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Abstract

Over the last few decades, several competing approaches to portfolio selection have been pro-

posed. In this thesis, I reexamine the parametric portfolio policy approach of Brandt and

Santa-Clara (2006) which enables market timing of portfolios and a simple implementation of

dynamic portfolios. I extend the original study by applying several methods aimed at reduc-

ing parameter estimation error and combine it with cross-sectional information. An empirical

implementation of this approach and its extension is presented in different investment settings.

I find that gains from including conditioning information (i.e. market timing) are difficult to

realize out-of-sample regardless of asset allocation model or asset set.
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1 Introduction

The problem of portfolio selection is of great importance both in financial research and asset man-

agement industry. Quantitative approach to portfolio selection relies on mathematical models and

statistical analysis to make investment decisions. The most famous framework in this context is

the mean-variance analysis (Markowitz (1952)) which gives optimal portfolio weights as a function

of assets’ expected returns, variances and covariances for an investor that trades off the mean and

variance of portfolio returns. Most other portfolio management approaches also derive optimal

portfolio choices as functions of moments of financial returns. It is well known that such tradi-

tional implementations of portfolio allocations suffer from serious shortcomings (Jobson and Korkie

(1980), Best and Grauer (1991), Aït-Sahalia and Brandt (2001)).

In a single period setting these issues usually stem from large parameter uncertainty in expected

returns and covariance matrices due to large amounts of noise in financial returns data. This means

that the resulting portfolio weights can be far away from the theoretically optimal portfolio weights,

leading to sub-optimal investments. The importance of this problem, particularly in terms of eco-

nomic gains and losses, was demonstrated already in Jobson and Korkie (1980). Nowadays, most

implementations of mean-variance analysis include some sort of remedy to deal with parameter

uncertainty issues.

In multiple period allocation problems, there are additional issues resulting from empirically ob-

served return predictability, which makes the problem extremely complex and difficult to solve.

This is usually done by means of dynamic programming which involves solving the Bellman equa-

tion (e.g. Brandt et al. (2005)), and alternatively by stochastic optimal control (e.g. Chellathurai

and Draviam (2007)) or reinforcement learning (e.g. Hens and Wöhrmann (2007)). Neither of these

methods is easy to implement. A more recent approach to portfolio allocation, introduced by Brandt

and Santa-Clara (2006) and Brandt et al. (2009) avoids portfolio weights estimation through as-

sets expected returns and covariances, and instead directly establishes a model for portfolio weights.

A particularly interesting area of portfolio management is a long-horizon dynamic portfolio alloca-

tion. This is because many investors face long term investment decisions which allow rebalancing

before the terminal period. Bodnar et al. (2015) notes that much less has been done in that area

compared to the single-period portfolio choice, while being of greater importance practically (e.g.

investing for retirement). In addition, it is known already since Samuelson (1969) that if returns are

not independent across time, the optimal long-term allocation differs from the short-term allocation.
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Despite this, as Brandt (2010) notes, only a few financial institutions implement a dynamic instead

of a static, single period solution. One of the reasons for this is that its use is prevented by difficult

and cumbersome implementation based on approximations and numerical techniques. Furthermore,

long-term allocations include a hedge component which is subject to additional estimation error,

such that out-of-sample performance might not be superior to that of repeated myopic allocations

(Diris et al. (2015)). On the other hand, many studies (e.g. Barberis (2000)) show that gains from

utilizing return predictability are significant. Hence, this application is particularly relevant from

practitioners’ point of view.

To avoid the need of having to work with complex optimization problems which require the use

of numerical techniques, different papers have proposed various approximations or continuous time

setting to obtain more straightforward solutions. One of such approximations is the idea of directly

modeling portfolio weights by circumventing the use of expected returns, covariances and other

moments of returns. Brandt and Santa-Clara (2006) are the first to consider directly modeling

portfolio weights in a dynamic setting. The basic idea behind the method is that optimal portfolio

weights are directly parameterized as a function of state variables. Furthermore, they show that by

using some simple linear algebra rules, the solution can be formulated in terms of a standard, static

Markowitz solution. The obvious advantage of this approach and thus practical relevance is that we

do not have to resort to dynamic optimization to derive optimal portfolio allocations but can use

simple statistics such as OLS. The disadvantage is that the solution is only an approximation which

deteriorates with investment horizon and rebalancing frequency. However, Brandt and Santa-Clara

(2006) show that for horizons up to 5 years, it still offers satisfactory performance.

The framework also allows straightforward inference on the coefficients of the weight function due

to Britten-Jones (1999), who shows that the standard OLS regression inference can be applied to

portfolio weights. This enables us to say which state variables or characteristics are important for

the optimal portfolio policy by implicitly affecting return moments. While it is known that for ex-

ample dividend-price ratio affects expected returns, it could be that it also affects covariances in an

offsetting way such that optimal portfolio weights do not change. Hence, considering the problem

in this framework also offers an answer to the question of which economic variables actually change

the composition of optimal portfolios.

Another important advantage of this approach is that the resulting optimal portfolio weights take

into account higher order moments of returns and their effect on the distribution of portfolio returns
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and ultimately expected utility. This is particularly appealing if investors do not have quadratic

utility, in which case higher order moments count. With a large number of assets, the traditional

approach of modeling return moments as functions of characteristics is infeasible since too many

parameters need to be estimated. Hence, the traditional approach is restricted to mean-variance

preferences which is not desirable considering investors’ probable utility functions and empirical

characteristics of asset returns.

Hence, in principle this approach is very appealing on a number of grounds. However, this ap-

proach to portfolio allocation, while relatively new, has received surprisingly little attention in the

literature. This thesis intends to fill the gap in the literature by reexamining and extending the

method. It also provides a thorough out-of-sample evaluation which is an important consideration

as one of the intentions of Brandt and Santa-Clara (2006) was to introduce it in the real world port-

folio management. Furthermore, since this approach leads to a static Markowitz solution, many

of the tools developed to improve the original solution by reducing parameter uncertainty are ex-

amined. These include shrinkage, portfolio restrictions, prior information, etc. Furthermore, the

basic performance in the dynamic setting has not been yet evaluated, since Brandt and Santa-

Clara (2006) evaluate its performance on its own, without comparing it to the theoretically optimal

solution based on the Bellman equation solution. Finally, there is even some value in replicating

the original results since often important results in quantitative finance have proven not to be robust.

I find that many appealing results from Brandt and Santa-Clara (2006) no longer hold when evalu-

ated out-of-sample. In particular, portfolio policies which use conditioning information and perform

well in-sample, often perform equally or even worse when assessed out of sample. Careful choice

of estimators and state variables is needed in order to improve on unconditional portfolio policies.

This is the case for both, single-period and multi-period investment problems. To deal with pa-

rameter uncertainty I consider moment shrinkage, weights shrinkage, portfolio constraints and the

Black-Litterman model. As with the standard assets such as stocks or industry portfolios, neither

of these techniques proves superior when applied to the managed portfolios of parametric portfolio

policies. I also find that in the dynamic setting the approximation which the method provides

is not inferior to the traditional exact solutions. However, the multi-period solution can quickly

involve a large number of unknown parameters in which case this approach is unappealing despite

its relative ease of dealing with parameter uncertainty. I also find that investment performance can

be improved by applying the method to other sets of assets such as industry portfolios or combining

it with cross-sectional information.
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The rest of the thesis is organized as follows. Section 2 summarizes the literature on parame-

ter uncertainty, the use of conditioning information and dynamics in portfolio allocation. In Section

3, the mechanics of Brandt and Santa-Clara (2006) method are discussed and the proposed exten-

sions. Section 4 describes the data and its sources. The methods are implemented in an empirical

study in Section 5. Finally, Section 6 concludes.
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2 Literature

Much research has been done on the single period portfolio choice starting with the seminal paper of

Markowitz (1952) which laid the theoretical foundation of the portfolio choice problem. The basic

formulation of the problem is based on a number of simplifying assumptions such as mean-variance

preferences and frictionless markets. Thus, a large part of the literature focuses on relaxing these

assumptions to arrive at more realistic investment setups (see Brandt (2010) for a short summary).

The second focus stems from the fact that the inputs to the optimization problem, expected returns

and covariance matrix, are not known in practice. Using naive sample analogues has proven to

result in portfolios that perform suboptimally due to large uncertainty in input estimates (Jobson

and Korkie, 1980). Hence, the econometrics aspect of portfolio choice deals with the question of

how to optimally use historic data for portfolio allocation.

To deal with large uncertainty in optimal weights resulting from imprecisely estimated input pa-

rameters, several techniques have been proposed in the literature (Kolm et al. (2014)). Some of

the most popular ones include shrinkage, portfolio restrictions, factor models and mixed estimation.

The idea of shrinkage estimation comes from the surprising result that with three or more normal

random variables, the joint mean squared error can always be reduced by combining sample means

with any constant (James and Stein, (1961)). Jorion (1986) showed that this result also holds in

the context of portfolio choice when applied to expected returns with the objective of maximizing

utility. Portfolio constraints on the other hand are direct constraints on portfolio weights. Extreme

weights are likely the result of severe estimation errors due to the nature of optimization as shown

in Michaud (1989), therefore eliminating extreme positions should improve portfolio performance.

Economic theory can also help improve the inputs of optimization, in particular the covariance

matrix. Modeling financial markets using factor structure where factors are justified as risk sources

greatly reduces the number of elements of covariance matrix that need estimation, resulting in more

stable estimates. Lastly, the Black-Litterman model combines both the statistical and economic

insights using the framework of Bayesian mixed estimation to determine the moments of returns.

