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Abstract

The Implied Volatility Surface (IVS) is a key component for pricing and hedging options. We compare

the performance of three different dimension reduction methods for S&P 500 index IVS; Principal

Component Analysis (PCA), Instrumented PCA (IPCA), and Autoencoders (AE). The performance

is assessed according to three different criteria; interpretability, modeling performance, and forecasting

performance. We find that the factors of the 3-factor models of PCA and AE are easily interpretable and

follow the level, skew, and term structure of the IVS closely. Next, using the Implied Volatility RMSE

(IVRMSE ), the modeling performance is measured on the balanced/smoothed and unbalanced/original

test set separately. For the balanced test set, PCA outperforms all methods, with AE following closely

and IPCA falling behind. However, for the unbalanced test set, AE is clearly dominant as the IVRMSE

of PCA increases substantially more. Lastly, we measure the forecasting performance using indirect,

direct, and hybrid forecasts. The indirect forecasts of PCA and AE seem to outperform direct and

hybrid forecasts, with PCA being dominant for the balanced test set (with AE following closely), and

AE being dominant for the unbalanced test set.

Overall, the evidence supports AE as the best method to model the IVS.

Keywords: Implied Volatility Surface - Autoencoder - Principal Component Analysis - Instrumented PCA

Note: The views stated in this paper are those of the authors and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

The Implied Volatility Surface (IVS) depicts how the Implied Volatility (IV) differs over tenor

and strike price and is often used by traders and academic researchers. It is a key component

for pricing and hedging options. Therefore, it is important to model and forecast the IVS

accurately. The IVS is obtained by inverting the option pricing formula by Black and Scholes

(1973) for different strike prices and tenors/times-to-maturity. The Black-Scholes (BS) model

predicts a flat IVS, meaning that all options issued at the same time should have the same IV,

independent of their strike price and tenor. However, this does not hold in practice. Namely,

plotting the empirical IV against the strike price often leads to a ‘volatility smile/smirk’.

This means that the IV is higher for more extreme strike prices (either far In The Money

(ITM) or Out of The Money (OTM)) (Rubinstein, 1985; Sircar et al., 1999). Moreover, the

IVS changes over time in a highly nonlinear fashion (Andersen et al., 2015b).

The IVS consists of many points on each date. Therefore, it may be hard to model and

forecast the IVS directly. Luckily, the surface can largely be explained by a few factors, which

makes modeling and forecasting more straightforward (Andersen et al., 2015b; Skiadopoulos

et al., 2000). We compare the performance of three different methods for obtaining such

factor models: Principal Component Analysis (PCA), Instrumented PCA (IPCA), and Au-

toencoders (AE).

Most of the research uses PCA for constructing a factor model of the IVS (Avellaneda

et al., 2020; Badshah, 2009). PCA is a popular dimension reduction method that produces

factors that are linear combinations of the original data, where the weights of the linear

combinations are determined by the factor loadings (Pearson, 1901). These loadings are

constant and chosen such that the factors explain the most variation of the original data

while being mutually orthogonal. Because of the linearity and orthogonality, the factors are

generally relatively easy to interpret. However, there seems to be a nonlinear and possibly

changing association between the IVS and the factors which is not captured by (constant

and linear) PCA, which may hurt the modeling performance (Andersen et al., 2015b). Also,

PCA is the only method of the three that does not have a built-in interpolation mechanism.

This may hurt its performance as well because an important part of modeling/forecasting
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the IVS is to interpolate, e.g. to determine the IV of a new option. As PCA does not have

a built-in interpolation function, we use a Gaussian kernel smoother. However, this is not as

well adjusted to the data as the built-in interpolation functions.

Instrumented PCA (IPCA) is a variant of PCA which does not assume constant factor

loadings. IPCA makes use of a set of observable characteristics (covariates) to determine the

factor loadings (Kelly et al., 2019). Because the characteristics are time-varying, the factor

loadings are time-varying as well. Therefore, this method may be able to capture more of the

variation in the IVS over time than the constant PCA. Furthermore, IPCA is also constructs

a linear model because it assumes a linear relationship between the latent factors and the

original data, and between the covariates and the factor loadings.

Lastly, we use an autoencoder (AE) to capture the nonlinearities in the data. An AE

consists of two Neural Networks (NN) which are connected to each other through the latent

factors, the encoder and the decoder. The encoder is a NN that generates latent factors

from the original data. Then, the decoder takes these latent factors (and possibly other

variables) as input and aims to recreate the original data from these inputs. We use an

AE with 1 hidden layer in the encoder and decoder (AE1) and with 2 hidden layers in both

(AE2). Because both the encoder and decoder are NNs, an AE allows for nonlinear relations

between the original data and the factors and vice versa. A drawback of these nonlinearities

is a possible lack of interpretability of the factors and the possibility to end up in an adverse

local minimum.

We use daily European style S&P 500 index options, ranging from January 2002 to

December 2021. The data consists of bid and ask quotes, which we convert into Implied

Volatilities through a pre-processing procedure. This procedure makes use of proxies for the

stock price, risk-free rate, and dividend yield. Because PCA and AE require a balanced

grid as input, we interpolate the original (unbalanced) data to be a balanced grid of options

for each point in time. We test the performance of the methods both on the balanced and

unbalanced test sets. Additionally, we use a set of macroeconomic variables as covariates for

IPCA. The set of covariates is largely based on Almeida et al. (2022).

The performance is split into three categories. The first is the interpretability of the

constructed factors. Second, we use the ability to model the IVS in the cross-section at
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a given point in time. Lastly, the forecasting ability of the methods is measured. Both

the modeling performance and the forecasting performance are measured using the Implied

Volatility Root Mean Squared Error (IVRMSE ).

We test the interpretability of the 3-factor models of each method. The main findings are

as follows. First, PCA is easily interpretable as it follows the level, skew, and term structure

of the IVS closely. Moreover, AE1 also follows these IVS characteristics closely, and therefore

its factors have a comparable level of interpretability. This is somewhat surprising, as AE1

can make use of complex nonlinear relations between the data and the factors. Additionally,

AE2 also has a factor that follows the level of the IVS very closely. However, the other factors

are harder to interpret for AE2. Lastly, one of the factors of IPCA behaves unexpectedly

by fluctuating around 0 for most of the time, with large sudden spikes. Such factors are

impossible to interpret and could harm the modeling and forecasting performance of IPCA

substantially.

Next, we test the modeling performance by constructing and testing 1- to 6-factor models

for all methods. For the balanced test set, PCA produces models with the lowest (best)

IVRMSE for most numbers of factors. Moreover, both AE1 and AE2 closely follow PCA

in terms of modeling performance. On the other hand, IPCA falls behind both methods

substantially. For the unbalanced test set, which better represents performance in real-life

applications, the IVRMSE of PCA increases substantially more than for the other methods.

This is caused by the absence of a built-in mechanism for interpolation for PCA. Because

the performance of PCA substantially drops, AE1 and AE2 are the most dominant methods

for modeling the IVS using an unbalanced test set. Even though the difference between

the IVRMSE of AE1 and AE2 is not large, AE2 seems to be dominant over AE1 for most

numbers of factors. Lastly, IPCA still performs substantially worse than both AE1 and AE2.

However, its IVRMSE is similar to that of PCA for the unbalanced test set.

Lastly, we test the forecasting performance by using 1- to 6-factor models for all methods

to make 1-day, 1-week, and 1-month ahead forecasts. Both direct, indirect, and hybrid

forecasts are made depending on what each method allows for. For direct forecasting, the

parameters are directly trained to give forecasts. For indirect forecasts, the parameters are

first trained for cross-sectional modeling, then the factor values are predicted using a Vector
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Autoregressive (VAR) model. Lastly, hybrid forecasts are a combination of both.

Similar to the modeling performance, PCA has the lowest IVRMSE in most cases for the

balanced test set, with AE1,I and AE2,I following closely (all indirect forecasts). Moreover, for

the unbalanced test set, the IVRMSE of PCA increases substantially more than for the rest

of the methods, which results in AEI being the dominant method. Furthermore, the direct

forecasts of AED perform decently well, but are outperformed by both AEI and PCA for

the balanced and unbalanced test set. For both AEI and AED, the difference in forecasting

IVRMSE between the models with 1 and 2 hidden layers is not substantial. Lastly, the

IVRMSE of IPCA increases extremely for the models with 3 or more factors. This is likely

to be caused by the aforementioned unpredictable behavior of (some of) the factors of IPCA.

