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Abstract

Climate change risk is on top of the agenda for financial institutions. However, the

far-reaching breadth of climate change risk combined with the intrinsic uncertainty makes

the implications challenging to estimate. Our paper expands the work on CRISK by Jung,

Engle and Berner (2021). CRISK measures the expected capital shortfall of a financial

institution during a climate transition stress scenario. The risk metric uses a Climate Beta

to measure the sensitivity of a bank to climate transition stress and proxies the stress

scenario with a ‘stranded asset’ portfolio. The novelty of our research spans across two

domains: first, we extend the scope and perform a Eurozone-focused analysis by shedding

light on CRISK among 7 of the largest European banks. Moreover, we explore 3 climate

stress severities and further the robustness by analyzing 3 different stranded assets.

Second, we propose a novel methodology to calibrate the Climate Beta. We compute a

non-parametric Climate Beta and introduce a new definition for CRISK in which the

Climate Beta is a function of the climate stress severity. We follow the methodology of

Maheu & Shamsi (2021) and use a non-parametric Dirichlet process mixture to estimate

the posterior joint distribution of the bank and the stranded asset. Furthermore, we derive

the Climate Beta according to the Dynamic Conditional Beta approach of Engle (2015).

We compare our non-parametric multivariate GARCH model with a Dirichlet process

prior to a parametric multivariate GARCH benchmark and find that our non-parametric

model performs better in- and out-of-sample. The key insight of our paper is that the

parametric model underestimates the Climate Beta during a climate transition stress

event. Furthermore, although the non-parametric dynamic conditional Climate Beta

allows for non-linear variation depending on the contemporaneous value of the stranded

asset, we do not find supporting evidence for a non-linear response in the Climate Beta to

the climate stress events studied. Lastly, while we find that CRISK increases during a

climate transition stress event, we also find that most European banks are already

experiencing high capital shortfall without climate stress conditioning and that the applied

climate stress does not significantly change CRISK.

Keywords: climate finance, transition risk, systemic risk, stranded assets, CRISK,

Climate Beta, non-parametric statistics, DCC, DCB, MGARCH, Dirichlet process mixture
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1 Introduction

Climate change is one of the greatest challenges of the 21st century with potentially cataclysmic

consequences for ecology and socio-economics. Due to the wide-ranging destabilizing effects,

climate change introduces unprecedented uncertainty to financial risk. As a result, climate finance

has proliferated in recent years and has regulators and practitioners reevaluating financial risk

management. Climate change risk manifests in a myriad of ways, with the literature making the

distinction between ‘transition risk’ and ‘physical risk’. The former concerns the risks of

transitioning to a low carbon economy and the latter the physical risks of a temperature increase

above 1.5 degrees Celsius. Transition risk is expected to materialize faster relative to physical risk,

and as physical risk is concerned with many geographical intricacies our paper will hereinafter

focus on climate change risk from the perspective of transition risk.

The 2018 report of De Nederlandsche Bank (DNB) considers four scenarios of transition risk and

identifies two catalysts: policy change and technological breakthrough (Vermeulen et al., 2018).

Policy change is aimed at reducing carbon dioxide emissions, for example through a carbon tax.

The report notes such a policy will increase the carbon price, but at the same time will induce

economic slowdown and rising interest rates. A resemblance to this transition risk scenario was

observed during the 2022 crisis in Ukraine. Furthermore, technological advancement in renewable

energy will affect fossil fuel-intensive businesses, as a better alternative might replace the demand.

DNB also considers a ‘double shock scenario’, where policy change and technological advancement

occur simultaneously. Lastly, the report discusses a ‘confidence shock’ scenario, where the

government fails to take action and consumer and investor confidence drops, resulting in higher

risk premiums and lower consumption. In terms of scenario analysis, the Covid-19 crisis resembles

the last scenario to an extent.

The vulnerability of financial institutions to transition risks is market and credit-based, yet mostly

rooted in their credit exposure to transition-sensitive industries (Alogoskoufis et al., 2021). This

vulnerability might be direct, for example, the creditworthiness of an oil manufacturer is directly

affected when there is decreased demand due to decarbonization policy action. Or indirectly,

where firms supporting the production of oil will be affected by their downturn, and thus might

experience deterioration with respect to their default risk. In the Climate-Related Risk and

Financial Stability Report, the European Systemic Risk Board (ESRB) predicts that the banking

system losses could reach levels as high as 10% due to a credit rating fall for highly emitting firms

under a carbon tax (ECB/ESRB, 2021). As systemic risk is known to be exacerbated in crisis

scenarios and for its risk of reverberating through the real economy (Acharya et al., 2010) it is

imperative to study the effects of transition risk on potential losses.

There is extensive discussion on how to weave transition risk into the existing risk framework. An

example of such debate is the European Banking Authority’s (EBA) final draft to develop
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‘implementing technical standards’ (ITS) on Pillar 3 disclosures on environmental, social and

governance (ESG) risks1. Pillar 3 refers to the Basel III Framework of the Basel Committee on

Banking Supervision (BCBS), which is the global standard for prudential regulation of banks. The

risk management proposal includes the request for elaborate disclosure on exposures towards

carbon-intensive corporates as well as Taxonomy-aligned exposures. Moreover, the proposal

includes the requirement for the implementation of ESG risk assessments in the form of stress

tests and scenario analyses.

This discussion naturally gives rise to the quantification of transition risk during its

decarbonization trajectory. Authors Jung, Engle and Berner (JEB) (2021) present the risk metric

‘CRISK’ which stands for the expected capital shortfall of a financial institution in a climate

stress scenario. CRISK’s predecessor is ‘SRISK’, which originated as a result of the adversity of

failing institutions during the 2008 financial crisis (Brownlees & Engle, 2018). Whereas SRISK is

conditioned on a systemic market crisis event, CRISK is conditioned on a systemic climate stress

event. CRISK merges a firm’s size, leverage and sensitivity to transition risk into a metric that

can be compared to identify the most and least resilient institution when it comes to a systemic

climate event. The central component to be calibrated in CRISK is the Climate Beta which

measures the exposure of a financial institution to a Climate Factor. The Climate Beta mimics

the sensitivity to a climate transition stress event and the Climate Factor is proxied by a ‘stranded

asset’ portfolio (Jung et al., 2021) which is long in a ‘stranded asset’ and short in the market

factor. A so-called ‘stranded asset’ refers to an asset that suffers from premature devaluation and

in the context of climate change stress refers to assets such as oil and coal. Hence the stranded

asset portfolio is expected to underperform as the economy progresses along its decarbonization

trajectory. JEB estimate the Climate Beta according to Engle’s Dynamic Conditional Beta (DCB)

approach (2015) and adopt a multivariate normal distribution to model the joint returns of the

financial institution and the Climate Factor.

Our paper adds to climate finance literature by expanding the work of JEB on CRISK. We apply

a novel methodology to estimate the Climate Beta in CRISK by modeling the joint returns as a

non-parametric infinite normal mixture model. This flexible density allows the Climate Beta to

behave non-linearly conditional on the devaluation of the Climate Factor. This choice is motivated

by the observation of JEB that there might be a non-linear relationship between the Climate Beta

and the performance of the Climate Factor. We compare our non-parametric model to a

parametric benchmark model to estimate the Climate Beta, where both estimation methods are

variants of the DCB methodology. Our parametric benchmark models the joint returns as a

multivariate Student-t distribution with a constant mean and conditional scale parameter. The

conditional scale parameter is modeled by a multivariate GARCH process and this model is

referred to as ‘MGARCH-t’. We continue with modeling the joint returns as an infinite mixture of

1https://www.eba.europa.eu/eba-publishes-binding-standards-pillar-3-disclosures-esg-risks
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multivariate normal distributions, where the mixing occurs over the mean and over the conditional

covariance matrix. To infer the non-parametric mixture elements we use a Dirichlet process

mixture and hence we refer to this model as ‘MGARCH-DPM’. Using our non-parametric

approach, we introduce a Climate Beta which is dynamic across both the dimension of time as

well as the spectrum of contemporaneous values of the Climate Factor. Consequently, we also

propose a new definition of CRISK which introduces a Climate Beta as a function of the climate

stress severity.

In light of the EBA report, our research extends the scope of JEB’s CRISK and performs a

Eurozone-focused analysis to investigate the resilience of Eurozone banks to systemic climate

change risk. As noted previously, hereby we give special attention to the estimation of the Climate

Beta. Moreover, one of the novelties of our study is that we further the robustness of CRISK by

assessing a range of climate stress scenarios and examining multiple Climate Factors.

Furthermore, in the case of a non-parametric dynamic conditional beta, we investigate the

potential non-linear response to a range of climate stress severities. Additionaly, a difference

compared to JEB is that our paper will estimate the models through a Bayesian lens whereas JEB

adopt a frequentist perspective. This bolsters our endeavor to approach the uncertainty of climate

change risk with extra distribution and parameter precaution.

One of the key insights of our paper is that the MGARCH-DPM Climate Beta exhibits a stronger

response to the climate transition stress event compared to the MGARCH-t estimated Climate

Beta. We find that our MGARCH-DPM model performs better in- and out-of-sample from

assessing the log-likelihood and predictive log-likelihood. Therefore, as our non-parametric model

yields a higher likelihood, we deduce that the parametric benchmark underestimates the Climate

Beta and therefore underestimates the effect on the capital shortfall. On the same note, we also

deduce that the parametric benchmark model places too restrictive distributional assumptions on

the joint density and fails to capture the dependence of a bank to a tail event in the Climate

Factor. As tail risk is crucial in financial risk management, our finding supports our stand to

approach the uncertainty of climate change risk with heightened distribution precaution. Another

valuable insight of our research is that not all banks respond similarly to all Climate Factors.

Thus, our paper stresses the inclusion of multiple Climate Factors to prevent a biased result for

CRISK. Another important insight of our paper is that while the Climate Beta did exhibit

differences across the banks in our analysis, the effect on CRISK was mostly insignificant. This

raises the question to what extent CRISK clearly conveys the risks of climate transition risk as

most of the banks are already experiencing high capital shortfalls without the conditioning of a

hypothetical climate stress scenario.

The remainder of our paper proceeds as follows: Section 2 reviews the latest climate finance

literature and places CRISK in the context of other climate risk adjusted metrics. This section

further provides background on non-parametric statistics and the emergence of the Dirichlet
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process prior. Section 3 outlines the methodology of the benchmark MGARCH-t model and our

non-parametric MGARCH-DPM model. The Eurozone banks of choice and an overview of the

data used to compute CRISK are outlined in Section 4. In Section 5 we present our empirical

study and discuss the model configuration, model performance and the results for the Climate

Beta and CRISK for both models. Finally, Section 6 discusses and concludes our main findings

and proposes areas for future research.
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2 Literature Review

Climate change risk is systemic by nature as its implications affect the entire financial system.

The financial crisis of 2007-2009 revealed the devastating weaknesses of financial risk models. As a

result, modeling systemic risk has since received exponential attention. The interlinkages between

financial institutions are now well-known to amplify negative shocks (Battiston et al., 2017) and

to result in negative externalities to the real economy in case of undercapitalization (Engle, 2018).

Therefore, as noted by Engle (2018), it is important to perform scenario analysis on capital

shortfall in systemic crisis events, as undercapitalized financial institutions are at heightened risk

of negative shocks, and thereby prone to exacerbate a crisis. However, thus far, systemic crisis

events are only based on the downturn of a market factor (Vinciguerra & Gaudemet, 2020). While

financial institutions are expected by the Basel Framework to cover all market, credit and

operational risks and therefore include the effect of climate change risk, in practice there is no

common methodology to incorporate this to date.

Subsequently, climate change risk has received considerable attention and the integration is on top

of the agenda for European supervisory institutions such as the EBA, the ESRB and the

European Central Bank (ECB). In July 2021 the ECB and the ESRB published ‘Climate-related

risk and financial stability’ (ECB/ESRB, 2021) and in September 2021 the ECB published an

‘Economy Wide Climate Stress Test’ (Alogoskoufis et al., 2021) which covers the climate risks for

the wider economy. The ESRB uses a raised carbon price, from e20/tonne CO2 to e250/tonne

CO2, to test the resilience of the banking system and find that the tail loss increases by 13% in a

e100/tonne- and up to 40% in a e250/tonne scenario. One of the assumptions of the ESRB stress

test is the homogeneous impact of carbon prices in relation to a firm’s emissions. Contrarily,

authors Huij et. al (2022) suggest a market-based ‘carbon beta’ which is the sensitivity of a stock

to a ‘pollutive-minus-clean’ (PMC) factor. In their reasoning, the factor might capture a wider

range of characteristics that measure climate risk exposure and does not assume the same

sensitivity to a carbon price hike for stocks with equal emissions.

