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Abstract

Financial and macroeconomic time series, like stock prices, inflation, and GDP, are crucial

time series for investors, economists, and policy-makers. A plethora of models have been

examined to accurately forecast these, four of which are the Markov switching model, the

dynamic factor model with constant parameters and with changing parameters, and the

Markov switching dynamic factor model, of which the last two are hardly investigated. To

get better insights in the comparison of the aforementioned models, this paper scrutinises the

models in both a simulation study in which data is generated from multiple vector autore-

gressive models, and an application where the series used are annual GDP growth, inflation

rate, and unemployment rate in the G7 countries. In the simulation study, the Markov

switching dynamic factor model performs best for all vector autoregressive specifications. In

the application, the Markov switching model is the best performing model.
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1 Introduction

Since financial and macroeconomic time series, such as stock prices, inflation, and GDP, are

crucial time series for investors, economists, and policy-makers, it is desirable to be able to

accurately forecast these. Many models have been developed to do so, of which perhaps the

most popular models are the ARMA and GARCH models. In order to increase the forecast

accuracy, models have been developed to examine multiple time series simultaneously, either

across variables, or across countries. A popular model in this class is the vector autoregressive

(VAR) model, which has been investigated by many. For example, Watson (1994) surveys

developments in VAR models, and Nakajima et al. (2011) provide an overview of the estimation

methods in time varying VAR models.

Notwithstanding the fact that the VAR model works well, it might not always be the best

choice. Namely, in this model, the number of parameters grows very large as one uses more

time series, and estimation of the model then becomes cumbersome, or sometimes even impos-

sible. Hence, dynamic factor models have become very popular. These models have five main

advantages, elaborated on in Stock and Watson (2016). They are suited to fit macroeconomic

data, they are consistent with macroeconomic theory, large data sets can be estimated without

computational difficulties, they are suited for tasks of a macroeconomist, and many macroeco-

nomic shocks can be explored. Moreover, these models have been extensively discussed in the

literature. For instance, Molenaar (1985) uses a dynamic factor model to investigate a poly-

graphic record, and Ng et al. (1992) use a dynamic factor model to examine stock returns. Also,

Stock and Watson (2011) discuss several applications of dynamic factor models, and Stock and

Watson (2012) compare them with a variety of other shrinkage methods.

Even though these models are extremely useful and relatively easy to estimate, they are not

always the best choice. These models assume a certain relationship between the factors in the

model to be the same at all times. However, when crises strike, and the economy changes rapidly,

these relationships may differ, and these models may fail. Hence, we may allow the parameters

to be different in recessions than in expansions. This can be done in two ways. One way is to

model the state separately, and then use a VAR with observed states (Alloza (2017), Gonçalves

et al. (2022)). Another way of incorporating the state of the economy is to model it as a latent

variable, which is done in Markov switching models. Examples of this model can be found in

Hamilton (1989), who analyses gross national product, and in Goodwin (1993) who uses the

model to analyse business cycles in several economies. The disadvantage of these models is that

the number of parameters in the VAR model grows even more rapidly, which makes it hard to

investigate the time series simultaneously, and may lead to lower forecast accuracy.
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If we combine the two aforementioned models, we obtain a dynamic factor model with

different parameters in different states. Here we have the best of two worlds, both investigating

multiple time series simultaneously while keeping the model parsimonious, and allowing for

switching in the state of the economy. In the case where the state of the economy is modelled

as a latent variable, we obtain a Markov switching dynamic factor model (MSDFM), which is

a promising model. However, in this model we have multiple layers of latency, which makes

estimation not straightforward anymore. A Bayesian way of estimating the model is discussed

in Kim and Nelson (1998) and Sims et al. (2008). Besides, Carstensen et al. (2020) uses an

elastic net to estimate the model. An approximate maximum likelihood approach is considered

in Kim (1994) and Kim and Yoo (1995). One can also choose to model the state separately, and

then use a dynamic factor model (DFM) with observed states, which we call the dynamic factor

mixture model (DFMM) and which has been hardly investigated.

The goal of this paper is to scrutinise the two models mentioned in the previous paragraph

by focusing more on the comparison with other models. As opposed to the separate estimation

of dynamic factor models or Markov switching models, not much literature on the combination

of the two exists yet. The dynamic factor mixture model is hardly ever investigated. Regarding

the MSDFM, applications are provided in Chauvet and Piger (2008), who use it as a business

cycle dating method, and in Akay et al. (2013), who use it to model hedge fund contagion and

risk-adjusted returns. Furthermore, Chauvet and Potter (2013) compare the performance of

the MSDFM with that of other models when making point forecasts for U.S. output growth.

However, a lot can still be done when comparing the model to other models.

To do so, we conduct a simulation study and we consider a data set to compare the models.

The models we compare are the univariate Markov switching autoregressive Model (UMSARM),

a dynamic factor model excluding Markov switching, a dynamic factor model excluding Markov

switching but with different parameters in expansions and recessions (dynamic factor mixture

model), and the Markov switching dynamic factor model.

In the simulation study, we generate eight different data sets of length 1100 according to

several VAR structures, each having one lag, but all having different autoregressive parameters

and/or a different number of series. Furthermore, there are two different states, which are

generated via a Markov process, in which the VAR has different parameters. The different

autoregressive parameters and number of series are investigated to examine how the models

compare to each other under different circumstances, such that a comprehensive comparison of

the models can be made. For each of the eight simulations, we estimate our models based on

the first 1000 observations and we make 100 one-step ahead point forecasts. We then rank our
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models based on their forecast performance, which is assessed by their mean squared prediction

errors (MSPEs), and is compared with a Diebold Mariano (DM) test.

We find that the MSDFM outperforms the other models with a large difference. The second

best performing model is the DFM, which is closely followed by the DFMM. Lastly, we find

that the UMSARM performs worst. Besides, the difference in performance between the dynamic

factor models and the UMSARM becomes smaller as the parameters in the VAR become smaller

values. In addition, the difference in performance between the dynamic factor models and the

UMSARM gets smaller as the number of series in the VAR gets larger.

In the application, we consider a data set including three macroeconomic variables, annual

GDP growth, unemployment rate, and inflation rate, for a total of seven countries, Canada,

France, Germany, Italy, Japan, the UK, and the USA, in the period from 1991Q1 until 2021Q4.

We use eleven different subsets to compare the one-step ahead point forecast performance across

our models, which will again be assessed by the MSPEs and the corresponding DM test. The

subsets are created as follows. We consider, for each country separately, all variables as one

multivariate time series. Furthermore, we consider, for each variable separately, all countries as

one multivariate time series. Finally, we consider the whole data set, countries and variables

combined, as one multivariate time series. To estimate the models, we use the observations from

1991Q1 until 2011Q4. Thereafter, one-step ahead forecasts are made until 2013Q4. Then, the

models are estimated from 1991Q1 until 2013Q4, and one-step ahead forecasts are made until

2015Q4, and so forth until we obtain a forecast for 2021Q4. Besides, we check the robustness of

our results by doing the analysis with the same data subsets, but with the observations during

the COVID-19 pandemic omitted (2020Q1-2021Q4).

In contrast with the simulation study, we find that the UMSARM performs the best in the

application. The DFM performs worst, and the DFMM and the MSDFM perform relatively

well, but their parameters cannot be identified at all times. When the observations during the

COVID-19 pandemic are omitted, we again find that the UMSARM performs the best. Hence,

if one examines a data set and believes that the data originates from a VAR, but there are

not enough observations to estimate a VAR, the MSDFM might be their best option. When

examining macroeconomic variables, using the UMSARM is the best option, since the addition

of dynamic factors does not yield any additional performance.

We contribute to the existing literature by defining the DFMM and deriving the expressions

to estimate its parameters. Furthermore, we contribute by comparing the MSDFM to other

models. This paper is the first to compare the MSDFM with other models through a simulation

study, and we find that it outperforms the UMSARM, the DFM, and the DFMMwhen examining
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a VAR. Moreover, this paper is among the first to compare the MSDFM to other models in an

applied setting, where we find that it outperforms the DFM when examining macroeconomic

variables.

The structure of this paper is as follows. In Section 2, the models are specified, and we

discuss how they are compared. Then, we elaborate on the simulation study in Section 3, where

the simulation procedure is explained in 3.1 and the results are shown in 3.2. Thereafter, we

discuss the application in Section 4. The data is described in 4.1, the methodology in 4.2, and

the results are shown in 4.3. Moreover, a robustness check is presented in 4.4. Ultimately, in

Section 5, conclusions are drawn and suggestions for further research are given.

2 Models

In this section, we elaborate on the models that we use. We start with the univariate Markov

switching autoregressive Model (UMSARM), we then explain the dynamic factor model (DFM)

and the dynamic factor mixture model (DFMM). The last model we discuss is the Markov

switching dynamic factor model (MSDFM). For each model, we specify the model itself, how

the latent variables are filtered, and in what way the model is estimated and identified. Finally,

we explain how the forecasts are made. We end this section by explaining how the models are

compared.

2.1 Univariate Markov Switching Autoregressive Model

The univariate Markov switching autoregressive model that we use looks as follows:

yt = β′
St
xt + εt, (1)

where εt ∼ N(0, σ2
St
), and xt =

[
1, yt−1

]′
, with yt the dependent variable for t = 1, . . . , T .

Here, St is the state at time t which is an unobserved Markov process described by P[St =

i|St−1 = j] = pij , with i, j = 1, . . . ,m, with m being the number of states. Lastly, because of

the aforementioned rapid increase in parameters and the corresponding problems if we make

this model multivariate, we decided to keep this model univariate.