All in all, AE1 seems to be the only method that competes for first place in all three

performance measures, especially when using the unbalanced test set. Therefore, AE1 is a

viable method to use, regardless of the application, both for traders and academic researchers.

Lastly, IPCA in its current form is unsuitable for modeling and forecasting the IVS.

The remainder of this paper is structured as follows. Section 2 gives a brief overview

of the previous literature about this subject. Section 3 describes the used option data and

covariates, together with the pre-processing steps for the option data. Next, Section 4 de-

scribes the used methods for constructing factor models and the performance measures in

more detail. Section 5 provides the results. Lastly, Section 6 concludes and gives implications

for limitations and further research.

2 Literature

The Implied Volatility Surface (IVS) plays a big role in pricing new options and adjusting

the prices of existing options. Because of this, there exists extensive research in modeling

and forecasting the IVS. For modeling the IVS, numerous parametric models improve on the

(basic) Black-Scholes (BS) model. Many of these models relax some of the strong assumptions

which are made in the BS model. For example, Heston (1993) relaxes the assumption of

constant underlying volatility by introducing stochastic volatility and Merton (1976) relaxes

the assumption of continuous stock returns by including jumps in the returns. Moreover,
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Bates (2000), Duffie et al. (2000), and Andersen et al. (2015a) propose models which relax

both assumption, thus allowing for stochastic volatility and jumps in the returns. These

parametric models generally significantly improve on the BS model in modeling the IVS.

However, there is still room for improvement. With the rise of Machine Learning (ML)

methods, they have also become more prominent in the asset pricing literature. Almeida

et al. (2022) show that Neural Networks (NNs) outperform parametric methods relatively

easily, with the ability to boost their performance even more by using a hybrid approach

combining the strengths of parametric and non-parametric (NN) models.

Besides direct modeling of the IVS, there also has been extensive research on modeling

the IVS indirectly using a factor structure. Andersen et al. (2015b) show that the first three

Principal Components (PCs) capture approximately 99.2% of the variation in the IVS. They

also show that these factors are relatively easy to interpret with the first PC (explaining

96.4% of the variation) behaving very similar to the level of the IVS. Although this is very

promising, they also state that there seems to be a nonlinear association between the IVS

and the factors. Moreover, there seem to be dynamic changes in the IVS over time (Cont

and Da Fonseca, 2002; Mixon, 2002). Therefore, (static and linear) Principal Component

Analysis (PCA), might not be the most appropriate dimension reduction method.

Kelly et al. (2020) propose a non-static alternative to PCA, Instrumented PCA (IPCA).

IPCA makes use of covariates to make the model non-static. Büchner and Kelly (2022)

have shown that IPCA has the potential to be successful in the asset pricing environment

because of its ability to evolve over time and take outside information into account through

the covariates while staying interpretable.

A nonlinear alternative to PCA is an autoencoder. Autoencoders are used in many

different fields such as image recognition (Gao et al., 2015), and natural language processing

(NLP) (Li et al., 2015). As of writing, the use of autoencoders in modeling the IVS is limited.

Bergeron et al. (2022) find that autoencoders perform well in completing the IVS. However, to

our knowledge, there does not yet exist any literature comparing the performance of different

dimension reduction methods in modeling/forecasting the IVS. Gu et al. (2021) perform a

similar comparison in the asset pricing domain and find that, in their case, an adjusted

autoencoder outperforms both PCA and IPCA, while IPCA generally outperforms PCA.
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3 Data

3.1 Option data

We use daily European-style S&P 500 index options to construct the Implied Volatility

Surface (IVS). These index options are traded at the Chicago Board Options Exchange

(CBOE) and obtained from OptionMetrics. The sample extends from January 2nd, 2002,

until December 31st, 2021, consisting of 5036 trading days. The data consists of bid and

ask quotes, strike prices (K), volumes (V ), dates, expiration dates, and a call/put indicator.

From the expiration dates and the current dates, the tenors (τ) can be computed as the

number of trading days between the current dates and the expiration dates divided by 252

(average number of trading days per year). The pre-processing steps are based on Almeida

et al. (2021), with some slight deviations on for example the range of dates.

Calculating the Implied Volatility (IV) of an option not only requires the option price but

also (proxies of) the stock price, risk-free rate, and dividend yield. For the stock price (S),

we use the closing price of the S&P 500 index using data from MarketWatch.1 Moreover,

as a proxy for the risk-free rate (r), the 3-month Treasury bill from the St. Louis Federal

Reserve Economic Data (FRED) database is used.2 Finally, the dividend yield (q) can be

estimated using the option price, S, and r. However, in some cases, this estimation can not

be performed. In these cases, the dividend yield is set to a proxy, namely, the S&P 500 Index

Dividend Yield from OptionMetrics. We only consider options with moneyness between 0.8

and 1.5 (or S/K ∈ [0.8, 1.5]) and trading days to expiration between 5 and 300 (equivalently,

τ ∈ [ 5
252

, 300
252

]).

The first pre-processing step is to construct the option prices as the mid-point of the

bid and ask quotes for that option. The option prices are denoted as C for calls and P for

puts. Secondly, all observations with zero volume (V = 0) or prices lower than 1/8 (C < 1
8

or P < 1
8
) are dropped. Then, for each day and each τ of traded options on that day, the

dividend yield is estimated by using the put-call parity on the pair of call and put closest

1Retrieved from https://www.marketwatch.com/investing/index/spx/download-data on June 13,
2022.

2Retrieved from https://fred.stlouisfed.org/series/DTB3 on June 14, 2022.
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to at-the-money (ATM) (S/K = 1).3 A call and a put are a pair if they share the same

K and τ and are issued on the same day. For the cases where such a pair is absent, the

aforementioned proxy for q is used.

After that, the observations violating the usual arbitrage conditions are dropped. These

conditions are

C ≥ Se−qτ −Ke−rτ ,

P ≥ Ke−rτ − Se−qτ .
(3.1)

Lastly, the IV of each option is calculated. As there is no analytic solution to calculate

the IV, it is calculated using the Newton-Raphson method (Algorithm 1 in Appendix A).

After all these steps the data consists of 4,630,546 different options. This means that, on

average, there are 919 different options in the sample each day. However, the number of

options per day is not evenly distributed, with approximately 100 options per day at the

start of the sample, and more than 3000 at the end (Figure 1). The sample is split up into

a train and test set. We use approximately an 80% split on the dates, such that the train

set extends until January 3rd 2018 consisting of 4030 trading days and a total of 2,016,377

different options, the test set consists of the 1006 trading days thereafter with 2,614,169

different options.

Figure 1: Number of distinct options traded on each day.

3The dividend yield (q) is then estimated by: q = (1/τ) ln [(C − P +Ke−rτ )/S].
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The data needs to take the form of a balanced grid to train and test most of the methods.

That is, there needs to be IV data available for some fixed grid of tenors and moneyness at

each date. This is generally not the case in the raw data as there are many missing values and

the panel is highly unbalanced. Therefore, the data needs to be interpolated (and possibly

extrapolated) such that observations of a fixed grid are available at every point in time. This

is done using a Gaussian kernel smoother with a fixed parameter, which makes it possible

to get an estimate of each point on the IVS. For points that lay on a more dense part of

the IVS (containing many observations), this estimate generally is more accurate, and vice

versa. The grid consists of options with all possible combinations of τ and S/K as listed in

Table 1. As there are 6 different choices for τ and 7 for S/K, the grid has a size of 6∗7 = 42.

On each date and for every option on the grid, the Gaussian kernel smoother first calculates

Table 1: Tenors (τ) and moneyness (S/K) from which the balanced grid is constructed.

τ ∗ 10 21 63 126 189 252 -
S/K 0.9 0.95 1 1.05 1.1 1.2 1.3

Note: *All values for τ are divided by 252 (average number of trading days per year).

the similarity between that option on the grid and all the available options on that day using

the kernel (K):

K(S/K∗, τ ∗, S/K, τ) = exp

(
−(S/K∗ − S/K)2 + (τ ∗ − τ)2

b2

)
, (3.2)

where b is a hyperparameter. A lower b gives a more accurate fit to the original data, and

a higher b gives a more smooth fit. Moreover, S/K∗ and τ ∗ are the pair of moneyness and

tenor for the option on the balanced grid, whereas S/K and τ are the pair from an option

in the original data. Then, we compute the estimated IV by a weighted average over all the

IVs of the original data on that day, where the weights are equal to the similarity measure

from 3.2:

IV ∗
t =

∑nt

i=1K(S/K∗, τ ∗, S/Kt,i, τt,i)IVt,i∑nt

i=1K(S/K∗, τ ∗, S/Kt,i, τt,i)
t ∈ {1, ..., T}, (3.3)

where nt is the number of different options traded on day t. Both the moneyness and tenor
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are normalized before performing the Gaussian kernel smoother such that they both have a

similar influence on the smoothing.