Similar to the PMC factor and to CRISK, literature has been expanding other financial risk

models and metrics to incorporate climate risk. For example, Garnier et. al.’s Climate Extended

Risk model (CERM) (2022) where the Basel Internal Ratings-Based (IRB) Asymptotic Single

Risk Factor model (ASRF) is extended with systemic factors which account for physical and

transition risk. Garnier introduces the concept of ‘micro’ and ‘macro’ sensitivities to systemic

factors. The former is known as the obligor sensitivity to the macro economy factor in the ASRF

model and the latter is a newly introduced parameter that models the evolution of the intensity of

the systemic factor over time. Garnier experiments with varying evolutions of the ‘macro’

sensitivity to mimic different climate stress scenarios. In a similar fashion, Kenyon and Berrahoui

(2021) introduce Climate Change Valuation Adjustment (CCVA) which measures the effect of

including climate stress in the calculations of expected loss on counterparty default (Credit
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Valuation Adjustment (CVA)) and the costs of funding (Funding Valuation Adjustment (FVA)).

This is achieved by calibrating the time-dependent hazard rate in the general CVA and FVA

formula on climate stress scenarios. Ojo-Ferreira, Reboredo, and Ugolini (2022) derive the CTER,

CTVAR, and CTES, respectively the expected return, value-at-risk, and expected shortfall

conditional on a climate transition stress scenario. The authors introduce a copula-based model

which characterizes climate stress scenarios in terms of the co-movements of equity returns which

either favor, ‘green’, or disfavor, ‘brown’, climate change. Consequently, the hedge properties of

the financial institution to these movements grant insight into their climate change risk.

The currency of climate-adjusted metrics is evident and their novelty poses unique challenges to

traditional risk analysis. In response, our paper consults a non-parametric method to analyze

CRISK. Non-parametric statistics allow the data to infer the number of parameters in a model

instead of confining them to a predefined set. As non-parametric statistics is often applied in

uncertain circumstances it could prevent oversimplified distributional assumptions of a bank’s

sensitivity to a climate stress scenario. To account for the incertitude, we have modeled the joint

returns as an infinite mixture of normal distributions using a Dirichlet process prior. Ferguson

(1973) first proposed a Dirichlet process as a prior in non-parametric Bayesian analysis. As

outlined in Ferguson, sampling from a Dirichlet process prior is similar to sampling a probability

distribution from a set of probability distributions. It thus possesses the desirable property to

span a large number of prior distributions. In addition, as the Dirichlet distribution is the

conjugate prior to a multinomial distribution, the posterior distribution is analytically tractable.

Escobar and West (1995) were the first to apply the Dirichlet process to estimate the

non-parametric posterior density of a mixture of normals using Monte Carlo approximation. Their

influential paper was driven by the advancement of Monte Carlo methods by Metropolis (1953),

Hastings (1970) and Geman & Geman (1984) that allowed to numerically derive the complex

posteriors. With our study, we aim to explore the possible advantages of non-parametric versus

parametric Bayesian analysis and use the inferred Climate Beta and CRISK to gauge the

resilience of Eurozone banks to climate stress.

6



3 Methodology

In this section, we outline the model components of CRISK for financial institutions of our choice.

We first dissect the inputs of CRISK in Section 3.1. Continuing, we give an overview of Engle’s

Dynamic Conditional Beta method to derive the Climate Beta as required for CRISK and

introduce our parametric MGARCH-t benchmark model with Dynamic Conditional Correlation

MGARCH parametrization in Section 3.2. Moreover, in Section 3.3 we provide a detailed

description of a Dirichlet Process Mixture and introduce our MGARCH-DPM model which

models the joint returns as a non-parametric infinite normal mixture distribution.

3.1 CRISK

A financial institution experiences a capital shortfall (CS), when there is a positive difference

between the required and the available capital. In case of a negative difference, we speak of a

capital surplus. Financial institutions are obliged to hold prudential capital to safeguard them in

times of downturn. The ECB published that for 2022 the capital requirements are 15.1% of a

bank’s Risk-Weighted-Assets (RWA)2. The RWA procedure assigns a percentage to different types

of assets that a bank holds which is proportional to the level of riskiness as determined by the

Supervisory Review and Evaluation Process (SREP). For CRISK, this is simplified to a capital

fraction k which a financial institution is obliged to hold as required capital. JEB apply k = 8% in

their paper.

CS = k(ASSETS)− EQUITY

= k(DEBT + EQUITY )− EQUITY

= k ·DEBT − (1− k) · EQUITY

(1)

CRISK zooms into the expected capital shortfall conditional on a climate stress event. In this

event, equity is expected to decline by the long-run-marginal expected shortfall (LRMES) as

outlined in Engle (2018). In addition to the LRMES, CRISK consists of the market capitalization,

EQUITY , and the debt book value, DEBT , of the financial institution. The LRMES is only

applied to the bank’s market capitalization as it is assumed that the value of debt does not change

during a stress event.

CRISK = (CS | Climate Stress Event)

= k ·DEBT − (1− k) · EQUITY · (1− LRMES)
(2)

In order to calculate CRISK and LRMES one should define a Climate Factor which mimics a

climate stress event. JEB use a ‘stranded asset portfolio’ as a proxy for climate transition risk,

this portfolio is long in the stranded asset and short in the market portfolio. The stranded asset

2https://www.bankingsupervision.europa.eu/press/pr/date/2022

7



here refers to fossil fuels which are expected to suffer as a result of transition risk. JEB take the

climate stress event as a 50% decrease, θ = 0.5, in the stranded asset portfolio in 6 months.

In order to measure the effect of the climate stress event on the capital shortfall, JEB use a

Climate Beta which measures the sensitivity of the bank’s stock return, y, to the Climate Factor,

xcf , in a factor model which also includes a market factor, xm, see Equation 3.

yt = βMkt
t xm,t + βClimate

t xcf,t + ϵt (3)

The LRMES derivation is depicted in Equations 4-6 as defined in Engle (2018).

py,t+T

py,t
= exp

 T∑
j=1

(
βMkt
t+j xm,t+j + βClimate

t+j xcf,t+j + εt+j

) (4)

py,t+T

py,t
≈ exp

(βMkt
t

)[
log

(
pm,t+T

pm,t

)]
+
(
βClimate
t

)[
log

(
pcf,t+T

pcf,t

)]
+

T∑
j=1

(εt+j)

 (5)

LRMES ≡ Median

(
py,t − py,t+T

py,t

∣∣ pcf,t − pcf,t+T

pcf,t
= θ

)
= 1− exp

[(
βClimate
t

)
log(1− θ)

]
(6)

Inserting the derivation of the LRMES into Equation 2 yields:

CRISKt = k ·DEBTt − (1− k) · EQUITYt · exp
[
(βClimate

t ) log(1− θ))
]
. (7)

As our focus is on the negative consequences on capital in a climate transition stress event we

apply the addition of Marco and Jiron (2020) in Equation 8 to emphasize that we focus on a

positive capital shortfall.

CRISKt = max
(
0, k ·DEBTt − (1− k) · EQUITYt · exp

[
(βClimate

t ) log(1− θ))
])

(8)

Our addition to CRISK is that we allow the dynamic conditional Climate Beta to depend

contemporaneously on the climate stress severity. Hereby the Climate Beta varies over time and is

also a function of the climate stress event denoted by θ.

CRISKt = max
(
0, k ·DEBTt − (1− k) · EQUITYt · exp

[
(βClimate

t (θ) log(1− θ))
])

(9)
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3.2 MGARCH-t

JEB apply a Climate Beta estimated by the Dynamic Conditional Beta (DCB) method (Engle,

2015). This method is used in the context of time-series regression analysis where the parameters

can vary over time. Specifically, this method leverages heteroscedasticity and derives the beta

conditional on the filtration. To showcase, we use our benchmark model which models the joint

density returns following a multivariate Student-t distribution with constant mean µ, dynamic

scale matrix Ht and degrees of freedom ν. Here rt denotes the 3× 1 dimensional vector of returns

of the portfolio. The portfolio returns consist of the bank of choice, y, the market factor return,

xm, and the Climate Factor return, xcf .

rt | r1:t−1 ∼ t(µ,Ht, ν), (10)

Ht =


Hyy,t Hyxm,t Hyxcf ,t

Hxmy,t Hxmxm,t Hxmxcf ,t

Hxcfy,t Hxcfxm,l Hxcfxcf ,t

 (11)

Hence the dynamic conditional Climate Beta is given by Equation 12.

βClimate
t = H−1

xcfxcf ,t
Hxcfy,t (12)

However, in order to infer the dynamic conditional Climate Beta we require a process to model

the dynamic scale parameter. The Generalized Auto-Regressive Conditional Heteroskedasticity

(GARCH) model captures volatility clustering when modeling returns as proposed by Engle (1982)

and Bollerslev (1986). The GARCH process models the volatility parameter as an Auto Regressive

Moving Average (ARMA) type of process of the lagged- volatility and the observation. As we are

looking at multiple return series we will perform a multivariate GARCH model (MGARCH).

Estimating a multivariate GARCH model in a similar fashion as a univariate GARCH model can

be arduous considering the large number of cross-correlations to take into account. In an answer

to this, several parametrizations of the conditional correlations have been proposed including but

not limited to VECH (Bollerslev, Engle, & Wooldridge, 1988), BEKK (Engle & Kroner, 1995),

and the method we will use in our paper; Dynamic Conditional Correlation (DCC) (Engle, 2002).

The two-step DCC estimator decomposes the multivariate conditional covariance matrix as a

product of the univariate GARCH processes and a dynamic conditional correlation matrix Rt.

Ht = DtRtDt, where Dt = diag
{√

hii,t

}
(13)

The diagonal elements in matrix Dt contain the square root of the univariate conditional volatility
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as estimated by a GARCH(1,1) model in Equation 14.

hii,t = ωii + αiiε
2
i,t−1 + βiihii,t−1 (14)

D2
t = diag{ωii}+ diag⊙ {αii}(yt − µ)(yt − µ)′ + diag{βii} ⊙D2

t−1 (15)

The second step of the DCC parametrization is the estimation of correlation matrix

Rt = {ρij,t}Ni,j=1. The diagonal elements of Rt correspond to the dynamic correlations. This

matrix is deduced from process Q in Equation 16 where ϵt = yt − µ, zt = D−1
t ϵt and Q equals the

unconditional covariance.

Qt = (1− γ − δ)⊙Q+ γ ⊙ zt−1z
′
t−1 + δ ⊙Qt−1 (16)

ρij,t =
qij,t√

qii,t
√
qjj,t

. (17)

Stationarity conditions apply to both the H as well as the Q process. For the processes to be

mean-reverting αii + βii < 1 and δ + γ < 1 (Engle, 2002).

3.3 MGARCH-DPM

The time-varying Climate Beta in the paper of JEB can attest to the importance of dynamic

estimation of the Climate Beta. On the other hand, the authors note that the value of CRISK is

often negative, and add that this is likely related to the non-linear relationship between the

Climate Beta and the performance of fossil-fuel firms (Jung et al., 2021). Therefore suggesting

that, while the betas are time-varying, the constancy of the beta fails to capture the true

dependence of the Climate Factor and the bank’s return. Maheu and Shamsi (MS) (2021) propose

a non-parametric Bayesian approach to estimating the Dynamic Conditional Beta. In their paper,

the authors elaborate that the constant relationship between the factors and the returns imposes a

too restrictive assumption especially if the parametric distributional assumptions are not valid.

This limitation could be alleviated by relaxing any restrictions made on the distribution. MS

(2021) suggest a countably infinite mixture of normal distributions to jointly model financial

returns.

rt | W,Θ ∼
∞∑
j=1

ωjN (rt | Θ) , (18)

W = {ω1, ω2, . . . }, ωj > 0,∀j, (19)
∞∑
j=1

ωj = 1. (20)

The beta is taken as the derivative of the contemporaneous conditional distribution of the returns
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with respect to the factor return, as will be elaborated in Section 3.3.4. Thus, in the context of

estimating the Climate Beta, this implies taking the derivative with respect to the Climate Factor.

3.3.1 Dirichlet Process Mixture

To infer the infinite normal mixture model we use a Dirichlet process mixture (DPM). A Dirichlet

process is used to draw the mixing parameters and assign weights to the distribution components.

The process is derived from the Dirichlet distribution, which is a K-dimensional generalization of

the Beta distribution. Just like the Beta distribution, the Dirichlet distribution is defined on the

interval [0,1] and is therefore useful for drawing probabilities. An additional property of the

Dirichlet distribution is that all the realizations will add up to one. Hence, using a Dirichlet

process to draw mixture weights is appropriate to ensure that the probability mass of the infinite

mixture model adds up to 1.

