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Abstract

This paper introduces duration matching and interest rate swaps to the static bond port-

folio optimization problem with government and corporate bonds. It extends the research of

Caldeira et al. (2016) and Deguest et al. (2018) on bond portfolio optimization. The bond port-

folio problem is highly relevant to insurance companies. In 2021, 82% of the total investment

assets in the life insurance business of Nationale-Nederlanden were fixed-income assets. Dura-

tion matching is the most popular strategy to minimize the portfolio’s interest rate risk. The

minimum-concentration, mean-variance and maximum Sharpe ratio portfolios are considered.

Constraints to match the duration of assets and liabilities of an insurance company and to limit

the required collateral on interest rate swaps are included. This paper finds a positive effect

of including interest rate swaps and corporate bonds in the portfolio on portfolio performance.

On top of that, optimized portfolios using bond return moments outperform the benchmark

minimum-concentration portfolio when a duration constraint is present.

The content of this thesis is the sole responsibility of the author and does not reflect the view of

the supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

Appropriate risk management is a crucial part of managing the assets and liabilities of an insurance

company. In that way, an insurance company ensures satisfying the obligations toward its clients,

regulators and other stakeholders. Interest rate risk is one of the main types of risk concerning

a balance sheet manager. Interest rate risk is the risk of losses on the balance sheet because of

the sensitivity of both the assets and liabilities to interest rate changes. The leading measure of

interest rate risk is duration. The duration is the price sensitivity of an instrument to changes in the

interest rate. Redington (1952) introduced the duration matching strategy to mitigate the interest

rate risk. It entails matching the duration of the assets and liabilities of the insurance company.

Duration matching assures that the decline in the value of the assets due to increasing interest rates

equals the decline in the liabilities’ value. Likewise, the rising liabilities due to falling interest rates

are accompanied by similarly rising asset values. According to van Bragt et al. (2010), duration

matching is a more efficient strategy to mitigate interest rate risk compared with others in terms

of having a higher return and lower risk. Therefore, analysing the problem of duration matching

on the asset side of the balance sheet in a portfolio optimization problem is one of the main goals

of this paper.

Ever since the groundbreaking paper by Markowitz (1952) on mean-variance portfolio opti-

mization, a lot has been written in the literature regarding portfolio optimization in an equity

framework. However, the literature on fixed-income portfolio optimization is not as extensive as

on equity portfolio optimization due to several inherent problems in using optimized fixed-income

portfolios. Nevertheless, the fixed-income portfolio optimization problem plays a significant role in

insurance businesses. For example, in 2021, 82% of the total investment assets in the life insur-

ance business of Nationale-Nederlanden were fixed-income assets, whereas only 16% were non-fixed

income assets (Nationale-Nederlanden Levensverzekering Maatschappij N.V., 2022). The major

problem in optimized bond portfolios is the non-stationarity of bond returns, mainly caused by the

decreasing variance over time due to the decreasing time to maturity of the bonds. This problem

complicates the estimation of the inputs in the optimized portfolios: the expected return vector

and covariance matrix. One method to overcome this problem is estimating these moments by term

structure models as done by Caldeira et al. (2016). The incorporation of the duration matching

problem in the bond portfolio optimization is an area visited even less in the current literature. In

recent years, starting with Deguest et al. (2018), the research on the bond portfolio problems with
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duration constraints has taken off but is still very limited.

Insurance companies use interest rate swaps to match the duration of their assets and long-term

liabilities. For example, the life insurance business of Nationale-Nederlanden mainly uses interest

rate swaps to hedge interest rate risk in managing the asset and liability portfolios according to

Nationale-Nederlanden Levensverzekering Maatschappij N.V. (2022). The current academic lit-

erature, however, does not consider interest rate swaps in bond portfolio optimization problems.

Liquidity risk to the insurer arises using interest rate swaps due to swap collateralization, as cap-

tured in the technical standards by ESMA (2014). The swap collateralization reduces the credit

risk for the counterparty involved in the swap agreement. The liquidity risk is a consequence of

changes in the required collateral needed in cash following swap value changes. The possibility that

the insurance company cannot meet its collateral requirements due to insufficient liquid funds poses

a liquidity risk. Therefore, this liquidity risk must also be considered when choosing the number

of interest rate swaps in the portfolio optimization problem. Therefore, in this paper, interest rate

swaps and collateral requirements are explicitly considered in the portfolio optimization framework

to investigate the influence of interest rate swaps on portfolio performance.

In this paper, the mean-variance and maximum Sharpe ratio portfolios are included as optimized

portfolios to investigate their performance compared to the equivalent of the equally-weighted

portfolio in the presence of constraints (minimum-concentration portfolio). These portfolios include

government bonds, a proxy for corporate bonds and interest rate swaps. One constraint incorporates

a target duration to match the duration of assets and liabilities. Another limits the expected

required collateral on the interest rate swaps in the next period. The first two bond moments

are estimated by the correlated and uncorrelated versions of the dynamic Nelson-Siegel and the

arbitrage-free Nelson-Siegel model.

The main finding is that incorporating interest rate swaps and corporate bonds besides gov-

ernment bonds in the static portfolio optimization problem with a duration constraint improves

portfolio performance. Hence, in practice, these instruments should be considered as well. Further-

more, the application of optimized portfolios with bond return moments in the objective function

is favourable to the investor over the benchmark minimum-concentration portfolio in terms of

the Sharpe ratio. In times of sharp interest rate rises, however, the relatively stable minimum-

concentration portfolio could benefit the investor by limiting the losses in excess portfolio return.

The use of interest rate swaps and corporate bonds is also recommended to limit portfolio losses in

these times.
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The paper is organized as follows. Section 2 discusses relevant academic literature. The gov-

ernment bond, corporate bond and interest rate swap data are consequently discussed in Section

3. Section 4 describes the different aspects of the portfolio framework, including the portfolios, the

different underlying term structure models and the constraints. The performance and behaviour of

the portfolios and parameter values are analysed in Section 5. Finally, the paper is concluded in

Section 6.

2 Literature Review

The two most influential papers on the bond portfolio optimization problem are Korn and Koziol

(2006) and Puhle (2008). Both find promising results in using optimized portfolios requiring the

first two moments of bond returns. The estimates of the moments of bond returns are obtained

through term structure models. Puhle (2008) believes that, in practice, optimized portfolios are

better at dealing with fixed-income risks than the ad hoc approaches mostly applied in practice.

However, both papers do not include interest rate swaps and do not consider the duration matching

problem.

The main paper focusing on the bond portfolio optimization problem with the presence of dura-

tion constraints is Deguest et al. (2018). They introduce multiple portfolio strategies incorporating

a duration constraint, such as the maximum Sharpe ratio, the global-minimum variance and the

benchmark minimum-concentration portfolio. The duration constraint uses the modified duration

of the portfolio. Deguest et al. (2018) find that using portfolio optimization techniques improves

the outcome for the investor when compared to ad hoc methods with the presence of duration con-

straints. However, they do not use term structure models to estimate the moments of bond returns

but use relationships between risk-and-return parameters for different bonds consistent with the

absence of arbitrage. As term structure models are more popular to use in practice, the practical

use of their methods is questionable. Widyatantri and Husodo (2020) also find that optimized

portfolios outperform the benchmark on a portfolio consisting of government bonds from Asian

emerging markets, like Indonesia, Korea and Thailand. On top of that, Caldeira et al. (2016) find

that dynamic term structure models simplify the bond portfolio optimization problem because of

the closed-form of the mean and variance in these models. They find a superior performance of

optimized mean-variance bond portfolios with term structure models over traditional bond portfo-

lios.
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Caldeira et al. (2016) use three different term structure models in their empirical application:

the dynamic Nelson-Siegel model as introduced by Diebold and Li (2006), the arbitrage-free Nelson-

Siegel model as introduced by Christensen et al. (2011) and a standard Gaussian dynamic term

structure model proposed by Joslin et al. (2011). The best term structure model depends on

the target duration and the specification of the portfolio optimization problem in general. The

literature on term structure models is extensive, and much more models than the aforementioned

are available. For example, the multifactor Vasicek-type term structure models in the bond portfolio

optimization in Korn and Koziol (2006), the widely used Cox-Ingersoll-Ross model by Cox et al.

(1985) and the flexible Hull-White model by Hull and White (1990) could also be considered. In

this paper, however, only the dynamic Nelson-Siegel and the arbitrage-free Nelson-Siegel model are

considered as these are the most popular in practice.

Compared to existing literature, this paper additionally incorporates interest rate swaps and

accompanying collateral into the portfolio optimization problem. Substantial research has focused

on modelling interest rate swap yields and swap spreads, for example, Duffie and Singleton (1997)

and Grinblatt (2001). However, incorporating interest rate swaps into the portfolio optimization

framework is not considered in the academic literature. Regarding the problem of collateral require-

ments and liquidity risk, Flockermann et al. (2020) propose using stochastic processes and a Monte

Carlo approach, which is the starting point of tackling that problem in this paper. Nevertheless,

the collateral requirements have not been incorporated previously in the portfolio optimization

literature.

3 Data

3.1 Dutch Government Bonds

Dutch government bonds are very useful in enhancing the duration of the portfolio. They are also

generally less volatile relative to other financial instruments. However, bonds usually generate a

lower return than other financial products. The data on the Dutch government bond yields are

obtained from the Datastream database incorporated into the Eikon environment.1 The maturities

are 6 months and 2, 5, 10, 20 and 30 years. These are chosen to have a wide dispersed range of

government bonds, as the duration of liabilities is not known a priori. Therefore, having a wide

1Accessed through the Erasmus Data Service Centre: https://www.eur.nl/en/library/erasmus-data-service

-centre/databases/eikon-datastream.
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range of constituents is advised, because the best choice would depend on the target duration.

However, using too many instruments slows down the optimization procedure. Monthly data from

February 2011 to June 2022 (137 observations) is obtained. Figure 1 displays the government bond

yield series. It is apparent that, in the first six months of 2022, the interest rates suddenly rise

substantially as opposed to mainly decreasing or stable and low interest rates in the decade before.

However, rising interest rates generally are accompanied by negative bond returns, hence, a poor

bond portfolio performance. Therefore, the portfolio performance in the first months of 2022 is

analysed to examine the effect of sharp interest rate rises. Table 1 displays the average return,

standard deviation and modified duration of the government bonds. The average return of the

government bond increases when the maturity of the bond increases but the standard deviation

increases as well.