(a) Before smoother (unbalanced). (b) After smoother (balanced).

Figure 2: Plots of the IVS on February 28, 2020.

The hyperparameter b (3.2) needs to be optimized. However, as there is no way to

objectively measure the performance of the smoothing algorithm, b can not be quantitatively

optimized. Therefore, we perform a manual search and compare original IVS plots to their

smoothed counterparts (similar to Figure 2) to determine the best value for b, which we found

to be 0.05. Figure 2 shows plots of the IVS on the day with the most options traded (February

28th, 2020) using both unbalanced/original data (Figure 2a), and balanced/smoothed data

(Figure 2b). This figure shows the presence of a “volatility smirk”, which can be seen by

the IV decreasing as the moneyness decreases. However, the “volatility smile” is not as

prominent, this is caused by the selected boundaries of the grid. Figure B.1 in Appendix B

shows that for the full sample, this smile is indeed present in the data, because for even lower

moneyness, the IV increases as the moneyness decreases.

Figure 3 shows the average IVS over time using the balanced data (Figure 3a) and how

the IVS evolves over time, explained using the level, skew, and term structure (Figure 3b -

3d). Figure 3a shows the presence of a volatility smile/smirk in the average IVS. However,

as the tenor increases, the smile becomes less obvious. The level, skew, and term structure

are all calculated using the balanced IVS, because this ensures that the calculations can be

performed consistently over time. The level on date t is the average IV of the balanced IVS

on date t. Next, the skew on date t is the difference between the average IV of the options

9



(a) Average IVS. (b) Level of the IVS over time.

(c) Skew of the IVS over time. (d) Term structure of the IVS over time.

Figure 3: Summary of the IVS using balanced data.

with the highest and the lowest moneyness on date t (S/K = 1.3 and 0.9 respectively).

Lastly, the term structure on date t is the difference between the average IV of the options

with the highest and the lowest tenor on date t (τ = 1 and 10
252

respectively). Both the level

and the term structure show large peaks for both the Great Recession (December 2007 to

June 2009) and the COVID Recession (February 2020 to April 2020).4 However, the skew

shows less obvious signals for these recessions.

3.2 Covariates

We use a set of covariates for the training of one of the methods (IPCA). Most of the choices

for covariates are based on Almeida et al. (2022). The first is the CBOE Volatility Index

4Dates from
https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/.
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(VIX), which is a benchmark for market risk and sentiment. Moreover, the VIX is shown

to perform well in modeling the IVS (Almeida et al., 2022; Cao et al., 2020). Another risk

variable that will be used is the Realized Volatility (RVOL), which is constructed by Tick

Data using 5-minute intraday S&P 500 returns.

Almeida et al. (2022) also use measures of uncertainty and macroeconomic conditions.

These are, the US Daily News Index (USNI) index of Baker et al. (2016), the Business

Condition Index (BCI) of Aruoba et al. (2009), the first differences of the Term Spread

(TMS), and the first differences of the Credit Spread (CRS) from the FRED database.

Moreover, we add the Federal Funds Effective Rate (FFER) and the Market Yield on

10-Year U.S. Treasuries (US10YMY) from the FRED database as they are connected to the

short-term and long-term risk-free rate respectively. The risk-free rate influences the option

prices and possibly also the IVS. Next, we include the monthly U.S. inflation rate (USCPI)

from the CBOE database. To avoid forward-looking bias, we set the USCPI for each day

equal to the inflation of the previous month. Lastly, we use the return on the S&P 500 index

over the previous month (21 trading days) as a covariate which may give information about

the current economic state (SPXM).

4 Methodology

This section contains an explanation of the used methods to construct factor models, as well

as the performance measures.

4.1 Principal Component Analysis

The first method we consider is Principal Component Analysis (PCA), which assumes a linear

and static relation between the data and the factors. The core process of PCA is computing

the Principal Components (PCs) of the original data. The PCs are latent factors that are

linear combinations of the data such that the ith PC (PCi) captures as much variation in the

data as possible while being orthogonal to the first i − 1 PCs. For IV data with k different
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options, PCi is constructed as a linear combination of the data:

PCi,t := fi,t = βi,1IV1,t + ...+ βi,kIVk,t = β′
i,: IVt, i ∈ {1, ..., k} (4.1)

where β is the k × k parameter matrix, βi,: is defined as the loading vector of PCi, and IVt

is the vector containing the IV of all options on the balanced grid, on date t. In our case,

k is equal to the size of the balanced grid (k = 42). For PCA, the loading vectors of the

PCs are equal to the eigenvectors of the covariance matrix of the data. More specifically, βi,:

corresponds to the eigenvector with the ith highest eigenvalue. Moreover, from the eigenvalue

corresponding to PCi (λi), it can be calculated what percentage of the total variance is

explained by PCi (λi,total):

λi,total =
λi∑k
j=1 λj

. (4.2)

PCA is often used as a dimension reduction method by only keeping the first M (M << k)

PCs and discarding the rest. This is useful because the first PCs capture the most variation.

Moreover, after the PCs are constructed, they can be transformed back into an approximation

of the original data using the loadings β,

IVi,t =β1,if1,t + ...+ βM,ifM,t + ei,t = (β1:M,i)
′ft + ei,t, i ∈ {1, ..., k},

ei,t :=βM+1,ifM+1,t + ...+ βk,ifk,t = (βM+1:k,i)
′ft,

(4.3)

where ei,t is the error term. PCA requires a balanced panel as input. Moreover, the output

of PCA only consists of the estimated values of this balanced grid. Therefore, if we need

to get estimated values of the IV of options that are not on the grid, we use a Gaussian

kernel smoother (3.3). Moreover, PCA normally gives more importance to covariates with

higher variance. Since our goal is to estimate all options on the grid with equal importance,

we standardize the data before performing PCA. The standardization is performed for each

option in the balanced grid separately as follows:

ĨV i,t =
IVi,t − IV i

σ(IVi)
, i ∈ {1, ..., k}, t ∈ {1, ..., T}, (4.4)
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where ĨV i,t is the standardized IV of option i on date t, IV i is the average IV of option i in

the train set, and σ(IVi) is the standard deviation of the IV of option i in the train set.

4.2 Instrumented Principal Component Analysis

Instrumented Principal Component Analysis (IPCA) is a dimension reduction method that

makes use of “observable characteristics” (or covariates) (Kelly et al., 2019). Similar to PCA,

it uses latent factors, but instead of using constant factor loadings, IPCA uses time-varying

loadings. The values of the loadings are dependent on a set of covariates. IPCA makes use

of two core assumptions. The first is that there is a linear relationship between the latent

factors and the original data through the factor loadings (similar to PCA). Moreover, it is

assumed that the factor loadings have a linear and constant relation with the covariates.

Combining these assumptions into a model, results in the following:

IVi,t = β′
i,t ft + ϵi,t,

βi,t = Γ ci,t + ηi,t,
(4.5)

where IVi,t is the Implied Volatility of an option with moneyness Ki and tenor τi (in short,

option i) at time t. Moreover, ft is the M × 1 vector of latent factors at time t which needs

to be estimated, and ci,t is the L × 1 vector of covariates which apply to option i at time

t. The constant linear relation between the covariates (ci,t) and the factor loadings (βi,t) is

described by the M×L parameter matrix Γ. Lastly, ϵi,t and ηi,t are the error terms. Here, M

is the number of latent factors and L is the number of covariates. This system of equations

can be summarized in one equation as follows:

IVi,t = (Γ ci,t)
′ ft + ei,t,

ei,t := η′
i,t ft + ϵi,t.

(4.6)

As described, Γ and {ft} need to be estimated. There is no analytical solution to this model.

