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Abstract

Electric power systems are increasingly being exposed to uncertainty in power load and generation. It is important
that these uncertain fluctuations are taken into account when an operating point is determined. We aim to develop
a computationally efficient approach for finding a robust operating point for the Alternating Current Optimal
Power Flow (ACOPF) problem. We consider the ACOPF problem as a two-stage problem with first-stage and
second-stage variables that need to be decided upon before and after uncertainty is known, respectively. Our goal
is to find a solution for the first-stage variables, such that a solution to the second stage exists when uncertainty
is realized. Due to the nonlinear, non-convex power flow equations in the ACOPF problem, finding a robust
solution is challenging. Therefore, we approximate the power flow equations by iteratively taking first-order
Taylor Series approximations on small subsets of the solution space. As a result, we are able to eliminate the
second-stage variables and the power flow equations from the problem and we obtain an approximately robust
solution. We evaluate the performance of our solution on MATPOWER instances up to 1354 buses. We find that
our solution increases the operating cost only marginally compared to the nominal solution. Moreover, by means
of a simulation study we find that our solution performs well in terms of robust feasibility. Finally, our approach
is promising in terms of computational efficiency and has potential to be scalable to even larger instances.
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Table 1: Nomenclature

Data
N Set of buses
G Set of generator buses
U Set of buses with uncertainty (in active power load)
L Set of branches
L, Set of branches connected to the reference bus
l=(k,m)elL Branch with k as from-end and m as to-end
pg eR Active power load at bus k
q,‘f eR Reactive power load at bus k
gzh eR Conductance of shunt element at bus k
bzh eR Susceptance of shunt element at bus k
y€C Admittance of branch [
g €R Conductance (real part of admittance) of branch [
bpeR Susceptance (imaginary part of admittance) of branch !
blSh eR Total shunt susceptance of branch [
pznin, P eR Minimum/Maximum active power generation at bus k
q,’;“in, g eR Minimum/Maximum reactive power generation at bus k
s e Ry Maximum apparent power flow in branch [
v}fin, v e Ry Minimum/Maximum voltage magnitude at bus k

k2, Ck1, ko € Ry Coefficients of quadratic cost function of generated active power at bus k

Variables
pi eR Active power generated by generator at bus k
@ eR Reactive power generated by generator at bus k
v € C Voltage at bus k
U]]CV[ eR, Squared voltage magnitude at bus k
v, €R Real part of voltage at bus k
Ui eR Imaginary part of voltage at bus k
plf eR Active power injected into branch [ = (k, m) at the from-end k
qlf eR Reactive power injected into branch | = (k,m) at the from-end k
pleR Active power injected into branch [ = (k,m) at the to-end m
qlt eR Reactive power injected into branch | = (k,m) at the to-end m




1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is a well-known problem in the
field of power systems optimization. It is a problem that needs to be solved multiple times per
day, in order to provide corporations and households with a sufficient amount of electricity. The
problem can be described as finding an operating point of a power system that minimizes a cer-
tain cost function, while satisfying a set of constraints that model the power flowing through the
system, as well as voltage limits, generated power limits and thermal limits for transmission lines.
The ACOPF problem is non-convex and strongly NP-hard (Lehmann et al. (2015), Bienstock and
Verma (2019)), even without uncertainty. This non-convexity is a result of the quadratic system of
equalities in the problem, also known as the power flow equations. As a result of this non-convexity
and NP-hardness, exact solution methods for the ACOPF problem are computationally intractable
and researchers rely on heuristics and approximations to solve the problem. On top of that, the
real-life application of the ACOPF problem brings along a certain degree of uncertainty. For ex-
ample, with the rise of renewable energy, uncertainty in power supply has increased throughout
the years. Dealing with uncertainty in power demand is also of increasing importance, since more
extreme weather conditions cause large fluctuations in peak demands. This uncertainty in power
supply and demand can cause mismatches in the power system, and can even result in complete
power outages (Kundur et al. (2004)). Such power outages have increased throughout the years,
as Wirfs-Brock (2016) shows for the United States. As a result, solution techniques that deal with

uncertainty in power systems have increased in popularity in recent years.

For instance, Molzahn and Roald (2018) propose to implement convex relaxations for the non-
linear power flow equations. While their method guarantees robust feasibility of the operational
constraints (that is, the inequality constraints of the problem that represent physical limits of the
power network), their method lacks scalability to large instances. Lee et al. (2021) propose a
method that uses convex inner approximations of the feasible space, which they call convex restric-
tions. This approach seems promising, considering the relatively low computation time needed to
solve medium-sized instances. However, only low levels of uncertainty are considered for these in-
stances. Furthermore, they mention that their convex restrictions can still be conservative, and their
approach is still in development. Kuryatnikova et al. (2021) tackle the non-convexity of the problem

by approximating the nonlinear equality constraints on small subsets of the feasible space, using



first-order Taylor Series approximations. Their results are promising in terms of robust feasibility.
However, the ACOPF formulation they use results in nonlinearities in the inequality constraints of
the approximated problem, limiting the scalability of their approach. Finally, Roald and Andersson
(2017) propose a computationally tractable chance-constraints based method; they obtain a solu-
tion for a large Polish power network in approximately 30 seconds. However, their method requires
information on the distribution of the uncertain data, which is often unavailable or incomplete.
Also, their approach provides no guarantees for converging to a (local) optimum. To summarize,
while some methods for the ACOPF problem with uncertainty yield promising results, research in
the field is relatively new and therefore still in progress. There is no single method that simultane-

ously provides robust feasibility guarantees, high quality solutions, and scalability to large instances.

The current state of research in the field of ACOPF with uncertainty, gives rise to the following

research questions that we aim to investigate and answer in this thesis:

e How can we construct a high-quality and scalable approach to the ACOPF problem with

uncertainty, that is suitable for moderate levels of uncertainty?

e How does this approach perform in terms of computation time and cost of the solution, and

how does it compare to existing benchmark methods in terms of robust feasibility?

In the first research question, with high quality we mean that our approach finds a solution that is
feasible to the nominal ACOPF model (that is, the model without uncertainty), robustly feasible
(that is, feasible when uncertainty is realized) and in practice results in an objective value that is
close to the objective value of the nominal ACOPF solution. With scalability we mean that our
algorithm has a low computation time; ideally we would have as many linear and as few nonlinear
constraints in our model as possible. With moderate levels of uncertainty, we mean uncertainty
levels ranging from 1% up to 50% of the load (that is, the power demand). In the second research
question, the benchmark methods we compare our approach with, are the solution to the nominal
problem (with tightened bounds to make it more robust), and the Direct Current Optimal Power

Flow (DCOPF) solution. The latter is explained in Section 2.2.

In order to research and answer these questions, we consider the ACOPF problem with uncer-
tainty as a two-stage problem, and formulate it in the framework of adjustable robust optimization

(ARO). In such a problem, in the first stage the uncertainty is not known and decisions need to



be made without this information. However, in the second stage the uncertainty is revealed, and
decisions can be made with complete information. Decision variables in the first stage are called
control variables, and second-stage variables are called state variables. In which category a variable
belongs is discussed when the ACOPF problem is explained in detail in Section 3. Now, the goal
in such an ARO setting is to find a solution for the control variables, such that there exists a solu-
tion for the state variables for every possible realization of uncertainty. To achieve this, ideally we
would link the state variables to the control variables using an explicit decision rule. This means
that given the values of the control variables and the revealed uncertainty, the values of the state
variables follow directly from this decision rule. In other words, we would like to express the state
variables as a function of the control variables and uncertainty. Finding this function in the ACOPF
problem requires solving the earlier mentioned system of nonlinear equalities. As a result, we have
no analytical representation for the rule under discussion; the decision rule is only given implicitly,

via the system of equalities.

The method proposed in this thesis aims to solve the latter issue by iteratively approximating
the full quadratic system of equalities with linear approximations. These approximations are taken
on a small subset around specified points of approximation, so that they are close to the original
quadratic constraints. Having a linear system of equalities, we eliminate all state variables and
equalities, by expressing the state variables as an explicit function of control variables and uncer-
tainty. As a final step, the uncertainty is eliminated from the problem using standard techniques in
robust and convex optimization, and a formulation with only control variables is left. We end up
with a second-order conic programming (SOCP) problem. However, if it is necessary to explicitly
model the (quadratic) thermal limits for transmission lines as well, we model these constraints as
semidefinite programming (SDP) constraints. For most instances, this turns out to be not necessary
since the solution to the remaining problem already satisfies those thermal limits. When the remain-
ing problem is solved, we obtain our solution for the control variables. The corresponding solution
for the state variables follows in practice from solving the power flow equations after uncertainty

is known. The implementation and evaluation of this method is the main contribution of this thesis.

Our approach differs from Lee et al. (2021) in the sense that we exploit the inherent two-stage
structure of the ACOPF problem. Moreover, we do not use convex restrictions of the feasible space,

and we do not approximate the inequality constraints of the problem. We do also not iteratively



tighten the inequality bounds as in Molzahn and Roald (2018) and Roald and Andersson (2017).
Convex relaxations as in Molzahn and Roald (2018) are also not considered in our approach. Our
approach also differs from Roald and Andersson (2017) in the sense that we do not use a stochastic
approach and thus do not require distributional assumptions on the uncertainty. However, since
we also propose linearizations around specified points, our method has similarities with the method
proposed in Roald and Andersson (2017) as well. The solution method in this thesis more closely
follows the approach of Kuryatnikova et al. (2021) for solving the ACOPF problem under uncer-
tainty. However, Kuryatnikova et al. (2021) use a formulation of the ACOPF problem that contains
many quadratic inequalities. Since they only approximate the equality constraints, their approx-
imated problem still contains these nonlinear inequalities. We use a different formulation for the
ACOPF problem, with as many linear inequality constraints as possible. The only inequalities that
cannot be stated other than quadratic constraints, are the line thermal limits for the transmission
lines. Because of this different formulation, we end up with more state variables and therefore more
approximations, but we gain computational efficiency. Note that our formulation of the ACOPF
model is equivalent to the formulation used in Kuryatnikova et al. (2021), but the problems become

different after taking approximations.

We find that our method performs well in terms of computation time, cost and robust feasibil-
ity. For medium-sized instances, our algorithm is able to find a solution within seconds. For the
largest instance we consider, our algorithm finds a solution within 20 minutes. However, there is po-
tential to decrease computation time even further by setting up the model more efficiently. We also
find that our robust solution increases the cost in the situation of no uncertainty only marginally:
most cost increases are below 0.1%. Furthermore, we find that our method performs very well
in terms of robust feasibility, compared to the two benchmark methods. For many instances, our
solution is feasible for 100% of simulated uncertainty realizations from the specified uncertainty set,

especially for lower levels of uncertainty.

The rest of this paper is organized as follows. Section 2 provides a review of the literature on
adjustable robust optimization, as well as the literature on the ACOPF problem, and the ACOPF
problem with uncertainty. In Section 3, we explain the ACOPF problem in more detail, and we
provide a formulation for the model without uncertainty. In Section 4, we discuss how we model

uncertainty in the problem and we formulate the model with uncertainty. In Section 5, we explain



the solution method in detail. We discuss the data we use for our experiments in Section 6. Section
7 provides the results of our algorithm. In Section 8, we simulate realizations of uncertainty and
we evaluate the performance of our method in terms of robust feasibility. Finally, in Section 9 we
state the main conclusions of this thesis, we provide a final discussion of our solution method and

we propose directions for further research.

2 Literature

2.1 Adjustable robust optimization

Optimization problems can be formulated as mathematical models containing an objective func-
tion, constraints, variables and data. In real-life applications of these problems, data is often not
completely known or uncertain. Problems for which this is the case, inherit the complexity of the
deterministic problem as well as the additional complexity of the data being uncertain. Methods for
optimization under uncertainty are generally developed in the framework of stochastic optimization
or robust optimization. Stochastic optimization operates under the assumption that there is some
knowledge on the distribution of the uncertain data. For example, chance-constrained optimization
aims to obtain a solution that is feasible with a certain probability for some subset of constraints.
To model such chance-constraints, we need information about the distribution of the uncertain pa-
rameters in those constraints. Robust optimization (RO), on the other hand, does not require prior
information on the probability distribution of the uncertain data. The assumption that is made, is
that this data lies in a certain uncertainty set. The goal of robust optimization is to obtain a so-

lution that is feasible even in the worst-case uncertainty scenario that belongs to this uncertainty set.

Within the robust optimization framework, adjustable robust optimization (ARO) was introduced
by Ben-Tal et al. (2004). ARO can be used to model problems that inherently consist of two
stages. In such a two-stage problem, the realization of the uncertainty in the data is known in the
second stage, but not yet in the first stage. As we mentioned before, the first-stage variables are
also called control variables, and the second-stage variables are called state variables. The goal in
an ARO setting is to find a solution for the control variables, such that a solution for the state
variables exists for every possible realization of uncertainty from the prespecified uncertainty set.
Unless some specific conditions hold, the solution to a problem differs depending on whether the

problem is considered in an RO setting, or an ARO setting (Marandi and Den Hertog (2018)).



If the problem is suitable for ARO, formulating it as an ARO problem is likely to result in a so-

lution that is less conservative, compared to considering the same problem in a standard RO setting.

To solve an ARO problem, one can consider methods to obtain an exact reformulation of the
problem, such as cutting-plane algorithms (Bertsimas et al. (2012)) or vertex enumeration algo-
rithms (Bienstock and Ozbay (2008)). However, exact reformulations of ARO problems are often
computationally intractable, except for cases that have decision rules of a specific form. In an ARO
setting, decision rules define the relation between the control variables and the state variables.
When such a decision rule can be stated as a function of the state variables in terms of control vari-
ables and uncertainty, it allows for a single-stage reformulation of the problem in which the state
variables are eliminated. Even when explicit decision rules are known, ARO formulations are still
often computationally intractable and researchers rely on approximations to solve the problem at
hand. For example, a linear ARO can still turn into a non-convex quadratic programming problem
if the decision rule is quadratic. Moreover, in many ARO problems explicit decision rules are not
known in advance, adding an additional layer of complexity. One then needs to choose and optimize

a decision rule to obtain the best objective value.

Now, in practice ARO problems can also contain systems of equalities in state variables. In that
case, the choice for a decision rule is highly limited because the system of equalities needs to be
robustly feasible. Optimization problems with equality constraints are generally known to be less
suitable for robust optimization. One way to deal with equality constraints is by substituting certain
variables by some expression defined by the system of equalities, eliminating both these variables
and equality constraints from the problem. However, this is not possible when these expressions
cannot be found analytically, which can be the case when the system is nonlinear. Such irremovable
systems of equalities often occur in chemical process systems and in electric power systems. Re-
cently, Isenberg et al. (2021) proposed a generalization of a robust cutting-set algorithm to deal with
these nonlinear equalities, with applications on varying chemical process systems. Such a robust
cutting-set algorithm iterates between solving a master problem and a separation problem. In the
master problem, an optimal solution is found for a certain subset of uncertainty realizations, and in
the separation problem violated uncertainty scenarios are identified and added to this subset. Lee
et al. (2019) propose an approach to solve problems with nonlinear systems of equalities by solving

a sequence of convex optimization problems. Under certain sufficient conditions they provide, this



method guarantees robustness and feasibility. A different approach is given in Kuryatnikova et al.
(2021), who provide a general framework to solving ARO problems with systems of equalities. They
propose to approximate the equality constraints by linear approximations on small subsets of the
domain of the state variables. As we mentioned in Section 1, they also provide an application of

their method to the ACOPF problem, which is discussed in Section 2.3.

