd,f
∀ d ∈ D, f = 1, ..., |F| (20)

tstartDρd,f
≤ tendDρd,f−1

+Hday − Srest
day ∀ d ∈ D, f = 1, ..., |F| (21)

tstartDρd,f
≥ tendDρd,f−1

∀ d ∈ D, f = 1, ..., |F| (22)

tstartDρd,1
≥ tprevd ∀ d ∈ D (23)

Similar to trips, drivers need to be assigned to their daily rest periods. Let yrρd,f ,d
∈ B indicate whether

driver d is assigned to daily rest period ρd,f as rth assignment. When yrρd,f ,d
= 1, driver d is explicitly

assigned to rest period ρd,f , which is in this case taken at home between performing trips. Hence, no layover

arrangements have to be made.

The second option is to take a daily rest period at a hotel during the execution of a trip, which involves

layover costs. For the ease of modelling, we assume that such a daily rest period can only be taken directly

after leaving an activity node and thus not continuously on the entire interval between two nodes. With this

simplification of modelling a new problem arises. Suppose that the travel time between consecutive activity

nodes i and i + 1 is 10 hours, then with the simplification, a daily rest period can only be taken directly

after leaving i or directly after leaving i + 1 and not somewhere in the 10 hours in between, which is highly

limited. To overcome this problem, we create artificial nodes between each two activity nodes at which daily

rest periods can be taken. The procedure for creating these artificial nodes is given in Section B.2 in the

appendix.

We denote Ĩv as the set of nodes in trip v extended with artificial nodes and Ãv the set of arcs in trip v

including artificial nodes. The departure times at these nodes have to be calculated in order to correctly plan

daily rest periods. Hence, the time variable constraints presented in (9) - (11) are no longer correct. This

is however easily fixed by replacing Iv by Ĩv and Av by Ãv. It might seem ambiguous to rectify previously

formulated constraints, however we believe that this order of constraint representation is the most logical.

Let binary variable gv,iρd,f ,d
∈ B indicate whether driver d takes daily rest period ρd,f directly after leaving

node i ∈ Ĩv in trip v. The constraints in (24) guarantee that each daily rest period is taken, either at home

and explicitly assigned or during the execution of a trip. In (25) it is secured that a driver can only take a
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daily rest period within a trip, when assigned to this trip.

The constraints in (26) with parameter λ ≥ 1 are added to put an upper bound on the length of daily rest

periods. This upper bound is added for the following reason. Suppose that during a trip, the waiting time at

a certain activity node is more than 50 hours. Without constraint (26), a daily rest period can be inserted

before this activity with an start and end time such that all waiting time will be transferred to this rest period

and no costs will be incurred for waiting. With a limit on the duration, multiple daily rest periods have to

be inserted to reduce the waiting time and cost, however at the expense of additional layover cost incurred by

multiple daily rest periods.

∑
r∈Rd

yrρd,f ,d
+

∑
v∈V

∑
i∈Ĩv

gv,iρd,f ,d
= 1 ∀ d ∈ D, f = 1, ..., |F| (24)

gv,iρd,f ,d
≤

∑
r∈Rd

yrv,d ∀ d ∈ D, f = 1, ..., |F|, v ∈ V, i ∈ Ĩv (25)

tendDρd,f
− tstartDρd,f

≤ λSrest
day ∀ d ∈ D, f = 1, ..., |F| (26)

The legislation regarding weekly rest periods is modelled similarly to the daily rest periods. However, we

do not allow for weekly rest periods during the execution of a trip. We can safely upper bound the number

of weekly rest periods by ceil(|K| ∗Hday/S
rest
week). Let G be an ordered set of integers representing weekly rest

periods and let ρd,g correspond to the gth weekly rest period for driver d with g ∈ G. In this case, yrρd,g,d
∈ B

represents the assignment of driver d to weekly rest period ρd,g using the rth assignment position, whereas

tstartDρd,g
≥ 0 (tendDρd,g

≥ 0) represents the start (end) time of the gth weekly rest period of driver d. Similar to

tendDρd,f
with f = 0, tendDρd,g

with g = 0 amounts to a parameter following from the previous planning period.

