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Abstract
As awareness of society on sustainability increases gradually, new transportation modes have

been introduced. Cargoroo contributes to this movement as an e-cargo bicycle rental company.

In their system, customers rent bicycles at fixed locations under the condition of sufficient

remaining battery. For that reason, the company aims to maximize the battery levels taking

operational costs into account. They have so-called battery swappers, who replace low power

batteries at the designated locations.

This thesis presents two tour construction methods to schedule battery swappers. We

formulate this problem by extending the bi-objective Travelling Salesman Problem with Profits

with capacity constraints. In our first solution approach, we linearize the objective resulting in

the mono-objective Profitable Tour Problem. This exact mathematical model constructs a tour

that maximizes the collected prizes, depending on the battery levels of the visited bicycles, and

minimizes the travelled distance. Since this problem is 𝒩𝒫-hard, a Local Search is proposed

as a second, alternative solution method. This fast greedy heuristic starts with an initial tour

to which improvement steps are applied.

The performances of the tour construction methods are evaluated by means of a Discrete

Event Simulation. We apply this simulation to real world instances and define a time horizon

that is subdivided into time periods of equal duration. Each time period includes two events,

the tour construction by our proposed methods, and the simulation of new rental periods based

on one year of historical data. In our experiments, we fit distributions to the data about the

travelled distances and rental durations, extended with data about the weather conditions.

This approach enables us to evaluate the long term effect of the constructed tours. In this

problem, the main performance indicators are the average battery levels and travel times of

the swappers.

The result of the exact mathematical formulation to construct tours shows high computa-

tional times in contrast to the Local Search method. In addition, it does not outperform the

heuristic approach based on the performance indicators as the tours constructed by the Local

Search show good long term performances.

Ultimately, we observe a trade-off between the average battery levels of the bicycles and

the travel time spent to swap the batteries.
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1
Introduction

Over the last years, one of the largest challenges in the world is the reduction of CO2 emissions,

which is related to the effect of global warming [42]. This rapid development created a new

worldwide priority and many researchers emphasize the importance to combat climate change.

The impact can be highlighted by the rising sea level and extreme weather events causing

serious concerns. To compromise the needs of future generations, environmental changes have

to be made [33]. In face of those increasingly serious environmental problems, green and

sustainable transportation modes have been explored and developed.

Vehicle sharing has become increasingly popular as an alternative to personally owned

vehicles, due to the necessity for shifting travel modes. It creates the opportunity for more

efficient transportation with potential benefits. The reduction in parking space, improved

mobility and accessibility for disadvantaged populations are presented. After this emergence,

shared electric vehicles are introduced as a promising solution to growing issues of air pollution.

In urban environments, one of the evolved systems is electric bicycle sharing, which can be

seen as beneficial in comparison to electric car sharing. It contributes to the ability to avoid

traffic congestion and to reach your destination more efficiently. This environmental conscious

system can be extended with the ability to carry goods or people by using e-cargo bicycles.

Despite that shared electric vehicles have led to several benefits regarding the environment

and efficiency, these systems have a drawback. Electric vehicles are proven to come with

range anxiety as people fear running out of battery and strongly avoid these situations [39].

1



2 1. Introduction

As customers typically prefer to rent high power battery vehicles, bicycles with low power

batteries are less likely to be rented and customers may even give up rentals. To prevent

missing out on customers, efficient battery swap strategies have been proposed [27, 32, 49].

In this study, e-cargo bicycles are designated to fixed locations and batteries have to be

swapped between two rental periods. To perform this operation, a homogeneous capacitated

vehicle fleet is used. Each pickup goes along with the delivery of a fully charged battery, which

is referred to as 𝑠𝑤𝑎𝑝𝑝𝑖𝑛𝑔. If all low power batteries are swapped or the vehicle capacity is

reached, the 𝑠𝑤𝑎𝑝𝑝𝑒𝑟 returns to the depot to insert the empty batteries into the charging

dock. Each route that starts and ends at the depot is called a 𝑡𝑜𝑢𝑟. In essence, an efficient

strategy for swapping should be established to maintain high battery levels and minimize

working hours for swappers. As there is a trade-off, the problem could be formulated as a

Travelling Salesman Problem with Profits (TSPP). Due to the computational complexity of

this bi-objective problem, we reformulate the TSPP to the mono-objective Profitable Tour

Problem (PTP). Prizes can be collected by swapping batteries dependent on their current

battery level at the cost of travelling to the designated location of the bicycle.

In comparison to standard Travelling Salesman Problems (TSPs), it is not mandatory to

visit all customers. It is allowed to swap part of the batteries to keep the travelled distance

to a minimum. In this paper, an exact mathematical model based on the PTP, and a Local

Search (LS) heuristic are presented to construct tours. To evaluate the long term performance

of our methods, a Discrete Event Simulation (DES) is employed. At the start of each time

period, the proposed methods either decide to make a tour satisfying all constraints, or to not

make a tour. In addition, we simulate new rental periods based on historical data on bookings.

The approaches are tested on three different instances provided by rental company Car-

goroo, corresponding to different cities. Both the exact model and heuristic method succeed

in creating tours, and the simulation approach enables us to evaluate the performance by ob-

serving the long term effect on battery levels and availability. Based on those key performance

indicators (KPIs), the solutions of our methods are similar. However, we observe that the exact

model is sensitive for different instance sizes, while the LS provides solutions within seconds.

The remainder of this report is structured as follows. In Section 2 we describe the problem

in detail, and in Section 3 we discuss the relevant literature on this problem. Next, in Section

4, we present our formulation, our assumptions, and describe our methodology. Section 5 is

devoted to briefly discussing the data. Section 6 presents the outcomes and results of this

research. Lastly, Section 7 contains our concluding remarks.



2
Problem Description

In this chapter, we elaborate on the problem and explain the specifics. The research focuses on

an optimal strategy for swapping batteries in the shared e-cargo bicycle system of Cargoroo, a

rental company. The problem description is of great importance in developing a good strategy.

First, we describe the general problem followed by a detailed description of the components

and corresponding assumptions. Lastly, the problem is explained from a mathematical point

of view.

2.1. General Problem
The main goal of this paper is to establish a good strategy to retain high battery levels in a

fleet of shared e-cargo bicycles. We assume that the rental company has full responsibility, and

people are employed to take care of picking up empty, and delivering fully charged batteries.

As people tend to prefer renting high power batteries, we aim to maximize the battery

levels by swapping timely. If customers cannot rent a bicycle due to a low battery, this will

negatively impact user satisfaction. In the long term, the rental company loses customers

causing profits to decrease. A drawback of swapping batteries often is that operational costs

increase as more employees are required to perform the operation. In this research, we aim to

optimize and focus on this trade-off.

Next, we discuss three components included in the problem: the bicycles, the employees,

and the customers. We also discuss the assumptions for those three categories.

3



4 2. Problem Description

Bicycles

The shared e-cargo bicycles are assigned to fixed locations, where customers start and end their

rental. It is mandatory to return the bicycle to the start location. Consequently, all bicycles

are either located at the designated spot or rented.

Based on this assumption, we introduce two different definitions of availability. A bicycle

is 𝑠𝑤𝑎𝑝 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 if it is not rented and present at the designated location. Further, to prevent

customers from being disappointed due to a small driving range, a minimum battery level is

required for a bicycle to be 𝑟𝑒𝑛𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒. It can be seen as a starting requirement, as

customers are allowed to cross the threshold during a rental period.

Lastly, we assume that a low power battery is always replaced by a fully charged battery.

Swappers

The employees swapping batteries are called swappers. They are equipped with a homogeneous

vehicle fleet with a fixed capacity. The swappers start at the depot and use a vehicle filled

with fully charged batteries. Therefore, the fleet is capacitated to the number of batteries that

can be transported. Once the batteries are replaced, the swapper returns to the depot. The

collected batteries are put into a charging dock and a new batch of fully charged batteries is

taken. We assume that the number of fully charged batteries at the depot is not limited.

Customers

Each bicycle has a designated location, at which customers are obligated to start and end their

rental. During the rental period, there are no restrictions on the customer’s trip except for the

battery level. We assume that time and weather seasonality affect customer demand.

2.2. Mathematical View
In recent years, several researchers investigated the effect of a limited battery capacity on

shared electric vehicles, addressed sustainability benefits, and introduced different charging

strategies [5, 23].

In our research, employees perform the swap operation and customers do not participate

in the charging system. Bicycles have their designated location at which the batteries must

be swapped. Based on these properties, we could describe our problem as a TSP in which

we have to visit bicycles. In Section 3, we will elaborate further on the TSP and the exact

formulations.



3
Literature Review

In this chapter, we discuss relevant literature. First, several papers regarding the concept

of shared electric vehicles with limited battery capacities are discussed. Next, a review of

TSPs follows, and proposed heuristic approaches are presented. As the performance of these

approaches needs to be tested over time, a DES approach is introduced and discussed in the

last part of this literature review.

3.1. Limited Battery Capacity
Over the last years, the industry of shared electric vehicles has developed rapidly. An increasing

demand for vehicle electrification, sharing, and even automation are considered the three main

transportation revolutions over the past half-century [44].

Vehicle automation systems are currently being explored, developed, and tested [10, 24],

while electric and shared vehicles are already operating. The first shared electric vehicle was

introduced in 1974 [25], although the rapid development occurred mainly in recent years.

Initially, the aim was to ensure smooth operation and tackle technical limitations. Meanwhile,

the concept of shared electric vehicles was explored and developed further, and the interest and

demand for sustainable transportation modes increased. Benefits in the area of less pollution

and costs of personally owned vehicles were emphasized and the need for shared electric vehicle

systems increased.

The first shared vehicle system started in 1948 in the city of Zurich, motivated by eco-

5



6 3. Literature Review

nomic reasons. Unfortunately, this attempt was not successful and neither were other public

car-sharing systems in the following years [17]. However, the growing attention to reducing

CO2 emissions contributed positively to the development of shared vehicle systems. Koerner

and Klopatek [31] evaluated the CO2 emission of Phoenix (Arizona) and concluded that more

than 80% of the CO2 input into the urban environment was produced by humans and au-

tomobile activity. The International Energy Agency (IEA) study [4] found that urban areas

account for 67% of energy consumption and 71% of CO2 emissions worldwide, corresponding to

the higher population density. Related to these studies, Chapman [8] states that behavioural

changes stimulated by policy are also required to achieve a stabilisation of greenhouse gas

emissions from transport. As a consequence, pressure on policymakers to facilitate sustainable

transport modes grows, and alternative transportation modes in urban environments are de-

ployed, including shared electric scooters, steps, and bicycles. These means of transport come

with more benefits, such as the reduction of parking space needed, leading to more efficient

use of space in crowded places. Another often emphasised benefit is the decrease in traffic

congestion, due to smaller and more flexible vehicles. In addition to the reduction of CO2

emissions, the introduction of shared electric vehicles adds value to the development of an

improved urban environment.