All of the above techniques are in practice often used side by side since there is no single approach

which is superior in all applications (DeMiguel et al. (2009)).

Recent econometric advances also take advantage of the empirical finding of time-varying return

distributions, i.e. predictability and conditional hetersokedasticity (Fama and French (1988), Engle

(1982)). The use of conditioning information in portfolio formation which captures changing eco-

nomic conditions dates back to Hansen and Richard (1987). Initially it was applied to model return
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moments as a function of state variables and using the conditional moments to form portfolios (e.g.

Ferson and Siegel (2001)). This is straightforward for expected returns, however, with N assets

the covariance matrix requires estimation of N(N+1)/2 functions, where each function includes K

unknown parameters corresponding to K state variables. This makes the approach susceptible to

the original issue of parameter uncertainty. Brandt and Santa-Clara (2006) proposed an alternative

which circumvents the need of modeling return distributions. Namely, they assume that portfolio

weights can be modeled as (linear) functions of state variables. The so-called parametric portfolio

policy (PPP) approach has the advantage of being much more parsimonious with only N functions

(or N×K parameters) to be estimated which results in considerable estimation and computation

efficiency. This is especially convenient when considering more realistic utility functions involving

higher moments of returns, since PPP implicitly accounts for the effect of state variables on all

relevant moments of asset returns.

While the single-period portfolio choice is appealing due to its tractability, most real-world invest-

ment problems involve long horizons with the possibility of rebalancing such as pension investing.

The multi-period counterpart received much less attention until the breakthrough by Samuelson

(1969) and Merton (1969, 1973) who derived the conditions in discrete and continuous time under

which myopic and dynamic optimal allocations are equivalent. Most importantly, this happens if

asset returns are independent and identically distributed. However, while theoretically the problem

is not difficult to formulate, its empirical implementation is much harder due to the complexity

of the problem and the lack of closed form solutions. In addition, it was thought until late 1980s

that asset returns, in particular stock returns, were unpredictable (Cochrane, 2011) in which case

the single-period solution to the long-horizon problem is optimal. Since then there has been ample

literature showing that many economic variables related to business cycle such as price-dividend

ration, term spread, etc. are able to predict financial asset returns, with the fit increasing in the

time horizon (e.g. Campbell and Shiller (1988), Campbell and Viceira (2002)). However, more

recent studies such as Welch and Goyal (2008) have argued that this finding is much less robust

when examined out-of-sample. Using kernel regressions, Farmer et al. (2022) find some evidence of

out-of-sample predictability which is, however, restricted to certain subsamples of up to two years

("pockets") which represent only 15% of the whole sample.

The ability to predict returns means that changes in the investment opportunity set can be an-

ticipated which creates intertemporal hedging demands. Hence, long-term solution at any point in

time can be decomposed in the myopic solution and hedging demand. There have been several stud-
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ies showing that these hedging demands tend to be large and significant (Barberis (2000), Larsen

and Munk (2012)). For example, Basak and Chabakauri (2010) show that the percentage hedging

demand can range from 18% to 84% in different economic settings. In general, it is found that in

asset allocation problems, long-term portfolios allocate more to stocks compared to the single-period

due to the mean-reversion in stocks.

Numerical solutions to dynamic portfolio allocation problems can be obtained by stochastic dy-

namic programming, stochastic optimal control or reinforcement learning (e.g. Cvitanic et al.

(2003), Cong and Oosterlee (2017)). While the general problems require the use of numerical tech-

niques, analytical solutions have been developed in continuous-time setting and under various return

process assumptions (Lim and Zhou (2002), Basak and Chabakauri (2010)). Closed form solutions

in the more difficult case of discrete time have been obtained by considering various approximations

(e.g. Leippold et al. (2004), Bodnar et al. (2015)). Importantly, Brandt and Santa-Clara (2006)

derive an approximate solution to the multi-period portfolio problem by ignoring compounding and

forming the so called timing portfolios which replicate dynamic allocations using a static setting.

Consequently, the optimal dynamic solution is obtained from the standard single-period Markowitz

solution. This implies that all the above mentioned tools of dealing with parameter uncertainty can

be used to address the otherwise difficult issue in dynamic portfolio choice.

This methodology has been implemented in de Roon et al. (2010) who consider the effects of

a lockup period characteristic of many hedge funds. Similarly, Plazzi et al. (2010) use identical

setup as Brandt and Santa-Clara (2006) but also add commercial real estate as available asset for in-

vestment. As such, these studies only use the method to obtain empirical results without examining

or extending the method itself.
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3 Methodology

3.1 Parametric portfolio policies

The core of this study relies on the parametric portfolio policy proposed in Brandt and Santa-

Clara (2006). They assume that optimal portfolio weights are linear in state variables summarizing

the state of the economy and derive the resulting closed form solutions. While it is shown that

implementation is as simple as the standard Markowitz solution, it requires expanding the set of

assets to also include managed portfolios. In particular, their portfolio optimization technique

essentially relies on two ideas, the conditional and timing portfolios.

3.1.1 Unconditional and conditional portfolios

Working in the expected utility framework and assuming mean-variance preferences over next pe-

riod’s wealth, analytical solutions can be derived for portfolio weights in the standard way by

maximizing expected utility subject to the budget constraint:

maxEt

(
Wt+1 −

bt
2
W 2

t+1

)
s.t. Wt+1 = Wt

(
Rf

t + rpt+1

)
, (1)

where Wt+1 is next period’s wealth, bt is a sufficiently small coefficient such that utility does not

decrease with wealth, Rf
t is the gross risk-free rate and rpt+1 is the excess portfolio return.

Substituting the budget constraint in the maximization and ignoring the constants the problem

can be written as a trade-off between portfolio’s expected return and variance:

maxEt

(
x′trt+1 −

γ

2
x′trt+1r

′
t+1xt

)
, (2)

where rt+1 is an N × 1 vector of asset returns, xt is an N × 1 vector of weights and γ is a coefficient

summarizing the investor’s risk aversion.

When returns are assumed to be independent and identically distributed (i.i.d.), portfolio weights

are constant over time, which means that the conditional expectation is equal to the unconditional

expectation. This results in the familiar Markowitz solution where population moments have been

replaced with the sample averages:

x =
1

γ

[
T−1∑
t=1

rt+1r
′
t+1

]−1 [T−1∑
t=1

rt+1

]
. (3)
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Given that the i.i.d. assumption is unlikely, Brandt and Santa-Clara (2006) assume that portfolio

weights are linear in a vector of K state variables zt through an N x K matrix of constant coefficients

Θ:

xt = Θzt. (4)

This leads to the so-called conditional portfolios which make investment in each asset proportional to

the level of the conditioning variables while simultaneously maintaining the optimization simplicity

of the Markowitz framework. Analytical solutions can be derived for portfolio weights of assets in

the augmented set by first replacing xt in equation (2) by the functional form in (4):

max
t

[
(Θzt)

′ rt+1 −
γ

2
(Θzt)

′ rt+1r
′
t+1 (Θzt)

]
. (5)

Using the following result from linear algebra allows separation of vector of parameters from the

data:

(Θzt)
′ rt+1 = z′tΘ

′rt+1 = vec (Θ)′ (zt ⊗ rt+1) , (6)

where vec(Θ) stacks the columns of matrix Θ into a vector and ⊗ denotes a Kronecker product.

These variables constitute a transformed vector of weights and returns so that the familiar opti-

mization problem is obtained:

maxEt

(
x̃′r̃t+1 −

γ

2
x̃′r̃t+1r̃

′
t+1x̃

)
, (7)

where x̃ = vec(Θ) and r̃t+1 = zt ⊗ rt+1. Hence, the solution gives the optimal weights of managed

portfolios, which are equivalent to the basis assets whose returns are scaled by the state variables:

x̃ =
1

γ

[
T∑
t=0

(
ztz

′
t

)
⊗
(
rt+1r

′
t+1

)]−1 [ T∑
t=0

zt ⊗ rt+1

]
. (8)

Inference on the efficient weights on managed portfolios in (8) can be done by first noting that

(8) is equivalent to the basic solution in (3) with transformed returns r̃t+1. And then using the

results from Britten-Jones (1999) who derives the sampling distribution of estimates of efficient

portfolio weights. In this particular case, it can be shown that optimal portfolio weights are equal

to the scaled (by 1/γ) OLS coefficients obtained in a regression of a vector of ones on asset returns
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(Brandt and Santa-Clara (2006)). Hence, the standard inference that applies to OLS coefficients

is used to test hypotheses about portfolio weights. In general, if β̂ is a vector of estimated re-

gression coefficients, σ2 is the variance of the error term and X is the matrix of regressors, then

V ar(β̂) = σ2(X ′X)−1. In our case with X = r̃ and the errors ιT − r̃x̃, the covariance matrix is

given by:

V ar(x̃) =
1

γ2
1

T − (N ×K)
(ιT − r̃x̃)′(ιT − r̃x̃)(r̃′r̃)−1. (9)

3.1.2 Timing portfolios

On the other hand, the idea of timing portfolio enables a multi-period portfolio problem to be

solved as a single period problem. However, it comes at the cost of being an approximation which

has been examined in a simulation study in Brandt and Santa-Clara (2006). The formulas below

give a solution for a two-period problem which can be easily generalized to any H-period problem.