Where the Beta distribution, Equation 21, takes two shape parameters, α and β, to define how

the probability mass is divided over the probability space, the Dirichlet process takes a

concentration parameter α and a base distribution G0, see Equation 22. Drawing xk realizations

from a Dirichlet distribution is similar to drawing K times from a Beta distribution where the

shape parameters would change depending on the previous realization. As this would lead to

many different shape parameters, the so-called ‘stick-breaking’ representation of the Dirichlet

process generalizes this process by continuously drawing from a Beta(1, α) distribution, where α

corresponds to the concentration parameter as introduced by Ishwaran & James (2001).

x ∼ Beta(α, β), α > 0, β > 0, x ∈ [0, 1] (21)

G ∼ DP(α,G0), α > 0. (22)

The ‘stick-breaking’ representation of the Dirichlet process is thought of as a stick of length 1

which can be continuously broken into smaller and smaller pieces. The portion that we break off is

determined by a draw from the Beta(1, α) distribution. For example, if v1 ∼ Beta(1, α) = 0.4, we

break a 0.4 portion off the stick, and we continue breaking a part of the remaining 0.6 of the stick

and repeat this K times. This process is represented by:

ω1 = v1, (23)

ωj = vj

j−1∏
l=1

(1− vl) , j > 1, (24)

vj
iid∼ Beta(1, α). (25)

The lengths of the sticks hereby map to the weights given to the individual normal components in

the mixture model. Referring back to the Beta distribution, we can deduce what changing the
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concentration parameter α for a Beta(1, α) would do: the higher the alpha, the higher is the

probability of a small realization, thus the smaller chunks we break off the stick, and vice versa.

As MS (2021) state, alpha can be thought of as the ‘strength of belief’ in base distribution G0:

“The larger α the more distinct elements will have non-negligible mass”.

After the weights are drawn, the distribution G results from the summation of the product of the

weights with their respective atoms, denoted in Equation 26 by θ. Atoms are the input

parameters for each mixture component and are drawn from the base distribution G0, in case of a

normal kernel these atoms could be µ and σ2. A draw from a Dirichlet process is therefore

equivalent to drawing a probability distribution from a probability distribution:

θ1, θ2, ... ∼ G0, (26)

G =

∞∑
j=1

ωjδθj . (27)

Where δθj denotes the Dirac delta function which is zero everywhere but has a mass point at θj .

Merging this with Equation 18 gives the following distribution for return series r:

rt | Θt ∼ N (rt | Θt) , (28)

Θt ∼ G, (29)

G | α,G0 ∼ DP (α,G0). (30)

The unknown density of the returns in the case of a normal kernel is represented by :

f(r) =

∫
N (r | Θ) p(Θ | G)dΘ (31)

G ∼ DP (α,G0) (32)

Θ ≡ (µ, σ2) (33)
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3.3.2 Hierarchial Model

For our model, we estimate the distribution of returns according to an infinite normal mixture

model. As described in the previous section, the DPM draws the mixing elements and determines

the weights. For our infinite normal mixture model the mixing elements are µj and Bj ,

respectively over the mean and covariance matrix Ht. Hereby Ht follows an MGARCH process.

Combining the mixing elements and the conditional covariance matrix, we retrieve the density of

the returns as denoted in Equation 34.

p (rt | µ,B,W,Ht) =
∞∑
j=1

ωjN

(
rt | µj , H

1/2
t Bj

(
H

1/2
t

)′)
(34)

The hierarchical model of the MGARCH-DPM following Maheu & Shamsi (2021):

rt | ϕt, Ht ∼ N

(
ξt, H

1/2
t Λt

(
H

1/2
t

)′)
, t = 1, . . . , T (35)

ϕt ≡ {ξt,Λt} | G ∼ G, (36)

G | α,G0 ∼ DP (α,G0) , (37)

G0 ≡ N (µ0, D)×W−1 (B0, ν0) . (38)

Our paper deviates from MS with the selection for the MGARCH parametrization. Where MS

apply a VECH parametrization, we adopt the DCC parametrization as used for our benchmark

MGARCH-t model, for the full details see Section 3.2. As a Dirichlet process G is discrete, µ and

B map to a set of unique points, while ξt and Λt denote draws from G. Due to G being a discrete

probability distribution, it is possible to have repeated draws of µj and Bj .

3.3.3 Bayesian Inference

We infer the parameters in the hierarchical MGARCH-DPM model using Bayesian inference. This

implies estimating the probability distribution of the unknown parameters given the data, known

as the posterior distribution p(θ | x).

In order to deduce the posterior distribution, we apply Bayes’ theorem in Equation 39. This

theorem represents the posterior distribution as a function of the likelihood of the data given the

parameters, p(x | θ), and our prior beliefs about the distribution of the parameters, p(θ). As p(x)

is a normalizing factor, we disregard the integral and continue with the product of the prior and

likelihood in order to derive the proportional posterior distribution.

p(θ | x) = p(x | θ)p(θ)
p(x)

=
p(x | θ)p(θ)∫
p(x | θ)p(θ)dθ

(39)

∝ p(x | θ)p(θ) (40)
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The core difference between Bayesian inference and classical or frequentist estimation is that

parameters are treated as probability distributions instead of fixed parameters. In the context of

CRISK estimation, Bayesian inference might provide an advantage over classical estimation. Li,

Clements and Drovandi (2021) endorse Bayesian inference on the GARCH parameters as the

frequentist Maximum Likelihood estimation places Gaussian distributional assumptions on the

parameters, whereas this might be different from the inferred posterior distribution.

We adopt a Monte Carlo Markov Chain (MCMC) sampling method to sample the posterior

estimates of the parameters in Equations 35-38. Monte Carlo sampling involves drawing random

samples and obtaining a numerical approximation. The Markov Chain addition implies that new

samples are generated conditional on the previous sample. MCMC sampling knows various flavors

and for our posterior inference, we apply Gibbs sampling (Geman & Geman, 1984; Gelfand &

Smith, 1990). The Gibbs sampling algorithm (Equations 41-47) is initialized by assigning the

observations to their initial cluster. In our case a cluster refers to a set of mixing elements, see

Equation 36. After the initial assignment, we recursively re-assign every observation for M

iterations to a new cluster based on the conditional distribution of the observation given the other

observations. Here ϕt denotes the cluster parameters for observation rt as shown in Equation 36.

Initialize ϕ
(0)
1:T =

(
ϕ
(0)
1 , . . . ,ϕ

(0)
T

)
(41)

For g = 1, 2, . . . ,M. (42)

ϕ
(g+1)
1 ∼ π

(
ϕ1 | ϕ

(g)
2 ,ϕ

(g)
3 , . . . ,ϕ

(g)
T

)
(43)

ϕ
(g+1)
2 ∼ π

(
ϕ2 | ϕ

(g+1)
1 ,ϕ

(g)
3 , . . . ,ϕ

(g)
T

)
(44)

... (45)

ϕ
(g+1)
T ∼ π

(
ϕT | ϕ(g+1)

1 , . . . ,ϕ
(g+1)
T−1

)
(46)

Return
{
ϕ
(1)
1:T ,ϕ

(2)
1:T , . . . ,ϕ

(M)
1:T

}
(47)

We continue to execute a two-step estimation approach. The first step of every Gibbs iteration is

the estimation of the posterior distribution of the mixing parameters Θ ≡ (µ,B), and the second

step is the estimation of the conditional posterior distribution of the GARCH parameters which is

conditional on the sampled Θ parameters in step one.

The striking characteristic of modeling the infinite normal mixture model in Equation 34 with a

Dirichlet process lies in its ability to discover new clusters of mixing parameters depending on the

data instead of categorizing data among a predefined set of clusters. However, in practice, it is

impossible to sample and store an infinite amount of mixing components as displayed in Equation

27. Applying the logic that a component of the infinite normal mixture distribution only ever

evolves to a cluster when an observation is assigned to a particular component (only if N → ∞ we
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discover all clusters), we can circumvent the need to draw an infinite amount of initial

components. Several methods exist in the literature: Walker (2007) introduces ‘slice sampling’

which draws a uniformly distributed latent variable to decide where to truncate the component

sampling. Papaspiliopoulos and Roberts (2008) circumvent this by ‘retrospective sampling’ and

also introduce a latent uniformly distributed variable that dictates where on ‘the stick’ (referring

to the stick-breaking representation of the Dirichlet process) the observation is sampled from. As

noted in the previous section, the different lengths of the unit stick represent the chances of an

observation falling into a specific cluster. Therefore, using a draw from a uniform variable

Papaspiliopoulos and Roberts indirectly cover the infinite number of distribution components

whose probabilities sum up to 1. In our paper, we apply Neal’s algorithm 8 (2000) also known as a

‘Chinese Restaurant Process’ (CRP), which is a clustering method where an observation is

clustered proportional to the number of observations in a cluster and can also discover a new

cluster infinitely many times should that be necessary.

As noted in Equations 41-47, the Gibbs sampling method is initialized by assigning all

observations to the ‘first’ cluster (the cluster labels are arbitrary), for which we draw its cluster

parameters ϕc from G0. We iterate over all observations and assign them either to the existing

cluster or to a new cluster. This decision is dictated by the CRP and we continue by making a

categorical draw according to the probabilities in Equation 48. The observations are labeled as

t = 1 . . . T and have corresponding cluster labels c = (c1, . . . , cT ) with cluster parameters

ϕ = (ϕc : c ∈ {c1, . . . , cT }). We denote k− as the number of distinct clusters and set h = k− +m

where m is an integer of choice and controls how many new clusters are considered. For every

observation, we first verify if removing the observation from its current cluster would leave the

cluster empty. Should this be the case for observation t, ct received label k− + 1, and we draw new

atoms for ϕc for which k− + 1 < c ≤ h. If after the removal of observation i the cluster is not

empty, we draw new values for ϕc from G0 for k− < c ≤ h.

We see in Equation 48 how an observation is assigned to an existing cluster proportional to the

number of observations existing in the cluster, n−t,c, times the likelihood of the observation in

question to belong to that cluster. Furthermore, an observation might also ‘discover’ a new cluster

with a probability proportional to the likelihood of an independently drawn atom from base

measure G0 times the concentration parameter α.

P (ct = c | c−t, rt, ϕ1, . . . , ϕh) ∝

n−t,cN (rt, | ϕc) for 1 ≤ c ≤ k−

α
mN (rt, | ϕc) for k− < c ≤ h

(48)

After every observation has been assigned a new cluster we remove all the clusters with no

members. We update the cluster parameters at the end of every iteration by computing the

posterior estimate based on the observations that have been assigned to each cluster. The
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configuration set that partitions the data r1:T into k− unique clusters is denoted by

s1:T = (s1, . . . , sT ) (Maheu & Shamsi, 2021).

In order to sample the posterior cluster parameters, we apply the results of conditional conjugate

priors of the multivariate normal likelihood distribution. Conjugate priors imply that the

posterior estimate is analytically tractable. However, in our case, the posterior estimates depend

on one another and hence they are called conditionally conjugate. The posterior parameters of

mixing elements µ and B follow:

Bj | r1:T , s1:T , µj ,Γ ∼ W−1

nj + ν0, B0 +
∑
st=j

(
zt −H

−1/2
t µj

)(
zt −H

−1/2
t µj

)′ , (49)

µj | r1:T , s1:T , Bj ,Γ ∼ N(µ̄, D̄), (50)

in which (51)

D̄−1 = D−1 +
∑
t|st=j

H
−1/2′

t B−1
j I

−1/2
t , µ̄ = D̄

∑
t|st=j

H
−1/2′

t B−1
j zt +D−1µ0

 . (52)

Where zt is equal to H
−1/2
t rt, and W−1 denotes the inverse Wishart distribution, see the

Appendix for distributional details.

Due to the conditional conjugacy, we apply a Metropolis-Hastings (1970; 1953) step to sample the

new parameters. This is achieved by iteratively sampling a new posterior parameter for Bj which

is used as input for posterior µj , which is in the next Metropolis-Hastings iteration used as input

for the posterior Bj again and so forth. The Metropolis-Hastings algorithm belongs to the MCMC

family of sampling methods and introduces the concept of an acceptance criterion of the new

sample: the new sample is accepted with a probability proportional to Equation 53. Hence if the

sample sufficiently improves the posterior probability of the parameters given the data the chances

increase that the new parameter sample is accepted.

min

{
N
(
r | Θi+1

)
p
(
Θi+1

)
N (r | Θi) p (Θi)

, 1

}
(53)

After this, we update the concentration parameter α. Similar to MS (2021), we follow West (1992)

and impose a gamma prior on α, α ∼ G (a0, b0). We have previously defined k− as the number of

unique clusters discovered by the data and using this posterior information we proceed to update

α by a two-step sampling method. This approach, as depicted in Equations 54-56, introduces

auxiliary variable τ and draws a new α from a mixed gamma distribution with probabilities πτ
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and 1− πτ .

(τ | α, k−) ∼ Beta(α+ 1, T ) (54)

α | τ ∼ πτG
(
a0 + k−, b0 − log(τ)

)
+ (1− πτ )G

(
a0 + k− − 1, b0 − log(τ)

)
(55)

where πτ =
πτ

1− πτ
=

a0 + k− − 1

T (b0 − log(τ))
(56)

The first step of the posterior inference entails updating the posterior estimates of the mixing

parameters and the concentration parameter α. Using this information we continue to the second

step of the posterior inference and update the MGARCH parameters Γ = (ω, α, β, λ, δ). The

posterior estimate of the MGARCH parameters, Γ, conditional on the mixing parameters,Θ, is

given by:

p (Γ | Θ, s1:T , r1:T ) ∝ p(Γ)×
T∏
t=1

N

(
rt | µst, H

1/2
t Bst

(
H

1/2
t

)′)
. (57)

3.3.4 Non-Parametric Dynamic Conditional Beta

In the previous section, we outlined how we estimate the infinite normal mixture model defined in

Equation 73 with a DPM. Using the CRP we sampled a finite K(g) clusters for every g = 1, . . . ,M

iteration which estimates the posterior distribution of the joint returns.