Figure 1: Dutch monthly government bond yields for different times to maturity from February 2011 to

June 2022.

On top of these yields, the 3-month Dutch government bond yields are obtained from the

Eikon environment. The 3-month Dutch government bond yield is a proxy for the risk-free rate.

The computation of excess returns requires the risk-free rate. In empirical research, the 3-month

Treasury bill rate is a convenient proxy for the risk-free rate.
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3.2 Interest Rate Swaps

Insurers often employ interest rate swaps with the purpose of duration matching. The advantage

of an interest rate swap is that it does not require an initial investment but still has a benefit

in achieving a target duration. The purpose of interest rate swaps in portfolio optimization is to

increase the portfolio duration because the duration of liabilities of insurance companies is often

substantial. Therefore, long-term swaps are especially suitable. This research uses the 6-month

EURIBOR interest rate swaps with 30/360 day count convention with maturities of 10, 20, 30, 40

and 50 years. The monthly data for these interest rate swap rates are accessed via the Datastream

database in the Eikon environment from February 2011 to June 2022. In computations, the 6-

month EURIBOR is unnecessary. Only the swap rates and the zero-coupon government bond rates

modelled in Section 4.1 are required. These are used to compute the expected value of the swaps in

the next period. The expected values appear in a constraint in the portfolio optimization problem,

as described in Section 4.3.2. Figure 2 shows the evolution of the swap rates for the different

maturities. As can be seen, the swap rates reached a low and became negative in 2020 and 2021

but increased significantly in 2022. This pattern is the same as with the Dutch government bond

yields.

Figure 2: The 6-month EURIBOR interest rate swap rates using 30/360 day count convention for different

long-term maturities from February 2011 to June 2022.
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3.3 Corporate Bonds

Corporate bonds are included in the portfolio optimization problem as these often generate higher

returns than government bonds because corporate bonds have inherent default risk. Default risk

is the risk that the company issuing the bond cannot meet its financial obligations and hence

depends on its financial situation. Because of the generally higher returns on corporate bonds and

lower maturity, the modified duration of corporate bonds is often lower than that of government

bonds. Therefore, interest rate swaps are generally more beneficial combined with corporate and

government bonds instead of solely with government bonds. Corporate bond indices are included

instead of single corporate bonds. The monthly returns and the modified durations of these indices

are used in the optimization. As single corporate bonds are only issued on a single date and then

have a changing maturity, this would lead to a changing set of investment products over the sample

period and overcomplicates the optimization. Therefore, the index is taken as a proxy for the

possibilities of investing in corporate bonds. Data on this is obtained from the same database as

the government bond and interest rate swap data. It includes monthly data of the liquid tradable

iBoxx Euro Corporates index total monthly return and modified duration from February 2011

to June 2022. A separate index is used for the different credit ratings AA, A and BBB, where

the credit rating indicates a company’s likelihood of defaulting on its debt. The three ratings

mentioned before indicate low or medium risk, making them an investment grade. Investment

grades are corporate bonds having quality usually required by investors. That is not the case for

the higher-risk BB, B and C ratings. Therefore, these bonds are not considered. The highest AAA

rating index is also not taken into account as there are no companies in Europe with this rating

making them unavailable to investors.

Table 1 shows that corporate bonds with a lower rating, thus a higher default risk, generate

higher returns but are also more volatile. It also confirms that corporate bonds generally have

a higher return than government bonds as the former have a lower modified duration than the

five-year government bond but still generate a higher return. However, the standard deviation of

corporate bond returns is also higher because of the higher inherent risk.
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Table 1: Average descriptive statistics from February 2011 to June 2022 for the different bonds used in the

portfolio optimization.

Return (%) Standard Deviation (%) Modified Duration (%)
G
ov
er
n
m
en
t

0.5 year -0.26 0.21 0.5016

2 years 0.00 0.92 2.0044

5 years 1.36 3.18 4.9914

10 years 3.67 6.75 9.9130

20 years 5.56 13.86 19.7482

30 years 10.40 20.50 29.5822

C
or
p
or
at
e AA rating 1.72 3.38 4.8922

A rating 1.96 4.10 4.9225

BBB rating 2.53 4.87 4.6903

4 Methodology

4.1 Term Structure Models

In portfolio optimization strategies, as described in Section 4.4, the first two expected moments

of the bond returns are needed. For bonds, this is more complicated than for equity because the

distribution of bond returns is non-stationary. One of the reasons for this is the decreasing time

to maturity of bonds, according to Deguest et al. (2018). Consequently, the variance tends to

go to zero as the bond approaches maturity. To solve this, two term structure models enter the

equation to estimate bond returns. These models are very flexible and capture the decreasing time

to maturity.

The first model is the dynamic Nelson-Siegel (DNS) model as introduced by Diebold and Li

(2006). The DNS model is the most popular in practice by participants in the financial market

because of its empirical performance, according to Caldeira et al. (2016). The model is described,
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following the notation by Christensen et al. (2011), as

yt = B(τ)Xt + εt, (1)

Xt = (I − Φ)µ+ΦXt−1 + ηt, (2)

B(τ) =


1, 1−e−λτ1

λτ1
, 1−e−λτ1

λτ1
− e−λτ1

...
...

...

1, 1−e−λτN

λτN
, 1−e−λτN

λτN
− e−λτN

 , (3)

where (1) is the Nelson-Siegel specification with the relation between the N×1 vector yt with yields

on N bonds with different times to maturity τi with i = 1, . . . , N and the underlying three factors

Xt. The times to maturity τi are stated in years for i = 1, . . . , N . The exponential decay rate

λ is a parameter to be estimated. Equation (2) captures the dynamics of the factors as a vector

autoregression model where I is a 3 × 3 identity matrix and Φ is a 3 × 3 matrix of coefficients.

For the errors it holds that εt ∼ N(0, H), where H is a diagonal N ×N matrix and ηt ∼ N(0, Q),

where Q = qq′ with q being either a diagonal or lower-triangular 3 × 3 matrix as discussed at the

end of this section. This model is in state-space form with (1) the measurement equation and (2)

the state equation. Thus this is solved by using the Kalman filter, as described in Appendix A.1.

However, this model is not arbitrage-free. The concept of no-arbitrage is an important theo-

retical concept in term structure modelling. Therefore, Christensen et al. (2011) introduced the

arbitrage-free Nelson-Siegel (AFNS) model, which ensures the model is arbitrage-free by impos-

ing specific restrictions on the DNS model. The AFNS model is an affine term structure model

incorporating the DNS structure, making it both theoretically rigorous and empirically successful

according to Christensen et al. (2011). The AFNS model examines whether arbitrage restrictions

play an important role in term structure models used for portfolio optimization in terms of portfolio

performance. In the arbitrage-free Nelson-Siegel model, the stochastic differential equation under

the P -measure for the state variables is

dXt = K[θ −Xt]dt+ΣdWt, (4)

according to Christensen et al. (2011). By using the conditional moments of the discrete observa-

tions, the obtained state space form of the AFNS model is

yt = −A(τ)
τ

+B(τ)Xt + εt, (5)

Xt = (I − exp(−K∆t))θ + exp(−K∆t)Xt−1 + ηt. (6)
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K is a 3× 3 matrix of dynamics parameters, θ is a 3× 1 vector with drift parameters, ∆t = 1
12 as

monthly data is considered and B(τ) is the same as in the DNS model in (3). As in the DNS model,

it holds that εt ∼ N(0, H), where H is a diagonal N ×N matrix and ηt ∼ N(0, Q). The Q-matrix

has a special structure in the AFNS model as Q =
∫∞
0 e−KsΣΣ′e−K′sds. Christensen et al. (2015)

show the way to analytically compute the Q-matrix. A(τ) is a vector with yield-adjustment terms

in the AFNS specification to assure the no-arbitrage conditions. The analytical solution for the

yield-adjustment term, according to Christensen et al. (2011), is

A(τ)

τ
=Ã

τ2

6
+ B̃

[
1

2λ2
− 1

λ3
1− e−λτ

τ
+

1

4λ3
1− e−2λτ

τ

]
+ C̃

[
1

2λ2
+

1

λ2
e−λτ − 1

4λ
τe−2λτ − 3

4λ2
e−2λτ − 2

λ3
1− e−λτ

τ
+

5

8λ3
1− e−2λτ

τ

]
+ D̃

[
1

2λ
τ +

1

λ2
e−λτ − 1

λ3
1− e−λτ

τ

]
+ Ẽ

[
3

λ2
e−λτ +

1

2λ
τ +

1

λ
τe−λτ − 3

λ3
1− e−λτ

τ

]
+ F̃

[
1

λ2
+

1

λ2
e−λτ − 1

2λ2
e−2λτ − 3

λ3
1− e−λτ

τ
+

3

4λ3
1− e−2λτ

τ

]
,

(7)

where Ã = σ211+σ
2
12+σ

2
13, B̃ = σ221+σ

2
22+σ

2
23, C̃ = σ231+σ

2
32+σ

2
33, D̃ = σ11σ21+σ12σ22+σ13σ23,

Ẽ = σ11σ13+σ12σ32+σ13σ33 and F̃ = σ21σ31+σ22σ32+σ23σ33. The σ-values are from the matrix

Σ =


σ11, σ12, σ13

σ21, σ22, σ23

σ31, σ32, σ33

 , (8)

which is either diagonal or lower triangular depending on whether the model is correlated or un-

correlated. The correlated and uncorrelated cases are discussed at the end of this section. The

complete derivation of the AFNS model can be found in Christensen et al. (2011). This model is

also in state-space form with (5) the measurement equation and (6) the state equation. Thus this

is solved by using the Kalman filter as well, as described in Appendix A.2.

The notation of Caldeira et al. (2016) is partially applied to get the first two moments of the

bond returns. For both models it holds that from the Kalman filter, the distribution of yields

yt+1|t ∼ N(µt+1|t,Σt+1|t) is obtained. The µ estimate is

DNS : µ̂t+1|t = B̂(τ)X̂t+1|t, (9)

AFNS : µ̂t+1|t = −Â(τ)
τ

+ B̂(τ)X̂t+1|t, (10)
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and the expected variance-covariance matrix for the yields is

Σ̂t+1|t = B̂(τ)P̂t+1|tB̂(τ)′ + Ĥ, (11)

for both the DNS and AFNS models. The Kalman filter estimates all components of these equations.