Starting from the mean-variance objective:

maxEt

(
rpt→t+2 −

γ

2
(rpt→t+2)

2
)
, (10)

the portfolio return rpt→t+2 now represents the excess return of the two-period investment strategy

calculated as:

rpt→t+2 =
(
Rf

t + x′trt+1

)(
Rf

t+1 + x′t+1rt+2

)
−Rf

t R
f
t+1, (11)

which can also be written in the following way:

rpt→t+2 = x′t

(
Rf

t+1rt+1

)
+ x′t+1

(
Rf

t rt+2

)
+
(
x′trt+1

) (
x′t+1rt+2

)
. (12)

The familiar Markowitz solution can be obtained by ignoring the last term which represents

compounding of returns and is thus much smaller compared to the first two terms. This causes the

solution to be an approximation which could be satisfactory for short horizon and large magnitudes

of returns. The solution is then:

x̃ =
1

γ

[
T−2∑
t=1

r̃t→t+2r̃
′
t→t+2

]−1 [T−2∑
t=1

r̃t→t+2

]
, (13)

where r̃t→t+2 =
[
Rf

t+1rt+1, R
f
t rt+2

]
.

This can be easily combined with conditioning portfolios by expanding the asset set to include
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returns scaled by conditioning variables. In particular, rt+1 and rt+2 are replaced by zt ⊗ rt+1

and zt+1 ⊗ rt+2, where zt includes a constant and variables which are thought to influence return

distributions.

3.2 Dynamic programming

The benchmark which represents the optimal dynamic allocation is usually obtained through stochas-

tic dynamic programming which involves solving the Bellman equation. The alternative solution

techniques found in the literature are stochastic optimal control and reinforcement learning which

are used less often. Several methods have been proposed to solve the Bellman equation, which differ

in how the conditional expectation of utility of wealth is approximated (Brandt et al. (2005)). In

the empirical study below the simulation approach is chosen. This approach is based on estimating

a return model from which simulations of return and state variables can be obtained. The advan-

tage of this approach is that it can handle complex objectives and constraints together with the

fact that conditional expectation can be approximated arbitrarily close by increasing the number

of simulations from the model. However, the drawback is that the return model might be misspec-

ified or parameters estimated with significant error. Van Binsbergen and Brandt (2007) and more

recently, Denault and Simonato (2017) present two similar methods (value function vs portfolio

weights recursion) of approximating the Bellman equation using simulations and regressions.

In general, the Bellman equation Vt can then be solved by breaking down the multi-period problem

into simpler single-period problems and using backward recursion:

Vt (Wt, zt) = max
{xs}T−1

s=t

Et [u (WT )] = max
xt

Et

{
max

{xs}T−1
s=t+1

Et+1 [u (WT )]

}
=

= max
xt

Et

{
Vt+1

[
Wt

(
x′trt+1 +Rf

t

)
, zt+1

]}
.

(14)

The algorithm in Van Binsbergen and Brandt (2007) proceeds in five steps to find the optimal

weights:

1. Create a grid of portfolio weights and simulate N sample paths with length T of asset returns

and state variables. The simulation model used can be for example a vector autoregressive

model (VAR) of (log) asset returns and state variables which is often used in the portfolio

choice literature (Campbell and Viceira, 2002).

2. For a given combination of weights from the grid, determine the conditional portfolio return

moments. This is done by first calculating portfolio return of each sample path associated
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with that combination of weights. Then all (squared) portfolio returns are regressed on a

constant and a set of state variables. Finally, the conditional return mean (variance) of each

sample path can be obtained as a fitted value from that regression.

3. Approximate the expected utility by a Taylor series expansion using conditional return mo-

ments (this is not necessary with mean variance preferences). The expected utility of each

sample path can then be obtained by plugging in the state variables.

4. Repeat 2. and 3. for all combinations of weights and for each simulation path select those

that maximize the expected utility.

5. Proceed recursively backward to the beginning time period by repeating the above steps. The

difference between value function and portfolio weights recursion is whether expected utility

or actual utility in used to evaluate the Bellman equation.

3.3 Extensions

As shown above, solutions to optimal conditional and dynamic portfolios can be expressed in the

form of Markowitz solution. Therefore, many of the refinements developed to improve empirical

implementation of the Markowitz approach can be applied. To avoid extreme portfolio weights, a

number of techniques from literature can be considered. These include shrinkage, portfolio con-

straints, economic models restrictions and inclusion of beliefs through Bayesian analysis. While

Brandt and Santa-Clara (2006) argue that weights obtained by the proposed portfolio policy are

much more stable than the ones resulting from traditional approach based on expected returns

and covariances, their empirical study still yields large variation in weights which frequently exceed

400%. Expanding the asset set beyond the three assets in their study could make the problem even

worse, and thus these techniques are fair to consider.

3.3.1 Shrinkage

Shrinkage techniques can be applied to inputs of the optimization which traditionally are expected

returns and covariance matrix. The general idea is to multiply the sample moments with a coefficient

smaller than 1 (i.e. shrink) and combine them with some other information to obtain new moment

estimates:

θ̂sh = (1− ρ)θ̂ + ρθtarget. (15)
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This is often found to result in smaller total loss resulting from estimation. One of the first applica-

tions of shrinkage estimation in portfolio optimization was proposed by Jorion (1986) who shrinks

the vector of asset means towards the mean of the minimum variance portfolio by means of Bayesian

analysis. The so called Bayes-Stein approach is still widely used in empirical studies (e.g. Bessler

et al., 2017). More recently, DeMiguel et al. (2013) conduct a comprehensive study of shrinkage

estimators in the context of asset allocation by considering different calibration criteria and ap-

proaches for computing the shrinkage intensity. They find that calculating the shrinkage intensity

by minimizing expected quadratic loss rather than through empirical-Bayes approach proposed by

Jorion (1986) results in a shrinkage vector of means and portfolios that outperform the ones based

on Jorion (1986). In addition, assuming only iid returns, they show that when minimizing expected

quadratic loss of mean vector:

min
α

E
[
∥µsh − µ∥22

]
, (16)

the optimal shrinkage intensity has a closed form expression:

αµ =
E
(
∥µsp − µ∥22

)
E
(
∥µsp − µ∥22

)
+ ∥µtg − µ∥22

=
(N/T )σ2

(N/T )σ2 + ∥µtg − µ∥22
, (17)

where σ2 = trace(Σ)/N , µ is the population mean vector, µsp is the sample mean vector and µtg is

the target mean vector. In practice µsp is used as a proxy for µ.

The alternative to shrinking the moments of asset returns is shrinking the portfolio weights directly:

wsh = (1− α)wsp + αwtg. (18)

This might be particularly suitable for the parametric portfolio policy where the resulting weights

contain not only original asset weights but also the weights on managed portfolios containing state

variables. The latter can be shrunk to zero implying that state variables have no predictive power

in portfolio choice. On the other hand, using insights from economic theory, the weights on basis

weights can be shrunk towards model implied weights such as those from the CAPM or some

other factor model. Alternatively, the prior on can be based on the rules often used in practice. For

example, financial planners often advise to split wealth among the three assets in certain proportion

that might depend on the age (e.g. 70% into stocks, 20% into bonds, 10% into cash). Hence, using
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economic information from the state variables, these proportions can be tilted to exploit or hedge

against changing investment opportunities. Another option, used in my empirical study is the

1/N portfolio which has been shown to perform very well in practice, beating many sophisticated

portfolio allocation strategies (DeMiguel et al. (2009)). To determine the shrinkage intensity several

criteria have been proposed in the literature (e.g. DeMiguel et al. (2013)). These include expected

utility/Sharpe ratio maximization or expected quadratic loss/variance minimization. However, as

opposed to moment shrinkage, to obtain closed form expressions one must assume iid normal returns

which is not appealing from the practical perspective. Hence, in the empirical section a simple grid

search is used to find the optimal shrinkage intensity. In particular, for a given estimation subsample

in a rolling or expanding window approach, I use the value from a grid of values between 0 and 1

which maximizes the in-sample Sharpe ratio.

3.3.2 Portfolio restrictions

Portfolio restrictions are even more straightforward solution since they can be implemented by sim-

ply introducing no short-selling or no borrowing constraints in the optimization problem. These are

often requirements for many institutional investors therefore examining their effect on performance

is of interest on its own. In addition, it has been shown that many types of norm constraints on

portfolio weights lead to the same portfolio allocation as shrinking the covariance matrix (e.g. Ja-

gannathan and Ma (2003), DeMiguel et al. (2009)). Furthermore, Fan et al. (2012) presented a

theoretical result that imposing an L1 norm constraint on portfolio weights creates an upper bound

on the estimation risk.

3.3.3 Black-Litterman model

The above mentioned techniques have been found to be relatively successful in alleviating the pa-

rameter uncertainty issue, however their effectiveness depends on the application of interest. In a

number of applications, the Black-Litterman model proved to be a more effective alternative (e.g.