To estimate the current state, St, in the Markov switching autoregressive model, the Hamil-

ton filter is used, together with the Kim smoother. The Hamilton filter consists of two steps,

a prediction step and an update step. The prediction step looks as follows. Suppose that we

know the parameters in the model. Then, let ξt be a vector with a 1 on the true state at time t

and a 0 on the other states. Now we can write our estimate for the states, based on It, as ξ̂t|t.
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Our prediction step can then be written as follows:

ξ̂t|t−1 = P ξ̂t−1|t−1, (2)

with P the transition matrix with Pij = P[St = i|St−1 = j] = pij . Besides, we put random num-

bers in ξ̂1|1, ensuring that they add up to one. We now update our belief based on observation

yt as follows
1:

ξ̂t|t =


f(yt|St = 1)

...

f(yt|St = m)

⊙ ξ̂t|t−1

[
1 · · · 1

](
f(yt|St = 1)

...

f(yt|St = m)

⊙ ξ̂t|t−1

) . (3)

Once we have all observations, we can iterate back and smooth our estimates for all ξt based

on the full sample size (IT ). To do so, we make use of the law of iterated expectations2 and we

write ξ̂t|T = E[ξt|IT ] = E[E[ξt|ξt+1, IT ]|IT ]. For the inner expectation holds that E[ξt|ξt+1, IT ] =

ξ̂t|t ⊙ P ′[ξt+1 ⊘ ξ̂t+1|t]
3. Now ξ̂t|T = E[ξ̂t|t ⊙ P ′[ξt+1 ⊘ ξ̂t+1|t]|IT ], and thus we can write the

smoothing as follows:

ξ̂t|T = ξ̂t|t ⊙ P ′[ξ̂t+1|T ⊘ ξ̂t+1|t]. (4)

The parameters in the model are estimated by the Expectation Maximisation (EM) algo-

rithm. In this algorithm, we augment the likelihood function by St to obtain the so-called

complete data likelihood function. This complete data likelihood can be written as follows:

f(y2:T , S1:T |IT ,θ,P ,ρ) =
T∏
t=2

[
n∏

i,j=1

(
fi(yt|θi)pij

)δijt]{ n∏
j=1

ρ
δj1
j

}
, (5)

with the Kronecker delta, δijt, a random variable being 1 if St = i and St−1 = j, and 0 otherwise,

and δjt being a random variable equalling 1 if St = j and 0 otherwise. Furthermore, ρj is the

probability that S1 = j, and fi(yt) = ϕ(yt;βiyt−1, σ
2
i ) is the density of yt if St = i. The log

likelihood can then be written as follows:

log f(y2:T , S1:T |IT ,θ,P ,ρ) =
T∑
t=2

[
n∑

i,j=1

δijtlog
(
fi(yt|θi)pij

)]
+

n∑
j=1

δj1log
(
ρj
)
. (6)

1The derivation can be found in Appendix A, which is from Hamilton (1989).
2E[Y ] = EX [EY [Y |X]].
3The derivation can be found in Appendix B, which is from Hamilton (1989).
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Now the expected log likelihood is the following:

E[log f(y2:T , S1:T |IT ,θ,P ,ρ)] =

T∑
t=2

[
n∑

i,j=1

p∗ijtlog
(
fi(yt|θi)pij

)]
+

n∑
j=1

p∗j1log
(
ρj
)
, (7)

with p∗ijt = P[St = i, St−1 = j|IT ], and p∗jt = P[St = j|IT ]. The latter is part of the output of

the Kim smoother, the former we must add to the Kim smoother and reads as follows4:

p∗ijt =
[
P ⊙ (ξ̂t|T ξ̂

′
t−1|t−1)⊘ (ξ̂t|t−1[1 · · · 1])

]
ij
. (8)

Once we have the expected log likelihood, we maximise it with respect to the parameters,

and we get the following expressions5:

ρ̂ = ξ̂1|T , (9)

p̂kl =

∑T
t=2 p

∗
klt∑T

t=2 p
∗
l(t−1))

, (10)

β̂k = (X ′
lP

∗
kXl)

−1X ′
lP

∗
ky, (11)

σ̂2
k =

∑T
t=2 p

∗
kt(yt − β̂′

kxt)
2∑T

t=2 p
∗
kt

. (12)

Here, P ∗
k is a (T − 1) × (T − 1) diagonal matrix with p∗k(t+1) on the tth position and y is

a vector of length T − 1 with yt+1 on the tth position. Furthermore, Xl is (T − 1) × 2 matrix

with x′
t on the tth row. We initialise the algorithm with random numbers for all parameters.

We then run the Hamilton filter and Kim smoother and estimate the new parameters. We keep

repeating this until the parameters converge or until we have reached 1000 iterations.

Once the parameters are estimated, the one-step ahead forecasts in the univariate Markov

switching model are made as follows:

ŷT+1|T = E

[
m∑
k=1

I[ST+1 = k]

(
β′
kxT+1

)
+ εT+1|IT

]

=

m∑
k=1

P[ST+1 = k]

(
β̂′
kxT+1

)

= ξ̂′T+1|T


β̂′
1xT+1

...

β̂′
mxT+1

 .

(13)

4The derivation can be found in Appendix C, which is from Hamilton (1990).
5The derivation can be found in Appendix D, which is from Hamilton (1990).
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2.2 Dynamic Factor (Mixture) Model

We use two dynamic factor models, one with constant parameters, and one with different pa-

rameters in expansions and recessions, which we call the mixture model, looking as follows:

yt = cSt +ΛStft + εt, (14)

ft = AStft−1 + ηt, (15)

where yt has length n for t = 1, . . . , T , ft are latent factors, and εt ∼ N(0,RSt) and ηt ∼

N(0,QSt). Here, St is the state at time t which is 0 when there is an expansion and 1 when there

is a recession. The dynamic factor model with constant parameters has the same specification

except that the subscript St is omitted from that model because the parameters are the same in

both expansions and recessions. The current state St is given during estimation, and is modelled

separately for forecasting and is then assumed to be equal to St−1.

The latent factors ft are estimated by the Kalman filter and smoother. Henceforth, every-

thing in this section works the same for the dynamic factor model with constant parameters,

except that any superscripts or subscripts relating to states are omitted since there is only one

state in the dynamic factor model with constant parameters.

Like the Hamilton filter, the Kalman filter consists of a prediction step and an update step.

The prediction step looks as follows. Suppose that we know the parameters in the model. Then,

let f̂t|t be our estimate for ft, based on It, and let Pt|t be the uncertainty of that estimate. Now

we can write the prediction step as follows6:

f̂k
t|t−1 = Akf̂t−1|t−1, (16)

P k
t|t−1 = AkPt−1|t−1A

′
k +Qk, (17)

with 0, the unconditional mean of ft, as f̂0|0 and a diagonal matrix with 106 on the diagonal

elements as P0|0. Here, f̂k
t|t−1 is our estimate for ft, based on It−1, and assuming that the

process is in state k at time t. Furthermore, P k
t|t is the uncertainty of that estimate.

Now we can write the update step, in which we update our estimate for ft and the corre-

sponding uncertainty Pt, based on observation yt, and the observation of St. Since St is now

known, we only update the factors and the corresponding uncertainties of Equations 16 and 17

in the correct state. These updates are now simply denoted as f̂t|t and Pt|t, and read as follows7:

6The derivation can be found in Appendix E.
7The derivation can be found in Appendix F.
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f̂t|t = f̂St

t|t−1 + P St

t|t−1Λ
′
St

(
ΛStP

St

t|t−1Λ
′
St

+RSt

)−1(
yt − cSt −ΛSt f̂

St

t|t−1

)
, (18)

Pt|t = P St

t|t−1 − P St

t|t−1Λ
′
St

(
ΛStP

St

t|t−1Λ
′
St

+RSt

)−1
ΛStP

St

t|t−1. (19)

Once we have all observations, we can iterate back and smooth our estimates for the

factors based on the full sample size (IT ). Hence, we are interested in f̂t|T = E[ft|IT ] =

E[E[ft|ft+1, IT ]|IT ], where we have again made use of the law of iterated expectations. We have

that E[ft|ft+1, IT ] = E[ft|ft+1, St+1, It] because all future information that is relevant for ft is

included in ft+1 and St+1. Since E[ft|ft+1, St+1, It] = f̂t|t+Pt|tA
′
St+1

(P St

t+1|t)
−1(ft+1− f̂St

t+1|t)
8,

we can write the following equation for the smoothed factor:

f̂t|T = E[f̂t|t + Pt|tA
′
St+1

P−1
t+1|t(ft+1 − f̂t+1|t)|IT ]

= f̂t|t + Pt|tA
′
St+1

(P St

t+1|t)
−1(f̂t+1|T − f̂St

t+1|t)
(20)

Furthermore, to find the smoothed variance of ft, Pt|T , we make use of the law of total

variance9 and we write Pt|T = Var[ft|IT ] = Var[E[ft|ft+1, IT ]|IT ] + E[Var[ft|ft+1, IT ]|IT ].

Hence, we can write

Pt|T = Pt|t − Pt|tA
′
St+1

(P St

t+1|t)
−1
(
P St

t+1|t − Pt+1|T
)
(P St

t+1|t)
−1ASt+1

Pt|t. (21)

As in the univariate Markov switching model, the parameters in the dynamic factor models

are estimated by the EM algorithm. Here we augment the likelihood function by ft to obtain

the so-called complete data likelihood function. This complete data likelihood can be written

as follows:

log f(y1:T ,f0:T |IT ,θ) ∝
1

2

T∑
t=1

log |R−1
St

| − 1

2

T∑
t=1

(yt − cSt
−ΛSt

ft)
′R−1

St
(yt − cSt

−ΛSt
ft)

+
1

2

T∑
t=2

log |Q−1
St

| − 1

2

T∑
t=2

(ft −AStft−1)
′Q−1

St
(ft −AStft−1),

(22)

which leads to the following parameter estimates10:

8The derivation can be found in Appendix G.
9Var[Y ] = Var[E[Y |X]] + E[Var[Y |X]].

10The derivation can be found in Appendix H.
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Âk =
( T∑

t=2

I[St = k](f̂t|T f̂
′
t−1|T + Pt,t−1|T )

)
×
( T∑

t=2

I[St = k](f̂t−1|T f̂t−1|T + P ′
t−1|T )

)−1
, (23)

Λ̂k =
( T∑

t=1

I[St = k](yt − ĉk)f̂
′
t|T

)( T∑
t=1

I[St = k](f̂t|T f̂
′
t|T + Pt|T )

)−1
, (24)

ĉk =

∑T
t=1 I[St = k](yt − Λ̂kf̂t|T )∑T

t=1 I[St = k]
, (25)

R̂k =
1∑T

t=1 I[St = k]

T∑
t=1

I[St = k]
(
(yt − ĉk)(yt − ĉk)

′ − Λ̂kf̂t|T (yt − ĉk)
′

− (yt − ĉk)f̂
′
t|T Λ̂

′
k + Λ̂k(f̂t|T f̂

′
t|T + Pt|T )Λ̂

′
k

)
,

(26)

Q̂k =
1∑T

t=2 I[St = k]

T∑
t=2

I[St = k]
(
f̂t|T f̂

′
t|T + Pt|T − Âk(f̂t−1|T f̂

′
t|T + P ′

t,t−1|T )

− (f̂t|T f̂
′
t−1|T + Pt,t−1|T )Â

′
k + Âk(f̂t−1|T f̂

′
t−1|T + Pt−1|T )Â

′
k

)
,

(27)

where we use, for each state k, the ĉk from the previous iteration when calculating Λ̂k. Fur-

thermore, we first calculate Âk, Λ̂k, and ĉk, and we plug in these estimates when calculating

R̂k and Q̂k.

We initialise the algorithm with random numbers for all parameters. We then run the

Kalman filter and smoother and estimate the new parameters. We keep repeating this until

the parameters converge or until we have reached 1000 iterations. Furthermore, to identify the

model, we set the upper part of each Λ̂k to an r × r identity matrix, with r being the number

of factors in the model, where we follow Bai and Wang (2015), who examine a DFM and set the

upper part of Λ̂ to an r × r identity matrix.