Despite all the environmental benefits, there is a lot of focus on the drawbacks of shared

electric vehicles. One of the main shortcomings is the limited battery capacity, as the usage

is restricted to the remaining power level of the vehicle. Customers are proven to be sensitive

to this limitation, which is referred to as range anxiety [39]. This fear of running out of

battery affects the behaviour of customers, resulting in reduced efficiency of the system [35].

To maximize the utilization, the importance of timely charging the batteries is often featured.

Specifically, in the field of our problem, focused on swapping the batteries of shared e-

cargo bicycles timely, little research has been done. This is mainly due to the vehicle type in

combination with the charging system in which we swap batteries. For example, Osorio, Lei,

and Ouyang [36] explore the effect of timely charging batteries of shared electric scooters, and

Brandstätter, Kahr, and Leitner [6] focus on shared electric cars. Unlike our problem, most

of those papers propose a solution method combining the reallocation and charging strategy

into one model. Since our bicycles are designated to a fixed location, we do not consider the

reallocation of one-way trip vehicles. Equivalent to our problem, Zheng et al. [48] propose a

strategy for replacing the batteries timely without vehicle reallocation. They use a Vehicle

Routing Problem (VRP) to determine optimal routes, visiting the locations with low power
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batteries. These routes are completed by several vehicles and include multiple depots, to which

low power batteries are brought, and fully charged are picked up. In our situation, we limit the

problem to one depot and one vehicle. Therefore, we can formulate our problem as a variant

of the well-known TSP. Next, relevant research regarding this formulation will be discussed.

3.2. Travelling Salesman Problems
As introduced our problem can be formulated as a TSP in which a vehicle has to supply goods

to customers. The general TSP was first described as a mathematical problem by the RAND

Corporation in 1949 [41], who desired to find the shortest closed curve containing 𝑛 different

points in the plane. The TSP comprises a large class of problems, which belong to 𝒩𝒫-hard

problems. Karp [28] showed that the Hamiltonian cycle problem was 𝒩𝒫-complete, which

implies the 𝒩𝒫-hardness of TSP. Since the TSP is extensively studied, many applications led

to numerous variations and solution approaches.

If the demand of the visited customers is limited by the salesman’s capacity, the problem

changes into the Capacitated Travelling Salesman Problem (CTSP), which is often referred to

as the Capacitated Vehicle Routing Problem (CVRP) [40]. In this problem, the demands col-

lected on a tour cannot exceed the salesman’s vehicle capacity. Due to this capacity constraint,

multiple vehicles may be required to serve all customers and ensure feasibility. Therefore, the

problem becomes a VRP. In contrast to our problem, in VRPs multiple vehicles are available

to serve customers.

A closely related problem is the Capacitated Travelling Salesman Problem with Pickup and

Deliveries (CTSP-PD) [34]. In this problem, the salesman needs to pick up goods and/or deliver

goods to a given set of locations. The demands of the customers are known and a tour must be

created without violating the vehicle’s capacity. An important part of this problem is the order

in which the pick-ups and deliveries are performed. In addition, the initial load of the vehicle

leaving the depot can be any quantity and must be determined by the model. The general

CTSP-PD can be used for the distribution of multiple commodities. However, our problem

considers the distribution of one commodity corresponding to the batteries. Therefore, the

One-Commodity Pickup-and-Delivery Travelling Salesman Problem (1-PDTSP) [22] is more

similar to our problem, in which all products are identical and have equal weights. One of

the assumptions of the 1-PDTSP is that the products are distributed among customers. So,

any amount collected from a pickup can be delivered to any other customer. This assumption

defers strongly from our study, as we assume that fully charged batteries are taken from the
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depot and delivered to the customers.

A general assumption on the discussed TSPs is that it is mandatory to visit all customers.

However, due to the capacity constraint, this may not be possible. Alternatively, the Selective

Travelling Salesman Problem (STSP) consists of selecting customers to maximize profits, such

that the tour length does not exceed a prespecified bound. In this problem, it is not mandatory

to visit all customers and the main goal is to maximize profits regardless of any costs. In

practice, travelling more comes with higher costs, which negatively impacts profits. Therefore,

other solution methods are introduced to minimize travel costs and maximize the total collected

prizes.

The TSPP [16] belongs to the class of the STSP and is applied to different subjects. One

of the differences with the standard TSPs is that visiting a customer is not associated with

a constant value. Further, the TSPP is bi-criterial with two opposite objectives. The first

pushes the salesman to collect as much profit as possible, and the second tries to limit the

distance to minimize costs. Solving this problem with two objectives results in finding a non-

inferior solution set. This is a set of feasible solutions in which neither of the objectives can

be improved without deteriorating the other.

An attempt to address the TSPP was made by Keller [29], and later by Keller and Goodchild

[30]. The explicit multi-objective form was used and referred to as the multi-objective vending

problem. They concluded that heuristics pose the most feasible solution approach, because of

computer capacity limitations of exact solution techniques. As this multi-criterion problem is

hard to solve, most researchers transform it into one objective.

Although there is an efficiency loss in formulating the problem to a mono-criterion objec-

tive, several attempts have been made. According to Ehrgott and Gandibleux [14], a linear

scalarization of the objectives using a weighted sum is the most popular solution method. Un-

fortunately, due to the linearization, an optimal solution is no longer guaranteed. Despite the

possibility to vary weights, it is not suited for non-convex solution spaces. As a consequence of

the linear combination of different objectives, points on the convex envelope of the objective

space can be found. We refer to this problem as the PTP introduced by Dell’Amico, Maffioli,

and Värbrand [12], who maximize the difference between the collected prizes and the travel

costs.

An alternative solution approach for bi-objective combinatorial optimization problems is

the 𝜖-constraint method, proposed by Bérubé, Gendreau, and Potvin [2]. In this study, one

of the objectives is used as the optimization criterion. The other objective is added to the
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model as a constraint by forcing it to be bounded by 𝜖. For every different value of 𝜖, a new

optimization problem is formulated, resulting in a high number of subproblems. It is possible

to generate the pareto front [47], but in practice, it is difficult to establish an efficient variation

scheme for this upper bound 𝜖. Therefore, this approach is often used and integrated into

heuristic approaches.

One of the solution methods to solve the TSPP using the 𝜖-constraint method is the STSP,

also referred to as the Orienteering Problem (OP). In this formulation, the travel costs are

limited by an upper bound and added as a constraint. The remaining part of the objective is

to maximize the total collected profits. Another solution method based on this 𝜖-constraint

method is to minimize the travelled distance and force the collected prize to be at least 𝜖.
This is referred to as the Prize Collecting Travelling Salesman Problem (PCTSP). In the

formulation of an 𝜖-constraint method, it is of great importance to define 𝜖 such that the

number of subproblems is limited. One could either evaluate the model for all values of 𝜖 or

reduce the computation time and accept an optimality gap. In the standard PCTSP, it is

assumed that the value of 𝜖 is known. In our study it is difficult to set this bound as the prizes

depend on the current battery status, differing over time.

To solve the bi-objective problem to optimality the pareto global optimum set must be

found. Ehrgott [13] states that this is an 𝒩𝒫-hard problem and obtaining an exact solution

becomes extremely time-consuming with increasing instance sizes. For that reason, the focus

on finding the pareto global optimum set shifts to finding a good approximation to this set.

Several papers have been written on the approximation. Paquete, Chiarandini, and Stützle

[37] have developed a Pareto Local Search (PLS) algorithm based on different neighbourhoods.

The results of this study suggest that, once a reasonably good solution is found by this method,

improvements can be made by a small number of edge exchanges.

The PCTSP belongs to the 𝒩𝒫-hard class as it is a generalization of the standard TSP

[1]. Bienstock et al. [3] present an approximation algorithm with constant bounds to solve the

PCTSP. In this study, a method is included to round fractional solutions of an LP relaxation to

integers, which is feasible for the original problem. Dell’Amico, Maffioli, and Sciomachen [11]

also propose a heuristic based on a relaxation. They formulate a Lagrangian heuristic using

the subgradient technique to solve the dual problem. First, a feasible solution is created by

inserting customers into a tour to collect the minimum required prize. After that, they apply

an extension-and-collapse improvement algorithm and obtain the upper bound. Their results

show that a Lagrangian heuristic is in favor of an LP relaxation in case of an asymmetric TSP.
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Gendreau, Laporte, and Semet [19] analyze the polyhedral structure of the formulation and

introduce several classes of valid inequalities that proved to be facet defining. The results of

this branch-and-cut procedure based on the LP relaxation show high-quality solutions within a

short computation time. Fischetti, González, and Toth [18] also based their method on families

of valid inequalities and additionally introduced a family of cuts. These cuts are referred to as

conditional cuts and are used within the overall branch-and-cut framework. The results show

that the algorithm can solve large-scale instances to optimality within a reasonable time.

One could also solve the problem without using additional software to implement the exact

mathematical model. Different researchers propose a step-by-step heuristic, using a construc-

tive heuristic to obtain an initial solution and perform improvement steps. For example,

Gomes, Diniz, and Martinhon [20] propose a Greedy Randomized Adaptive Selection Proce-

dure (GRASP) heuristic combined with a Variable Neighbourhood Descent (VND), which is

later extended by Chaves et al. [9] with a Variable Neighbourhood Search (VNS) to obtain

upper bounds. Pedro, Saldanha, and Camargo [38] formulated a solution method using a

constructive insertion method in combination with a LS improvement heuristic. The devised

Tabu Search (TS) algorithm included basic features and was able to provide good solutions for

larger instances in a short time. They concluded that their TS method with only basic features

was able to outperform a more elaborated method such as the GRASP of Chaves et al. [9], for

larger instances.

3.3. Simulation Approach
DES models are usually built to understand how systems behave over time and to compare

their performance [45]. In these models, state changes occur at discrete points in time and

generally, a stochastic nature is incorporated. Based on statistical distributions, randomness

is generated and problems at an operational or tactical level are studied [46]. The reason in

favor of a DES is the limited number of events. As we assume that the decision to swap is

made every fixed time interval, a DES is in line with this study.

Illgen and Höck [25] test the performance of an electric car sharing network using a DES.

