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Abstract

In this thesis, we provide a family of formulations for the vehicle routing problem with time

windows (VRPTW) by extending the p-step formulation proposed by Dollevoet et al. (2020).

The parameter p indicates the length of partial paths which are concatenated to construct

routes. The p-step approach is considered a generalization as next to providing new

formulations, it unifies traditional arc-based and path-based formulations. We compute the

linear programming relaxation of the VRPTW with a column generation algorithm and break

down the resulting pricing problem into a polynomial number of well-known problems:

elementary shortest path problems with resource constraints (ESPPRC). We solve these with an

exact pulse algorithm and, subsequently, provide a dive-and-fix heuristic to generate an integer

solution for the VRPTW. Our aim is to provide empirical evidence that using the p-step

formulation to solve the VRPTW can gain computational advantage compared to

state-of-the-art algorithms. The computational experiments with benchmark instances do not

support this statement, but our specifically designed instances do favor intermediate values of p

and suggest that computational advantage can be gained with further algorithmic development.
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1 Introduction

The vehicle routing problem (VRP) is a classical combinatorial optimization problem in which mini-

mum cost routes are designed for a limited number of homogeneous vehicles to cover a set of customers

with known demand. Each route starts and ends at the depot, and the cumulative demand of the

customers served should not exceed the capacity of a vehicle. Dantzig and Ramser (1959) were the

first to use the VRP to model and optimize the physical distribution of gasoline by delivery trucks.

Such flow of products through a transportation network has a vital role in the field of logistics. As

distribution processes have a significant share in the costs of businesses, the VRP and its extensions

have been widely studied over the past decades.

One of these extensions is the so-called vehicle routing problem with time windows (VRPTW),

a generalization of the VRP where time windows give a time interval in which the service of every

customer should start (Toth and Vigo, 2002). These time windows can either be soft or hard. Soft

windows can be violated against additional cost, whereas hard windows are binding. In other words,

they do not allow the vehicle to arrive late and make the vehicle wait until the start of the time

window when it arrives too early. We consider the latter case in the remainder of this thesis.

Some specific applications where hard time windows are encountered include urban newspaper

distribution, postal and supermarket deliveries and security patrol services. Due to significant progress

in information technology, business organizations are able to devote more attention to optimization and

time-efficiency throughout their supply chain (Kallehauge et al., 2005). Because of this, the practical

utilization of the VRPTW has advanced within operation and supply chain designs. In parallel, the

visible applicability stimulated research in the direction of both exact and heuristic solving methods

(El-Sherbeny, 2010).

Generally, exact algorithms to solve the VRPTW are based on a (mixed) integer linear pro-

gramming formulation. Two well-known types are the arc-based formulation, where each arc has a

corresponding binary decision variable indicating whether it is used, and the path-based formulation,

where binary decision variables indicate whether a path or route is used. In his comprehensive review,

Kallehauge (2008) states that the main contributions to solving the VRPTW to optimality lay in the

area of exact approaches relying on a path-based formulation; the main example is the set partitioning

formulation (Balinski and Quandt, 1964). Usually, a column generation algorithm is used to compute

the LP bound of such formulations.

Recently, Dollevoet et al. (2020) introduced a new generalized formulation for the capacitated

vehicle routing problem (CVRP), which resembles the VRPTW if time window constraints are ne-
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glected. Their p-step formulation provides a family of formulations in which partial paths of length p

are concatenated to construct routes. The p-step formulation is considered a generalization as the for-

mulation is arc-based when p is one, path-based when p is larger than the total number of customers,

and it gives new formulations for intermediate values of p. They show empirical evidence that their

formulation could provide computational advantage compared to previously mentioned traditional

formulations.

In this thesis, we build on the framework of Dollevoet et al. (2020) and extend the p-step formu-

lation so that it becomes a formulation for the VRPTW. In other words, we redefine the p-step and

incorporate additional constraints to ensure time windows are not violated. Furthermore, we use a

column generation algorithm to solve the linear programming (LP) relaxation of the VRPTW. We

decompose the pricing problem into an elementary shortest path problem with resource constraints

(ESPPRC) and solve it by implementing an adjusted version of the pulse algorithm proposed by

Lozano et al. (2016). Eventually, we apply a dive-and-fix heuristic which implements before men-

tioned algorithms to solve the VRPTW to integrality. The aim of this thesis is not only to provide a

new generalization of formulations for the VRPTW, but also to investigate whether these formulations

can achieve computational advantages.

In our computational experiments, we first solve selected benchmark instances from the literature

with our dive-and-fix heuristic. As these results do not show evident proof of potential computational

advantage of using the p-step formulation, we also generate problem instances specifically designed to

favor intermediate values of p. Even though the computation times cannot compete with state-of-the-

art algorithms, four out of five constructed instances suggest potential computational gains of using

the p-step formulation to solve the VRPTW. Note that further development in algorithms designed

for intermediate values of p is necessary.

The remainder of this thesis is structured as follows. Section 2 gives an overview of the relevant

scientific literature. In Section 3, we present a formal problem description of the VRPTW and intro-

duce the p-step formulation. Subsequently, in Section 4 and Section 5 we present a column generation

algorithm and elaborate on the pulse algorithm, which is used to solve the ESPPRCs in the pricing

problem. In Section 6, we propose the dive-and-fix heuristic we use for our computational experiments.

We discuss the results of these experiments in Section 7. Finally, in Section 8 we conclude our thesis

with a summary, our limitations and suggestions for future research.
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2 Literature review

In Section 2.1, we give a brief overview of studies on heuristic methods to solve the VRPTW and

discuss two general formulations used in exact approaches. Thereafter, in Section 2.2, we elaborate on

column generation algorithms and related pricing problems. Section 2.3 covers diving heuristics used

to compute integer solutions in a vehicle routing setting.

2.1 The VRPTW: heuristic and exact algorithms

Since Dantzig and Ramser (1959) introduced the VRP, the problem itself and its extensions have been

extensively studied for decades. The reasons for this interest are both its widespread applicability

and considerable difficulty (Toth and Vigo, 2002). VRPs belong to the class of NP-hard problems.

Therefore, the size of instances may cause excessively long run times when using exact algorithms to

solve large instances to optimality. As the VRPTW is a generalization of the VRP, it is also considered

to beNP-hard (Lenstra and Rinnooy Kan, 1981). As a result, (meta-)heuristics might be used in order

to solve VRPTWs within a reasonable time span. Some heuristic algorithms are simulated annealing

(Chiang and Russell (1996), Mahmudy (2014)) and tabu search (Bräysy and Gendreau, 2002). Both

approaches are single solution based; only one initial candidate solution is considered. Meta-heuristics

that are population based are, for example, the evolutionary genetic algorithm (Ombuki et al., 2006)

or swarm intelligence algorithms like ant colony optimization (Toklu et al., 2014) and particle swarm

optimization (Zhu et al. (2006), Liu et al. (2009)).

Above mentioned algorithms require problem-specific tuning of parameters and may not guarantee

a close to optimal solution. When optimality becomes crucial and quick feasible solutions are insuf-

ficient, exact algorithms have proven to be successful in solving VRPTWs, too. Scientific literature

identifies, amongst others, two main (mixed) integer linear programming formulations on which exact

approaches depend: arc-based formulations and path-based formulations. The studies of Kallehauge

et al. (2007) and Mak and Ernst (2007) are both examples of first-mentioned formulation in which

binary variables are associated with the use of arcs. Contrary, path-based formulations let binary

variables indicate whether a path, i.e. route, is used. The best-known example of such formulation is

the set partitioning formulation (Balinski and Quandt, 1964), which has been the subject of numerous

studies since. The difference between these two formulations lies in the constructed LP bounds and

their respective computation times. Generally, the LP relaxation of arc-based formulations is found

quickly, but provides relatively weak LP bounds as a consequence. Path-based formulations, on the

other hand, do provide strong LP bounds. However, this requires substantial computation times due
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to the number of variables that grows exponentially with instance size.

2.2 Column generation

To overcome dealing with an excessive amount of variables, it is common to apply a column genera-

tion algorithm to compute LP bounds in path-based formulations. Such an approach has exponential

worst-case computation time. The use of column generation dates back to Desrochers et al. (1992),

who applied a Dantzig-Wolfe decomposition (DWD) framework in which the assignment constraints,

which link the vehicles to their route, were considered as the linking constraints. Another approach

to split the VRPTW into a master problem and a separate subproblem for each vehicle is Lagrangian

Relaxation (LR); Kohl and Madsen (1997) also relax the assignment constraints and end up with a

master problem in which optimal Lagrangian multipliers are found by a best of both worlds combina-

tion of subgradient and bundle methods. Lagrangian Decomposition (LD) for the VRPTW, based on

variable splitting suggested by Jörnsten et al. (1986), is proposed by Halse (1992). He proposes three

different splitting methods by introducing additional decision variables and constraints. In this way,

the resulting master problem needs to optimize for more multipliers, making it more difficult to solve.