To make one-step ahead forecasts, we must first forecast the state and the factors. Thereafter,

we can produce the actual forecast. The state is forecast as follows: Ŝt+1 = St. Now we can

write the following forecast for the factors:

f̂T+1|T = E[AST+1
fT + ηT+1|IT ]

= ÂŜT+1
f̂T |T

= ÂST
f̂T |T .

(28)
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With this forecast for the factors, we can write the actual forecast, which looks as follows:

ŷT+1|T = E[cST+1
+ΛST+1

fT+1 + εT+1]

= ĉŜT+1
+ Λ̂ŜT+1

f̂T+1|T

= ĉST
+ Λ̂ST

f̂T+1|T .

(29)

2.3 Markov Switching Dynamic Factor Model

For the Markov switching dynamic factor model we use the following specification, inspired by

Brownlees and Kole (2022) and Kim (1994):

yt = cSt +ΛStft + εt, (30)

µt = BStµt−1 +

ηt

0

 , (31)

where yt has length n for t = 1, . . . , T , ft are latent factors, and εt ∼ N(0,RSt) and ηt ∼

N(0,QSt). Just as in Equation 1, St is the state at time t which is an unobserved Markov

process described by P[St = i|St−1 = j] = pij , with i, j = 1, . . . ,m, with m being the number of

states. Furthermore, µt =

 ft

ft−1

 and BSt =

ASt O

I O

, with I being an r× r identity matrix,

and O being an r × r zero matrix, with r being the number of factors in the model.

In this model, we have two layers of latency, since we have both latent factors and a latent

Markov process determining the state at time t. To filter these latent variables and to estimate

the model, we use the Kim filter and smoother as described Brownlees and Kole (2022). We

again have a prediction step and an update step. The prediction and update steps look as

follows:

µ̂
(j,k)
t|t−1 = Bkµ̂

j
t−1|t−1, (32)

Σ
(j,k)
t|t−1 = BkΣ

j
t−1|t−1B

′
k +ZQkZ

′, (33)

µ̂
(j,k)
t|t = µ̂

(j,k)
t|t−1 +Σ

(j,k)
t|t−1ZΛ′

k

(
ΛkZ

′Σ
(j,k)
t|t−1ZΛ′

k +Rk

)−1(
yt − ck −ΛkZ

′µ̂
(j,k)
t|t−1

)
, (34)

Σ
(j,k)
t|t = Σ

(j,k)
t|t−1 −Σ

(j,k)
t|t−1ZΛ′

k

(
ΛkZ

′Σ
(j,k)
t|t−1ZΛ′

k +Rk

)−1
ΛkZ

′Σ
(j,k)
t|t−1. (35)

Here, µ̂
(j,k)
t|t−1 is our estimate for µt, given It−1, and that St = k and St−1 = j. Furthermore,

Σ
(j,k)
t|t−1 is the uncertainty of µ̂

(j,k)
t|t−1. Moreover, Z =

 I

O

, with again I being an r × r identity

matrix, and O being an r × r zero matrix.
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Now we collapse the terms and we write the following:

µ̂k
t|t =

∑m
j=1 P[St−1 = j, St = k|It]µ̂(j,k)

t|t

P[St = k|It]
, (36)

Σk
t|t =

∑m
j=1 P[St−1 = j, St = k|It]

(
Σ

(j,k)
t|t + (µ̂k

t|t − µ̂
(j,k)
t|t )(µ̂k

t|t − µ̂
(j,k)
t|t )′

)
P[St = k|It]

. (37)

Here, µ̂k
t|t is our estimate for µt, given It, and that St = k, with Σk

t|t the uncertainty of that

estimate. To complete the filtering, we need to calculate the utilised probability terms, which

we do as follows:

f(yt, St−1 = j, St = k|It−1) = f(yt|St−1 = j, St = k, It−1)

× P[St−1 = j, St = k|It−1],
(38)

where f(yt|St−1 = j, St = k, It−1) = ϕ(yt − ck −ΛkZ
′µ̂

(j,k)
t|t−1;0,ΛkZ

′Σ
(j,k)
t|t−1ZΛ′

k +Rk),

with ϕ the pdf of the normal distribution.

P[St−1 = j, St = k|It] =
f(yt, St−1 = j, St = k|It−1)

f(yt|It−1)
, (39)

where f(yt|It−1) =
m∑
k=1

m∑
j=1

f(yt, St−1 = j, St = k|It−1).

P[St = k|It] =
m∑
j=1

P[St−1 = j, St = k|It], (40)

P[St = k, St+1 = i|It] = P[St+1 = i|St = k]P[St = k|It]. (41)

To start the filtering, we set the following input values. For all k, µ̂k
0|0 = 0 and Σk

0|0 =106I O

O O

, with again I being an r × r identity matrix, and O being an r × r zero matrix.

Furthermore, we set, for all j, and for all k, P[S0 = j, S1 = k|I0] = 1/m2.

Once we have all observations, we can iterate back and smooth our estimates based on the

full sample size (IT ). For this we write the following:

P[ST−1 = j|IT ] =
m∑

k=1

P[ST−1 = j, ST = k|IT ], (42)

P[St−1 = j, St = k|IT ] =
P[St = k|IT ]× P[St−1 = j, St = k|It−1]

P[St = k|It−1]
, (43)

P[St−1 = j|IT ] =
m∑

k=1

P[St−1 = j, St = k|IT ]. (44)
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Now we can write the following:

µ̂
(j,k)
t|T = µ̂j

t|t + Σ̃
(j,k)
t (µ̂k

t+1|T − µ̂
(j,k)
t+1|t), (45)

Σ
(j,k)
t|T = Σj

t|t + Σ̃
(j,k)
t (Σk

t+1|T −Σ
(j,k)
t+1|t)Σ̃

(j,k)
t

′, (46)

Σ
(j,k)
t+1,t|T = Σk

t+1|T Σ̃
(j,k)
t

′. (47)

Here, Σ̃
(j,k)
t = Σj

t|tB
′
k(Σ

(j,k)
t+1|t)

−1, µ̂
(j,k)
t|T is our estimate for µt, given IT , and that St+1 = k

and St = j, with Σ
(j,k)
t|T the uncertainty of that estimate. Furthermore, Σ

(j,k)
t+1,t|T is the covariance

of µt+1 and µt.

Now we can again collapse some terms and we get the following:

µ̂j
t|T =

∑m
k=1 P[St = j, St+1 = k|IT ]µ̂(j,k)

t|T

P[St = j|IT ]
, (48)

Σj
t|T =

∑m
k=1 P[St = j, St+1 = k|IT ]

(
Σ

(j,k)
t|T + (µ̂j

t|T − µ̂
(j,k)
t|T )(µ̂j

t|T − µ̂
(j,k)
t|T )′

)
P[St = j|IT ]

. (49)

Again, the parameters are estimated by the EM algorithm. This EM algorithm is the same

as the one for the dynamic factor mixture model, but with a few details changed since the

state is not given but estimated through the Kim filter and the model is written in companion

form. Hence, for the M-step in the Markov switching dynamic factor model, we have a slightly

modified version of Equations 23-27, that looks as follows:

[
ĉk Λ̂k

]
=
( T∑

t=1

P[St = k|IT ]yt

[
1 f̂k

t|T
′
] )

×
( T∑

t=1

P[St = k|IT ]

 1 f̂k
t|T

′

f̂k
t|T

′ (f̂k
t|T f̂

k
t|T

′ +Z ′Σk
t|TZ)−1

), (50)

Âk =
(
Z ′

T∑
t=2

m∑
j=1

P[St−1 = j, St = k|IT ](µ̂k
t|T µ̂

(j,k)
t−1|T

′ +Σ
(j,k)
t,t−1|T )Z

)

×
(
Z ′

T∑
t=2

m∑
j=1

P[St−1 = j, St = k|IT ](µ̂(j,k)
t−1|T µ̂

(j,k)
t−1|T

′ +Σ
(j,k)
t−1|T )Z

)−1
,

(51)

R̂k =
1∑T

t=1 P[St = k|IT ]

T∑
t=1

P[St = k|IT ]

×
(
(yt − ĉk − Λ̂kf̂

k
t|T )(yt − ĉk − Λ̂kf̂

k
t|T )

′ + Λ̂k(Z
′Σk

t|TZ)Λ̂′
k

)
,

(52)
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Q̂k =
1∑T

t=2 P[St = k|IT ]

×
T∑
t=2

m∑
j=1

P[St−1 = j, St = k|IT ]

×
(
Z ′(µ̂k

t|T − B̂kµ̂
(j,k)
t−1|T )(µ̂

k
t|T − B̂kµ̂

(j,k)
t−1|T )

′Z

+Z ′(Σk
t|T −Σ

(j,k)
t,t−1|T B̂

′
k − B̂kΣ

(j,k)
t,t−1|T

′ + B̂kΣ
(j,k)
t−1|T B̂

′
k)Z

)
.

(53)

Furthermore, for the transition probabilities, we get an equation similar to Equation 10 that

looks as follows:

P[St = k|St−1 = j] =

∑T
t=2 P[St−1 = j, St = k|IT ]∑T−1

t=1 P[St = j|IT ]
. (54)

We again initialise the algorithm with random numbers for all parameters. We then run

the Kim filter and smoother and estimate the new parameters. We keep repeating this until

the parameters converge or until we have reached 1000 iterations. Furthermore, to identify the

model, we follow Brownlees and Kole (2022) and set the upper part of Λ̂1 to an r × r lower

triangular matrix with ones on the diagonal elements, with r again being the number of factors

in the model.

To make one-step ahead forecasts, we must first forecast the factors for every possible path

of states at time T and T + 1. Thereafter, we can produce the actual forecast. Hence, we write

the following:

µ̂
(j,k)
T+1|T = B̂kµ̂

j
T |T , (55)

ŷT+1|T =
m∑
j=1

m∑
k=1

P[ST = j, ST+1 = k|IT ]
(
ĉk + Λ̂kf̂

(j,k)
T+1|T

)
. (56)

2.4 Model Comparison

The aforementioned models are compared in both a simulation study and an application. The

models are compared based on their one-step ahead point forecasts, using the Mean Squared

Prediction Error (MSPE) and the corresponding Diebold Mariano (DM) statistic. This statistic

reads as follows:

DM =
d̄

σ̂d/
√
P

∼ N(0, 1), (57)

where d is the loss differential, where we use the SPE as loss function. Hence, dk = e21,k − e22,k

for k = T + 1, . . . , T + P , and ei = [ei,T+1, . . . , ei,T+P ] is the vector of forecast errors of model

i, with P the number of forecasts that are made. Moreover, d̄ is the sample mean of d, and σ̂d

the sample standard deviation of d.
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3 Simulation Study

We first perform a simulation study. Herein, we simulate multiple multivariate time series

according to several VAR structures, each having different autoregressive parameters and/or a

different number of series. Then, we estimate our models for each of the series and we investigate

which model performs best under the different circumstances.