2.2 The ACOPF problem

The Optimal Power Flow (OPF) problem aims to optimize a given cost function within an electric
power system by deciding on the generated power and the voltages, which determine the power
flow in the network. This operating point has to satisfy operational constraints such as voltage
magnitude limits and limits on generated power, as well as the power flow equations. With power
flow equations, we mean the system of equalities that controls the power flowing through the sys-
tem. Before we discuss the history of OPF problems, we need to distinguish between power flow
analysis and optimal power flow analysis. Classical power flow analysis only considers the power
flow equations and aims to find the solution to it. That is, no objective function is optimized, and
no other inequality constraints are considered. To find a unique solution to the power flow equa-
tions, the system needs to have as many variables as constraints. Because the system is actually
underconstrained (it contains more variables than constraints), a certain set of variables is fixed in
power flow analysis, and the resulting power flow equations need to be solved. The solution to the
power flow equations is feasible for these equations, but not necessarily operationally feasible; it
does not take into account limits on generated power or voltage magnitudes, for instance. Optimal
power flow, on the other hand, considers the full underconstrained power flow equations, together

with the operational limits. It turns the power flow problem into an optimization problem.

The OPF problem was first formulated by Carpentier (1962). Before that, power systems were
often optimized based on experience of engineers, rules of thumb and tools such as network an-
alyzers. Since the contribution of Carpentier (1962), many different formulations for the OPF
problem have been developed, as well as many solution methods. Formulations can differ in ob-
jective function, constraints and underlying assumptions on the power network. However, every
OPF formulation contains some form of the power flow equations. The power flow equations as
formulated by Carpentier (1962), are often referred to as the Alternating Current (AC) power flow

equations. These AC power flow equations consist of a nonlinear system of equalities. We call OPF
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formulations that contain the full AC power flow equations ACOPF formulations. However, even
these ACOPF models can be formulated in many different ways. Since the ACOPF problem con-
tains voltages represented by complex numbers, formulations in polar form and rectangular form
exist. Formulations also differ in whether power or current is used in the power flow equations,
and whether power flows are represented by explicit variables. A review on the history of classical
ACOPF formulations is presented in Cain et al. (2012). A more technical summary on the differ-
ent mathematical programming ACOPF formulations is given in Bienstock et al. (2022). In Sadat

and Kim (2021), numerical performance of different formulations of the ACOPF problem is studied.

Now, while formulations of the ACOPF may vary, they are all non-convex and NP-hard, which
makes them computationally intractable. Since power systems can be very large and they need to
be solved multiple times per day in most control rooms, simpler formulations than the ACOPF have
been developed. A well-known version of the OPF that simplifies the AC power flow constraints,
is the Direct Current Optimal Power Flow (DCOPF) (see e.g. Stott et al. (2009)). This name
can be misleading, because it does not solve a direct current network (which means that current
flows in one direction). Instead, the DCOPF is a linearized version of the ACOPF problem. This
makes it suitable for obtaining a fast solution to an OPF problem, which is the reason why it is still
often used in the power flow industry. However, the assumptions of a DCOPF model are generally
very unrealistic. This makes the DCOPF only applicable for smaller networks, but for large power

systems the levels of error become unacceptable.

Methods to solve the ACOPF in its original nonlinear form have been of interest since the introduc-
tion of the formulation. Since the ACOPF is NP-hard and power systems can be large, researchers
rely heavily on approximations and heuristics to find optimal solutions. There are many impor-
tant factors that an ACOPF solution method needs to take into account; Wang et al. (2007) argue
that robustness, scalability and accuracy are the most important when developing new algorithms.
According to Frank et al. (2012), almost every suitable mathematical programming approach has
been applied to the ACOPF problem. More efficient solution methods are still constantly being
developed. Even slightly better solution methods can save a lot of cost and time on a large scale,
especially with increasing sizes of power systems all over the world and their increasing complex-
ity. According to Cain et al. (2012), the approximate methods of today may still unnecessarily cost

billions of dollars per year, even though they are already much more efficient than their predecessors.
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2.3 The ACOPF problem with uncertainty

Since the ACOPF problem is already hard to solve to optimality, ACOPF problems with uncer-
tainty in the data have not been studied extensively. Methods that do address this uncertainty,
often simplify the nonlinear AC power flow equations. Many approaches use the DCOPF formu-
lation of the problem. Since it contains a linearized version of the power flow equations, it is a
computationally attractive method. Moreover, the DCOPF also has the benefit of being widely
used in the classical OPF literature and in practice. For instance, Ding et al. (2016) consider the
DCOPF in an ARO setting and obtain results for large instances within seconds. However, the
DCOPF relies on unrealistic assumptions, which can cause the obtained solution to be unreliable
in practice. Other methods that simplify the AC power flow equations, often relax the problem
to obtain a convex formulation. Molzahn and Roald (2018) propose a robust method that uses
such an approach; they replace the nonlinear power flow equations by convex relaxations. Their
algorithm alternates between solving a deterministic ACOPF problem and computing tightenings
of the inequality constraints. While their method lacks computational efficiency, they are the first
to guarantee feasibility of the inequality constraints for all uncertainty realizations. More recent
robust approaches that convexify the feasible space are proposed in Molzahn and Roald (2019) and
Lee et al. (2021). Instead of convex relaxations, Lee et al. (2021) propose convex restrictions, which
means that all points within this restricted space are feasible for all uncertainty realizations. They
also derive a sufficient condition that is the first to guarantee robust feasibility of both the AC

power flow equations, as well as the operational limits.

As with many robust optimization approaches, these methods can be conservative compared to
stochastic or approximative approaches. Less conservative approaches to ACOPF with uncertainty
can involve chance-constraints (see for example Zhang and Li (2011), Baker et al. (2016) and Venzke
et al. (2017)). Roald and Andersson (2017) propose an analytical reformulation of the model with
chance-constraints into closed form, which they achieve by linearizing the power flow equations
around a specified operating point. They use an iterative algorithm to solve the problem, similar to
Molzahn and Roald (2018). As mentioned before, Kuryatnikova et al. (2021) propose an approxima-
tive approach that also linearizes the power flow equations. They consider the ACOPF problem in
the ARO framework and approximate the power flow equations by their first-order Taylor Series to

obtain a linear formulation. This way, all state variables and equalities can be eliminated from the
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problem. The resulting problem contains only control variables, but consists of both semidefinite
programming (SDP) constraints and non-convex constraints. An alternating projections algorithm

is used to solve this remaining problem.

3 Nominal ACOPF Model

3.1 Components of the ACOPF problem

As mentioned before, the Alternating Current Optimal Power Flow problem is a problem that oc-
curs in electric power systems optimization. Such a power system can be seen as a network of
electrical components that deals with the generation and distribution of power. Electric power
is generated by generators and transmitted along transmission lines. We also refer to the latter
as lines or branches throughout this paper. Electric power must be supplied to the consumers
of the network. These consumers make up the nodes of the power network and are called buses.
The amount of power demanded by a bus is called the load. Every generator is connected to a
bus; we call those buses generator buses. In general, one bus can be connected to multiple gen-
erators, but in this thesis we restrict ourselves to at most one generator at a bus. However, our
proposed approach can easily be extended to include multiple generators per bus. Next to generated
power, engineers can also control voltage (electric pressure) in the network. Voltages can be con-
trolled at every bus. Since the nonlinearities in the power flow equations of the problem are caused

by products of voltages, deciding upon their values is a very important part of the ACOPF problem.

Now, the ACOPF problem has both inequality and equality constraints. As mentioned before,
the equality constraints are called the power flow equations, and are the main cause of the non-
convexity of the problem. These equations follow from a basic law in physics called Kirchhoft’s
Circuit Law and the m-model for modeling transmission lines (see Chatzivasileiadis (2018) for more
background on this). The inequality constraints represent physical restrictions of the power system.
These include limits on generated power, voltage limits and line thermal limits. The latter makes
sure that transmission lines do not get too hot, since this can cause them to sag and eventually burn
down. These equality and inequality constraints are described formally when the nominal ACOPF

model is formulated in Section 3.3.

In Figure 1, an example of a power network is shown by means of a single-line diagram. Such
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Figure 1: Single-line diagram of an IEEE test power system with 30 buses

a diagram is a simple representation of a rather complex electric power system. In the network
displayed in Figure 1, there are six generators, represented by the tildes. We see that the power
network can be seen as a connected graph. This is indeed the case, but certain elements of the
ACOPF problem are very different compared to other graph problems. For example, power losses
at branches may occur, which means the power flowing into a branch cannot simply be considered

equal to the power flowing out of a branch. The power flow equations take these factors into account.

Another aspect of the ACOPF problem that is uncommon for optimization in other fields, is that
power and voltages are represented by complex numbers. This is because the problem of optimizing
generated power in a network is a dynamic problem, and thus the formulation of the problem is
time-dependent. This dependency on time comes from the fact that power and voltage oscillate
with a certain frequency. Formulating the ACOPF problem as a time-dependent problem would
be, computationally speaking, not feasible with current technology (Bienstock et al. (2022)). How-
ever, representing these oscillating power and voltage waves by their average value would cause too

much loss of information. Therefore, power and voltage (and other physical quantities that occur
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in power systems, but those are not relevant for this research) are represented by complex values in
the ACOPF literature. We consider the rectangular (also called Cartesian) form of these complex
numbers. This means that the complex numbers are defined in terms of their real and imaginary
part, and not in polar form. The real part of power is called active power and the imaginary part
is called reactive power. Generation of active and reactive power can directly be controlled at gen-
erator buses. Voltages are controlled at all buses by means of their voltage magnitude and phase
angle. The voltage magnitude is the magnitude of the complex voltage. The phase angle can be
interpreted as the angle between the complex voltage and the positive real axis. Note that in our
formulation the phase angle does not directly occur, since we decided to use the rectangular form
of the complex number. However, the phase angles at buses can be easily derived if the real and

imaginary parts of the voltage are known.

The goal of the ACOPF problem is to find an operating point for the power system in terms of gen-
erated active/reactive power, voltage magnitude and phase angles, that minimizes the cost function
while all aforementioned equality and inequality constraints hold. We define the cost function as a

quadratic function of active power generation, as is common in power flow optimization.

3.2 Reference bus, PV buses and PQ buses

The ACOPF problem contains many variables. In practice, only some of the variables are set up by
the system engineers, at generator buses. These variables are the control variables of the problem.
The number of remaining state variables is equal to the number of equality constraints defined by
the power flow equations. The values of the state variables are not predetermined by the engineers,
but they follow from solving the system of power flow equations. To know in which category a

decision variable belongs, we need to discuss the three different kinds of buses of a power system.

We start with the reference bus. In general, the ACOPF model closely matches the behaviour
of the real power system, but there are still some assumptions and approximations in the model.
These can result in power mismatches in the system, which are spread over a number of generators.
The generated power is not determined in advance for these buses, to allow the mismatches to be
cancelled. The buses for which this is the case, are called reference buses. In our model we have one
reference bus, since this is common in the data we use. The model can easily be generalized to any

given set of multiple reference buses. In terms of variables, the active and reactive power are free

15



to vary (state variables) at the reference bus, while the voltage magnitude is predetermined by the
engineer (control variable). The phase angle at the reference bus is fixed, and is set to zero. The
rest of the generator buses are called PV buses. At PV buses, the generated active power and volt-
age magnitude are selected by the engineer (control variables), while the generated reactive power
and voltage phase angle (and thus its real/imaginary part) are free to vary (state variables). The
buses that are left are not connected to a generator, and are called PQ buses. Active and reactive
power generated at PQ buses is thus zero, and the voltage magnitude and phase angle (and thus
its real/imaginary part) can vary (state variables). PQ buses can, for example, represent locations
that demand electricity but cannot produce it. The distinction between state variables and control
variables is very important for our solution method, since we define the model with uncertainty in
the ARO framework. Therefore, the vector of state variables and the vector of control variables are

also stated in Section 5, when all further terminology has been introduced.

3.3 Formulation of the nominal ACOPF model

In this section, we describe our formulation of the nominal ACOPF model, which is the ACOPF
model without uncertainty. The ACOPF problem can be formulated in a lot of different ways; we
choose to follow the formulation provided by Bingane et al. (2018). Differences between our and
their formulation occur because we assume that every bus has at most one generator connected to
it. Also, their formulation contains tap ratios, which we do not consider (this implies that all tap
ratios are equal to one). Since they are not relevant to our research, we do not dive deeper into

what tap ratios are.

Before we formulate the nominal model, we introduce some relevant notation, data and variables.
We denote by the (-)* operator the conjugate of a complex number. We let N denote the set of
all buses, G C N the set of generator buses (which consists of all PV buses and the reference
bus). Therefore, N \ G denotes the set of PQ buses. The reference bus is chosen to have index 1.
We denote by L the set of all branches. A branch has a from-end and a to-end, which can just
be considered modeling choices. The need for this comes mainly from the fact that the ACOPF
formulation considers power losses along a branch. We denote a branch by [ = (k,m), in which
bus k is the from-end and bus m is the to-end. If we write the complex voltage at bus k in its

rectangular formulation v, = v + jvi, where j is the imaginary unit, we can define the variable

oM = lok|? = (v5)% + (v})? as the squared voltage magnitude. We denote generated active power
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at bus k by pi and generated reactive power by qZ . We denote the loads (demands) at bus k& by pg

and q,‘j for active and reactive power, respectively.

We also define the line flow variables, which we denote by plf , qlf ,p} and ¢/. These variables indicate
the flow of (re)active power into branch [, injected by its from-end or its to-end. plf is the active
power flowing into branch [ injected by its from-end. qlf is the reactive power flowing into branch
[ injected by its from-end. p} and g} indicate the active and reactive power flowing into branch I
injected by its to-end, respectively. Note that these variables can take on both positive and negative
values. For example, a positive value for plf means that power is flowing into branch [, injected by

the from-end. A negative value for plf indicates that power flows along branch [ into the from-end.

Now, there is also some data on electric components in the power system that is somewhat more
technical. The reader is not expected to be familiar with the terms that follow; they can just be
considered constants that are part of the constraints in the model. For every branch I, the line
admittance y; is given. The line admittance is a measure of how easily electric current is allowed
to flow through a transmission line. The admittance is a complex number and can be written as
yr = g; + jb;. Its real part g; is called the conductance, and the imaginary part b; is called the
susceptance. Next to line admittances, a shunt element can be connected to both ends of a line.
Such a shunt element can serve several purposes, such as circuit protection or creating a path of
low resistance for electric current to flow around, ‘shunting’ the current to a different path. For a
branch [, this shunt element is incorporated at both ends of the branch, in terms of susceptance only
(usually, the shunt conductance of line [ is negligible). The susceptance at both ends of the branch is
considered equal, and denoted by %, where bfh is the total shunt susceptance of branch [. Finally,
an additional shunt element at bus k is incorporated in the model in terms of its conductance g,ih

and susceptance bzh.
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Below, a first version of the nominal ACOPF model is given:

s.t.