In addition, the subproblems do not remain identical for each vehicle. As Kohl (1995) derived that the

lower bounds of LD are similar to the bounds computed with either DWD or LR, the last two more

evident methods have been extended in later studies. For example, Kohl et al. (1999) introduce the

2-path cut, a strong valid inequality, and incorporate this into their DWD approach. In continuation,

Cook and Rich (1999) do not only propose a new implementation of the before mentioned method but

also apply parallel processing. A merger of LR and DWD is suggested by Kallehauge et al. (2001),

who state that the combination of a DWD with a bundle method can be used to strengthen known

LR approaches.

2.2.1 Subproblems: SPPRC and ESPPRC

Most column generation algorithms for the VRPTW decompose the subproblem, i.e. pricing problem,

into an elementary shortest path problem with resource constraints (ESPPRC) for each vehicle. Here,

an elementary path is one in which each customer can be visited at most once. Furthermore, the

resource constraints concern the time window of each customer and the capacity of a vehicle. Since

the ESPPRC is NP-hard in the strong-sense (Dror, 1994), it is often relaxed by allowing for cycles;

resulting in the shortest path problem with resource constraints (SPPRC). Negative cycles may exist,

but infinite cycles cannot occur as time goes forward and capacity accumulates with each visit to a
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customer. Most approaches to solve the SPPRC rely on dynamic programming, such as the pseudo-

polynomial labeling algorithm in the seminal work of Desrochers et al. (1992). However, solving the

relaxed SPPRC generates significantly more admissible columns than the ESPRRC would, providing

weaker lower bounds and causing possible impractically large branch-and-bound trees. Irnich and

Villeneuve (2006) show that k-cycle elimination with k ≥ 3, a compromise between solving the SPPRC

and ESPPRC, significantly improves obtained lower bounds. Another compromise is the so-called ng-

route relaxation proposed by Baldacci et al. (2011), which allows routes to be non-elementary but

forbids short localized cycles. This restriction is realized by a dynamically computed set associated

with each customer containing forbidden following customers. Currently, the ng-route relaxation is

the state-of-the-art exact approach to solve the VRPTW.

In their approach to solve the VRPTW, Rousseau et al. (2004) use constraint programming to

solve the ESPPRC. This does result in a flexible approach, however, no significant improvement

is made in either solution quality or computation times. The studies of Feillet et al. (2004) and

Chabrier (2006) extend the labeling algorithm of Desrochers et al. (1992) and embed this in a branch-

and-price scheme. Both works show improved lower bounds at each node in the branching tree

and, additionally, found optimal solutions to numerous open benchmark instances (Solomon, 1987).

Building on this, Feillet et al. (2007) propose refinements to reduce computation times. Their results

show the substantial influence of applying limited discrepancy search to dynamic programming and

removing labels during the search based on lower bounds. Another algorithm to tackle the ESPPRC is

introduced by Righini and Salani (2008); their bidirectional labeling algorithm with decremental state-

space relaxation heavily outperforms the earlier mentioned dynamic programming approaches of Feillet

et al. (2004) and Chabrier (2006). Moreover, Jepsen et al. (2008a) and Jepsen et al. (2008b) suggest

subset-row inequalities, which improve the lower bound at all nodes in the branching tree. However,

its usefulness is questioned as the pricing problem becomes significantly more complex. To overcome

this, Desaulniers et al. (2008) propose before mentioned subset-row inequalities with a combination of

tabu search and the exact algorithm of Righini and Salani (2008). They prove their approach to be

successful as they find optimal solutions for five previously unsolved Solomon benchmark instances.

A recent contribution is the pulse algorithm by Lozano et al. (2016); an exact solution approach that

extends partial paths in a recursive manner. The partial paths either reach the final node and provide

a solution to the ESPPRC or are rejected by pruning strategies. The authors show that their implicit

enumeration with a novel bounding scheme to limit the solution space performs well compared to

current state-of-the-art algorithms.
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2.3 Diving heuristics

In most cases, applying and solving column generation results in a fractional solution. To solve the

VRPTW to integrality, techniques and extensions of branch-and-price algorithms are widely used.

Examples of these are diving heuristics, which apply a depth-first search in the branch-and-price

tree. After solving each branching node, a part of the fractional variables is bounded or fixed to

promising integral values by greedy or rounding strategies (Berthold, 2006). Subsequently, the LP

relaxation is solved in an iterative manner to create a simulation of a possible root-leaf path. In this

context, we differ from exact approaches as we neglect to balance the tree and increasing the dual

bound. The study of Günlük et al. (2006) is an example of applying a diving heuristic in a vehicle

routing setting. Their fix-and-price heuristic applies fractional diving with a threshold value in the

optimization component of a decision support system.

3 A p-step formulation

The VRPTW is a well known problem, but to introduce notation and for the sake of completeness we

provide a general problem description in Section 3.1. Moreover, in Section 3.2, we present a new binary

programming formulation of the VRPTW and define the p-steps that it uses, based on Dollevoet et al.

(2020). In Section 3.3, we discuss how to modify the formulation to only include a finite number of

variables.

3.1 Problem description VRPTW

To define the problem, we let N = {0, 1, . . . , n + 1} be the set of vertices where C = {1, 2, . . . , n}

represents the customers, and 0 and n+ 1 are the starting and ending depot, respectively. The set of

arcs, A = {(i, j) : i, j ∈ N, i ̸= j, i ̸= n + 1, j ̸= 0}, includes the direct connections among customers

and between the customers and the depot. The VRPTW can now be defined on the directed graph

G = (N,A).

Each customer i ∈ C has a demand qi > 0, a time window [ai, bi] in which service should start,

and a service time si. For the depots, we let q0 = qn+1 = s0 = sn+1 = 0 and assume identical time

windows [a0, b0] to represent the scheduling horizon. To satisfy demand within the given time horizon,

an unlimited fleet of homogeneous vehicles with capacity Q is available. These vehicles visit customers

by traversing an elementary path from 0 to n + 1, i.e., no vertex is repeated in the path. We refer

to such a path as a route. The capacity of a vehicle cannot be exceeded by the total demand of the

8



customers it visits. Therefore, we assume qi ≤ Q for all i ∈ N . A vehicle should fulfill the complete

demand of a customer i as customers are visited exactly once. Furthermore, it must arrive at the

customer and start service before bi. A vehicle may arrive before the time window opens but should

always wait until ai before servicing customer i. Each arc (i, j) ∈ A has associated cost and travel

time denoted by cij , tij ≥ 0, respectively. We assume that cij = tij and that they are equal to the

Euclidean distance dij between i and j. As a result, both cij and tij satisfy the triangle inequality.

The objective of the VRPTW is to determine an optimal set of routes to satisfy all customer demands

within respective time windows while total costs should be minimized.

3.2 Binary programming formulation

We present a binary programming formulation of the VRPTW that concatenates so-called p-steps to

represent routes, based on Dollevoet et al. (2020). The parameter p corresponds to the length of path

Pr associated with p-step r. Pr is an elementary path in G that either visits p+1 nodes by traversing

exactly p arcs or traverses at most p arcs after starting at the depot. We denote a p-step r by a triplet

(Pr, dr, tr), where dr is the prior demand of r, i.e., the sum of the customers’ demand on a route before

arriving at the first location of Pr. In addition, tr denotes when the first location of Pr is serviced,

which is referred to as the start time of r. The total time of Pr, including travel, service and waiting

times, is denoted by T (r). Besides, D(r) denotes the cumulative demand of all customers visited on

Pr. Lastly, we denote lri for each i ∈ Pr as the time at which service starts at customer i. For a p-step

r to be feasible, it should hold that 0 ≤ dr +D(r) ≤ Q and 0 ≤ tr +T (r) ≤ b0. Moreover, it should be

possible to visit all customers within their respective time windows. This means lri + si + tij ≤ lrj for

each (i, j) ∈ Pr with lri ∈ [ai, bi] for each i ∈ Pr. Now, if s is the start location and f the end location

of path Pr, we define T (r) = lrf − lrs. Let R
p be the set of all feasible p-steps.