Using the posterior distribution we extract the Climate Beta by taking the derivative of the

expected value of the conditional distribution of each cluster with respect to the Climate Factor

and weigh this by the probability of the observation belonging to the said cluster.

This result follows from the conditional normal lemma given by:

yt | xt ∼ N
(
µy|x, Ht,y|x

)
(58)

µy|x = µy +Hyx,tH
−1
xx,t (xt − µx) (59)

Ht,y|x = Hyy,t −Hyx,tH
−1
xx,tH

′
yx,t (60)

The non-parametric Climate Beta is therefore given by:

βClimate
t (xcf,t) =

∂E (yt | xm,t, xcf,t, r1:T )

∂xcf,t
. (61)
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Hereby the cluster-specific Climate Beta is defined as:

β
Climate,(M)
t =

(
H

(M)1/2

t BstH
(M)1/2

′

t

)
13(

H
(M)1/2

t BstH
(M)1/2

′

t

)
33

. (62)

We use Bayes’ theorem to derive the conditional posterior distribution, which is denoted by:

p
(
yt | xt, r1:T , G

(M)
)
=

p
(
yt,xt | r1:T , G(M)

)
p
(
xt | r1:T , G(M)

) . (63)

Hence, we require the joint distribution of the returns and the marginal distribution of the factor

returns. The joint density of the returns rt = (yt,xt) and the factors xt = (xm,t, xcf,t) conditional

on G(M) are given by :

p
(
yt,xt | r1:T , G(M)

)
=

K(M)∑
j=1

ω
(M)
j N

(
yt,xt | θ(M)

j

)
. (64)

Recalling that for iteration g a draw from a Dirichlet process is given by:

G(g) =

K(g)∑
j=1

ω
(g)
j δ

θ
(g)
j

. (65)

The marginal distribution of the factors is given by Equation 66 and refers to the partition of the

joint density in Equation 64.

p
(
xt | r1:T , G(M)

)
=

K(M)∑
j=1

ω
(M)
j N23

(
xt | θ(M)

j

)
(66)

Hence, inserting the results from Equation 64 and 66 into Equation 63:

p
(
yt | xt, r1:T , G

(M)
)
=

∑K(M)

j=1 ω
(M)
j N

(
yt,xt | θ(M)

j

)
∑K(M)

j=1 ω
(M)
j N23

(
xt | θ(M)

j

) . (67)

=

K(M)∑
j=1

q
(M)
j (xt)N

(
yt | xt, θ

(M)
j

)
(68)
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Where the function q defines the weights given to each cluster and is defined by:

q
(M)
j (xt) =

ω
(M)
j N23

(
xt | θ(M)

j

)
∑K(M)

j=1 ω
(M)
j N23

(
xt | θ(M)

j

) (69)

As a result, the expected value of the conditional distribution following the lemma in Equation 59

is denoted by:

E
(
yt | xt, r1:T , G

(M)
)
=

K(M)∑
j=1

q
(M)
j (xt)

µ(M)
j,y +

[
β
Mkt,(M)
jt

β
Climate,(M)
jt

]′([
xm,t

xcf,t

]
−

[
µ
(M)
j,m

µ
(M)
j,cf

]) (70)

We continue by taking the derivative of the previous expression with respect to the Climate

Factor. Applying the chain rule we retrieve the following expression:

∂E
(
yt | xt, r1:T , G

(M)
)

∂xcf,t
=

K(M)∑
j=1

[
∂

∂xcf,t
q
(M)
j (xt)

]µ(M)
j,y +

[
β
Mkt,(M)
jt

β
Climate,(M)
jt

]′([
xm,t

xcf,t

]
−

[
µ
(M)
j,m

µ
(M)
j,cf

])
+ β

Climate,(M)
jt q

(M)
j (xt)

(71)

Where the partial derivative of function q with respect to the return of the Climate Factor is

derived using the quotient rule and applying the result of the derivative of a logarithmic function.

∂

∂xcf,t
q
(M)
j (xt) =

[∑K(M)

j=1 ω
(M)
j N23

(
xt | θ(M)

j

)] [
∂

∂xcf,t
ω
(M)
j N23

(
xt | θ(M)

j

)]
[∑K(M)

j=1 ω
(M)
j N23

(
xt | θ(M)

j

)]2
−

[
∂

∂xcf,t

∑K(M)

j=1 ω
(M)
j N23

(
xt | θ(M)

j

)] [
ω
(M)
j N23

(
xt | θ(M)

j

)]
[∑K(M)

j=1 ω
(M)
j N23

(
xt | θ(M)

j

)]2
(72)

To derive the derivative of the multivariate normal distribution with respect to the return of the

Climate Factor we took the derivative of the log of the multivariate normal distribution and used

the rule that the logarithmic derivative of a function is the derivative of the function divided by

the function itself.
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4 Data

4.1 Data Collection

Our research concerns Eurozone banks, more specifically, banks under the supervision of the ECB3

per 1st of July 2022, who operate with a minimum size of 100 billion Euros and whose shares are

traded publicly. We refer to the banks by their name and corporation status as stated by the ECB.

Table 1 summarizes the selection of banks and the summary statistics can be found in Table 3.

Country Ticker Size

Banco Santander, S.A. Spain SAN SM EUR 1,000 bn+
Bank of Ireland Group plc Ireland BIRG LON EUR 100-150 bn
BNP Paribas S.A. France BNP FP EUR 1,000 bn+
Deutsche Bank AG Germany DBK GR EUR 1,000 bn+
Erste Group Bank AG Austria EBS AV EUR 150-300 bn
ING Groep N.V. the Netherlands INGA NA EUR 500-1000 bn
Intesa Sanpaolo S.p.A Italy ISP IM EUR 500-1000 bn

Table 1: Selection of Eurozone Banks.

To compute CRISK for the financial institution of choice we require data for the equity price, the

market capitalization, and the book value of debt. We retrieve the book value of debt from

Compustat - Capital IQ via Wharton Research Data Services (WRDS). The data is sourced from

the Global section under ‘Fundamentals Quarterly’ and using query variable

LTQ -- Liabilities - Total (LTW). The market capitalization is computed by multiplying the

equity price by the number of shares outstanding. Both the equity price and the number of shares

outstanding are sourced from Bloomberg with query variables px_last and eqy_sh_out

respectively.

In order to calibrate the Climate Betas, we form portfolios consisting of three stocks: the bank of

choice, a market factor that proxies the market return, and a Climate Factor that proxies the

climate transition stress event. The Climate Factor is short in the market and long in the stranded

asset. For the former we selected the STOXX Europe 600 for the market return and for the latter

we chose the iShares STOXX Europe 600 Oil & Gas UCITS ETF DE, the Lyxor STOXX Europe

600 Oil & Gas UCITS ETF, and the Invesco STOXX Europe 600 Optimised Oil & Gas UCITS

ETF Acc as stranded assets. These Exchange Traded Funds (ETF) were selected due to their

liquidity and diversified exposure to Eurozone-stranded assets. A summary is depicted in Table 2.

3https://www.bankingsupervision.europa.eu/banking/list
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Ticker AUM Inception

iShares STOXX Europe 600 Oil & Gas SXEPEX GR EUR 986.373.5m 8th Jul 2002
Lyxor STOXX Europe 600 Oil & Gas OIL FP EUR 13,386.1m 25th Oct 2006
Invesco STOXX Europe 600 Oil & Gas XEPS GY EUR 14,043.7m 7th Jul 2009

Table 2: Selection of Stranded Assets. AUM refers to Assets Under Management.

We use daily stock return data and our estimation period spans from the 1st of January 2010 to

the 1st of August 2022. The summary statistics of all the indices are displayed in Table 3 below.

Mean Variance Skewness Kurtosis Max Min

Bank
Banco Santander, S.A. -0.016 5.026 0.203 10.119 23.218 -19.885
Bank of Ireland Group plc. 0.009 11.239 0.048 6.070 23.076 -23.256
BNP Paribas S.A. 0.024 5.349 0.312 8.412 20.897 -17.400
Deutsche Bank AG -0.013 5.792 0.127 4.112 14.327 -15.881
Erste Group Bank AG 0.031 5.545 -0.072 5.269 15.178 -16.409
ING Groep N.V. 0.041 5.889 0.245 9.610 24.587 -19.372
Intesa Sanpaolo S.p.A 0.019 6.179 -0.261 7.362 19.678 -22.941

Market
STOXX Europe 600 0.022 1.153 -0.620 8.894 8.405 -11.478

Stranded Asset
iShares Europe 600 Oil & Gas 0.022 1.153 -0.620 8.894 8.405 -11.478
Lyxor Europe 600 Oil & Gas 0.024 2.260 -0.472 12.104 13.541 -16.771
Invesco Europe 600 Oil & Gas 0.026 2.238 -0.444 13.396 15.308 -17.268

Climate Factor
OIL - SXXP 0.001 0.916 0.077 8.153 6.537 -9.328
SXEPEX - SXXP -0.010 1.296 0.220 13.663 9.422 -9.688
XEPS - SXXP 0.004 0.894 0.080 8.961 6.903 -9.825

Table 3: Descriptive statistics of the daily returns from the 1st of January 2010 to the 1st of August
2022 of the banks of choice, the market factor, the stranded asset and the Climate Factor.
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4.2 Data Processing

The daily price data of the indices is transformed to return data applying Equation 73.

rt =
pt − pt−1

pt−1
× 100 (73)

While forming the portfolios it could occur that a particular index did not share a trading day

with the other indices due to, for example, a public holiday. For missing return data, we

interpolated the price data point over the number of missing trading days.

As noted above, we are using daily return data and will analyze a daily CRISK. In this pursuit,

we have chosen to interpolate the liabilities as well as the number of shared outstanding, as this

data is reported quarterly or semi-annually. In case of missing data, we have applied a similar

method as described above.
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5 Empirical Results

The results presented in this section have been computed by the Dutch National Supercomputer

Snellius4. Snellius is a batch system running on Linux and is operated by the national High

Performance Computing (HPC) center SURFsara. All data sets and configurations ran in parallel

by allocating each data set exclusively to a non-uniform memory access (NUMA) node.

5.1 Model Configuration

For the MGARCH-t model we use the package bmgarch (Rast & Martin, 2021) with a Student-t

distribution with constant mean setting. This package is written in STAN, a Bayesian statistical

inference software in C++. The priors for the MGARCH parameters are set to be uninformative

and follow a uniform distribution. For the MGARCH-t model, we run every data set for 1000

iterations for 3 Markov Chains. We have realized the MGARCH-DPM model by using the

bmgarch structure to create the custom infinite normal mixture distribution. To fit the Dirichlet

mixture of the infinite normal mixture distribution we use the package dirichletprocess (Ross

& Markwick, 2022) to create the MGARCH-DPM model as a custom Dirichlet mixture type. As

the MGARCH structure is the same for both models, the MGARCH-DPM shares the same

uninformative prior for the GARCH parameters. We follow MS (2021) for the prior parameters of

the base measure G0 and set B0 = (ν0 − 4)I such that E(B) = I, which centers the expectation of

the conditional covariance of rt at Ht. Moreover we set ν0 = 8, µ0 = 0 and D = 0.1I, where I

denotes the 3× 3 identity matrix. As initial parameters for H for the posterior estimation of Θ in

Equations 50-52 we run the MGARCH-DPM for 500 warm-up iterations with Bt = I and µt = 0

for all t ∈ {1, . . . , T}. We set m = 3 for the categorical new cluster draw in Equation 48.

To tune the hyperparameters for the MGARCH-DPM MCMC algorithm we perform preliminary

runs for one bank (INGA NA) to evaluate the trade-off between running time, computing cost,

and result improvement. The MCMC hyperparameter configuration consists of the number of

Gibbs sampling iterations, the number of Metropolis-Hastings steps for the posterior update, the

number of Markov Chains and the parameters for the prior distribution of α. We only explore

configurations that would run in less than 6,144 System Billing Units (SBU)5. From our

preliminary analysis of exploring 96 different configurations, we select a Metropolis-Hastings step

size of 250, a gamma (2,4) prior for α, and 2 Markov Chains. Furthermore, we run our model 5

times in parallel for every portfolio for 500 iterations and chose the best in-sample performing

model for our final results. To speed up convergence we update α every 5th iteration and update

the conditional GARCH parameters every 50th or 100th iteration.