After this, the bond returns in the next period are normally distributed with mean

µ̂rt+1(τi) = τiyt(τi)− τi−1µ̂t+1|t(τi−1), (12)

for a bond with a maturity of τi where µ̂
r
t+1 is the vector with expected bond returns in the next

period. The τi−1 maturities are not available in the data set, as these are the maturities available

in the data set minus one month. However, the expected yields of these maturities are necessary,

as these appear in (12). Therefore, the expected yields for these maturities in the next period are

computed by first computing the expected moments for the maturities present in the data set and

then using cubic spline data interpolation to get the expected yields of the necessary maturities.

The diagonal elements of the variance-covariance matrix of bond returns Σr
t+1 are given by

(σ̂rt+1(τi))
2 = τ2i−1(σ̂

y
t+1|t(τi−1))

2, (13)

where (σ̂yt+1|t(τi−1))
2 is the (i−1)th diagonal element of Σ̂t+1|t from (11). The off-diagonal elements

of Σr
t+1 are given by

(σ̂rt+1(τi, τj))
2 = τi−1τj−1(σ̂

y
t+1|t(τi−1, τj−1))

2, (14)

where (σ̂yt+1|t(τi−1, τj−1))
2 is the (i− 1, j − 1) element of Σ̂t+1|t from (11).

The DNS and the AFNS model both have a version in which the three factors are uncorrelated

(the diagonal case) and one correlated case (the VAR case). For the DNS model, Φ, q and Q are

diagonal matrices in the uncorrelated case. Φ is non-diagonal and q is lower triangular when the

three factors are correlated. For the AFNS model, K, Σ and Q are diagonal in the uncorrelated

case. K is non-diagonal and Σ is lower triangular in the correlated case. Christensen et al.

(2011) discuss that both versions of the models perform well in particular situations and that

neither of those models is the clear winner in all circumstances. Therefore, the two versions of the

models are evaluated for both the DNS and AFNS models as term structure models in the portfolio

optimization.

4.2 Interest Rate Swap Value

In practice, interest rate swaps are often used to adjust portfolio interest rate exposure (duration).

Therefore in this research, the traditional interest rate swaps are incorporated into the portfolio
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optimization problem. These swaps exchange a fixed rate (swap rate) for a floating rate (e.g.

the LIBOR/EURIBOR). Thus one of the parties pays a fixed rate and receives the floating rate,

whereas for the counterparty it is the other way around. In this paper, the zero-coupon bond rate as

modelled in the term structure models of Section 4.1 is applied instead of the conventional LIBOR

rate in computing the different values needed from swaps. The effect of incorporating an interest

rate swap into the portfolio on portfolio duration depends on the position taken on the swap. If

one receives the fixed rate it has a positive effect on the portfolio duration, whereas receiving the

floating rate has the opposite effect. Section 4.3.1 describes the exact way to compute the interest

rate swap duration.

The expected present value of the swap in the next period is needed to compute the expected

collateral in the next period. An interest rate swap is equivalent to a portfolio containing a fixed-

rate and a floating-rate bond. Hence, the present value of a receive-fixed IRS (V IRS
t ) at any point

in time is computed by taking the difference between the present value of the fixed-rate bond

underlying the swap (V FI
t ) and the present value of the floating-rate bond underlying the swap

(V FL
t ), thus

V IRS
t = V FI

t − V FL
t . (15)

The present value of the fixed-rate bond underlying the swap is

V FI
t = Z

N∑
i=1

(
C

k
exp(−yt(ti)ti) + exp(−yt(tN )tN )

)
, (16)

where C is the annual swap rate, k is the number of payments per year and Z is the notional

amount agreed upon in the swap agreement. ti (1 ≤ i ≤ N) is the time from t to the moments

at which the fixed payments are made and yt(ti) is the yield at time t of a zero-coupon bond with

time to maturity ti.

The present value of the floating-rate bond underlying the swap is

V FL
t = Z

N∑
i=1

(ft(ti,m)exp(−yt(ti)ti) + exp(−yt(tN )tN )) , (17)

where ft(ti,m) is the m-month forward interest rate in ti years time at time t. This forward interest

rate is computed by

ft(ti,m) =
(1 + yt(ti +

m
12))

ti+m/12

(1 + yt(ti))ti
− 1, (18)

where it is assumed that the forward rate for zero-coupon bonds is the floating rate.
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4.3 Constraints

The portfolio optimization framework includes two novel constraints in the portfolio management

literature. The first constraint has the goal to handle the duration matching problem. The second

handles the problem regarding a maximum amount of collateral, thus liquidity risk, on interest rate

swaps.

4.3.1 Duration Constraint

Duration is the most popular measure of interest rate risk in the academic literature. Matching

the duration of the liabilities and assets of an insurer is one of the main strategies to hedge against

interest rate risk. Two types of duration are most prominent, specifically modified and Macaulay

duration. Modified duration is the better measure when using duration for hedging purposes,

according to Skinner (2004). This is due to the modified duration measuring price sensitivity to

changes in the yield to maturity, whereas the Macaulay duration is a relative measure of interest

rate risk. Deguest et al. (2018) and Widyatantri and Husodo (2020), the papers investigating

duration matching within the portfolio optimization framework, also prefer the modified duration

over the Macaulay duration.

The modified duration of a zero-coupon bond with maturity τi is

DZCB
t =

τi
1 + yt(τi)

. (19)

The duration of an IRS is computed by considering it as a portfolio of fixed and floating bonds.

Thus a pay-fixed, receive-floating IRS is equivalent to going short in a fixed-rate bond and long

in a floating-rate bond. The opposite holds for a receive-fixed, pay-floating IRS. Therefore, the

swap duration is computed by taking the difference between the duration of the long and short

positions. Thus DIRS
t = DFI

t −DFL
t in case of the receive-fixed, pay-floating IRS. As Smith (2014)

describes, a receive-fixed, pay-floating IRS has a positive duration and thus increases the portfolio

duration. A pay-fixed, receive-floating IRS has a negative duration and thus reduces the average

portfolio duration. For the fixed-rate bond, the duration is computed as the duration of a coupon

bond, where the coupon rate is the swap rate. The modified duration of the fixed-rate bond with

maturity tN is

DFI
t =

Z
P

[∑N−1
i=1

(
ti

C
k exp(−yt(ti)ti)

)
+ tN (Ck + 1)exp(−yt(tN )tN )

]
1 + yt(tN )

k

, (20)
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where the bond price P is

P = Z
N−1∑
i=1

(
C

k
exp(−yt(ti)ti)

)
+
C

k
+ exp(−yt(tN )tN ). (21)

The duration of the floating-rate bond is

DFL
t =

t1

1 + yt(τi)
k

, (22)

where t1 is the time until the next coupon payment. The floating rate after the current period is

not currently known and therefore does not carry any interest rate risk.

After computing the duration of the individual constituents of the portfolio, the portfolio du-

ration is computed by taking a weighted sum of the individual durations. The weights are those

assigned in the portfolio optimization to the different constituents. As the goal is to match this

portfolio duration to the duration of the liabilities, the duration constraint is

w′
tD

Bonds
t + n′t

DIRS
t

Inv
= Dliabilities. (23)

DBonds
t is a vector with durations of the different bonds, DIRS

t is a vector with durations of the

different interest rate swaps and wt is the vector with weights of the different portfolio constituents.

The nt is a M ×1 vector with the notional amounts in the M swaps and Inv is the total investment

in bonds. Dliabilities is the duration of the liabilities, thus the target duration. The notional amount

in the swap agreement is a decision variable in the portfolio optimization framework. The notional

also appears in the computation of the duration of the interest rate swap. The duration of the

floating-rate bond in (22) does not depend on the notional amount. On top of that, it holds that

Z

P
=

Z

Z
∑N−1

i=1

(
C
k exp(−yt(ti)ti)

)
+ C

k + exp(−yt(tN )tN )

=
1∑N−1

i=1

(
C
k exp(−yt(ti)ti)

)
+ C

k + exp(−yt(tN )tN )
,

(24)

so Z can be removed from the computation of DFI
t . Therefore, the duration of the fixed-rate bond

does not depend on the notional amount. Thus the interest rate swap duration does not depend

on the notional amount. Consequently, the constraint in (23) is linear in the notionals of the swaps

and the weights of the bonds.

4.3.2 Collateral Requirement Constraint

Interest rate swaps contain a default risk, the counterparty risk, which is the risk of default of the

swap’s counterparty. Collateral enters into the equation in the European Market Infrastructure
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Regulation, introduced by the EU securities market regulator, to reduce the default risk.2 These

regulations prescribe the use of collateral following a daily marking-to-market procedure. In this

procedure, the interest rate swap is valued daily and the required collateral is based on that value.

Johannes and Sundaresan (2007), which investigates the impact of collateralization on swap rates,

also applies this procedure. In this report, the required collateral is set equal to the value of the

interest rate swap at that moment. Thus the collateral at time t (Ct), combining (15) up to (17),

is

Ct = V IRS
t = Z

N∑
i=1

(
C

k
exp(−yt(ti)ti)− ft(ti,m)exp(−yt(ti)ti)

)
= ZGt(ti). (25)

As shown in (25), the relationship between the notional amount in the swap agreement and the

required collateral is linear for an interest rate swap with a specific time to maturity at a certain

point in time with a slope coefficient of Gt(ti). When the value of the interest rate swap is positive,

this is received as collateral. However, when it is negative, one has to pay this value as collateral

to the counterparty in the swap agreement.

It is thus required to compute the expected value of the interest rate swap one period ahead of

when the portfolio is optimized, as this is the amount of collateral the insurance company needs

to keep as liquidity. However, liquidity risk refers to the required liquidity in a worst-case scenario

when the required collateral is very high. High collateral requirements happen when the swap value

decreases significantly, which occurs when the interest rates increase significantly. To examine the

extreme scenarios, a Monte Carlo simulation generates many possible future collateral requirement

scenarios, following the idea in a recent study on liquidity risk and collateral by Flockermann et al.

(2020).

Simulations are not made of the required collateral to keep the linearity from (25) in the

constraints. Instead, Gt(ti) is simulated, as the notional amount is a decision variable. As the

liquidity risk is concerned in the near-worst-case scenario, the 99.5th percentile of the negative

simulations is considered. The steps to obtain the 99.5th percentile are:

1. Generate Nsim independent simulations from N(0, Ĥ) and N(0, Q̂). These are simulations

for ε1,t, . . . , εNsim,t and η1,t, . . . , ηNsim,t, respectively.

2. Apply (1) to (3) in the DNS case and (5) and (6) in the AFNS case with the estimated

parameters to get the simulated values of ŷ1,t(ti), . . . , ŷNsim,t(ti).

