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Abstract

In the Netherlands, a risk equalization system provides health insurers with an ex-ante compen-

sation for predictable differences in somatic health care expenditure made by individuals. This

ex-ante compensation is estimated by a predictive model using OLS. However, this model does not

produce accurate results and therefore insurers are under- or overcompensated compared to the

actual incurred somatic health care expenditure, for specific groups of insured. In this research,

data regarding the full Dutch population (N=16,327,282) is used to benchmark the predictive per-

formance of the 2022 Dutch risk equalization model against a set of alternative models: a Ridge

regression, Ordered Logit regression, Random Forest model, Gradient Boosted model, and a stacked

model. The latter combines the aforementioned alternative models in one predictive model. Predic-

tive performance of all evaluated models is assessed on subgroup level. These subgroups are created

based on the result on risk equalization over the years 2019 to 2021. It is found that the Random

Forest, Gradient Boosted and stacked model outperform the current OLS risk equalization model.

The predictive outcomes of these models compared to the OLS model indicate subgroups that are

potentially subject to risk selection, as these subgroups are significantly under- or overcompensated

by the ex-ante compensation estimated by the OLS model.
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1 INTRODUCTION

1 Introduction

With the introduction of the Health Care Law in the Netherlands in 2006, the Dutch government

set a duty of acceptance of people and prohibited differentiation in premiums charged by health

insurers (Stam et al., 2020; Zorgautoriteit, 2019). This still existent ban on premium differentiation

creates specific groups of insured (Stam et al., 2020) which are predicted to be profitable or loss-

giving for health insurers. This leads to a financial incentive for insurers to target specific groups

in the Dutch population (Zorgautoriteit, 2019) for insurance policies.

To counter this incentive, the risk equalization system is created. The Dutch risk equalization

system is a regulated scheme which provides health insurers with an annual ex-ante compensation

for the predictable differences in health care expenditure per individual (Van Kleef et al., 2012).

The goal of this system is to create a level playing field between health insurers, to reduce the

incentive for risk selection among health insurers and to stimulate the efficiency of the Dutch health

care (Van Veen et al., 2015). The ex-ante compensation is based on a prediction model, which

is reviewed and improved on a constant basis. However, as the risk equalization model does not

predict adequately, insurers are still significantly under- or overcompensated for specific groups in

the Dutch population (Van Kleef et al., 2017).

When the characteristics of these groups are known, insurers can take actions thereon, for exam-

ple in terms of marketing or policy creation to target the overcompensated people (Van Kleef et al.,

2017; Zorgautoriteit, 2019). This targeting competition leaves specific insurers with portfolios over-

represented with undercompensated people (Stam et al., 2020), leading to higher premiums asked

by these insurers which scares off healthy people in their portfolio. This adverse selection disrupts

the health insurance market, as it is an unequal level playing field between insurers. Premiums

are not based on efficiency and quality, but a reflection of the insurer’s portfolio (Van Veen, 2016).

Despite the risk equalization system, the incentive to target a specific group of profitable people

therefore remains. There are concrete signals for risk selection, as the focus of Dutch health insurers

is to create policies with restrictive conditions to target healthy people (Zorgautoriteit, 2021). This

risk selection is a threat to the goals of the Dutch health care system as intended in 2006 (Van Kleef

et al., 2020; Visser et al., 2014).

In this research, the current magnitude and nature of the incentive for risk selection is investi-

gated further with the use of a not earlier applied technique on the Dutch risk equalization data.

The current Dutch risk equalization model uses linear regression to estimate the ex-ante compen-

sation, but research has proven that more advanced estimation techniques produce more accurate

predictions, e.g. Stam et al. (2020), Ellis et al. (2018) and Jones et al. (2015). These techniques

are however not used in practice yet, because they are hard to implement and lack transparency and

interpretability (Ellis et al., 2018). This is regarded as highly important in the risk equalization.

Given this disinclined attitude on replacing the current estimation technique with more advanced

models, this research aims to evaluate the current technique with insights gained from multiple dis-
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1 INTRODUCTION

similar algorithms, combined into a combination of models (Bates & Granger, 1969; Van Der Laan

et al., 2007; Wolpert, 1992). This method of combining models into one is referred to as stacked

generalization.