Z Ck:,z(pi)g + crapy + Cro

keG
ool —gi' = > o+ D
I=(k,m)eL I=(m,k)eL
e S S S
I=(k,m)eL I=(m,k)eL
gt = Y o+ Y
I=(k,m)€L I=(m,k)eL
— g + iy = Z qlf+ Z q
I=(k,m)eL I=(m,k)eL
psh *
P +ig = vk || ] 9 + Y1 | Vk — Y1Vm
bsh *
3 <t
Pl = Um [<J2 + yz) - yzvk]

PR < pd < ppax
™" < g < g™
‘pl + g ‘ < s
|pi+jar| < s
o™ < Jog] < o™
v{ =0

v > 0.

Vi =

Vi =

Vi =

Vi =

Vk € G (1b)

Vk e G (1c)

Vke N\G  (1d)

Vke N\ G (1e)

(k,m) e L (1f)

(k,m) € L (1g)

Vk e G (1h)

Vke @ (1i)
(k,m) € L (1)
(k,m) e L (1k)

VkEe N (11)

(1m)
(1n)

In model (1), the objective (1a) denotes a quadratic cost function of generated active power, as is

common in the literature and in practice. Constraints (1b)-(1e) are the power flow equations. Con-

straints (1b) and (1c) model these power flow equations for buses that are connected to a generator,

for active and reactive power respectively. Here, the power generated at bus k£ minus the load at bus

k, must be equal to the net power flowing out of bus k£ (modeled as the power flowing into a branch

coming from bus k), adjusted for the shunt elements connected to bus k. If the left-hand side is

negative, the generated power is not enough for the load needed. Then, the right-hand side is also

negative, indicating that net power is injected into bus k from other buses, instead of flowing out

of it. Constraints (1d) and (1e) model the power flow equations for buses that are not connected

to a generator. Constraints (1f) and (1g) are the line flow constraints; they follow from the formula
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s = vi* that is well known in physics. Here, s denotes complex power, ¢ denotes current and v
denotes voltage. For a branch [ = (k,m), it holds that the current flowing into the from-end k of
that line, depends on the admittance and the voltages as follows: zlf = yff,;vk + yi(vg — V). Since
yf}]z = j@, we get that slf = Vg - [j#vk + yi(vi — vm) *, which is exactly what is represented in
constraint (1f). For more information on the theory behind this, we refer to Chatzivasileiadis (2018).
Constraint (1g) is derived in a similar way, but for the to-end of a branch [ = (k,m). Constraints
(1h)-(1i) correspond to limits on active and reactive power, respectively. Note that p‘knin and q,rcnin
can be negative. For reactive power, this is more often the case than for active power. However, in
some instances generators are modeled as aggregations of multiple loads and generators, resulting
in a possibly negative value for pz,nin. The only assumption we make here, is that the lower bound
on active power generation at the reference bus (pJ") is nonnegative. This assumption is necessary
to obtain an objective function that is increasing in p{, which is convenient when formulating the
model with uncertainty in ARO form (see Section 4). This assumption holds for all instances of
power systems we consider. Constraints (1j)-(1k) indicate the line thermal limits, which represent
the heat limits on transmission lines. Constraint (11) models the bounds on the voltage magnitudes.

Constraints (1m) and (1n) set the voltage phase angle at the reference bus to zero, by restricting the

imaginary part of that voltage to be zero and by restricting the real part of the voltage to be positive.

All quantities (of both variables and parameters) in model (1) are expressed in per-unit (p.u.).
This means that quantities are given as a fraction of their base value. The per-unit system is com-
mon in power systems analysis, since it simplifies calculations and it diminishes large differences in
absolute values. To convert back to other units, one needs to know the base units of the system
at hand. However, this differs per instance and is not relevant to our research. Furthermore, an

overview of all variables and parameters in the model is given in Table 1.

One may notice that vy is a decision variable that takes on the value of a complex number. More-
over, there are many constraints that contain complex numbers. However, constraints (1b)-(1e)
and (1j)-(11) contain only the (squared) magnitude of a complex number or variable, which is a real
number. Constraints (1f)-(1g) on the other hand are explicit complex constraints. We can avoid
having to work with complex decision variables by decomposing both sides of (1f) and (1g) into
a real and imaginary part. For the left-hand side this is obvious, but for the right-hand side this

requires some simple but cumbersome derivations. As a result, we can rewrite constraint (1f) and
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(1g) as the following four constraints:
plf =g — g (v,’;vfn + Uivfﬁ) + b (v,@vﬁn — viv%) VI = (k,m)eL

bsh ) . .
qlf — <—12 — bl> oM+ g, (Uqufn — viv%) + b (v};fufn + v,{jv%) Vi=(k,m)€eL

(2)

pf = glv% — g (v,’;vfn + viv%) + by (vivfn — v};vﬁ'n> Vi= (k,m)e L

¢ = <_l2 - bz) oM 4 g, (Ui% — v,’;ug'n) + b (v};v,’;@ + viviﬁ) vl = (k,m) € L.

We call expressions (2) the line flow expressions. Note that here the admittance appears in terms
of conductance and susceptance (y; = ¢; + jb;). We replace constraints (1f)-(1g) in the model by
constraints (2) so that we have constraints that only contain real numbers. Also, since constraint

(11) contains only positive terms, we can replace that constraint by:
(v < o < (™) VE € N. 3)

This is convenient since we treat the squared magnitude vé\/f as a decision variable. The definition
of this squared magnitude needs to be modeled explicitly too. Thus, we include the following
constraint:

oM = ()2 + (v])? VEeN. (4)

We also square constraints (1j) and (1k) to get rid of the magnitude (which would contain a square

root):

@2+ (¢ < (™) Vi=(kym)eL 5
2

(p)? + (i)

The nominal ACOPF model, without complex numbers, can then be defined by (1a)-(1e), (1h)-

< (smax)? vl = (k,m) € L.

(1i), (Im)-(1n), (2)-(5). In the next section, we introduce uncertainty, and we provide a complete
overview of the model with uncertainty.
4 Incorporating Uncertainty

In the literature on ACOPF with uncertainty, the uncertainty is usually modeled in the load of the
buses. This means that an uncertainty term (j, is contained in the power flow equations for bus k, if

the load is nonzero. One can also choose to consider uncertainty in the generation of power, which
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means that (i is contained in the equations for the generator buses. We only consider uncertainty
in the load, but our solution method can be easily applied to a situation with uncertain generation
as well. We denote the set of buses with uncertainty by U. This set exists of all buses that have

nonzero active power load.

To account for the changes in the amount of power in the system of equalities due to uncertainty,
the amount of generated power needs to be adjusted. However, active power is generated at PV
buses before uncertainty is known (see Section 3.2). This means that the reference bus needs to take
into account the sum of all (i, since this is the only generator bus for which the amount of generated
active power is decided after uncertainty is revealed. Thus, p{ is replaced by p] — > kev Gk in the
power flow equations. This is called a linear corrective control policy and lies within the framework
of Automatic Generation Control (AGC) (Kumar et al. (2005)). AGC is a system to model the

distribution of the power mismatches that occur.

Regarding reactive power, we assume the uncertainty can be expressed as a(; for bus k € U.
We follow the literature here (see e.g. Venzke et al. (2017) and Molzahn and Roald (2018)) by
modeling the reactive power fluctuations via a constant power factor. This power factor is denoted
by cos 6y, in which 0, = tan™! (q,f/pi). The power factor is the ratio of the active power load to
the magnitude of complex power; cos 0 is just one way to calculate this. Again, we follow Venzke

et al. (2017) and Molzahn and Roald (2018) by modeling ay, as follows:

— cog2
v/ 1 — cos? 0 vk e U,

ap —
cos 0y,

and ag = 0 for every bus k € N \ U. All variables qz are state variables, so their value is decided
upon after uncertainty factors in. Therefore, there is no need to take into account all uncertainty

values for reactive power in the reference bus.

Now, we assume that the uncertainty itself comes from an ellipsoidal set described by
Q={¢eR:¢Tu¢ <%, (6)

with a positive definite matrix ¥ and radius r. Since the normal distribution is commonly used

to model uncertainty in load (see for example Verbic and Canizares (2006)), we relate our uncer-
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tainty set to the normal distribution as follows. First, we use the 95th percentile of the normal
distribution as value for r. This means that r = ¢g.95 = 1.645. If ( is normally distributed with
variance-covariance matrix ¥, making one linear constraint robust against uncertainty set (6) with
T = qo.95 is equivalent to enforcing that constraint to hold with at least 95% (Ben-Tal et al. (2009)).
However, as the number of constraints gets big for large instances, the probability that all con-
straints hold simultaneously tends to zero. Raising the value of r to account for this can result in
an overconservative approach, so we choose to use r = 1.645. Second, 3 is the variance-covariance
matrix of a normal distribution. We consider two different scenarios for ¥: with and without cor-

relation.

In the case of no correlation, we define ¥ as a diagonal matrix with the variances of the uncer-
tainty elements on the diagonal, denoted by a,% for bus k. We define the standard deviations by
Op = W - pg for uncertainty (;. Here, the uncertainty factor w determines what proportion of the

load we use to model the uncertainty. The different values used for w are described in Section 7.

In the case of correlation, we define o to be the |Ul|-dimensional vector of standard deviations
0. We generate a |U| x |U| matrix ®, of which every element is drawn from a standard normal
distribution. Then, ®®7 is a symmetric and positive semidefinite matrix. We use this matrix as
variance-covariance matrix, but we rescale it to obtain the correct variances o7 on the diagonal.

This is done as follows:
ol ol
Y = diag <0' © (diag(®®™)) 2) o7 diag (a’ @ (diag(@®™)) 2> :

Here, the operator @ indicates element-wise division and the operator ()O% takes the element-wise
square root of a matrix or vector. The diag(-) operator turns a matrix into a vector of its diagonal,

or it turns a vector into a diagonal matrix.

Now that we know how uncertainty is modeled, we can state the ACOPF model with uncertainty.

This model is formulated in classical ARO form, and is given below:

min Z [eka(p))? + crap] + i) + c1ot? +crat + cip (7a)
keG\{1}
st pp < pf < pp™ Vke G\ {1}  (7b)
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(0?2 < ol < (ufpex)? k€ G

M 2
v’ = (v)
and for each ¢ € €, there exists

{ngkeG, W VEe N\G, vfVkeN\{1}, vl vkeN\{1}, pf{}

such that
Z G —pf — gi"ol" = Z P{+ Z pi
keU\{1} I=(1,m)eL I=(m,1)eL

Pt Ge—pi gt = > w0 vk € G\ {1}
I=(k,m)eL I=(m,k)eL

—pi+G—glot' = Y pl+ D vk € N\ G

I=(k,m)eL I=(m,k)eL
@Al —gi ot = > g+ Y qf Vk e G
I=(k,m)eL I=(m,k)eL

—gi oGt = > g+ Y 4 Vke N\ G
I=(k,m)eL I=(m,k)eL

plf = glvk —q (UZU,TH + Uivfn) + b (vzvfn — vivfn) Vi=(k,m) €L

bS
qlf = (—2 — bl> v, +a (vkv] - Uk > + b <vkv + vkv] ) Vi=(k,m)eL
pl = glq;M —q (vﬁv:n + vivﬁﬁ) + b (vivfn — v,’;vfn) Vi=(k,m)eL

bsh X
g = <_2 _ bz> oM 4 g, <viv ol ) iy (vkv + ol ) Vi=(k,m)eLl

pin < pf <t

™" < qf < g™ Yk e G
)2+ (g ) < (s Vi=(km)eL
®))* + (g)? < (sp)? Vi = (k,m) € L
(o) < o < (o2 ke N\ G
vt = (W) + (v))? vk e N\ {1}.
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In model (7), constraints (7b)-(7g) denote the domain of the control variables; they do not contain
any state variables. The text below that indicates that we want to find a solution to the control
variables such that for all possible values of uncertainty, there exists a solution for the state vari-
ables that satisfies constraints (7h)-(7v). Note that the uncertainty appears only in the power flow
constraints (7h)-(71). Technically, the uncertainty should only appear in these constraints for buses
k € U, but for readability of the model we decided to write it in this way. Note that ¢, = 0 for
ke N\U.

One might also notice that in model (7), an additional variable ¢ is included. This variable is
necessary because in our objective function (7a), the state variable p{ would otherwise occur. Since
we cannot have state variables in the objective function of an ARO formulation, we need to replace
this variable with a control variable. The control variable ¢ represents the worst-case value for pJ
and can be contained in the objective function instead of pj. To see why, note that the objective
is convex and non-decreasing in p{. This is true because all costs Ck,2, Ck,1, Ck,0 are nonnegative and

we assumed p™" to be nonnegative.

The power flow equations (7h)-(71) result in a quadratic system of equalities due to constraints
(Tm)-(7p). Therefore, exact methods to solve model (7) are computationally intractable and we
try to solve the model with an approximate approach. This approach is explained in the following

section.

5 Methodology

5.1 General idea of the approach

In this section, we explain our approach to solving the ACOPF under uncertainty in more detail.
The goal of our method is to obtain a solution for the control variables, such that there exists a
solution for the state variables after uncertainty has contaminated the power system (this solution
for the state variables is obtained by solving the resulting power flow equations when uncertainty
is known). Since we are interested in a solution for the control variables, we want to reformulate
the problem such that it contains only control variables. This would be easy if we had a way to
express the state variables as a function of control variables, since then we could eliminate the state

variables from the problem by substitution. However, there is no explicit analytical form for this
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function, because the power flow equations are nonlinear in the state variables. Therefore, we lin-
earize these power flow equations. We do this by taking first-order Taylor Series approximations of
the equality constraints in certain points of approximation. The intuition behind this is as follows:
the system of equations defines the decision rule for the state variables as an implicit function of
control variables. The first-order Taylor Series approximations of this implicit function closely re-
semble the original function around these points of approximation. For more details on the intuition
and theory behind this, see Kuryatnikova et al. (2021). Since the Taylor Series approximations are
only a good representation of the implicit function in the space around the points of approximation,
we restrict the space in which we search for a better solution to be close to these points (how we
do this exactly is discussed in Section 5.8). We consider multiple points of approximation itera-
tively, instead of simultaneously. For now, consider one point of approximation. As a result of the
linearization in this point, we obtain a linear system of equations that has as many equations as
state variables. Therefore, we can express the state variables as a function of the control variables
and the uncertainty, and we can eliminate the equations and state variables from the problem by
substitution. Consequently, we obtain a standard robust optimization problem with inequalities.
After eliminating the uncertainty from the problem as well, using techniques from robust and convex
optimization, the approximated problem contains only control variables and we solve the resulting
problem. If the power flow equations in the nominal problem are solvable using this solution for
control variables, we obtain a solution that is both nominally feasible and robustly feasible to the
approximated problem. Here we mean robust feasibility of the inequalities in the problem, since
robust feasibility of the original equalities can only be guaranteed for the nominal case. However,
if small enough subsets are used for approximations and the uncertainty set is small, the equalities

become robustly feasible as well, see Kuryatnikova et al. (2021).

As mentioned before, we iteratively consider different points of approximation. When we find a
solution for the control variables and for the state variables by solving the power flow equations
in the nominal problem, we use this solution as the next point of approximation. This way, we

iteratively change the neighbourhood in which we search for a robust solution.
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5.2 Solution procedure

From now on we distinguish the following vector of state variables & and vector of control variables

y: i i
¢ Vked - .
Pl Vke G\ {1}
oM Vke N\ G
U]]CV[ Vk e G
T= |y YN\{1} |» Y= : (8)
: vy
v, YN\ {1}
¢
pi - ]

Note that the line flow variables plf , qlf ,pf, qf do not appear in (8). This is because we substitute
(the linearized versions of) these variables directly into the power flow equations, so the line flow
variables themselves do not appear in the problem anymore. Finally, note that the imaginary part
of the voltage at the reference bus (v{ ) is included in neither « nor y. Remember that this variable
is set to zero by constraint (7f). We included it in model (7) for readability of the model, but from

now on we disregard this variable.