In this simulation, important operational characteristics of electric vehicles were used. A

comparison of different shared vehicle systems is presented and measured by vehicle utilization

and service level. In this study, the comparison is made between different charging systems,

whereas our study focuses on comparing solution methods to apply to one system. Further,

El Fassi, Awasthi, and Viviani [15] present a decision support tool based on a DES that tests
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different growth strategies for car sharing systems to effectively satisfy the demand. They aim

to select the best network growth strategies that meet demand while maximizing customer

satisfaction and minimizing the number of vehicles used. Based on the demand distribution,

they evaluate the performance of the proposed methods. They use different scenarios in their

simulation and assign performance scores.

Ji et al. [26] propose a Monte Carlo simulation in which they assume the probability dis-

tributions are known. They simulate user demand and test the system availability of different

operational concepts of a fully automated electric bicycle sharing system. In addition, the

sensitivity of these results under various demand and supply scenarios is evaluated. The study

of Campbell et al. [7] focuses on factors influencing the choice of shared electric bicycles in

Beijing. They conclude that the demand for shared bicycles is strongly impacted by temper-

ature, precipitation, and poor air quality. However, they mainly focus on the factors that

influence people to rent a bicycle instead of using an alternative transportation mode such as

public transport. In line with [7], Zhu et al. [50] concluded that precipitation and temperature

suppress the usage of shared bicycles. Further, trips of short duration roughly have a linear re-

lation between duration and distance. This suggests that such trips mainly follow the shortest

paths at a constant speed in contrast to trips of long duration.





4
Methodology

In this chapter, we present two tour construction methods of which the performance is evaluated

by means of a DES. We use a time horizon divided into time periods of equal duration in

which two different events are included. The first event is based on the decision of our model

regarding the construction of a tour visiting bicycles with low power batteries. The second event

corresponds to new rental periods. Both events affect the battery levels, which are updated

accordingly. Although customers prefer high power batteries, travel costs increase significantly

by performing a tour often. Single tours do not show the performance of our methods in the

long term. Therefore, a DES is proposed to test the quality by evaluating multiple time periods

and swap operations. We aim to maximize the profit of the rental company, which is positively

related to the amount of time the bicycles are rented, and negatively related to the working

hours of a swapper. We face this trade-off and evaluate different system settings.

4.1. Discrete Event Simulation
The tour construction methods we propose are tested by means of a DES. It allows us to

evaluate the performance over a specified period of time. In the short term, it is difficult to

measure the impact of the decision made by the method(s). Therefore, the simulation uses

a time horizon divided into time periods of equal duration, designed to iteratively check for

events. The events correspond to the decision to construct a tour visiting low power batteries,

and simulating new rentals that start within the next time period. If a new rental is simulated,

13
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the duration and travelled distance are also predicted.

At the beginning of each time period, we first evaluate all currently swap available bicycles.

For this set, we apply a tour construction method and determine whether to swap batteries.

After this decision, we simulate new rentals for all bicycles that are rental available. The

simulation process is given in Algorithm 1.

Algorithm 1 Discrete Event Simulation

1: 𝑏0 ← Initialize the battery levels.
2: 𝑎𝑟0 ← Initialize the availability for rentals.
3: 𝑎𝑠0 ← Initialize the availability for swaps.
4: for 𝑡 ← 1 to 𝑇 do
5: tourConstruction()
6: if tour constructed by the solution method then
7: 𝑏𝑡 ← updateBattery()

8: rentalSimulation()
9: if any rental simulated then
10: 𝑏𝑡 ← updateBattery()
11: 𝑎𝑟𝑡 ← updateRentalAvailability()
12: 𝑎𝑠𝑡 ← updateSwapAvailability()

First, we have to set the initial battery levels and availability. The battery levels are based

on historical data and we assume that all bicycles are available at the start of the simulation.

The construction of a tour is based on the result of our methods which are discussed next. Note

here, that our methods are able to decide not to construct a tour. In this case, no batteries

are swapped corresponding to no change in battery level or availability.

Next, we describe the mathematical formulation of our tour construction problem, followed

by two solution approaches. Lastly, we discuss the rental prediction and the update procedures

on the bicycle statuses.

4.1.1. Tour Construction
We developed a bi-objective Mixed Integer Linear Program (MILP) formulation to construct a

tour visiting low power batteries. In Table 4.1 an overview of the used notation is given. The

problem can be formulated as an event-activity network, characterized by a directed graph

𝐺 = (𝑉 , 𝐸), where 𝑉 represents the set of nodes or vertices, and 𝐸 represents the set of arcs

or edges. First, the relevant sets, parameters, variables, and functions are defined. Next, the

exact mathematical model is presented, followed by a detailed description of the objective and

constraints.
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Table 4.1: Mathematical Notation

Set Description

𝑉 Set of nodes

𝑉 ′ Set of nodes without the depot, 𝑉 \ {0}
𝐸 Set of arcs

𝑇 Set of time periods

Parameter Description

𝑑𝑖𝑗 Distance between node 𝑖 and 𝑗
ℎ𝑖𝑗 Travel time between node 𝑖 and 𝑗
ℎservice Constant service time at a node

𝑤prod Constant product weight

𝑄veh Constant vehicle capacity

𝑎𝑠𝑡
𝑖 Availability of node 𝑖 in 𝑉 ′ for the swap operation at time period 𝑡

𝑎𝑟𝑡
𝑖 Availability of node 𝑖 in 𝑉 ′ for rentals at time period 𝑡

𝑏𝑡
𝑖 Battery level of node 𝑖 in 𝑉 ′ at time period 𝑡

𝑟𝑡
𝑖 Prize associated with visiting node 𝑖 in 𝑉 ′ at time period 𝑡

𝜋𝑡
𝑖 Penalty associated with visiting node 𝑖 in 𝑉 ′ at time period 𝑡

𝐻𝑡
max Maximum travel time of a tour at time period 𝑡

𝐷max Maximum distance of a tour

𝑣min Minimum amount of bicycles visited in a tour

𝑏max Maximum battery of bicycles included in a tour

Variable Description

𝑥𝑖𝑗 Binary variable indicating if arc (𝑖, 𝑗) is used
𝑦𝑖 Binary variable indicating if node 𝑖 is visited

Function Description

𝑓𝑡
𝑟(⋅) Function to calculate the prize associated with visiting node 𝑖

𝑓𝑡
𝜋(⋅) Function to calculate the penalty associated with not visiting node 𝑖

𝑓𝑡
𝑞(⋅) Function to calculate the quality of a constructed tour
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In our research, set 𝑉 is defined as the set of bicycle locations and the depot. The depot, at

which the batteries are charged, is indicated by index 0. In total, we have 𝑛 bicycle locations

𝑖 ∈ {0, ..., 𝑛}, all connected by an arc. Therefore, set 𝐸 includes an arc (𝑖, 𝑗) for every node 𝑖
and 𝑗. Those arcs are associated with a travel cost, corresponding to the distance, denoted by

𝑑𝑖𝑗. In addition, we introduce travel time ℎ𝑖𝑗 between node 𝑖 and 𝑗, based on the distance and

average speed.

Since we evaluate the performance of our model over multiple time periods, we define set

𝑇 = {1, ..., 𝑡max}. The swap availability 𝑎𝑠𝑡
𝑖, rental availability 𝑎𝑟𝑡

𝑖, battery level 𝑏𝑡
𝑖, prize 𝑟𝑡

𝑖

and penalty 𝜋𝑡
𝑖 of a node depend on time period 𝑡, to which the model is applied.

The tour constructed by the model is limited by a maximum duration 𝐻𝑡
max and distance

𝐷max. The distance requirement is based on the driving range of the vehicle used to perform

the tour. The duration is based on the working hours of the driver and therefore dependent on

time period 𝑡. This requirement ensures that the end time of the tour is within working hours.

The total duration is calculated as the sum of travel times plus the service times ℎservice of all

visited nodes. Due to the vehicle capacity, the total transported weight can be at most 𝑄veh.

In our problem, the product weights 𝑤prod are constant and independent of node 𝑖.
The decision variables are used to obtain the optimal tour. Binary variable 𝑦𝑖 represents

whether node 𝑖 is visited, and binary variable 𝑥𝑖𝑗 indicates whether arc (𝑖, 𝑗) is used in the

tour.

The aim is to obtain a solution that minimizes the travelled distance and maximizes the

total collected prize, taking the constraints into account. As the prizes depend on the current

status of every node individually, we calculate all prizes at the start of every time period as

𝑟𝑡
𝑖 = 𝑓𝑡

𝑟(𝑏𝑡
𝑖). Lastly, we impose two additional restrictions on the tour. We force the tour to

visit a minimum amount of nodes 𝑣min, and we do not include nodes with a remaining capacity

𝑏𝑡
𝑖 greater than 𝑏max. The following MILP can be defined:
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Minimize: ∑
(𝑖,𝑗)∈𝑉

𝑑𝑖𝑗𝑥𝑖𝑗 (4.1)

Maximize: ∑
𝑖∈𝑉 ′

𝑟𝑡
𝑖𝑦𝑖 (4.2)

s.t. ∑
𝑗∈𝑉

𝑥𝑖𝑗 = 𝑦𝑖, 𝑖 ∈ 𝑉 , 𝑖 ≠ 𝑗 (4.3)

∑
𝑖∈𝑉

𝑥𝑖𝑗 = 𝑦𝑗, 𝑗 ∈ 𝑉 , 𝑗 ≠ 𝑖 (4.4)

∑
𝑖∈𝑉 ′

𝑟𝑡
𝑖𝑦𝑖 − ∑

(𝑖,𝑗)∈𝐸
𝑑𝑖𝑗𝑥𝑖𝑗 ≥ 0 (4.5)

∑
(𝑖,𝑗)∈𝐸

ℎ𝑖𝑗𝑥𝑖𝑗 + ∑
𝑖∈𝑉 ′

ℎservice𝑦𝑖 ≤ 𝐻𝑡
max (4.6)

∑
(𝑖,𝑗)∈𝐸

𝑑𝑖𝑗𝑥𝑖𝑗 ≤ 𝐷max (4.7)

∑
(𝑖,𝑗)∈𝑆

𝑥𝑖𝑗 ≤ ∑
𝑗∈𝑆\𝑘

𝑦𝑗, 𝑆 ⊂ 𝑉 ′, 𝑘 ∈ 𝑆 (4.8)

∑
𝑖∈𝑉 ′

𝑣min𝑥0𝑖 ≤ ∑
𝑖∈𝑉 ′

𝑦𝑖 (4.9)

∑
𝑖∈𝑉 ′

𝑤prod𝑦𝑖 ≤ 𝑄veh (4.10)

∑
𝑖∈𝑉 ′

𝑦𝑖 ≤ 𝑀𝑦0 (4.11)

𝑦𝑖 ≤ 𝑎𝑠𝑡
𝑖, 𝑖 ∈ 𝑉 ′ (4.12)

𝑏𝑡
𝑖𝑦𝑖 ≤ 𝑏max, 𝑖 ∈ 𝑉 ′ (4.13)

𝑦𝑖 ∈ {0, 1}, 𝑖 ∈ 𝑉 ′ (4.14)

𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐸 (4.15)

The objective consists of two functions, referred to as a bi-objective formulation. The first

(4.1) minimizes the total travelled distance and the second (4.2) maximizes the total collected

prize. In addition, we add constraint (4.5) to ensure that the collected prizes exceed the travel

costs. These prizes are calculated using step-wise function 𝑓𝑡
𝑟(⋅) for every available node 𝑖

assigning higher prizes to nodes corresponding to a low battery level.