2https://www.esma.europa.eu/databases-library/interactive-single-rulebook/clone-emir/article-11

-0
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3. Combine (18) and ŷ1,t(ti), . . . , ŷNsim,t(ti), to get the simulated values for

f̂1,t(ti,m), . . . , f̂Nsim,t(ti,m).

4. Compute Ĝt(ti) =
∑N

i=1

(
C
k exp(−ŷt(ti)ti)− f̂t(ti,m)exp(−ŷt(ti)ti)

)
for all Nsim simulated

values of ŷt(ti) and f̂t(ti,m) to get Ĝ1,t(ti), . . . , ĜNsim,t(ti).

5. Order the simulations for the slope coefficient multiplied by −1 as G(1),t(ti), . . . , G(Nsim),t(ti),

then the 99.5th percentile is G(⌈0.995Nsim⌉),t(ti).

The simulations are multiplied by −1 in step 5 as the worst-case scenario in terms of losses

is needed and not the best-case. The worst-case scenario is the almost highest value of the slope

coefficient since this leads to the almost highest required collateral. The total required collateral

over all the swaps in the next period must be below some benchmark set by the insurer. The

maximum amount of collateral as a constraint in the portfolio optimization is

n′tG(⌈0.995Nsim⌉),t ≤ Bc, (26)

where nt is a M × 1 vector with the notional amount for the different interest rate swaps. These

notionals are decision variables in the portfolio optimization. G(⌈0.995Nsim⌉),t is a M × 1 vector

containing the 99.5th percentile of the simulation for the different interest rate swaps and Bc is the

benchmark set by the insurer, treated as given in the portfolio optimization. The constraint results

in an acceptable worst-case scenario for the insurance company and ensures the liquidity risk is

at an acceptable level. The constraint is linear in the decision variable nt. The upcoming section

describes different optimized portfolios combined with the previously described constraints.

4.4 Portfolio Optimization Framework

This research considers myopic single-period portfolio optimization as, in practice, financial insti-

tutions mainly use myopic portfolio optimization, according to Brandt (2010). He states that this

is because the expected utility for the investor is often lower with a dynamic than with a myopic

strategy because of high estimation errors in the first two bond return moments in the former.

Lan (2015) also shows that the utility gain of implementing a dynamic portfolio is either negative

or positive but small and insignificant compared to the myopic case. Hence, the computational

benefits of the myopic approach compared to the dynamic outweigh the utility benefits of using

the latter. Several different static constrained portfolios are implemented. All optimized portfolios

in the next section do not account for the risk and return of interest rate swaps in the objective
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function as these do not require initial investments. Therefore, the interest rate swaps only alter

the portfolio duration with the weight based on their notional value relative to the total bond

investment.

In the portfolio optimization, the set of constraints C at time t is

C =



1′Nwt = 1,

w′
tD

Bonds
t + n′t

DIRS
t

Inv
= Dliabilities,

n′tG(⌈0.995Nsim⌉),t ≤ Bc,

wt ≥ 0, nt ≥ 0.

(27)

(28)

(29)

(30)

The constraint in (27) ensures wealth to be fully invested in the portfolio and (28) and (29) are

described in Section 4.3.1 and 4.3.2, respectively. Constraint (30) ensures that the notional amount

invested in an interest rate swap is positive and prevents short positions in the bonds. Previous lit-

erature, like Jagannathan and Ma (2003), shows that weight constraints can substantially increase

portfolio performance. Puhle (2008) finds extreme bond weights in the optimized bond portfo-

lios when weight constraints are absent. Extreme positions in bonds are undesirable in practice.

Therefore, he proposes introducing short-sale constraints to get useful results in practice.

Combining (28) and (29), it can be concluded that the absolute values of Inv and Bc are not

the relevant parameters. When multiplying both Inv and Bc with a factor x, the same outcome is

obtained by multiplying the nominal amount vector nt with the factor x. This does not affect the

optimal value of the objective function as the objective functions do not depend on the nominals

in the interest rate swaps. Hence, instead of regarding Inv and Bc as two separate parameters, the

ratio of the two is important. In the remainder of the paper, this ratio is called the liquidity risk

ratio. It describes the maximum amount of collateral on interest rate swaps allowed in the next

period as a fraction of the total investment in bonds. Therefore, the total amount of investment

in bonds is fixed at 1,000,000 and Bc is adjusted to get the desired ratio. All constraints in C are

linear in the decision variables.

4.4.1 Minimum-Concentration Portfolio

The benchmark portfolio is the minimum-concentration (MC) portfolio, which is the natural ex-

tension of the equally-weighted portfolio when constraints are present according to Deguest et al.

(2018). This method uses a portfolio concentration measure. Such a measure quantifies the di-

versification of the portfolio. The precise measure is the effective number of constituents, which
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is

ENC(wt) =
1

||wt||2
, (31)

where wt is the vector with portfolio weights for the bonds. The ENC has a minimum of 1, which

means that the portfolio is fully concentrated in one instrument. It has a maximum of N , the

number of instruments in the portfolio, being the equally-weighted case. The MC portfolio intends

to diversify the portfolio as much as possible. It maximizes the ENC subject to the constraints,

which leads to

max
wt

ENC(wt) subject to C. (32)

However, maximizing the ENC is the same as minimizing its reciprocal, leading to

min
wt

||wt||2 = w′
twt subject to C, (33)

since the square of the Euclidean norm of a vector equals its dot product. The objective function

in (33) is a convex quadratic function. The convexity follows from writing the objective function in

the quadratic form w′
twt = w′

tINwt where IN is the N ×N identity matrix. The identity matrix is

positive definite (all eigenvalues are one), so the objective function is a convex quadratic function.

As all constraints are linear in the decision variables and the objective function is convex and

quadratic, the MC portfolio problem is a quadratic programming (QP) problem. This problem

is solved by the sparse interior-point-convex method following the basic algorithm of Mehrotra

(1992).3 This method is convenient for solving QP problems as it is efficient and widely applicable

according to Pearson and Gondzio (2017).

4.4.2 Maximum Sharpe Ratio Portfolio

Deguest et al. (2018) find that the maximum Sharpe ratio (MSR) portfolio is superior when duration

constraints are present. The Sharpe ratio is

SRt =
w′
tµ̃t√

w′
tΣtwt

, (34)

where µ̃t and Σt are the excess return vector and the covariance matrix, respectively, of the returns

of the portfolio instruments. It holds that µ̃t = µrt −R
f
t where Rf

t is the 3 month Dutch government

bond yield at time t which is a proxy for the risk-free rate. These moments are estimated using term

structure models described in Section 4.1. The MSR portfolio maximizes the expected Sharpe ratio

3The quadprog package in the Matlab Optimization Toolbox contains this algorithm.
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of the portfolio with respect to the portfolio weights subject to the constraints. The optimization

problem is

max
wt

SRt subject to C. (35)

However, this problem is non-convex as the objective function is not convex. The problem classifies

as a fractional programming (FP) problem as its objective function involves a ratio of mathemat-

ical functions in the decision variables. Non-convex problems are generally NP-hard problems.

Transforming the problem into a convex QP problem, if possible, is generally the way to solve FP

problems. A specific class of FP problems, so-called concave-convex FP problems, are solved using

a transformation. The Schaible transform by Schaible (1974) is one of the transformations to solve

such problems.

Theorem 1 (Schaible transform) Introduce a concave-convex fractional programming problem

max
x

f(x)

g(x)
subject to x ∈ S, (36)

where f(x) is a concave function, g(x) is convex and S is a compact convex set. The Schaible

transform introduces two new variables y = x
g(x) and t = 1

g(x) , hence, x = y
t . The optimization

problem then becomes

max
y,t

tf(y/t)

subject to y/t ∈ S

tg(y/t) ≤ 1

t > 0.

(37)

Then this problem is a convex optimization problem and is equivalent to (36).

To simplify the use of the Schaible transform, the maximum Sharpe ratio portfolio problem is

rewritten combining the two vectors of decision variables as Wt = [wt nt ]′. Also rewrite the excess

return vector as µ̃full,t = [ µ̃t 0M×1 ]′, where 0M×1 is a M × 1 vector with zeros and the covariance
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matrix as Σfull,t =
[

Σt 0N×M

0M×N 0M×M

]
. Then the problem is

max
Wt

W ′
t µ̃full,t√

W ′
tΣfull,tWt

subject to
[
1N 0M×1

]′
Wt = 1

W ′
t

 DBonds
t

DIRS
t /Inv

 = Dliabilities

W ′
t

 0N×1

G(⌈0.995Nsim⌉),t

 ≤ Bc

Wt ≥ 0.

(38)

It holds that W ′
t µ̃full,t is a concave function, as it is linear and linear functions are both convex and

concave. Σfull,t is a diagonal block matrix. A diagonal block matrix has eigenvalues equal to the

eigenvalues of the matrices on the diagonals. The eigenvalues of Σfull,t are all nonnegative because

of the positive semi-definiteness of Σt and the eigenvalues of a null matrix are zero. Hence Σfull,t

is positive semi-definite. Then the square root of a quadratic term,
√
W ′

tΣfull,tWt, is a positive

convex function according to Landsman (2008). The Schaible transform introduces the two decision

variables yt =
Wt√

W ′
tΣfull,tWt

and ht =
1√

W ′
tΣfull,tWt

. Applying the Schaible transform delivers the

new optimization problem

min
yt,ht

− y′tµ̃full,t

subject to
[
1N 0M×1

]′
yt − ht = 0

y′t

 DBonds
t

DIRS
t /Inv

− htD
liabilities = 0

y′t

 0N×1

G(⌈0.995Nsim⌉),t

− htBc ≤ 0

y′tΣfull,tyt ≤ 1

yt ≥ 0, ht > 0.

(39)

This problem is convex as the objective function and all constraints are convex in the decision

variables. The constraints are convex as these are either linear in yt and ht or quadratic in yt with

positive semi-definite matrix Σfull,t. The optimization problem (39) is equivalent to the problem in

(35) and it is convex. The final weights are obtained by using the relationship Wt =
yt
ht
. Due to the
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convexity, the problem only has one optimal solution: the global optimum. This problem is called

a quadratically constrained quadratic program (QCQP). QCQPs are a subset of the second-order

cone programs (SOCPs), according to Alizadeh and Goldfarb (2003). To transform the QCQP into

a SOCP, perform

y′tΣfull,tyt = y′tA
′Ayt = (Ayt)

′Ayt = ||Ayt||2 ≤ 1, (40)

which is a second-order cone constraint. Then, the problem can be solved efficiently as a second-

order cone problem using the primal-dual interior-point method for conic quadratic optimization

following Andersen et al. (2003).4 They show that the algorithm can solve problems very robustly

and efficiently.