However, it can be speedily solved by using Alternating Least Squares (ALS) (Kelly et al.,

2020). ALS iterates between minimizing the error term over Γ while holding {ft} fixed, and

minimizing over {ft} while holding Γ fixed, until convergence. These two subproblems are
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linear in the parameters, which means that they can be quickly optimized using OLS.

The covariates (ci,t) consist of the variables which are discussed in 3.2, complemented

with τi,t, S/Ki,t, τ
2
i,t, (S/Ki,t − 1)2, and τi,t ∗ S/Ki,t. The nonlinear combinations are added

to better capture the nonlinearities in the IVS, such as the volatility smirk. Moreover, the

(nonlinear combinations of) tenor and moneyness are the only ‘asset-specific characteristics’,

the rest of the covariates we use (from 3.2) are constant within the cross-section for each

date.

Unlike PCA, IPCA does not require a balanced panel as input data as it also works on

unbalanced panels. IPCA allows for interpolation by adding the tenor and moneyness (and

combinations thereof) to ci,t. In this way, estimated values of every point on the IVS can be

obtained by changing these values, while holding the others constant. We train IPCA both

with the balanced panel (IPCAB) and the unbalanced panel (IPCAU). This can be useful to

measure the effect that the interpolation/smoothing of the original data has on the training

process of the model.

4.3 Autoencoder

An autoencoder can be seen as a nonlinear extension of PCA and is therefore also sometimes

named ‘nonlinear PCA’. Instead of constructing the factors using a linear combination of the

original data (PCs), an autoencoder is a NN that can capture complex nonlinear relations

between the data and the factors. An autoencoder consists of two parts, the encoder, and

the decoder.

The encoder is a NN that constructs the factors using the original data. The decoder is a

NN that reconstructs the original data, given the factors which are estimated by the encoder.

Both the encoder and the decoder generally have at least one hidden layer such that they

can capture nonlinearities (Figure 4).

In the option pricing literature, two different decoder architectures are generally used.

These are the grid-based approach and the pointwise approach. Note that the encoder

architecture is the same, regardless of the choice of decoder architecture (Figure 4a). The

grid-based approach is a more traditional approach, where the output is identical to the

input, and the autoencoder tries to find the factors that are best able to reconstruct the
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original data (Figure 4b). The pointwise approach is more specific to option pricing, as it

reconstructs the original data one option at a time, adding the tenor (τ) and moneyness

(S/K) to the input of the decoder (Figure 4c). This especially comes in handy for option

pricing as it makes interpolation possible. Interpolation of the IVS is often needed to price

new options or adjust prices, which understates its importance. Therefore, we opt for the

pointwise approach in this paper.

Similar to PCA, an autoencoder needs a balanced panel as input data. Also, both the

input data and the output data are standardized. We use autoencoders with 1 hidden layer

in the encoder and decoder (AE1) and 2 hidden layers in the encoder and decoder (AE2).

(a) The encoder architecture for an autoencoder.

(b) The decoder architecture for the grid-based
approach.

(c) The decoder architecture for the pointwise
approach.

Figure 4: Illustration of the autoencoder architectures with one hidden layer in the encoder and
decoder. Based on Fung (2021).
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4.4 Performance measures

The performance is split up into three aspects: Interpretability, modeling performance, and

forecasting performance.

There are no quantitative methods to measure interpretability. Therefore, we compare

the factors to IVS characteristics. For PCA, the interpretation should be relatively straight-

forward, as there exists plenty of literature covering this. The interpretation of the IPCA

factors is more involved, as the factors are not constant linear combinations of the original

data because of the influence of the covariates. For AE, it may be even harder because of the

nonlinearities in the relation between the factors and the original data. We will investigate

whether it is possible to give some interpretation to the factors of all these methods.

Both the modeling performance and the forecasting performance are measured using the

Implied Volatility Root Mean Squared Error (IVRMSE ). This error metric is defined in terms

of implied volatilities (contrary to e.g. R2), making it easily interpretable and comparable

between the balanced and unbalanced test set. It is defined as follows:

IVRMSE =

√∑
(i,t)(IVi,t − ÎV i,t)2

n
, (4.7)

where (i, t) corresponds to option i on day t, and n is defined as the total number of options

in the test set (number of elements in the sum of the numerator). Note that a lower IVRMSE

implies a lower error and thus a better fit/forecast. We define the modeling performance as

the ability of the models to reconstruct the IVS at a given point in time, possibly having to

interpolate to obtain the entirety of the IVS. This is measured pseudo-out-of-sample. That

is, after training the models in-sample, we estimate the factors out-of-sample making use of

the out-of-sample data as input for the estimations. By doing that, the factors at date t (out-

of-sample) are estimated using the IV data at date t. Afterwards, these estimated factors

are reconstructed into estimated IV data using the in-sample trained model, measuring the

ability to reconstruct the IVS. Furthermore, we use two different out-of-sample test sets to

measure the pseudo-out-of-sample performance. Firstly, we use the balanced test set, from

which the observations are proxies of the real data using interpolation. Therefore, this may

not tell us everything about the performance in practice. Second, we use the unbalanced
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test set, which consists of the original observations before interpolation/smoothing. Results

from the unbalanced test set better mimic real-life applications, as it requires the models to

perform interpolation themselves. IV estimates from the unbalanced test set can easily be

obtained by both IPCA and AE, as both methods have a built-in interpolation function. For

PCA, we use a Gaussian kernel smoother to obtain estimates for this set.

Lastly, we look at the forecasting performance of the methods, which is measured out-of-

sample. We make a distinction between two types of forecasts; direct forecasts and indirect

forecasts. For direct forecasts, the model is directly trained to perform forecasts, usually by

using lagged values as input. For indirect forecasts, the model is trained as usual (no lagged

covariates). However, after training the model and obtaining the latent factors, these factors

are forecasted using a Vector Autoregressive (VAR) model. We use a VAR model because

the characteristics of the IVS all have a high autocorrelation with 98.5%, 88.7%, and 89.0%

respectively for the level, skew, and term structure of the IVS. Moreover, the factors are

usually in some way related to these characteristics, which means that the factors likely also

have a high autocorrelation. Also, the characteristics are correlated to each other, though

less strongly. These relations can all be captured using a VAR model. The VAR(p) model

for modeling/forecasting the factors is defined as follows:

ft = c+ A1ft−1 + ...+ Apft−p + ut, ut ∼ N(0,Σu), (4.8)

with c being the M × 1 parameter vector denoting the constant and Ai being the M ×M

parameter matrix denoting the coefficients for the ith lag. This means that for a VAR(p)

model, there are a total of M + p ∗ M2 parameters to estimate, assuming ft to be of size

M × 1. Lastly, ut is the error vector.

We use the VAR(p) model to make step-by-step dynamic forecasts. That is, for an

arbitrary horizon h, we start with forecasting 1-step-ahead (ft+1) by using the estimated

parameters and setting ût+1 = E(ut+1) = 0. Then, for the next step, we use (among others)

the estimated value of the previous period (f̂t+1) to give a forecast 2-steps-ahead, and so
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forth. Mathematically, this can be written as:

f̂t+h|t = ĉ+ Â1f̂t+h−1|t + ...+ Âh−1f̂t+1|t + Âhft + ...+ Âpft+h−p, if p ≥ h,

f̂t+h|t = ĉ+ Â1f̂t+h−1|t + ...+ Âpf̂t+h−p|t, if p < h,

(4.9)

where h is the forecasting horizon and f̂t+h|t is the h-step-ahead forecast of f , using obser-

vations up until (and including) ft.

PCA only allows for indirect forecasts. Moreover, IPCA can only use a hybrid forecasting

method, that is, Γ (and therefore also β) is trained using lagged observed characteristics

(direct), and ft is forecasted by using a VAR model. AE forecasts can be made either

directly or indirectly. For the direct forecast, the input consists of lagged IV values of the

balanced grid, which means that the model is directly trained to forecast the IVS. For the

indirect forecast, the AE is trained as usual (identical input and output), but the factors are

forecasted using a VAR model.

The forecast horizons (h) used are; one day, one week, and one month (h = 1, 5, 21 respec-

tively). We use the balanced and unbalanced test set to obtain the IVRMSE separately. The

number of lags included in the VAR model (p) is determined using the Bayesian Information

Criterion (BIC). The BIC helps with model selection by using the in-sample likelihood func-

tion and penalizing for the number of parameters in the model, which leads to a trade-off

between in-sample accuracy and the complexity of the models to prevent overfitting. We de-

termine the optimal p for each model and each number of factors (M) separately. Moreover,

for IPCA the optimal p is also determined for each horizon separately because the hybrid

forecasts cause the factors to change for different forecasting horizons.