Next, we discuss all constraints. The first constraints (4.3) and (4.4) ensure that the

decision variables are correctly related. If an in- or outgoing arc is used for node 𝑖, it is visited

and 𝑦𝑖 must be equal to 1, else 𝑦𝑖 must be equal to 0. These constraints also ensure that a

node is visited at most once. Additionally, constraints (4.12) ensure that a node can be visited
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if it is available in the current time period. If not, the tour does not include this node and 𝑦𝑖

is forced to be 0. Constraint (4.13) ensures that nodes with a remaining capacity above 𝑏max

are not included in the tour.

Constraints (4.8) force every visited node to be connected to the depot. These represent

the subtour elimination constraints, proposed by Feillet, Dejax, and Gendreau [16]. If an edge

𝑖 ∈ 𝑉 ′ is visited, it is necessarily directly or indirectly connected to the depot. For 𝑛 locations,

the number of possible sets 𝑆 adds up to 2𝑛, i.e. the number of constraints grows exponentially.

Therefore, we start by relaxing these constraints and the resulting problem is solved to integer

optimality. Then, we test for subtours and if the solution contains subtours, the violated

constraints are added and the process is repeated until a feasible solution is found. Instead

of adding constraints for all the possible sets, only some constraints are added. In addition,

constraint (4.11) is used to ensure that the tour includes the depot if any node is visited. In

this constraint, 𝑀 refers to a large value.

Further, constraint (4.6) limits the tour duration, calculated as the total travel time plus

the service times of the visited nodes. In addition, constraint (4.7) limits the distance of

the tour. As the vehicle has a limited driving range, the total travelled distance is bounded.

Constraint (4.9) ensures that we either visit zero nodes, or at least the minimum amount 𝑣min.

Lastly, constraint (4.10) imposes the vehicle capacity. As the product weights are all equal,

this constraint limits the maximum number of nodes we visit.

Constraints (4.14) and (4.15) are the variable restrictions imposing binary variables.

4.1.2. Solution Approach 1: Mono-objective Mathematical Model
In this section, we discuss the most common reformulation of the bi-objective model, a linear

scalarization of the objectives. In our literature review (3), we introduced the PTP. We adapt

our objective as follows:

Minimize: ∑
(𝑖,𝑗)∈𝐸

𝑑𝑖𝑗𝑥𝑖𝑗 + ∑
𝑖∈𝑉 ′

𝜋𝑡
𝑖(1 − 𝑦𝑖) (4.16)

As can be seen in equation (4.16), the travel costs and the penalties incurred by not visiting

a node are minimized. In contrast to the original formulation (4.1-4.15), we use penalties for

not visiting instead of prizes for visiting a node. These penalties are calculated similarly:

𝜋𝑡
𝑖 = 𝑓 𝑡

𝜋(𝑎𝑠𝑡
𝑖, 𝑏𝑡

𝑖) = 𝑓𝑡
𝑟(𝑎𝑠𝑡

𝑖, 𝑏𝑡
𝑖).

In our first solution approach, the linear objective (4.16) is implemented and constraints

(4.3-4.15) remain in the formulation.
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4.1.3. Solution Approach 2: Local Search
In Section 3 it was stated that the bi-objective TSP, PTP, and PCTSP are 𝒩𝒫-hard. There-

fore, it is unlikely that an exact solution can be found for large instances. To obtain solutions

in a reasonable time, we propose an alternative solution method based on a LS. This method

does not use additional computational software. The initial solution is constructed in a greedy

way by iteratively adding nodes to the tour while taking the constraints into account. The

second step is to perform improvement steps to tighten the upper bound on the problem. In

this section, more details on this LS heuristic are given.

Initialization Heuristic

The initialization heuristic is based on the insertion method. Note that the insertion of a node

𝑦𝑖 to the tour corresponds to an increase in both collected prizes and costs. To measure the

quality of the constructed tour, we define a formula assigning a score based on the prizes that

are currently collected. Further, the costs of the tour are taken into account. Assume that

𝑦𝑖 = 1 for all nodes included in the tour, and 𝑥𝑖𝑗 = 1 for all arcs (𝑖, 𝑗). The resulting formula

to measure the quality is stated in equation (4.17).

𝑓𝑡
𝑞(⋅) = ∑

𝑖∈𝑉 ′
𝑟𝑡

𝑖𝑦𝑖 − ∑
(𝑖,𝑗)∈𝐸

𝑑𝑖𝑗𝑥𝑖𝑗 (4.17)

The constructed tour depends on the first inserted node, which we randomly choose from

a sorted priority list. The list contains nodes that have the highest priority and prizes, inde-

pendent of the travel costs. Once the first node is set, we start adding new nodes based on the

cheapest insertion method. The tour construction stops if adding new nodes does not yield

improvement. Then, the constructed tour is added to the list of initial tours if no constraints

are violated. In Algorithm 2 an overview of the initialization heuristic is given.

Algorithm 2 Initialization Heuristic Algorithm

1: sorted ← Generate a sorted priority list of nodes.
2: initialTours← Create an object to store the initial tours.
3: for 𝑖 ← 1 to #Starts do
4: 𝑛0 ← Select a random node from sorted
5: sorted← Delete 𝑛0 from sorted
6: currTour ← Construct a new tour starting and ending at the depot, visiting 𝑛0
7: while Improvement and tour constraints not violated do
8: currTour ← Add node based on Cheapest Insertion

9: initialTours ← Add currTour to initialTours
10:
11: Return: initialTours
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Next, we discuss the cheapest insertion method in more detail. Each time we insert a new

node, the profit/cost ratio is maximized. We denote the profit of adding a node as 𝛿𝑝
𝑖 and costs

as 𝛿𝑐
𝑖 . The costs are calculated as the additional travel costs of visiting node 𝑖. Once we decide

to insert a node, we choose the best spot in the current tour, for which 𝛿𝑐
𝑖 is minimized. The

profit is equivalent to the corresponding prize 𝑟𝑡
𝑖. In Algorithm 3 an overview of the cheapest

insertion method is given.

Algorithm 3 Cheapest Insertion Algorithm

1: bestRatio ← Create an object to store the best profit/cost ratio of inserting a node.
2: bestNode ← Create an object to store the node corresponding to the bestRatio.
3: bestSpot ← Create an object to store the best spot to insert the bestNode.
4: for 𝑖 ← 1 to #AvailableNodes do
5: for all spots in the tour between node 𝑟 and 𝑠 do
6: 𝛿𝑝

𝑖 ← 𝑟𝑡
𝑖

7: 𝛿𝑐
𝑖 ← 𝑑𝑟𝑖 + 𝑑𝑖𝑠 − 𝑑𝑟𝑠

8: if 𝛿𝑝
𝑖 /𝛿𝑐

𝑖 ≥ bestRatio then
9: bestRatio ← 𝛿𝑝

𝑖 /𝛿𝑐
𝑖

10: bestNode ← Node 𝑖
11: bestSpot ← Between node 𝑟 and node 𝑠
12:
13: Return: bestNode, bestSpot

The initialization heuristic is performed multiple times due to the greedy component of

adding the first node from a priority list. As we use a multi-start mechanism, we obtain mul-

tiple initial solutions to which we apply the improvement heuristic.

Improvement Heuristic

The solutions of the initialization heuristics can be enhanced using the improvement heuristic.

In most cases, changing the tour leads to an improvement of one of the objectives at the expense

of the other. Therefore, during the improvement phase, we use equation (4.17) to measure the

quality of the solution. Four operations are included in our heuristic to improve the current

tour by resequencing, replacing, deleting, or adding nodes. The heuristic is designed to avoid

the solution from being stuck at a local optimum and prevent cycling.

During the procedure, many potential tours are constructed. As some of the operations

cause a score decrease to avoid local optima, we store interim solutions. Note that a solution

is stored if it belongs to the class of best solutions found. The stopping criterion is based on

the scores of two successive iterations. The algorithm terminates if the score does not increase,

and no improvement has been found. If the best found solution yields a positive quality score

based on equation (4.17), the tour will be performed. In Algorithm 4 an overview is given.
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Algorithm 4 Improvement Heuristic

1: currBest ← Create an object to store the best solution found
2: Operations ← {Resequence, Replace, Deletion, Addition}
3: for 𝑖 ← 1 to #InitialTours do
4: currTour ← Initial tour 𝑖
5: while Improvement between two successive iterations do
6: for Op in Operations do
7: while Improvement do
8: currTour ← Op

9: if currTour outperforms currBest then
10: currBest ← currTour
11:
12: Return: currBest

Resequencing

The first step of the improvement heuristic is resequencing the tour. This operation cannot

deteriorate the solution, as costs can decrease and the collected prize does not change. It is

the most widely used heuristic method for classic TSPs and is referred to as 𝑘-opt [21]. It can

be described as an attempt to improve the solution by changing the sequence of 𝑘 nodes in the

tour. In our research, we limit ourselves to the 2-opt with regard to the computation time.

We resequence two nodes not necessarily directly connected by an arc and carry out the

operation corresponding to the highest score increase. If changing the sequence of two nodes

does not yield improvement, we continue with the replacement operation.

Replacement

The second step attempts to improve the solution by replacing a node in the tour with a node

outside the tour. We consider the variant of replacement in which we decide to replace a node if

and only if the score calculated by equation (4.17) increases. We replace the node corresponding

to the largest score increase and repeat this step until no improvement is possible.

Deletion

The third step considers the deletion of nodes. In this step, we delete at least one node. This

can lead to an increase or a decrease, considering equation (4.17). Apart from the first, we

delete nodes corresponding to a score increase until no improvements are possible.