4.4.3 Mean-Variance Portfolio

Markowitz’s mean-variance portfolio subject to the linear constraints is also incorporated, following

Brandt (2010). The mean-variance (MV) portfolio is written as the expected utility maximization

problem to capture the trade-off between the expected risk and return of the portfolio as adequately

as possible for a specific level of risk aversion. It consists of minimizing the difference between the

expected variance of the portfolio scaled with a coefficient of risk aversion and the expected excess

return of the portfolio, so the optimization problem is

min
wt

γ

2
w′
tΣtwt − w′

tµ̃t subject to C, (41)

where γ is the level of relative risk aversion. A higher γ indicates a higher level of risk aversion

of the investor. The objective function in (41) is a quadratic function in the decision variable wt.

In combination with the linearity of the constraints, this problem is a QP problem. As Σt is a

covariance matrix, this matrix is symmetric positive semi-definite. Hence, the quadratic objective

function is convex, meaning this problem is a convex QP problem with linear constraints. As a

result, finding a local minimum also means finding the global minimum. This problem is solved

using the algorithm for optimizing the MC portfolio, as described in Section 4.4.1.

4.5 Performance Evaluation

The evaluation of the different optimized portfolios with optimized weights ŵt at time t is done

using several performance measures. First, the annualized average excess return is considered. This

4The primal-dual interior-point method for conic quadratic optimization is the core algorithm behind the coneprog

package which is in the quadratic programming package in the Matlab Optimization Toolbox.
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measure is computed by computing

Rp,t = ŵ′
t−1Rt −Rf

t , (42)

for every out-of-sample period. Rp,t is the return over the last month of the portfolio at time t and

Rf
t is the risk-free rate at time t. Rt is the vector with returns over the previous period for the

individual constituents of the portfolio computed using the observed yields at times t − 1 and t.

Then

µ̂p =
12

T

T∑
t=1

Rp,t, (43)

where µ̂p is the annualized average out-of-sample excess portfolio return and T is the number of

out-of-sample periods.

The annualized standard deviation of these out-of-sample portfolio returns is the second measure

of portfolio performance as that is an indication of the risk of the portfolios. This is computed by

σ̂p =

√√√√ 12

T − 1

T∑
t=1

(Rp,t − µ̂p). (44)

The third measure is the annualized Sharpe ratio which provides insight into the risk-return

ratio of the portfolio. The annualized Sharpe ratio is computed by

SR =
µ̂p
σ̂p
. (45)

The statistical significance of the differences in the Sharpe ratios of different portfolios is tested

using the HAC inference test by Ledoit and Wolf (2008) as described in Appendix B.

Furthermore, the average portfolio turnover is analysed as

Turnover =
1

T

T∑
t=1

N∑
j=1

|wj,t − wj,t−1|, (46)

where it holds that a lower turnover is better as that leads to lower transaction costs and a more

stable portfolio.

Finally, a measure quantifying the number of interest rate swaps in the portfolio is considered.

The measure for this purpose is the average total notional amount in the interest rate swaps as a

fraction of the total investment in bonds and will be called the IRS Ratio. Hence, it holds that

IRS Ratio =
1

T

T∑
t=1

∑M
i=1 nt,i
Inv

. (47)
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A moving window is utilized to evaluate the performance of the different portfolio optimization

techniques. In the moving window, the in-sample period consists of 8 years of historical data (96

observations). Different possibilities for the length of the in-sample period have also be considered

but these changes do not affect the results of the term structure models significantly. The optimized

portfolios are evaluated one month later. After the evaluation, the window is shifted by one month

and the first month of the prior in-sample period is discarded. Portfolios are then optimized and

evaluated again. The portfolios are thus re-balanced monthly. This process continues until the end

of the available data, so June 2022 (T = 41 out-of-sample periods). Figure 3 displays the moving

window framework.

1371 96 97

First in-sample period

First evaluation moment

1371 2 97 98

Second in-sample period

Second evaluation period

Figure 3: Illustration of the rolling window to evaluate the performance of the different portfolio optimiza-

tion techniques with eight years (96 months) of in-sample data and evaluating the portfolio one month later.

4.6 Incorporation of Corporate Bonds

The portfolio optimization also includes corporate bonds besides government bonds and interest

rate swaps to examine the effect of these bonds on the portfolio performance. As described in

Section 3.3, the performance of three corporate bond indices is used as a proxy for the returns of

corporate bonds instead of single corporate bonds. These are treated the same as government bonds

in the constraint set C, so their weights are in the weight vector wt. The modified durations and

the monthly returns of the indices are directly obtained from the database. The historical sample

moments over the in-sample period are used as expected return and variance in the next period.

Using historical sample moments introduces estimation errors that possibly affect the portfolio

performance. The downside of estimation errors in the inputs of portfolio optimization problems is

acknowledged by Michaud (1989). He states that mean-variance optimizers tend to act as statistical

error maximizers.
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5 Results

5.1 Parameter Values

In the optimization, the target duration, relative risk aversion and liquidity risk ratio are fixed. In

practice, however, the values of these parameters vary across insurance companies and can be set

to the appropriate value in using the optimization. The robustness of the results when changing

the parameter values is examined in Section 5.3.

Target duration. The target portfolio duration in the optimization problem is such that it

matches the duration of the liabilities of the insurance company leading to a duration match between

the assets and liabilities of the insurance company. Consequently, the duration matching strategy

reduces the interest rate risk to the insurer. This duration of the liabilities varies across insurance

companies in different countries and businesses. In this report, the duration of the liabilities

is 13.4 years which is the average modified duration of the liabilities of insurance companies in

The Netherlands in 2019, according to a report by EIOPA (2019), the European Insurance and

Occupational Pensions Authority.

Relative risk aversion. The level of relative risk aversion γ indicates the investor’s risk appetite.

A higher γ indicates a higher level of risk aversion and hence a lower risk appetite. According to

Gandelman and Hernández-Murillo (2015), the level of relative risk aversion ranges from 0.2 up to

10 and occasionally higher. Their analysis of the relative risk aversion of inhabitants of countries all

around the world indicates the level of relative risk aversion to vary closely around 1. Therefore, in

this report, as insurance companies represent a country’s inhabitants, γ is set to 1 in the analysis.

Liquidity risk ratio. The final parameter in the portfolio optimization is the liquidity risk ratio

explained in Section 4.4. In practice, the insurance company should set this parameter considering

the maximum amount of collateral the insurer can handle in the next period in the near-worst-case

scenario as a fraction of their investment in bonds. Figure 4 displays the relation between the

liquidity risk ratio and the Sharpe ratio of the three optimized portfolios for the four underlying

time series models with government and corporate bonds and interest rate swaps. This relation

is positive for most models and portfolios. An explanation of that relation is the ability to use

more interest rate swaps matching the duration of assets and liabilities when the liquidity risk

ratio increases. Subsequently, one can invest more in bonds generating a higher return without

considering the duration. After a certain value for the ratio, the positive effect of increasing the

liquidity risk ratio on the Sharpe ratio diminishes, disappears or even backfires shown in Figure 4.
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This mostly happens after a ratio of about 0.05 (5%) for the DNS models. This percentage is also

a value which is reasonable to use in practice. Hence, that value is used in the remainder of the

report.

(a) DNS diagonal (b) DNS VAR

(c) AFNS diagonal (d) AFNS VAR

Figure 4: The effect of the liquidity risk ratio on the annualized Sharpe ratio for the four underlying term

structure models for the three optimized portfolios with government and corporate bonds and interest rate

swaps.

5.2 Portfolio Performance

Tables 2 and 3 present the performance measures of the portfolios with multiple specifications

of the term structure models excluding and including the corporate bonds. Table 2 shows the

performance when interest rate swaps are included in the portfolio. The portfolios have average

annualized excess returns ranging from 3.41% to 7.80% and annualized standard deviations from

6.06% to 9.84%. These values lead to Sharpe ratios in the range of 0.3733 to 0.8906. Table 3 shows

the performance when interest rate swaps are not included in the portfolios. This results in average

annualized returns of the portfolios in the range from 3.87% to 6.12% and annualized standard
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deviations from 9.24% to 15.41%. The Sharpe ratios are between 0.2550 and 0.6063.

5.2.1 Effect of Interest Rate Swaps and Corporate Bonds

First, including and excluding interest rate swaps, most portfolios incorporating corporate bonds

outperform portfolios without corporate bonds in terms of the Sharpe ratio. This outperformance

happens in 82% of the portfolios with interest rate swaps and all cases without them. The portfolio

returns generally increase and are less volatile when corporate bonds are added to the possible set of

investment instruments. The outperformance shows the significance to an investor of incorporating

corporate bonds in a bond portfolio besides government bonds. The turnover increases in less than

half of the portfolios (45.83%) due to the corporate bonds. This result implies that the additional

use of corporate bonds does not inherently come with higher transaction costs in the portfolio,

which is positive for an investor.

On top of that, the average increase in the Sharpe ratio due to the incorporation of corporate

bonds is 29.57% when interest rate swaps are present. However, this increase is only 24.21% when

interest rate swaps are not present. This means that the advantage of corporate bonds is more

prevalent combined with the presence of interest rate swaps. This finding confirms the statement in

Section 3.3 regarding the higher benefits of interest rate swaps in combination with corporate and

government bonds together over government bonds only. The IRS ratio indicating the use of interest

rate swaps in the portfolio is also larger in 75% of the portfolios with corporate bonds in contrast

to those without them. It also shows the higher need for interest rate swaps in combination with

corporate bonds due to the generally smaller modified duration of these bonds than the duration

of the government bonds.

Furthermore, interest rate swaps improve the portfolio performance regardless of the in- or

exclusion of corporate bonds. In 87.50% of the portfolios in Table 2 and 3, the Sharpe ratio of the

portfolio with interest rate swaps is higher than the Sharpe ratio of the one without interest rate

swaps. However, the same percentage of portfolios with interest rate swaps have a higher turnover.

Thus it depends on the magnitude of the transaction costs to know if it is profitable to invest in

interest rate swaps. Even with that drawback, interest rate swaps in bond portfolios are promising.