Bessler et al. (2014). The Black-Litterman model is similar to the Bayes-Stein shrinkage estimator

where the target now comes from the investor’s views and the shrinkage scalar parameter is replaced

with a matrix. The possibility to include subjective opinions and their reliability in a quantitative

model has made this model very popular in practice, despite not receiving much attention in the

academic literature. While in theory investor’s views can come from any source, it is most conve-

nient in this setting to use historic data to form the views. This avoids the hardship of obtaining the

views and enables straightforward comparison with other portfolio strategies. Such sample based

approach to the Black-Litterman model was proposed by Bessler et al. (2014).
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The other important element of this model is the reference portfolio w∗ which is usually derived

by assuming that the financial market is in equilibrium. It is also possible to use portfolios that

perform well empirically such as the 1/N portfolio or the minimum variance portfolio. Assuming

that investors mean-variance optimize, the reference portfolio corresponds to the following implied

mean vector:

µI = γΣw∗. (19)

Combining it with the views µV results in the Black-Litterman model implied mean vector and

covariance matrix:

µ̂BL = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1µI + P ′Ω−1µV ], (20)

ΣBL = Σ+ [(τΣ)−1 + P ′Ω−1P ]−1. (21)

where P is a binary matrix used to form the views (an identity if views are sample estimates), Ω

and τ are measures of uncertainty of the views and implied return estimates, respectively.

An important practical issue concerns the choice of τ and Ω. In the literature, the value for τ is

usually between 0.025 and 0.300 (Idzorek (2007)). The reliability of the views, Ω, can be either

proportional to Σ by factor 1/c or time-varying which is based on historical forecast errors of the

views (Bessler et al. (2014)). The former, proposed by Meucci (2010), sets a constant Ω:

Ω =

(
P

(
1

c
Σ

)
P ′

)
, (22)

while the latter employs a rolling window approach to calculate forecast errors and uses the covari-

ance matrix of these errors as Ω. I compare the performance of the two approaches in the empirical

study.

Table 1 summarizes the asset allocation models considered above which are used in the empiri-

cal study below.
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Table 1: Asset allocation models

# Name Description
0 1/N Benchmark allocation which uses equal weights for all assets

1 Mean variance Sample-based mean-variance allocation

2 Mean shrinkage Shrinks the sample means towards a target with shrinkage intensity
which minimizes expected quadratic loss

3 Weights shrinkage Shrinks the sample mean-variance weights towards a target with shrinkage
intensity which maximizes Sharpe ratio in the estimation sample

4 Portfolio restrictions Imposes bounds on the sample mean-variance weights

5 Black-Litterman Black-Litterman model with sample based views and implied mean vector
based on 1/N allocation. Reliability of views is either fixed or varying over time

6 Bellman Allocation obtained using dynamic programming
This table lists the models used for portfolio selection in the empirical study. Models numbered 1-5 can be used with
parametric portfolio policies of Brandt and Santa-Clara (2006) while models 0 and 6 represent separate approaches to
asset allocation.

3.3.4 Objective functions and parameterizations

Another extension concerns the type of investor’s objective function. The optimal mean-variance

allocation might not be optimal for investors with constant relative risk aversion utility functions

which are empirically found to be appealing and more realistic than mean-variance utility.

The objective as in equation (5) can be easily generalized to other utility functions in the form of:

max
t

(
u
(
Rf

t + (Θzt)
′ rt+1

))
. (23)

In addition, the basic linear specification of the parametric portfolio policy (4) might not be

suitable. Nonlinearities can be introduced by including as state variables for instance polynomials

of the state variables.

However, the above proposed modifications such as different objective functions or functional forms

mean that numerical optimization is required to derive optimal solutions. Since the problem is still

inherently static over the augmented set, optimization remains relatively simple and can be done

with standard algorithms such as the Newton’s method. Alternatively, higher order approximation

of utility function based on Taylor series expansion can be considered which avoids the need to use

numerical optimization. For example, Brandt et al. (2005) proposes a fourth-order approximation

of expected utility around risk-free growth of wealth which accounts for skewness and kurtosis of

returns:
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In this case, the first order conditions result only in an implicit solution for the weights:

xt ≈ −
(
Et[u

′′(WtR
f
t )(rt+1rt+1)]W

2
t

)−1
×
(
Et[u

′(WtR
f
t )(rt+1)]Wt

+
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2
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4
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(25)

The optimal solution can then be obtained by starting with an initial guess for xt and iterating

with the newly obtained solutions until convergence.

3.3.5 Cross-sectional information

To exploit also well-known differences in expected returns in the cross-section of stocks, several

options are available. The factor idea which aims to improve and replace the value-weighted stock

market index by leveraging the well-known differences in cross-sectional risk premia, can be imple-

mented in several ways. For example, it can be assumed that the three Fama-French factors are

available to invest in, which requires no estimation. Alternatively, statistical factors can be con-

sidered, which can be obtained by the principal component analysis. However, investing in factors

rather than stock market index could result in very high turnover, which is why it is sensible to

include transaction costs in the analysis. Brandt et al. (2009) shows that parametric portfolio strat-

egy can easily accommodate high dimensionality when considering a cross-section of stocks in the

single period case. As opposed to time-series parametric policy where the variables are common for

all assets but coefficients on those variables are different, cross-sectional parametric policy assumes

common coefficients on firm-specific variables:

xi,t = xi,t +
1

Nt
θ′ci,t (26)

where xi,t are benchmark portfolio weights, θ is a vector of common coefficients and ci,t is a vector of

characteristics of firm i at time t. A candidate set for characteristics includes variables which have

been found to explain the cross-section of average stock returns, such as size and book-to-market

ratio (Fama and French (1992)).

I propose a way of combining the two dimensions by using the framework of Brandt and Santa-Clara
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(2006) and expanding the state variable set to include firm characteristics. In particular, taking

the same parametric form as in (4), zt can be expanded to include all firm specific characteristics.

This results in a new asset space which also includes managed portfolios formed on characteristics.

Similarly, Θ can be modified to include parameters on characteristics. These can be assumed to be

identical for all firms as in Brandt et al. (2009). This can be illustrated in a simple example with

one state variable and one firm characteristic:

xt = Θzt =

θ11 θ1c 0

θ21 0 θ2c



z1,t

c1,t

c2,t

 . (27)

The solution that satisfies the restrictions on Θ, θ1c = θ2c and zeros can then be obtained by using

the restricted least squares (RLS). The calculation of RLS estimates requires the restrictions to be

formulated in the matrix form, which is in this example expressed in the following way:


0 0 1 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 0





θ11

θ21

θ1c

0

0

θ2c


=


0

0

0

 . (28)

However, as it can be seen, the dimension of Θ increases very quickly when new firm characteristics

or assets are added which might make this approach infeasible with many stocks and state variables.

3.3.6 Performance and transaction cost measures

All of the above methods are implemented and evaluated with real world data in an empirical study.

There are numerous performance measures used in the literature to evaluate constructed portfolios.

The simplest ones calculate the moments of portfolio returns such as the mean and variance. A

well-known Sharpe ratio compares the average portfolio return to the risk-free rate and adjusts it

by its risk which is its standard deviation:

SR =
E(r)−Rf

σ
. (29)
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Since the investor is assumed to optimize the trade-off between portfolio mean and variance, Sharpe

ratio is the appropriate measure of performance in this case. In addition, Sharpe ratios for different

investment horizons can be compared by first calculating returns of portfolios for a common invest-

ment horizon. For example, when using monthly returns, annualized Sharpe ratios are calculated

as monthly Sharpe ratios multiplied by
√
12.

Performance of different strategies can be also evaluated using the equalization fee which is

defined as the percentage fee that an investor would be willing pay to use a superior allocation

instead of an inferior one. It is calculated as the difference between certainty equivalents of the two

strategies.

The turnover quantifies the average trading from one period to the next required to implement

a specific portfolio strategy. With N assets and T time periods where the first M periods are used

for estimation, the turnover of strategy i is defined as:

Turnoveri =
1

T −M

T−M∑
t=1

N∑
j=1

(|xi,j,t+1 − xi,j,t+|). (30)

where xi,j,t+ denotes the portfolio weight t + 1 after return realizations at time t and before

rebalancing at time t+ 1.

Turnover can be used to estimate transaction costs which are directly connected to the trad-

ing activity of a portfolio through broker commissions and bid-ask spreads. A popular choice is

proportional transaction costs where transaction costs are estimated as a certain percentage of the

turnover rate. In the empirical analysis below I assume this to be 0.5%.
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4 Data

The purpose of the first part of the empirical study is to replicate the key results from Brandt and

Santa-Clara (2006). In line with their data, the sample period is from January 1945 to December

2000 with return data at a monthly frequency. CRSP value-weighted stock market index, which

is comprised of stocks listed on the NYSE, NYSE MKT, NASDAQ and Arca stock exchanges, is

used as a proxy for stocks. The index of long-term US government bonds (US) serves as a proxy

for bonds and the index of US Treasury bills as a proxy for cash/risk-free rate. The data for the

latter two, known as Ibbotson Stocks, Bonds, Bills, and Inflation (SBBI) data, come from Ibbotson

Associates (now part of Morningstar).

The state variables used in the study are dividend yield, default spread, detrended short-term

interest rate and term spread. These variables have been found to be important return predictors

in previous empirical studies (Ferson and Siegel (2001), Brandt and Santa-Clara (2006)). Dividend

yield is defined as the log of the ratio of last 12 months of dividends and the current value of

securities in CRSP stock market index. Dividends in each month are obtained by taking the differ-

ence between returns including dividends and excluding dividends, and multiplying it by the total

value of the securities in the index at the beginning of the month. Detrended short-term interest

rate is constructed as the difference between the current Treasury bill rate and 12-month moving

average. Interest data in Brandt and Santa-Clara (2006) comes from the DRI/Citibase database

which has since become part of IHS Markit, and is thus not freely available anymore. Therefore,

this data is obtained from a variety of other sources. Default spread is the difference between yields

on Moody’s Baa and Aaa rated corporate bonds, which is obtained from Federal Reserve Economic

Data (FRED) database. Term spread is the difference between yields on 10-year and 1-year US

Treasury bonds. The data from 1953 onward comes from FRED, while the data prior to 1953 comes

from the European Central Bank database for 10-year yields and from Capital Markets Data for

1-year yields.