Next we describe the main steps of the suggested algorithm. Later on, Section 5.13 gives details
of the algorithm and Algorithm 1 shows a pseudocode for the final implementation. The proposed
algorithm iteratively considers small subsets of the state variables and linearizes the equality con-
straints over these subsets. We begin with an initial solution (&1,9;1). We also define an initial
small subset Sz, around €1, such that ; € Sz,. The choice for this subset is discussed in Section
5.8. We take first-order Taylor Series approximations in this point. We do these approximations
for the power flow equations (to be precise, we take approximations of the line flow expressions
(7Tm)-(7p) and substitute them in the power flow constraints (7h)-(71)), but also for the nonlinear
voltage constraints (7v), to obtain a linear system of equalities. Then we express « in terms of y and
¢ and we substitute the state variables so that only y and ¢ are left in the problem. Subsequently,
we eliminate ¢ and an equivalent SOCP (or SDP, depending on if the line thermal constraints are
included) with only control variables vy is left. The solution g2 to this problem is robustly feasible
for the approximated problem. The corresponding &, is found by solving the original power flow
equations with y = g9 and ¢ = 0. If this solution exists, we have found an approximately robustly

feasible solution y. Then, we have our next point (&2,9y2) and corresponding small subset Sg,,
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we obtain a new linear approximation in this point, and the steps mentioned above are repeated.
If the decrease in objective value of the approximated problem is less than a prespecified value 6,
we stop the algorithm and we have found a locally optimal approximately robust solution y*. Note
that a solution for the state variables & is needed to linearize the system of equalities in the next
iteration, but does not denote the optimal solution for the state variables for the ACOPF problem

with uncertainty, since this solution depends on the realized uncertainty.

To obtain the initial solution (Z1,y1), we use MATPOWER (Zimmerman et al. (2010)). MAT-
POWER is an open-source MATLAB-based package used for simulation and optimization of power
systems. It contains many instances of power systems; we discuss the instances we use in Section 6.
MATPOWER contains an option ‘runopf’, which finds a (locally) optimal solution to the nominal
ACOPF problem within seconds. The method that MATPOWER uses here, is a primal/dual inte-
rior point method called Matpower Interior Point Solver (MIPS). For more detailed information on
this solver and on MATPOWER in general, we refer to Zimmerman et al. (2010), who provide a
comprehensive manual. We also use MATPOWER to solve the power flow equations once we have
found a solution for the control variables. The option we use for this is called ‘runpf’. The method
that is used to solve the power flow, is Newton’s method (Tinney and Hart (1967), Peschon et al.
(1968)).

To obtain the state variables as a function of the control variables, first we write the line flow
expressions (7m)-(7p) in matrix form in Sections 5.3 until 5.5. In Section 5.6, we take Taylor Series
approximations of these expressions, substitute them in the power flow equations (7h)-(71) and thus
eliminate the line flow variables and their corresponding constraints (7m)-(7p) from the problem.
We derive the expression of x in terms of y and ¢ and we eliminate x from the problem in Section
5.7. In Section 5.8, we explain how we define the small subset around the point of approximation.
In Section 5.9, ¢ is eliminated from the problem. In Section 5.10, we explain how to deal with the
non-convex constraint (7g). We state the full approximated problem in Section 5.11. In Section
5.12, we explain how the line thermal constraints (7s)-(7t) can be included in the model. Finally,

we give a pseudocode of the algorithm in Section 5.13.
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5.3 Line flow expressions for PV and PQ buses

First, we consider the line flow expressions (7m)-(7p) for all branches that are not connected to the
reference bus, meaning that k # 1 and m # 1 for | = (k, m). We can also denote this by [ € L\ L,,
where L, denotes the set of branches connected to the reference bus. We can write constraints

(7Tm)-(7p) in the form

p{:mTWpf:c—i-wgf:c—kzzfy Vi=(k,m)e L\ L,
l l l

q = e'Wetwha+zhy V= (km)eL\L
4 l !

pi=a"Wyztwhe+ziy V= (km)eL\L,

t

g =" Wya + w;’l;:c + z;f;y vl = (k,m) € L\ L,.

Here, Wpf , qu, Wp;, quf, are large symmetric matrices which exist of only zeros, except for at most
l 1

eight elements in each matrix. In Table 2, the indices of these elements are indicated, together with

the corresponding values in W. For example, the index pair (vj,v},) implies the entry in W that

corresponds to the indices of v; and vy, in x.

Table 2: Index pairs and corresponding values for matrices W in (9).

Index pair | W 5 value | W ; value | W value | W _: value
p q Py q;
1 A
(v, Umn) —q1/2 bi/2 —aqi/2 bi/2
(v}, V) bi/2 91/2 —by/2 —q1/2
Whor) | b2 | —a2 | b2 91/2
(V1. Un) —g1/2 bi/2 —qi1/2 bi/2

Here, the values g; and b; denote the conductance and susceptance of branch [, respectively (see
Table 1). Note that in Table 2, if an index pair implies that entry (4, 7) has a certain value, it also

implies that entry (j,4) in the matrix W has that value, since the matrices are symmetric.

5.4 Line flow expressions for reference bus

In the more specific case when either k or m denotes the reference bus, constraints (7m)-(7p) cannot

be written in the same form as (9). This is because v] is not a state variable but a control variable.
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Constraints (7m)-(7p) can be written as follows:

f_

D =2t Wy +whiz + 25y Vi=(k,m) € L,
P Dy P

qlf = :L'Tqufy —|—wa:c + zzcy Vi=(k,m) € L,
l l

pi= azTWpfy + wz}%:c + z;;ty Vi = (k,m) € L,

gt = azTWq;y + 'wgzt:n + zglly Vi = (k,m) € L,.

The difference between (9) and (10) is that in the case of the reference bus, the line flow expressions
contain a product of state variables with a control variable. When defining the matrices W, we end
up with matrices that have at most two non-zero elements, instead of eight. This is because v{ =0
and is thus not a variable in @ nor y, together with the fact that the matrices W in (10) are not
symmetric anymore. Below, the specifications for W are given for the case when k = 1 and when

m=1inl=(k,m) € L,:

Table 3: Index pairs and corresponding values for matrices W in (10).

Index pair Wpf value qu value ng value qus value
A A
L=(1,m) (vp,v]) —3i by —q by
(U, v]) by i —b; —qi
l= (k;’ 1) (U]Za ’U{) —gi bl —4g1 bl
(v, 07) — —q1 by g1

5.5 Linear parts of line flow expressions for all buses

Until this point, we have only defined the matrices W in (9) and (10), but we still have to specify
the vectors w and z in these expressions. These specifications depend only on whether the voltage
magnitude in the expression is a state variable (in the case of PQ buses) or a control variable (in
the case of PV buses and the reference bus). This means we don’t have to treat the specific case of

the reference bus differently from other generator buses. Thus, the values of the vectors w and z
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differ depending on whether bus k in [ = (k,m) is a generator or a non-generator bus:

bsh T
— T — _ — — _
’U)plf = [...,gl, ] 7waf = |:, 9 by, :| , zplf = quf =0 V= (k:,m) eL, ke N\G
bsh T
— T — o — — —
Zp{ = [...,gl, ] , quf = |:, 5 by, :| , ’u]plf = ’waf =0 V= (k‘,m) el, keG
r o' !
Wy = [y g1y ] Wy = [, 5 bl,...] oz =2z =0 V= (k,m)e L, meN\G
bsh T
pr = [...,gl, ..,]T’ zqu = |:,—l2 — bl, :| s ’LUpf = ’u)qlt =0 V= (k‘,m) S L, m € G.

In the top line here, the index of the only possibly non-zero element in both vectors w corresponds
to the index of U]]c\/[ in . In the second line, the index of the possibly non-zero element in both
vectors z corresponds to the index of v,]g\/[ in y. In the third line, it corresponds to the index of v}/

in x. In the last one it corresponds to the index of v in y.

5.6 Linearizing the system of equalities

Now that we wrote the line flow expressions in matrix form, we can start linearizing them. We can

write constraints (9) in a general form as follows:
Fiz,y) =z Wa+wlz+ 2Ty

We can take the first-order Taylor Series of F(x,y) in a certain point of approximation & (we do

not need g since there are no nonlinearities in y here) as follows:
Ty(2) = 28" W +w") z — 2" Wz + 2" y. (11)

Now, remember that for the reference bus, the line flow variables could only be written in the form

(10). These can be written in a general form as follows:
Fy=(z,y) = Wy+wlz+ 2Ty
The first-order Taylor Series of Fy(x,y) in the point of approximation (&,y) is as follows:

To(z,9) = ("W +wh)z+ ("W +2")y —2"Wy. (12)
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We denote by Tplf,Tpf, quf,qut the first-order Taylor Series of the line flow variables plf ,pf,qlf .qr

They are of the form (11) if [ € L\ L,, and they are of the form (12) if { € L,. If we substitute
the line flow variables by these first-order Taylor Series and substitute those in the power flow
equations (7h)-(71), we get a linear system of equalities in terms of all state variables. For example,

for a certain bus k € G\ {1}, constraint (7i) becomes the following:

g d sh, M __ T T T
P+ Ck— Pk — gk v = Z wf+ Z wy| T+ Z Zp{+ Zpt| Y
I=(k,m)eL I=(m,k)eL I=(k,m)eL I=(m,k)eL
T
(Y we T wle
I=(k,m)EL\ L, I=(m,k)€L\ Ly,
e 2 vy ow)e
L I=(k,m)EL, I=(m,k)EL, ]
el s e 5wl
L =(k,m)EL, I=(m,k)EL,
T .
(Y e Y wy)e
I=(k,m)eL\L, I=(m,k)EL\L,
T .
I=(k,m)eL, I=(m,k)eL,

Similar expressions can be derived for the remaining power flow equations. Note that the left-hand
side of this constraint is also a linear expression. Then, the active power flow equations (7h)-(7j)

can all be rewritten in the form

Vok® T AL Y + Vg 6+ rpr =0 Vk € N. (13)
In a similar matter, we can write the reactive power flow equations (7k) and (71) as follows:

Vor® + ALY + 6+ kg =0 Vk€N. (14)

Note that the specifications for v, A, ¥ and x differ depending on which bus they apply to, and

whether they concern the active or reactive power flow equations.

Now, we also have to deal with the nonlinear equality constraint (7v), which is v} = (v)2 + (vi)2
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for all k € N\ {1}. This is a quadratic equality constraint containing state variables. Therefore,
we also need to take the first-order Taylor Series of this expression. After linearizing the right side

of (7v), we end up with the following constraint:
M = 2¢70f + 2000l — (0F)2 — (0)* Vke N\ {1
U, ORvk + 2030, — ()7 — (0) e N\ {1},

which can be added to our linear system of equalities. The right-hand side of this expression contains

only state variables, but v,]c\/[ can be a control variable as well. Therefore, we rewrite this as follows:
Yoo+ ALy + ko =0 Vke N\ {1} (15)

Finally, we can write (13)-(15) in matrix form:
Il'e + Ay +9¥¢(+k=0. (16)

Note that there is one equality constraint from the original problem (7) that is not contained in
(16): vM = (v})?. This is a non-convex constraint including two control variables. We discuss how

to deal with this constraint in Section 5.10.

5.7 Eliminating the state variables

Now that we have a linear expression in all state variables, if we have a certain point of approximation
(£,9), we can isolate the vector  as follows. From (16) it holds that # = —I'~! [Ay + ¥(¢ + ]. If

we denote A := —I'"'A, B := —T~'¥ and ¢ := —I'"'k, we obtain the following form:
x=Ay+B(+ec. (17)

Note that I' is indeed a square matrix, since its number of rows is the number of constraints in
(13)-(15), which is 3| N| — 1. The number of columns is equal to the dimension of @, which is also
3|N| — 1, as can be seen in (8). We assume that I' is full rank so that it is invertible. This is a
reasonable assumption, because no cross-products between the same two state variables occur in
different constraints. Now, what we want to do with expression (17), is to substitute it in every
inequality constraint that contains state variables. Those constraints can be summarized in a vector

g, for which it holds that g; > 0 for every element i. We denote the dimension of g by m;,; this
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denotes the number of inequality constraints involving state variables. For now, we disregard the
line thermal limits (7s)-(7t), so that all our inequality constraints are linear in . They can be
added to the model later as they are not always needed. We discuss this in Section 5.12. As a
result, g is as follows:

(vmax)2 — M vE e N\ G

oM — (v vE e N\ G

t—pf
g(x) = >0 (18)
p{ —
e —qf vk e G
ql — grin Yk € G

Now, since we have an explicit linearized expression for the vector of state variables given by (17), we
can substitute every state variable in g by a linear expression defined in (17). This way, we eliminate
all state variables in the system, and we have an explicit way of describing the full linearized ACOPF
problem with uncertainty, in terms of y and ¢ only. Before we explain how to eliminate uncertainty
from the problem, we explain how we include in our model the fact that we search in a small space

around our point of approximation.

5.8 Searching in a small subset of the feasible space

Now, we need to make sure that the solution to the linearized problem is close to our point of
approximation (&,y). This is because the approximations closely resemble the original system
of equalities around this point. For points farther away from the point of approximation, the
approximations become worse. How to do this in the best way, is not exactly obvious. Kuryatnikova
et al. (2021) do this by restricting the state variables x to be close to &, but no explicit restrictions
for searching in a small space around g are included in the model. As they mention, their method
is therefore most efficient if all equality constraints are separable in @ and y. The ACOPF problem
as we state it contains mostly products of state variables. Only for branches connected to the
reference bus, the system of equalities contains products of  and y. Since the vast majority of
all equality constraints are separable in & and y, we choose to follow Kuryatnikova et al. (2021)
and only restrict the feasible space of the state variables. The small area around & in which we

search for a better solution, can be described by ||z — @|| < ¢, for which a suitable norm and value
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for € must be chosen. For now we choose to use the Euclidean norm. Using this norm, we get
||z — &||2 < e. Of course, the state variables need to be eliminated to include these constraints in
our model. Here, we choose to substitute x by its nominal linear expression = Ay + ¢, so we get
||Ay + ¢ — &||2 < e. This is equivalent to the constraint

yTATAy 4+ 2(c —2)T Ay + (c — &))" (c — &) < 2 (19)

This is a convex quadratic constraint and can easily be added to the problem. One can of course
consider to include ¢ in the substitution of &. However, the constraint then turns into an SDP con-
straint when ¢ is eliminated from the problem, which is what we try to avoid as much as possible

for computational efficiency.

Instead of the Euclidean norm, other norms can be chosen as well, such as the infinity norm.
Appendix A.1 discusses how to include the latter in the model of the approximated problem.
5.9 Eliminating uncertainty

The next step is to eliminate the uncertainty in the problem so that only the control variables are

left. We assume uncertainty comes from an ellipsoidal set (6), with ¥ a positive definite matrix.

1
X2 0
This can be rewritten as Q = {¢ € RIVI ”E_%CHQ < r}. If we define M := and m := )
o’ T
we can also rewrite the uncertainty set as a conic set as follows:
Q={¢eRV: M¢+me gl (20)

where £ is the second-order cone.