Addition

The last step evaluates whether it is profitable to add nodes that are currently not in the

tour. Based on the profit/cost ratio, we insert nodes. Using equation (4.17), we evaluate

whether adding the best-found candidate leads to an improvement. Nodes are added until no

improvements are possible or the vehicle capacity is reached.
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4.1.4. Rental Simulation
In the DES, we attempt to accurately simulate new rental periods based on historical data. The

rentals of all bicycles are assumed to be independent and generated separately. We describe a

rental by the start time, the end time, the duration, and the travelled distance.

The first evaluation of our data showed seasonality. We assume that demand for bicycles

depends on two factors related to time: the day of the week, and the time of the day. Further,

we take weather conditions into account, as people tend to prefer cycling in good conditions.

We distinguish between 𝐵𝑎𝑑 and 𝐺𝑜𝑜𝑑 weather, which is described later. In Table 4.2 an

overview is given. In total, we distinguish between 56 situations.

Table 4.2: Demand Situation Specification

Factor Categories
Day Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Time [6am, 10am], [10am, 2pm], [2pm, 6pm], [6pm, 10pm]
Weather Bad, Good

Each time period 𝑡 corresponds to one of the specified situations on which the probability

of a rental depends. Next, we address the three main questions: What is the probability that

bicycle 𝑖 is rented in time period 𝑡? Given that is it rented, what is the duration of the rental?

Given that it is rented, what is the travelled distance?

Probability of Rentals

For each bicycle, we need to estimate the probability of a rental in time period 𝑡. As introduced,

we distinguish between different situations based on the day, time, and weather. To calculate

𝑝𝑡
rental, we evaluate all rentals in our historical data and formulate this probability as follows.

Note that a situation occurs more than once in our historical data. For each situation, we

evaluate the number of times a bicycle was actively participating in the network, and the

number of times a rental period was started. By dividing those values, we determine the

probability of a rental.

Prediction Duration and Travelled Distance

The rental duration is also dependent on the specified situations, and we estimate the prob-

ability distribution based on our historical data. Then, samples from the learned probability

distribution can be drawn in the DES. Similarly, we estimate the probability distribution of

the travelled distance.

In our initial data analysis, we tested for a correlation between duration and distance. As

the results showed a significant correlation, we introduce a method to draw a sample from
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correlated random variables.

The joint cumulative distribution function (CDF) is approximated using the Gaussian

copula. The key property of a copula correlation model is preserving the original marginal

distributions while defining a correlation between them, first described by Sklar [43]. Based

on the marginal CDFs and the correlation coefficient, the joint CDF is approximated. The

general procedure can be explained in three steps and an overview is given in Algorithm 5.

Algorithm 5 Sampling Correlated Variables using Gaussian Copula

1: Draw 𝑍 = (𝑍1, 𝑍2) ∼ 𝒩(𝜇, Σ), where 𝜇 is the mean and Σ(⋅) is the correlation matrix.
2: Set 𝑈𝑖 = Φ(𝑍𝑖) for 𝑖 = 1, 2, where Φ is the standard normal CDF.
3: Set 𝑌𝑖 = 𝐹 −1

𝑖 (𝑈𝑖) for 𝑖 = 1, 2, where 𝐹 −1
𝑖 (⋅) is the inverse of the marginal CDF of variable 𝑖.

The first step is to draw a sample from a normal distribution using the constant correlation

coefficient 𝜌 between the duration and distance. The mean is given by 𝜇 = [0
0], and the

correlation matrix by Σ = [1 𝜌
𝜌 1] .

The resulting correlated normal variables 𝑍 = (𝑍1, 𝑍2) are transformed into correlated

standard normal variables using the standard normal CDF (Φ(⋅)). The resulting random

variables 𝑈𝑖 are dependent and uniformly distributed over [0, 1]. Lastly, we perform inverse

transformation sampling using the inverse of the marginal CDF of both variables separately.

The resulting 𝑌𝑖 variables are drawn from the original marginal distributions and correlated.

Given that a bicycle is rented in the considered time period, we predict the duration and

travelled distance by this procedure. The end time follows from the start time and duration.

In Section 6 we discuss the estimation of the marginal distributions and elaborate further on

this procedure.

4.1.5. Update Procedures

An important part of the DES is the status of all bicycles. In this section, we describe the

update procedures regarding the availability (𝑎𝑠𝑡
𝑖, 𝑎𝑟𝑡

𝑖) and battery levels (𝑏𝑡
𝑖). The updates are

based on constructed tours and rental periods. Variable 𝑎𝑠𝑡
𝑖 is equal to 1, if bicycle 𝑖 is available

for the swap procedure in time period 𝑡. Variable 𝑎𝑟𝑡
𝑖 is equal to 1, if bicycle 𝑖 is available for

rentals in time period 𝑡. Variable 𝑏𝑡
𝑖 indicates the remaining battery level in kilometers. Note

that 𝑎𝑟𝑡
𝑖 is equal to 0, if 𝑏𝑡

𝑖 is less than the minimum required battery level 𝑏𝑙𝑜𝑤.

The construction of a tour is the first event resulting in a status update. We determine at

which time period a bicycle is visited due to the travel time, and update the battery level to

the maximum once it is visited.
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The second event changing the status of a bicycle is a rental period. Each time period we

consider the rental available bicycles and simulate new rentals. In the update procedure, we

include the bicycles rented in period 𝑡. During the rental period, bicycles are not available for

swaps or new rentals and the statuses are adapted accordingly. The remaining battery level is

reduced with the simulated travelled distance.
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Data

In this chapter, a detailed description of the available data is given. First, a dataset regarding

the fixed locations is described, and second, a dataset on all bookings is explained. The datasets

are provided by Cargoroo, which is a rental company of e-cargo bicycles. Lastly, we discuss an

additional dataset on weather conditions to make our data complete.

5.1. Fixed Locations
Each bicycle has a fixed location, explained by longitude and latitude, at which the battery

must be swapped. In Table 5.1 an overview of the dataset is given. Each row corresponds to

a location, described by the Station ID, City, Longitude, and Latitude.

Table 5.1: Data Sample Locations

Station ID City Longitude Latitude
1 100 Amsterdam 4.889184 52.356905
2 101 Amsterdam 4.888288 52.356273
3 14 The Hague 4.289448 52.083572
4 15 The Hague 4.290488 52.080733
5 206 Utrecht 5.117606 52.063138
6 207 Utrecht 5.116863 52.064704

In this research, we consider three different cities. In total, we have 293 bicycle locations,

of which 121 are in Amsterdam, 78 in The Hague, and 94 in Utrecht.

5.2. Bookings
The dataset that contains all bookings is structured as follows. Each row corresponds to a

booking, which includes: the unique Booking ID, the Start time, the End time, the Duration,

the Distance travelled, and the Station ID. The data provides inside into the historical rental

periods and customer behaviour. In Table 5.2 a sample of the dataset is shown.

25
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Table 5.2: Data Sample Bookings

Booking ID Start End Dur. (sec) Dist. (km) Station ID
1 6bcc5-0d60 6/26/21, 09:42 6/26/21, 12:51 11352 22.49 212
2 cd138-d569 6/26/21, 13:19 6/26/21, 16:19 10827 12.83 212
3 4b218-7053 6/26/21, 19:55 6/26/21, 20:21 1573 1.10 212
4 d3bc3-1bda 7/01/21, 17:43 7/01/21, 18:17 2072 6.26 212
5 75849-4c26 7/02/21, 15:08 7/02/21, 16:07 3532 1.37 212
6 302c5-f619 7/03/21, 09:27 7/03/21, 12:19 10296 9.56 212

Before processing the dataset, it contains 130537 recorded bookings, of which 38977 in

Amsterdam, 58008 in The Hague, and 33552 in Utrecht. The data includes exactly one year

of recorded bookings, between July 2021 and June 2022. In Appendix A, an overview of our

filters regarding a valid booking is given. The data is cleaned and erroneous observations, or

observations not matching our assumptions, are excluded.

The duration of the filtered bookings ranges from 598 seconds (10.0 minutes) to 51862
seconds (15.5 hours), and the travelled distance from 0.5 kilometers to 49.9 kilometers.

5.3. Weather Conditions
In this section, we discuss an additional dataset, which is not provided by Cargoroo. This open

source dataset is obtained from the Koninklijk Nederlands Meteorologisch Instituut (KNMI1)

and contains information on the weather condition of a specific day. Based on this data, we

evaluate whether a booking was made on a day with bad or good weather. In Table 5.3, part

of the dataset is shown.

Table 5.3: Data Sample Weather

City Date Temp. (∘C) Precipitation dur. (h) Precipitation (mm)
1 Utrecht 20/10/2020 11.7 1.2 0.3
2 Utrecht 21/10/2020 15.4 9.5 8.6
3 Utrecht 22/10/2020 13.9 0.5 0.5
4 Utrecht 23/10/2020 12.0 0.0 0.0
5 Utrecht 24/10/2020 13.9 0.6 0.2
6 Utrecht 25/10/2020 12.1 1.4 4.1

We use three different measures to describe the weather, one regarding temperature and two

regarding precipitation. The mean temperature over one year is 10.8 ∘C. Daily, the average

precipitation duration is 1.8 hours and the precipitation is 2.4 millimeters. A booking is

considered to be made on a 𝐺𝑜𝑜𝑑 weather day if the temperature is greater or equal than

7.5 ∘C, the precipitation duration is less than 3 hours, and the precipitation is less than 2
millimeters. If one of those criteria does not hold, a booking is made on a 𝐵𝑎𝑑 weather day.
1https://www.knmi.nl/nederland-nu/klimatologie/daggegevens

https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
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Results

In this chapter, the computational results for our introduced methods are evaluated on three

different instances. We evaluate the performances and analyze the influence of the parameters.

Further, we consider the managerial trade-off between the battery levels and the travel time

to swap the batteries.

The mathematical models are coded in Java (Eclipse IDE for Java Developers version

4.24.0) and CPLEX (version 20.1.0), and run on a single thread of a 11th Gen Intel(R)

Core(TM) i5-1135G7 CPU with 32GB of RAM. We solve the instances until an optimality

gap of 0.01% is reached. Furthermore, we impose a time limit of 5 minutes per time period

on each instance. If we are not able to solve one of the time periods within our time horizon,

we do not obtain solutions on performance indicators as the method is terminated. Next, we

describe the instances and discuss the results.

6.1. Test Instances
The data discussed in Section 5 describe the rentals in Amsterdam, The Hague, and Utrecht.

The rental systems operate independently, and we evaluate the performance of our methods on

each city separately. Each city contains a different amount of bicycles, and the instance sizes

vary. First, we address the instances followed by the probability distributions of the travelled

distance and duration.