The cross-sectional element of the study requires the use of assets beyond indexes of stocks and

bonds, and cash. Using insights from asset pricing theory, the study is extended by using risk fac-

tors which are associated with higher expected returns. For this purpose I use Fama and French’s

market, size and value factor. Since size and value factors are zero-net investment portfolios, 6

portfolios sorted on size and value are instead used in the optimization. This data comes from Ken-

neth Frenchs’ data library. The second set of assets which is applied to the framework of Brandt

et al. (2009) is comprised of value-weighted returns on 5 industry portfolios which also comes from
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Kenneth Frenchs’ data library. The corresponding firm/industry characteristics are the average

value-weighted firm size and the book-to-market ratio. These two characteristics are found to be

important predictors of stock returns, i.e. they are thought to proxy for undiversifiable risk (e.g.

Fama and French, 1992).

5 Empirical analysis

5.1 Single-period portfolio policies

The first part of the empirical application of parametric portfolio policies is the investment problem

of a myopic investor with mean-variance preferences, coefficient of risk aversion γ = 5, and a monthly

or annual holding period. Table 2 shows the in-sample mean-variance optimization results for two

risky assets, stock and bond index, and a risk-free asset proxied by Treasury bill index. Conditional

portfolios using the formulation in equation (4) are formed using four state variables, dividend

yield (D/P), default spread (Default), detrended short-term interest rate (Tbill) and term spread

(Term). Unconditional results show that the optimal investment in stocks is 77.2% and 60.7% for

monthly and annual investments, respectively. The difference can be explained by the fact that,

as opposed to monthly frequency, at annual frequency stocks have a slight negative autocorrelation

which increases their volatility, thereby making them less attractive.1 The investor allocates almost

no wealth to long-term bonds which can be explained by the unattractive risk-return profile of long-

term bonds. Their annual mean return is around 1% and volatility around 9%. In contrast, stocks

have the annual average return of around 8% with still relatively low volatility at 15%. Moreover,

positive correlation with stocks at monthly and annual frequency means that holding bonds does

not offer significant diversification benefits. Since the weights must sum to 1, the investment in the

risk-free rate is 22.8% and 39.3%, respectively.

The second set of results in Table 2 shows the parameter estimates for a linear conditional portfolio

policy. All conditioning variables are standardized to have mean zero and standard deviation one

which eases the interpretation of coefficient estimates. In particular, while the allocation to stocks

and bonds varies each time period depending on state variable realizations, the estimates of a con-

stant give the average allocation. At a monthly frequency bond allocation stays the same while the

average stock allocation increases to 84.5%. For an annual holding period, stock allocation slightly

decreases while the bond allocation turns to be large and negative at -49.4%. The estimate is,

however, not statistically significant as seen from the standard error of 0.408 in parentheses.
1It should be noted that negative autocorrelation makes stocks more attractive for long-term investors since the

variability of multi-period returns decreases.
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This is also the case for coefficients on the state variables which have large standard errors and

are thus in general not statistically significant at the 5% level. However, the coefficient estimates

tend to have signs which are in line with economic theory and previous empirical studies. For

example, Fama and French (1989) find that the equity premium on US stocks has a positive relation

with the slope of the yield curve, which is in line with the positive TBill coefficient. However, the

results in Table 1 relate state variables to portfolio weights rather than just the expected returns.

The offseting effect on the variance could explain why most variables appear to be insignificant

predictors. Despite that, the hypothesis that all state variable parameters are zero is rejected

with a p-value of 0. Moreover, it seems that conditioning variables add valuable information for

portfolio performance which is evident from the Sharpe ratios. The increase from 0.563 to 0.851 for

monthly portfolios and from 0.518 to 0.918 for annual portfolios seems rather large. Furthermore,

the equalization fee of approximately 4% for both holding periods tells us that investors would be

willing to pay 4% to use the conditional rather than the unconditional strategy.

Table 2: Single-Period Portfolio Policies

State variable Monthly Annual
Unconditional Conditional Unconditional Conditional

Stock Const 0.772 (0.187) 0.845 (0.192) 0.607 (0.143) 0.571 (0.213)
Term 0.496 (0.214) 0.437 (0.256)
Default -0.147 (0.195) -0.121 (0.205)
D/P 0.331 (0.171) -0.146 (0.157)
TBill -0.231 (0.213) 0.485 (0.435)

Bond Const -0.003 (0.326) -0.014 (0.414) 0.066 (0.280) -0.494 (0.408)
Term 0.553 (0.336) 0.133 (0.417)
Default 0.215 (0.349) 0.106 (0.339)
D/P 0.079 (0.457) -0.499 (0.345)
TBill 0.579 (0.316) -0.544 (0.481)

p-value 0.000 0.000
Mean excess return 0.062 0.137 0.043 0.092
SD return 0.110 0.161 0.083 0.101
Sharpe ratio 0.563 0.851 0.518 0.918
Equalization fee 0.041 0.042
This table shows the coefficient estimates of single-period (monthly and annual) parametric policies with and without
conditioning information. Coefficients are reported for standardized state variables. The standard errors which are
calculated using equation (9) are reported in parentheses. Below are reported the p-values of conditional policies
which correspond to an F-test of the joint significance of conditioning variables. The next three rows report in-sample
return statistics which are annualized for monthly data. Lastly, equalization fee is the fee an investor would be willing
to pay to use the conditional rather than the unconditional allocation.

5.2 Single-period out-of-sample performance

As seen in Table 2 there seems to be an economically significant difference between unconditional

and conditional portfolio policies. This result, but found to be even stronger, was also established

in the original study by Brandt and Santa-Clara (2006). However, it is well known that many
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important in-sample results derived from portfolio strategies (e.g. DeMiguel et al. (2009)) do not

hold when evaluated out-of-sample due to severe parameter estimation errors. Table 3 presents

an out-of-sample analysis of single-period parametric portfolio policies based on a monthly holding

period. The out-of-sample results for the annual holding period are reported in the Appendix

since the pattern and the quantities are very similar to the monthly results. The table compares

the Sharpe ratios of different portfolio policies which are obtained using sample estimators and

a number of other estimators and constraints that attempt to address parameter uncertainty. In

addition, the results are compared to a naive 1/N allocation which has proven to be a hard to beat

allocation in many settings (DeMiguel et al. (2009)).

The first estimation approach, called Mean variance, uses sample moments to form portfolios

and thus ignores parameter uncertainty. This approach was also used to obtain in-sample results

in Table 2. The Moment shrinkage approach shrinks the mean vector of assets/managed portfolios

returns towards a target where shrinkage intensity is calculated by minimizing expected quadratic

loss, as explained in Section 3.3.1. As a target mean vector, the first option considered is the grand

mean (g-mean) of returns of all basis assets and conditional portfolios. The second option is the

states mean (s-mean) where basis asset and conditional portfolios’ mean returns are each shrunk

towards their own means. Since the conditioning variables are standardized to have zero mean,

it follows that returns on conditional portfolios also have zero mean which is thus the shrinkage

target. 2 As opposed to mean vector shrinkage, Weights shrinkage shrinks the Mean variance

(sample) weights towards some target weights. Here I consider 1/N weights for basis assets and

zeros for the weights on conditional portfolios. The latter implies that state variables have no

effect on the allocation of stocks and bonds. The next approach Portfolio restrictions imposes hard

bounds on the asset/conditional portfolios weights. For basis assets, no short-selling and borrowing

constraints are imposed, limiting the weights to be between 0 and 1. For conditional portfolios

coefficient bounds of -0.5 and 0.5 are chosen. Since all state variables are standardized, if a normal

distribution is assumed, it is very unlikely that any state variable shifts the allocation in stocks or

bonds by more than 100%. 3 Finally, the Black-Litterman model is applied where the views are

chosen to be the sample means and the reference portfolio is 1/N for basis assets and zeros for the

conditional portfolios. Two variations of the model are considered, one where the variability of the

views is time-invariant (fixed), and one where it is time-varying (varying).

The estimation is based on the two most common approaches in the literature, rolling (RW) and

expanding (EW) estimation windows. In the rolling window case, the first 120 months (10 years)
2This justifies choosing separate targets as basis assets (stocks and bonds) have mean returns different from zero.
3To impose bounds of 0 and 1 on the final weights in basis assets, the maximum and minimum values of state

variables must be taken into account when setting state variable coefficient bounds.
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of data are used to estimate portfolio policy parameters which are then used to construct portfolio

weights and evaluate portfolio return in the first out-of-sample month. That month is then included

in the sample while the first month is dropped from estimation, proceeding until the last period.

Expanding window approach proceeds in the same way but without dropping the oldest data point

in each step.

Table 3: Sharpe Ratios Single-Period Monthly

Strategy Unconditional EW Unconditional RW Conditional EW Conditional RW
Mean variance 0.356 0.340 0.359 0.253
Moment shrinkage (g-mean) 0.301 0.299 0.381 0.294
Moment shrinkage (s-mean) / / 0.426 0.276
Weights shrinkage 0.425 0.448 0.474 0.419
Portfolio restrictions 0.389 0.483 0.578 0.475
Black-Litterman (fixed) 0.416 0.442 0.471 0.419
Black-Litterman (varying) 0.467 0.499 0.437 0.412
1/N 0.405 0.405 0.405 0.405
This table shows the out-of-sample Sharpe ratios of the single-period (monthly) parametric portfolio policies using
different estimators and restrictions. The Sharpe ratios are annualized. The results are reported for both expanding
window and rolling window estimation approaches, both based on 120 months of data. Optimal shrinkage intensities
for means are obtained using analytic expression in (16), while those for weights shrinkage are found using grid search.
Uncertainty parameters used in the Black-Litterman model are also obtained using grid search.