4.4.1 IPCA variable selection

IPCA is prone to overfitting by including too many or highly correlated variables. Therefore,

we apply variable selection to find the best configuration of variables. We use a backward

step-wise selection approach using bootstrapping. Because the parameters are estimated

using ALS, the model does not return standard errors and p-values for the significance of

parameters. Therefore, we use the performance measure IVRMSE (4.7) in deciding which

18



variables to delete.

We use a backward step-wise selection, which means that we start with the IPCA model

with all variables included. Then, the variable which harms the performance most is deleted.

The performance is measured using the IVRMSE. This is repeated until deleting any of the

variables gives a worse performance than keeping all of the remaining.

For each selection of variables, the performance of the model is measured by computing the

IVRMSE using non-overlapping block bootstrapping. This means that the original balanced

training set is divided into B equally sized, non-overlapping blocks. Then, the model is

trained on B − 1 of the blocks, and 1 of the blocks is used to test the model performance.

This procedure is repeated B times such that all blocks are used as the test set exactly once.

The final IVRMSE of the model, which is used as the performance measure, is the average

of the IVRMSE for each of the B repetitions.

We use 5 non-overlapping blocks (B = 5) on the 3-factor model (M = 3) of IPCAB for

the variable selection. The deleted variables are SPXM, FFER, and US10YMY.

4.4.2 Autoencoder hyperparameter tuning

An autoencoder contains multiple hyperparameters which need to be tuned. This is done

using a grid-search, where the performance is measured via the IVRMSE (4.7) using non-

overlapping block bootstrapping (B = 5), similar to Section 4.4.1. The hyperparameters

are tuned on the model with 3 factors (M = 3) and are tuned separately for AE1 and AE2.

Table 2 shows which hyperparameters we choose to optimize over, which candidate values

are chosen for the grid search, and which combination of values turns out to be optimal for

AE1. Table 3 displays the same information, but for AE2. All hidden layers in the encoder

and decoder are set to have the same width. Moreover, the chosen activation function is used

for all layers except for the output layer of the decoder. This layer has a linear activation

function because the option IV data is standardized, meaning that the data does not fall

within strict boundaries. These strict boundaries are assumed for ReLU (greater than 0),

Sigmoid (between 0 and 1), and Tanh (between −1 and 1), which makes them unsuitable for

the output layer of the decoder. Moreover, the Adam solver (Kingma and Ba, 2014) is used

for optimization for all models.
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Table 2: Hyperparameter tuning for AE1.

Hyperparameter Candidates Optimal
Epochs (100, 250) 100
Batch size (42, 84) 84
Width (32, 64, 128) 64
Activation (ReLU, Sigmoid, Tanh) ReLU

Table 3: Hyperparameter tuning for AE2.

Hyperparameter Candidates Optimal
Epochs (100, 250) 100
Batch size (42, 84) 84
Width (32, 64, 128) 64
Activation (ReLU, Sigmoid, Tanh) ReLU

5 Results

The results are split up into three parts. As described in Section 4.4, these are; interpretabil-

ity, modeling performance, and forecasting performance. The results are obtained using

Python. More specifically, for IPCA we use the package of Kelly et al. (2019) and Kelly et al.

(2020).5

5.1 Interpretability of the factors

For all methods, we look at the factors of the 3-factor model over the entire sample (train and

test set) for the interpretability of the factors. We choose 3 factors because, in the literature,

most research applying PCA to modeling the IVS uses 3 factors (Andersen et al., 2015b). We

denote the ith factor of method X as X-i (e.g. PCA-1 for the first factor of PCA). Note that

none of the methods identify the sign of the factors. Therefore, we multiply some factors by

-1 to make interpretation more convenient.

PCA For PCA, the interpretability of the factors is relatively straightforward because this

has been done multiple times before in the literature. Generally, for a 3-factor model, the

factors are related to the level, skew, and term structure of the IVS. This also holds for

our dataset. Appendix C contains plots of each factor for every model, including the IVS

5The IPCA package is available at https://bkelly-lab.github.io/ipca/.
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characteristic with the highest correlation for each factor. Moreover, Table 4 shows the

correlation between the PCA factors and these characteristics of the IVS.

PCA-1 has a correlation of 0.999 with the level of the IVS. This means that the first

factor approximately returns the average IV over the grid on each date. Moreover, PCA-2

is highly influenced by the term structure of the IVS, with a correlation of 0.856. Finally,

PCA-3 comes very close to the skew of the IVS with a correlation of 0.920.

It should be noted that correlations do not always imply that two time series are re-

lated. For this to be true, the time series should be stationary. If the time series are non-

stationary, having a similar trend/seasonal effect can cause high correlations, even though

the two variables might not be related. To test whether the time series are stationary, we

use the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979). The ADF test tests

for non-stationarity in a time series. The null hypothesis (H0) states that a time series is

non-stationary, whereas the alternative hypothesis states that a time series is stationary.

Appendix D contains the full test results of the ADF test for the level, skew, and term struc-

ture of the IVS, and the factors of all models. It can be seen that for all factors and IVS

characteristics H0 is rejected for a 5% confidence level. Thus, the time series are stationary,

and correlations can be interpreted as usual.

Table 4: Correlation between the PCA factors and characteristics of the IVS.

Factor Level Term str. Skew
PCA-1 0.999 -0.594 0.256
PCA-2 -0.145 0.856 -0.329
PCA-3 0.028 0.010 0.920

Note: Bold values indicate the highest absolute correlation of each factor.

IPCA Table 5 shows the correlation between the IPCAB and IPCAU factors with the

characteristics of the IVS. For IPCAB, not all factors are easily interpretable. Both IPCAB-2

and IPCAB-3 are (somewhat) similar to the characteristics of the IVS. However, IPCAB-1

seems to behave completely differently.

More specifically, IPCAB-2 has a correlation of 0.978 with the term structure of the IVS,

which means that IPCAB-2 almost exactly follows the term structure. Moreover, IPCAB-3
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is also mostly correlated with the term structure of the IVS. However, with a correlation of

0.713, this relation is less strong than for IPCAB-2.

Lastly, IPCAB-1 has a very low correlation with all of the characteristics of the IVS.

Figure C.2a in Appendix C shows the plot of IPCAB-1 over time. The figure shows that,

after standardization, IPCAB-1 fluctuates relatively close to 0 most of the time. However,

it has large spikes reaching values of over 30 multiple times. There can not be given any

interpretation to such a factor. It also raises the question of whether IPCA in its current

form is suitable for modeling the IVS because this unexpected behavior could potentially

negatively influence the performance and seems to be impossible to forecast.6

Table 5: Correlation between the IPCA factors and characteristics of the IVS.

Factor Level Term str. Skew
IPCAB-1 0.001 0.010 -0.008
IPCAB-2 -0.619 0.978 -0.204
IPCAB-3 -0.478 0.713 0.384
IPCAU -1 -0.007 0.000 0.011
IPCAU -2 -0.602 0.988 -0.219
IPCAU -3 -0.275 0.398 0.705

Note: Bold values indicate the highest absolute correlation of each factor.

The results for IPCAU are similar to the results for IPCAB. Similar to IPCAB-1, IPCAU -

1 also does not have a strong correlation to any of the characteristics of the IVS. Figure C.3a

in Appendix C indeed shows that the behavior of IPCAU -1 and IPCAB-1 are very similar,

with many large spikes in the data.

Moreover, IPCAU -2 has a correlation of 0.988 with the term structure of the IVS, which

is similar to that of IPCAB-2. This means that IPCAU -2 is easily interpretable as it follows

the term structure very closely.

Lastly, IPCAU -3 is not similar to IPCAB-3. Although IPCAB-3 is mostly correlated with

the term structure of the IVS, IPCAU -3 mostly follows the skew of the IVS with a correlation

of 0.705.

6We tried multiple different IPCA architectures (choices of covariates), but they all gave similar results.
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AE Table 6 displays the correlation between the AE factors and the level, term structure,

and skew of the IVS.

AE1-1 has a correlation of 0.997 with the level of the IVS. This is almost the same as

PCA-1, their similarity is understated by the correlation of 0.999 between AE1-1 and PCA-1.