6.1.1. Locations
Each instance has a specific spread of bicycles over the city. In Figure 6.1 a geographic overview

is given. In this figure, the depot is marked with a green square. We observe a varying density,

as the bicycles in some regions are sparse. It is likely that swapping those batteries is relatively

27
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costly, as a lot of travelling comes along. An interesting remark is that no bicycles are located

in the centre of all cities due to governmental policies. To prevent the street scene from being

compromised, there is a prohibition to locate the bicycles in the heart of the centre. In The

Hague, the prohibition does not hold for the depot as can be seen in Figure 6.1b. The depot

of Utrecht is located on the outskirts of the city, requiring the swapper to travel a lot. The

average, minimum, and maximum distances of the instances are given in Appendix B.

Figure 6.1: Locations of e-cargo bicycles

(a) Amsterdam

(b) The Hague

(c) Utrecht
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6.1.2. Probability Distributions
The DES depends on the probability distribution of the rental duration and travelled distance,

and we assume that the demand depends on the situations described in Section 4.1.4. Figure

6.2 shows the histograms of the travelled distance (6.2a) and the duration (6.2b) aggregated

over all situations and bicycles. Both histograms are right skewed and long tailed.

Figure 6.2: Histograms of travelled distance and rental duration based on historical bookings

(a) Travelled distance (b) Rental duration

In our analysis, we evaluated different probability distribution functions to fit our data.

The results show that the lognormal distribution fits the travelled distance and duration best.

Therefore, for each situation, we estimated the means 𝜇dis
log and 𝜇dur

log , and standard deviations

𝜎dis
log and 𝜎dur

log (Appendix C). The distribution is continuous and takes only positive real values.

These properties are suited for our simulation. In Figure 6.3 a scatter plot of the distance and

duration is shown. We observe a positive correlation, highlighted by the regression line. The

correlation coefficient used in the Gaussian copula method is 𝜌 = 0.561.

Figure 6.3: Scatter plot of travelled distance and rental duration with a regression line
through the origin
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6.2. Numerical Results
In this section, we discuss the results on the introduced instances. First, the parameter settings

are given followed by the corresponding results. The results of the exact mathematical model

and the heuristic approach are discussed separately.

6.2.1. Parameter Settings
In this research, the aim is to create an efficient tour for a battery swapper. To evaluate the

performance of our methods, we use a DES with a time horizon of 10 weeks. We consider 3360
time periods of 30 minutes each. Furthermore, bicycles can be rented by customers between

7am and 10pm, and swappers work from 6am to 10pm.

In our formulation, several parameters are included as given in Table 4.1. The service

time (ℎservice) is equal to 3 minutes, the product weight (𝑤prod) is equal to 1 and the vehicle

capacity (𝑄veh) is equal to 16. Further, we calculate the maximum duration of a tour based

on the current time period. For example, starting a tour at 9pm corresponds to a 𝐻𝑡
max of

one hour. If the working hours are not limiting, we impose a maximum of 3 hours. Further,

the distances (𝑑𝑖𝑗) are calculated using the Distance Matrix Service of Google Maps Platform1.

Based on those distances, we calculate the travel times (ℎ𝑖𝑗) using an average speed of 15km/h.

Lastly, the maximum tour length (𝐷max) is 100 kilometers.

The prizes (𝑟𝑡
𝑖) and penalties (𝜋𝑡

𝑖) depend on the battery statuses in each time period, and

are scaled to the travel distances in meters. In Appendix D the definition and plot of stepwise

function 𝑓𝑡
𝑟(⋅) = 𝑓𝑡

𝜋(⋅) can be found.

Parameters 𝑣min and 𝑏max are used to formulate different strategies. Varying over these

parameters affects the tour lengths and the average battery levels over time. The results are

based on the settings for which 𝑣min ∈ {10, 13, 16} and 𝑏max ∈ {40, 50, 60, 70}. As rental periods

depend on the weather conditions, we distinguish between good and bad weather conditions

as defined in Section 5. In total, we evaluate the results of 24 settings.

Further, the results are based on 100 runs to correct for the randomness of the rental

periods. For example, the number of tours is calculated as the average over 100 simulations of

10 weeks.

Lastly, we define the number of starts for the initialization heuristic of the LS. The method

has a multi-start mechanism and constructs at most 16 initial tours. Then, the improvement

heuristic is applied to those tours.

1https://developers.google.com/maps/documentation/distance-matrix

https://developers.google.com/maps/documentation/distance-matrix


6.2. Numerical Results 31

6.2.2. Profitable Tour Problem Results
First, we evaluate the results of the proposed exact mathematical method. As introduced in

Section 4.1.4, we distinguish between different weather conditions. Table 6.1 shows the results

in times of bad weather and Table 6.2 in times of good weather.

Table 6.1: Overview of the PTP model results with bad weather conditions averaged over 100
complete DES runs. It includes the average battery levels of all rental available bicycles, the
average time spent to swap one battery, the average number of batteries replaced per tour,
the number of tours, the number of times a battery level crosses the threshold 𝑏low, and the

number of times a bicycle is empty

Min. Tour Length (𝑣min) 10 13

Max. Battery Level (𝑏max) 40 50 40 50

City: Amsterdam
Avg. Battery (%)1 67.5 75.3 - -
Avg. Trav. time (min)2 9.9 9.7 - -
Avg. Visits per tour3 10.2 10.1 - -
Tot. Trav. time (h)3 168 201 - -
Nr. Tours3 77 93 - -
Nr. Below 30%3 259 106 - -
Nr. Empty 0%3 11 6 - -
Comp. time (sec)4 25.0 33.7 - -

City: The Hague
Avg. Battery (%)1 66.4 74.6 - -
Avg. Trav. time (min)2 7.0 7.1 - -
Avg. Visits per tour3 10.2 10.1 - -
Tot. Trav. time (h)3 82 100 - -
Nr. Tours3 48 59 - -
Nr. Below 30%3 181 76 - -
Nr. Empty 0%3 7 4 - -
Comp. time (sec)4 10.7 13.7 - -

City: Utrecht
Avg. Battery (%)1 67.1 75.0 66.5 74.3
Avg. Trav. time (min)2 8.4 8.4 7.1 7.2
Avg. Visits per tour3 10.2 10.2 13.3 13.2
Tot. Trav. time (h)3 114 138 100 122
Nr. Tours3 59 71 45 54
Nr. Below 30%3 209 86 227 101
Nr. Empty 0%3 9 5 9 6
Comp. time (sec)4 9.7 13.2 23.1 33.7

1 of all rental available bicycles over 10 weeks
2 average time to swap one battery over 10 weeks

3 over/in 10 weeks 4 to solve one complete DES (10 weeks)

The results of the PTP show that our model is not able to obtain solutions within our time

limit of 5 minutes per time period on each instance. We observe that the model reaches the

time limit with the parameter settings 𝑣min = 16, 𝑏max = 60%, or 𝑏max = 70%.

First, we discuss the results corresponding to 𝑣min = 10. Recall that 𝑏max corresponds

to the maximum battery level allowed to be included in the tour, and 𝑏low to the minimum

required battery level to start a rental.
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For each instance, we observe similar results on the average battery levels, which are ap-

proximately 67% and 75% for 𝑏max = 40% and 𝑏max = 50% respectively. The effect of changing

𝑏max is that batteries of higher levels are allowed to be swapped if it is beneficial relative to the

extra travel costs. In addition, we observe that the number of bicycles reaching a battery level

below 𝑏low = 30% decreases considerably by 58.6% averaged over the instances if we increase

𝑏max. This is at the expense of an average increase in the number of tours of 20.2%. Per

tour, the average number of visited bicycles does not change for a different 𝑏max. Hence, more

batteries are swapped over the time horizon.

The instance corresponding to the network of Utrecht shows results for 𝑣min = 13. The av-

erage travel time spent to swap one battery decreases by 15% due to extended tours. However,

this comes with an increase in the number of battery levels crossing threshold 𝑏low = 30% as

we postpone the performance of a tour. Further, we construct 23% fewer tours and the total

travel times decrease by 13%, emphasizing the efficiency gain of tours visiting more bicycles.

The results show different computation times and increase with the instance size and pa-

rameter 𝑣min. The largest instance (Amsterdam) shows the highest computation times, and the

smallest instance (The Hague) shows the lowest computation times. Increasing the instance

size and minimum tour length both lead to more participating bicycles in the tour construction

method. Therefore, it comes with more possible subtours which mainly cause the increase in

computation time of our exact model. For every violated subtour, the elimination constraints

are added and the model is resolved. A minimum tour length of 𝑣min = 16 causes the time

limit to be reached for each instance due to this time consuming iterative procedure.

Table 6.2 shows the results of our PTP model in times of good weather. Since customers

rent a bicycle more often, the number of rental periods increases. In addition, both the average

travelled distance and rental duration increase. As a result, the total travelled distance in our

time horizon of 10 weeks increases.

First, we evaluate the number of tours performed by the swapper. On average, 44% more

tours are constructed and the total travel time shows an increase of 44%. It follows that the

average travel time per tour is similar. Further, the average time spent to visit one bicycle is

not affected.

Next, we consider the effect on the average battery levels. The results show an absolute

difference of at most 0.5%, corresponding to the instance of Utrecht with 𝑣min = 13 and

𝑏max = 50. Constructing more tours thus succeeds in compensating for the increase in demand.

Despite the unchanged average battery levels, we observe a difference in the number of
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Table 6.2: Overview of the PTP model results with good weather conditions averaged over
100 complete DES runs. It includes the average battery levels of all rental available bicycles,
the average time spent to swap one battery, the average number of batteries replaced per

tour, the number of tours, the number of times a battery level crosses the threshold 𝑏low, and
the number of times a bicycle is empty

Min. Tour Length (𝑣min) 10 13

Max. Battery Level (𝑏max) 40 50 40 50

City: Amsterdam
Avg. Battery (%)1 67.4 75.1 - -
Avg. Trav. time (min)2 9.8 9.7 - -
Avg. Visits per tour3 10.3 10.2 - -
Tot. Trav. time (h)3 243 313 - -
Nr. Tours3 111 134 - -
Nr. Below 30%3 430 197 - -
Nr. Empty 0%3 24 15 - -
Comp. time (sec)4 44.9 44.2 - -

City: The Hague
Avg. Battery (%)1 66.3 74.3 - -
Avg. Trav. time (min)2 7.0 7.0 - -
Avg. Visits per tour3 10.2 10.2 - -
Tot. Trav. time (h)3 119 143 - -
Nr. Tours3 70 84 - -
Nr. Below 30%3 295 141 - -
Nr. Empty 0%3 16 10 - -
Comp. time (sec)4 25.2 28.9 - -

City: Utrecht
Avg. Battery (%)1 67.0 74.7 66.1 73.8
Avg. Trav. time (min)2 8.3 8.4 7.1 7.1
Avg. Visits per tour3 10.3 10.3 13.4 13.3
Tot. Trav. time (h)3 166 199 145 175
Nr. Tours3 85 102 64 78
Nr. Below 30%3 344 161 372 181
Nr. Empty 0%3 19 11 19 12
Comp. time (sec)4 12.3 15.8 27.8 50.7

1 of all rental available bicycles over 10 weeks
2 average time to swap one battery over 10 weeks

3 over/in 10 weeks 4 to solve one complete DES (10 weeks)

(near) empty batteries. For example, the instance corresponding to Amsterdam shows an

increase of 75.9% in the number of batteries below 30% and shows 134% more empty batteries.