4https://www.surf.nl/en/dutch-national-supercomputer-snellius
548 hours x 128 cores = 6,144 SBU on a thin compute node with 240 GiB of memory
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5.2 Model Performance

We test the MGARCH-DPM model against the benchmark MGARCH-t model by evaluating the

in-sample log-likelihood and the out-of-sample predictive log-likelihood for 3 periods consisting of

60 observations. The COVID-19 pandemic6 and the war on Ukraine proxy as climate transition

stress events and the first 60 trading days of 2019 are chosen as a control period.

Period Duration Proxy

Period 1 1st of January 2019 - 26st of March 2019 Control Period
Period 2 24th of January 2020 - 21st of April 2020 Climate Transition Stress Event
Period 3 24th of February 2022 - 25th of May 2022 Climate Transition Stress Event

Table 4: Periods to derive out-of-sample predictive log-likelihood.

The in-sample performance is calculated for the entire sample which lasts from the 1st of January

2010 to the 1st of August 2022. The log-likelihood for the MGARCH-t and the MGARCH-DPM

model is calculated according to Equation 74 and 75, respectively. The probability distribution

details for the respective kernels are found in the Appendix.

ℓMGARCH−t =
T∑
t=1

log [t(rt | µ,Ht, ν)] (74)

ℓMGARCH−DPM =
T∑
t=1

log
[
N(rt | µst , (H

1/2
t )Bst(H

1/2
t )′)

]
(75)

The one-step-ahead predictive likelihood is calculated for the models according to Equation 76

and 77. As the GARCH process as specified in Section 3.2 is deterministic, we can recursively

compute the next conditional volatility using the conditional volatility and the observations from

the previous time period. All parameter estimates for both models are displayed in Appendix K.

p(rt | r1:t−1,MGARCH-t) = t(rt | µ,Ht, ν) (76)

For the MGARCH-DPM model, we additionally predict the mixing parameters for every

observation according to Equation 78. By drawing a cluster based on probabilities proportional to

the likelihood of the observation belonging to that cluster and the number of observations in a

particular cluster (nj). Additionally, in order to respect the non-parametric nature of the model,

it is also possible to discover a new cluster according to Equation 79. To arrive at the predictive

log-likelihood we take the summation of the one-step-ahead log-likelihoods similar to Equation 74

and 75.
6On the 24th of January 2020 the first COVID-19 case was confirmed in Europe.
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p(rt | r1:t−1,MGARCH-DPM) = N(rt | µst , (H
1/2
t )Bst(H

1/2
t )′) (77)

p(j) ∝ njN(rt | µj , (H
1/2
t )Bj(H

1/2
t )′) (78)

p(j = new) ∝ α

∫
N(rt | µj , (H

1/2
t )Bj(H

1/2
t )′)dG0 (79)

Table 5 summarizes our results for the log-likelihoods and predictive log-likelihoods for all 7 banks

applying 3 different Climate Factors across 3 periods. We compare the results for the benchmark

model and our MGARCH-DPM model where a higher log-likelihood indicates a better

performance. We denote the MGARCH-t model with ‘M1’ and our MGARCH-DPM with ‘M2’.

From Table 5 we find strong evidence that the MGARCH-DPM model performs better

out-of-sample and in-sample as all the log-likelihoods are higher for the MGARCH-DPM model

with the sole exception for period 1 for Bank of Ireland Group applying SXEPEX-SXXP as a

Climate Factor.
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Log Predictive Likelihood Log Likelihood

Period 1 Period 2 Period 3 Full Sample
Bank Ticker M1 M2 M1 M2 M1 M2 M1 M2

SAN SM
CF1 -317 -306* -385 -269* -314 -262* -15581 -10315*
CF2 -336 -225* -371 -228* -283 -250* -15485 -11190*
CF3 -353 -219* -288 -222* -389 -179* -15426 -10697*

BIRG LON
CF1 -335 -304* -306 -289* -363 -278* -17410 -11975*
CF2 -292* -304 -369 -280* -303 -286* -17335 -13047*
CF3 -349 -283* -321 -260* -359 -323* -17418 -14160*

BNP FP
CF1 -364 -255* -340 -253* -319 -268* -15324 -10563*
CF2 -296 -286* -297 -289* -373 -269* -15284 -11189*
CF3 -305 -242* -304 -277* -296 -261* -15324 -11323*

DBK GR
CF1 -279 -230* -337 -304* -336 -314* -16254 -11222*
CF2 -378 -223* -319 -248* -313 -297* -16111 -11935*
CF3 -308 -197* -287 -242* -352 -278* -16110 -11522*

EBS AV
CF1 -356 -262* -321 -292* -317 -295* -16113 -10916*
CF2 -332 -246* -374 -233* -300 -242* -16098 -11715*
CF3 -338 -299* -348 -232* -339 -239* -16043 -12289*

INGA NA
CF1 -310 -233* -335 -221* -350 - 249* -15399 -9758*
CF2 -307 -220* -379 -275* -326 -229* -15375 -10625*
CF3 -264 -260* -353 -205* -306 -173* -15399 -11150*

ISP IM
CF1 -312 -271* -385 -280* -314 -239* -15971 -10991*
CF2 -339 -261* -340 -255* -359 -218* -15876 -12281*
CF3 -338 -236* -396 -258* -300 -222* -15957 -11532*

Table 5: This table reports the predictive log-likelihood for 3 periods: Period 1 lasts from the 1st
of January 2019 to the 26st of March 2019, Period 2 lasts from 24th of January 2020 to the 21st
of April 2020 and Period 3 lasts from the 24th of February 2022 to the 25th of May 2022 (all 60
observations). The log-likelihood is reported on the entire estimation period, which corresponds to
the 1st of January 2010 to the 1st of August 2022. Model 1 (M1) refers to the MGARCH-t model
and model 2 (M2) refers to MGARCH-DPM model. The models are fitted on daily return data of
the respective bank, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL - SXXP,
CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. The * indicates which method performed better.
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5.3 Climate Beta Results

In this section, we discuss the Climate Beta results generated by the MGARCH-t model and our

MGARCH-DPM model. Figure 1 depicts the Climate Beta results for the period from 1st of

January 2018 to the 1st of August 2022 for both methods averaged over all Climate Factors for 3

climate stress severities (Appendix Figure 4 depicts the comparison for the entire period from the

1st of January 2010 to the 1st of August 2022). Appendix Figure 6 depicts the Climate Beta

results for the MGARCH-t model for every Climate Factor. The same is found in Appendix

Figure 7 for the MGARCH-DPM model.

We expand the work of JEB and investigate the climate stress resilience of Eurozone banks for

three climate stress scenarios: a 30%, 50% and 70% decline in the stranded-asset portfolio.

Recalling Equation 9 from the MGARCH-DPM model, we allow the Climate Beta to depend on

the climate stress severity. As the MGARCH-t estimated Climate Beta is constant with respect to

the climate stress severity, we do not perform separate computations for each climate stress event.

From Figure 1 we do not observe a non-linear response of the Climate Beta for the

MGARCH-DPM model for both climate stress proxy periods conditional on the 3 climate stress

scenarios. Furthermore, the Climate Beta does not display a non-linear effect during the

non-stressed control period. The same conclusion applies to the entire period as depicted in

Appendix Figure 4.

A positive Climate Beta indicates that a bank is negatively affected by the downturn of the

stranded asset portfolio and, vice versa, a negative Climate Beta signals a positive response to the

devaluation of the stranded asset portfolio. For the majority of the estimation period MGARCH-t

Climate Beta fluctuates between a range of -1 to 1, which is roughly in line with what JEB find

for banks investigated in their paper. In contrast, the nonparametric dynamic conditional Climate

Beta oscillates between an expanded range and estimates a Climate Beta in the climate stress

event as high as 2.5. This would imply that a 1% fall in the stranded asset portfolio induces a

2.5% fall in the bank return.

When comparing the averaged Climate Beta estimates, we identify two groups of banks with

regard to their Climate Beta trend. For one group, the Climate Beta across both models seems to

follow an identical pattern (with the exception of the Climate Beta during March 2020). Banco

Santander, S.A., BNP Paribas S.A., and Deutsche Bank AG fall into this group and also

correspond to the three largest banks of this analysis. For the other banks, the MGARCH-DPM

estimated Climate Beta is consistently lower than the Climate Beta estimated by the MGARCH-t

model. The divergence of the MGARCH-t Climate Beta and MGARCH-DPM Climate Beta with

respect to the sign of the Climate Beta is striking, as this shifts the conclusion of the sensitivity to

the stranded-asset portfolio. This signals that by relaxing all distributional assumptions, such as

symmetry and thickness of tails, the MGARCH-DPM model is able to model a richer dependence

compared to the restricted MGARCH-t model.
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Figure 1: A Climate Beta cross-method compar-
ison for the period from the 1st of January 2018
to 1 of August 2022. M1 refers to MGARCH-t.
M2 refers to MGARCH-DPM: M2 0.3 refers to
the Climate Beta conditional on a contempora-
neous Climate Factor return of -0.3 (θ = 0.3).
Idem dito for M2 0.5 and M2 0.7. The Climate
Beta is computed by taking the average Climate
Beta over all three Climate Factors.
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Before March 2020, the Climate Beta appears relatively stable for all banks and does not seem to

exhibit an anticipatory positive trend before the aforementioned period. Recalling that the

Covid-19 crisis is chosen as a climate stress event due to the similarities to the climate transition

stress scenarios. We noted earlier that the banks could be divided into two groups with the

exception of the Climate Beta in March 2020: during this period the Climate Beta is positive for

all banks. For this period it is apparent from Figure 1 that the MGARCH-DPM model estimates

a more volatile Climate Beta. However, the positive peak is temporary and does not persist.

While the control period still displays some idiosyncrasies in the Climate Beta, the identical

response across all banks during the initial Covid-19 period supports the systemic nature of

climate change risk. A peak of similar intensity is not observed during February 2022. Moreover,

we observe a moderate upward trend in the Climate Beta across both models starting from

February 2022, again with the exception for Erste Group Bank AG. For the latter bank, the

Climate Beta stabilizes and only for February displays an aberration and exhibits a negative peak

for both models. Solely for Deutsche Bank AG, the MGARCH-DPM model estimates a moderate

positive peak during February 2022.

With regards to the different Climate Factors, we only observe discrepancies in Climate Betas for

Bank of Ireland Group plc and ING Groep N.V. for the MGARCH-DPM model. Both banks react

similarly, where for both banks saw Climate Factor 3 as having the highest Climate Beta, followed

by Climate Factor 2 and lastly Climate Factor 1. This discrepancy is only observed for the

MGARCH-DPM model and is depicted in Appendix Figure 7. Although for the majority of the

banks one Climate Factor would suffice, for the two banks named earlier the resulting CRISK

differs significantly among the Climate Factor. Therefore, we suggest that more than one Climate

Factor is necessary to compute the Climate Beta to prevent biased results.

5.4 CRISK Results

In this section, we present the CRISK results applying a Climate Beta generated by the

MGARCH-t and the MGARCH-DPM model. As we did not find evidence of non-linear

contemporaneous Climate Beta dynamics, we continue by computing CRISK for both methods for

a climate stress severity of θ = 0.5. Figure 2 depicts the CRISK for all banks for both the

MGARCH-t and the MGARCH-DPM model across the entire estimation period averaged over all

Climate Factors. Appendix Figure 10 and 11 exhibit the CRISK for the entire estimation period

for each Climate Factor for the MGARCH-t and the MGARCH-DPM model, respectively. Figure

3 depicts the results for the period from 1st of January 2018 to the 1st of August 2022 for both

methods averaged over all Climate Factors (Appendix Figure 5 depicts the comparison for the

entire period from the 1st of January 2010 to the 1st of August 2022). Appendix Figure 8 depicts

the CRISK results for the MGARCH-t model for every Climate Factor. Likewise, the CRISK

results for every Climate Factor are exhibited for the MGARCH-DPM model in Appendix Figure

9.
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(a) CRISK MGARCH-t computed with θ = 0.5

(b) CRISK MGARCH-DPM computed with θ = 0.5

Figure 2: CRISK for Eurozone Banks conditioned on a 50% decline in the Climate Factor.

From Figure 2 we conclude that while the Climate Beta varies among the MGARCH-t and

MGARCH-DPM model, the averaged CRISK results follow a similar trend with discrepancies

revealed only upon close inspection. Zooming in on the period 2018-2022 in Figure 3, it is clear

how the banks form pairs based on their CRISK pattern. Banco Santander, S.A. and BNP
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Parisbas S.A. follow an identical pattern, the same applies to Erste Group Bank AG and Intesa

Sanpaolo S.p.A., and lastly Bank of Ireland Group plc and ING Groep N.V. Hence the pairs seem

to be based on proximity to each other. Only Deutsche Bank AG tends to deviate from the other

banks in this respect. Remarkably, the pairs do not only match in their CRISK pattern, but also

in their response to the different Climate Factors as seen in Figure 9. The most notable example

being ING Groep N.V. and Bank of Ireland Group plc.