All in all, both the use of interest rate swaps and corporate bonds are promising in the context of

a bond portfolio optimization problem in combination with government bonds. This also explains

the widespread use of these instruments in practice, e.g. in insurance companies. Therefore, in the

remainder of this paper, the cases with both interest rate swaps and corporate bonds are analysed
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(the results in the ‘Including Corporate Bonds’ section of Table 2).

Table 2: Performance of the bond portfolios including interest rate swaps for the out-of-sample period.

µ̂p (%) σ̂p (%) SR Turnover (%) IRS Ratio (%)

Excluding Corporate Bonds

M
C

DNS diagonal 3.94 8.49 0.4638 1.93 9.99

DNS VAR 4.26 8.24 0.5167 0.65 9.69

AFNS diagonal 3.98 8.49 0.4683 0.52 10.86

AFNS VAR 3.82 8.77 0.4354 2.28 9.74

M
V

DNS diagonal 5.54 9.16 0.6051 104.86 10.14

DNS VAR 6.73 7.56 0.8906 52.99 14.23

AFNS diagonal 4.31 9.74 0.4422 78.75 3.82

AFNS VAR 4.61 9.52 0.4838 90.38 9.38

M
S
R

DNS diagonal 3.64 9.74 0.3733 83.71 4.40

DNS VAR 4.92 9.60 0.5133 38.34 2.03

AFNS diagonal 4.05 9.57 0.4233 65.94 1.86

AFNS VAR 3.82 9.84 0.3879 64.01 1.90

Including Corporate Bonds

M
C

DNS diagonal 3.82 6.76 0.5656 5.23 19.51

DNS VAR 4.60 6.06 0.7598 1.62 19.81

AFNS diagonal 3.53 7.53 0.4694 2.30 15.69

AFNS VAR 3.41 8.12 0.4200 5.99 13.47

M
V

DNS diagonal 7.80 9.03 0.8637 103.15 12.39

DNS VAR 6.08 7.91 0.7694 45.85 18.54

AFNS diagonal 5.79 9.17 0.6314 78.57 4.20

AFNS VAR 4.72 8.63 0.5472 78.45 10.79

M
S
R

DNS diagonal 5.28 9.34 0.5655 101.28 4.54

DNS VAR 5.15 9.26 0.5559 25.80 1.37

AFNS diagonal 4.96 9.19 0.5394 62.20 1.08

AFNS VAR 4.98 9.13 0.5455 61.44 0.96

27



Table 3: Performance of the bond portfolios excluding interest rate swaps for the out-of-sample period.

The measure IRS ratio is always zero, as no IRSs are used.

µ̂p (%) σ̂p (%) SR Turnover (%)

Excluding Corporate Bonds

M
C

DNS diagonal 3.93 9.92 0.3963 1.47

DNS VAR 3.96 9.96 0.3981 0.19

AFNS diagonal 3.98 9.95 0.3998 0.13

AFNS VAR 3.97 9.95 0.3985 0.18

M
V

DNS diagonal 4.46 10.37 0.4302 87.72

DNS VAR 4.49 10.11 0.4438 40.85

AFNS diagonal 3.87 10.18 0.3804 68.33

AFNS VAR 4.71 10.23 0.4606 82.19

M
S
R

DNS diagonal 3.93 15.41 0.2550 118.59

DNS VAR 4.41 10.19 0.4329 30.88

AFNS diagonal 4.13 10.06 0.4106 47.68

AFNS VAR 4.02 10.27 0.3916 59.78

Including Corporate Bonds

M
C

DNS diagonal 4.02 9.53 0.4218 1.51

DNS VAR 4.06 9.56 0.4244 0.23

AFNS diagonal 4.07 9.55 0.4260 0.18

AFNS VAR 4.06 9.56 0.4248 0.21

M
V

DNS diagonal 6.12 10.10 0.6063 83.78

DNS VAR 4.95 9.24 0.5352 39.22

AFNS diagonal 5.21 9.35 0.5579 37.41

AFNS VAR 5.24 9.41 0.5569 69.41

M
S
R

DNS diagonal 4.81 10.91 0.4408 119.43

DNS VAR 4.64 9.70 0.4785 27.12

AFNS diagonal 5.01 9.64 0.5200 65.71

AFNS VAR 4.63 9.45 0.4906 53.08
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5.2.2 Comparison of Portfolio Specifications

Now including the interest rate swaps and corporate bonds, it is relevant to consider which portfolios

work best in terms of portfolio performance.

The MV portfolio has superior performance in terms of the average annualized excess return and

the Sharpe ratio compared to the other two portfolios. It also outperforms the second optimized

portfolio strategy, the MSR portfolio, regarding the standard deviation. On top of that, the MSR

portfolio has a higher average annualized excess return than the MC portfolio for all four term

structure specifications but has a much higher standard deviation. However, the MSR portfolio

still manages to beat the MC portfolio in terms of the Sharpe ratio in two of the four cases and

equals one. Table 4 displays the p-values of testing the statistical difference between the Sharpe

ratios of the optimized portfolios with the MC portfolio. This table shows that the Sharpe ratio of

the MC portfolio is statistically lower than that of the optimized portfolios in five of the eight cases.

Thus in most portfolio specifications, the optimized portfolios using the bond return moments in

their objective functions significantly outperform the benchmark MC portfolio. The MC portfolio is

the equivalent of the equally-weighted portfolio when additional constraints are present. Therefore,

using optimized portfolios instead of benchmark portfolios is worthwhile in the bond portfolio

problem for an investor. This finding was known for decades in the equity case but is now observed

in bond portfolios.

Table 4: The p-values to test the statistical differences of the MV and MSR portfolios with the MC portfolio

including IRSs and corporate bonds using the HAC inference test.

MV DNS diagonal DNS VAR AFNS diagonal AFNS VAR

p-value of ∆Sharpe 0.0000* 0.9572 0.0001* 0.0001*

MSR DNS diagonal DNS VAR AFNS diagonal AFNS VAR

p-value of ∆Sharpe 0.9979 0.0575 0.0079* 0.0000*

The p-values are of the test H0 : ∆Sharpe = 0. * p < 0.05

One drawback to the optimized portfolios is that the turnover in these portfolios is often much

higher compared to the stable MC portfolio. In the case of the MV portfolio, the turnover is twenty

to fifty times the turnover of the MC portfolio, as displayed in Table 2. Thus the MV portfolio could

be significantly more costly than the MC portfolio due to its transaction costs. These transaction

costs should be taken into account by an investor when choosing the preferred portfolio strategy.

29



Another interesting question is whether introducing the no-arbitrage conditions in the Nelson-

Siegel model enhances the portfolio performance. In all three types of portfolios, Table 2 shows that

the performance of the AFNS specification is worse than that of the DNS specification in terms

of the Sharpe ratio. In the MSR portfolio, this difference is small and statistically insignificant

with Sharpe ratios of 0.5394 and 0.5455 as opposed to 0.5655 and 0.5559. However, for the other

portfolio strategies, this difference is more significant. Specifically, the Sharpe ratios are 0.4694 and

0.4200 compared to 0.5656 and 0.7598 for the MC portfolio. The p-values using the HAC inference

test to test the statistical significance of the difference between these Sharpe ratios are 0.0026

and 0.0000, respectively. Thus for the MC portfolio, both Sharpe ratios of the DNS specification

are statistically higher than that of the AFNS specification. For the MV portfolio, the Sharpe

ratios are 0.6314 and 0.5472 for the AFNS compared to 0.8637 and 0.7694 for the DNS. Here,

the p-values are 0.0000 and 0.1509, respectively, meaning that for one of the two cases the Sharpe

ratio is significantly higher. Therefore, the imposition of no arbitrage does not enhance portfolio

performance. As the AFNS model complicates computations leading to higher computing times,

applying this model is not advised.

Overall, the best-performing portfolio when interest rate swaps and corporate bonds are present

is the MV portfolio with the DNS term structure model with uncorrelated underlying factors. It

has a Sharpe ratio of 0.8637 but has a high portfolio turnover of 103.15%. The notional amount

on the interest rate swaps in this portfolio is 12.39% of the total investment in bonds.

To get more insight into the portfolio composition for the different types of portfolios, Figure

5 displays the average portfolio weights for the three types of portfolios over the out-of-sample

periods. The term structure specification is the one which performed the best for the specific

portfolio type. As shown in Figure 5(a), the MC portfolio is indeed an equivalent of the equally-

weighted portfolio with slight differences in average portfolio weights but all weights close to 0.11.

Figures 5(b) and 5(c) show that optimized portfolio weights are more concentrated in the long-term

government bond and the low-rated corporate bond. This could partly be explained by the higher

returns on these types of bonds, as indicated in Table 1. Even though the government bond with

the lowest maturity generates the lowest return, it is still significantly incorporated in the optimized

portfolios with an average weight above 0.10. This is mainly due to the target of duration matching

and the compensation of the high duration of the bonds with high returns with one having a low

duration. The MV portfolio is more concentrated in only a few bonds than the MSR portfolio, as

displayed in Figure 5.
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(a) MC portfolio (DNS VAR) (b) MV portfolio (DNS diagonal)

(c) MSR portfolio (DNS diagonal)

Figure 5: The average portfolio weights in the out-of-sample period for the three types of portfolios. The

GB label stands for government bond and the number for the maturity thereof. The CB stands for corporate

bond and the character for its rating.

5.2.3 Effect of Sharp Interest Rate Rises

In the first six months of 2022, the interest rates on bonds increased sharply, as displayed in Figure

1. Rising interest rates often lead to negative bond returns, hence, poor portfolio performance.

Thus it is relevant to investigate the performance of the portfolios in such times.

First, Figure 6 shows the evolution of the monthly excess portfolio returns in 2021 and the

first six months of 2022. The excess return declines on average in the first six months of 2022

when the interest rates rise sharply. This finding is in line with expectations. For the MV and

MSR portfolios, the monthly excess returns almost reach −8%. However, the decline in the excess

return of the MC portfolio is less sharp, only reaching slightly below −5%. This is expected as

the MC portfolio is generally more stable because it tends to diversify the portfolio to the greatest

extent. Thus when unstable times with the possibility of sharply rising interest rates are expected,

implementing the MC portfolio could be a solution to limit the damage to portfolio performance.