This means that, although AE1 can make use of nonlinear combinations of the data, AE1-1

is approximately the average IV on each date.

Moreover, AE1-2 has a correlation of 0.881 with the term structure of the IVS, which is

similar to PCA-2. Again, the correlation between AE1-2 and PCA-2 is relatively high with

0.741.

Lastly, AE1-3 has a correlation of 0.838 with the skew of the IVS, which again is similar

to PCA-3. Their similarity is also shown by the correlation between AE1-3 and PCA-3 being

0.929.

Concluding, the factors of AE1 are very similar to those of PCA. This is remarkable

because PCA exclusively makes use of a linear combination of the original data to construct

the factors, whereas AE1 can also use non-linear combinations.

Table 6: Correlation between the AE factors and characteristics of the IVS.

Factor Level Term str. Skew
AE1-1 0.997 -0.562 0.234
AE1-2 -0.639 0.881 -0.670
AE1-3 0.044 0.044 0.838
AE2-1 0.995 -0.612 0.205
AE2-2 0.559 -0.044 0.078
AE2-3 -0.114 -0.320 0.765

Note: Bold values indicate the highest absolute correlation of each factor.

The AE2 factors are also well interpretable, though somewhat harder than for AE1. Similar

to AE1 and PCA, AE2-1 is also highly correlated to the level of the IVS with a correlation

of 0.995. This means that, even though more complex nonlinear relations can be made, AE2

still prefers one of the factors to follow the level of the IVS, which understates how important

the level is in modeling the IVS using a factor model.

Moreover, AE2-3 has a correlation of 0.765 with the skew of the IVS. Although this is

lower than for PCA-3 and AE1-3, it is still obvious that AE2-3 is largely influenced by the
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skew of the IVS.

Finally, AE2-2 does not have a large correlation with the term structure of the IVS, unlike

PCA-2 and AE1-2. This factor has some correlation with the level of the IVS (0.559) but is

not easily interpretable. It is not entirely surprising that the factors of AE2 are somewhat

harder to interpret, as there are two neural networks with 2 hidden layers underlying AE2,

these can construct complex nonlinear relations between the data and the factors.

5.2 Modeling performance

After the qualitative analysis of the interpretability of the factors, we now focus on the

quantitative modeling performance. As discussed, the modeling performance is measured

using the Implied Volatility Root Mean Squared Error (IVRMSE ) (4.7). Table 7 shows the

results of the IVRMSE on the balanced test set using 1 to 6 factors. As these results are

based on the balanced test set, they show the ability of the models to exactly replicate the

input data, as there is no interpolation needed to reconstruct the balanced test set.

First, PCA performs very well on the balanced test set. Because the training of PCA is

deterministic, there is no way to end up in a local minimum which makes its performance very

robust. Moreover, as the factors are orthogonal to each other, adding extra factors rarely

damages the performance on the balanced test set as this makes reproducing the original

balanced IVS easier. We can see this back in the results, as the IVRMSE consistently

decreases for a higher number of factors. This leads to PCA achieving the lowest IVRMSE

of all methods for the 3- to 6-factor models, with the overall lowest IVRMSE of 0.60% for

the 6-factor PCA model.

Next, IPCAB and IPCAU both have the highest IVRMSE for most numbers of factors.

This is not entirely surprising as the factors behave unusually with large spikes, which could

mean that there is something wrong with the model. Although IPCAB and IPCAU perform

worst, they do not entirely fail to recreate the IVS with a IVRMSE of under 4.00% for all

numbers of factors. Lastly, as expected, IPCAB outperforms IPCAU on the balanced test

set, as IPCAB is trained on the balanced training set.

Furthermore, AE1 performs particularly well for low numbers of factors, outperforming

PCA for 1- and 2-factor models, and achieving the overall lowest IVRMSE for the 1-factor
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Table 7: IVRMSE for the balanced test set (%).

Number of factors (M)
Method 1 2 3 4 5 6
PCA 2.73 1.93 0.94 0.78 0.70 0.60
IPCAB 3.40 2.85 2.10 2.05 2.03 2.01
IPCAU 3.65 3.28 2.55 2.13 2.03 2.01
AE1 2.64 1.85 1.10 0.85 0.79 0.85
AE2 6.60 1.47 1.24 0.87 0.83 0.87

Note: Bold values indicate the lowest IVRMSE for each M .

model of 2.64%. For higher numbers of factors, AE1 still performs well, although it is

outperformed by PCA.

Lastly, AE2 has a very high IVRMSE for the 1-factor model of 6.60%, which is an outlier

compared to the other numbers of factors. Therefore, this result could be caused by reaching

a local minimum in training. This understates the danger of AEs and Neural Networks in

general, as there always is a chance of ending up in a disadvantageous local minimum during

training, which can substantially influence the performance of the model. For the other

numbers of factors, AE2 has a similar IVRMSE to AE1, having the overall lowest IVRMSE

for 2-factor models with 1.47%.

Table 8 displays the IVRMSE for the unbalanced test set. The difference with Table 7 is

that the results in Table 8 are obtained using the original (unbalanced) test set. This implies

that the test set does not consist of a steady grid, meaning that most methods need to apply

some sort of interpolation. Also, these results come closer to real-life applications because

almost none of the options lay exactly on the balanced grid.

As PCA does not have a built-in mechanism for interpolation, we use the same method

used for constructing the balanced dataset, a Gaussian kernel smoother with the same hy-

perparameter, b = 10−4 (3.2, 3.3).

Table 8 shows that the performance of PCA is, among all methods, most negatively

impacted by having to perform interpolation. This most likely has to do with the absence

of a built-in method to perform interpolation for PCA, which makes it dependent on a non-

trained method to do so. For the 1- and 2-factor models, PCA performs worst out of all

methods, and for higher numbers of factors, it outperforms both IPCA methods in terms of
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IVRMSE, but still falls behind both AE methods by some margin. Similar to the PCA results

for the balanced test set, the IVRMSE again decreases consistently for higher numbers of

factors, with the lowest IVRMSE being 2.77% for the 6-factor PCA model.

Table 8: IVRMSE for the unbalanced test set (%).

Number of factors (M)
Method 1 2 3 4 5 6
PCA 4.35 3.71 2.89 2.81 2.78 2.77
IPCAB 4.01 3.61 3.13 3.04 2.88 2.82
IPCAU 3.77 3.46 2.92 2.90 2.85 2.82
AE1 3.53 2.76 2.20 2.94 2.30 2.46
AE2 8.18 2.44 2.05 1.78 1.76 2.31

Note: Bold values indicate the lowest IVRMSE for each M .

Next, IPCA again performs poorly compared to the other methods, especially for higher

numbers of factors. IPCAU does outperform IPCAB in the unbalanced setting, which is to

be expected as IPCAU is trained on the unbalanced training set. Remarkably, IPCAU has

a higher IVRMSE on the unbalanced test set than for the balanced test set. This suggests

that the unbalanced test set may be intrinsically harder to model than the balanced test set.

This may be caused by the inclusion of more extreme data points in the unbalanced test

set, these are somewhat flattened in the balanced test set due to the interpolation. Lastly,

IPCAB and IPCAU seem to converge to a similar model for a higher number of factors as

the IVRMSE for both the balanced (2.01%) and the unbalanced (2.82%) test set are equal

between the 6-factor models of the two methods.

Lastly, AE clearly outperforms both IPCA and PCA for the unbalanced test set. Table 8

shows that for all numbers of factors, one of the AE methods returns a model which has

the lowest IVRMSE. Again, the IVRMSE of the 1-factor AE2 model is remarkably bad with

8.18%, which is not strange as this is the same model which achieved a 6.60% IVRMSE for

the balanced test set, but now tested on the unbalanced test set. Hence, AE1 outperforms

AE2 (and the other methods) for the 1-factor model, with a IVRMSE of 3.53%. However, for

the 2- to 6-factor models, AE2 is the dominant method. This is in contrast to the results for

the balanced test set, where AE1 generally slightly outperforms AE2. The lowest IVRMSE

for the unbalanced test set is obtained by the 5-factor AE2 model, with 1.76%
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5.3 Forecasting performance

After the interpretability and modeling performance, the forecasting performance is the last

performance measure. As discussed, the forecasts are made indirect for PCA and AEI , hybrid

for IPCA, and direct for AED. Moreover, the forecasts are made 1-day, 1-week, and 1-moth

ahead (h = 1, 5, 21 respectively).