The weekly rest duration of Srest
week hours is guaranteed by the constraints in (27). In constraint set (28),

it is enforced that at most Hwork
consec after the end of the previous weekly rest period, a new weekly rest period

is started. The constraints in (29) are included to ensure that subsequent weekly rest periods are taken

consecutively. Constraint set (30) for the weekly rest period is similar to (23) for daily rest periods. The last

set of constraints in (31) ensures that each weekly rest period is assigned to each driver using exactly one

assignment position.

tstartDρd,g
+ Srest

week ≤ tendDρd,g
∀ d ∈ D, g = 1, ..., |G| (27)

tstartDρd,g
≤ tendDρd,g−1

+Hwork
consec ∀ d ∈ D, g = 1, ..., |G| (28)

tstartDρd,g
≥ tendDρd,g−1

∀ d ∈ D, g = 1, ..., |G| (29)

tstartDρd,1
≥ tprevd ∀ d ∈ D (30)∑

r∈Rd

yrρd,g,d
= 1 ∀ d ∈ D, g = 1, ..., |G| (31)

We have now defined all events that can be assigned to drivers. Let Jd be the set of all events, excluding

trips, that can be assigned to driver d, then Jd is defined as Ed ∪|F|
f=1 ρd,f ∪

|G|
g=1 ρd,g. Using this set an upper

bound on the number of integers in Rd can be constructed. Namely, the set Rd can be defined as Rd =

58



{1, 2, ..., |O| + |Jd|}. The constraints in (32) enforce that at most one assignment position r can be used for

all types of assignments (trip, external event, daily rest or weekly rest) for all drivers d.

∑
v∈V

yrv,d +
∑
e∈Ed

yrei,d +

|F|∑
f=1

yrρd,f ,d
+

|G|∑
g=1

yrρd,g,d
≤ 1 ∀ d ∈ D, r ∈ Rd (32)

Similar to the vehicle resources, we have to incorporate constraints ensuring that consecutive driver assign-

ments do not overlap. In (33), non-overlapping constraints for consecutive trips are added. The constraints in

(34) ensure that assignments do not overlap, when a trip is assigned later than a rest period or external event.

Constraint set (35) is almost identical, but is enforced when a trip is assigned earlier than a rest period or

external event. Likewise to (14) and (15), tstartDj and tendDj are fixed parameters if j ∈ Ed. The last constraint

set (36) guarantees that all trips assigned to driver d have a start time later than the end time of the last

assigned trip from the previous planning horizon.

We do not add non-overlapping constraints for consecutive assignments j1, j2 ∈ Jd for driver d. Those

types of assignments are allowed to overlap. In this way, the model can schedule an artificial daily rest period

during a weekly rest period or during an external event. Otherwise, during the Srest
week hours of a weekly rest

period, no daily rest periods could be planned, which gives an instant violation of the constraints in (21).

tendDv ≤ tstartDw +M(2− yrv,d −
|Rd|∑

i=r+1

yiw,d) ∀ d ∈ D, v, w ∈ V, r ∈ Rd (33)

tendDj ≤ tstartDw +M(2− yrj,d −
|Rd|∑

i=r+1

yiw,d) ∀ d ∈ D, w ∈ V, j ∈ Jd, r ∈ Rd (34)

tendDv ≤ tstartDj +M(2− yrv,d −
|Rd|∑

i=r+1

yij,d) ∀ d ∈ D, v ∈ V, j ∈ Jd, r ∈ Rd (35)

tprevd ≤ tstartDv +M(1−
|Rd|∑
i=1

yiv,l) ∀ d ∈ D, v ∈ V (36)

The time variables, when taking a daily rest period during the execution of a trip, are computed in

constraint sets (37) and (38). The constraint is only active if driver d is assigned to the corresponding trip v

and gv,iρd,f ,d
= 1 meaning that a daily rest period is scheduled directly after node i in trip v. The constraints

in (37) ensure that the start time of a daily rest period is later than the departure time from the node, after

which the rest period is scheduled. The next constraints in (38) guarantee that the start time of service at

the next node is later than the end time of the rest period taking into account the still remaining travel time.