3.1 Simulation Procedure

In our simulation study, we perform eight simulations, each having 100 replications. In every

simulation, we generate a certain multivariate time series in every replication. We then estimate

the parameters in each of our four models based on those series. Thereafter, we make forecasts,

and we calculate the performance of the models based on their MSPEs, which is averaged over

all series, and we assess the DM statistics.

In each replication, we generate a multivariate time series of length 1100 based on a VAR

model with one lag. Furthermore, we simulate a series representing the state, determined by

a Markov process. This series is allowed to take on two values, representing two states, an

expansion and a recession. When in state one (that mimics an expansion), the probability to

stay in that state is a random number between 0.9 and 111. Moreover, when in state two, the

probability to stay in that state is a random number between 0.8 and 0.9. Furthermore, we start

in state one. The VAR model has different parameters in the states. We have eight different

simulations. In every simulation, we have a different VAR structure. We estimate a VAR with

2, 3, 4, and 5 series, giving us four choices. Moreover, with each of these series, we generate two

different VAR models. In the first, we have high positive parameters only in the first state, and

intermediate parameters in the second state. In the second model, we have again intermediate

parameters, but now in the first state, and low parameters in the second state. More elaboration

can be found in Appendix J. Generating data with a VAR with 2, 3, 4, and 5 series enables us to

comprehensively compare the models while keeping the research manageable. The different VAR

structures are investigated to determine how the models compare to each other under different

correlation structures. We expect that the higher the correlation, the better the dynamic factor

models perform with respect to the UMSARM, because there is more co-movement between the

series. Besides, when we investigate more series there might be more co-movement, and we thus

expect that the dynamic factor models perform better relative to the UMSARM as the number

of series gets larger.

In each simulation, we rank our models based on their MSPEs and the corresponding DM

11The random numbers can be reproduced using Matlab (MathWorks (2021)) with the default random seed.
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statistics, which are computed for each replication separately, but with all series combined within

a replication. We also list an overall MSPE ratio for each model, which is the average of the

MSPEs taken over all replications of the model, divided by the average of the MSPEs taken

over all replications of the UMSARM. In each replication, the parameters in the models are

estimated based on the first 1000 observations. Thereafter, 100 one-step ahead forecasts are

made. Naturally, the dynamic factor models are estimated using all series in a replication, and

forecast all series simultaneously. The univariate Markov switching model however, is estimated

multiple times within a replication, once for each time series. Also, the time series are forecast

separately.

Because this is the first simulation study in this setting, we consider a VAR with only two

states and one lag for simplicity. Besides, in our models, we also use two states and one lag.

Furthermore, the number of factors that we use in the three dynamic factor models is one for

the VARs with two and three series, and two for the VARs with four and five series. Also,

we consider some extreme VAR structures, where we do not allow for some positive and some

negative numbers within the same autoregressive parameter. Considering more lags, more states,

more series, a different number of factors, or a VAR with more nuanced parameters is left for

further research.

3.2 Results

In this section, we first discuss the MSPE ratios. Thereafter we draw attention to the results

regarding the DM statistics. The MSPE ratios are shown in Table 1.

Table 1: The MSPE ratios for all VAR forms.

Parameter values Dimension UMSARM DFM DFMM MSDFM

HIGH

2 1 0.77 0.79 0.74
3 1 0.79 0.82 0.77
4 1 0.83 0.94 0.79
5 1 0.88 0.90 0.80

LOW

2 1 0.90 0.87 0.87
3 1 0.93 0.94 0.89
4 1 0.96 0.97 0.90
5 1 0.94 0.99 0.91

The parameter value HIGH corresponds with the VAR with high parameters in the first state
and intermediate parameters in the second state. Similarly, the parameter value LOW

corresponds with the VAR with intermediate parameters in the first state, and low parameters
in the second state. Besides, the dimension represents the number of series in the VAR.

Generally, when looking at the table, we see that the MSDFM performs the best, followed

by the DFM, which is in turn closely followed by the DFMM. The UMSARM performs worst.

When the VAR has high parameters in the first state and intermediate parameters in the second
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state, the dynamic factor models seem to outperform the UMSARM with a larger margin than

when the VAR has intermediate parameters in the first state and low parameters in the second

state. Moreover, as the number of series in the VAR get larger, the dynamic factor models seem

to outperform the UMSARM with a smaller margin.

More specifically, we find for the VAR with two series and high parameters in the first state

and intermediate parameters in the second state, that the MSPEs of the DFM and the MSDFM

are roughly 25% less than that of the UMSARM, with a standard error of 1.4% for the DFM and

0.7% for the MSDFM, and with the MSDFM being the lowest one with a small but significant

margin. Furthermore, we notice that that the MSPE of the DFMM is 20% less than that of the

UMSARM, with a standard error of 3.4%. When looking at the VAR with three series and the

same distribution of parameters, we see again that the MSDFM performs best, followed by the

DFM and then the DFMM, and that UMSARM performs worst. When looking further, we see

that when the number of series gets larger, the results do not change drastically. MSDFM has

the lowest MSPE, followed by the DFM, then the DFMM, and the UMSARM performs worst.

In the VAR with four series, the performance of the DFM is closer to the performance of the

MSDFM, which has an MSPE of roughly 20% less than the UMSARM, and in the VAR with

five series its performance is closer to that of the DFMM, which has an MSPE of around 10%

less than the UMSARM.

When investigating the VARs that have intermediate parameters in the first state and low

parameters in the second state, we find that the order of the models with respect to performance

does not change but that the overall performance of the three dynamic factor models lie closer

to that of the UMSARM. In all VARs, the MSDFM performs best, having an MSPE of roughly

10% less than that of the UMSARM. The MSPE of the DFM ranges between 90% and 96% of

that of the UMSARM, and the MSPE of the DFMM ranges between 87% and 99% of that of

the UMSARM.
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The results regarding the DM statistics are shown in Table 2.

Table 2: The number of DM statistics that are significant on a 5% significance level for all VAR forms.

UMSARM UMSARM UMSARM DFM DFM DFMM
Parameter values Dimension - - - - - -

DFM DFMM MSDFM DFMM MSDFM MSDFM

HIGH

2 1 98 1 98 0 100 6 10 2 22 2 21
3 1 96 3 94 0 99 9 10 4 20 5 16
4 7 92 14 77 1 97 26 14 6 26 8 31
5 9 87 14 72 0 93 28 22 6 29 11 36

LOW

2 3 84 0 83 0 84 3 6 3 9 3 7
3 7 62 6 60 0 73 13 20 2 18 9 17
4 11 56 15 55 0 74 19 20 1 21 11 27
5 7 62 13 49 2 74 32 11 10 20 6 22

The parameter values and dimension mean the same as in Table 1. Moreover, in the columns,
models A-B are listed, which means that model A is compared to model B. Also, for each row,
a number in the first column below A-B is listed, which is the number of times that model A
performs significantly better than model B. Likewise, for each row, a number in the second

column below A-B is listed, which is the number of times that model B performs significantly
better than model A.

When looking at this table, we find that the MSDFM performs the best, followed by the DFM

and the DFMM, which perform equally well. The UMSARM performs worst. The difference in

performance between the dynamic factor models and the UMSARM is smaller when the VAR

has intermediate parameters in the first state and low parameters in the second state than when

the VAR has high parameters in the first state and intermediate parameters in the second state.

Moreover, in both parameter distributions, the difference in performance between the dynamic

factor models and the UMSARM gets smaller when the number of series gets larger. When

comparing the dynamic factor models, both the number of series in the VAR and the parameter

distribution does not matter for the difference in performance.

For the VAR with two series and high parameters in the first state and intermediate param-

eters in the second state, we clearly see that the univariate Markov switching model performs

much worse than all three the dynamic factor models. We also notice immediately that the

MSDFM performs better than the DFM and the DFMM, however this difference is smaller than

the difference between the UMSARM and the dynamic factor models. Regarding the DFM and

the DFMM, we observe that the DFMM significantly outperforms the DFM 10 times, the DFM

significantly outperforms the DFMM 6 times, and the models perform equally well in roughly

85% of the replications. Looking at the VAR with three series and the same distribution of pa-

rameters, we observe similar results. The UMSARM performs again much worse than all three

the dynamic factor models, even though the number of DM statistics in favour of the dynamic

factor models has become a bit less. We also again see that the MSDFM performs better than

both the DFM and the DFMM, which again perform equally well.
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When looking further into the table, to the VARs with four or five series, we notice the same

patterns. The UMSARM performs much worse than all three the dynamic factor models, but

the number of DM statistics in favour of the dynamic factor models becomes less as the number

of series gets larger. The MSDFM outperforms both the DFM and the DFMM. Moreover, the

number of significant DM statistics when comparing the DFM and the DFMM gets larger, but

the difference in the number of DM statistics in favour of the former and the number of DM

statistics in favour of the latter stays relatively small.

When the VARs have intermediate parameters in the first state and low parameters in the

second state, we find that the dynamic factor models still outperform the UMSARM, but that

the number of significant DM statistics is a lot less than it was before. The number of significant

DM statistics in favour of the MSDFM when comparing it to the DFM and the DFMM does

not change that much, and we again find that the MSDFM performs best. Again, for each

number of series, the difference in the number of DM statistics in favour of the DFM and the

number of DM statistics in favour of the DFMM stays relatively small. As in the VAR with

high parameters in the first state and intermediate parameters in the second state, we find that

when comparing the dynamic factor models with the UMSARM the number of DM statistics in

favour of the dynamic factor models becomes less as the number of series gets larger.

Summarising the results of both the MSPE ratios and the DM statistics, we find the following.

The MSDFM clearly performs best, and the UMSARM performs worst, for both parameter

distributions and for all number of series. Furthermore, there is only a tiny difference between

the DFM and the DFMM, which is in favour of the DFM. When the parameters in the VAR

are large, we find that the dynamic factor models perform much better with respect to the

UMSARM than when the VAR parameters are small, which is just as expected. Remarkable

is that when the number of parameters gets larger, the difference in performance between the

UMSARM and the dynamic factor models becomes smaller, for both parameter distributions,

which is different than expected. We thus conclude that if data originates from a VAR model, the

MSDFM has the best forecasting performance across the models used in this research. Hence,

if one examines a data set and believes that the data originates from a VAR, but there are not

enough observations to estimate a VAR, the MSDFM should be looked into.

4 Empirical Application

As an application, we compare the forecast performance of the aforementioned models, using

a data set including three macroeconomic variables, annual GDP growth, unemployment rate,

and inflation rate, for a total of seven countries, Canada, France, Germany, Italy, Japan, the

21



UK, and the USA, better known as the group of seven (or G7).

When using a VAR for all countries for only one variable and one state only, we would already

need 56 parameters. If we wish to use more variables or allow for more states, the number of

parameters really explodes. Hence, to properly analyse this data set, we must make use of the

aforementioned models. We analyse different sets of series within this data set and for each we

investigate which of our considered models works best.