Focusing first on the unconditional portfolios, I find that the Black-Litterman approach with

varying reliability of the views proves to be superior both in the EW and RW case with Sharpe

ratios of 0.467 and 0.499, respectively. All other approaches with the exception of Mean variance

and Moment shrinkage tend to improve the performance relative to the 1/N allocation which has a

Sharpe ratio of 0.405. Surprisingly, the Mean variance (sample) approach still performs relatively

well which can be attributed to the fact that only two risky assets are considered. Relative to the

in-sample results, there is a noticeable decline of around 0.20 from the in-sample Sharpe ratio of

0.563. However, as shown in the table, much of the out-of-sample performance can be salvaged

using a number of different estimation error remedies.

The results also show that in the unconditional case the RW Sharpe ratios are comparable to the

approach with EW estimation. The similarity of Sharpe ratios suggests that there is no significant

trade-off between capturing the changes in the data generating process achieved by rolling window

approach and the reduced parameter uncertainty when using more data. This is however not the

case when conditioning information is included in the formation of portfolios. With two risky assets

and four state variables the number of first moments increases from 2 to 10 and the number of

second moments increases from 4 to 100. This imposes significant parameter uncertainty which is

reflected in low Sharpe ratios of the naive mean variance and mean vector shrinkage approaches.

Specifically, the Mean variance approach results in a Sharpe ratio as low as 0.253 which implies

that including additional information actually hurts the performance. A comparison with the in-
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sample results in Table 2 reveals a considerable reduction of a rather high Sharpe ratio of 0.851.

Furthermore, most approaches do not improve the mid 0.4 Sharpe ratio of the unconditional case,

with an exception of EW Portfolio restrictions where the Sharpe ratio is 0.578. From these results

it can be concluded that timing the market with economic states information might not be possible,

and it might actually hurt the portfolio performance if sufficient amount of data or estimation

procedure are not used.

In addition, it is expected that conditional portfolio policies require more drastic portfolio

changes since the portfolio weights depend on state variables realizations which are different each

period. This results in transaction costs which could severely decrease the returns on conditional

portfolios. Table 4 shows the per-period turnover of each portfolio strategy from Table 3. The

turnovers are expressed relative to the turnover of the 1/N strategy which only requires rebalancing

due to assets’ different return realizations.

Table 4: Turnovers Single-Period Monthly

Strategy Unconditional EW Unconditional RW Conditional EW Conditional RW
Mean variance 4.967 11.958 112.014 149.523
Moment shrinkage (g-mean) 5.392 11.317 159.946 194.253
Moment shrinkage (s-mean) / / 131.814 187.682
Weights shrinkage 1.492 3.825 24.643 22.429
Portfolio restrictions 1.934 4.128 44.549 48.672
Black-Litterman (fixed) 1.015 2.436 29.155 31.882
Black-Litterman (varying) 2.638 4.866 21.867 25.317
1/N 0.012 0.012 0.012 0.012
This table reports the corresponding turnovers of portfolio strategies considered in Table 3. The last row reports the
average monthly turnover of the 1/N allocation. All other strategies show the average monthly turnovers relative to the
turnover of the 1/N allocation.

Comparing the two estimation alternatives, it is no surprise that expanding window and uncondi-

tional portfolio policies result in much lower turnovers. The issue of extreme portfolio weights

of Mean variance strategy is well reflected in its turnovers. The conditional RW turnover of

149.523*0.012 implies an average rebalancing of 179% each period. The issue of excessive trading

is somewhat improved when other approaches are used, however, it still persists in the conditional

case. For example, the lowest turnover associated with the varying Black-Litterman model, results

in the average rebalancing of 26% per month.

To provide a rough estimate of portfolio performance net of transaction costs, I use an ad hoc

approach which adjusts the mean of asset returns downwards by 0.5% times the average portfolio

turnover. For example, if the average monthly turnover was 50%, the monthly mean return would

be 0.25% lower. For the 1/N allocation with a small rebalancing of 1.2% per month, the adjusted

Sharpe ratio is 0.398. In the unconditional case, the highest adjusted Sharpe ratio of 0.455 is

obtained using portfolio restrictions with RW estimation. Hence, with modest rebalancing it is still
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possible to beat the 1/N allocation. This is no longer the case for conditional portfolio policies

which involve much more aggressive rebalancing. The highest adjusted Sharpe ratio still results

from portfolio restrictions with EW estimation, however it decreases from 0.578 to 0.394. This

is consistent with many studies which show that high levels of trading are strongly negatively

correlated with investment performance (e.g. Barber and Odean (2000)). Hence, the conclusion

of Brandt and Santa-Clara (2006) that conditional and unconditional return distributions are very

different would be very difficult to capitalize on in practice.

5.3 Multi-period portfolio policies

For the multi-period problem I consider one year investment horizon with the possibility of monthly

portfolio rebalancing. Since there are two assets and twelve timing portfolios for each, this results

in 24 parameters to be estimated. For the multi-period conditional case the issue of dimensionality

quickly exacerbates with the number of state variables. Hence, due to convenience when reporting

the results I use one state variable, resulting in 48 unknown parameters. Second, as explained

below, the out-of-sample performance deteriorates with the inclusion of additional variables. The

choice of state variable is based on the in-sample explanatory ability of each variable. Detrended

short-term interest rate (Tbill) and term spread (Term) result in Sharpe ratios of 0.664 and 0.659,

respectively. In contrast, dividend yield (D/P) and default spread (Spread) give Sharpe ratios of

0.589 and 0.581. It is not surprising that the variables which are thought to be stronger bond rather

than stock return predictors are more helpful since it is well-known that at short horizons bonds

are more predictable than stocks (e.g. Baltussen et al. (2021)). Thus, Tbill is the state variable

used to form conditional multi-period portfolios.

Table 5 shows the in-sample estimation results. For convenience only months 1,4,8 and 12 are

reported where the values for intermediate months follow the pattern in the reported months. In

the unconditional case, the pattern of allocation to stocks is decreasing as the end of the horizon

approaches. In particular, the stock holding decreases from 62.7% in the first month to 47.7% in

the last month. Conversely, the holding of bonds sharply increases from -70.3% to 47.3%. Relative

to the single-period case in Table 2, the change in the stock allocation from 77.2% is not large.

However, long-term bonds play a much bigger role in the multi-period portfolio as opposed to the

single-period where the allocation was around 0%. This suggests that there are considerable horizon

effects when investing dynamically rather than myopically. However, the standard errors show that

the weights estimates for bonds are less certain and for some months not statistically significantly

different from 0. Turning to the conditional case, it can be noticed that the average allocations to
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stocks and bonds are almost the same as in the unconditional case. This implies that the horizon

effects come from the serial correlation structure of stock and bond returns rather than their relation

with the state variable. Nevertheless, there is a small increase in Sharpe ratio from 0.576 to 0.664

when conditioning information is used. The equalization fee is rather small at 0.8%.

Table 5: Multi-Period Portfolio Policies

Month State variable Monthly
Asset Unconditional Conditional
Stock 1 Cnst 0.6269 (0.180) 0.592 (0.190)

TBill -0.316 (0.182)

4 Cnst 0.6164 (0.182) 0.563 (0.192)
Tbill -0.192 (0.195)

8 Cnst 0.6478 (0.184) 0.646 (0.194)
TBill -0.114 (0.196)

12 Cnst 0.4774 (0.182) 0.493 (0.188)
TBill -0.255 (0.184)

Bond 1 Cnst -0.7028 (0.315) -0.717 (0.328)
TBill 0.005 (0.221)

4 Cnst -0.3485 (0.316) -0.331 (0.333)
TBill 0.016 (0.228)

8 Cnst 0.0272 (0.312) -0.007 (0.332)
TBill 0.044 (0.230)

12 Cnst 0.4725 (0.309) 0.529 (0.327)
TBill -0.005 (0.218)

p-value 0.000 0.000
Mean excess return 0.050 0.058
SD return 0.088 0.088
Sharpe ratio 0.576 0.664
Equalization fee 0.008
This table shows the coefficient estimates of multi-period parametric policy with a 1-year
holding period and monthly rebalancing. For convenience, only the results for months 1,4,8
and 12 are shown. The standard errors which are calculated using equation (9) are reported
in parentheses. Below are reported the p-values of conditional policies which correspond
to an F-test of the joint significance of conditioning variables. The next three rows report
in-sample return statistics which are annualized for monthly data. Lastly, equalization
fee is the fee an investor would be willing to pay to use the conditional rather than the
unconditional allocation.

As explained in Methodology (section 3.1.2), the parametric portfolio policy of Brandt and Santa-

Clara (2006) is an approximation since the timing portfolios disregard compounding of returns.

This might not be a significant issue for monthly returns where the magnitudes of returns are

smaller. Comparing the results with the theoretically optimal solution obtained by solving the

Bellman equation can shed some light on the extent of approximation issue. Equations (30) and

(31) report the OLS estimates of a restricted VAR for log returns with Tbill as the state variable.