When active, these constraints affect the computation of the time variables in (9) - (11).

tv,i + Si ≤ tstartDρd,f
+M(2−

∑
r∈Rd

yrv,d − g
v,i
ρd,f ,d

) ∀ d ∈ D, v ∈ V, (i, j) ∈ Ãv, f = 1, ..., |F| (37)

tendDρd,f
+ Ti,j ≤ tv,j +M(2−

∑
r∈Rd

yrv,d − g
v,i
ρd,f ,d

) ∀ d ∈ D, v ∈ V, (i, j) ∈ Ãv, f = 1, ..., |F| (38)
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In Section 3.4.4, we assumed that for the calculation of the total driving time per day, the total driving

time between two nodes i and i + 1 is incurred at the day of the departure at node i. Therefore, we have to

determine the day of departure at each node. Let hv,i,k ∈ B be a binary variable indicating whether activity

node i in trip v is departed from at day k and let hstartv,i,k ∈ B (hendv,i,k ∈ B) be an auxiliary binary variable

corresponding to whether activity i in trip v is departed from after the start of day k (before the end of day

k).

In (39), the auxiliary variables are calculated for the departure day from the depot and in (40) the auxiliary

variables are calculated for all remaining nodes. In constraint set (40) it is necessary to compute the variables

using information from the next node, since tv,i + Si does not capture the possibility of a daily rest period

directly after node i. Suppose that tv,i + Si = 44, then this would suggest that the day of departure is day

2 with interval [24, 48] and thus that the driving time from i to the next node should be counted for day 2.

However, when a daily rest period of 11 hours is scheduled directly after node i, then the driver departs from

node i at time 44 + 11 = 55, which is on day 3. This is not captured by tv,i + Si.

hi,v,k is defined as the product of its two auxiliary variables, which is linearized in constraint set (41). It is

not necessary to force this binary variable to be zero if one of the two related auxiliary variables is zero, since

it is never optimal to count driving hours more than once for several days. Hence, the model can just set all

binary variables to zero that are not forced to be one.

We define βv,d,k ≥ 0 as the number of driving hours at day k in trip v for driver d and compute this

variable in (42). The constraint is only active when a driver d is assigned to trip v. The summation over all

travel times on the right hand side, only considers travel times that have a departure on the considered day.

The legal upper bound of Hdrive
day daily driving hours with an possibility of an Hext

day hour extension is enforced

in (43). This utilized extension at day k for driver d is reflected by the binary decision variable zd,k ∈ B. A

legal limit on these number of allowed extensions is enforced in constraint set (44), where Kw denotes the set

of days that reside in calendar week w.

tendk −Mhendv,0,k ≤ tstartDv ≤Mhstartv,0,k + tstartk ∀ v ∈ V, k ∈ K (39)

tendk −Mhendv,i,k ≤ tv,j − wv,j − Ti,j ≤Mhstartv,i,k + tstartk ∀ v ∈ V, (i, j) ∈ Ãv, k ∈ K (40)

hv,i,k ≥ hstartv,i,k + hendv,i,k − 1 ∀ v ∈ V, i ∈ Ĩv ∪ {0}, k ∈ K (41)

βv,d,k ≥
∑

(i,j)∈Ãv

Ti,jhv,i,k −M(1−
∑
r∈Rd

yrv,d) ∀ v ∈ V, d ∈ D, k ∈ K (42)

∑
v∈V

βv,d,k ≤ Hdrive
day +Hext

dayzd,k ∀ d ∈ D, k ∈ K (43)

∑
k∈Kw

zd,k ≤ Nd,w ∀ d ∈ D, w ∈ W (44)

Let δv,d,w ≥ 0 denote the driving time for driver d in trip v in week w. This variable is computed in (45),

which is similarly to the computation of βv,d,k in (43). However, the summation on the right-hand side in

(45) includes multiple days instead of only one day. The constraints in (46) ensure that the legal maximum of

driving hours per calendar week is not exceeded. The legal maximum driving hours per two calendar weeks is
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enforced in constraint set (47).