4.1 Data

As mentioned before, we use a data set including three macroeconomic variables for a total of

seven countries. The data set includes quarterly data in the period from 1991Q1 until 2021Q4,

and is gathered from the Organisation for Economic Cooperation and Development (OECD).

Some descriptive statistics of the variables are shown in Table 3. The table consists of three

parts, where the first part includes all the observations, the second part includes observations

in recessions only, as indicated by the National Bureau of Economic Research (NBER), and

the third part includes observations in expansions only. To distinguish between recessions and

expansions, we regarded a whole quarter as being in a recession (expansion) when most of its

months were in a recession (expansion). Worth to mention is that the NBER indicated recessions

are recessions occurring in the USA. However, since the economy of the USA is the largest in the

world and other economies co-move with this economy, we believe using solely these recessions

is worthwhile for data exploration.
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Table 3: Descriptive statistics of the macroeconomic variables for all countries from 1991Q1 until
2021Q4 (left), in recessions only (middle), and in expansions only (right).

Variable Mean St. Dev.
GDP growth Canada 0.56 1.46
GDP growth France 0.39 2.27
GDP growth Germany 0.33 1.51
GDP growth Italy 0.18 2.06
GDP growth Japan 0.19 1.28
GDP growth UK 0.50 2.49
GDP growth USA 0.62 1.22
Unemployment rate Canada 7.86 1.61
Unemployment rate France 9.78 1.46
Unemployment rate Germany 6.90 2.38
Unemployment rate Italy 9.71 1.73
Unemployment rate Japan 3.75 0.99
Unemployment rate UK 6.39 1.83
Unemployment rate USA 5.91 1.74
Inflation rate Canada 1.93 1.13
Inflation rate France 1.49 0.83
Inflation rate Germany 1.80 1.22
Inflation rate Italy 2.30 1.64
Inflation rate Japan 0.35 1.11
Inflation rate UK 2.31 1.34
Inflation rate USA 2.39 1.23

Mean St. Dev.
-0.55 1.11
-0.79 1.76
-0.51 1.83
-1.04 2.12
-0.69 1.80
-0.65 1.12
-0.47 0.84
7.25 1.27
8.27 0.76
6.92 1.42
7.90 1.04
4.14 1.07
5.89 1.22
5.99 1.66
2.40 1.69
1.95 1.18
2.03 0.93
2.78 1.63
0.56 1.50
3.09 2.01
2.68 2.08

Mean St. Dev.
0.67 1.45
0.51 2.29
0.41 1.46
0.30 2.03
0.28 1.20
0.61 2.56
0.72 1.20
7.92 1.63
9.92 1.43
6.89 2.46
9.89 1.68
3.71 0.98
6.44 1.88
5.90 1.75
1.89 1.06
1.44 0.78
1.78 1.25
2.25 1.64
0.33 1.07
2.24 1.25
2.36 1.12

Regarding GDP growth, we observe that on average, the USA had the largest growth (0.62%),

followed closely by Canada (0.56%). The lowest average growth during this period was in Italy

(0.18%) and Japan (0.19%). The highest volatility is attained in the UK (2.49). Noteworthy

is that the volatility over the whole period for the UK is more than twice as high as during

recessions. When looking at the unemployment rates, we notice that Japan performs really well,

having an average unemployment rate of only 3.75%. The worst performing country is France,

with an average unemployment rate of 9.78%. Japan is also the country with the lowest average

inflation rate (0.35%), which is even more than four times as small as the average inflation rate of

France, the country with the second lowest average inflation rate (1.49%). The highest average

inflation rate was in the USA (2.39%).
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To give more insights in the data, we show a plot of the GDP growth, inflation rate, and

unemployment rate in the USA in Figure 1.

Figure 1: Plot of the macroeconomic variables for the USA from 1991Q1 until 2021Q4.

The blue line represents GDP growth, the orange line the inflation rate, and the green line the
unemployment rate. The two grey areas are NBER indicated recession periods that lasted
longer than one quarter. The two black vertical lines are NBER indicated recessions that

lasted only one quarter.

We see that all variables do not show a trend over time. We do however clearly see that

the unemployment rate rises quickly in recessions and slowly declines in expansions. For the

inflation rate, we see that it declines in recessions and rises in expansions, but both roughly

at the same speed. GDP growth stays quite the same during expansions, but in recessions it

declines quickly in the first half and rises quickly in the second half, except for the last recession,

where it just declines quickly, and rises in the expansion right after.

Furthermore, we list the correlations between the GDP growth in all countries in Table 4.

Table 4: The correlations between the GDP growth in all countries during the whole period.

Canada France Germany Italy Japan UK
France 0.88
Germany 0.79 0.84
Italy 0.84 0.97 0.87
Japan 0.67 0.62 0.71 0.65
UK 0.89 0.93 0.86 0.92 0.71
USA 0.90 0.86 0.77 0.84 0.68 0.91

All correlations are significant on a 1% significance level.

All correlations are positive, meaning that the GDP growth in all countries rise together

and decline together. The weakest correlations are between Japan and the other countries. The

strongest is that between Italy and France, which is 0.97.

We also list the correlations between the GDP growth in all countries in recessions and in

expansion only, this is shown in Table 5.
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Table 5: The correlations between the GDP growth in all countries during recessions only (lower) and
during expansions only (upper).

Canada France Germany Italy Japan UK USA
Canada 0.89 0.82 0.86 0.71 0.90 0.90
France 0.64** 0.87 0.97 0.68 0.93 0.88
Germany 0.41 0.52 0.88 0.68 0.89 0.80
Italy 0.50 0.92*** 0.74*** 0.68 0.93 0.86
Japan 0.18 0.11 0.78*** 0.33 0.75 0.70
UK 0.62** 0.80*** 0.63** 0.83*** 0.39 0.92
USA 0.66** 0.54* 0.47 0.55* 0.40 0.75***

The lower triangular matrix represents the correlations during recessions and the upper triangular
matrix depicts the correlations during expansions. For the lower triangular matrix, significance is

represented by one, two, or three asterisks, meaning whether the correlation is significant at the 10%,
5%, or 1% significance level, respectively. For the upper triangular matrix, the significance is not
explicitly indicated in the table because all correlations are significant on a 1% significance level.

During expansions, we observe the same as in the whole sample. All correlations are positive,

and the weakest correlations are those between Japan and all other countries. The strongest is

again that between Italy and France, which is again 0.97. During recessions, not every correlation

is significant anymore, of which most are correlations with Japan. On average, all correlations

are lower than during expansions, with the highest correlation now being 0.92 between Italy and

France, and the lowest being 0.11 between Japan and France, which was 0.68 during expansions

and 0.62 during the whole period.

Additionally, we show the correlations between the GDP growth and the lag of the GDP

growth in all countries, this is done in Table 6.

Table 6: The correlations between the GDP growth and the GDP growth with one lag in all countries
during the whole period.

Canada France Germany Italy Japan UK USA
Lag Canada -0.12 -0.45*** -0.22** -0.40*** -0.09 -0.27*** -0.17*
Lag France 0.00 -0.31*** -0.07 -0.27*** 0.06 -0.12 -0.05
Lag Germany -0.09 -0.38*** -0.20** -0.35*** -0.08 -0.27*** -0.15
Lag Italy 0.05 -0.26*** -0.02 -0.22** 0.09 -0.09 -0.01
Lag Japan -0.14 -0.38*** -0.18** -0.32*** -0.14 -0.30*** -0.16*
Lag UK -0.17** -0.48*** -0.24*** -0.44*** -0.11 -0.33*** -0.22**
Lag USA -0.12 -0.43*** -0.17** -0.37*** -0.02 -0.25*** -0.16**

The addition of one, two, or three asterisks means significance on the 10%, 5%, and 1% significance
level respectively.

We notice that all significant correlations are negative, with the correlation between the

GDP growth in France and the lag of the GDP growth in the UK being the one the one with

the largest magnitude (-0.48). Meaning that if the GDP growth in the UK at some period in

time declines (rises), the GDP growth in France generally rises (declines) the period after that.

Furthermore, out of the seven countries, five are significantly correlated with their own lag, and

we see quite a lot significant correlations between the GDP growth in the countries and the lags

of the GDP growth in other countries, except for Canada and Japan.
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Ultimately, we show the scree plot of the Principal Component Analysis (PCA) of all variables

and all countries combined in Figure 2

Figure 2: Scree plot of the PCA of all variables and all countries combined.

We find that the sixth component corresponds with both the first eigenvalue that is lower

than one and the so-called elbow in the scree plot. When retaining five components, we find

that 84% of the variance is explained by the principal components. The scree plots of the other

subsets of the data can be found in Appendix K.

4.2 Methodology

In our application, we consider a total of eleven subsets of our data set. Then, similar as in the

simulation study, we estimate, on each subset, each of our models, and we measure their perfor-

mance by their MSPEs and the corresponding DM statistics, averaged over all considered series.

The eleven subsets are the following. For each country separately, we consider all variables,

giving us the first seven subsets (of three series each). Then, for each variable separately, we

consider all countries, giving us three more (of seven series each). The last is the full data set,

including all countries and all variables (which has 21 series). For the subsets with three series,

we use one factor in the dynamic factor models. Although the PCA suggest retaining two or

three factors, we decide to use only one because the dynamic factor models are used to reduce the

number of parameters in the model, and this is not achieved otherwise12. For the subsets with

seven series, we use three factors, as suggested by the PCA. For the unemployment rate, we find

that the first three eigenvalues are larger than one, and when retaining three components, 84%

of the variance is explained. For the inflation rate, we find that only the first eigenvalue is larger

12When using a VAR with three series, we have 21 parameters. When using a dynamic factor model with
three series and two factors, we have 26 parameters, and with three factors even more. When using one factor,
we need only 17 parameters.
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than one, but it only explains 62% of the variance. When retaining three components, 87% of

the variance is explained. For the GDP growth rate, again only the first eigenvalue is larger

than one, and for this one explains 84% of the variance. However, a clear interpretation can be

associated with the second and third component, with the second component being solely the

GDP growth of Japan, and the third component being the difference in GDP growth between

North America (Canada and the USA) and Europe (France, Germany, and Italy). For the full

data set, we use and five factors, again as suggested by the PCA, which suggests retaining five

components as explained in Section 4.1. We expect, at least for the subset with GDP, that using

a dynamic factor model yields additional performance relative to the UMSARM, because a lot

of countries have GDP growth that is significantly correlated with the lag of the GDP growth

in other countries. Moreover, based on the simulation study, we expect that the addition of

dynamic factors provides less improvement as the number of series grows.

As in the simulation study, we rank our models based on their MSPEs and the corresponding

DM statistics, which are combined for all series. Here, we again list an overall MSPE ratio for

each model. Again, the dynamic factor models are estimated using all investigated series, and

forecast all series simultaneously, and the univariate Markov switching model is estimated once

for each time series and the series are forecast separately.