This specification is a popular choice in the asset allocation literature (e.g. Campbell and Viceira
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(2002), Brandt and Santa-Clara (2006)).


ln(1 + rst+1)

ln(1 + rbt+1)

zt+1

 =


0.0059

0.0007

0.0007

+


−0.0046
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 (31)
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 ∼ MVN

0,


0.0018 0.0003 −0.0008

0.0003 0.0006 0.0003

−0.0008 0.0003 0.4933


 (32)

Coefficient estimates are in line with the two studies mentioned above which find a strong persistence

in the state variable and a weak relation with the log return processes.

The estimated model is used to simulate sample paths of returns and the state variable. Then

using the simulations and regressions, the Bellman equation is solved using the method of Van

Binsbergen and Brandt (2007) described in section 3.2. The associated in-sample Sharpe ratio is

0.679 which implies that there is an improvement of 0.015 over the conditional parametric policy.

This is roughly in line with the result from Brandt and Santa-Clara (2006), Table I, who examined in

a simulation study how accurate are approximation solutions using timing/conditional portfolios.

They showed that with the same investment setting and term spread as the state variable, the

Sharpe ratio difference between timing/conditional portfolios approximation and exact solution is

0.0064.

5.4 Multi-period out-of-sample performance

As in the single-period setting, it is crucial to evaluate out-of-sample performance of the methods

to determine their robustness and usefulness in practice. While in the single period case parameter-

izing the portfolio weights instead of moments of returns as functions of state variables leads to a

significant reduction in dimensionality this is not always the case in the multiperiod problems. For

example one year ahead portfolio allocation with monthly rebalancing of only two risky assets and

one state variable results in 48 parameters to be estimated. If the number of state variables is in-

creased to four as in the single period case, there are 120 unknown parameters. If the rolling window

estimation approach was used it could quickly result in a problem where N>T and the associated

non-invertibility issues. This would greatly increase the complexity of the problem and statistical

estimation error which would make this solution approach inferior to traditional approaches based
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on the Bellman equation formulation and numerical solutions. In fact, I observe that out-of-sample

performance is highest with only one state variable which quickly deteriorates as more variables are

added.

Table 6 shows the results of a similar out-of-sample performance as in Table 3 but now consid-

ering a multi-period problem with a one year horizon and monthly rebalancing. It is well-known

that shrinkage greatly improves and is essential for single-period portfolio optimization, but it is

less clear how helpful it is for dynamic strategies, in particular for timing portfolios. As mentioned

above, the rolling window approach is less suitable in the dynamic case since it can lead to signif-

icant estimation errors. In fact, the Sharpe ratios are often much lower when the RW approach is

used, therefore Table 6 reports only the EW approach.

Table 6: Sharpe Ratios Multi-Period

Strategy Unconditional EW Conditional EW
Mean variance 0.337 0.298
Moment shrinkage (g-mean) 0.277 0.308
Moment shrinkage (s-mean) / 0.322
Weights shrinkage 0.450 0.453
Portfolio restrictions 0.409 0.409
Black-Litterman (fixed) 0.448 0.437
Black-Litterman (varying) 0.471 0.429
Bellman equation / 0.488
1/N 0.405 0.405
This table shows the out-of-sample Sharpe ratios of the multi-period paramet-
ric portfolio policies from Table 5 using different estimators and restrictions.
The results are reported for expanding window estimation approach with 120
months of data used for initial estimation. Optimal shrinkage intensities for
means are obtained using analytic expression in (16), while those for weights
shrinkage are found using grid search. Uncertainty parameters used in the
Black-Litterman model are also obtained using grid search.

Similar to the single-period case, there is a significant reduction in the Sharpe ratios of Mean

variance approach when evaluated out-of-sample. This is especially true for the conditional case

where adding the state variable Tbill leads to a decrease in portfolio performance. In fact, all

strategies in the conditional case underperform relative to the unconditional case. Similar to the

single-period problem, Weights shrinkage and the Black-Litterman model seem to be the most

successful approaches to deal with estimation error. However, unlike in the single-period they are

unable to improve upon the unconditional case. This can be in part explained by the fact that

in-sample performance was roughly the same with and without conditioning information. However,

the Bellman equation solution gives the Sharpe ratio of 0.488 which improves upon the Black-

Litterman model’s 0.471 in the unconditional case. This suggests that conditional information does
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add some value when investing dynamically in the short-term. As opposed to the in-sample result

when timing/conditional portfolios performed almost as well as the Bellman equation solution, the

difference is bigger out-of-sample. A possible explanation for this is that the former requires a much

larger number of parameter estimates which leads to more adverse effect of parameter parameter

uncertainty.

Table 7: Turnovers Multi-Period

Strategy Unconditional EW Conditional EW
Mean variance 17.668 26.841
Moment shrinkage (g-mean) 17.035 23.679
Moment shrinkage (s-mean) / 21.563
Weights shrinkage 7.067 8.052
Portfolio restrictions 5.658 8.751
Black-Litterman (fixed) 7.146 4.273
Black-Litterman (varying) 7.921 5.198
Bellman equation / 18.552
1/N 0.012 0.012
This table reports the corresponding turnovers of portfolio strategies consid-
ered in Table 6. The last row reports the average monthly turnover of the 1/N
allocation. All other strategies show the average monthly turnovers relative
to the 1/N allocation.

Table 7 examines the turnover of the multi-period portfolio policies. It can be noticed that in

contrast to the single-period, the unconditional policies now lead to bigger turnovers relative to the

1/N allocation. This can be explained by the dynamic weights on stocks and bonds, which depend

on the month in the investment horizon. Unsurprisingly, Mean variance approach which is subject

to the largest portfolio weights variance, leads to the biggest turnover. Hence, shrinkage and other

remedies for parameter uncertainty, not only improve gross performance but also reduce trading

costs. Finally, the conditional information generally increases the turnover but not significantly.

This is in line with the finding from Table 5 that including a state variable does not change much

the portfolio allocation.

5.5 Myopic vs dynamic portfolio allocations

This section answers the question of how big is the loss from investing myopically instead of dy-

namically. The focus is again on the one year holding period with monthly rebalancing, but now

the Sharpe ratio is evaluated based on compounding of monthly returns. This means that the

Sharpe ratio for the myopic investor with monthly investment horizon is evaluated using the one

year objective with monthly rebalancing. Table 8 compares the annual Sharpe ratio performance

evaluated out-of-sample using the expanding window estimation.
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Table 8: Myopic vs Dynamic allocation Sharpe Ratios

Strategy Uncond. Myopic Uncond. Dynamic Cond. Myopic Cond. Dynamic
Mean variance 0.319 0.342 0.324 0.312
Moment shrinkage (g-mean) 0.288 0.293 0.329 0.316
Moment shrinkage (s-mean) / / 0.352 0.338
Weights shrinkage 0.401 0.455 0.468 0.458
Portfolio restrictions 0.369 0.396 0.489 0.427
Black-Litterman (fixed) 0.402 0.447 0.462 0.426
Black-Litterman (varying) 0.417 0.461 0.454 0.431
1/N 0.390 0.390 0.390 0.390
This table reports the corresponding turnovers of portfolio strategies considered in Table 6. The last row reports
the average monthly turnover of the 1/N allocation. All other strategies show the average monthly turnovers relative
to the 1/N allocation.

Focusing on the first two columns, it is clear that there is a noticeable difference between investing

myopically and dynamically. The Sharpe ratio can be improved by as much as 0.054 in the case

of weights shrinkage when accounting for the serial correlation structure of returns. In addition,

all strategies benefit from dynamic investing. However, surprisingly this is no longer the case when

conditioning information is used. For all strategies accounting for horizon effects is detrimental for

out-of-sample portfolio performance. The likely explanation is the estimation loss resulting from

a significant increase of dimensionality, from 10 parameters in myopic case to 48 parameters in

dynamic case. Despite the use of different estimators such as shrinkage, the horizon effects are too

small to outweigh the additional estimation error loss.

5.6 Timing and cross-sectional information

So far, the conditional portfolio allocations focused on market timing. This means that conditioning

information was used to determine the state of the business/market cycle and the response of

different assets’ returns to the state, as summarized in a matrix of coefficients Θ. This is most

appropriate when investing in different asset classes since it is known that risk premia on asset

classes change depending on the state of the economy. However, when investing in individual

components of a particular asset class (e.g. stocks), individual characteristics, such as firm size,

also matter for the distribution of returns. In this section, I consider portfolio selection problem

with 5 industry portfolios where one might expect that both, market timing and cross-sectional

(i.e. characteristics) information are important for optimal allocations. For convenience, only one

state variable and one characteristic is used. The most informative state variable leading to the

highest Sharpe ratios is default spread. The Sharpe ratios of other state variables are reported in

the Appendix, Table 13. As a portfolio characteristic, the average value-weighted ratio of book

value to market value (B/M) is used. 4 Health industry portfolio has the lowest average BM ratio
4Using the average firm size results in similar portfolio performance
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at 0.31 while Other industries have the highest BM ratio at 1.1. This suggests there is a lot of

variation in BM ratio across industry portfolios, which could potentially be exploited in portfolio

allocation.