Comparing both models individually in Figure 3, we observe a steep jump in CRISK for most

banks during the initial period of Covid-19 in March 2020 as hypothesized. From the intensity of

the jump, we can sense the sensitivity of CRISK to the Climate Beta. It is compelling to observe

that a jump in the Climate Beta, as noted in the previous section, does not translate to a jump of

similar intensity in CRISK. This suggests that the forces of debt and equity dominate CRISK over

the effect exerted by the Climate Beta during this period. An explanation for this could be that

banks operate on a high Debt-to-Equity ratio compared to other types of institutions. It may also

be bolstered by the fact that the value of debt is assumed not to change in a climate stress

scenario as per the definition of CRISK and is therefore not weighted by the Climate Beta.

Furthermore, the dominant effect of debt could insinuate that even in a non-stressed scenario most

of the banks would experience a positive CRISK regardless of the applied climate stress severity.

Broadening our view over the entire estimation period in Figure 2 and Figure 9 furthers our

suspects of the presiding role of the balance sheet input in CRISK. Most banks experience a

positive CRISK for the entire estimation period, whereas not all years are identified as climate

stress proxy periods. As capital shortfall during these periods would not be catalyzed by a climate

stress event, it raises the question of whether the definition of CRISK fits its purpose of measuring

the climate stress induced capital shortfall. We suggest that there should be more focus on the

difference in CRISK between stressed and non-stressed capital shortfall to further isolate the

climate transition stress effect.

Continuing post-March 2020, we note a downward trend for all banks until February 2022. We

observe that by early 2022 some of the banks have returned to their original CRISK level in the

case of the MGARCH-DPM estimated Climate Beta. The MGARCH-t estimate Climate Beta

seems to have offset more of a level shift in CRISK. February 2022 marks again an upward trend

for all banks except for Bank of Ireland plc. Erste Bank Group AG reacts strongest to the period

and exhibits a steep jump in CRISK. However, this upward trend does not seem to be caused in

response to a climate transition stress event as the Climate Beta revolves around 0 for all banks.

The ambivalence of the Climate Beta during this period hints that the rise in CRISK is due to a

fall in market capitalization. Although we do not want to rule out this period as a climate

transition proxy, our analysis does not find supporting evidence that the period in question is

distressed in CRISK due to transition risk given the studied Climate Factors.
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Figure 3: A CRISK cross-method comparison
for the period from the 1st of January 2018 to 1
of August 2022. M1 refers to MGARCH-t. M2
refers to MGARCH-DPM. The Climate Beta
used for CRISK is computed by taking the aver-
age Climate Beta over all three Climate Factors.
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6 Conclusion

Our paper expands the work of Jung, Engle and Berner on CRISK, a risk metric that attempts to

gauge the climate transition resilience of a financial institution. CRISK measures the capital

shortfall conditional on a hypothetical climate transition stress scenario by merging the book

value of debt, the market value of equity and a Climate Beta. The latter variable corresponds to

the sensitivity of a bank to a climate transition proxy, which in our case is a stranded asset

portfolio or also named a Climate Factor. This is chosen according to the assumption that the

devaluation in stranded assets, such as oil and coal, mimics a climate transition stress scenario.

The effect exerted by the Climate Beta could decrease the bank’s required capital and induce a

capital shortfall.

The novelty of our research is twofold: we extended the work on CRISK both in the scope of our

analysis as well as in the applied methodology. First, we performed a Eurozone-focused analysis

by examining the CRISK of 7 of the largest European banks. Continuing, we advanced the

robustness of CRISK by exploring 3 stranded asset portfolios where the stranded assets

investigated are OIL FP, SXEPEX GR and XEPS GY. Moreover, we explored 3 climate stress

severities: a 30%, 50% and 70% devaluation in the Climate Factor over a course of 6 months.

Second, this study proposed a novel approach to the estimation of the Climate Beta in CRISK.

We proposed a non-parametric dynamic conditional Climate Beta which depends non-linearly on

the climate stress severity. To derive the non-parametric Climate Beta, we relaxed the

distributional assumptions on the joint returns and modeled the density according to an infinite

normal mixture model. As a result of our methodology, we introduced a new definition of CRISK

whereby the Climate Beta is conditional on the climate stress event.

We modeled our infinite normal mixture model using a Dirichlet prior following Maheu & Shamsi

(2021), where the mixing occurs over the mean and the conditional covariance. To realize the

Dirichlet process mixture, we used a ‘Chinese Restaurant Process’ with Gibbs sampling.

Moreover, we used a semi-conjugate prior for the base distribution of the Dirichlet process and

applied a Metropolis-Hastings step within the Gibbs sampling to re-sample the mixing

parameters. We compared our non-parametric infinite normal mixture model to our parametric

benchmark model, which concerns a Student-t distribution with a constant mean and conditional

scale matrix. We used DCC parametrization for the MGARCH process in both models (Engle,

2002). The Climate Beta was extracted according to the DCB methodology (Engle, 2015).

We performed an estimation for the period from the 1st of January 2010 to the 1st of August

2022. To test the model performance out-of-sample, we formed three prediction periods: 1) a

control period corresponding to the first 60 days of 2019; 2) the first 60 days of the Covid-19 crisis

resembling a climate transition stress event driven by a contraction in demand due to a drop in

consumer confidence; and 3) the first 60 days of the Ukraine war resembling a climate transition

33



stress scenario due to an increased price of carbon-intensive assets. We conclude that the

MGARCH-DPM performs better both in- and out-of-sample based on the log-likelihood and

predictive log-likelihood.

One key insight from our research is that the non-parametric dynamic conditional Climate Beta is

more sensitive to a climate transition stress event. We observed for all Eurozone banks that the

MGARCH-DPM estimated Climate Beta is more volatile and has a stronger response to the

Covid-19 crisis. As the MGARCH-DPM model provides a better in- and out-of-sample fit to the

data compared to the MGARCH-t model, we conclude that the parametric Climate Beta

underestimates the sensitivity of a bank to a climate transition stress event. Furthermore, the

better performance of the MGARCH-DPM model suggests that the symmetric distributional

assumption of the benchmark model is invalid and underestimates the tail of the distribution. As

tail risk is critical in the study of systemic crisis events, our results underline the importance of

distribution precaution towards estimating climate change risk.

More so, we applied a non-parametric dynamic conditional Climate Beta to examine a possible

non-linear response of the Climate Beta conditional on the different climate stress scenarios. We

did not detect that the MGARCH-DPM Climate Beta responds non-linearly to the climate stress

severities in question for the considered time period. This could be further investigated as Maheu

& Shamsi (2021) do find a non-linear response to a market beta for banks in the United States.

Furthermore, inspecting the early 2010s, it is clear that the Climate Beta picks up on market

sentiment during the late financial crisis. This does challenge the stranded-asset portfolio as a fit

to measure only climate transition risk. We suggest more quantitative and qualitative research

could be done to further differentiate the climate change effect from a market effect.

While the empirical results strongly encourage our non-parametric model to describe the data, at

the same time we emphasize the computational intensity of the posterior inference. The depth of

our analysis would not have been feasible without access to the supercomputer Snellius. The

strenuous computation of the MGARCH-DPM model could preclude banks and supervisory

institutions to update the non-parametric Climate Beta on a daily basis. We thus suggest that the

non-parametric Climate Beta and CRISK be updated weekly or monthly. This poses a limitation

to the practicality of the MGARCH-DPM model and we suggest further research to look into

improving the efficiency of the posterior inference of the infinite normal mixture model. For

example, future research could look into exchanging the semi-conjugate prior with a conjugate

prior for the base measure of the Dirichlet process. This would eliminate the need for a Metropolis

step and could therefore speed up convergence.

On a final note, we conclude that all Eurozone banks are subject to CRISK throughout the entire

estimation period. The Covid-19 crisis marked a steep jump in CRISK across all banks and we

also observed an upward trend from the start of the war on Ukraine in February 2022. However,

this effect was not merely as intense as in March 2020. Therefore, we conclude that a climate
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transition stress event of the nature of Covid-19 has a stronger effect on capital shortfall compared

to that of the war on Ukraine. During the first climate transition proxy period, we noted positive

Climate Betas as hypothesized. On the other hand, we note that during the second transition

proxy period the Climate Betas are tending towards zero. This challenges February 2022 as a

climate transition stress event. Furthermore, this also challenges the definition of CRISK as the

capital shortfall conditional on a climate stress event. This brings us to another key insight of our

research as we observed that CRISK is also positive during non-stressed periods. Therefore, we

conclude that CRISK is mostly dependent on the value of debt and equity, and that the Climate

Beta does not exert a significant effect. This is supported by the observation that most European

banks are already in capital distress without a climate transition event. We thus suggest further

research on isolating climate stress-induced capital shortfall.
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A Acronyms

ARMA Auto Regressive Moving Average.

ASRF Asymptotic Single Risk Factor.

AUM Assets Under Management.

BCBS Basel Committee on Banking Supervision.

CCVA Climate Change Valuation Adjustment.

CERM Climate Extended Risk Model.

CRP Chinese Restaurant Process.

CS Capital Shortfall.

CTER Climate Transition Expected Return.

CTES Climate Transition Expected Shortfall.

CTVAR Climate Transition Value-at-Risk.

CVA Credit Valuation Adjustment.

DCB Dynamic Conditional Beta.

DCC Dynamic Conditional Correlation.

DNB De Nederlandsche Bank.

DPM Dirichlet Process Mixture.

EBA European Banking Authority.

ECB European Central Bank.

ESG Environmental, Social, and Governance.

ESRB European Systemic Risk Board.

ETF Exchange Traded Funds.

FVA Funding Valuation Adjustment.

GARCH Generalized AutoRegressive Conditional Heteroskedasticity.

HPC High Performance Computing.
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IRB Internal Ratings-Based.

ITS Implementing Technical Standards.

JEB Hyeyoon Jung, Robert Engle, and Richard Berner.

LRMES Long-Run-Marginal Expected Shortfall.

MCMC Markov Chain Monte Carlo.

MGARCH Multivariate Generalized Autoregressive Conditional Heteroskedasticity.

MS John M. Maheu and Azam Shamsi.

NUMA Non-Uniform Memory Access.

PMC Pollutive-Minus-Clean.

RWA Risk-Weighted-Assets.

SBU System Billing Units.

SREP Supervisory Review and Evaluation Process.

WRDS Wharton Research Data Services.
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B Distributions

Multivariate Student-t distribution

If x ∼ t(µ,Σ, ν) then the density function of the multivariate Student-t distribution is:

t(x | ν, µ,Σ) =
Γ
(ν+p

2

)
Γ
(
ν
2

)
πp/2

|Σ|−1/2

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−(ν+p)/2

, ν > 0.

Where p denotes the dimension of x, µ denotes the p× 1 location vector, Σ denotes the

positive-definite p× p scale matrix, and ν denotes the degrees of freedom.

Multivariate Normal distribution

If x ∼ N(µ,Σ) then the density function of the multivariate normal distribution is:

N(x | µ,Σ) = 1√
(2π)p|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Where p denotes the dimension of x, µ denotes the p× 1 location vector and Σ denotes the

positive semi-definite p× p covariance matrix.