As said before, p-steps are chained to construct and represent routes. Three conditions should

hold when two p-steps r and u are concatenated. First, the last location f ∈ C of r should be equal to

the first location of u. Second, the total demand after leaving r should match the prior demand of u

and the demand of f , or in other words, dr+D(r) = du+ qf . Lastly, the start time of u should always

be later than the ending time of r, that is, tr + T (r) ≤ tu. Note that as we enforce a single visit per

customer in our formulation, we establish that any concatenated path from 0 to n + 1 is elementary

and, therefore, produces a feasible route.

Next, we present additional parameters to formulate the VRPTW. We introduce the degree of

customer i on path Pr of p-step r, denoted by air, to ensure single visits for each customer. Let air
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be 2 if p-step r visits customer i ∈ C once, 1 if i is either the first or the last location on Pr, and

0 otherwise. In addition, to correctly concatenate p-steps, we introduce location degree eir, demand

degree qir, and time degree vir. Let eir be -1 if i is the last location on Pr, 1 if i is the first location

visited by Pr, and 0 otherwise. Then, let qir be −dr −D(r) if i is the last location on Pr, dr + qi if i is

the first location visited by Pr, and 0 otherwise. Finally, let vir be −tr − T (r) if i is the last location

on Pr, tr if i is the first location visited by Pr, and 0 otherwise.

Now, the VRPTW is formulated by the following binary programming formulation, where we let

binary decision variables xr denote whether p-step r is used:

min
∑
r∈Rp

crxr (1)

s.t.
∑
r∈Rp

airxr = 2 ∀i ∈ C, (2)

∑
r∈Rp

eirxr = 0 ∀i ∈ C, (3)

∑
r∈Rp

virxr ≥ 0 ∀i ∈ C, (4)

∑
r∈Rp

qirxr = 0 ∀i ∈ C, (5)

xr ∈ {0, 1} ∀r ∈ Rp. (6)

In the remainder of this thesis, we call the above formulation (1)-(6) the p-step formulation. Here,

the objective function (1) minimizes the total travel costs. The constraints (2) ensure that every

customer is visited exactly once. Subsequently, constraints (3)-(5) ensure the correct concatenation of

p-steps: a selected p-step that ends at node i can only be chained with another p-step if it starts at i

with sufficient prior demand and an achievable start time. Finally, constraints (6) restrict the domain

of the p-step variables x.

3.3 Compact formulation

Both the prior demand dr and the start time tr are continuous. As pointed out by Dollevoet et al.

(2020), this not only makes the number of p-steps in Rp infinite, but also the number of decision

variables xr. We follow their approach to redefine (1)-(6) into a compact p-step formulation of the

VRPTW. Hence, we limit the number of p-steps and only consider p-steps with either minimal or

maximum prior demand or start time, such that with a convex combination of the extremes we can

construct any other p-step.
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We first relax constraints (5) by changing the equalities into inequalities as follows (see Dollevoet

et al. (2020) for a detailed explanation):

∑
r∈Rp

qirxr ≥ 0 ∀i ∈ C. (7)

Next, we introduce an additional parameter brij and binary arc-flow variables θij . Let brij be 1 if

arc (i, j) ∈ A is used by p-step r, and 0 otherwise, and let θij be 1 if arc (i, j) ∈ A is used, and 0

otherwise. Now, we imply binary conditions on the arc-flow instead of on the p-step variables, which

is not uncommon in a set partitioning formulation for the VRPTW, by replacing constraints (6) with:

∑
r∈Rp

brijxr = θij ∀(i, j) ∈ A, (8)

xr ≥ 0 ∀r ∈ Rp, (9)

θij ∈ {0, 1} ∀(i, j) ∈ A. (10)

If every arc in A is selected binarily, constraints (8) can construct a convex combination of several

(extreme) p-steps to represent any route. Therefore, we allow for continuous p-step variables x in

constraints (9). Note that constraints (2) and (3) imply the upper bound xr ≤ 1 for all r ∈ Rp.

Before we limit the number of p-steps, we define the minimal and maximum values of both dr

and tr. For the prior demand, we assign dr = 0 as minimal value and calculate the maximum value

by taking the capacity of a vehicle and subtract the cumulative demand of all customers on p-step

r, i.e., dr = Q − D(r). For tr, we cannot simply assign minimal value tr = as and maximum value

tr = bf −T (r), where s is the start location and f the end location of path Pr, as T (r) depends on tr.

If any waiting occurs between customers, increasing tr decreases T (r), and such later departure might

result in the same time service starts at the last location on Pr. Therefore, we define parameters tearlyr

and tlater and determine these as follows when path Pr is known. We traverse the path in opposite

direction, and we calculate at each customer the earliest and latest start time possible to reach the next

customer within their time window. In this way, we end up with reasonable minimal and maximum

values for the start time tr. See illustrative Example 1 below.

We can now limit the number of p-steps and obtain a compact formulation of the VRPTW with

a finite number of variables, being of order np+1, by applying Proposition 1.
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Example 1. Consider a 2-step r with Pr = {1, 2, 3}, time windows [1, 10], [4, 7] and [5, 6],

respectively, travel times t12 = t23 = 1 and service times si = 1 for all i ∈ Pr. We start looking at

customer 3 and observe s2 + t23 = 2. To reach customer 3 as early as possible we set lr2 = 3, whereas

for the late case we set lr2 = 4. However, the time window of customer 2 does not allow the early case

start time. Hence, in both cases we have lr2 = 4 and, as a consequence, lr3 = 6. Next, as s1+ t12 = 2,

the starting times at customer 1 should be tearlyr = tlater = 2 such that T (r) = 4. Note that, the naive

minimal value tr = a1 = 1 with associated T (r) = 5 would violate the earliest reasonable start time

tr = 2.

Proposition 1. The p-step formulation (1)-(6) and model (1)-(4) and (7)-(10) have the same optimal

solution value and LP bound when including the following p-steps in Rp only, where s is the start

location and f the end location of Pr:

1. All p-steps r with s = 0, prior demand dr = 0 and start time tr = tearlyr .

2. All p-steps r with s ̸= 0, f ̸= n+ 1, prior demand dr = 0 and start time tr = tearlyr .

3. All p-steps r with s ̸= 0, f ̸= n+ 1, prior demand dr = 0 and start time tr = tlater .

4. All p-steps r with s ̸= 0, f ̸= n+ 1, prior demand dr = Q−D(r) and start time tr = tearlyr .

5. All p-steps r with s ̸= 0, f ̸= n+ 1, prior demand dr = Q−D(r) and start time tr = tlater .

6. All p-steps r with s ̸= 0, f = n+ 1, prior demand dr = Q−D(r) and start time tr = tlater .

Proof. First of all, note that it is standard to apply binary conditions on the arc-flow variables instead

of on the route variables. Such replacement has no influence on the optimal solution value or the

LP bound. Next, assume p-step r, with start location s and end location f , is used in a solution

of the p-step formulation (following part of the proof also holds if r is part of the solution to the

LP relaxation). If r starts at the depot with dr > 0 and tr > tearlyr , we could as well use p-step

u = (Pr, 0, t
early
r ) as this would not affect the objective value nor violate constraints (4) and (7). By

the same reasoning, we can use p-step u = (Pr, Q−D(r), tlater ) to replace r if it ends at the depot with

dr < Q−D(r) and tr < tlater . Lastly, if the depot is neither the start or end location of r and it has

0 < dr < Q−D(r) and tearlyr < tr < tlater , we replace it by a convex combination of u1 = (Pr, 0, t
early
r ),

u2 = (Pr, 0, t
late
r ), u3 = (Pr, Q−D(r), tearlyr ) and u4 = (Pr, Q−D(r), tlater ).
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4 Column generation algorithm

To solve the VRPTW with a dive-and-fix heuristic (see Section 6), we need an algorithm that solves

the LP relaxation of the p-step formulation in each branching node. Even though it might be beneficial

to use different algorithms for varying values of p, we choose a single algorithm for all values of p as

this thesis aims to investigate the potential computational advantage of the p-step formulation. In

this way, our computational experiments can provide reliable comparisons between formulations with

different values of p.

The number of variables, being of order np+1, grows large when the instance size increases and

even shows exponential growth in case of increasing p. Therefore, we solve the LP relaxation with a

column generation algorithm so that not all variables are considered explicitly. Initially, the so-called

restricted master problem (RMP) is solved. This RMP simplifies the problem by only including a

limited subset of its variables. Subsequently, a pricing problem is solved in an iterative manner to

find variables that could potentially improve the objective value, i.e. negative reduced cost variables.

In each iteration, we add at least one found negative reduced cost variable to the subset of variables

in the RMP and repeat the procedure. If no such variable is found, we terminate the algorithm, and

the solution to the LP relaxation is equal to the optimal solution of the RMP in that iteration.