Since we do not consider the line thermal limits for now, the function g; > 0 in (18) is a lin-

ear function in both ¢ and y, and can be written in the following general form:
9i(y,¢) = (@) y+ )¢+ >0 VCeQ i=1,...mip.

Note that coefficients a?, b* and ¢! are not equal to the rows of A, B and ¢ in expression (17), but

they can be derived easily from (17) and (18). By conic duality this constraint is equivalent to there
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existing a certain z, y for which:

—ml2 + (a)Ty+ >0

Zi c £|U|+1
forall i =1,...,m;,. The proof for this is given in Appendix B. For more details on conic duality,

see Ben-Tal et al. (2009). Of course, we also need to consider the domain of the control variables,

which is summarized as follows:

PR —pp  Yke G\ {1}
pi —pgﬁn Vk e G\ {1}

max __ 4

by
(vpaxy2 — M Vke G

oM — (pmin)2 Vk e G

This corresponds to constraints (7b)-(7e) in model (7). At this point, we have eliminated the state
variables and the uncertainty from the problem. Before we state the full reformulated problem, we

first need to discuss how to deal with constraint (7g): vM = (v])2,

5.10 Dealing with the voltage at the reference bus

. 2 . . e
We need to replace the non-convex constraint v} = (v7)* with some convex inequalities. Therefore,

we add the following constraints:

ol > (0])?
of > ot (23)

- ’U{W _|_Uinlnvinax

min max
v+ vy
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First of all, we can add v} > (v7)? since this is convex. The second and third constraint in (23)
are modeled to push (v7)® up towards v}/. The second constraint holds because we restricted v}
to be positive. The third expression follows from the McCormick envelopes (McCormick (1976))
of vM = (v7)?. Especially the third constraint in (23) provides a good bound if the range of
the voltage magnitude is not too wide. In almost every case we consider, the range of voltage
magnitudes is not wider than 0.9 to 1.1, so these constraints indeed provide good bounds. Hence,
in our results, constraints (23) are sufficient to push (v{")2 to the exact same value as v}. However,

if one encounters a problem with wider voltage magnitude ranges and the previous constraints are

not sufficient, one can also implement one of the two options described in Appendix A.2.

5.11 Stating the reformulated problem

In Sections 5.3 until 5.10, we have linearized the power flow equations and eliminated the state
variables and the uncertainty from the problem. This results in constraints (19) and (21)-(23). The

problem that is left can then be formulated as:

min Z (ko (p))? + crap] + i + 1ot +crat + cip (24a)
keG\{1}

st. —mIzt+ (a)Ty+ >0 i=1,...mp (24b
MT2t = b i=1,...min (24c
2t e glUltt i=1,...mipn (24d

)

)

)
h(y) =0 (24e)
y AT Ay +2(c — &) Ay + (c — )T (c — @) < & (24f)
oM > (o) )
v > ot )
pM | ging max

v .
of > 1 L (24i)
,Uinln U{nax

Problem (24) is a second-order conic programming problem. Note that problem (24) is solved for
each point of approximation we consider. The coefficients of problem (24) are different at every
iteration of our algorithm (see Section 5.13 for the pseudocode), due to the fact that the point of

approximation (&, y) differs per iteration.
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5.12 Including the line thermal limits

Up until now, we have excluded the constraints on the line thermal limits (7s)-(7t). In many
instances this is fine, since the line flow variables plf , qlf .pl, g} in these constraints depend highly on
the voltages, which themselves are already strictly constrained by the voltage limits. However, it
might still turn out that the solution to the approximated problem results in a power flow which
is infeasible due to violations of the line thermal limits. In that case, it could help to add those
constraints to the problem. When this is necessary, we replace plf ,qlf .pl, g by their Taylor Series
approximations Tplf,quf, Tt Ty, so we obtain (Tplf)2+(quf)2 < (sfna")2 and (Tp§)2—|—(Tqu)2 < (sfnax)2
for every [ € L for which we want to model the line thermal constraints. Each Taylor Series
approximation can be formulated as a linear expression in ® and y. Substituting x by its linear
form (17), the Taylor Series can be expressed linearly in y and . Squaring these expressions and

adding them up, we obtain a quadratic form. For a given branch [, this quadratic form can generally

be written as follows:
a(y,¢) =yT Ay +¢TBiIC+yTCi¢ + (a)Ty + (B) ¢+ — (sP)? <0 V¢ e (25)

That is, both (Tplf)2 + (quf)2 < (S?“‘E‘X)2 and (Tpf)2 + (qut)2 < (s{“ax)2 can be written in the general
quadratic form (25). To improve readability, we leave the subscript f or ¢ out of the derivations
below, but it must be kept in mind that constraint (25) should be modeled for both the from-end
and the to-end of a branch. To see what the coefficients in constraints (25) exactly are, we refer
to Appendix C, in which full derivations for these are given. Now, because this is a quadratic
expression in ¢, and the uncertainty set () can be written as a quadratic constraint too, the well-
known S-Lemma can be used to obtain an equivalent expression for (25), in which the uncertainty

is eliminated.

Theorem 1 (S-Lemma (Yakubovich (1971))). Let f(x) and g(x) be quadratic polynomials in x
and suppose there exists an x € R™ such that f(x) < 0. Then the following two statements are

equivalent:

(1) g(x) <0 for all x € R™ such that f(x) <0

(2) 3u >0 such that g(x) — pf(x) <0 for all z € R™.

To use S-Lemma, we write Q = {¢ € RVl : ¢T8=1¢ — 2 < 0}, which is equivalent to uncertainty
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set (6). However, we see now that the uncertainty set can be described as the domain of ¢ for which
a certain quadratic function is less than or equal to zero. Since g;(y, €) is also a quadratic function

of ¢, we can use S-Lemma. Via S-Lemma, we know that the following holds:

For ¢ = 0, it holds that (TX~1¢ — r2 < 0. Then, the following two statements are equivalent:

(1) gi(y,¢) <0 for all ¢ € RIYI such that ¢FE71¢ —r2 <0 26)
26
(2)  Jp > 0 such that gi(y, ) — w(¢TE71¢ —2) <0 for all ¢ € RIY.
That is, if we want the first statement to hold (which is our goal here), it is sufficient to make sure

the second statement holds. From the second statement in (26), we can derive an equivalent SDP

constraint, that can be stated as follows:

ulE_l — Bl —% ((C[)T Y+ bl) T
=0, m=>0, y=y Ay. (27)

—3 ('!JTCZ + (bl)T> (s2)? —(ar)" y — ¢ — wr? —

The proof that (27) is equivalent to the second statement in (26), is given in Appendix D. The
problem of constraints (27) is that we cannot add the constraint v; = y? Ay, since it is not a

convex constraint. However, if v, > y” Ay, the following holds:

2 T 2 T
(7 = (@) y = — mr® = > 0= (57 — (@) y — — ur® —y" Ay > 0.
Therefore, the constraint v; > y” Ay is sufficient to enforce the matrix in (27) to be positive
semidefinite. Moreover, the constraint v; > y? A;y is convex, because A4; is a positive semidefinite
matrix (it is the sum of two outer products of a vector with itself (see Appendix C)). Therefore, we

replace constraints (27) by the following constraints:

wEt - B -5 ((CI)T y+ bl) T
i 07 i 2 07 14 Z Yy Aly (28)

-1 <yTC'l + (bl)T> (si2)? — (ar)" y — o — wr? —

Constraints (28) are added to problem (24) for every branch [ for which one wants to explicitly
model the line thermal limits in the approximated problem. This can be all branches [ € L, but to

reduce the computational burden, one can also investigate which branches cause the most trouble
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and add constraints (28) only for those branches. Note that constraints (28) need to be added for
both the from-end and the to-end of the branch.
5.13 Pseudocode of the algorithm

Finally, we have discussed all relevant steps to solve the ACOPF problem with uncertainty. Here,

a pseudocode of the full algorithm is given.

Algorithm 1

Input: Initial solution (£1,91), fo = 10%°, f1 = 10!, § = 1075, a value for &, uncertainty factor
w, radius r, variance-covariance matrix X, set of buses with uncertainty U, set of branches L’
for which line thermal constraints need to be included in the model.

Output: y*

12+ 1

2: Y* +— 11

3 ff ¢ o0

4: while f; +4§ < f;_1 do

5: 14— 1+1

6: 6(—\/H£,,;_1H2/€,

7: Determine I', A, ¥, k in expression (16) via linear approximations.

8: Determine A, B, ¢ in expression (17).

9: Add constraints (28) to problem (24) for both the from-end and to-end of branches in L'.

10 Determine the coefficients of problem (24).
11: Solve the approximated problem (24).
12: if problem (24) is feasible then

13: Obtain its solution ;.

14: Obtain its objective value f;.

15: if fz > fi—l then

16: break

17: end if

18: Obtain the solution &; to the power flow equations with y = ¢; by using ‘runpf’.
19: if &; exists and (&;,9;) is feasible for the operational constraints (1h)-(11) then
20: y* — gl

21: f* — fl

22: else

23: fi o0

24: end if

25: else

26: fz — 00

27: end if
28: end while

Note that in Algorithm 1, we denote by L’ the set of branches for which we include the line thermal

constraints (28). Since we only include those constraints when it is necessary, this set can be empty
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as well. This is often the case in our results.

If Algorithm 1 finds a solution y* with f* # oo, it is guaranteed to be feasible for the nominal
ACOPF problem. That is, when we substitute y = y* in problem (1), the solution for the power
flow equations is feasible. The solution y™* is also robustly feasible to the approximated problem
that is solved in the last iteration. If Algorithm 1 stops with f* = oo, either it could not find a
feasible solution to the approximated problem, or it found a solution to the approximated problem

that was not feasible for the nominal problem.
Proposition 1. Algorithm 1 stops after a finite number of iterations.

Proof. Note that while the problem changes every iteration, the objective function does not. There
exists a lower bound on this quadratic (or linear) objective function, since all costs ¢y 2,c;1 and
¢k, are real numbers and variables p} (and t) are defined on a closed interval. Every iteration of
Algorithm 1, the objective value decreases with more than §, otherwise we stop. Since § > 0, we

reach the lower bound of the objective function in a finite number of iterations.

Now, the choice for & in Algorithm 1 is not trivial. The value of €’ is a reflection of the trade-off
between finer approximations and a larger searching space for a robust solution. The latter also
indicates that we do a local search, which is a limitation of Algorithm 1. If, for example, the solu-
tion with the best possible objective value is far away from the initial solution, Algorithm 1 cannot

guarantee to find the solution with the best objective value.

6 Data

To evaluate the performance of Algorithm 1, we use data from MATPOWER (Zimmerman et al.
(2010)). MATPOWER contains a wide variety of instances that represent power systems, ranging
from instances with 3 buses up to instances with more than 10,000 buses. To have a sufficient number
of test cases for our solution method, we choose to use nine different MATPOWER instances.
These instances are: ‘case6ww’, ‘case9’, ‘casel4’, ‘case30’, ‘cased9’, ‘caseb7’, ‘casell8’, ‘case300’
and ‘casel3bdpegase (adjusted)’. The number contained in the name of each instance denotes the
number of buses in that instance. We adjusted ‘casel354pegase’ by removing the line thermal
limits from that instance, because the solution that we obtained violated those limits. We could

have included the line thermal constraints (28), but for this instance the runtime would be too high.
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Table 4: Summary statistics of nine MATPOWER instances.

Instance Buses Nonzero loads Generators Branches Thermal limits Nom. cost ($/hr)
caseb6ww 6 3 3 11 Yes 3,144
case9 9 3 3 6 Yes 5,297
casel4 14 11 5 20 No 8,080
case30 30 20 6 41 Yes 577
case39 39 21 10 46 Yes 41,869
caseb7 57 42 7 80 No 41,738
casell8 118 99 54 186 No 129,640
case300 300 199 69 411 No 719,725
casel354pegase (adj.) | 1354 673 260 1991 No 74,015

In Table 4, a summary of the nine instances is given. We report the number of buses, nonzero loads
(which equals the dimension of the uncertainty), generators and branches. Furthermore, we indicate
whether an instance has line thermal limits or not. Four out of nine instances have thermal limits.
Finally, we report the operational cost of the nominal solution in dollars per hour. This value is

found using the option ‘runopf’ in MATPOWER.

7 Results of computing robustly feasible solutions

7.1 Results for all instances

In this section, we show the results of Algorithm 1 for the nine different MATPOWER, instances.
We implement our algorithm in MATLAB R2021b, on an Intel® Core™ i5-10500 CPU @ 3.10GHz
with 16 GB RAM. To solve the approximated problem (24), we use CVX, version 2.2 (Grant and
Boyd (2008), Grant and Boyd (2014)). We use the default solver of CVX, which is SDPT3, version 4
(Toh et al. (1999), Tiitiincii et al. (2003)). We run Algorithm 1 with » = 1.645 in the uncertainty set
(6), as mentioned in Section 4. We let ¢’ = 10 for instances up to 100 buses and ¢ = 100 for larger
instances, since the Euclidean norm of & gets bigger for larger instances. We shrink the bounds of
each MATPOWER case by 0.5% for all variables. This includes shrinking the line thermal limits.
Using the ‘runopf’ option in MATPOWER, we find the initial solution (&1, ¢1) to the problem with
these shrunk bounds. We do this to obtain an already somewhat robust solution. We also use these
shrunk bounds in our approximated problem, to avoid problems with binding inequality constraints
in the approximated problem. That is, if a solution is found based on inequality constraints that

are binding, but our approximation was slightly off, then it might be that in the original problem
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the solution slightly violates the bound of that constraint for certain values of uncertainty. By
shrinking the bounds we try to avoid such an issue. For checking if an obtained solution is feasible
for the original problem, naturally we use the original bounds. For some cases, an initial solution
to the problem is not possible when the bounds are shrunk. We report the instances for which
this is the case, and use the original bounds there. Finally, for most instances we do not include
the constraints on the line thermal limits in the approximated problem. Whenever the obtained

solution violates these limits, we include them. Again, we report whenever this is the case.

In Table 5, for each considered instance the results of running Algorithm 1 are given for differ-
ent levels of uncertainty. In all cases, we start with 1% uncertainty in the load (corresponding to
w = 0.01 in the definition of ¥ given in Section 4), and increase the level of uncertainty to a maxi-
mum of 50% of the load. In many cases this level of uncertainty is infeasible for the approximated
problem; for those cases the results are presented up to the maximum level of uncertainty that is
still feasible. Only for ‘case300’, the minimum level of 1% uncertainty is not feasible, so for that
instance we report the results for 0.1% uncertainty. The results in Table 5 include the objective
value when our robust solution y* is substituted in the nominal ACOPF problem and the power
flow equations are solved. It also includes the percentage increase in objective value, compared to
the nominal solution given in Table 4. This indicates the difference in cost in the situation of no
uncertainty. Furthermore, we give the runtime per iteration and the number of iterations. The
runtime of one iteration is the time Algorithm 1 spends in one while loop. Finally, we give results

with and without correlation between uncertainty in loads.

Before discussing the main results, it is relevant to list the instances for which either the bounds
could not be used shrunk, or in which the line thermal constraints turned out to be necessary to

include:
e ‘case6ww’: Line thermal constraints are necessary, shrinking bounds is not possible.
e ‘case30’: Line thermal constraints are necessary.
e ‘caseb7’: Shrinking bounds by 0.5% is not possible; bounds are shrunk by 0.1%.