Table 9: Market Timing and Cross-Section

State variable/
Characteristic

Market timing Cross-section Market timing &
Cross-section

Unconditional Conditional
Cnsmr Const 0.449 0.378 0.449 0.197

Default 0.450 0.199
B/M -0.054 0.174

Manuf Const 1.040 1.118 1.040 0.549
Default 0.223 0.101
B/M -0.054 0.174

HiTech Const 0.218 0.178 0.218 0.031
Default 0.469 0.242
B/M -0.054 0.174

Hlth Const 0.555 0.450 0.555 0.318
Default -0.694 -0.334
B/M -0.054 0.174

Other Const -0.789 -0.704 -0.789 -0.539
Default 0.100 0.047
B/M -0.054 0.174

Mean excess return 0.152 0.236 0.183 0.273
SD return 0.181 0.227 0.208 0.250
Sharpe ratio 0.841 1.039 0.882 1.092
Equalization fee 0.047 0.010 0.042
This table shows the coefficient estimates of single-period (monthly) parametric policies using different information
sets. The first column is the mean-variance result based only on return data. The next two columns also include
state variables and cross-sectional characteristics, respectively, while the last column combines both. Below are
three rows reporting in-sample return statistics which are annualized for monthly data. Lastly, equalization fee is
the fee an investor would be willing to pay to use both timing and cross-sectional information instead of either of
them or none.

Table 9 shows the estimated coefficients of four different single-period portfolio policies which

use either market timing information or characteristics, both, or neither. The first two columns

show the same two strategies as considered before in Table 2, but now only with state variable

Default. The next column shows the cross-sectional strategy that uses only characteristic B/M. As

briefly described in section 3.3.4, it assumes equal coefficients for all securities. Here I choose mean-

variance weights as the benchmark portfolio weights. The last column shows the approach illustrated

in equation (26) in section 3.3.4 which combines both types of information in the framework of Brand

and Santa-Clara (2006). However, it requires estimation by restricted least squares rather than OLS,

as shown in section 3.3.5, since the coefficients on the characteristics are assumed to be equal with

the absence of cross effects. While the interpretation of coefficients would require an understanding

of the five industries, it can be noticed that including variable Default does not change average

portfolio weights significantly. However, the Sharpe ratio increases by almost 0.20 which suggests
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variation in Default is important in predicting industry returns. On the other hand, including book-

to-market ratio is not as helpful as suggested by Sharpe ratio increase of 0.041. This is also reflected

in the final allocation which is uses Default and B/M. The Sharpe ratio increases only marginally

relative to the market timing case. The performance is also evaluated using equalization fee with

respect to the last strategy. Most importantly, an investor is prepared to pay a fee of 4.7% to use

market timing and cross-sectional information as opposed to the simple mean-variance allocation.

5.7 Factor timing

The previous section examined how important are state variables compared to cross-sectional charac-

teristics. The results suggest that variables such as default spread are more informative about port-

folio weights and consequently portfolio performance than characteristics such as book-to-market

ratio. In addition, the Sharpe ratio increases only marginally when a characteristic is added to the

model. This could be due to the incorrect linear specification of parametric portfolio policy or it

could be that the predictable variation in expected returns is offset by variances and covariances.

Alternatively, average characteristics used on industry portfolios could have weaker predictive

power since the firms within portfolios possibly contain large variation in a particular characteristic.

This issue could be fixed by considering portfolios which are sorted on characteristics, the so called

portfolios sorts (Fama and French, (1993)). I consider 6 portfolios sorted on B/M ratio and size

which can replicate the famous value and size factors by taking long and short positions in these

portfolios. In addition, a value-weighted stock market index is used as a market factor. Examining

their performance answers the question of how much influence variation in risk premia have on

investment performance. In particular, performance is evaluated relative to cases where broad asset

classes (e.g. stocks and long-term bonds) or industry portfolios are available for investment. In

addition, the framework of Brand and Santa-Clara (2006) allows for an easy test of whether factor

timing is possible.
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Table 10: Single-Period Sharpe Ratios using Factors

Strategy Unconditional EW Unconditional RW Conditional EW Conditional RW
Mean variance (in sample) 1.072 1.072 1.493 1.493
Mean variance 0.859 0.819 0.862 0.798
Moment shrinkage (g-mean) 0.665 0.714 0.891 0.727
Moment shrinkage (s-mean) / / 0.968 0.738
Weights shrinkage 0.889 0.873 0.913 0.860
Portfolio restrictions 0.593 0.576 0.584 0.515
Black-Litterman (fixed) 0.820 0.846 0.908 0.859
Black-Litterman (varying) 0.906 0.851 0.871 0.881
1/N 0.534 0.534 0.534 0.534

This table shows the out-of-sample Sharpe ratios of the single-period parametric portfolio policies applied to monthly
returns on size/value portfolio sorts and stock market index. It shows the results for different estimators and restrictions
using both expanding window and rolling window estimation approaches, both based on 120 months of data. The Sharpe
ratios are annualized. Optimal shrinkage intensities for means are obtained using analytic expression in (16), while those
for weights shrinkage are found using grid search. Uncertainty parameters used in the Black-Litterman model are also
obtained using grid search.

Table 10 reports the in-sample and out-of-sample performance of factor investing. The first thing

that can be noticed is that the in-sample Sharpe ratios are much higher compared to when stock

and bond index or industry portfolios were available for investment. This is not surprising given

the vast literature documenting significant risk premia associated with these factors. However, the

conditional parametric policy also suggests that factor returns are heavily influenced by economic

state information since the Sharpe ratio increases by more than 0.4 relative to the unconditional

case. This in-sample result, however, no longer holds when out-of-sample performance is examined.

In general, factor timing does not result in superior investment performance while it is likely to

result in considerably larger transaction costs. Nevertheless, out-of-sample performance remains

high when compared to the unconditional in-sample result. In particular, Mean variance approach

performs surprisingly well which suggests that there is not much estimation error. Using the same

dataset of 3 factors but a different sample period, this was also documented in DeMiguel et al.

(2009), Table 3. The low performance of 1/N strategy and portfolio restrictions suggests that being

able to take short positions, used to form factors, is necessary for good performance with this asset

set. This confirms the observation that the performance of different tools for dealing with parameter

uncertainty crucially depends on the application of interest.
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6 Conclusion

The purpose of this thesis was to revisit the parametric portfolio policy approach to portfolio

selection by Brandt and Santa-Clara (2006) and provide a thorough out-of-sample evaluation. The

basic method was complemented with a number of techniques to alleviate parameter uncertainty

issues which have been successful in more traditional approaches to asset allocation. These are

moment shrinkage, weights shrinkage, portfolio constraints and the Black-Litterman model. I find

that these techniques also improve the sample mean-variance allocations of parametric portfolio

policies. However, the addition of conditioning information of parametric portfolio policies does not

lead to large performance gains out-of-sample as is documented in-sample. This finding is robust

across different asset spaces, investment horizons and state variables. In fact, market timing in

multi-period portfolio allocations tends to decrease the performance relative to repeated myopic

allocations. This is possibly due to dimensionality issues of dynamic portfolio policies and/or

weak predictive power of state variables. Therefore, further research could examine other methods

aimed at reducing estimation error or develop new methods which are specifically designed for

parametric portfolios. Alternatively, the approach could be applied with the recent findings on

return predictability in mind (Farmer et al. (2022)), which suggest that there exist only short-

periods of return predictability.
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8 Appendix

Table 11: Sharpe Ratios Single-Period Annual

Strategy Unconditional EW Unconditional RW Conditional EW Conditional RW
Mean variance 0.322 0.205 0.285 0.418
Moment shrinkage (g-mean) 0.213 0.118 0.245 0.017
Moment shrinkage (s-mean) / / 0.211 0.049
Weights shrinkage 0.414 0.381 0.429 0.538
Portfolio restrictions 0.379 0.292 0.566 0.521
Black-Litterman (fixed) 0.409 0.374 0.428 0.448
Black-Litterman (varying) 0.411 0.382 0.395 0.405
1/N 0.399 0.399 0.399 0.399

This table shows the out-of-sample Sharpe ratios of the single-period parametric portfolio policies using different esti-
mators and restrictions. The results are reported for both expanding window and rolling window estimation approaches,
both based on 10 years of data. Optimal shrinkage intensities for means are obtained using analytic expression in (16),
while those for weights shrinkage are found using grid search. Uncertainty parameters used in the Black-Litterman model
are also obtained using grid search.

Table 12: Turnovers Single-Period Annual

Strategy Unconditional EW Unconditional RW Conditional EW Conditional RW
Mean variance 11.579 23.459 259.53 582.859
Moment shrinkage (g-mean) 15.816 24.109 363.035 1789.113
Moment shrinkage (s-mean) / / 351.238 1121.810
Weights shrinkage 3.474 7.507 57.097 104.915
Portfolio restrictions 5.581 16.058 112.126 124.614
Black-Litterman (fixed) 4.946 3.511 205.661 40.036
Black-Litterman (varying) 4.165 2.847 196.97 38.991
1/N 0.083 0.083 0.083 0.083

This table reports the corresponding turnovers of portfolio strategies considered in Table 10. The last row reports the
average annual turnover of the 1/N allocation. All other strategies show the average annual turnovers relative to the
average monthly turnover of 1/N allocation from Table 3.

Table 13: Sharpe Ratios using different state
variables

Market timing Market timing &
Cross-section

Term 0.995 1.016
Default 1.039 1.092
D/P 1.031 1.090
TBill 0.972 0.988
This table reports the annualized Sharpe ratios of
different conditional portfolio policies using 5 in-
dustry portfolios considered in section 5.6. Mar-
ket timing strategies show results for 4 different
state variables considered separately while Market
timing&Cross-section strategy also includes B/M
as a characteristic.
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