δv,d,w ≥
∑

k∈Kw

∑
(i,j)∈Ãv

Ti,jhv,i,k −M(1−
∑
r∈Rd

yrv,d) ∀ v ∈ V, d ∈ D, w ∈ W (45)

∑
v∈V

δv,d,w ≤ Hdrive
d,w ∀ d ∈ D, w ∈ W (46)

∑
v∈V

(δv,d,w + δv,d,w+1) ≤ Hdrive
d,w,w+1 ∀ d ∈ D, w ∈ W \ {|W|} (47)

Next, we consider legislation regarding weekly working hours, which contains driving hours, inoperative

waiting before starting service and the actual service time at each activity node. Let mv,i,k ∈ B be a binary

variable representing whether service at activity i in trip v is started at day k and letmstart
v,i,k ∈ B andmend

v,i,k ∈ B

be two auxiliary variables similar to (39) - (41). The computation of the binary variables is modelled in (48)

- (49).

We define nv,i,k ≥ 0 as the waiting time at activity i in trip v that is incurred on day k. The constraints

computing this variable are given in (50). Note that nv,i,k is basically an auxiliary variable to determine at

what day the waiting time wv,i is incurred. Let ωv,d,w ≥ 0 denote the total waiting time in trip v for driver

d that is incurred in week w. This variable is calculated in the constraints in (51). This constraint is only

active if driver d is assigned to trip v. The service time in trip v for driver d incurred in week w is captured

by variable σv,d,w ≥ 0 and computed in constraint set (52). Again, the constraint is only active for trip v and

driver d, when assigned to each other. Finally, the constraints regarding the maximum weekly working hours

are modelled in (53).

Two important observations can be made regarding the binary variables hv,i,k and mv,i,k. First, the binary

variables are incorrectly calculated for inactive trips, because all time variables will be set to zero. However,

this is not an issue, since the the corresponding travel, waiting and service time will not be incurred for any

driver in constraints (42), (45), (51) or (52). Second, when [Ei, Li], the time window in which service should

start, is fully included in a particular day k, then (48) and (49) can be replaced by mv,i,k = uv and mv,i,l = 0

for l ̸= k.

tendk −Mmend
v,i,k ≤ tv,i ≤Mmstart

v,i,k + tstartk ∀ v ∈ V, i ∈ Ĩv, k ∈ K (48)

mv,i,k ≥ mstart
v,i,k +mend

v,i,k − 1 ∀ v ∈ V, i ∈ Ĩv, k ∈ K (49)

nv,i,k ≥ wv,i −M(1−mv,i,k) ∀ v ∈ V, i ∈ Ĩv, k ∈ K (50)

ωv,d,w ≥
∑

k∈Kw

∑
i∈Ĩv

nv,i,k −M(1−
∑
r∈Rd

yrv,d) ∀ v ∈ V, d ∈ D, w ∈ W (51)

σv,d,w ≥
∑

k∈Kw

∑
i∈Ĩv

Simv,i,k −M(1−
∑
r∈Rd

yrv,d) ∀ v ∈ V, d ∈ D, w ∈ W (52)

∑
v∈V

(ωv,d,w + σv,d,w + δv,d,w) ≤ Hwork
d,w ∀ d ∈ D, w ∈ W (53)
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A.3 Objective

(3) - (53) include all necessary constraints to capture all RPP restrictions. The model formulation can be

finalized by the objective in (54), which attempts to minimize the sum of the total assignment cost, consisting

of mileage cost and fixed cost, the total waiting cost, the total cost from uncovered orders and the cost arising

from layovers. For the waiting cost, it is not necessary to include an additional multiplication with uv, since

waiting time variables will be set to zero for inactive trips. In Table 12, an overview of all cost parameters is

given.