The main findings of running Algorithm 1 are listed below.
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Main results of running Algorithm 1:

e The maximum amount of uncertainty varies a lot between instances. For the larger instances,
only small amounts of uncertainty (no more than 5% of the load) are feasible, but there are

also some smaller instances for which this is the case.

e For larger instances the runtime drastically increases when 3 is considered with correlation

compared to no correlation.

e The operational cost increase for our approximately robust solution compared to the nominal
solution is marginal. Most cost increases are below 0.1%, and the maximum increase in cost

is 0.71%.

e For most instances, the objective value for the nominal problem stays relatively the same or
increases only slightly throughout different levels of uncertainty. This means that the cost
for setting up a more (approximately) robust solution does not increase that much in the

situation of no uncertainty.

e The instances for which the line thermal constraints are included, both allow only 1% uncer-

tainty.

Now we discuss the results in Table 5 in more detail. We first notice that the maximum amount
of uncertainty for which our algorithm could find a solution to the approximated problem, varies a
lot throughout the instances. For ‘case9’, ‘casel4’ and ‘case39’, 10% uncertainty or more is feasible,
but for the other six cases, approximately robust feasibility can only be achieved at lower levels of
uncertainty. Those six instances include the four largest cases, but also two smaller cases: ‘case6ww’
and ‘case30’. These are the same two cases in which line thermal limits need to be enforced. We
think that the little flexibility of these two instances causes both the robust infeasibility for even
small amounts of uncertainty, as well as the need for line themal constraints. We discuss these cases

more in-depth in Section 7.2.

Now, to discuss some results that occur within specific cases, we take a look at ‘case9’ (with-
out correlation) first, since it has results for a lot of different uncertainty levels. It can be seen that
when uncertainty increases, the objective value of our solution in the situation of no uncertainty
seems to stay relatively similar. This means that more approximately robust solutions do not nec-

essarily result in much higher costs for the nominal ACOPF problem. This can be an important
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Table 5: Results of Algorithm 1 for all nine instances, with and without correlation.

Without correlation With correlation

Uncertainty | Obj. val. Diff. with Time per Number of | Obj. val. Diff. with Time per Number of
(% of load) | ($/hr) nom. (%) iter. (sec.) iterations | ($/hr) mnom. (%) iter. (sec.) iterations

casebww
1% \ 3,153 0.29 1.5 2 \ 3,153 0.29 1.3 2
case9
1% 5,208 0.02 0.6 2 5,208 0.02 0.6 2
5% 5,298 0.02 0.6 2 5,298 0.02 0.6 2
10% 5,298 0.02 0.6 2 5,298 0.02 0.6 2
20% 5,309 0.23 0.6 5 5,208 0.02 0.6 2
30% 5,299 0.04 0.6 2 5,325 0.53 0.6 3
40% 5,300 0.06 0.6 2 5,299 0.04 0.6 2
50% 5,301 0.08 0.6 2 5,303 0.12 0.6 2
caseld
1% 8,096 0.20 0.7 3 8,088 0.10 0.8 4
5% 8,087 0.09 0.7 4 8,087 0.09 0.8 4
10% 8,086 0.07 0.7 4 8,086 0.07 0.8 4
case30
1% \ 581 0.71 7.2 2 581F 0.71 8.5 2
case39
1% 41,898 0.07 1.1 4 41,898 0.07 1.3 4
5% 41,900 0.07 1.1 5 41,900 0.07 1.2 5
10% 41,904 0.08 1.1 5 41,902 0.08 1.2 3
20% 41,933F 0.15 1.1 2 41,920 0.12 1.3 2
casebH7*

1% 41,756 0.04 1.4 2 41,753 0.04 9.5 3
5% 41,758 0.05 1.4 3 41,758 0.05 9.4 3
casell8
1% 129,699 0.05 3.4 8 129,699 0.05 38.8 8
5% 129,723 0.06 3.4 8 129,723 0.06 38.0 8
case300*

0.1% \ 723,042 0.46 16.7 2 \ 723,0281 0.46 588.0 3

casel3b4pegase (adjusted)

1% \74,032 0.02 1084.9 1f \ B - B B

* Tap ratios are unchanged for ‘case57’ and ‘case300’, otherwise a nominal solution could not be obtained. For
all other instances tap ratios are set equal to one, which is equivalent to excluding them from the model.

t Solution is obtained by continuing with ‘Inaccurate/Solved’ status of CVX. This comes down to constraint
(24f) being slightly relaxed by CVX. Otherwise, a solution could not be found.

¥ Algorithm 1 is stopped after one iteration due to the potentially high computation time of multiple iterations.
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factor of consideration when one wants to make a trade-off between operational cost and robustness.
From Table 5, we can even see that a lower cost can be obtained for a higher level of uncertainty.
For example, the rise from 20% to 30% uncertainty, sees a decrease in objective value: from 5309 to
5299. This seems counterintuitive: if the solution is robust against 30% uncertainty, and it is less
costly than the robust solution against 20% uncertainty, it seems subobtimal to ever use the latter
solution. The reason this can occur, is because our algorithm finds a solution to an approximated
problem. When uncertainty levels differ, the approximated problem differs too. Moreover, when

the algorithm runs for multiple iterations, the space in which it searches for a solution changes too.

Now we look more into the time it takes for Algorithm 1 to find a solution. First of all, there
is no difference in runtime between different levels of uncertainty. Second, for instances up to 118
buses the algorithm runs very fast, both with and without correlation in uncertainty. However,
for ‘case300’ the difference between correlation and no correlation in terms of computation time
becomes really clear. Running ‘case300’ without correlation takes 16.7 seconds per iteration, while
running it with correlation takes 588.0 seconds per iteration: that is more than 35 times longer.
Third, the runtime is in general much lower when the line thermal constraints are not added to
the model. For ‘case6ww’ and ‘case3(’, it is necessary to include them. This results in the ap-
proximated problem becoming an SDP problem, which is reflected in the computation time. For
example, ‘case30’ without correlation needs 7.2 seconds for an iteration, while ‘case39’ needs only
1.1 seconds, even though the latter contains more buses with nonzero load. Finally, the largest
instance, ‘casel3b4pegase’ needs 1084.9 seconds for an iteration, which is more than 18 minutes.
It must be said that approximately 75% of this runtime is devoted to CVX setting up the model.
Specifically, it takes the most time to model constraint (24d), which comes down to specifying that
2710 vectors belong to the second-order cone with dimension 673. While this is not desirable, it does
mean that the runtime can potentially be decreased here: the model construction can be done only
once so that only some numbers need to be adjusted for a new iteration or a new uncertainty level.
The optimization part, however, needs to fully run every time. The generally higher computation
time for the situation in which uncertainty is correlated, together with the high runtime for this

instance, is the reason we do not consider ‘casel3b54pegase’ with correlation.
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7.2 Analysis of ‘case6ww’ and ‘case30’

As stated before, for ‘case6ww’ and ‘case30’ Algorithm 1 is not able to find a feasible solution for
the approximated problem for any uncertainty level higher than 1% of the load. This is remarkable,
because they are relatively small instances. For both these instances it is also necessary to explic-
itly include the line thermal constraints (28) in the approximated problem, otherwise the obtained
solution is not feasible for the nominal ACOPF problem. It could of course be that this is not a

coincidence.

First of all, it could be that these approximated line thermal constraints are bad approximations.
Of course, the terms Tplf,T qlf,Tp}f,T ot contain a certain error, since they are linearized versions of
pl.ql,pl,q. By modelling (Tplf)2 + (quf)2 < (s")? and (TP?)2 + (quz)2 < (s"®)? the squared
terms increase the error, which causes the approximations to be worse. However, if we also include
these constraints when solving ‘case9’ and ‘case39’ (the other cases do not have any line thermal
limits), the algorithm finds a solution, even for the highest uncertainty levels of those cases (for

‘case39’ at 20% uncertainty, this requires the value for & to be changed, see Section 8.3). This

indicates that the SDP approximations of the line thermal constraints are not necessarily bad.

It could also be that the underlying factor that leads to the line thermal constraints being nec-
essary to model, is the same driving factor that causes the problem to be infeasible for higher
uncertainty levels than 1%. For both ‘case30’ and ‘case6ww’, the optimal solution to the nominal
ACOPF problem has binding line thermal limits. That is, for some branches, the optimal value of
constraints (1j)-(1k) takes on its limit. These are the only instances for which this is the case. If
a solution for these cases is pushed towards these limits to achieve feasibility, then the instance at
hand has little flexibility, which could be a problem for robust analysis. Of course, binding con-
straints can also be binding to achieve optimality instead of feasibility, in which case the problem at
hand can still be flexible enough. However, in these cases feasibility seems to be the bigger factor.
Comparing the average line thermal limit s;"**, expressed in megavolt-ampere (MVA), we get that
this is a much lower value for ‘case6ww’ and ‘case30’ (48 MVA, 52 MVA), than for ‘case9’ and
‘case39’ (233 MVA, 734 MVA).

Lastly, ‘case6bww’ can also be considered a special case since the voltage magnitudes of the gen-
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erator buses are all fixed. Those equality constraints on the voltages can lead to the problem at
hand being unsuitable for robust analysis. When designing a power system, one should therefore
make sure that there is some inherent robustness to the system. Otherwise, a similar situation
might occur in practice, which is undesirable. We note that ‘case6ww’ is a specially made example
case from Wood and Wollenberg (1996) and that real-life power systems often have some level of
inherent robustness. If a situation like ‘case6ww’ does occur in practice, one should be additionally

careful and try to prevent mismatches in the system even more than in systems with more flexibility.

8 Performance of solutions under simulated uncertainty

8.1 Simulation setup

In this section, a simulation study is performed to evaluate how our obtained solution performs
when uncertainty is realized. Nominal feasibility is ensured by Algorithm 1, but we are of course
especially interested in whether the solution is also feasible when uncertainty is realized. For an
obtained solution y* to be feasible after uncertainty is known, a solution to the power flow equations
with the realized uncertainty should exist, and this solution should be feasible for the operational
inequality constraints as well. Now, we have two different ways of sampling the uncertainty. One of
them is sampling only points that are within our ellipsoid 2 defined by (6), which is what we tried
to be robust against. To sample points uniformly from the ellipsoid, we use a method proposed
by Dezert and Musso (2001). To implement their method, we use the code they provide in their
paper. The other method of sampling is to use the variance-covariance matrix ¥ and sample using a
normal distribution with mean zero and variance-covariance matrix 3. We use this second method
of sampling as well, since this distribution is related to how we constructed €2 in the first place.
Now, the sampling method makes a lot of difference, especially when the dimension of ¢ increases.
For example, if the dimension of ¢ is 10 (relatively small), then ¢7X71¢ ~ X3o if ¢ follows the
multivariate normal distribution with variance-covariance matrix X. If we use our radius r = 1.645,

then points generated by this normal distribution are inside our ellipsoid with probability:
P({TSTI¢ <1?) = Fp (%) = Fya (2.7) = 0.0124.

That is, with this relatively small dimension, less than two percent of sampled points lie within the

ellipsoid that we wanted to be robust against. However, it is still interesting to see how our method
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performs against samples that can be outside of the ellipsoid as well, especially compared to other
benchmark methods. For example, in practice it may be that assumptions on uncertainty turn
out to be wrong, and realized uncertainty is larger than expected. The assumed ellipsoid can turn

out to be too small in that case, and it is good to know how our method performs in such a situation.

In the simulation, we would like to compare the performance of our method with the performance
of other methods. However, there are no state-of-the-art methods for solving the ACOPF under
uncertainty, and there are no publicly available codes for the approaches mentioned in Section 2.3.
It would be a topic for separate research to compare our approach against those. For this reason,
we consider the following benchmark methods in this research. The first benchmark method is the
nominal solution to the ACOPF problem (with the bounds shrunk by 0.5% as before). The shrunk
bounds make this solution more robust already, and it turned out that shrinking the bounds mat-
ters a lot for the performance of this method, making it a more competitive benchmark method.
The second benchmark method is the DCOPF solution. As mentioned in Section 2, the DCOPF
is a linearized version of the ACOPF. It assumes that voltages are constant at 1 p.u., and that
voltage angle differences are small (so that the sinus terms in the polar form of the ACOPF can
be linearized). However, these assumptions are not very realistic in highly loaded systems, and
it turns out that the DCOPF gives a lot of very infeasible results. We therefore only include the
DCOPF method in cases where it gives at least some percentage of feasible results. We implement

this model using MATLAB, MATPOWER and the code provided by Bienstock et al. (2014).

For each instance, uncertainty level and sample method, we simulate 1000 realizations of {. To
avoid taking into account purely numerical violations that are not important to the power system,
we first round all violations down to 3 decimal places. This is typical in the ACOPF literature,
see for example Venzke et al. (2017). We then report the percentage of samples of ¢ for which our
obtained solution y* is feasible. That is, a solution to the power flow equations exists, and this
solution is feasible for all inequality constraints. In practice, some small violations of the inequality
constraints can be acceptable as well, since a given power system might be able to adjust to it.
Therefore we also report the percentage of samples for which the solution is feasible if we allow
violations of at most 0.1%, and the percentage of samples for which the solution is feasible if we
allow violations of at most 1%. These violations are measured as a percentage of the interval be-

tween the lower and upper bound of a variable. To measure the violations of the voltage magnitude
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constraints, we use the non-squared constraints (11). For line thermal limits, we also use the origi-
nal non-squared constraints (1j)-(1k). We also calculate the average number of violated constraints
(over the 1000 samples), the average percentage of violation (over all violated constraints), and the
maximum percentage of violation. Lastly, we consider only the situation of no correlation between

uncertainties, since the results are rather similar to the situation with correlation (as demonstrated

by Table 5).

8.2 Simulation results

Before the results of the simulation are discussed in more detail for each instance, the main findings

are listed below.

Main results of the simulation:
e Overall, our approach outperforms the nominal solution and the DCOPF.
e The performance of our method decreases when the uncertainty level gets larger.

e The performance of our method depends on the instance at hand; ‘casel18’ shows the most
drastic difference in performance between our solution and the nominal solution, with our

solution performing much better.

e Especially for normally distributed samples, it can make a lot of difference regarding feasibility
if violations of 0.1% or 1% are allowed or not, for both our solution as well as the nominal

solution.

In Table 6, Table 7, Table 8 and Table 9, the results of the simulation are given. Table 6 shows results
for ‘case6ww’ and ‘case9’, Table 7 treats ‘casel4’ and ‘case30’, Table 8 discusses ‘case39’ and ‘caseb7’,
and Table 9 presents results for ‘casell8’, ‘case300’ and the adjusted version of ‘casel354pegase’.

Below, we discuss every table briefly.

Looking at ‘case6ww’ in Table 6, we see that our approximately robust solution performs very well
for both sampling methods, with 100% of the samples being fully feasible for points within the
ellipsoid, and 95.1% of samples being fully feasible for the samples from the normal distribution.
Our solution clearly outperforms the nominal solution, which has 49.9% and 50.1% of samples being

fully feasible, respectively. For ‘case9’, we present the results in Table 6 starting from an uncertainty
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Table 6: Simulation results for ‘case6ww’ and ‘case9’.