Inverse Wishart distribution

If X ∼ W−1(Ψ, ν) where X is an p× p matrix, follows an inverse Wishart density with a

positive-definite scale matrix Ψ and degree of freedom ν ≥ p+ 1, the density function equals:

W−1 (X | Ψ, ν) =
|Ψ|ν/2

2
pν
2 π

p(p−1)
4 Πp

i=1Γ
(
ν+1−i

2

) |X|−
ν+p+1

2 exp

[
−1

2
tr
(
ΨX−1

)]

Gamma distribution

The probability density function of the Gamma distribution with shape parameter α and scale

parameter β is given by:

G(x | α, β) = βα

Γ(α)
xα−1e−βx, α > 0, β > 0.
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C Climate Beta Method Comparison
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Figure 4: A Climate Beta cross-method comparison for the period from the 1st of January 2010 to
1 of August 2022. M1 refers to MGARCH-t. M2 refers to MGARCH-DPM: M2 0.3 refers to the
Climate Beta conditional on a climate stress severity θ = 0.3. Idem dito for M2 0.5 and M2 0.7.
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D CRISK Method Comparison
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Figure 5: A CRISK cross-method comparison for the 1st of January 2010 to 1st of August 2022.
M1 refers to MGARCH-t. M2 refers to MGARCH-DPM. CRISK is computed with a climate stress
severity of θ = 0.5
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E MGARCH-t Individual Climate Beta
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Figure 6: An individual cross-Climate Factor comparison of the MGARCH-t estimated Climate
Beta.
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F MGARCH-DPM Individual Climate Beta
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Figure 7: An individual cross-Climate Factor comparison of the MGARCH-DPM estimated Climate
Beta conditional on a climate stress severity of θ = 0.5
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G MGARCH-t Individual CRISK
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Figure 8: An individual cross-Climate Factor comparison of CRISK applying the MGARCH-t
estimated Climate Beta and a climate stress severity of θ = 0.5.
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H MGARCH-DPM Individual CRISK
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Figure 9: An individual cross-Climate Factor comparison of CRISK applying the MGARCH-DPM
estimated Climate Beta conditional on a climate stress severity of θ = 0.5.
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I MGARCH-t Combined CRISK

Figure 10: CRISK for all Eurozone banks combined applying a MGARCH-t estimated Climate Beta
and a climate stress severity of θ = 0.5. Depicted separately for all Climate Factors.
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J MGARCH-DPM Combined CRISK

Figure 11: CRISK for all Eurozone banks combined applying a MGARCH-DPM estimated Climate
Beta and a climate stress severity of θ = 0.5. Depicted separately for all Climate Factors.
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K MGARCH Parameter Estimates

SAN MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.074 (0.047, 0.108) 0.075 (0.049, 0.109) 0.075 (0.049, 0.108)
ω22 0.027 (0.018, 0.036) 0.026 (0.018, 0.036) 0.027 (0.018, 0.037)
ω33 0.007 (0.004, 0.011) 0.013 (0.007, 0.020) 0.009 (0.005, 0.014)
α11 0.050 (0.038, 0.064) 0.050 (0.039, 0.063) 0.051 (0.039, 0.065)
α22 0.083 (0.064, 0.103) 0.078 (0.062, 0.098) 0.084 (0.066, 0.103)
α33 0.046 (0.034, 0.062) 0.054 (0.040, 0.073) 0.060 (0.044, 0.080)
β11 0.904 (0.880, 0.926) 0.904 (0.881, 0.925) 0.903 (0.878, 0.925)
β22 0.847 (0.814, 0.878) 0.852 (0.817, 0.882) 0.846 (0.812, 0.877)
β33 0.922 (0.897, 0.942) 0.906 (0.874, 0.931) 0.900 (0.870, 0.926)
γ 0.023 (0.017, 0.032) 0.021 (0.014, 0.029) 0.024 (0.017, 0.032)
δ 0.953 (0.932, 0.969) 0.953 (0.930, 0.971) 0.947 (0.923, 0.965)
µ1 0.040 (-0.014, 0.095) 0.039 (-0.015, 0.095) 0.042 (-0.015, 0.100)
µ2 0.073 (0.049, 0.099) 0.073 (0.049, 0.098) 0.074 (0.048, 0.100)
µ3 -0.016 (-0.038, 0.006) -0.030 (-0.056, -0.003) -0.012 (-0.034, 0.009)
ν 6.472 (5.760, 7.286) 6.436 (5.675, 7.335) 6.665 (5.895, 7.514)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.114 (0.056, 0.175) 0.094 (0.040, 0.152) 0.116 (0.059, 0.180)
ω22 0.032 (0.017, 0.049) 0.022 (0.009, 0.036) 0.019 (0.007, 0.035)
ω33 0.038 (0.025, 0.059) 0.047 (0.031, 0.071) 0.046 (0.030, 0.068)
α11 0.032 (0.025, 0.041) 0.037 (0.029, 0.047) 0.036 (0.027, 0.045)
α22 0.043 (0.034, 0.055) 0.052 (0.043, 0.063) 0.046 (0.036, 0.057)
α33 0.031 (0.020, 0.045) 0.047 (0.033, 0.063) 0.092 (0.066, 0.121)
β11 0.911 (0.890, 0.931) 0.915 (0.894, 0.933) 0.905 (0.882, 0.925)
β22 0.847 (0.820, 0.874) 0.864 (0.838, 0.887) 0.868 (0.839, 0.894)
β33 0.878 (0.819, 0.918) 0.880 (0.836, 0.916) 0.838 (0.786, 0.884)
γ 0.014 (0.009, 0.019) 0.015 (0.010, 0.021) 0.026 (0.020, 0.033)
δ 0.897 (0.827, 0.940) 0.948 (0.918, 0.971) 0.934 (0.912, 0.951)

Table 6: Banco Santander, S.A. This table exhibits the posterior mean and 95% density intervals
for the parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted on daily
return data on SAN SM, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL
- SXXP, CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to 1st of
August 2022.
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BIRG MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.079 (0.045, 0.126) 0.075 (0.044, 0.117) 0.082 (0.045, 0.132)
ω22 0.026 (0.018, 0.036) 0.026 (0.017, 0.035) 0.026 (0.018, 0.036)
ω33 0.007 (0.004, 0.011) 0.012 (0.007, 0.019) 0.009 (0.005, 0.014)
α11 0.056 (0.043, 0.071) 0.054 (0.041, 0.070) 0.058 (0.045, 0.077)
α22 0.092 (0.071, 0.115) 0.087 (0.069, 0.108) 0.092 (0.073, 0.112)
α33 0.047 (0.035, 0.062) 0.057 (0.041, 0.076) 0.062 (0.045, 0.083)
β11 0.914 (0.890, 0.934) 0.916 (0.892, 0.936) 0.911 (0.885, 0.931)
β22 0.841 (0.809, 0.873) 0.846 (0.813, 0.876) 0.841 (0.809, 0.871)
β33 0.923 (0.898, 0.943) 0.905 (0.876, 0.930) 0.901 (0.871, 0.926)
γ 0.020 (0.013, 0.029) 0.015 (0.009, 0.023) 0.020 (0.013, 0.027)
δ 0.949 (0.917, 0.969) 0.944 (0.900, 0.971) 0.944 (0.914, 0.965)
µ1 0.073 (-0.007, 0.150) 0.073 (-0.006, 0.149) 0.070 (-0.010, 0.148)
µ2 0.069 (0.044, 0.095) 0.068 (0.042, 0.096) 0.069 (0.045, 0.094)
µ3 -0.012 (-0.034, 0.010) -0.023 (-0.048, -0.000) -0.007 (-0.029, 0.015)
ν 7.152 (6.327, 8.128) 7.043 (6.259, 7.914) 7.382 (6.501, 8.415)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.159 (0.104, 0.220) 0.111 (0.054, 0.171) 0.144 (0.090, 0.203)
ω22 0.014 (0.006, 0.025) 0.018 (0.008, 0.028) 0.015 (0.007, 0.029)
ω33 0.036 (0.025, 0.054) 0.034 (0.020, 0.050) 0.022 (0.015, 0.033)
α11 0.054 (0.043, 0.065) 0.038 (0.027, 0.051) 0.057 (0.045, 0.073)
α22 0.076 (0.063, 0.091) 0.075 (0.059, 0.089) 0.058 (0.044, 0.073)
α33 0.034 (0.023, 0.050) 0.061 (0.043, 0.084) 0.047 (0.033, 0.066)
β11 0.921 (0.906, 0.935) 0.945 (0.930, 0.959) 0.926 (0.908, 0.943)
β22 0.842 (0.817, 0.864) 0.835 (0.805, 0.865) 0.857 (0.824, 0.886)
β33 0.888 (0.841, 0.920) 0.884 (0.842, 0.921) 0.899 (0.859, 0.928)
γ 0.012 (0.005, 0.020) 0.009 (0.004, 0.014) 0.008 (0.004, 0.014)
δ 0.851 (0.584, 0.955) 0.822 (0.511, 0.932) 0.900 (0.708, 0.965)

Table 7: Bank of Ireland Group plc. This table exhibits the posterior mean and 95% density
intervals for the parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted
on daily return data on BIRG LON, the market factor SXXP and one of the 3 Climate Factors:
CF1 OIL - SXXP, CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to
1st of August 2022.
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BNP MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.059 (0.038, 0.086) 0.057 (0.037, 0.083) 0.062 (0.042, 0.088)
ω22 0.024 (0.016, 0.033) 0.024 (0.016, 0.033) 0.025 (0.018, 0.034)
ω33 0.006 (0.003, 0.010) 0.011 (0.006, 0.017) 0.008 (0.005, 0.014)
α11 0.055 (0.043, 0.069) 0.054 (0.042, 0.067) 0.057 (0.045, 0.070)
α22 0.072 (0.056, 0.091) 0.070 (0.053, 0.089) 0.076 (0.060, 0.095)
α33 0.046 (0.035, 0.060) 0.051 (0.037, 0.068) 0.062 (0.046, 0.081)
β11 0.904 (0.881, 0.923) 0.906 (0.884, 0.926) 0.901 (0.880, 0.920)
β22 0.865 (0.834, 0.894) 0.867 (0.834, 0.896) 0.859 (0.828, 0.888)
β33 0.925 (0.903, 0.943) 0.913 (0.886, 0.936) 0.901 (0.870, 0.927)
γ 0.028 (0.020, 0.036) 0.022 (0.015, 0.031) 0.030 (0.021, 0.038)
δ 0.947 (0.924, 0.964) 0.950 (0.923, 0.969) 0.937 (0.911, 0.957)
µ1 0.060 (0.010, 0.113) 0.058 (0.005, 0.114) 0.061 (0.008, 0.113)
µ2 0.065 (0.040, 0.089) 0.064 (0.039, 0.090) 0.066 (0.040, 0.090)
µ3 -0.018 (-0.039, 0.003) -0.029 (-0.055, -0.005) -0.014 (-0.037, 0.009)
ν 6.888 (6.076, 7.866) 6.735 (5.915, 7.690) 7.045 (6.190, 8.036)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.124 (0.083, 0.173) 0.184 (0.123, 0.260) 0.118 (0.068, 0.175)
ω22 0.019 (0.009, 0.036) 0.029 (0.014, 0.050) 0.024 (0.011, 0.040)
ω33 0.029 (0.019, 0.045) 0.064 (0.041, 0.094) 0.030 (0.020, 0.043)
α11 0.046 (0.037, 0.055) 0.034 (0.025, 0.046) 0.058 (0.046, 0.073)
α22 0.056 (0.046, 0.069) 0.039 (0.030, 0.050) 0.064 (0.051, 0.080)
α33 0.049 (0.034, 0.070) 0.041 (0.027, 0.056) 0.086 (0.064, 0.114)
β11 0.901 (0.880, 0.918) 0.884 (0.853, 0.909) 0.889 (0.864, 0.909)
β22 0.860 (0.838, 0.882) 0.853 (0.816, 0.880) 0.848 (0.817, 0.874)
β33 0.891 (0.845, 0.923) 0.856 (0.800, 0.900) 0.866 (0.821, 0.900)
γ 0.016 (0.013, 0.021) 0.014 (0.009, 0.020) 0.025 (0.017, 0.032)
δ 0.959 (0.943, 0.972) 0.929 (0.882, 0.961) 0.929 (0.901, 0.952)

Table 8: BNP Paribas S.A. This table exhibits the posterior mean and 95% density intervals for the
parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted on daily return
data on BNP FP, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL - SXXP,
CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to 1st of August 2022.
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DBK MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.081 (0.048, 0.124) 0.073 (0.043, 0.114) 0.081 (0.048, 0.128)
ω22 0.028 (0.020, 0.038) 0.027 (0.019, 0.038) 0.028 (0.019, 0.038)
ω33 0.006 (0.003, 0.010) 0.011 (0.007, 0.018) 0.009 (0.005, 0.013)
α11 0.041 (0.029, 0.055) 0.038 (0.028, 0.051) 0.041 (0.030, 0.056)
α22 0.088 (0.067, 0.108) 0.083 (0.064, 0.104) 0.089 (0.069, 0.111)
α33 0.043 (0.031, 0.058) 0.049 (0.036, 0.068) 0.057 (0.042, 0.077)
β11 0.917 (0.890, 0.941) 0.924 (0.897, 0.943) 0.918 (0.889, 0.940)
β22 0.837 (0.803, 0.870) 0.843 (0.807, 0.875) 0.837 (0.801, 0.869)
β33 0.927 (0.903, 0.947) 0.912 (0.882, 0.935) 0.905 (0.876, 0.931)
γ 0.015 (0.009, 0.022) 0.016 (0.009, 0.024) 0.016 (0.010, 0.024)
δ 0.970 (0.950, 0.983) 0.962 (0.934, 0.984) 0.963 (0.938, 0.980)
µ1 0.030 (-0.032, 0.091) 0.031 (-0.025, 0.092) 0.033 (-0.030, 0.094)
µ2 0.073 (0.049, 0.099) 0.073 (0.050, 0.098) 0.073 (0.049, 0.099)
µ3 -0.014 (-0.037, 0.008) -0.026 (-0.051, 0.000) -0.011 (-0.033, 0.012)
ν 6.188 (5.488, 6.943) 6.100 (5.457, 6.813) 6.388 (5.711, 7.164)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.256 (0.166, 0.416) 0.219 (0.116, 0.332) 0.206 (0.137, 0.324)
ω22 0.041 (0.020, 0.068) 0.034 (0.013, 0.059) 0.031 (0.014, 0.050)
ω33 0.018 (0.012, 0.029) 0.043 (0.029, 0.060) 0.037 (0.025, 0.051)
α11 0.030 (0.021, 0.043) 0.027 (0.018, 0.038) 0.030 (0.021, 0.041)
α22 0.045 (0.035, 0.057) 0.051 (0.040, 0.066) 0.067 (0.052, 0.084)
α33 0.016 (0.011, 0.024) 0.033 (0.024, 0.044) 0.066 (0.049, 0.090)
β11 0.900 (0.855, 0.928) 0.906 (0.869, 0.937) 0.918 (0.880, 0.942)
β22 0.832 (0.791, 0.866) 0.824 (0.784, 0.860) 0.831 (0.792, 0.862)
β33 0.934 (0.903, 0.955) 0.872 (0.832, 0.908) 0.864 (0.815, 0.901)
γ 0.006 (0.003, 0.008) 0.006 (0.001, 0.011) 0.014 (0.009, 0.019)
δ 0.965 (0.938, 0.981) 0.926 (0.839, 0.999) 0.956 (0.935, 0.974)