min
∑
v∈V

∑
l∈L

∑
r∈Rl

Cv,lx
r
v,l +

∑
v∈V

∑
t∈T

∑
r∈Rt

Cv,tx
r
v,t + Cwait

∑
v∈V

∑
i∈Ĩv

wv,i + Comit

∑
o∈O

γo+ (54)

Clayover

∑
v∈V

∑
(i,j)∈Ãv

∑
d∈D

|F|∑
b=1

gv,ifd,b,d

Symbol Description

Cv,l Cost of assigning truck l to trip v. This parameter includes mileage cost and fixed cost

Cv,t Cost of assigning trailer t to trip v. This parameter includes mileage cost and fixed cost

Cwait Cost of waiting per time unit

Comit Cost of not covering an order

Clayover Cost arising from a layover during the execution of a trip

Table 12: Cost parameters.

The RPP modelled in (3) - (54) includes an extremely large amount of variables and constraints. The

problem is an extensive variant of VRP and can thus be classified as a NP-hard problem. Solving this problem

for even moderate instances sizes is highly impractical. For this reason, we attempt to generate high-quality

solution within reasonable computation times using a heuristical approach.

B Algorithms

B.1 Trip Construction

In Algorithm 11, the trip construction procedure is presented. Output set V contains all locally feasible trips

that have the potential to be part of a RPP solution.

Steps 2 to 20 consider all permutations of all sizes, which has a complexity of O(|I|! ∗ |I|). Steps 4 to

14 validate whether the constraints described in Section 3.4.2 are satisfied or not. If a violating constraint is

found, the considered permutation is locally infeasible and the algorithm proceeds to the next permutation.

The precedence constraints and full order coverage are verified in Step 4. The sets of allowed trailers and

drivers are constructed in Step 8. Measures Qmax
p and LDMmax

p can easily be obtained by updating the
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LDM and weight while traversing all activity nodes and storing the maximum values. In Steps 10 - 11 all

truck-trailer combinations with sufficient capacity are stored in (Tp,Lp). Step 12 checks whether the sets of

allowed resources are empty. A feasible time schedule, if existing, is constructed in Step 15. Finally, if still

feasible, the permutation is added to the set of trips in Step 17.

Algorithm 11 Trip construction process

Input: set of activities I

1: V ← ∅

2: for n = 1 to |I| do

3: for all permutations p of I with size n do

4: if precedence constraints are violated or an order is only partly fulfilled then

5: continue

6: end if

7: Op ← set of all orders served in p

8: Tp ← ∩o∈Op
To (set of allowed trailers), Dp ← ∩o∈Op

Do (set of allowed drivers)

9: Qmax
p ← max weight during visitation p, LDMmax

p ← max LDM during visitation p

10: Tp ← {t ∈ Tp : LDMt ≥ LDMmax
p }

11: (Tp,Lp)← {t ∈ Tp, l ∈ Lt : Qt +Ql ≥ Qmax
p }

12: if (Tp,Lp) = ∅ or Dp = ∅ then

13: continue

14: end if

15: validate whether there exists a feasible time schedule (Algorithm 13 in Section B.3)

16: if feasible schedule exists then

17: V ← V ∪ {p}

18: end if

19: end for

20: end for

Output: set of locally feasible trips V

B.2 Inclusion of Artificial Nodes

In Algorithm 12, the pseudocode for inserting artificial nodes is given. The main idea behind this procedure is

that lengthy arcs can be split into smaller parts such that daily rest periods can be taken somewhere along the

original arc. In this way, we simplify the problem by only considering possible rest locations at discrete points

and not continuously on the the interval between two activity nodes. Parameter K functions as a splitting

interval and determines how many artificial nodes are added between two activity nodes.

The procedure can be explained best by means of an example. Suppose that in a certain iteration of the

for-loop in Steps 1 - 10 we are considering arc (i, j). Let K be five hours and let travel time Ti,j be thirteen

hours. We have that n = 3, since 10 ≤ 13 < 15 (Step 2). This means that three artificial nodes are added
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between i and j and that the travel times of the first three new segments are set to 13/3 ≈ 4.33 (Step 3). The

last artificial node is added at the same geographical location as the next activity node j, hence the travel time

is set to zero in Step 9. This last node is added such that a daily rest period can be planned either directly

before serving activity j or directly after serving activity j.