In Section 4.1, we propose a greedy look-ahead heuristic to find a feasible solution for the VRPTW,

which we then decompose into p-steps to include in the initial RMP. Next, in Section 4.2, we show

how to model the resulting pricing problem as an ESPPRC. To eliminate redundant pricing problems

and reduce the size of the graph in the ESPPRC, we describe some preprocessing steps in Section 4.3.

4.1 Initialization: IMPACT heuristic

The master problem in our column generation algorithm is the compact p-step formulation (1)-(4)

and (7)-(10). The initial subset of variables in the RMP includes all arc-flow variables θ and a limited

number of p-step variables x, which represent a feasible solution for the VRPTW. To generate a

feasible solution which can be decomposed into p-steps, we follow the work of Ioannou et al. (2001)

and implement their IMPACT heuristic.

The heuristic follows a generic insertion framework, such as proposed by Solomon (1987), and

constructs routes sequentially. We initialize a route with a so-called ’seed’ customer and insert non-

routed customers until no further customer has a feasible insertion place. Then, we find a new ’seed’

customer and repeat the process until each customer is assigned to a vehicle. To obtain a good initial

solution for the VRPTW, we utilize the time window relations between customers and do not insert
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customers based on distance only. In other words, we account for the impact of time windows while

determining which non-routed customer to insert at which feasible position in the partial route. To

measure and minimize the impact of inserting a customer i, we define three ’look-ahead’ criteria: own

impact ISi, external impact IUi and internal impact IRi (see Sections 4.1.1-4.1.2). We calculate the

customer selection criterion of customer i by combining the three impact measures linearly and denote

this with Impact(i):

Impact(i) = α1ISi + α2IUi + α3IRi (4.1)

Here, α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1. These weights let each criterion have its own relative

contribution to the overall impact. The complete IMPACT heuristic is presented by Algorithm 1. For

a detailed description of the heuristic, we refer to Ioannou et al. (2001).

4.1.1 Own impact

The own impact criterion measures the effect of the inclusion of the time window of customer i. We

denote the arrival time at customer i with ei and let the own impact of inserting i equal the difference

between this arrival time and its earliest service time ai (see Equation (4.2)). The lower this value,

the less time is wasted, and the more slack is provided for the insertion of other non-routed customers.

ISi = ei − ai (4.2)

4.1.2 External impact

To illustrate the concept of external impact, assume we have a customer i selected for insertion. After

insertion, fewer non-routed customers can additionally be added to the route due to overlapping time

windows. In other words, after inserting customer i we prefer the time windows of the remaining

non-routed customers to overlap as little as possible. Therefore, the external impact measures the

inclusion of time windows of all non-routed customers after inserting another non-routed customer i.

This average is calculated by Equation (4.3), where J is the set of non-routed customers:

IUi =
1

(|J | − 1)

∑
j∈J\{i}

{max{(bj − ai − dij), (bi − aj − dji)}} (4.3)
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4.1.3 Internal impact

The internal criterion calculates the impact of inserting customer i on all customers in the current

route. Insertion of customer i in between customers u and v causes a distance increase z1i, a time

delay at customer v z2i and has corresponding time window compatibility z3i. These three factors are

calculated as follows:

z1i(u, v) = dui + div − duv (4.4)

z2i(u, v) = (bv − (eu + su + duv))− (bv − (ei + si + div)) (4.5)

z3i(u, v) = bi − (eu + su + dui) (4.6)

A weighted combination of the above factors determines the internal impact, i.e. accessibility, of

inserting customer i between customers u and v. It might also be possible to insert customer i at

different positions on the current route r. Therefore, we take the average over all feasible insertion

places to calculate the overall internal impact of inserting customer i on route r. We define Ir the

set of all feasible insertion places and let β1, β2, β3 ≥ 0 and β1 + β2 + β3 = 1 to calculate IRi with

Equation (4.7):

IRi =
1

|Ir|
∑

(u,v)∈Ir

β1z1i + β2z2i + β3z3i (4.7)

Algorithm 1 The IMPACT heuristic

Step 1: Initialization
Set furthest non-routed customer from depot as ’seed’ customer. Start with partial route visiting
’seed’ customer only.
Step 2: Selection
Among remaining non-routed customers, select customer i that minimizes Impact(i), i.e.:

(a) For all feasible insertions of customer i, calculate Impact(i). Select insertion location with
minimum impact value.

(b) Repeat (a) for all remaining non-routed customers.

(c) Select customer i and corresponding insertion location with minimum Impact(i).

Step 3: Insertion
Add selected customer i to the partial route at corresponding insertion location. Update route and
remove i from non-routed customers.
If feasible non-routed customers for partial route remain, return to 2.
Step 4: Termination
If all customers are assigned to a route, STOP.
Otherwise, return to 1.
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4.2 Pricing problem

The aim of the pricing problem is to find a feasible p-step with minimal reduced cost. To calculate the

reduced cost corresponding to variable xr, for each customer i ∈ C we let dual variables κi, λi, µi and

νi correspond to constraints (2), (3), (4) and (7), respectively. As these are not defined for the starting

and ending depot, we define κ0 = κn+1 = λ0 = λn+1 = µ0 = µn+1 = ν0 = νn+1 = 0. Furthermore,

we introduce dual variables ξ associated with constraints (8) for ∀(i, j) ∈ A. If we consider p-step

r = (Pr, dr, tr), with s the first and f the last node of Pr, the reduced cost RC(r) is as follows:

RC(r) = cr −
∑
i∈C

κia
i
r −

∑
i∈C

λie
i
r −

∑
i∈C

µiv
i
r −

∑
i∈C

νiq
i
r −

∑
(i,j)∈A

ξijb
r
ij

=
∑

(i,j)∈Pr

(cij − ξij − 2κj)− κs + κf − λs + λf − µstr + µf (tr + T (r))

− νs(dr + qs) + νf (dr +D(r)). (4.8)

To solve the problem of finding the p-step with minimal reduced cost, we follow the approach

of Dollevoet et al. (2020) and decompose the pricing problem. We consider so-called (s, f)-pricing

problems in which s and f are the fixed start and final node. In total, we construct (n+ 1)n pricing

problems as we do not consider problems with s = f and problems with 0 as final node or n + 1 as

start node. Next, we model each separate problem as an ESPPRC in G such that the reduced cost of a

p-step variable equals the total cost of a corresponding feasible (s, f)-path. Recall that to be feasible,

the length of the path is at most p if s = 0, and exactly p otherwise. Furthermore, the cumulative

demand of all customers on the path should not exceed the capacity, and it should be possible to visit

all customers within their respective time windows.

To correctly define the reduced cost of a p-step variable, we compute a constant cost for each

(s, f)-pricing problem and assign appropriate weights to each arc (i, j) ∈ A such that the sum of this

constant cost and all traversed arcs in Pr equals the reduced cost. Both constant and arc costs depend

on whether the minimal or maximum value is assigned to the prior demand dr and start time tr. To

determine these values for a p-step that does not start or end at the depot, we retrieve the linear

coefficients of dr and tr in Equation (4.8): (νf − νs) and (µf − µs), respectively. Hence, we let prior

demand dr be 0 if νf ≥ νs and, otherwise, we assign maximum value Q −D(r). Following the same

reasoning, if µf ≥ µs we let tr be the minimal starting time tearlyr and tlater , otherwise. We always

assign minimal values when s = 0 and maximum values when f = n+ 1 (see Proposition 1).
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The possible optimal values for dr and tr result in four different scenarios to compute costs for each

(s, f)-pricing problem. With given values dr and tr, we derive the constant cost Csf and the weights

c
′
ij from Equation (4.8). See Appendix A for the derived formulas per scenario. As we have now

defined all (s, f)-pricing problems, the pricing problem comes down to finding a feasible elementary

path in each problem that minimizes the total cost.

4.3 Preprocessing

Some pricing problems might be redundant, while others might contain unnecessarily many nodes and

arcs. To gain a computational advantage in our algorithm, we apply various preprocessing steps to

eliminate redundant (s, f)-pricing problems and reduce the size of the (partial) graphs in the ESPPRC.

The first preprocessing step reduces the size of graph G by removing arcs that will never be part

of a (sub)optimal solution. For (i, j) ∈ A, we remove arc (i, j) from G if ai + si + tij > bj . In other

words, customer j can never be visited after customer i if, from the earliest service moment possible

ai, the service and travel time exceed the latest starting time bj . Moreover, we remove arc (i, j) from

G if the demand of customers i and j together exceeds the capacity of a vehicle. Hence, we remove

arc (i, j) if qi + qj > Q.