On top of this, the influence of interest rate swaps and corporate bonds on the performance

31



Figure 6: The evolution of the monthly excess portfolio returns for the best term structure specification

for the three portfolios from January 2021 to June 2022. The first six months of 2022 indicate a period with

sharp interest rate rises.

of the best portfolio (the MV DNS diagonal portfolio) in the first six months of 2022 is shown in

Figure 7. Again, the decline in average portfolio performance is prevalent in the first six months

of 2022. However, the fall in excess portfolio return when including the interest rate swaps and

corporate bonds in the portfolio is smaller than when both are excluded. This difference is not

large, the smallest difference being near zero in the first three months of 2022 to 0.5% in June 2022

to 1.2% in April 2022. This can make a huge difference to an insurer even though the differences

in portfolio performance are small. For example, the total investment of the life insurance business

of Nationale-Nederlanden was EUR 98,319 million in 2021, according to Nationale-Nederlanden

Levensverzekering Maatschappij N.V. (2022). Thus a 1.2% increase would lead to a EUR 1180

million increase in asset value. Hence, another advantage of interest rate swaps and corporate

bonds in the bond portfolio optimization is limiting the decrease of portfolio performance in times

of sharply rising interest rates.
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Figure 7: The evolution of the monthly excess portfolio returns for the MV DNS diagonal portfolio including

and excluding interest rate swaps and corporate bonds from January 2021 to June 2022. The first six months

of 2022 indicate a period with sharp interest rate rises.

5.3 Robustness Checks

First, Table 5 shows the effect of changing the target duration in the constraints on the percentages

used in Section 5.2.1 to examine the importance of interest rate swaps and corporate bonds. These

statistics follow from the Sharpe ratios in both tables in Appendix C. The target duration is not

below ten years, as the duration matching strategy is used in practice with long-term liabilities, such

that the cases below ten years are not of practical relevance. As in the case with the fixed target

duration of 13.4 years, interest rate swaps and corporate bonds improve portfolio performance in

terms of the Sharpe ratio. Table 5 shows that for all target durations, most of the Sharpe ratios of

portfolios with interest rate swaps exceed those of portfolios excluding these. Corporate bonds never

harm the Sharpe ratio of the portfolio, as at least 50% of the portfolios have a higher Sharpe ratio

when including corporate bonds. The advantage of corporate bonds is more significant with interest

rate swaps than without because the average increase in the Sharpe ratio when adding corporate

bonds in the former is higher than in the latter for all target durations. These findings show

that including interest rate swaps and corporate bonds in portfolio optimization is recommended

regardless of the target duration.

Now consider the performance of the portfolios with both interest rate swaps and corporate

bonds for varying target durations, as displayed in Table A1. Then the optimized portfolios gener-

ally outperform the benchmark MC portfolio in terms of the Sharpe ratio for all target durations.

Hence, the conclusion that it is profitable for an investor to consider optimized portfolios using the
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Table 5: The impact of changing the target duration on the number of portfolios with a higher Sharpe

ratio including corporate bonds (interest rate swaps) than the Sharpe ratio when excluding them and the

average increase, if there is an increase, in Sharpe ratio due to corporate bonds with and without interest

rate swaps.

Target duration (years) 10 15 20 25 30

SR incl. CB > SR excl. CB (% of portfolios) 95.83 91.67 83.33 50.00 50.00

SR incl. IRS > SR excl. IRS (% of portfolios) 87.50 83.33 66.67 66.67 58.33

If increase, average % SR increase due to CB excl. IRS 22.48 28.88 19.66 9.84 11.54

If increase, average % SR increase due to CB incl. IRS 27.99 29.03 26.82 21.59 44.69

first two bond return moments still holds when varying the target duration. On top of that, the

MV portfolio performs superior to the MSR portfolio regardless of the target duration.

Second, Figure 8 displays the impact of varying the relative risk aversion on the portfolio

performance in terms of the Sharpe ratio. This parameter only occurs in the objective function of

the MV portfolio, so only the MV portfolio performance changes when the risk aversion changes.

In the two uncorrelated specifications of the term structure models, the specification with interest

rate swaps and corporate bonds is superior for all levels of relative risk aversion. For the correlated

cases, this does not hold for all levels of relative risk aversion. The specification with interest

rate swaps and corporate bonds still outperforms the specification without these two portfolio

components. This superiority means interest rate swaps and corporate bonds generally improve

portfolio performance in the Sharpe ratio regardless of the relative risk aversion. This improvement

is the same as in Section 5.2.1.

Furthermore, Figure 8 shows that the MV portfolio outperforms the benchmark MC portfolio

(the horizontal line in the figure) when interest rate swaps and corporate bonds are included. Thus

optimized portfolios outperform the benchmark MC portfolio regardless of the relative risk aver-

sion. Therefore, investors with every type of risk aversion should consider optimized portfolios over

benchmark portfolios in practice.

Third, Figure 4 shows that the optimized portfolio outperforms the benchmark MC portfolio

in most term structure specifications for a range of liquidity risk ratios. The only specification for

which this is not true is the MSR portfolio in the correlated DNS model. This superiority of the
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(a) DNS diagonal (b) DNS VAR

(c) AFNS diagonal (d) AFNS VAR

Figure 8: The impact of varying the level of relative risk aversion on the annualized Sharpe ratio of the

MV portfolio. The horizontal line is the value of the annualized Sharpe ratio of the best MC portfolio with

interest rate swaps and corporate bonds.

optimized models over the benchmark is in line with the findings in Section 5.2.2. The exclusion

of interest rate swaps corresponds to a liquidity risk ratio of zero because then no interest rate

swaps are allowed. Generally, the annualized Sharpe ratio increases when having a liquidity risk

ratio unequal to zero. Thus interest rate swaps benefit an investor for any liquidity risk ratio

when corporate bonds are also present. All in all, the choices of parameters generally do not affect

the conclusions in this paper about the use of interest rate swaps, corporate bonds and optimized

portfolios.
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6 Conclusion

The main goal of this paper was to investigate the incorporation of interest rate swaps in the

static bond portfolio optimization problem with a duration matching constraint. The minimum-

concentration, mean-variance and maximum Sharpe ratio portfolio problems are expanded with

constraints matching the duration of assets and liabilities and limiting the required collateral for

interest rate swaps. Four different specifications of term structure models to estimate the bond

return moments are used: the (un-)correlated dynamic Nelson-Siegel and arbitrage-free Nelson-

Siegel models.

This paper finds that including interest rate swaps in the bond portfolio optimization improves

portfolio performance in terms of the Sharpe ratio. This positive effect is more pronounced when

corporate bonds are included in the portfolio optimization besides the government bonds. There-

fore, the advice is to use government bonds, interest rate swaps and corporate bonds altogether

in the static bond portfolio optimization. Using these constituents also leads to minor gains in

portfolio returns when returns decline due to sharply rising interest rates. In monetary terms, the

profit is significant for large insurance companies with high investments in fixed-income portfolios

even though the improvements in portfolio returns are little.

Furthermore, optimized portfolios using the first two bond return moments in their objective

function outperform the benchmark minimum-concentration portfolio. The minimum-concentration

portfolio is the equivalent of the equally-weighted portfolio when additional constraints are present.

The mean-variance portfolio generally performs the best. The mean-variance portfolio with the un-

correlated dynamic Nelson-Siegel term structure specification is the best-performing model overall.

However, in periods with fast-increasing interest rates and average portfolio performance dropping,

the minimum-concentration portfolio is more stable than the optimized portfolios. The minimum-

concentration portfolio then limits the losses in excess portfolio returns. Therefore, it is safer to

use the minimum-concentration portfolio as opposed to the optimized portfolios when expecting

rapidly increasing interest rates. The minimum-concentration portfolio also has a significantly

lower turnover than the optimized portfolio. This lower turnover leads to much lower transaction

costs. Thus, optimized portfolios have great potential to improve portfolio performance over the

benchmark model when incorporating government bonds, interest rate swaps and corporate bonds.

However, investors should consider issues regarding transaction costs and the decline of portfolio

performance in periods with sharply rising interest rates.
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This paper is the first step in analysing bond portfolio optimization with interest rate swaps and

a duration constraint. Extensions are possible in multiple ways. A possible extension is to expand

the set of investment instruments. One can include more complicated types of bonds, such as gov-

ernment bonds paying coupons. Different fixed-income instruments can also be incorporated such

as mortgages which are often used by insurance companies. On top of that, individual corporate

bonds can be included instead of corporate bond indices as a proxy of corporate bond performance

to make the analysis more realistic. However, this is likely to lead to more volatile portfolios, as

individual corporate bonds have higher variations in their returns than a corporate bond index

consisting of a large number of these individual bonds.

Another interesting extension is using different underlying term structure models to capture

the behaviour of the yield curve more appropriately. Many possibilities for this are available as the

term structure literature is vast. The multifactor Vasicek-type term structure model, the widely

used Cox-Ingersoll-Ross model and the flexible Hull-White model are only a few examples. Besides

the term structure models, one can extend the set of portfolios used.

A final possible extension is to include the collateral problem directly in the objective function

in some way instead of including it as a constraint. This change could lead to diminishing objective

values of the portfolio when the company has to take on additional liquidity due to the required

collateral. In this way, the costs of the liquidity risk are included in the optimization instead of in

the constraints by setting a maximum for the liquidity risk through maximally allowed collateral.
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Appendix A Kalman Filter

In this appendix, the implementation of the estimation of the model parameters using the Kalman

filter for the the DNS and the AFNS model is described. The approach by Christensen et al. (2011)

is followed.

A.1 Dynamic Nelson-Siegel Model

The DNS model in state space form is

yt = B(τ)Xt + εt, (48)

Xt = (I − Φ)µ+ΦXt−1 + ηt. (49)

The initial values for the Kalman filter are the unconditional mean and variance under the P-

measure, following Christensen et al. (2011). Thus X1|0 = µ and P1|0 = V where V is the solution

of V = ΦV Φ′ + Q. To ensure stationarity such that the solution exists, the eigenvalues of Φ are

restricted to be less than one. Then the solution is V = (I − Φ⊗ Φ)−1 vec(Q).