All artificial nodes receive wide-enough time window (Step 5) such that these have no effect on the feasibility

of the problem.

Algorithm 12 Procedure for adding artificial nodes

Input: set of activities I and size of splitting interval K (hours)

1: for all arcs (i, j) between two activities or between an activity and the depot do

2: find n ∈ N such that (n− 1)K ≤ Ti,j < nK

3: splitT ravelT ime← Ti,j/n

4: add n auxiliary nodes ai for i = 1, ..., n− 1 between i, j with following properties:

5: time windows Eai ← min{Ei, Ej} and Lai ← max{Li, Lj} for i = 1, ..., n

6: service time Sai ← 0 for i = 1, ..., n

7: travel time Ti,a1 ← splitT ravelT ime

8: travel time Tai,ai+1 ← splitT ravelT ime for i = 1, ..n− 1

9: travel time Tan,j ← 0

10: end for

Output: set of activities I extended with auxiliary nodes

B.3 Construction of a Feasible Time Schedule

A feasible time schedule for a given sequence of activities is constructed in Algorithm 13. The algorithm

generates a time schedule based on arriving at activity v1 at the earliest possible start time Ev1 . In Steps 2

and 3, the arrival time, start time, waiting time, slack and departure time are initialized for the first activity.

The slack variable can be interpreted as the amount of time that is left before violating the time window. In

4 - 12, these five variables are computed for the other activities. If the time schedule results in a time window

violation, the trip is considered infeasible. The expression on the left hand side in Step 13 is an lower bound

on the total time span of the trip excluding service at the depot. If this lower bound exceeds Hwork
consec, the

constraint of a weekly rest period at the depot will never be met. Hence, the trip is considered infeasible.

The algorithm is demonstrated with the following example. The resulting feasible schedule for a trip visiting

three nodes is shown in Table 13. The column corresponding to node 1 is obtained by the initialization in

Steps 2 and 3. The arrival time at node 2 can be obtained by the departure time from node 1 incremented

by the travel time: Arrive2 ← 31 + 5 = 36. The arrival is before the deadline L2 = 39, hence we proceed

with the algorithm. All other time variables are computed in Steps 10 and 11. The computation of the time

variables for node 3 is analogous.
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Node 1 Node 2 Node 3

Si 1 1 1

[Ei, Li] [30,34] [38,39] [50,55]

Ti,j 5 9 -

Arrivei 30 36 48

Waiti 0 2 2

Starti 30 38 50

Leavei 31 39 51

Slacki 4 3 7

Table 13: feasible schedule of a trip visiting nodes 1, 2 and 3.

Algorithm 13 Procedure for creating a feasible time schedule

Input: a potential trip v = {v1, ..., vn} ⊆ I

1: feasible← true

2: Arrivev1
← Ev1 , Startv1

← Ev1 , Waitv1 ← 0

3: Slackv1 ← Lv1 − Ev1 +Waitv1 , Leavev1 ← Startv1 + Sv1

4: for i = 2 to n do

5: Arrivevi ← Leavevi−1
+ Tvi−1,vi

6: if Arrivevi > Lvi then

7: feasible← false

8: break algorithm

9: end if

10: Startvi ← max{Arrivevi, Evi}, Waitvi ← Evi −Arrivevi
11: Slackvi ← Lvi − Evi +Waitvi , Leavevi ← Startvi + Svi

12: end for

13: if (Evn + Svn + Tvn,0) - (Lv1 − T0,v1) > Hwork
consec then

14: feasible← false

15: break algorithm

16: end if

Output: feasible time schedule, if existing

B.4 Construction of the Tightest Time Schedule

The procedure in Algorithm 14 describes how to construct the tightest time schedule for a given trip and

feasible time schedule. Variable maxLater denotes how much time the arrival time at the first node can be

extended. Following the example in Table 13, this variable is initialized with L1 − Start1 = 34 − 30 = 4.

Auxiliary variable flow is used to determine how much of variable maxLater is transferred to later activities.