In the next preprocessing phase, we eliminate (s, f)-pricing problems which can never provide a

feasible p-step. First, we apply a recursive depth-first search (DFS) algorithm to each (s, f)-pricing

problem to check if any feasible elementary path Pr exists (see Algorithm 2). Note that any feasible

path should not exceed the capacity Q, should visit all customers within their time windows and have

at most length p if s ̸= 0, and precisely length p, otherwise. In line 10 we check the length of the path

and in line 12 we check if the capacity is not exceeded and if time windows are respected. If such

feasible path Pr does not exist, we do not consider the respective (s, f)-pricing problem. Secondly, we

remove (s, f)-pricing problems if the resulting p-step cannot be concatenated with any other feasible

p-step. Generally, if there are no feasible p-steps arriving at customer s, we can remove all pricing

problems departing at customer s. Similarly, we remove all (s, f)-pricing problems when no feasible

p-steps depart from customer f .

In the third preprocessing step, we assign each remaining (s, f)-pricing problem a copy Gsf of the

graph G and remove the unnecessary nodes and arcs within. In this way, we can specifically reduce the

size of each partial graph Gsf and solve the pricing problems on this instead to secure computational

advantage. First, we remove the nodes that can never be visited directly after s or directly before f .

To do so, we use the remaining capacity of a vehicle function from Dollevoet et al. (2020). We define
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Algorithm 2 Depth-first search

1: Input: Directed graph (G), current node (vi), final node (f), length parameter (p), current partial
path (P )

2: Output: Boolean if feasible path exists

3: Label vi as discovered and append P with vi

4: if vi == f then
5: if P [0] == 0 and len(P ) ≤ p+ 1 then
6: Return True
7: else if P [0] ̸= 0 and len(P ) == p+ 1 then
8: Return True

9: for vj in G.adjacent edges[vi] do
10: if vj labeled as not discovered and len(P ) ≤ p then
11: if Depth-first search(G, vj , f , p, P ) then
12: if Resource constraints not violated then
13: Return True

14: Pop last node in P
15: Label vi as not discovered

16: Return False

this remaining capacity after visiting the customers in Y and the y customers with lowest demand

as Q(Y, y) = Q − min{
∑

k∈S qk : S ⊆ C\Y, |S| = y}, with Y ⊆ N and y ∈ N>0. Now, we check if

Q({s, i, f}, p − 2) < qs + qi + qf for p ≥ 2 and s ̸= 0, i and f all different. If this is the case, we can

eliminate node i from Gsf as not all three s, i, and f can be visited by a feasible p-step. We apply the

same reasoning for the removal of arcs in Gsf and eliminate arc (i, j) ∈ A if p ≥ 3 and for different

s ̸= 0, i, j, and f it holds that Q({s, i, j, f}, p− 3) < qs + qi + qj + qf .

5 Pulse algorithm

As the number of p-step variables in the p-step formulation is of order np+1, we could identify all

feasible p-steps and solve the pricing problem, defined in Section 4.2, in polynomial time. However,

this approach would explode in terms of computational time as higher values p cause the number of

p-step variables to grow exponentially. Therefore, we introduce the exact pulse algorithm which we

use to solve the ESPPRC in each (s, f)-pricing problem (Lozano et al., 2016).

As the name suggests, the pulse algorithm solves the ESPPRC by transmitting a pulse from the

start node s ∈ N\{n + 1} to explore partial paths recursively. This exploration continues until a
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partial path is eliminated by a pruning strategy or reaches the given final node f ∈ N\{0}. The

algorithm includes the following two stages. The first is a bounding stage to compute lower bounds

on the reduced cost that could be attained given a certain amount of time passed after leaving s.

We assume here that we leave from s as early as possible and refer to this amount of time passed

since leaving s as the time consumption. In the second stage, we actually send a pulse through the

graph to recursively find an optimal solution by implicit enumeration of the solution space. Whilst

propagating, at each node we store the current partial path P , the cumulative reduced cost R(P ),

the cumulative demand D(P ) and the cumulative time consumption T (P ). In this way, every pulse

that reaches the final node f contains all information on the solution to the respective (s, f)-pricing

problem to provide a feasible p-step (Lozano et al., 2016). Below, we do not only present the general

pulse algorithm (see Algorithm 3), but also elaborate on the bounding stage in Section 5.1 and the

propagation stage with the different pruning strategies in Section 5.2.

Algorithm 3 General pulse algorithm

1: Input: Directed graph (Gsf ), start node (s), final node (f), bounding time limits (
[
t, t

]
), bounding

step size (∆), length parameter (p), primal bound (r)
2: Output: Optimal path (P ∗)

3: P ← {}
4: R(P ), D(P ), T (P )← 0, 0, 0

5: Bounding scheme(Gsf ,
[
t, t

]
, ∆, p, r) ▷ see Algorithm 4

6: Pulse propagation(∞, s, P , R(P ), D(P ), T (P ), r) ▷ see Algorithm 5

7: Return P ∗

5.1 Bounding stage

In the bounding stage, we compute a three dimensional lower bound matrix B = [pval, [r(vi, T (P ))]]

by finding conditional lower bounds for every value of 1 through p, every node vi ∈ C ∪ {0} and for

given discrete values of total time consumed T (P ). These lower bounds indicate the minimum reduced

cost that a partial path P can achieve with remaining length parameter pval when it arrives at node

vi with T (P ) time consumed already. In this bounding phase, we also consider time windows and the

capacity of a vehicle. We construct B as follows (see Algorithm 4 for pseudocode).

First, we let
[
t, t

]
= [as, bf ] denote the bounding time limits and let ∆ > 0 be a discrete time step.

For pval = 1, we solve an ESPPRC with a time consumption T (P ) = t−∆ for every node vi ∈ C ∪{0}

by using pulse propagation (see Section 5.2). Stated differently, we search for a feasible path from vi to
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f with only ∆ time units available with a length of at most pval if s = 0, and exactly pval, otherwise.

In each case, the optimal solution found gives a lower bound on the minimum reduced cost which

P with remaining length pval can achieve when it arrives at vi with at most t − ∆ leftover time to

consume. Subsequently, we set the total time consumption T (P ) = t−2∆ and again solve an ESPPRC

for every node. We proceed in this backward iterative manner and solve until the time consumption

T (P ) drops below the bounding time limit t. If p ̸= 1, we repeat above procedure for all values 2

through p to eventually return three dimensional lower bound matrix B = [pval, [r(vi, T (P ))]]. Note

that for the first steps, when given time consumption T (P ) is relatively high, the resulting ESPPRCs

are overly constrained and the pulse propagation will find an optimal solution rapidly. In later stages,

when the ESPPRCs are less constrained, we can use the previously computed lower bounds in B to

prune paths and part of the solution space during propagation. Whilst pruning, we use the lower

bound corresponding to the lower closest value to T (P ) from B (see also Section 5.2.2).

Algorithm 4 Bounding scheme

1: Input: Directed graph (Gsf ), bounding time limits (
[
t, t

]
), bounding step size (∆), length pa-

rameter p, primal bound (r)
2: Output: Lower bound matrix B = [pval, [r(vi, τ)]]

3: for pval in range(1, p) do
4: τ ← t
5: while τ −∆ > t do
6: τ ← τ −∆
7: for vi in range(1, n) do
8: P ← {}
9: R(P ), D(P ), T (P )← 0, 0, τ

10: if vi ̸= vf and vi in Gsf .nodes() then
11: P ∗ = Pulse propagation(∞, vi, P , R(P ), D(P ), T (P ), r) ▷ see Algorithm 5

12: if vi == f then
13: [pval − 1, vi, τ ] = −∞
14: else if P ∗ == {} then
15: [pval − 1, vi, τ ] =∞
16: else
17: [pval − 1, vi, τ ] = R(P ∗)

18: Return B

To calculate a lower bound on the true reduced cost of the complete path from s to f , we need to

be careful with the cost formulas (see Appendix A) and take into account the unknown partial path

before node vi. In the propagation stage, any path reaching vi will have cost Csf and costs c
′
ij for
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each traversed arc (i, j) incurred. Hence, each lower bound in B consists of the weights c
′
ij for all arcs

(i, j) traversed from vi to f . Note that correct (dual) variables are used with respect to start node s,

and not vi. The weight c
′
if is dependent on tearlyr or tlater with corresponding lrf as either the term

−µst
early
r + µf lrf or −µst

late
r + µf lrf is included in the cost formula (see Appendix A). Therefore, to

compute a valid lower bound we should take tearlyr or tlater as high as possible and lrf as low as possible

as we know that µs, µf ≥ 0. Hence, we let tearlyr = tlater = bs and lrf = af in each case.