As bicycles with a remaining battery level below 30% are not rental available, we want to

prevent this from occurring. We observe that these situations occur often for each instance,

so we want to swap the batteries earlier. Increasing the battery participation level 𝑏max allows

for earlier battery swaps and avoids risk. Unfortunately, due to the computational complexity

of the subtour elimination constraints, we do not obtain those results within our time limit.

Compared to the results with bad weather conditions, we observe higher computation times

to solve one complete DES which is in line with the increased number of tours and rentals.
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6.2.3. Local Search Results
Next, we evaluate the results of the proposed heuristic method. Table 6.3 corresponds to the

results in times of bad weather conditions and Table 6.4 in times of good weather conditions.

The LS is able to find a solution within the time limit for all parameter settings in contrast to

our exact model.

Table 6.3: Overview of the LS results with bad weather conditions averaged over 100
complete DES runs. It includes the average battery levels of all rental available bicycles, the
average time spent to swap one battery, the average number of batteries replaced per tour,
the number of tours, the number of times a battery level crosses the threshold 𝑏low, and the

number of times a bicycle is empty

Min. Tour Length (𝑣min) 10 13 16

Max. Battery Level (𝑏max) 40 50 60 70 40 50 60 70 40 50 60 70

City: Amsterdam
Avg. Battery (%)1 67.1 74.5 78.4 81.0 66.3 73.4 77.3 80.1 64.3 70.5 74.3 76.9
Avg. Trav. time (min)2 11.8 11.0 9.8 8.7 10.9 10.2 9.3 8.5 10.2 9.7 9.1 8.4
Avg. Visits per tour3 11.3 11.4 11.6 12.2 14.2 14.3 14.4 14.5 16.0 16.0 16.0 16.0
Tot. Trav. time (h)3 152 168 174 178 137 153 161 169 122 135 146 154
Nr. Tours3 69 81 92 101 53 63 72 82 44 52 60 68
Nr. Below 30%3 278 134 92 77 312 161 108 89 393 239 174 148
Nr. Empty 0%3 11 7 6 5 12 8 6 5 13 9 7 6
Comp. Time (sec)4 0.4 0.5 0.9 1.8 0.5 0.6 1.1 2.2 1.0 1.3 2.0 3.1

City: The Hague
Avg. Battery (%)1 66.2 74.1 78.5 81.6 65.5 73.2 77.7 81.1 64.6 72.1 76.7 80.2
Avg. Trav. time (min)2 9.6 9.3 8.6 7.8 8.7 8.5 8.0 7.4 8.2 8.0 7.6 7.2
Avg. Visits per tour3 10.7 10.8 11.1 11.7 13.8 13.9 14.0 14.1 16.0 16.0 16.0 16.0
Tot. Trav. time (h)3 78 91 99 104 70 81 90 98 64 75 84 92
Nr. Tours3 46 54 63 69 35 42 48 56 29 35 41 48
Nr. Below 30%3 188 84 51 40 205 96 59 44 229 113 69 50
Nr. Empty 0%3 7 4 2 3 8 5 3 3 8 5 4 3
Comp. time (sec)4 0.2 0.5 0.4 1.6 0.3 0.4 0.5 2.0 0.5 0.4 0.6 2.0

City: Utrecht
Avg. Battery (%)1 67.0 74.7 78.7 81.2 66.3 73.8 78.0 80.8 65.5 72.9 77.2 80.1
Avg. Trav. time (min)2 11.0 10.7 9.8 8.8 9.9 9.7 9.1 8.4 9.2 9.1 8.7 8.2
Avg. Visits per tour3 11.0 11.1 11.6 12.9 14.0 14.1 14.2 14.6 16.0 16.0 16.0 16.0
Tot. Trav. time (h)3 110 129 136 139 97 115 125 132 88 105 116 126
Nr. Tours3 55 65 72 74 42 50 58 65 36 43 50 58
Nr. Below 30%3 214 92 56 44 237 106 63 49 262 124 74 53
Nr. Empty 0%3 8 6 4 3 9 5 4 3 10 6 4 4
Comp. time (sec)4 0.2 0.3 0.5 1.2 0.3 0.3 0.6 1.4 0.4 0.4 0.7 1.6
1 of all rental available bicycles over 10 weeks 2 average time to swap one battery over 10 weeks 3 over/in 10 weeks 4 to solve one complete DES (10 weeks)

First, we discuss the average battery levels for the three instances and different parameter

settings. For a minimum tour length of 𝑣min = 16, the results corresponding to Amsterdam

differ from The Hague and Utrecht. Independent of 𝑏max, this instance shows lower battery

levels. Further, we observe high values for the average time spent on swapping one battery.

These results suggest that it is more costly to swap one battery due to the travel costs. To
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compensate for these costs, the collected prize must be larger to construct a profitable tour.

Therefore, batteries of lower levels are observed compared to the other instances. In addition,

fewer tours are constructed in Amsterdam relative to the instance size due to these higher

travel costs.

Next, we evaluate the effect of parameter 𝑣min. Each instance shows that the number

of tours, and average time spent to swap one battery decrease if the minimum tour length

increases. This result emphasizes the efficiency of visiting more bicycles in one tour, as less

time is spent travelling up and down to the depot. Although efficiency increases with regard to

the travel time, we observe that, mainly in Amsterdam, the number of (near) empty bicycles

is related to the minimum tour length. Due to the construction of fewer tours, it is more likely

that a battery level drops below 30% before it is swapped.

As discussed, the average travel time to swap one battery is related to the length of the

constructed tours and depends on the spread of bicycles over the city. In The Hague, we

observe smaller values, consistent with the smaller distances between the bicycles. In addition

to the minimum tour length, the participation level 𝑏max is also related. As we allow more

bicycles to be visited if we increase the 𝑏max, the total travel time increases and more tours

are constructed. Further, the average travel times per visited bicycle decreased. Therefore,

we observe that 𝑣min and 𝑏max are both negatively related to the average travel time spent to

swap one battery.

As bicycles cannot be rented with a battery level below 30%, we want (near) empty bat-

teries to prevent from occurring. The results show that 𝑏max is related to these performance

indicators, and this parameter has to be set carefully. Although increasing this parameter leads

to fewer empty batteries, we have to take the operational costs into account corresponding to

the number of tours and the total travel time. Both the number of tours and the total travel

time increase if we allow more bicycles to be visited by increasing 𝑏max. Further, the minimum

tour length 𝑣min is negatively related to the total travel time. As a result of large tours, the

total time spent travelling from the depot to the first nodes, and from the last nodes to the

depot decreases.

Lastly, the computational times are positively related to the instance size and the values

of 𝑣min and 𝑏max. Despite the increase, the LS method is solves all instances within 4 seconds

for each parameter setting.
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Table 6.4: Overview of the LS results with good weather conditions averaged over 100
complete DES runs. It includes the average battery levels of all rental available bicycles, the
average time spent to swap one battery, the average number of batteries replaced per tour,
the number of tours, the number of times a battery level crosses the threshold 𝑏low, and the

number of times a bicycle is empty

Min. Tour Length (𝑣min) 10 13 16

Max. Battery Level (𝑏max) 40 50 60 70 40 50 60 70 40 50 60 70

City: Amsterdam
Avg. Battery (%)1 66.9 74.1 78.1 80.8 65.8 72.8 76.8 79.6 63.0 68.9 72.2 75.3
Avg. Trav. time (min)2 11.7 10.9 9.8 8.9 10.9 10.2 9.4 8.6 10.1 9.7 9.2 8.6
Avg. Visits per tour3 11.6 11.7 11.9 12.4 14.5 14.6 14.6 14.7 16.0 16.0 16.0 16.0
Tot. Trav. time (h)3 219 241 252 259 199 219 233 244 171 191 205 218
Nr. Tours3 96 113 129 141 76 89 102 116 63 74 84 95
Nr. Below 30%3 459 243 168 139 507 278 197 163 645 427 339 280
Nr. Empty 0%3 23 17 13 11 26 17 14 12 30 22 19 17
Comp. time (sec)4 0.6 0.8 1.3 2.4 0.8 1.0 1.1 2.6 1.5 2.0 2.2 3.2

City: The Hague
Avg. Battery (%)1 66.0 73.8 78.1 81.4 65.0 72.7 77.3 80.7 63.9 71.3 76.0 79.6
Avg. Trav. time (min)2 9.6 9.2 8.6 7.9 8.7 8.5 8.0 7.5 8.2 8.0 7.7 7.2
Avg. Visits per tour3 10.9 11.1 11.3 11.8 14.0 14.1 14.2 14.3 16.0 16.0 16.0 16.0
Tot. Trav. time (h)3 113 130 141 150 101 117 129 140 92 107 121 132
Nr. Tours3 65 76 87 97 50 59 69 79 42 50 59 68
Nr. Below 30%3 303 153 97 74 326 171 111 83 360 198 129 94
Nr. Empty 0%3 15 10 8 6 16 11 8 7 17 12 9 7
Comp. time (sec)4 0.3 0.4 0.6 0.9 0.5 0.5 0.7 1.1 0.5 0.6 0.8 1.4

City: Utrecht
Avg. Battery (%)1 66.7 74.3 78.4 81.0 65.8 73.3 77.6 80.5 64.7 72.1 76.5 79.6
Avg. Trav. time (min)2 10.9 10.7 9.8 8.9 9.8 9.6 9.1 8.5 9.2 9.1 8.7 8.3
Avg. Visits per tour3 11.2 11.4 11.8 12.7 14.3 14.4 14.5 14.7 16.0 16.0 16.0 16.0
Tot. Trav. time (h)3 158 184 196 202 139 164 179 191 127 150 168 180
Nr. Tours3 77 91 102 107 60 71 82 92 52 62 72 82
Nr. Below 30%3 347 171 108 85 376 193 121 93 418 219 141 104
Nr. Empty 0%3 19 12 9 7 20 12 9 8 20 14 10 8
Comp. time (sec)4 0.4 0.5 0.7 1.2 0.5 0.6 0.9 1.4 0.6 0.7 1.0 1.7
1 of all rental available bicycles over 10 weeks 2 average time to swap one battery over 10 weeks 3 over/in 10 weeks 4 to solve one complete DES (10 weeks)

The good weather conditions come with more rental periods during our time horizon of 10

weeks. In addition, the travelled distance and duration per rental increase. As a result, we

observe a change in the number of constructed tours in comparison to the results in case of

bad weather conditions. For each instance, we observe for identical parameter settings that

the number of constructed tours increases by 37% on average. The total travel time of the

swapper increases by 44%, implying that the average tour duration increases.