This variable is initialized with the initial value of maxLater.
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In the first iteration with i = 2, we find in the if-statement in Step 4 that flow = 4 > Slack2 = 3. Both

maxLater and flow are then decreased with the difference between flow and Slack2: maxLater ← 4− 1 = 3

and flow ← 4 − 1 = 3. The flow forward that is incurred at node 2 is thus three hours. In Step 8, variable

flow is updated. Since the waiting time at node 2 is two hours, two hours of the flow forward are consumed

by this waiting time. So, only one hour of flow is transferred to node 3: flow ← 3−max{0, 2} = 1

In the second iteration for i = 3, we have that flow = 1 < Slack3 = 7. Hence, variables maxLater and

flow do not have to be updated in this iteration. In Step 8, flow is updated to -6, after which the for-loop is

terminated in Step 10. Note that this was the last iteration of the for-loop anyway.

The tightest schedule is ultimately obtained by extending the arrival time at the first node with maxLater

hours and calculating all time variables for the remaining nodes using the for-loop in Steps 4 - 12 from

Algorithm 13. Variable maxLater was only changed in the first iteration from four to three, which results in

arrival time Arrive1 ← 30 + 3 = 33. The resulting tightest schedule is showed in Table 14.

Node 1 Node 2 Node 3

Si 1 1 1

[Ei, Li] [30,34] [38,39] [50,55]

Ti,j 5 9 -

Arrivei 33 39 49

Waiti 0 0 1

Starti 33 39 50

Leavei 34 40 51

Slacki 0 0 6

Table 14: Feasible schedule of a trip visiting nodes 1, 2 and 3.
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Algorithm 14 Procedure for calculating the tightest time schedule

Input: trip v = {v1, ..., vn} & feasible time schedule

1: maxLater ← Lv1 −Arrivev1
2: flow ← maxLater

3: for i = 2 to |I| do

4: if flow > Slackvi then

5: reduce← flow − Slackvi
6: maxLater ← maxLater − reduce, flow ← flow − reduce

7: end if

8: flow ← flow −max{0,Waitvi}

9: if flow ≤ 0 then

10: break

11: end if

12: end for

13: tightest schedule is ultimately obtained by setting Arrivev1 ← Arrivev1 +max{0,maxLater}

Output: the tightest feasible time schedule

C Tables

C.1 Resource Types

Resource Type Weight LDM Resource Type Weight LDM

Trailer Tiny Type 1 25,000 5 Trailer Large Type 1 25,000 11

Trailer Tiny Type 2 69,000 7 Trailer Large Type 2 69,000 13

Trailer Tiny Type 3 113,000 9 Trailer Large Type 3 113,000 15

Trailer Tiny Type 4 157,000 11 Trailer Large Type 4 157,000 17

Trailer Tiny Type 5 201,000 13 Trailer Large Type 5 201,000 19

Trailer Small Type 1 25,000 7 Trailer Heavy Type 1 25,000 13

Trailer Small Type 2 69,000 9 Trailer Heavy Type 2 69,000 15

Trailer Small Type 3 113,000 11 Trailer Heavy Type 3 113,000 17

Trailer Small Type 4 157,000 13 Trailer Heavy Type 4 157,000 19

Trailer Small Type 5 201,000 15 Trailer Heavy Type 5 201,000 21

Trailer Normal Type 1 25,000 9 Truck Truck Type 1 10,000 -

Trailer Normal Type 2 69,000 11 Truck Truck Type 2 20,000 -

Trailer Normal Type 3 113,000 13 Truck Truck Type 3 40,000 -

Trailer Normal Type 4 157,000 15 Truck Truck Type 4 60,000 -

Trailer Normal Type 5 201,000 17 Truck Truck Type 5 80,000 -

Table 15: Weight and LDM capacities of all trailer and truck types.
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C.2 Instance Features

Table 16 contains all instance features. The first three columns exhibit the number of orders with respectively

one pickup activity, one delivery activity and both a pickup and delivery activity. The first element in the

two-tuple under ’Node Positioning’ contains the positioning of the depot as explained in Section 5.1.2. The

second element in the two-tuple contains the used positioning mechanism for the activity nodes. The sixth

column corresponds to the used demand distribution, which is explained in Section 5.1.3. The last three

columns contain the number of available trucks, trailers and drivers respectively.