5.2 Propagation stage

As noted before, in this stage, we find the optimal solution in a recursive manner by implicit enumer-

ation to limit the solution space. The pulse starts off at node s ∈ C ∪ {0} and explores the graph by

trying to propagate throughout the adjacent nodes of each visited node. When a neighbouring node

vj is visited, three pruning strategies (see Sections 5.2.1, 5.2.2 and 5.2.3) check if it is possible and

efficient to append the current partial path P with node vj . If this is not the case, we aggressively

limit the search space and stop the pulse from propagating. We backtrack and try to visit another

adjacent node to current node vi. On the other hand, suppose we do include vj in P . In that case,

we update and store all information on the cumulative reduced cost R(P ), the cumulative demand

D(P ) and the cumulative time consumption T (P ), which includes all travel, service and waiting times.

Hence, any node contains all available information of the feasible path P . The primal bound r gives

the best solution found at any point in time. If a pulse is invoked on the final node f , we update

the primal bound if the reduced cost of P is lower than r. The current pulse is terminated, and the

pulse propagation algorithm backtracks to try improve the optimal solution by exploring other pulses

recursively. See Algorithm 5 for the pseudocode.

5.2.1 Feasibility pruning

The first pruning strategy discards infeasible partial paths by using structural constraints. Several

conditions need to hold for a path to be feasible. First of all, whenever a partial path visits node vi, it

may not create a cycle. In other words, we check in constant time if node vi is not already visited by

the current partial path P . Next, we check if adding the demand qi to the current cumulative demand

D(P ) does not exceed the vehicle’s capacity Q. Thirdly, we check if T (P ) ≤ bi. If this is not the

case, we prune the partial path as vi cannot be visited after its latest possible service time. Finally,

we check if the length of the partial path corresponds with length parameter p. We prune if, at any

point in time, the length exceeds p. If the final node f is reached, we additionally check if the length
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Algorithm 5 Pulse propagation

1: Input: Previous node (vh), current node (vi), current partial path (P ), cumulative reduced cost
(R(P )), cumulative demand (D(P )), cumulative time consumption (T (P )), primal bound (r)

2: Output: Optimal path (P ∗)

3: if Feasibility pruning(vi, P , D(P ), T (P ), p) == False then
4: if Bounds pruning(vi, f , R(P ), B, r) == False then
5: if Rollback pruning(vi, P , R(P ), T (P )) == False then
6: P

′ ← P ∪ {vi}
7: D(P

′
)← D(P ) + qi

8: if vh ̸=∞ then
9: T (P

′
)← max{ai, T (P ) + sh + thi}

10: R(P
′
)← R(P ) + c

′
ij

11: else
12: T (P

′
)← ai

13: R(P
′
)← Csf

14: for vj in G.adjacent nodes[vi] do
15: if vj not in P then
16: Pulse propagation(vi, vj , P

′
, R(P

′
), D(P

′
), T (P

′
), r)

17: if vi == f and R(P
′
) < r then

18: P ∗ ← P
′

19: r ← R(P
′
)

20: Return P ∗

is at most p if s = 0, and exactly p, otherwise.

5.2.2 Bounds pruning

To prune a partial path by bounds, we use the earlier computed three dimensional lower bound

matrix B = [pval, [r(vi, T (P ))]] and the current primal bound r. We first determine the remaining

length pval = p − len(P ) in contrast to parameter p. Next, we simply check in constant time if any

partial path with length pval from node vi with available time t − T (P ) can achieve a lower reduced

cost than the current primal bound: R(P ) + [pval, vi, T (P )] ≤ r. If this inequality does not hold, we

prune the partial path. Note that we always use the lower closest value to T (P ) from B.

5.2.3 Rollback pruning

As any pulse propagates through the graph in a recursive manner, the algorithm characterizes as a

depth-first search. The main drawback of such a search is that unpromising regions of the solution

space are searched after a deficient choice in the first stages. To prevent time-consuming backtracking,
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we use the rollback pruning strategy to reassure the last exploring step made. Note that we can only

use this pruning method when s = 0, as in this case the length of the path is not fixed to p+ 1.

Assume we have the following two paths Psj = {vs, vi, vk, vj} and P
′
sj = {vs, vi, vj}. See a graphical

image in Figure 1. If the first path Psj reaches node vj during exploration, we evaluate if the choice of

visiting vk as well is efficient. To do so, we use the principle of dominating paths (Feillet et al., 2004).

Path P
′
sj dominates original path Psj if it holds that P

′
sj ⊆ Psj , R(P

′
sj) ≤ R(Psj), D(P

′
sj) ≤ D(Psj),

T (P
′
sj) ≤ T (Psj), and if at least one holds strictly. By definition of our problem, we only need to

check if R(P
′
sj) ≤ R(Psj) and T (P

′
sj) ≤ T (Psj) for path P

′
sj to dominate path Psj . Again, we verify

in constant time whether these conditions hold and prune accordingly.

Figure 1: Graphical image of paths Psj and P
′

sj (Lozano et al., 2016)

6 Dive-and-fix heuristic

In Section 4 and 5, we described how to solve the LP relaxation of the p-step formulation. To solve the

VRPTW to integrality in our experiments, we develop a dive-and-fix heuristic in which the proposed

column generation approach and the pulse algorithm are slightly modified and combined with a fixed

diving method. Below, we describe the initialization of our heuristic, the extended column generation

algorithm and the branching procedure.

To initialize the dive-and-fix heuristic, we first apply the IMPACT heuristic to compute a feasible

solution for the VRPTW instance (see Section 4.1) and follow the preprocessing procedure described

in Section 4.3. After decomposing the solution of the VRPTW into feasible p-steps, we additionally

generate p-steps with the DFS algorithm (see Algorithm 2) for each remaining (s, f)-pricing problem

after preprocessing. Here, we take the first feasible path that reaches final node f . Following Propo-

sition 1, if the (s, f)-pricing problem starts at the depot and does not end there, we generate p-steps

of length 1 through p with both minimal prior demand and start time. If the problem does end at the

depot, we do not generate the p-step of length 1 as at least one customer needs to be visited. If the

(s, f)-pricing problem does not start or end at the depot, we create four p-steps of length p: one with
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dr = 0 and tr = tearlyr , one with dr = 0 and tr = tlater , one with dr = Q−D(r) and tr = tearlyr and one

with dr = Q −D(r) and tr = tlater . Lastly, if the problem ends at the depot and did not start there,

we create a p-step of length p with both maximum prior demand and start time.

After the initial p-steps are generated, we apply column generation to solve the LP relaxation at

the root node in the branching tree. We solve the RMP and, subsequently, try to find negative reduced

cost columns by solving each (s, f)-pricing problem individually. Instead of solving them directly with

the proposed exact pulse algorithm, we first apply a greedy randomized adaptive search procedure

with local search (GRASP). We construct a path with a greedy random insertion procedure. We start

with s and construct a path by randomly adding one of its adjacent nodes. We only consider the K

adjacent nodes vj which have the lowest arc weight c
′
sj . We repeat this process and terminate if f is

reached or no feasible path is found. If we do find a feasible path, we try to improve the reduced cost

by swapping a routed customer with a non-routed customer, if possible. When s = 0, we also try to

lower the reduced cost by inserting or removing (non-)routed customers as the length of the p-step

may vary in this case. We terminate the GRASP and continue with the column generation algorithm

if we find a feasible path with negative reduced cost. If we do not find such path after Imax iterations,

we proceed and apply the exact pulse algorithm.

We branch at the root node if the column generation algorithm finds a fractional solution for at

least one of the arc-flow variables θij . In this case, we sort all fractional θij variables in descending

order and fix the first α% to value 1. We keep all columns and repeat the above procedure. Note that

after each iteration, we can reduce the size of graph Gsf in each (s, f)-pricing problem as follows. For

each variable θij set to 1, we enforce arc (i, j) ∈ A to be used. This means we can eliminate any other

arc (i, k) ∈ A for k ̸= j and any other arc (h, j) ∈ A for h ̸= i. The removal of arcs has no further

consequences for the pulse algorithm. We continue this diving until either the relaxation is integer

feasible or linearly infeasible.

7 Computational results

In this section, we present and discuss the computational results of our experiments with the p-step

formulation. In Section 7.1, we introduce benchmark instances for the VRPTW from the literature

and provide computation times of solving the LP relaxation in the root node. Thereafter, in Section

7.2, we evaluate the performance of the dive-and-fix heuristic on selected benchmark instances and

specifically generated instances.

We implemented all algorithms in Python 3.8.8 and use CPLEX 20.1 as a solver for the RMPs in
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the column generation algorithm. The results are obtained by using an Intel(R) Core(TM) i7-10510U

CPU processor, with 16 GB of RAM. We use the following values for the parameters in our algorithm.