In the application, the estimation sample is an expanding window. First, the models are

estimated based on the data from 1991Q1 until 2011Q4. Thereafter, one-step ahead forecasts

are made until 2013Q4. Then, the models are estimated based on the data from 1991Q1 until

2013Q4, and one-step ahead forecasts are made until 2015Q4, and so forth until we obtain a

forecast for 2021Q4. Since the number of parameters in the models can get large, the expand-

ing window is chosen to obtain a reasonable ratio of number of observations and number of

parameters that need to be identified. An issue with the expanding window however, is that

in combination with nested models, the DM test might not be valid. Hence, the DM statistics

obtained when comparing the DFM with either the DFMM or the MSDFM must be interpreted

with caution.

Since this study is among the first to examine the Markov switching dynamic factor model

and the dynamic factor mixture model in an applied setting, we use two states and one lag in

our models for simplicity. Again, considering more lags, more states, or a different number of

factors is left for further research. Also, further research might consider using a rolling window

rather than an expanding window.
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4.3 Results

In this section, we discuss the MSPE ratios and the DM statistics of all subsets of our data set.

These are shown in Table 7.

Table 7: The MSPE ratios and DM statistics for all subsets of the data.

MSPEs DM statistics
UMSARM UMSARM UMSARM DFM DFM DFMM

UMSARM DFM DFMM MSDFM - - - - - -
DFM DFMM MSDFM DFMM MSDFM MSDFM

GDP 1 1.33 0.59 1.06 -2.43** 2.32** -0.68 2.68*** 2.12** -2.55**
Inflation 1 3.67 NA 2.77 -5.18*** NA -3.87*** NA 1.58 NA
Unemployment 1 3.12 NA 13.36 -4.37*** NA -4.66*** NA -3.92*** NA
Canada 1 0.75 0.81 0.81 -0.68 0.68 0.46 -0.61 -0.44 0.03
France 1 0.97 0.63 0.68 0.09 0.98 0.88 2.63*** 2.37** -2.64***
Germany 1 1.16 2.75 1.14 -0.49 -1.19 -1.80* -1.03 0.07 1.10
Italy 1 1.45 2.14 1.45 -2.18** -3.14*** -1.46 -1.51 -0.02 1.30
Japan 1 1.04 0.71 0.77 -0.17 0.73 0.56 1.77* 1.31 -0.35
UK 1 0.72 0.64 0.76 0.89 1.15 0.75 2.83*** -0.68 -1.68*
USA 1 1.14 0.89 1.11 -0.55 0.37 -0.51 2.20** 0.38 -1.72*
All 1 0.82 NA NA 0.97 NA NA NA NA NA

For the DM statistics, A-B means we are comparing models A and B, where a negative
number means that model A performs better, and a positive number means that model B

performs better. In the rows we have the subsets of the data, where for instance GDP means
the subset with GDP growth for all countries, and Canada means the subset of all series for
Canada only. Besides, in the last row we have all series for all countries. For some subsets of

the data, the parameters could not be identified for all models, these MSPE ratios and
corresponding DM statistics are listed as NA. Furthermore, the addition of one, two, or three

asterisks means significance on the 10%, 5%, and 1% significance level respectively.

The first thing we notice when looking at this table is that the DFMM and the MSDFM

cannot be utilised for every subset of the data. This could either be due to certain properties

of the data or due to the ratio of number of observations and number of parameters that need

to be identified. When looking further into the table, we see that if we are able to estimate all

models, the UMSARM and the DFMM perform best, followed by the MSDFM, and the DFM

performs worst. If we study the table in more detail, we find that the UMSARM performs best

when looking at one variable only but for each country simultaneously, which is different than

expected. The parameters of the DFMM cannot be identified in two out of three times, and the

DFM and the MSDFM perform much worse than the UMSARM, with MSPE ratios of 1.33, 3.67,

and 3.12 for the DFM, and 1.06, 2.77, and 13.36 for the MSDFM, for GDP growth, inflation, and

unemployment respectively, of which five have highly significant DM statistics. When we look

at all three variables for one country, we find that most DM statistics are insignificant. When

comparing the UMSARM to the three dynamic factor models, we find only three significant DM

statistics, where the UMSARM performs significantly better than the MSDFM when forecasting

the series in Germany, and it performs significantly better than both the DFM and the DFMM

when forecasting the series in Italy. If we compare the dynamic factor models with each other,

the DFM gets significantly outperformed by the DFMM four times, and once by the MSDFM.
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However, as mentioned in Section 4.2, we cannot draw clear conclusions from this. Furthermore,

the MSDFM is significantly outperformed by the DFMM three times. Lastly, if we look at all

countries and all variables at once, the parameters in the DFMM and the MSDFM cannot be

identified, and the MSPE ratio is 0.82 for the DFM, but this is not a significant difference.

The decrease of the performance of the dynamic factor models with respect to the UMSARM

as the number of series gets larger is comparable to that of the simulation study, since the

relative performance is better when there are only three series than when there are seven series.

However, this relation does not hold when the number of series is 21, but this might mean that

the last mentioned subset can be compared to the higher parameters in the simulation study

and the other subsets to the lower parameters in the simulation study.

In short, the parameters in the DFMM and the MSDFM cannot always be identified, but

when they are, the DFMM performs adequately. The DFM and MSDFM perform relatively well

in general, but occasionally performs much worse than the UMSARM, which is, for this data,

the safest option across the used models. Hence, when examining macroeconomic variables,

we conclude that using the UMSARM is the best option. Worth to mention is that adjusting

the number of factors in the dynamic factor models might increase the model performance and

might make it possible to identify all parameters in each model.

4.4 Robustness

To check whether our findings of the application are robust, we investigate the same eleven

subsets of our data again, but with the observations during the COVID-19 pandemic omitted.

Hence, we obtain forecasts until 2019Q4 instead of 2021Q4. Then, we again rank our models

based on their MSPEs and the corresponding DM statistics, which are combined for all series.

Here, we again list an overall MSPE ratio for each model. The results can be found in Table 8.
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Table 8: The MSPE ratios and DM statistics for all subsets of the data with the observations during
the COVID-19 pandemic omitted.

MSPEs DM statistics
UMSARM UMSARM UMSARM DFM DFM DFMM

UMSARM DFM DFMM MSDFM - - - - - -
DFM DFMM MSDFM DFMM MSDFM MSDFM

GDP 1 1.01 1.29 1.11 -0.19 -1.59 -1.80* -1.46 -1.78* 0.92
Inflation 1 5.51 NA 3.73 -4.39*** NA -3.01*** NA 1.38 NA
Unemployment 1 37.54 NA 166.29 -8.30*** NA -4.01*** NA -3.09*** NA
Canada 1 1.85 1.78 1.57 -2.80*** -2.86*** -2.87*** 0.49 1.43 1.58
France 1 36.35 4.13 6.58 -2.81*** -4.29*** -6.10*** 2.54** 2.39** -3.56***
Germany 1 14.21 4.94 4.71 -9.02*** -5.43*** -5.50*** 7.03*** 6.29*** 0.26
Italy 1 23.98 20.81 21.27 -8.32*** -6.74*** -3.95*** 2.20** 0.48 -0.09
Japan 1 2.29 1.84 1.78 -3.24*** -2.92*** -2.81*** 1.90* 2.15** 1.58
UK 1 11.05 4.63 5.39 -5.90*** -5.95*** -5.07*** 3.70*** 3.66*** -0.86
USA 1 9.22 5.00 7.00 -4.55*** -3.87*** -4.21*** 2.67*** 1.32 -2.77***
All 1 5.42 NA NA -11.83*** NA NA NA NA NA

In this table, the rows and columns have the same meaning as in Table 7. Also, again the
addition of one, two, or three asterisks means significance on the 10%, 5%, and 1% significance

level respectively.

Noticeable in this table is that the MSPE ratios of the dynamic factor models are much higher

than in Table 7, and it is clear to see that the UMSARM outperforms all other models, since all

MSPE ratios for the dynamic factor models are large and all the DM statistics in the columns

with the UMSARM, except for the first row, are in favour of the UMSARM and significant on

the 1% significance level. Hence, the co-movement between the series was much larger during

the COVID-19 pandemic than before, such that modelling the series simultaneously becomes

abundant when looking at the data before this period. When comparing the three dynamic

factor models, we find that the DFM generally performs best when looking at all countries but

one variable only, and that both the DFMM and the MSDFM perform best when looking at all

variables but one country only, although this might be the results of non-valid DM statistics.

Since the parameters in both the DFMM and the MSDFM cannot be identified when looking

at all countries and all variables, the DFM is the best performing model in this case.

Summarising the results, we find that the models do not behave the same when excluding

2020 and 2021 as when we include those years. The dynamic factor models perform much worse

compared to the UMSARM than it did before. In addition, when comparing the dynamic factor

models with each other, the results are not quite the same as before. Howbeit, the UMSARM

performs the best, which seems to be a robust finding.

5 Conclusion

This paper assesses and compares the performance of the univariate Markov switching autore-

gressive Model (UMSARM), the dynamic factor model (DFM), the dynamic factor mixture

model (DFMM), and the Markov switching dynamic factor model (MSDFM). This is done in

both a simulation study and in an applied setting.
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In the simulation study, we compare one-step ahead point forecasts of our models on multiple

generated data sets according to different vector autoregressive (VAR) structures. All VARs

have one lag, but all have different autoregressive parameters and/or a different number of

series. Moreover, there are two states in which the VAR has different parameters, and there is

a Markov process determining the switching between the states.

We find that the MSDFM performs the best by quite a large proportion. The second best

model is the DFM, closely followed by the DFMM. Ultimately, the UMSARM performs worst.

Nonetheless, when the parameters in the VAR become smaller values, we see that the difference

in performance between the three dynamic factor models and the UMSARM shrinks as well.

Besides, the difference in performance between the dynamic factor models and the UMSARM

gets smaller as the number of series in the VAR gets larger. When comparing the dynamic factor

models to each other, both the number of series in the VAR and the size of the parameters does

not matter for the difference in performance.

As an application, we consider a data set including annual GDP growth, unemployment rate,

and inflation rate, all for Canada, France, Germany, Italy, Japan, the UK, and the USA, in the

period from 1991Q1 until 2021Q4. To compare the one-step ahead point forecast performance

of our models, we use eleven subsets of the data set. Finally, we perform a robustness check

doing the analysis with the same data subsets, but with the observations during the COVID-19

pandemic omitted (2020Q1-2021Q4). In both the simulation study and the application, the

forecasts are compared according to their MSPEs and the corresponding DM statistics.