Name #P #D #PD Node Positioning Demand Trucks Trailers Drivers

n10-1 3 1 3 [CE, R] U 2 2 3

n10-2 2 0 4 [R, R] U 3 3 2

n10-3 5 3 1 [CE, CR] SL 3 4 2

n10-4 0 2 4 [R, C] R 3 2 2

n10-5 2 2 3 [CE, C] SL 3 3 3

n10-6 3 1 3 [CO, C] R 2 2 3

n10-7 2 2 3 [CE, CR] SL 3 4 4

n10-8 2 2 3 [CO, C] SL 3 2 4

n10-9 4 0 3 [CE, R] U 3 4 4

n10-10 3 1 3 [R, R] U 3 2 4

n50-1 13 17 10 [R, C] U 15 19 13

n50-2 17 17 8 [CE, R] SL 14 16 15

n50-3 17 13 10 [CE, C] R 14 18 10

n50-4 11 17 11 [R, RC] SL 17 17 15

n50-5 16 16 9 [CE, R] U 13 13 17

n50-6 8 10 16 [CO, RC] SL 16 14 14

n50-7 9 19 11 [CE, C] R 11 20 12

n50-8 14 16 10 [CE, R] R 12 16 14

n50-9 10 8 16 [R, C] U 13 11 17

n50-10 11 15 12 [CO, C] SL 17 11 15

n100-1 33 27 20 [R, C] SL 37 27 32

n100-2 25 27 24 [CE, R] R 27 18 22

n100-3 26 24 25 [R, C] R 29 24 22

n100-4 19 27 27 [CE, RC] R 17 26 29

n100-5 28 18 27 [R, C] U 30 34 28

n100-6 28 34 19 [CE, C] SL 29 39 38

n100-7 26 28 23 [CO, RC] SL 30 28 24

n100-8 22 20 29 [CE, RC] SL 34 17 15

n100-9 25 35 10 [CO, R] R 27 17 35

n100-10 14 24 31 [CO, C] U 16 25 24

Table 16: Instance features for all generated instances following the mechanisms described in Section 5.1
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D Adaption Logistics Cloud Suite

Adaption (www.adaption-it.nl) is a specialized software company offering solutions to businesses that expe-

rience and maintain logistic processes. The founders realized that tailored software can be perfectly tuned

to the customer’s needs. This setup is however relatively costly in terms of support and maintenance, since

several products for each specific customer have to be maintained. This tailored setup would therefore result in

expensive software programs for both Adaption and its customers. Static standard software on the other hand

does not meet the customers’ requirements, but is relatively easy to maintain, since each customer uses the

same product. Adaption therefore adopted the golden mean. The result is a hybrid standard application with

a highly flexible setup, which is adjustable to the business’ needs and maintainable, which makes it affordable

for all sizes of logistic companies.

The software application, the Logistics Cloud Suite, consists of several modules aiming at all different parts

of the supply chain. It provides businesses with a complete solution, which can support all business units and

necessary scenarios (Adaption, n.d.). The resource planning tool is incorporated in the Transport Management

System module, which provides a complete insight in a business’ transportation activities.

In the three figures below, screenshots of the application are presented. All figures exhibit edit pages,

where customers can access, edit and save data.
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Figure 5: Screenshot of the order edit page. The yellow rectangles in the right upper corner correspond to the activities and contain information on distance, duration and

weight of the goods. The time windows can be edited in the two rows at the bottom of the page.
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Figure 6: Screenshot of the distance edit page. For the purpose of this research, the distances and duration are manually generated and inserted. For locations with actual

geocodes, Google Maps could be consulted to calculate distances and durations.
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Figure 7: Screenshot of the trailer type edit page. The capacity measures of this trailer type are displayed in the fields on the right.
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