Uncertainty Sample: Solution | % feasible % feasible % feasible|Avg. num. of Avg. Max.
(% of load): method: (0.1% viol.) (1% viol.) | viol. constr. viol. (%) viol. (%)
casebww
1% Ellipsoid: Robust 100 100 100 0 0 0

Nominal 49.9 54.5 92.0 0.50 0.6 1.5
Normal distr.: Robust 95.1 96.0 99.7 0.05 0.4 1.7
Nominal 50.1 53.8 85.1 0.50 0.8 3.2
case9
10% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 100 100 100 0 0 0
DCOPF 100 100 100 0 0 0
Normal distr.: Robust 100 100 100 0 0 0
Nominal 100 100 100 0 0 0
DCOPF 99.9 99.9 100 0.001 0.5 0.5
20% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 100 100 100 0 0 0
DCOPF 100 100 100 0 0 0
Normal distr.: Robust 98.5 98.5 99.0 0.02 4.8 23.7
Nominal 96.5 96.5 98.8 0.06 2.0 23.8
DCOPF 97.2 97.2 97.4 0.03 7.3 29.5
30% Ellipsoid: Robust 98.8 98.9 99.4 0.01 1.6 4.6
Nominal 95.9 95.9 99.4 0.05 0.8 4.3
DCOPF - - - - - -
Normal distr.: Robust 92.2 92.4 92.8 0.08 9.3 37.6
Nominal 86.3 86.3 91.3 0.29 3.6 37.3
DCOPF - - - - - -
40% Ellipsoid: Robust 91.2 91.2 92.0 0.09 5.9 16.4
Nominal 86.3 86.3 91.6 0.28 2.4 15.9
DCOPF - - - - - -
Normal distr.: Robust 83.7 83.7 84.4 0.22 13.2 63.5
Nominal 73.9 73.9 80.2 0.67 5.8 63.1
DCOPF - - - - - -
50% Ellipsoid: Robust 83.9 83.9 85.0 0.16 10.1 25.4
Nominal 75.5 75.5 82.8 0.60 3.6 24.8
DCOPF - - - - - -
Normal distr.: Robust 75.2 75.3 75.8 0.37 174 101.2
Nominal 63.3 63.3 68.6 1.05 8.1 100.8
DCOPF - - - - - -
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level of 10%. The results for lower uncertainty levels can be summarized by all three methods being
fully feasible 100% of the time. The 10% level and 20% give similar results, with all three solutions
being feasible for all samples within the ellipsoid, and for almost all normally distributed samples.
At the 30% level, the DCOPF cannot find a solution anymore. Also, we see that throughout all
uncertainty levels for ‘case9’; our solution performs better than or similar to the nominal solution.
The difference in performance gets larger when the uncertainty level rises. However, average viola-
tions are much lower for the nominal solution. For example, at the uncertainty level of 50%, our
solution violates a constraint with an average of 10.1% compared to 3.6% for the nominal solution,
for samples within the ellipsoid. This could be something to take into account if one rather has
many smaller violations (0.60 violated constraints on average for the nominal solution), instead of
fewer large violations (0.16 violated constraints on average for our solution). This is a case-specific

issue and not inherent to our method, since the opposite situation occurs at other instances.

We now discuss the results of Table 7. For ‘casel4’, the difference in performance between the
two methods is very clear. Even at the lowest uncertainty level (1%), the nominal solution is fully
feasible for only 46.9% of samples within the ellipsoid. Our solution, on the other hand, is fully
feasible for 85.7% of those samples. The average violation is also much higher for the nominal
solution than for our solution: 0.8% versus 0.1%. For the samples from the normal distribution,
both methods perform slightly worse, but the difference in performance between the two methods
is analogous. Results for higher levels of uncertainty show an even larger difference in performance
between the two methods. For ‘case3(0’, the differences between the two solutions are much smaller.
However, our solution still performs slightly better. We obtain full feasibility for 96.0% of samples
from the ellipsoid compared to 89.9% for the nominal solution. When considering the other sam-
pling method, we see that these percentages drop to 56.6% and 56.2%, respectively. However, when
allowing violations of 1% or lower, we obtain 99.1% feasibility for our solution and 91.9% for the

nominal solution.

In Table 8, it can be seen that for most uncertainty levels of ‘case39’, the differences in results are
larger again. However, both methods perform poorly compared to other instances. For the 1%
uncertainty level, our solution achieves full feasibility for only 68.7% of the samples in the ellipsoid.
The nominal solution has a similar percentage of 67.8% for these samples. For higher uncertainty

levels, these percentages get even lower, but the difference in performance between the solutions
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Table 7: Simulation results for ‘casel4’ and ‘case30’.

Uncertainty Sample: Solution | % feasible % feasible % feasible| Avg. num. of  Avg. Max.
(% of load): method: (0.1% viol.) (1% viol.)| viol. constr. viol. (%) viol. (%)
casel4
1% Ellipsoid: Robust 85.7 92.4 100 0.14 0.1 0.5

Nominal 46.9 51.0 79.6 0.59 0.8 3.0

Normal distr.: Robust 67.1 72.4 97.6 0.36 0.4 2.5
Nominal 41.0 44.9 65.8 0.75 1.4 7.2
5% Ellipsoid: Robust 99.9 100 100 0.001 0.01 0.01
Nominal 33.6 35.9 51.1 0.91 2.8 16.6
Normal distr.: Robust 82.3 83.3 88.3 0.23 3.4 19.9
Nominal 29.9 30.9 38.0 0.99 6.4 40.5

10% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 32.6 33.3 41.5 0.94 5.7 28.3
Normal distr.: Robust 86.4 86.6 88.9 0.18 6.5 40.7
Nominal 30.9 31.0 35.2 0.98 12.2 71.0
case30

1% Ellipsoid: Robust 96.0 100 100 0.04 0.03 0.1
Nominal 89.9 93.0 100 0.10 0.2 0.8

Normal distr.: Robust 56.6 70.7 99.1 0.54 0.2 2.0
Nominal 56.2 61.5 91.9 0.59 0.5 3.4

grows in favour of our solution. For ‘caseb7’, results are even more clearly in favour of our solution
method. Even at the highest uncertainty level of 5% here, full feasibility is achieved for 100% of
samples in the ellipsoid. The nominal solution only achieves this for 25.0% of samples. Even if vio-
lations of 1% are allowed, the nominal solution achieves feasibility for only 40.4% of those samples.
For the normally distributed samples, our solution is fully feasible for 83.1% of samples, against
24.1% for the nominal solution. Considering that none of those samples lie in the specified ellipsoid,

our solution performs very well for ‘caseb7’.

Overall, our solution performs better than the nominal solution in every instance so far. We still
need to consider the three largest cases, of which the simulation results are summarized in Table 9.

Results for ‘casel18’ are similar to those for ‘case57’: for both 1% and 5% uncertainty, our solution
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Table 8: Simulation results for ‘case39’ and ‘case57’.

Uncertainty Sample: Solution | % feasible % feasible % feasible|Avg. num. of Avg. Max.
(% of load): method: (0.1% viol.) (1% viol.) | viol. constr. viol. (%) viol. (%)
case39

1% Ellipsoid: ~ Robust 68.7 72.4 94.6 0.31 0.6 2.2
Nominal 67.8 72.0 94.6 0.32 0.6 2.2

Normal distr.: Robust 56.7 57.9 69.5 0.43 2.1 8.5
Nominal 39.6 48.6 69.4 0.62 1.5 8.5

5% Ellipsoid: Robust 57.5 58.1 63.7 0.43 3.5 13.2
Nominal 28.9 34.7 61.5 0.77 2.2 13.5
Normal distr.: Robust 45.8 46.5 52.8 0.57 9.6 36.4
Nominal 20.8 22.3 38.2 0.95 6.4 36.7
10% Ellipsoid: Robust 55.2 55.5 59.4 0.45 7.2 29.5
Nominal 23.0 25.6 46.6 0.87 4.4 30.2
Normal distr.: Robust 34.0 35.0 39.9 1.05 12.3 97.9
Nominal 16.2 16.7 24.6 1.43 10.0 98.5
20% Ellipsoid: Robust 35.2 36.1 40.8 0.84 9.5 53.5
Nominal 18.9 19.5 30.8 1.13 7.7 54.9
Normal distr.: Robust 11.3 11.7 12.5 2.55 18.7 194.6
Nominal 4.8 4.9 7.9 2.76 17.7 195.3

caseb7

1% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 28.4 37.9 82.4 0.91 0.6 3.4
Normal distr.: Robust 86.0 87.5 92.8 0.14 1.8 11.0
Nominal 28.5 29.7 46.6 0.95 2.4 16.8

5% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 25.0 26.5 40.4 0.96 2.9 15.3
Normal distr.: Robust 83.1 83.3 86.7 0.18 7.0 42.0
Nominal 24.1 24.5 28.2 1.00 12.2 74.6
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Table 9: Simulation results for ‘casel18’, ‘case300’, ‘casel354pegase (adjusted)’.

Uncertainty Sample: Solution | % feasible % feasible % feasible| Avg. num. of  Avg. Max.
(% of load):|  method: (0.1% viol.) (1% viol.) | viol. constr. viol. (%) viol. (%)
casell8
1% Ellipsoid: Robust 100 100 100 0 0 0

Nominal 40.7 53.7 99.4 0.82 0.3 1.5

Normal distr.: Robust 65.3 68.9 86.6 0.41 1.0 5.3
Nominal 1.9 2.9 174 3.20 1.4 10.1

5% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 2.7 4.7 23.7 2.85 1.2 9.8
Normal distr.: Robust 41.5 43.4 54.5 0.84 3.6 22.2
Nominal 0.2 0.2 0.7 5.23 6.3 49.5

case300

0.1% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 46.3 81.7 98.5 0.61 0.1 1.3

Normal distr.: Robust 85.3 91.8 97.6 0.16 0.7 9.1
Nominal 4.7 17.0 58.0 2.59 1.0 20.0

casel3b4pegase (adjusted)

1% Ellipsoid: Robust 100 100 100 0 0 0
Nominal 21.1 32.0 76.3 1.66 0.5 4.9
Normal distr.: Robust 6.8 9.4 44.2 2.49 1.3 37.8
Nominal 0.0 0.0 0.0 25.2 1.9 74.1

is feasible for 100% of the samples within the ellipsoid. The nominal solution, on the other hand,
performs really bad for this instance. At the 1% level, it achieves 40.7% full feasibility for samples
from the ellipsoid, but at the 5% level it is only feasible for 2.7% of the samples. It must be said that
when allowing 1% violations, the nominal solution reaches 99.4% feasibility for 1% uncertainty, but
at the 5% level this is still only 23.7%. For the normally distributed samples, our solution achieves
65.3% feasibility and 41.5% feasibility for 1% and 5% uncertainty, respectively. For the nominal
solution, these percentages are 1.9% and 0.2%, respectively. Thus far, ‘casel18” might be the case

in which the results for the two methods differ the most, especially at the 5% uncertainty level.

Finally, we discuss the results for the two largest cases. When looking at points within the el-
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lipsoid for ‘case300’, our solution is fully feasible for 100% of samples. This is in contrast to the
46.3% of the nominal solution. For samples of the normal distribution, our solution is feasible for
85.3% of the samples compared to 4.7% for the nominal solution. This pattern persists when allow-
ing violations of 1%. Lastly, we look at the results for the largest instance: the adjusted version of
‘casel3b4pegase’. For the only feasible uncertainty level of 1%, our solution is feasible for 100% of
the uncertainty samples within the ellipsoid. The nominal solution is feasible for only 21.1% of the
samples. For the normally distributed samples, our solution is fully feasible 6.8% of the time. When
violations of 1% are allowed, it is feasible for 44.2% of the samples. The nominal solution is feasible
for none of the normally distributed samples, even when 1% violations are allowed. This means
that our solution outperforms the nominal solution for both sampling methods at this instance as

well.

8.3 Influence of excluding the line thermal constraints

As mentioned before, for ‘case6ww’ and ‘case30’, it is necessary to include the line thermal con-
straints. Otherwise, the solution y* found by Algorithm 1 results in a power flow for the nominal
problem that violates the line thermal limits. For the two other instances with line thermal limits,
‘case9’ and ‘case39’, the solution found by Algorithm 1 causes no violation of line thermal limits in
the nominal problem, so it is not necessary to include the line thermal constraints in the approxi-
mated problem. However, we only checked whether line thermal limits in the nominal problem are
violated, but what about when uncertainty is realized? It might be that our solution is less robust
than it would be when we explicitly model the line thermal constraints (28). We investigate this by

including the line thermal constraints for ‘case39’.

In Table 10, the results of the simulation for ‘case39’ are given. The simulation setup is the same as
in the previous section. For each uncertainty level and sampling method, results are presented for
the situation without line thermal constraints and for the situation in which line thermal constraints
are added to the approximated problem. Before we discuss the results, it must be noted that for
the 20% uncertainty level, the results without line thermal constraints slightly differ compared to
Table 8. This is because Algorithm 1 cannot find a solution with line thermal constraints for this
uncertainty level with the same simulation setup as before. To still make a valid comparison at the
20% level, we increase the searching space by setting ¢/ = 5, instead of ¢ = 10. We only do this for

the 20% uncertainty level and this results in only marginal differences compared to Table 8.
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Table 10: Simulation results for ‘case39’, with and without the line thermal constraints.

Uncertainty| Sample:  With/without|% feasible % feasible % feasible|Avg. num. of Avg. Max.
(% of load):| method:  therm. constr. (0.1% viol.) (1% viol.)| viol. constr. viol. (%) viol. (%)
case39
10% Ellipsoid: Without 55.2 55.5 59.4 0.45 7.2 29.5

With 55.7 56.1 59.5 0.44 7.2 29.5

Normal distr.: ~ Without 34.0 35.0 39.9 1.05 12.3 97.9

With 42.1 42.9 47.7 0.84 14.3 97.8

20% Ellipsoid: Without 34.6 35.7 40.6 0.85 9.4 53.4
With 51.6 51.8 53.6 0.48 14.5 53.7

Normal distr.: ~ Without 114 11.6 12.5 2.55 18.7 194.6

With 35.7 35.8 38.2 1.49 23.1 194.7

For uncertainty levels of 1% and 5%, both approaches find the exact same solution. Therefore
we exclude these results from Table 10; they can be found in Table 8. For the 10% uncertainty
level, the approach with line thermal constraints finds a different solution but performs similarly for
the samples within the ellipsoid. However, for normally distributed samples, enforcing line thermal
limits results in 42.1% of these samples being fully feasible, instead of 34.0%. At the 20% level, the
difference is much clearer. When the line thermal limits are not modeled, our solution is fully fea-
sible for 34.6% of samples in the ellipsoid. However, when we include the line thermal constraints,
this percentage rises to 51.6%. For normally distributed samples, this percentage rises from 11.4%

to 35.7%.

The results in Table 10 indicate that for lower levels of uncertainty, line thermal constraints do
not necessarily have to be modeled, since the solution found by Algorithm 1 is the same. However,
for larger uncertainty levels, the obtained solution differs, and it can make a difference in terms of
robust feasibility. Whether this difference is large enough to include the line thermal constraints (28)
in the problem, depends on the situation. One must keep in mind that including these constraints
turns the problem into an SDP problem, which results in a much higher computation time. For
example, one iteration of Algorithm 1 for ‘case39’ takes 1.1 seconds (see Table 5) when line thermal

constraints are not considered. When including the thermal constraints, Algorithm 1 takes 10.5
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seconds to complete one iteration, which is more than nine times as long. For larger instances than
‘case39’; the runtime can become too high if the model needs to be solved quickly. It must be said
that we model the line thermal constraints for all branches; runtime can be potentially decreased

by including only branches that are known to cause problems regarding line thermal limits.