For the application we find that the UMSARM performs the best, and that the DFM per-

forms worst. The DFMM and the MSDFM perform relatively well, but their parameters cannot

be identified at all times. The last mentioned phenomenon mostly happens when the number of

series gets large. When the observations during the COVID-19 pandemic are omitted, we again

find that the UMSARM performs the best. Moreover, the dynamic factor models perform much

worse compared to the UMSARM than they did before.

From these results, we conclude the following. Across the models used throughout this paper,

the MSDFM has the best forecasting performance when the data originates from a VAR model.

Hence, if one examines a data set and believes that the data originates from a VAR, but there

are not enough observations to estimate a VAR, the MSDFM might be worthwhile to look into.

Moreover, the DFM and DFMM also perform relatively well when the data originates from a

VAR, and the UMSARM performs worst. When the number of series that are investigated gets

larger, the performance of the UMSARM improves with respect to the dynamic factor models.

When examining macroeconomic variables, we conclude that using the UMSARM is the best
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option, since the addition of dynamic factors does not yield any additional performance.

However, in this paper, a specific number of factors is used for the dynamic factor models.

Adjusting the number of factors might make it possible to identify all parameters in each model.

Also, this study assumes the state at time t + 1 equals the state at time t in the DFMM. It

might be worthwhile to investigate whether a more sophisticated model for the state increases

the model performance of the DFMM, as this model misses the transitions. Additionally, to

broaden the scope of the research, the simulation study could be augmented with VARs that

have more nuanced parameters or VARs that have a larger number of series. To expand the

application, other types of data sets could be used, and data sets with more observations could

be examined to be able to estimate all the models properly. Lastly, considering a rolling window

rather than an expanding window to estimate the parameters might give more insights in the

comparison of the DFM with the DFMM and the MSDFM.
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Appendix

A Derivation of the update step of the Hamilton filter (Hamil-

ton (1989))

ξ̂t|t =


P[St = 1|It]

...

P[St = m|It]



=


P[St = 1|It−1, yt]

...

P[St = m|It−1, yt]



=
1

f(yt|It−1)


f(St = 1, yt|It−1)

...

f(St = m, yt|It−1)



=
1

f(yt|It−1)


f(yt|St = 1, It−1)P[St = 1|It−1]

...

f(yt|St = m, It−1)P[St = m|It−1]



=
1

f(yt|It−1)


f(yt|St = 1)

...

f(yt|St = m)

⊙ ξ̂t|t−1

=


f(yt|St = 1)

...

f(yt|St = m)

⊙ ξ̂t|t−1

[
1 · · · 1

](
f(yt|St = 1)

...

f(yt|St = m)

⊙ ξ̂t|t−1

)
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B Derivation of the inner expectation of the Kim smoother

(Hamilton (1989))

Without loss of generality, we can write that ξt+1 has a one of position k and zeroes on all other

positions, and that we have only two states. Now we can write the following:

E[ξt|ξt+1, IT ] =

P[St = 1|St+1 = k, IT ]
P[St = 2|St+1 = k, IT ]


≈

P[St = 1|St+1 = k, It]
P[St = 2|St+1 = k, It]


=

P[St = 1, St+1 = k|It]
P[St = 2, St+1 = k|It]

 /P[St+1 = k|It]

=

P[St = 1|It]
P[St = 2|It]

⊙

P[St+1 = k|St = 1]

P[St+1 = k|St = 2]

 /P[St+1 = k|It]

= ξ̂t|t ⊙

[pk1
pk2

 /(ξ̂t+1|t)k

]

= ξ̂t|t ⊙ [P ′ek/(ξ̂t+1|t)k], with ek a unit vector with a one at position k

and zeroes on all other positions.

= ξ̂t|t ⊙ P ′[ek ⊘ ξ̂t+1|t]

= ξ̂t|t ⊙ P ′[ξt+1 ⊘ ξ̂t+1|t].
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C Derivation of p∗ijt in the E-step of the EM algorithm of the

Markov switching autoregressive model (Hamilton (1990))

p∗ijt = P[St = i, St−1 = j|IT ]

= P[St−1 = j|St = i, IT ]P[St = i|IT ]

= P[St−1 = j|St = i, It−1]P[St = i|IT ]

=
P[St = i, St−1 = j|It−1]P[St = i|IT ]

P[St = i|It−1]

=
pijP[St−1 = j|It−1]P[St = i|IT ]

P[St = i|It−1]

=
(P )ij × (ξ̂t|T )i × (ξ̂t−1|t−1)j

(ξ̂t|t−1)i

=
P ⊙ (ξ̂t|T ξ̂

′
t−1|t−1)ij

(ξ̂t|t−1)i

=
[
P ⊙ (ξ̂t|T ξ̂

′
t−1|t−1)⊘ (ξ̂t|t−1[1 · · · 1])

]
ij
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D Derivation of parameter expressions in the M-step of the

EM algorithm of the Markov switching autoregressive model

(Hamilton (1990))

When optimising 7 over the initial distribution, we need to solve

d

dρk

n∑
j=1

[
p∗j1log

(
ρj
)
− κ

(
n∑

j=1

ρj − 1

)]
= 0,

with κ a Lagrange multiplier, enforcing
∑

j ρj = 1. This leads to
p∗k1
ρk

−κ = 0. Hence, p∗k1 = κρk.∑
k p

∗
k1 =

∑
k ρk, implying that κ equals one, and thus p∗k1 = ρk. Hence, by definition of p∗k1,

ρ̂ = ξ̂1|T .

When optimising 7 with respect to the transition probabilities, we need to solve

∂

∂pkl

[
T∑
t=2

[
n∑

i,j=1

p∗ijtlog
(
fi(yt|θi)pij

)]
− κ

(
n∑

i=1

pil − 1

)]
= 0,

with κ again a Lagrange multiplier, now enforcing
∑

i il = 1. This leads to
∑T

t=2
p∗klt
pkl

− κ = 0.

Hence,
∑T

t=2 p
∗
klt = κpkl. Since

∑
k pkl = 1,

∑T
t=2

∑
k p

∗
klt = κ. Because

∑
k p

∗
klt = p∗l(t−1),

κ =
∑T

t=2 p
∗
l(t−1), and p̂kl =

∑T
t=2 p

∗
klt∑T

t=2 p
∗
l(t−1)

.

When optimising 7 with respect to the shape parameters θk, we need to solve

∂

∂θk

[
T∑
t=2

[
n∑

i,j=1

p∗ijtlog
(
fi(yt|θi)pij

)]]
=

T∑
t=2

[
n∑

j=1

p∗kjt
∂log

(
fk(yt|θk)

)
∂θk

]
= 0.

Hence, we have a weighted version of our standard maximum likelihood results, and we can

write the following:

β̂k = (X ′
lP

∗
kXl)

−1X ′
lP

∗
ky,

σ̂2
k =

∑T
t=2 p

∗
kt(yt − β̂′

kxt)
2∑T

t=2 p
∗
kt

.
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E Derivation of the prediction step in the Kalman filter

E[ft|It−1, St = k] = E[AStft−1 + ηt|It−1, St = k]

= AkE[ft−1|It−1, St = k] + E[ηt|It−1, St = k]

= Akf̂t−1|t−1, and

V[ft|It−1, St = k] = V[AStft−1 + ηt|It−1, St = k]

= AkV[ft−1|It−1, St = k]A′
k + V[ηt|It−1, St = k]

= AkPt−1|t−1A
′
k +Qk, which implies that

fk
t |It−1 ∼ N(Akf̂t−1|t−1,AkPt−1|t−1A

′
k +Qk). Hence,

f̂k
t|t−1 = Akf̂t−1|t−1,

P k
t|t−1 = AkPt−1|t−1A

′
k +Qk.
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F Derivation of the update step in the Kalman filter

In the update step, we make use of the following lemma, described in Majumdar and Majumdar

(2019):

If

z1
z2

 ∼ N

(µ1

µ2

 ,

Ω11 Ω12

Ω21 Ω22

), then
z2|z1 ∼ N

(
µ2 +Ω21Ω

−1
11 (z1 − µ1),Ω22 −Ω21Ω

−1
11 Ω12

)
.

(58)

Since yt = cSt +ΛStft + εt, we know that

yt|It−1, St = k ∼ N
(
ck +Λkf̂

k
t|t−1,ΛkP

k
t|t−1Λ

′
k +Rk

)
, which implies thatyt

ft

 |It−1 ∼ N

(ck +Λkf̂
k
t|t−1

f̂k
t|t−1

 ,

ΛkP
k
t|t−1Λ

′
k +Rk ΛkP

k
t|t−1

P k
t|t−1Λ

′
k P k

t|t−1

). (59)

Hence, ft|yt, It−1 ∼ N(f̂t|t,Pt|t), with the following updates13:

f̂t|t = f̂St

t|t−1 + P St

t|t−1Λ
′
St

(
ΛStP

St

t|t−1Λ
′
St

+RSt

)−1(
yt − cSt −ΛSt f̂

St

t|t−1

)
, (60)

Pt|t = P St

t|t−1 − P St

t|t−1Λ
′
St

(
ΛStP

St

t|t−1Λ
′
St

+RSt

)−1
ΛStP

St

t|t−1. (61)

13Since St is now known, we only update the factors and the corresponding uncertainties in the correct state.
These updates are now simply denoted as f̂t|t and Pt|t.
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G Derivation of the inner expectation in the Kalman smoother

The joint distribution of ft and ft+1 conditional on St+1 and It is as follows: ft

ft+1

 |St+1, It ∼ N

( f̂t|t

f̂t+1|t

 ,

 Pt|t Cov[ft,ft+1]

Cov[ft+1,ft] Pt+1|t

),
with Cov[ft,ft+1] = E

[(
ft − f̂t|t

)(
ft+1 − f̂t+1|t

)′]
= E

[(
ft − f̂t|t

)(
ASt+1ft + ηt+1 − f̂t+1|t

)′]

= E

[(
ft − f̂t|t

)(
ASt+1ft −ASt+1 f̂t|t

)′]

= E

[(
ft − f̂t|t

)(
ft − f̂t|t

)′
A′

St+1

]

= E

[(
ft − f̂t|t

)(
ft − f̂t|t

)′]
A′

St+1

= Pt|tA
′
St+1

.