Table 9: Forecasting IVRMSE for the balanced test set (%).

Number of factors (M)
Method 1 2 3 4 5 6

Horizon = 1
PCA 3.15 2.56 1.96 1.91 1.88 1.86
IPCAB 3.96 5.93 > 99 > 99 > 99 > 99
IPCAU 4.60 4.00 67.13 > 99 > 99 > 99
AE1,I 3.10 2.54 2.08 1.96 1.94 1.96
AE2,I 6.60 2.75 2.17 1.97 1.94 1.96
AE1,D 3.20 3.02 2.73 2.65 3.27 3.23
AE2,D 6.62 2.84 2.74 2.58 2.76 2.55

Horizon = 5
PCA 3.95 3.59 3.21 3.19 3.20 3.17
IPCAB 5.26 4.51 > 99 > 99 > 99 > 99
IPCAU 6.50 4.76 45.93 > 99 > 99 > 99
AE1,I 3.91 3.67 3.31 3.25 3.26 3.27
AE2,I 6.60 3.97 3.44 3.30 3.25 3.27
AE1,D 4.48 4.22 4.77 4.73 4.32 4.55
AE2,D 6.64 4.23 3.93 4.43 4.45 4.43

Horizon = 21
PCA 5.94 5.84 5.73 5.69 5.71 5.67
IPCAB 10.88 6.64 11.48 > 99 > 99 > 99
IPCAU 11.88 6.92 96.91 > 99 > 99 > 99
AE1,I 5.95 6.10 5.76 5.76 5.73 5.74
AE2,I 6.60 6.48 6.00 5.79 5.72 5.72
AE1,D 6.59 6.36 6.63 6.47 6.53 6.86
AE2,D 6.53 6.94 6.15 6.63 6.59 6.29

Note: Bold values indicate the lowest IVRMSE for each M and horizon.

Table 9 shows the forecasting IVRMSE of all models on the balanced test set. First of

all, similar to the modeling performance, PCA generally outperforms the other methods on

the balanced test set with both AE1,I and AE2,I following closely. This relationship between

PCA and AEI seems to be relatively consistent over all horizons. Moreover, the IVRMSE
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of AE1,I and AE2,I are very similar across different numbers of factors (except M = 1) and

horizons. For all horizons, the lowest (best) IVRMSE is achieved by PCA, with 1.86%,

3.17%, and 5.67% for h = 1, 5, 21 respectively.

Second, both IPCAB and IPCAU achieve a relatively low IVRMSE for the 1- and 2-

factor models for the 1-day and 1-week ahead forecasts, with IPCAB generally outperforming

IPCAU . The extreme increase of the IVRMSE for higher numbers of factors is likely to be

caused by the unpredictable behavior of one of the factors in the 3-factor model of both

IPCAB and IPCAU , as discussed in Section 5.1.

Lastly, the direct forecasts of AE1,D and AE2,D can not compete with the indirect fore-

casts. Although the IVRMSE for low numbers of factors is somewhat similar to those of the

indirect forecasts, the difference becomes more clear for higher numbers of factors. It can not

be said whether AE1,D outperforms AE2,D or vice versa. Table 9 shows that both methods

achieve the lower IVRMSE approximately an equal amount of times. However, AE2,D has

a slight edge as it achieves the lowest overall IVRMSE between the two methods for each

horizon.

Table 10 shows the forecasting IVRMSE of all models on the unbalanced test set. As

discussed in Section 5.2, testing on the unbalanced test set gives a better representation of

the performance of the models in real-life applications. Using the unbalanced test set instead

of the balanced test set seems to affect the relative performance among the models in a

similar manner as for the modeling performance. That is, the performance of PCA is most

negatively affected, which leads to AEI being the dominant forecasting method. Still, PCA

outperforms both AED and IPCA which means that it is still the second best method after

AEI .

Remarkably, for all horizons, AE1,I achieves a substantially lower IVRMSE than AE2,I for

1-3 factor models, and AE2,I achieves a substantially lower IVRMSE for 4-6 factor models.

Therefore, it can not be said which of these methods is superior. However, as AE2,I achieves

the overall lowest IVRMSE for each horizon (although with a slight margins), an edge can be

given to AE2,I over AE1,I . The lowest IVRMSE is achieved using the 4-factor AE2,I model

for each horizon, and is equal to 2.99%, 4.56%, and 7.47% for h = 1, 5, 21 respectively.

Lastly, the results for both IPCAB and IPCAU are similar to those for the balanced test
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Table 10: Forecasting IVRMSE for the unbalanced test set (%).

Number of factors (M)
Method 1 2 3 4 5 6

Horizon = 1
PCA 4.80 4.29 3.68 3.66 3.64 3.62
IPCAB 4.67 7.35 > 99 > 99 > 99 > 99
IPCAU 4.58 4.27 78.41 > 99 > 99 > 99
AE1,I 4.12 3.58 3.13 3.93 3.53 3.56
AE2,I 8.18 3.73 3.19 2.99 3.00 3.36
AE1,D 4.25 4.15 3.88 3.82 4.77 4.56
AE2,D 8.16 4.03 3.93 3.73 4.11 3.70

Horizon = 5
PCA 5.72 5.37 4.97 4.99 5.00 4.96
IPCAB 5.99 5.81 > 99 > 99 > 99 > 99
IPCAU 6.67 5.62 48.57 > 99 > 99 > 99
AE1,I 5.19 4.96 4.57 5.37 5.18 5.12
AE2,I 8.18 5.15 4.74 4.56 4.58 4.87
AE1,D 5.79 5.54 6.15 6.40 5.68 6.13
AE2,D 8.23 5.64 5.30 6.02 6.10 6.00

Horizon = 21
PCA 8.02 7.90 7.84 7.81 7.83 7.80
IPCAB 11.86 8.34 12.64 > 99 > 99 > 99
IPCAU 12.76 8.47 > 99 > 99 > 99 > 99
AE1,I 7.66 7.85 7.48 8.19 8.07 7.97
AE2,I 8.18 8.17 7.78 7.47 7.48 7.67
AE1,D 8.37 8.09 8.47 8.20 8.38 8.81
AE2,D 8.05 8.83 7.95 8.52 8.43 8.12

Note: Bold values indicate the lowest IVRMSE for each M and horizon.

set. Again, for models with 3 factors or more, the IVRMSE is extremely high, likely caused

by the unusual and unpredictable behavior of (some of) the factors.

Because the factors may have a connection with some macroeconomic variables, we also

attempt to forecast the factors using a Neural Network (NN) instead of a VAR model for

the indirect and hybrid forecasting methods. As input for the NN, we use the covariates

discussed in Section 3.2, complemented with the lagged value of the factors. Table E.1 in

Appendix E shows the IVRMSE of these forecasts on the unbalanced test set. Clearly, these

results are inferior to those obtained with the VAR model, especially for larger horizons.

Therefore, we conclude that a VAR model is more suitable for forecasting the factors than a
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NN with the current selection of covariates.

6 Discussion

6.1 Conclusion

In this research, we compare the performance of different methods to construct factor models

describing the Implied Volatility Surface (IVS). The used methods are Principal Component

Analysis (PCA), Instrumented PCA (IPCA), and Autoencoders (AE). The performance of

the methods is split up into three parts: Interpretability, modeling performance, and forecast-

ing performance. The modeling performance and forecasting performance are both measured

using the Implied Volatility Root Mean Squared Error (IVRMSE ).

Firstly, comparing the interpretability of the 3-factor models of each method leads to

the conclusion that the factors of both PCA and AE1 are easily interpretable using some

characteristics of the IVS (level, skew, and term structure). This is somewhat surprising for

AE1 as this is a NN where more complicated nonlinear combinations can be made between

the data and the factors. Moreover, AE2 still contains a factor that mimics the level of the

IVS almost perfectly, but the other factors are less similar to the other characteristics of

the IVS. It seems like the interpretability suffers from more hidden layers in the AE. This

is not surprising, as increasingly more complicated connections between the IVS data and

the factors can be made with more hidden layers. Lastly, for both IPCAB and IPCAU , one

of the factors behaves in an unexpected way by fluctuating around 0 most of the time, with

occasionally a large spike. This leads to the conclusion that either IPCA is not suitable for

modeling the IVS, or the chosen covariates are not of sufficient quality for IPCA to converge

properly.