The first step of the Kalman filter is the prediction step which is

X̂t+1|t = (I − Φ)µ+ΦX̂t|t, (50)

Pt+1|t = ΦPt|tΦ
′ +Q. (51)

Then the update step is

X̂t+1|t+1 = X̂t+1|t + Pt+1|tB(τ)′(B(τ)Pt+1|tB(τ)′ +H)−1(yt+1 −B(τ)X̂t+1|t), (52)

Pt+1|t+1 = Pt+1|t − Pt+1|tB(τ)′(B(τ)Pt+1|tB(τ)′ +H)−1B(τ)Pt+1|t. (53)

As maximum likelihood function to estimate the unknown parameters, the prediction error decom-

position is used. This is because the consecutive observations of the yields are not independent

as the underlying factors have a dynamic specification. Following the specification by Christensen

et al. (2011) the prediction error decomposition is

log l(y1, . . . , yT ;ψ) =
T∑
t=1

(
− N

2
log(2π)− 1

2
log |B(τ)Pt+1|tB(τ)′ +H|

− 1

2
(yt+1 −B(τ)X̂t+1|t)

′(B(τ)Pt+1|tB(τ)′ +H)−1(yt+1 −B(τ)X̂t+1|t)

)
, (54)

where ψ = (µ,Φ, H,Q, λ) is the parameter vector. For the optimization the Quasi-Newton algo-

rithm using the BFGS Quasi-Newton method with a cubic line search procedure is used, as this is

the default method for the Matlab function fminunc.
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A.2 Arbitrage-Free Nelson-Siegel Model

In the Arbitrage-Free Nelson-Siegel model, the stochastic differential equation under the P-measure

for the state variables is

dXt = K[θ −Xt]dt+ΣdWt, (55)

according to Christensen et al. (2011). Then the state space form of the AFNS model is

yt = −A(τ)
τ

+B(τ)Xt + εt, (56)

Xt = (I − exp(−K∆t))θ + exp(−K∆t)Xt−1 + ηt. (57)

The initial values for the Kalman filter are the unconditional mean and variance under the P-

measure, following Christensen et al. (2011), so X1|0 = θ and P1|0 =
∫∞
0 e−KsΣΣ′e−K′sds.

The first step of the Kalman filter is the prediction step which is

X̂t+1|t = (I − exp(−K∆t))θ + exp(−K∆t)X̂t|t, (58)

Pt+1|t = exp(−K∆t)Pt|t exp(−K∆t)′ +Qt, (59)

where Qt =
∫ ∆t
0 e−KsΣΣ′e−K′sds with ∆t = 1

12 being the time between observations.

Then the update step is

X̂t+1|t+1 = X̂t+1|t + Pt+1|tB(τ)′(B(τ)Pt+1|tB(τ)′ +H)−1(yt+1 +
A(τ)

τ
−B(τ)X̂t+1|t), (60)

Pt+1|t+1 = Pt+1|t − Pt+1|tB(τ)′(B(τ)Pt+1|tB(τ)′ +H)−1B(τ)Pt+1|t. (61)

As maximum likelihood function to estimate the unknown parameters, the prediction error decom-

position is used. This is because the consecutive observations of the yields are not independent

as the underlying factors have a dynamic specification. Following the specification by Christensen

et al. (2011) the prediction error decomposition is

log l(y1, . . . , yT ;ψ) =
T∑
t=1

(
− N

2
log(2π)− 1

2
log |B(τ)Pt+1|tB(τ)′ +H|

− 1

2
(yt+1 +

A(τ)

τ
−B(τ)X̂t+1|t)

′(B(τ)Pt+1|tB(τ)′ +H)−1(yt+1 +
A(τ)

τ
−B(τ)X̂t+1|t)

)
, (62)

where ψ = (θ,K,H,Σ, λ) is the parameter vector. For the optimization the Quasi-Newton algo-

rithm using the BFGS Quasi-Newton method with a cubic line search procedure is used, as this is

the default method for the Matlab function fminunc.
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Appendix B HAC Inference Test

The HAC inference test by Ledoit and Wolf (2008) tests the statistical significance of the difference

in the Sharpe ratio of two portfolios. The excess returns are Rp1,t and Rp2,t for t = 1, . . . , T for

portfolios p1 and p2, respectively. Both excess return series are assumed to be stationary processes

with estimated mean and covariance matrix as

µ̂ =

µ̂p1
µ̂p2

 and Σ̂ =

 σ̂2p1 σ̂p1,p2

σ̂p1,p2 σ̂2p2

 . (63)

The Sharpe ratios of the two portfolios differ by

∆̂Sharpe = ŜRp1 − ŜRp2 =
µ̂p1
σ̂p1

− µ̂p2
σ̂p2

. (64)

Define E[Rp1,1] = αp1 and E[Rp2,1] = αp2 with estimates α̂p1 and α̂p2. Also define v = (µp1, µp2, αp1, αp2)

and v̂ = (µ̂p1, µ̂p2, α̂p1, α̂p2) such that ∆̂Sharpe = f(v̂) where

f(µ̂p1, µ̂p2, α̂p1, α̂p2) =
µ̂p1√

α̂p1 − µ̂2p1

− µ̂p2√
α̂p2 − µ̂2p2

. (65)

The assumption that
√
T (v̂ − v)

d−→ N(0,Ψ) holds under mild regularity conditions where Ψ is

an unknown symmetric positive semi-definite matrix. Using the Delta method, one can find
√
T (∆̂Sharpe − ∆Sharpe))

d−→ N(0,∇′f(v)Ψ∇f(v)). The standard error for ∆̂Sharpe is then given

by

s(∆̂Sharpe) =

√
∇′f(v̂)Ψ̂∇f(v̂)

T
, (66)

when Ψ̂ is a consistent estimator. To test the null hypothesis H0 : ∆Sharpe = 0, the p-value of the

two-sided test is

p̂ = 2Φ

(
−

|∆̂Sharpe|
s(∆̂Sharpe)

)
, (67)

where Φ(·) is the cumulative distribution function of the standard normal distribution. As consistent

estimator of Ψ̂, Ledoit and Wolf (2008) use a group of estimators called the heteroskedasticity and

autocorrelation robust (HAC) kernel estimators. The kernel incorporated in this paper is one of

the kernels in Ledoit and Wolf (2008), that is the commonly used Parzen-Gallant kernel. The code

for the HAC inference test is available on Michael Wolf’s website.5

5https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html#Programming Code
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Appendix C Effect of Varying Target Duration on Sharpe Ratio

Table A1: Annualized Sharpe ratio of the bond portfolios including interest rate swaps for the out-of-sample

period for varying target durations.

Target Duration (years) 10 15 20 25 30

Excluding Corporate Bonds

M
C

DNS diagonal 0.6186 0.4059 0.1939 -0.0049 -0.1634

DNS VAR 0.6202 0.5070 0.4704 0.3300 0.2031

AFNS diagonal 0.6220 0.3491 0.1463 0.0659 0.0441

AFNS VAR 0.6206 0.3236 0.1068 0.0023 -0.0306

M
V

DNS diagonal 0.8038 0.5388 0.4172 0.3393 0.2566

DNS VAR 0.9675 0.8935 0.8120 0.7252 0.6699

AFNS diagonal 0.5937 0.3854 0.2584 0.1802 0.1356

AFNS VAR 0.7153 0.4040 0.2373 0.1226 0.0486

M
S
R

DNS diagonal 0.5850 0.3112 0.1815 0.1030 -0.0141

DNS VAR 0.7065 0.4534 0.3166 0.2181 0.1918

AFNS diagonal 0.6744 0.3500 0.2091 0.1546 0.1037

AFNS VAR 0.7266 0.3456 0.2069 0.0974 0.0735

Including Corporate Bonds

M
C

DNS diagonal 0.7660 0.4720 0.1386 -0.0785 -0.2565

DNS VAR 0.7877 0.7496 0.6552 0.3553 0.2369

AFNS diagonal 0.7889 0.3403 0.1604 0.0752 0.0451

AFNS VAR 0.7787 0.2997 0.0890 -0.0152 -0.0508

M
V

DNS diagonal 1.2032 0.7382 0.4681 0.3020 0.1770

DNS VAR 0.8090 0.9015 0.9132 0.7390 0.6018

AFNS diagonal 0.8308 0.5375 0.3185 0.1926 0.1198

AFNS VAR 0.8603 0.4487 0.2291 0.0843 0.0175

M
S
R

DNS diagonal 0.9193 0.4998 0.2787 0.1550 0.0078

DNS VAR 0.7939 0.4815 0.3009 0.2002 0.1850

AFNS diagonal 0.7629 0.4449 0.3049 0.1812 0.1084

AFNS VAR 0.8150 0.4971 0.2449 0.1489 0.0000
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Table A2: Annualized Sharpe ratio of the bond portfolios excluding interest rate swaps for the out-of-

sample period for varying target durations.

Target Duration (years) 10 15 20 25 30

Excluding Corporate Bonds

M
C

DNS diagonal 0.6183 0.3285 0.1892 0.1142 0.0986

DNS VAR 0.6202 0.3303 0.1911 0.1177 0.1026

AFNS diagonal 0.6220 0.3319 0.1926 0.1190 0.1045

AFNS VAR 0.6206 0.3307 0.1915 0.1180 0.1029

M
V

DNS diagonal 0.6590 0.3571 0.2058 0.1444 0.0993

DNS VAR 0.6164 0.3889 0.2729 0.1697 0.1026

AFNS diagonal 0.5470 0.3283 0.2193 0.1505 0.1044

AFNS VAR 0.6454 0.4029 0.2818 0.1769 0.1028

M
S
R

DNS diagonal 0.5545 0.2945 0.1207 0.0675 0.0205

DNS VAR 0.6296 0.3669 0.1515 0.0582 0.0295

AFNS diagonal 0.6529 0.3366 0.2193 0.1473 0.0543

AFNS VAR 0.6569 0.1596 0.1339 0.0889 0.0513

Including Corporate Bonds

M
C

DNS diagonal 0.6723 0.3461 0.1932 0.1143 0.0990

DNS VAR 0.6749 0.3489 0.1974 0.1177 0.1028

AFNS diagonal 0.6765 0.3504 0.1987 0.1190 0.1045

AFNS VAR 0.6752 0.3492 0.1977 0.1180 0.1031

M
V

DNS diagonal 0.9858 0.4865 0.2421 0.1572 0.0997

DNS VAR 0.7716 0.4550 0.2807 0.1727 0.1027

AFNS diagonal 0.8040 0.4723 0.2924 0.1788 0.1047

AFNS VAR 0.7979 0.4776 0.2973 0.1676 0.1033

M
S
R

DNS diagonal 0.8746 0.3221 0.1576 -0.0021 -0.0292

DNS VAR 0.6936 0.3973 0.2304 0.0362 -0.0163

AFNS diagonal 0.7529 0.4433 0.2793 0.1763 0.1033

AFNS VAR 0.6970 0.4137 0.2072 0.0584 0.0253
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