9 Conclusion and Discussion

This thesis deals with the Alternating Current Optimal Power Flow (ACOPF) problem with un-
certainty. The purpose of this thesis is to develop an approach for finding a robust solution to this
problem that is scalable to large instances, suitable for moderate levels of uncertainty and has an
operational cost that is comparable to the cost of the nominal solution. After proposing such an
approach, we evaluate the quality of this method in terms of computation time and operational
cost. Finally, we evaluate the performance of our solution method in terms of robust feasibility, by
simulating realizations of uncertainty and comparing our solution with two benchmark methods:

the nominal solution to the ACOPF problem with tightened bounds and the DCOPF solution.

In the approach we propose in this thesis, we linearize the quadratic system of equalities in the
ACOPF problem, by iteratively taking first-order Taylor Series approximations on small subsets
of the feasible space around specified points of approximation. As a result, we end up with an
SOCP problem for most instances, which can be solved much faster than many other approaches
using SDP approximations. We find that our approach performs well in terms of operational cost
in the situation of no uncertainty, and we find that our solution performs much better than the two
benchmark models in terms of feasibility when uncertainty is realized. Due to the SOCP formu-
lation of the approximated problem, our approach is also efficient in terms of computation time.
However, for some instances it turns out to be necessary to explicitly model the line thermal limits.
The latter turns the problem into an SDP problem, which drastically increases computation time.
Finally, the maximum amount of uncertainty in the approximated problem for which our algorithm
is able to find a solution, depends highly on the instance at hand. Further research is needed to see
if our approach can be improved to be more consistently suitable for moderate levels of uncertainty,
but overall our solution method provides promising results in terms of robustness, scalability and

operational cost.
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9.1 Discussion of numerical experiments

Here we provide a brief discussion of the numerical experiments that the previous conclusions are
based on. We test our approach on nine different MATPOWER instances. We consider uncertainty
as a percentage of the load, and for each instance we run our algorithm for different levels of uncer-
tainty. We consider the situation without correlation between uncertainties, as well as the situation
with correlation. For most instances, our algorithm is able to find a solution within seconds in the
situation of no correlation between uncertainties. For the largest instance of 1354 buses, it finds a
solution within 20 minutes. This is a promising result, considering most papers in the literature
on ACOPF with uncertainty do not even consider such large instances. We also see that the larger
the size of an instance, the larger the difference in computation time between the situation with
and without correlation. Furthermore, we find that our solution results in a marginal cost increase
in the situation of no uncertainty: most cost increases are below 0.1%. This can be explained by
the fact that we consider subsets of the feasible space around the solution to the nominal problem
(with tightened bounds), so our solution is likely to be close to this initial solution. Finally, the
maximum amount of uncertainty in the approximated problem for which our algorithm is able to
find a solution, varies between only 0.1% and more than 50% of the load. Not every instance is as
suitable for large levels of uncertainty, but in Section 9.2 we discuss one way to potentially make

our method better for larger uncertainty sets.

In the simulation study, we consider two different sampling methods: drawing from the specified
ellipsoid which we aimed to be robust against, and drawing from a multivariate normal distribution.
For almost every instance, our solution outperforms the nominal solution with tightened bounds
and the DCOPF solution in terms of feasibility after realized uncertainty. This is true for both the
samples inside our specified ellipsoid, as well as the samples from the normal distribution. More-
over, the difference in performance is large for many instances. Only for the 1% uncertainty level at
‘case30’ and ‘case39’ and low uncertainty levels of ‘case9’, results are similar for our solution and the
nominal solution. Overall, the performance of our method decreases when uncertainty gets larger.
The performance is also very dependent on the instance at hand, for both our solution as well as
for the nominal solution. In some cases it can make quite a difference in performance if violations
of at most 0.1% or 1% are allowed or not. Since the ACOPF itself is also based on assumptions

and does not reflect reality completely, acceptable violation sizes should be discussed with experts
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in the field of power system optimization.

For two instances with line thermal limits, it is not necessary to include these constraints in the
model to obtain a solution that is feasible for the nominal ACOPF problem. For one of these
instances, we do evaluate whether a more robust solution can be obtained when these line thermal
limits are explicitly modeled. We see that adding these constraints results in the exact same solution
for low levels of uncertainty, but for higher levels of uncertainty a different solution is found. For
the highest uncertainty level of 20%, including these limits in the model results in a more robust
solution for both sampling methods. The downside of including these constraints is that it turns

the problem into an SDP problem, with a much higher computation time as a result.

9.2 Limitations and directions for further research

We conclude this paper with some limitations of our research and directions for further research.
First of all, we notice that for larger uncertainty sets, either the performance of our obtained solution
decreases, or no solution can be found at all. To improve performance for large uncertainty sets,
we could choose to consider subsets of the uncertainty set as well. A method to iteratively split
the uncertainty set is, for example, proposed by Postek and Hertog (2016). Second, we iteratively
consider small subsets of the state variables starting with an initial subset around the nominal
solution with tightened bounds. This restricts the searching space, since other more robust solutions
might be found in subsets of the feasible space that are further away from the initial solution. It
is interesting to see if our method can be improved by considering multiple initial subsets of the
domain of the state variables, in order to expand the space in which we search for a robust solution.
Third, it would be interesting to see how our method performs for instances with more than 1354
buses. We do not consider this in the thesis, since we consider the computation time too high
for larger instances. However, there are some methods to potentially reduce runtime for those
instances. Since our approach takes more time to set up the model than to solve it, one can exploit
this by constructing the model only once. For different uncertainty levels or different iterations of
Algorithm 1, the structure of the model is the same. One can therefore produce a more efficient code
so that only the numbers in the model need to be adjusted. Of course, one could also consider a
different interface than CVX to call the solver, to improve efficiency in constructing SOCP variables.
An alternative way of potentially reducing computation time for instances with line thermal limits

is to consider only modeling thermal constraints for branches that are likely to cause violations
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of the limits. This still turns the problem into an SDP problem, but with less SDP constraints
so that the computational burden is reduced. We have not considered this for ‘casel354pegase’;
instead we removed the line thermal limits altogether, due to the high runtime the SDP problem
would have. It would be interesting to see how our method performs for this instance with line
thermal constraints added to the model. One last way of reducing computation time for larger
instances, is by considering uncertainty for a smaller specified set of buses. In this thesis, we
consider uncertainty at every bus with nonzero load. Since the size of problem (24) depends on the
dimension of uncertainty, considering fewer buses with uncertainty can reduce computation time
by a lot. This is also a more realistic representation of uncertainty in situations where only some

buses display considerable deviations from their forecasted power demand.
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Appendix A Alternative modeling choices

A.1 Infinity norm to construct the subsets of state variables

In Section 5.8, it is explained how we choose the small subset in which we search for a solution. For
this, we choose to model ||x — @|| < e, where we use the Euclidean norm. However, other norms can
be chosen as well, such as the infinity norm || - ||co. The infinity norm equals the maximum of the
absolute values of its elements. To satisfy that the maximum of the absolute values is smaller than
€, we can restrict every absolute value to be smaller than this value. This results in |z; — ;| < ¢
for every j. Eliminating the absolute value, we obtain z; — #; < € and %; — x; < € for every j.
Substituting & by its nominal linear expression = Ay + ¢ and writing this compactly, we get:
Ay+c—x<e

(29)
z—Ay—c<e

in which e = [g,¢,. .. ,E]T. If the infinity norm is chosen instead of the Euclidean norm, one replaces

constraint (19) by (29).

A.2 Alternative options for dealing with the voltage at the reference bus

In Section 5.10, we provide three inequality constraints to approximate the non-convex constraint
oM = (v{)z. While constraints (23) are sufficient in our results, there are no guarantees that the
obtained solution satisfies the original non-convex constraint. In that case, one might consider to

implement one of the two options below.

One alternative way of dealing with this non-convex constraint, is to put the variable v] in the
objective and add a negative penalty term, so that the higher v}, the better the objective function.
However, this penalty term should be chosen carefully, since it can also influence the solution to the

problem in an unintended way.

Another way of dealing with this constraint, is to allow the voltage to be negative at the refer-
ence bus. We restricted v] to be positive throughout this thesis. However, this is not necessary.
In the case one allows it to be negative, the value of v] does not follow directly from the value of

v anymore. Therefore, an extra state variable v} is obtained, together with an extra nonlinear
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equality constraint in the state variables: v = (v7)?. This constraint can then be linearized in
the exact same way as the other constraints, and can be included in the linear system (17). It is
not clear if this would increase the precision of our approach, since the nonlinear constraint needs
to be approximated. Moreover, in the ACOPF literature, it is common to set the phase angle of
the voltage at the reference bus to zero, which implies that in the rectangular formulation, the real

part of the voltage is positive (otherwise the phase angle could also be 180°).

Appendix B Robust counterpart of a linear constraint with conic

uncertainty

After the state variables are eliminated, the problem exists of inequality constraints in y and ¢, of
the form:

9i(y,¢) = (@) Ty + )¢+ >0 Vie{g}, Ve,

with © as in (20). For fixed i, the following holds:

(@)Ty+ bBHYI¢+c>0 Ve
— mcin{(ai)Ty + ¢+ ME+me 2'U|+1}2 0
— (a)Ty +c + mcin{(bi)TC :M¢+me 2'“‘“}2 0
= (@)'y+ e+ max min{ (697~ (=) (MC+m) }> 0

— (a")Ty+c'+ max {—(zi)Tm + chln{ ((bi)T — (zi)TM) C}}Z 0

ieglUl+1

= (a")Ty+c + max {—(zi)Tm (T — (29)TM = oT}z 0

zieglUl+1
— (a)Ty+c - (2H)Tm>0
(=0T M = (b})T
2t e g+t

UI+1 (the second-

which is equivalent to (21). Here, in the third equivalence a dual variable z* € £
order cone is self-dual) is introduced and the original objective that must be minimized is replaced
by its Lagrangian function. This turns the minimization into an unconstrained problem in which
the dual variable 2% serves as a penalty term if (2%)T(M¢ + m) is negative. The reason this term

should not be negative is that by definition of the dual cone, it holds that (2%, M¢ +m) > 0. The
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sixth line holds because the minimization problem would be unbounded if (b*)T — (2%)TM # 07

Appendix C Coeflicients for line thermal limits

In this section, we give specifications for the coefficients in expression (25), which represents the
line thermal constraints (Tp{)2 + (quf)Q < (s’lma")2 and (T/p}s)2 + (qus)2 < (s}na")2 . We derive the
coefficients for the constraint (Tplf)2 + (quf)Q < (sfna")Q; to derive the coeflicients for the expression
(T pf)Q + (qut)2 < (s"*)? similar steps with different coefficients can be followed. From (11) and

(12), it follows that the Taylor Series can be written as a linear expression in  and y:

7. =T T
of ‘yplf:n + )\plfy + o
_ T T
quf = 'yqlfac + }\qlfy + K/qlf.
The coefficients 'ygf, )\;‘:f and ks can be derived from (11) and (12) and the specifications of the
I 1 L

matrices in Sections 5.3 until 5.5. We eliminate the state variables by substituting * = Ay+ B{+c

to obtain a linear form in y and ¢:

_ T T
Tplf = aplfy + bpicc + Cplf

T, — T T )
qu aqlfy‘i‘bqlfC‘i‘quj,

where an = 'nyA + )\Tf, be = 'yj}B and ¢ ; = 'nyc + k_s. For g, the same expressions hold but
D D; D q; D; 4; D; p;

with subscript ¢. Now, squaring Tpf and T o gives:
1 1

2
T ) _ T T Ty 3T ouT T 2% ral 2 b7 2
( »! Y ap{aplfy—i-C bplfbp{C—l— Yy aplfbp{C—i- Cplfaplfy"’ CplfbplfC—FCplf

2
T ) _ 27T T T T ouT T 9 T 92 b7 2
( qlf Y aqlfaqlf’y—i-c bqlqulfc—l- Y aqlqulfc—i- qufaqlfy—i- ququlfc-l-cqlf

Finally, for a given branch [, we obtain the constraint:

2 2
_.T T T T T T T T T
(Tpf ) + (quf ) -Y (apf Ay T aga, ) y+¢ (bplf bp{ +by bq[ ) C+2 (apf bp{ tay bqlf ) S

9 ( T T) 9 ( T T) 2 2 (g max)2 Q.
+ szfaplf + qufaqlf Yy + Cplfbplf + ququlf C +Cplf +quf S (Sl ) VC S

Comparing this with expression (25), one can easily see what the definitions of A;, By, Cj, a;[, blT

and ¢; are for the from-end of branch I.
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Appendix D SDP reformulations of robust line thermal constraints

In this section, we prove that (27) follows from the second statement in (26). The following holds:

a(y,¢) — ('S¢ =) <0, w>0 WeRrV

=y Ay +TBC+y Ol +aly + b ¢+ — (57 — (TS —1%) <0, >0
v¢ e RV

= ¢T'B - wES e+ WO+ )¢+ yT Ay +al y+ o+ — (s <0, >0
v¢ e RIVI

= T2 - B¢ - WO+ )¢ —y Ay —al'y — e — wr® + (s >0, >0

v¢ e RYI
T
¢ - ¢ v wS~t = B L (CFy + b)) L
< ~ U, - y W =2
1 1 —LWrC+b) () —aly—a—ur® —yT Ay
v¢ e RV
T wE~t — B —1(Cly+by)
<~ u Hu>0, H= >0
-3 (W Ci+b]) (s2)? —al'y —¢; — wr? —y" Ay
Vu € RIVIHL
uS~t = By —3(CTy + by) o
< Y, M =
—% (yTCz + blT) (s}nax)2 — alTy —c —mr? —yT Ay
wS~! = By -5 (Cly+by) ,
s iov /J'ZZO7 M=y Aly
—3 (¥"Ci+ b)) (si2)? —af'y — ¢ — wr? — y

Here, the fifth equivalence is not trivial, so we prove it. Obviously, (<) holds because if it holds
for every vector w, it also holds for every vector with last element equal to one. We need to prove
(=), which comes down to proving that

T

¢ ¢
H >0 VW¢eRY = w'Hu>0 vueRUHL (30)
1 1
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To prove this, we first prove that this holds for all w € RV with U417 0 (w41 denotes the

last element of u). Let u be such a vector. Then we can just rescale [¢T,1]7 with a factor U |41

to u by choosing ¢ = ——u. We get that:

U|U|+1

T T
1 1 1 1

u|U|+1u u|U|+1u 2 u|U|+1u u|U|+1u T
H 20 = Uy H >0 <= u Hu>0.
1 1 1 1

Therefore, (30) holds for all w € RIVI*! with w44 # 0.

Now, we need to prove that (30) holds for all u € RIYI+! with w41 = 0. Let ug be such a
vector. Suppose by contradiction that u] Hu; < 0. Then we know that there exists a ug with
nonzero last element such that ul Hug < 0, by continuity of u? Hu. However, we just proved that
every vector w with nonzero last element satisfies u” Hu > 0, so this results in a contradiction.
Therefore, (30) holds for all u € RIVIHT with uy|+1 = 0 as well, and consequently it holds for all

u € RIUIHL,
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