Next, we evaluate the average number of bicycles visited per tour. As 𝑣min = 16 corresponds

to the maximum tour length, all tours are of length 16. Therefore, we consider the results

corresponding to the minimum tour length of 𝑣min = 10 and 𝑣min = 13. We observe for each

instance and parameter settings that slightly more batteries are swapped per tour in times of
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good weather conditions. In addition to this increase, we observe that less time is spent to

swap one battery. These results emphasize that the constructed tours are more efficient.

Despite the increase in the number of constructed tours, we observe that the number of

bicycles with a battery level below 𝑏low = 30% and empty batteries increase. As the travelled

distances of customers increase, higher battery levels are required to meet the demand. There-

fore, in times of good weather conditions, we have to swap more often to reach a high level of

customer satisfaction.

Lastly, the computational times increase at most 1 second for all instances and parameter

settings although more tours are constructed.





7
Conclusion

The main goal of this report is to develop a tour construction method for the battery swapper

of shared e-cargo bicycles. The bicycles are located at fixed locations and batteries must be

swapped between two rental periods. The aim is to develop a tour construction method that

leads to high battery levels and low operational costs.

Two tour construction methods are applied to three test instances, each with a different

instance size and spread of bicycles over the city. First, we formulate our problem as a PTP

with additional capacity constraints. The proposed exact mathematical model was not able

to solve the problem for all parameter settings due to the time consuming subtour elimination

constraints. The results showed high computational times in contrast to the second method, a

heuristic approach. The LS resulted in a solution for each instance and parameter setting, and

based on this approach we evaluated the effect of different strategies. We varied over different

minimum tour lengths and battery levels that were allowed to be included in the tour. It

was concluded that larger tour lengths lead to a more efficient swapping strategy in which

operational costs are kept to a minimum. The average time spent on swapping one battery

decreased significantly. We observe a trade-off between the number of constructed tours and

the average battery levels. A larger minimum tour length leads to less constructed tours and

to lower average battery levels. Lastly, the maximum battery level which we allow to swap

affects the average battery levels. We observe a non linear relation as allowing to swap high

power batteries do not increase the average battery level over time a lot. In our study, we

conclude that a tour visiting 16 bicycles and a maximum battery level allowed to be swapped

of 60% correspond to the best strategy.

To conclude, the heuristic approach constructs tours within seconds and the long term

performance of a strategy depends on the tour length and batteries allowed to swap.
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7.1. Future Research
In this chapter, remarks on this study are discussed and recommendations for the future

development of the tour construction method are given. As discussed in the previous chapters,

the DES in our study includes two events. First, we give some considerations on improving

the tour construction methods. Then, the simulation of rental periods is considered.

As discussed, the demand for rentals differs over time and depends on the weather con-

ditions. During the construction of a tour, we do not correct for this varying demand. The

decision is based on the current battery levels and travel costs but does not include a fore-

casting component. From our data analysis, we observe seasonality and have insight into the

situations corresponding to high demands. Therefore, one could anticipate future rentals. For

example, we observed that rental periods often occur on weekends. Based on this information,

we want the battery levels to be as high as possible at the start of the weekend to prevent

missing out on customers. For that reason, it can be beneficial to swap more batteries than

in periods of low demand. By adding a forecasting component, one could anticipate future

demands.

Further, the prizes and costs of the tour are independent of the instance in this study. Our

evaluation shows that the results of each instance with equal parameters differ. For example,

fewer tours are constructed in Amsterdam relative to The Hague and Utrecht due to the

average distances between bicycles. In general, the travel costs are higher, forcing the method

to collect more prizes corresponding to low power batteries. To obtain similar results, prizes

can be scaled to the distances of the considered instance.

Ultimately, we want to give some recommendations for the simulation of new rental periods.

In this study, we assume that customers do not have range anxiety, and do not anticipate

the remaining battery. Therefore, we observe a relatively high number of empty batteries.

However, if customers rent a bicycle they adjust their trip to the battery level. If the remaining

battery level does not satisfy the needs for their trip, they will decide not to rent a bicycle, or

rent another bicycle. The quality of our evaluation by means of a DES can be improved by

adding this component to the rental simulation.



A
Data Filters

Table A.1: Filters applied to the Bookings dataset

Property Minimum value Maximum value
Travelled distance (km) 0.5 50
Duration (min) 10 960
Start time 6am 22pm
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B
Travel Distances

Table B.1: Travel Distances

City Avg. distance (m) Min. distance (m) Max. distance (m)
Amsterdam 4111 99 17709
The Hague 2950 44 9227
Utrecht 3441 25 9340
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C
Parameters Probability Distributions

Table C.1: Mean Duration (𝜇dur
log ) values in case of bad weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 8.260810 8.435077 8.059138 8.016994
Tuesday 8.264027 8.398587 8.071291 8.036988
Wednesday 8.405646 8.543719 8.182139 8.16782
Thursday 8.278570 8.397970 8.080584 8.136701
Friday 8.442834 8.454481 8.269826 8.166757
Saturday 8.814560 8.780043 8.44628 8.142291
Sunday 8.874101 8.791601 8.413546 8.13105

Table C.2: Mean Duration (𝜇dur
log ) values in case of good weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 8.584947 8.630505 8.182656 8.101798
Tuesday 8.483255 8.584724 8.223148 8.133498
Wednesday 8.657630 8.745326 8.346959 8.310820
Thursday 8.613593 8.628987 8.234450 8.235183
Friday 8.699351 8.677748 8.462096 8.247460
Saturday 9.040236 8.971133 8.586354 8.172179
Sunday 9.184582 9.045665 8.521736 7.921578

Table C.3: Mean Distance (𝜇dis
log) values in case of bad weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 1.77577 1.84172 1.60023 1.65759
Tuesday 1.81973 1.80164 1.57141 1.63661
Wednesday 1.76354 1.81882 1.67226 1.60702
Thursday 1.76294 1.83090 1.58666 1.66574
Friday 1.82619 1.80208 1.71527 1.65347
Saturday 1.95201 2.01004 1.72890 1.72359
Sunday 2.02195 2.07315 1.81362 1.61273
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Table C.4: Mean Distance (𝜇dis
log) values in case of good weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 2.00913 2.02360 1.71631 1.68702
Tuesday 1.93062 1.96491 1.69957 1.71665
Wednesday 1.96182 2.01023 1.75357 1.8177588
Thursday 1.97626 1.96920 1.65511 1.76981
Friday 2.00687 1.93408 1.77862 1.71911
Saturday 2.16209 2.16784 1.88342 1.75311
Sunday 2.32874 2.24900 1.89557 1.61836

Table C.5: Standard deviation Duration (𝜎dur
log ) values in case of bad weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 0.8777186 0.7309603 0.6519099 0.7115335
Tuesday 0.8814643 0.7436526 0.7043419 0.8525847
Wednesday 0.9154163 0.7466301 0.6856938 0.797513
Thursday 0.9219994 0.7792053 0.7108434 0.7686418
Friday 0.8960269 0.7672247 0.7555489 0.8708647
Saturday 0.6931357 0.6990294 0.7145455 0.8200183
Sunday 0.7113786 0.6740978 0.6412977 0.7060338

Table C.6: Standard deviation Duration (𝜎dur
log ) values in case of good weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 0.961026 0.7441905 0.6974019 0.7536564
Tuesday 0.9475594 0.7653082 0.7471943 0.7856797
Wednesday 0.9315624 0.7306246 0.7406049 0.7435374
Thursday 0.9549705 0.7762999 0.7548935 0.6995032
Friday 0.9079749 0.7748342 0.7531534 0.8217652
Saturday 0.7230317 0.7087304 0.7664482 0.8241688
Sunday 0.7008612 0.6576641 0.6831707 0.7351085

Table C.7: Standard deviation Distance (𝜎dis
log) values in case of bad weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 0.8064631 0.768421 0.7139459 0.7922288
Tuesday 0.7118459 0.7527316 0.7486595 0.8924656
Wednesday 0.7950033 0.7323659 0.7358424 0.8877815
Thursday 0.8095153 0.7524787 0.7459038 0.8634252
Friday 0.7704208 0.7491417 0.7018804 0.8311908
Saturday 0.7635206 0.7588446 0.7615624 0.8000778
Sunday 0.7707023 0.7499099 0.752386 0.8614943

Table C.8: Standard deviation Distance (𝜎dis
log) values in case of good weather conditions

[6am, 10am] [10am, 2pm] [2pm, 6pm] [6pm, 10pm]
Monday 0.8602686 0.7530236 0.7256035 0.8069414
Tuesday 0.7926841 0.7573008 0.7293453 0.829873
Wednesday 0.8028486 0.6980331 0.7294053 0.8009468
Thursday 0.8034361 0.7523778 0.7631304 0.7069137
Friday 0.7962065 0.738105 0.7098402 0.8645619
Saturday 0.7295599 0.7303775 0.7489465 0.8147839
Sunday 0.7397632 0.7399064 0.751997 0.8028605



D
Prize/Penalty Function

𝑓𝑡
𝑟(𝑏𝑡

𝑖) = 𝑓𝑡
𝜋(𝑏𝑡

𝑖) =
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0, if 70 ≤ 𝑏𝑡
𝑖 ≤ 100

500, if 60 ≤ 𝑏𝑡
𝑖 < 70

1000, if 50 ≤ 𝑏𝑡
𝑖 < 60

3000, if 40 ≤ 𝑏𝑡
𝑖 < 50

5000, if 30 ≤ 𝑏𝑡
𝑖 < 40

50000, if 0 ≤ 𝑏𝑡
𝑖 < 30

(D.1)

Figure D.1: Function of prizes/penalties dependent on battery level
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