For the IMPACT heuristic, we adapt the values from Ioannou et al. (2001) and let α1 = 0.1, α2 = 0.2,

α3 = 0.7, and β1 = β2 = β3 = 1
3 . In our dive-and-fix heuristic we use K = 3 and Imax = 15 in the

GRASP, and while diving we set α = 20. Lastly, we use a time limit of 3600 seconds in all experiments.

7.1 Computation time LP relaxation

First, we present the computation times of solving the LP relaxation in the root node with our

column generation algorithm for selected benchmark instances. In the literature, algorithms to solve

the VRPTW are frequently tested on Solomon’s VRPTW benchmark problems (Solomon, 1987). This

classical set contains instances for which customer locations are randomly generated (problem sets R),

clustered (problem sets C), or a combination of these two (problem sets RC). The instances differ in

their respective time windows. Whereas in some problems the customers have very tight time windows

and a short scheduling horizon, in other problems the scheduling horizon is broad and time windows

of customers overlap and are hardly constraining.

If we compute the LP relaxation in the root node with our column generation algorithm, we

encounter two counteracting effects which influence the computation time. On the one hand, larger

values of p cut down the number of (s, f)-pricing problems to be solved from n2 to one. On the other

hand, increasing values of p cause the worst-case number of computations of the pulse algorithm to

grow exponentially. As also the number of iterations until convergence influences the speed of the

column generation algorithm, we do not necessarily believe that computation times increase with p.

In Table 1, we present the computation times of computing the LP relaxation in the root node

of selected Solomon benchmark instances for different values of p. A variety of instances is chosen to

evaluate how the density of time windows affects the run time of our column generation algorithm,

such that we can specifically select suitable instances for further computational experiments. In the

pulse algorithm, we let the bounding step size ∆ depend on the scheduling horizon of the VRPTW

instance. We let ∆ = 100 for all clustered instances with scheduling horizon [0, 1236], and ∆ = 20 for

the randomly generated and mixed problems with scheduling horizons [0, 230] and [0, 240], respectively.

We use these values for the remainder of the experiments in this thesis. We have included the obtained

LP bounds in Appendix B.

We observe that not all instances allow to compute the LP relaxation within the time limit with

our column generation algorithm. Note that this is indicated by a dash in Table 1. Especially for
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values of p higher than 1, the clustered and mixed problem instances barely show results. In all cases,

most time is spent during the execution of the exact pulse algorithm. As the exact part is determining

for the speed of our algorithm, we expect that instances with wide and overlapping time windows are

relatively harder to solve as the corresponding graphs are larger. Indeed, if we look into the instances

that do solve the LP relaxation for different values of p within reasonable time (R101, R105, R109,

RC101 and RC106), we observe that the time windows are tight and hardly overlap. Therefore, we

select these five instances for the remaining experiments.

Table 1: Computation times in seconds of LP relaxation in root node (15 customers)

Instance p : 1 2 4 6 n+ 1

C101 50.74 - - - -
C103 316.40 - - - -
C105 90.75 - - - -
C106 33.93 - - - -
C107 121.26 - - - -
R101 23.64 97.05 238.91 160.12
R102 239.02 - - -
R105 195.69 392.08 1668.12 1446.69
R109 299.47 3362.90 - -
R110 231.07 - - -
RC101 216.01 1396.01 - 2129.53 2365.84
RC105 179.71 - - - -
RC106 77.23 991.38 - - -
RC107 132.44 - - - -
RC108 170.54 - - - -

7.2 Performance of dive-and-fix heuristic

Our aim is to find empirical evidence of the potential computational advantages of using the p-step

formulation to solve the VRPTW. Recall that our formulation is a generalization as, apart from

intermediate values of p, it resembles arc-based formulations for p = 1, and the set partitioning

formulation for p = n + 1 (Balinski and Quandt, 1964). Therefore, we identify potential advantage

in computation time if there are instances for which the dive-and-fix heuristic solves to optimality for

intermediate values of p with the lowest computation time.

7.2.1 Solomon benchmark instances

In Table 2, we provide the performance of our dive-and-fix heuristic for the five selected Solomon

benchmark instances with different number of customers: n = 10, n = 15 and n = 20. For each

instance, we compute the maximum number of customers a route could visit without exceeding the

capacity of a vehicle or violating the time windows and denote this with cmax. If p is equal or higher
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than cmax+1, we obtain the set partitioning bound. Therefore, we only compute the lower and upper

bounds for all values p from 1 through cmax + 1. The lower bound is the objective value after the

column generation algorithm has terminated. The upper bound is then obtained by applying the

dive-and-fix heuristic. If the upper bound has value ∞, a linearly infeasible problem was obtained

while diving. Again, a dash indicates that no solution was found before the time limit of 3600 seconds.

We observe that the column generation algorithm already solves all cases of instance R101 to

optimality. For instance R105 with n = 10, our algorithm provides an optimality gap of 6.2% for all

values of p except 1. However, for n = 15 and n = 20 the bounds converge to (near) optimality when

p increases: from a gap of 1.2% to optimality and from 8.1% to 1.1%, respectively. Instances R109

with n = 10 and RC101 with n = 10 and n = 15 show a similar convergence to optimality. Even

though we cannot draw meaningful conclusions for the remaining instances (R109 with n = 15 and

n = 20, RC101 with n = 20 and all cases for instance RC106) as many cases did not solve within the

time limit, we obtain better bounds and convergence to optimality for higher values of p, as expected.

Next, we look at the corresponding computation times of the dive-and-fix heuristic in Table 3. A

dash indicates no solution was found within the time limit and the fastest computation times for each

instance are displayed in bold. As instance R109 with n = 20 only solves for one value of p, we do

not recognize a fastest time here. For every other instance, we observe that the fastest computation

time corresponds with p = 1. In other words, from our experiments with the benchmark instances

we cannot conclude a potential computational advantage for using the p-step formulation to solve the

VRPTW. However, in general we do find better upper bounds for higher values of p.
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Table 2: Lower and upper bounds of dive-and-fix heuristic

Instance n p : 1 2 3 4 5 6 7

R101 10 LB 241.50 241.50 241.50 241.50 241.50 241.50
UB 241.50 241.50 241.50 241.50 241.50 241.50

Gap (%) 0 0 0 0 0 0
15 LB 364.86 364.86 364.86 364.86 364.86 364.86

UB 364.86 364.86 364.86 364.86 364.86 364.86
Gap (%) 0 0 0 0 0 0

20 LB 470.94 470.94 470.94 470.94 470.94 470.94
UB 470.94 470.94 470.94 470.94 470.94 470.94

Gap (%) 0 0 0 0 0 0
R105 10 LB 227.17 227.38 239.17 239.17 239.17 239.17

UB ∞ 241.50 241.50 241.50 241.50 241.50
Gap (%) - 6.2 6.2 6.2 6.2 6.2

15 LB 327.07 329.70 327.95 330.25 330.94 330.94
UB 330.94 330.94 330.94 330.94 330.94 330.94

Gap (%) 1.2 0.4 0.9 0.2 0 0
20 LB 400.26 400.62 403.84 - - -

UB 432.80 428.51 408.18 - - -
Gap (%) 8.1 7 1.1 - - -

R109 10 LB 206.34 210.28 207.01 212.17 212.17 212.17
UB ∞ ∞ ∞ 212.17 212.17 212.17

Gap (%) - - - 0 0 0
15 LB 279.69 284.23 - - - -

UB ∞ 317.08 - - - -
Gap (%) - 1.2 - - - -

20 LB 337.24 - - - - -
UB ∞ - - - - -

Gap (%) - - - - - -
RC101 10 LB 180.20 180.39 181.47 180.97 180.78 182.83 182.83

UB ∞ ∞ 182.83 ∞ ∞ 182.83 182.83
Gap (%) - - 0.7 - - 0 0

15 LB 212.01 212.19 213.28 - 212.57 214.60 214.63
UB ∞ ∞ 214.63 - ∞ 214.63 214.63

Gap (%) - - 0.6 - - 0 0
20 LB 330.67 336.93 - - - - -

UB ∞ ∞ - - - - -
Gap (%) - - - - - - -

RC106 10 LB 154.18 157.27 160.16 - - - -
UB ∞ 175.01 ∞ - - - -

Gap (%) - 1.5 1.3 - - - -
15 LB 159.85 162.81 - - - - -

UB ∞ ∞ - - - - -
Gap (%) - - - - - - -

20 LB 233.14 264.99 - - - - -
UB ∞ ∞ - - - - -

Gap (%) - - - - - - -

Table 3: Computation times in seconds of dive-and-fix heuristic

Instance n p : 1 2 3 4 5 6 7

R101 10 15.94 24.01 47.46 59.14 72.28 52.04
15 23.64 97.05 144.97 238.91 226.12 160.12
20 38.18 116.11 117.17 335.08 620.89 1640.82