Making use of the Normal lemma (58) again, we find the following:

E[ft|ft+1, St+1, It] = f̂t|t + Pt|tA
′
St+1

(P St

t+1|t)
−1(ft+1 − f̂St

t+1|t).
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H Derivation of parameter expressions in the M-step of the EM

algorithm of the dynamic factor mixture model

We write the scalar in log f(y1:T ,f0:T |IT ,θ) as a trace and re-order the matrices within that

trace to obtain the following:

∂log f(y1:T ,f0:T |IT ,θ)

∂Ak
= −

1

2

∂

∂Ak
Tr

( T∑
t=2

Q−1
St

(ft −AStft−1)(ft −AStft−1)
′
)
= 0

= −
1

2

∂

∂Ak
Tr

( T∑
t=2

Q−1
St

(ftf
′
t −AStft−1f

′
t − ftf

′
t−1A

′
St

+AStft−1f
′
t−1A

′
St

)
)

= −
1

2

T∑
t=2

I[St = k]
(
− (ft−1f

′
tQ

−1
k )′ −Q−1

k ftf
′
t−1 + (ft−1f

′
t−1A

′
kQ

−1
k )′

+Q−1
k Akft−1f

′
t−1

)
=⇒ Âk =

(
E
[ T∑
t=2

I[St = k]ftf
′
t−1

])(
E
[ T∑
t=2

I[St = k]ft−1f
′
t−1

])−1
(62)

∂log f(y1:T ,f0:T |IT ,θ)

∂Λk
= −

1

2

∂

∂Λk
Tr

( T∑
t=1

R−1
St

(yt − cSt −ΛStft)(yt − cSt −ΛStft)
′
)
= 0

= −
1

2

∂

∂Λk
Tr

( T∑
t=1

R−1
St

((yt − cSt )(yt − cSt )
′ −ΛStft(yt − cSt )

′

− (yt − cSt )f
′
tΛ

′
St

+ΛStftf
′
tΛ

′
St

)
)

= −
1

2

T∑
t=1

I[St = k]
(
− (ft(yt − ck)

′R−1
k )′ −R−1

k (yt − ck)f
′
t

+ (ftf
′
tΛ

′
kR

−1
k )′ +R−1

k Λkftf
′
t

)
=⇒ Λ̂k =

(
E
[ T∑
t=1

I[St = k](yt − ĉk)f
′
t

])(
E
[ T∑
t=1

I[St = k]ftf
′
t

])−1
(63)

∂log f(y1:T ,f0:T |IT ,θ)

∂ck
= −

1

2

∂

∂ck
Tr

( T∑
t=1

R−1
St

(yt − cSt −ΛStft)(yt − cSt −ΛStft)
′
)
= 0

= −
1

2

∂

∂ck
Tr

( T∑
t=1

R−1
St

((yt − cSt )(yt − cSt )
′ −ΛStft(yt − cSt )

′

− (yt − cSt )f
′
tΛ

′
St

+ΛStftf
′
tΛ

′
St

)
)

= −
1

2

T∑
t=1

I[St = k]
(
− (y′

tR
−1
k )′ −R−1

k yt + (c′kR
−1
k )′ +R−1

k ck +R−1
k Λkft + (f ′

tΛ
′
kR

−1
k )′

)
=⇒ ĉk =

E[
∑T

t=1 I[St = k](yt − Λ̂kft)]

E[
∑T

t=1 I[St = k]]
(64)

Since the covariance matrices are symmetric, we can write

∂log f(y1:T ,f0:T |IT ,θ)

∂Rk
=

1

2

T∑
t=1

I[St = k]Rk −
1

2

T∑
t=1

I[St = k](yt − ck −Λkft)(yt − ck −Λkft)
′ = 0

=⇒ R̂k =
E[
∑T

t=1 I[St = k](yt − ĉk − Λ̂kft)(yt − ĉk − Λ̂kft)′]

E[
∑T

t=1 I[St = k]]
(65)

∂log f(y1:T ,f0:T |IT ,θ)

∂Qk
=

1

2

T∑
t=2

I[St = k]Qk −
1

2

T∑
t=2

I[St = k](ft −Akft−1)(ft −Akft−1)
′ = 0

=⇒ Q̂k =
E[
∑T

t=2 I[St = k](ft − Âkft−1)(ft − Âkft−1)′]

E[
∑T

t=2 I[St = k]]
(66)
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To write out the expectations in the equations above, we make use of E[XY ] = E[X]E[Y ] +

Cov[X,Y ] and we write

E[ft|IT ] = f̂t|T , (67)

E[ftf ′
t |IT ] = f̂t|T f̂

′
t|T + Pt|T , (68)

E[ftf ′
t−1|IT ] = f̂t|T f̂

′
t−1|T + Pt,t−1|T , (69)

of which everything but Pt,t−1|T is given in the Kalman smoother. In Appendix I we show that

Pt,t−1|T = Pt|T (P
St

t|t−1)
−1AStPt−1|t−1. Furthermore, we plug in the expectations in Equations

62-66 to get the following expressions14:

Âk =
( T∑

t=2

I[St = k](f̂t|T f̂
′
t−1|T + Pt,t−1|T )

)
×
( T∑

t=2

I[St = k](f̂t−1|T f̂t−1|T + P ′
t−1|T )

)−1
, (70)

Λ̂k =
( T∑

t=1

I[St = k](yt − ĉk)f̂
′
t|T

)( T∑
t=1

I[St = k](f̂t|T f̂
′
t|T + Pt|T )

)−1
, (71)

ĉk =

∑T
t=1 I[St = k](yt − Λ̂kf̂t|T )∑T

t=1 I[St = k]
, (72)

R̂k =
1∑T

t=1 I[St = k]

T∑
t=1

I[St = k]
(
(yt − ĉk)(yt − ĉk)

′ − Λ̂kf̂t|T (yt − ĉk)
′

− (yt − ĉk)f̂
′
t|T Λ̂

′
k + Λ̂k(f̂t|T f̂

′
t|T + Pt|T )Λ̂

′
k

)
,

(73)

Q̂k =
1∑T

t=2 I[St = k]

T∑
t=2

I[St = k]
(
f̂t|T f̂

′
t|T + Pt|T − Âk(f̂t−1|T f̂

′
t|T + P ′

t,t−1|T )

− (f̂t|T f̂
′
t−1|T + Pt,t−1|T )Â

′
k + Âk(f̂t−1|T f̂

′
t−1|T + Pt−1|T )Â

′
k

)
.

(74)

14Since St is known for each time t, we have that E[I[St = k]] = I[St = k].
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I Derivation of Pt,t−1|T in the E-step of the EM algorithm of the

dynamic factor mixture model

To calculate Pt,t−1|T , we first calculate E[ftf ′
t−1|IT ] via the law of iterated expectations and

then subtract f̂t|T f̂
′
t−1|T from it.

E[ftf
′
t−1|IT ] = E[E[ftf

′
t−1|ft, IT ]|IT ]

= E[E[ftf
′
t−1|ft, It−1]|IT ]

= E[ftE[f ′
t−1|ft, It−1]|IT ]

= E[
(
ftf̂

′
t−1|t−1 + ft(f

′
t − f̂St

t|t−1
′)(P St

t|t−1)
−1ASt

Pt−1|t−1

)
|IT ]

= f̂t|T f̂
′
t−1|t−1 + (f̂t|T f̂

′
t|T + Pt|T − f̂t|T f̂

St

t|t−1
′)(P St

t|t−1)
−1ASt

Pt−1|t−1

= f̂t|T (f̂t−1|t−1 − Pt−1|t−1A
′
St
(P St

t|t−1)
−1f̂St

t|t−1)
′ + (f̂t|T f̂

′
t|T + Pt|T )(P

St

t|t−1)
−1AStPt−1|t−1

= f̂t|T (f̂t−1|T − Pt−1|t−1A
′
St
(P St

t|t−1)
−1f̂t|T )

′ + (f̂t|T f̂
′
t|T + Pt|T )(P

St

t|t−1)
−1ASt

Pt−1|t−1

= f̂t|T f̂t−1|T + Pt|T (P
St

t|t−1)
−1AStPt−1|t−1.

Hence, Pt,t−1|T = E[ftf ′
t−1|IT ]−f̂t|T f̂t−1|T = f̂t|T f̂t−1|T+Pt|T (P

St

t|t−1)
−1AStPt−1|t−1−f̂t|T f̂t−1|T

= Pt|T (P
St

t|t−1)
−1AStPt−1|t−1.

44



J Elaboration on the parameters in the simulation study

As stated in Section 3.1, we have high positive parameters in the first state, and intermediate

parameters in the second state in the first model. Furthermore, we have intermediate parameters

in the first state and low parameters in the second state in the second model. With high

parameters we mean VAR matrices where the diagonal elements are random numbers between

0 and 0.5, and that each row has one off-diagonal element between 0.6 and 0.8, which is also

randomly chosen, and 0 on all other entries15. The intermediate parameters are the same but

then the randomly chosen off-diagonal is between 0.4 and 0.6. Lastly, the low parameters have

an off-diagonal between 0.2 and 0.4.

15The random numbers can be reproduced using Matlab (MathWorks (2021)) with the default random seed.
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K Scree plots of the Principal Component Analysis (PCA)

Figure 3: Scree plot of the PCA of all variables for Canada (Left), and France (Right).

Figure 4: Scree plot of the PCA of all variables for Germany (Left), and Italy (Right).

Figure 5: Scree plot of the PCA of all variables for Japan (Left), and the UK (Right).
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Figure 6: Scree plot of the PCA of all variables for the USA.

Figure 7: Scree plot of the PCA of the GDP growth for all countries (Left), and the inflation rate for
all countries (Right).

Figure 8: Scree plot of the PCA of the unemployment rate for all countries.
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L Short description of the programming code

The zip-file containing the code consists of nineteen codes:

1. ‘likelihoodfunc’ - Calculates the likelihood that is needed in Equation 3 in the Hamilton

filter.

2. ‘Hamilton filter’ - Performs the Hamilton filter for the Markov switching model.

3. ‘Hamilton smoother’ - Performs the Kim smoother for the Markov switching model.

4. ‘EM MS’ - Runs one iteration of the EM algorithm of the Markov switching model.

5. ‘Main MS’ - Estimates the Markov switching model and makes forecasts.

6. ‘Kalman filter’ - Performs the Kalman filter for the dynamic factor model with constant

parameters.

7. ‘Kalman smoother’ - Performs the Kalman smoother for the dynamic factor model with

constant parameters.

8. ‘EM DFM’ - Runs one iteration of the EM algorithm of the dynamic factor model with

constant parameters.

9. ‘Main DFM’ - Estimates the dynamic factor model with constant parameters and makes

forecasts.

10. ‘Kalman filter2’ - Performs the Kalman filter for the dynamic factor mixture model.

11. ‘Kalman smoother2’ - Performs the Kalman smoother for the dynamic factor mixture

model.

12. ‘EM DFMM’ - Runs one iteration of the EM algorithm of the dynamic factor mixture

model.

13. ‘Main DFMM’ - Estimates the dynamic factor mixture model and makes forecasts.

14. ‘Kalman filter3” - Performs the Kim filter for the Markov switching dynamic factor model.

15. ‘Kalman smoother3’ - Performs the Kim smoother for the Markov switching dynamic

factor model.

16. ‘EM MSDFM’ - Runs one iteration of the EM algorithm of the Markov switching dynamic

factor model.
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17. ‘Main MSDFM’ - Estimates the Markov switching dynamic factor model and makes fore-

casts.

18. ‘Simulation study’ - Runs the simulation study.

19. ‘Data’ - Runs the application.
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