Secondly, the modeling performance is measured on the balanced and unbalanced test

set using the IVRMSE. For the balanced test set, PCA has the lowest (best) IVRMSE for

most numbers of factors, and the lowest overall IVRMSE of 0.60%. AE1 and AE2 closely

follow PCA, having a lower IVRMSE for the 1- and 2-factor models. IPCAB and IPCAU

substantially fall behind the other methods, which was to be expected considering the afore-

mentioned unexpected behavior of the factor. Testing on the unbalanced test set gives a
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better representation of the performance of the methods in real-life applications. This is

because the methods need to perform some interpolation instead of exactly replicating the

input grid (balanced test set). For the unbalanced test set, both AE1 and AE2 are clearly the

dominant methods, with the lowest IVRMSE of 1.76%, and with AE2 slightly outperforming

AE1. The IVRMSE of PCA is affected the most by switching to the unbalanced test set.

This is not surprising, as it is the only method without a built-in interpolation method. The

IVRMSE of both IPCAB and IPCAU is again substantially worse than that of AE. However,

it has similar IVRMSE to PCA for the unbalanced test set.

Lastly, the forecasting performance is measured on the balanced and unbalanced test set

using the forecasting IVRMSE. Similar to the modeling performance, PCA is the dominant

method for the balanced test set with AE1,I and AE2,I following closely (all indirect forecasts).

Moreover, for the unbalanced test set, the IVRMSE of PCA increases substantially more than

for the rest of the methods, which results in AEI being the dominant method. Furthermore,

the direct forecasts of AED perform decently well, but are outperformed by both AEI and

PCA for the balanced and unbalanced test set. For both AEI and AED, the difference

in forecasting IVRMSE between the models with 1 and 2 hidden layers is not substantial.

Lastly, the IVRMSE of IPCA increases extremely for the models with 3 or more factors.

This is likely to be caused by the aforementioned unpredictable behavior of (some of) the

factors of IPCA.

All in all, AE1 seems to be the only method that competes for first place in all three per-

formance compartments. Together with PCA, it is most easily interpretable, and together

with AE2, it achieves the best modeling and forecasting performance, measured on the unbal-

anced test set. Therefore, regardless of the focus lying on the interpretability of the factors

or minimizing the IVRMSE, AE1 is a viable method to use.

6.2 Limitations and research recommendations

We used IPCA to account for the possibility of the IVS being non-static, and AE to account

for the nonlinearities in the data. However, we did not incorporate a method which accounts

for both of these possible shortcomings of PCA at once. It may be an interesting avenue for

future research to investigate the performance of such a method.
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Finally, the current implementation of IPCA does not give results as expected. This

already becomes clear by viewing the behavior of the factors of the 3-factor model, with one

factor fluctuating close to 0, occasionally having large spikes. The modeling and forecasting

performance of IPCA is also worse than the others. Therefore, one can conclude that either

IPCA does not work properly for modeling the IVS, or the current set of covariates is insuf-

ficient. If the latter is the case, it may be worth further looking into which covariates should

be added to make IPCA perform better.
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Appendix A Newton-Raphson method

We initialize the algorithm with an educated guess of the IV. Then the Newton-Raphson

method iteratively updates the IV using the partial derivative of the option price with respect

to the IV (Vega). Because of the put-call parity, the option price of any put option can be

converted to the option price of the call option which forms a pair with the aforementioned

put option. After the conversion, the put-call pair should both have the same IV. For

convenience, we convert all options to call options before using the Newton-Raphson method

such that the Vega is calculated in the same manner for all options. We use a maximum

of 100 iterations (J = 100) and error margin of 10−4 (δ = 10−4) for the Newton-Raphson

algorithm.

Algorithm 1 Newton-Raphson method for estimating the IV

Require: Price of call option C, stock price S, strike price K, tenor τ , risk-free rate r,
dividend yield rate q, maximum number of iterations J , error margin δ.

1: Initialize IV0 =
√

2π
τ

C
S
(following Brenner and Subrahmanyan (1988)).

2: for j = 0, 1, . . . , J do
3: Calculate the implied call price (IC): ICj = BS(C, S,K, τ, r, q, IVj).
4: if |ICj − C| < δ then
5: IV = IVj,
6: STOP.
7: end if
8: Update the IV using the Vega (V):

d1,j =
log(S/K) + (r − q + IV 2

j /2) τ

IVj

√
τ

. (A.1)

Vj = e−qτS
√
τ ϕ(d1,j), (A.2)

where ϕ(·) is the probability density function (pdf) of a Standard Normal distribution.

IVj+1 = IVj −
ICj − C

Vj

. (A.3)

9: end for
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Appendix B 3D plot full sample

Figure B.1: Plot of the full IVS on February 28, 2020 (unbalanced).
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Appendix C Factor plots

(a) PCA-1 and IVS level. (b) PCA-2 and IVS term structure.

(c) PCA-3 and IVS skew.

Figure C.1: PCA factors of the 3-factor model with the highest correlated IVS characteristic over
the entire sample (both standardized).
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(a) IPCAB-1 without IVS characteristic. (b) IPCAB-2 and IVS term structure.

(c) IPCAB-3 and IVS term structure.

Figure C.2: IPCAB factors of the 3-factor model with the highest correlated IVS characteristic
over the entire sample (both standardized).
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(a) IPCAU -1 without IVS characteristic. (b) IPCAU -2 and IVS term structure.

(c) IPCAU -3 and IVS skew.

Figure C.3: IPCAU factors of the 3-factor model with the highest correlated IVS characteristic
over the entire sample (both standardized).
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(a) AE1-1 and IVS level. (b) AE1-2 and IVS term structure.

(c) AE1-3 and IVS skew.

Figure C.4: AE1 factors of the 3-factor model with the highest correlated IVS characteristic over
the entire sample (both standardized).
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(a) AE2-1 and IVS level. (b) AE2-2 and IVS level.

(c) AE2-3 and IVS skew.

Figure C.5: AE2 factors of the 3-factor model with the highest correlated IVS characteristic over
the entire sample (both standardized).
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Appendix D Augmented Dickey-Fuller test

Table D.1: ADF test statistics of factors and characteristics of the IVS.

Series Test statistic p-value
Level -4.15 0.001
Term structure -8.38 0.000
Skew -3.64 0.005
PCA-1 -4.01 0.001
PCA-2 -7.99 0.000
PCA-3 -3.14 0.023
IPCAB-1 -70.22 0.000
IPCAB-2 -7.90 0.000
IPCAB-3 -6.13 0.000
IPCAU -1 -70.95 0.000
IPCAU -2 -8.04 0.000
IPCAU -3 -5.40 0.000
AE1-1 -3.87 0.002
AE1-2 -6.95 0.000
AE1-3 -3.34 0.013
AE2-1 -4.12 0.001
AE2-2 -3.94 0.002
AE2-3 -5.07 0.000
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Appendix E Additional forecasting results

Table E.1: Forecasting IVRMSE for the unbalanced test set (%) using a NN to forecast the factors.

Number of factors (M)
Method 1 2 3 4 5 6

Horizon = 1
PCA 5.69 6.75 5.68 5.14 5.28 5.45
IPCAB 5.02 6.86 > 99 > 99 > 99 > 99
IPCAU 5.04 4.36 > 99 > 99 > 99 > 99
AE1,I 7.29 6.42 6.44 11.32 5.18 4.47
AE2,I 8.16 51.90 6.23 4.87 4.66 5.50

Horizon = 5
PCA 11.98 9.90 14.42 12.32 10.43 11.41
IPCAB 6.01 6.54 > 99 > 99 > 99 > 99
IPCAU 8.71 6.55 > 99 > 99 > 99 > 99
AE1,I 16.49 29.36 16.03 16.78 13.94 8.41
AE2,I 8.16 39.62 15.16 16.25 12.73 15.28

Horizon = 21
PCA 33.67 36.70 35.46 43.17 37.43 24.62
IPCAB 13.66 12.24 > 99 > 99 > 99 > 99
IPCAU 32.20 12.75 > 99 > 99 > 99 > 99
AE1,I 33.61 43.64 30.79 58.45 45.67 40.61
AE2,I 8.17 53.52 36.02 65.63 35.44 54.96

Notes: The NN used for the indirect forecast has 2 hidden layers with a width of 64 and ReLu activation
functions on all layers but the output layer, which has a linear activation function.
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