Table 9: Deutsche Bank AG. This table exhibits the posterior mean and 95% density intervals for
the parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted on daily
return data on DBK GR, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL
- SXXP, CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to 1st of
August 2022.
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EBS MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.115 (0.076, 0.169) 0.117 (0.074, 0.170) 0.116 (0.076, 0.163)
ω22 0.030 (0.021, 0.041) 0.031 (0.021, 0.042) 0.031 (0.022, 0.041)
ω33 0.006 (0.004, 0.010) 0.012 (0.007, 0.019) 0.009 (0.005, 0.014)
α11 0.059 (0.045, 0.076) 0.061 (0.046, 0.078) 0.059 (0.046, 0.076)
α22 0.091 (0.072, 0.114) 0.090 (0.069, 0.112) 0.092 (0.072, 0.115)
α33 0.046 (0.034, 0.062) 0.055 (0.039, 0.075) 0.061 (0.044, 0.082)
β11 0.881 (0.849, 0.907) 0.878 (0.845, 0.907) 0.881 (0.850, 0.909)
β22 0.831 (0.796, 0.865) 0.831 (0.795, 0.868) 0.831 (0.793, 0.862)
β33 0.924 (0.901, 0.943) 0.907 (0.875, 0.931) 0.901 (0.868, 0.927)
γ 0.022 (0.015, 0.031) 0.021 (0.013, 0.030) 0.023 (0.016, 0.032)
δ 0.942 (0.913, 0.964) 0.932 (0.887, 0.961) 0.935 (0.906, 0.958)
µ1 0.096 (0.040, 0.153) 0.094 (0.036, 0.156) 0.097 (0.037, 0.153)
µ2 0.070 (0.043, 0.096) 0.070 (0.043, 0.097) 0.070 (0.045, 0.095)
µ3 -0.014 (-0.037, 0.009) -0.025 (-0.052, -0.000) -0.010 (-0.033, 0.013)
ν 6.762 (6.002, 7.640) 6.803 (6.092, 7.717) 6.940 (6.156, 7.884)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.242 (0.153, 0.375) 0.294 (0.197, 0.428) 0.204 (0.129, 0.303)
ω22 0.020 (0.010, 0.038) 0.026 (0.009, 0.044) 0.019 (0.006, 0.036)
ω33 0.025 (0.016, 0.035) 0.039 (0.025, 0.062) 0.052 (0.031, 0.075)
α11 0.057 (0.041, 0.077) 0.046 (0.035, 0.060) 0.064 (0.048, 0.082)
α22 0.061 (0.048, 0.076) 0.043 (0.034, 0.056) 0.054 (0.041, 0.066)
α33 0.029 (0.021, 0.038) 0.029 (0.019, 0.042) 0.058 (0.038, 0.082)
β11 0.882 (0.847, 0.913) 0.862 (0.822, 0.895) 0.881 (0.845, 0.910)
β22 0.852 (0.821, 0.878) 0.853 (0.823, 0.878) 0.853 (0.823, 0.884)
β33 0.914 (0.884, 0.940) 0.894 (0.842, 0.931) 0.862 (0.805, 0.912)
γ 0.014 (0.010, 0.019) 0.012 (0.007, 0.017) 0.015 (0.009, 0.022)
δ 0.946 (0.921, 0.966) 0.915 (0.852, 0.954) 0.917 (0.851, 0.958)

Table 10: Erste Group Bank AG. This table exhibits the posterior mean and 95% density intervals
for the parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted on daily
return data on EBS AV, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL -
SXXP, CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to 1st of
August 2022.
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ING MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.056 (0.036, 0.082) 0.056 (0.035, 0.083) 0.056 (0.036, 0.082)
ω22 0.023 (0.016, 0.032) 0.023 (0.016, 0.032) 0.024 (0.017, 0.033)
ω33 0.006 (0.003, 0.010) 0.011 (0.006, 0.018) 0.008 (0.005, 0.013)
α11 0.053 (0.041, 0.067) 0.053 (0.041, 0.066) 0.053 (0.042, 0.065)
α22 0.071 (0.054, 0.089) 0.069 (0.054, 0.086) 0.072 (0.056, 0.091)
α33 0.044 (0.032, 0.058) 0.052 (0.038, 0.070) 0.056 (0.042, 0.077)
β11 0.902 (0.878, 0.922) 0.903 (0.877, 0.924) 0.903 (0.881, 0.922)
β22 0.862 (0.828, 0.892) 0.864 (0.831, 0.892) 0.861 (0.829, 0.889)
β33 0.925 (0.901, 0.945) 0.910 (0.880, 0.932) 0.906 (0.873, 0.929)
γ 0.024 (0.017, 0.031) 0.020 (0.014, 0.027) 0.025 (0.018, 0.033)
δ 0.954 (0.936, 0.969) 0.959 (0.939, 0.974) 0.950 (0.929, 0.966)
µ1 0.072 (0.021, 0.123) 0.073 (0.019, 0.125) 0.073 (0.018, 0.129)
µ2 0.066 (0.041, 0.090) 0.066 (0.041, 0.091) 0.067 (0.043, 0.092)
µ3 -0.015 (-0.037, 0.008) -0.028 (-0.051, -0.004) -0.010 (-0.031, 0.012)
ν 5.814 (5.250, 6.459) 5.932 (5.315, 6.675) 6.003 (5.351, 6.737)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.166 (0.118, 0.235) 0.167 (0.105, 0.247) 0.193 (0.133, 0.269)
ω22 0.029 (0.016, 0.046) 0.040 (0.023, 0.058) 0.044 (0.026, 0.064)
ω33 0.014 (0.010, 0.021) 0.054 (0.033, 0.078) 0.033 (0.021, 0.053)
α11 0.043 (0.035, 0.053) 0.046 (0.035, 0.059) 0.050 (0.040, 0.062)
α22 0.052 (0.042, 0.065) 0.052 (0.041, 0.066) 0.054 (0.043, 0.067)
α33 0.033 (0.026, 0.045) 0.066 (0.047, 0.091) 0.064 (0.044, 0.088)
β11 0.894 (0.869, 0.912) 0.895 (0.870, 0.918) 0.888 (0.859, 0.911)
β22 0.858 (0.835, 0.884) 0.853 (0.823, 0.882) 0.847 (0.812, 0.874)
β33 0.939 (0.919, 0.953) 0.831 (0.775, 0.881) 0.877 (0.829, 0.917)
γ 0.017 (0.012, 0.022) 0.013 (0.008, 0.018) 0.016 (0.010, 0.023)
δ 0.947 (0.927, 0.963) 0.935 (0.897, 0.964) 0.945 (0.906, 0.967)

Table 11: ING Groep N.V. This table exhibits the posterior mean and 95% density intervals for the
parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted on daily return
data on ING NA, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL - SXXP,
CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to 1st of August 2022.
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ISP MGARCH-t

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.050 (0.030, 0.074) 0.052 (0.032, 0.076) 0.050 (0.030, 0.075)
ω22 0.021 (0.014, 0.030) 0.022 (0.015, 0.031) 0.021 (0.014, 0.030)
ω33 0.006 (0.003, 0.010) 0.011 (0.007, 0.017) 0.009 (0.005, 0.013)
α11 0.067 (0.052, 0.084) 0.066 (0.051, 0.081) 0.067 (0.053, 0.083)
α22 0.075 (0.058, 0.094) 0.074 (0.057, 0.093) 0.077 (0.058, 0.097)
α33 0.046 (0.034, 0.062) 0.054 (0.039, 0.072) 0.062 (0.046, 0.081)
β11 0.894 (0.870, 0.915) 0.895 (0.874, 0.916) 0.894 (0.870, 0.915)
β22 0.866 (0.832, 0.896) 0.866 (0.833, 0.893) 0.863 (0.831, 0.893)
β33 0.924 (0.898, 0.944) 0.909 (0.881, 0.932) 0.900 (0.869, 0.925)
γ 0.020 (0.014, 0.027) 0.019 (0.013, 0.026) 0.020 (0.014, 0.027)
δ 0.961 (0.945, 0.973) 0.958 (0.941, 0.972) 0.960 (0.943, 0.973)
µ1 0.096 (0.039, 0.149) 0.096 (0.040, 0.151) 0.096 (0.041, 0.153)
µ2 0.075 (0.050, 0.099) 0.074 (0.048, 0.098) 0.074 (0.048, 0.099)
µ3 -0.016 (-0.039, 0.006) -0.030 (-0.055, -0.005) -0.011 (-0.032, 0.011)
ν 6.454 (5.710, 7.282) 6.506 (5.733, 7.419) 6.621 (5.850, 7.482)

MGARCH-DPM

CF1 CF2 CF3

Post. Mean 95% DI Post. Mean 95% DI Post. Mean 95% DI

ω11 0.232 (0.152, 0.332) 0.179 (0.119, 0.260) 0.204 (0.133, 0.274)
ω22 0.029 (0.012, 0.048) 0.021 (0.009, 0.034) 0.021 (0.009, 0.037)
ω33 0.049 (0.031, 0.077) 0.067 (0.046, 0.097) 0.038 (0.026, 0.054)
α11 0.045 (0.034, 0.058) 0.044 (0.033, 0.055) 0.045 (0.034, 0.057)
α22 0.044 (0.032, 0.058) 0.044 (0.034, 0.053) 0.037 (0.030, 0.046)
α33 0.036 (0.024, 0.056) 0.044 (0.030, 0.060) 0.061 (0.045, 0.081)
β11 0.876 (0.842, 0.904) 0.882 (0.855, 0.908) 0.876 (0.850, 0.903)
β22 0.862 (0.826, 0.896) 0.868 (0.841, 0.893) 0.872 (0.841, 0.897)
β33 0.840 (0.757, 0.896) 0.806 (0.730, 0.866) 0.875 (0.831, 0.909)
γ 0.009 (0.006, 0.013) 0.008 (0.005, 0.012) 0.012 (0.008, 0.016)
δ 0.951 (0.920, 0.970) 0.948 (0.901, 0.972) 0.943 (0.915, 0.961)

Table 12: Intesa Sanpaolo S.p.A. This table exhibits the posterior mean and 95% density intervals
for the parameters of the MGARCH-t and MGARCH-DPM model. The models are fitted on daily
return data on ISP IM, the market factor SXXP and one of the 3 Climate Factors: CF1 OIL -
SXXP, CF2 SXEPEX - SXXP, CF3 XEPS - SXXP. Data is from 1st of January 2010 to 1st of
August 2022.
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L Summary of Programming Files

Below we outline the programming files used for the empirical study. All files are coded in RStudio, except

for the MGARCH-DPM model code which is partly coded in C++.

Folder bmgarch-master

The folder bmgarch-master consists of the adjusted bmgarch package (Rast & Martin, 2021). The

functions below are adjusted for our analysis.

• bmgarch.R

Function that calls the stan model to fit the MGARCH parameters. For the MGARCH-t model

select ‘student-t’. For the MGARCH-DPM model select ‘gaussian dpm’.

• DCCMGARCH.stan

Estimates the MGARCH process with DCC parametrization for both the MGARCH-t and

MGARCH-DPM model.

Folder main code

This folder contains all the main code to run our empirical study.

• main_bmgarch.r

Estimates the MGARCH process with DCC parametrization for the benchmark MGARCH-t model

as outlined in Section 3.2.

• main_bmgarchdpm.r

Estimates the MGARCH process with DCC parametrization and Dirichlet mixture over the mean

and conditional covariance for our MGARCH-DPM model as outlined in Section 3.3. The main file

contains the following functions which work together with the dirichletprocess package (Ross &

Markwick, 2022).

– ClusterParameterUpdateGARCH

– Likelihood.mvnormal_garch

– PriorDraw.mvnormal_garch

– PosteriorDraw.mvnormal_garch

– MvnormalGARCHCreate

– InitialiseGARCH

– FitGARCH

• main_bmgarchdataprocessing.r

Processes the MGARCH-t estimates to compute the Climate Beta and CRISK.

• main_bmgarchdpmdataprocessing.r

Processes the MGARCH-DPM estimates to compute the Climate Beta and CRISK.

• main_nonparametricbeta.r

Computes the non-parametric dynamic conditional Climate Beta according to Section 3.3.4.
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