R105 10 41.51 75.77 122.45 174.90 458.45 185.89
15 195.69 392.08 1696.38 1668.12 1178.55 1888.64
20 553.92 1754.57 3723.29 - - -

R109 10 125.31 367.66 544.36 1522.25 1564.91 465.65
15 299.47 2623.91 - - - -
20 299.96 - - - - -

RC101 10 64.22 343.26 833.51 1523.74 384.56 750.99 286.76
15 216.01 1396.01 2960.47 - 3414.72 2129.53 2365.84
20 282.31 1648.51 - - - - -

RC106 10 42.13 662.55 1253.68 - - - -
15 77.23 991.38 - - - - -
20 685.93 3243.15 - - - - -
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7.2.2 Generated instances

As the Solomon benchmark instances do not provide evidence for the potential advantage of using the

p-step formulation to solve the VRPTW, we generated specific instances that should favor intermediate

values of p. We construct these instances as follows. We generate W clusters containing Q customers

with unit demand each. In this way, vehicles with capacity Q can precisely visit and serve one complete

cluster. We refer to these as (W,Q) instances. We assign the depot coordinate (200, 200) and place

each cluster such that its center is at distance 100 away from the depot. Then, we assign random

coordinates to each customer within a square of dimension 3 around the corresponding cluster’s center.

Lastly, we set tight time windows: [0, 240] for the depot and [100, 140] for each customer.

In Table 4, we present the computation times of the dive-and-fix heuristic for five generated

instances. As Q equals the maximum number of visits for each vehicle, we run each instance for the

values of p from 1 through Q+ 1. As before, a bold computation time indicates the fastest run-time

for that instance. We identify four out of five instances which have a fastest computation time for

an intermediate value of p: instance (3, 3) with p = 2, instance (3, 5) with p = 5, instance (4, 3)

with p = 2 and instance (4, 4) with p = 2. The computation times cannot compete with the current

state-of-the-art algorithms, but the experiments with generated instances show the potential of the

p-step formulation in solving VRPTWs and merits further research to decrease computation times

with specifically designed algorithms.

Table 4: Computation times in seconds of dive-and-fix heuristic

W Q p : 1 2 3 4 5 6

3 3 32.10 21.03 43.94 22.69
4 58.92 107.21 395.13 448.92 46.88
5 151.53 273.67 1864.08 3304.09 137.43 218.67

4 3 44.01 39.65 62.97 41.62
4 155.11 142.21 755.12 625.07 176.78

8 Conclusion and discussion

In this thesis, we have presented a family of formulations for the VRPTW: the p-step formulation.

By concatenating partial paths, of which the length is indicated by parameter p, we construct op-

timal routes with minimum cost to satisfy all customer demands within respective time windows.

We consider this formulation to be a generalization as it not only provides new formulations for in-

termediate values of p, but also unifies traditional arc-based formulations for p = 1 and path-based

formulations for p = n + 1. We proposed a column generation algorithm to solve the LP relaxation
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of the VRPTW, in which we decomposed the resulting pricing problems into a polynomial number of

ESPPRCs. Next, we solved these problems with an exact pulse algorithm. Eventually, the introduced

dive-and-fix heuristic solves until the relaxation is integer feasible or linearly infeasible.

The presented computational experiments with the Solomon benchmark instances do not show

evident proof of the potential advantage of the p-step formulation. Out of fourteen instances, none

showed the lowest computation time for an intermediate value of p. Therefore, we generated specifi-

cally designed clustered instances which are expected to favor intermediate values of p. Solving these

generated problems with our dive-and-fix heuristic resulted in the lowest computation time for an

intermediate value of p in four out of five instances. Even though computation times cannot com-

pete with current state-of-the-art algorithms, we consider this empirical evidence that solving the

VRPTW with the p-step formulation could potentially reduce computation time with algorithms de-

signed specifically for this formulation. Note that classic arc-based and path-based formulations have

been intensively studied over the past decades. In other words, to construct a competitive p-step

formulation that exploits its computational advantage, we strongly recommend further algorithmic

development.

A main drawback of our implementation is the relatively high computation time of the exact

pulse algorithm. Lozano et al. (2016) show that their algorithm performs well compared to current

state-of-the-art algorithms in solving the VRPTW, but our modified bounding stage to fit the p-step

formulation implied a larger problem to solve. Instead of only one lower bound matrix, we need to

compute multiple matrices for every value of 1 through p. Also, during the pulse propagation we

check if the final node is reached after the recursive call to explore the graph further. We could have

performed this check earlier to prevent the unnecessary visits to the neighbouring nodes of f .

Another aspect that influences the performance of our algorithm is the choice for the parameter

values K, Imax and α in the dive-and-fix heuristic. In the GRASP, after some testing, we set relatively

low values for K and Imax to avoid extreme randomness. Higher parameter values decrease the

computation time of finding a negative reduced cost column in each (s, f)-pricing problem as the

pulse algorithm is called less frequently. However, this does not decrease the total computation time

of the column generation algorithm as more iterations need to be performed. In the choice of parameter

value α, we saw in our experiments that a significantly lower value of α did not result in more feasible

solutions being found. Therefore, taking the computation time into consideration, we chose a relatively

larger value for α and leave the specific tuning of parameters for future research.

To advance the p-step formulation for the VRPTW and pursue its potential, several factors could

be investigated in future studies. First of all, we break down the pricing problem into a number of
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well-known ESPPRCs, whereas other known or new problems could be more suitable. Moreover, in

solving the pricing problems other bounding strategies or k-cycle elimination or ng-route relaxation

might speed up the algorithm. Lastly, we only use one and the same algorithm for all values of p.

It might be beneficial to design algorithms for specific values of p. Also, as such algorithms could

potentially solve larger instances, future research might be able to draw more generic conclusions

about the computational advantage of the p-step formulation.
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A Pricing problem: cost formulas

To compute the reduced cost for a p-step variable r in each (s, f)-pricing problem, we need a constant

cost Csf and weights c
′
ij for each arc (i, j) ∈ A. Both computations depend on whether the minimal

or maximum value is assigned to the prior demand dr and start time tr. Below, all four scenarios with

their respective cost formulas are given. Note that we can calculate variables lrf , t
early
r and tlater once

we reach end location f .

If both the prior demand and start time are assigned the minimal value, dr = 0 and tr = tearlyr ,

we have:

Csf = −κs + κf − λs + λf + (νf − νs)qs (A.1)

c
′
ij =


cij − ξij − 2κj − µst

early
r + µf lrf + νfqj , if j = f,

cij − ξij − 2κj + νfqj , otherwise.

(A.2)

If prior demand is assigned the minimal value and start time the maximum value, dr = 0 and

tr = tlater , we have:

Csf = −κs + κf − λs + λf + (νf − νs)qs (A.3)

c
′
ij =


cij − ξij − 2κj − µst

late
r + µf lrf + νfqj , if j = f,

cij − ξij − 2κj + νfqj , otherwise.

(A.4)

If prior demand is assigned the maximum value and start time the minimal value, dr = Q−D(r)

and tr = tearlyr , we have:

Csf = −κs + κf − λs + λf + (νf − νs)Q (A.5)

c
′
ij =


cij − ξij − 2κj − µst

early
r + µf lrf − νsqj , if j = f,

cij − ξij − 2κj − νsqj , otherwise.

(A.6)

If both the prior demand and start time are assigned the maximum value, dr = Q − D(r) and

tr = tlater , we have:

Csf = −κs + κf − λs + λf + (νf − νs)Q (A.7)
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c
′
ij =


cij − ξij − 2κj − µst

late
r + µf lrf − νsqj , if j = f,

cij − ξij − 2κj − νsqj , otherwise.

(A.8)
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B LP bounds for benchmark instances

Table 5: LP bounds in root node (15 customers)

Instance p : 1 2 4 6 n+ 1

C101 141.37 - - - -
C103 102.23 - - - -
C105 140.90 - - - -
C106 141.37 - - - -
C107 140.56 - - - -
R101 364.86 364.86 364.86 364.86
R102 262.33 - - -
R105 327.07 329.70 330.25 330.94
R109 279.69 284.23 - -
R110 242.60 - - -
RC101 212.01 212.19 - 214.60 214.63
RC105 181.20 - - - -
RC106 159.85 162.81 - - -
RC107 146.20 - - - -
RC108 145.19 - - - -
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