The model created in this research serves as a policy evaluation instrument for the Dutch risk

equalization system. It evaluates the predictive power of the current Dutch risk equalization model

against a more advanced method. The aim of this research is to discover subgroups in the Dutch

population for which an advanced model provides significantly better predictions compared to the

current linear model. The advanced model provides an insight in the information that a Dutch

health insurer could have, benchmarked against the actual risk equalization method. It is tested,

whether an insurer can identify significantly under- or overcompensated subgroups based on this

information. It therefore provides an insight in the possibilities for risk selection from the perspective

of a health insurer.

Van Veen et al. (2015) indicate that this analysis on incentives for risk selection should be done

on non-random subgroup level. The results for other evaluation levels, such as the full sample, are

likely to be the cleared effect of under- and overcompensations and therefore lead to contaminated

conclusions. The evaluation of models is therefore based on subgroup level, which are defined prior

to the model estimation. The central question of this research is:

Which added value brings the application of the stacked algorithm to serve as a policy evaluation

instrument for the current Dutch risk equalization model?

This question can be divided in the following sub-questions:

• In which way can a stacked model be developed as a benchmark model? What conditions

does a policy evaluation benchmark have to meet?

• What is the predictive power of this benchmark model? (in terms of individual and subgroup

level)

• What is the performance of the current risk equalization model compared to the benchmark

model? (in terms of individual and subgroup level)

• What are the characteristics of the identified groups for which the risk equalization system is

a less good predictor for health care costs compared to the benchmark model?

The current methodology used in the Dutch risk equalization system is OLS. The use of this linear

regression comes with several assumptions on the disturbances, such as homoskedasticity in the

covariance matrix and a joint normal distribution (Heij et al., 2004). Given the distribution of

health care expenditure in a population, these assumptions might be too stringent. Researches

indicate that health care expenditure data incorporates uncommon features, such as non-negative
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1 INTRODUCTION

values and many observations with 0 expenditure within a year (Jones et al., 2015; Vimont et al.,

2022).

Jones et al. (2015), using an English health care expenditure data set for the period 2007-2008,

also provide evidence against the assumptions of homoskedasticity and a normal distribution of

the disturbances. They respectively found a trend between the mean predicted health costs in pre-

specified quantiles and the variance of these costs, and non-normal values for the higher moments in

the distribution (skewness, kurtosis). Presented with these findings literature advises to use other,

more flexible approaches to model the complex distribution of health care data. These more flexible

methods are researched widely, both as an addition to the linear regression estimation method as

well as to replace this method.

A major advantage of more flexible model specifications is feasibility to utilize the data struc-

ture in a more effective way, with extended possibilities to incorporate interaction terms between

explanatory variables (Rose, 2016; Stam et al., 2020). Such a flexible model can also be used as an

addition to the current linear risk equalization method. Van Veen et al. (2017) uses regression trees

to research interactions between variables in the Dutch risk equalization system. Those interaction

terms that capture variation in the health care expenditures unexplained by the current model,

are added to the to the risk equalization model by Van Veen et al. The resulting model including

the selected interaction terms shows increased predictive performance compared to the standard

model. This serves as an example on how to improve the current model with insights gained from

alternative models.

In this thesis, a set of more flexible model specifications is tested on the Dutch health care data

and eventually combined into one predictive algorithm, as proposed by Bates and Granger (1969) in

their research on a combination of forecasts. They use a combination of two forecasts and conclude

that the Mean Squared Error of such a combined model is lower compared to the separate forecast

models. Later research by Wolpert (1992) generalizes this idea to incorporate as many algorithms

as intended in the combined forecast. This method is called stacked generalization.

The use of a combined predictive model is attractive because it can combine several algorithms

that learn from the underlying data in different ways (Bates & Granger, 1969; Van Der Laan et

al., 2007; Wolpert, 1992). The combination of models therefore overcomes the choice of model

specification, a task specifically complex in risk equalization as several models have established

divergent results in earlier literature in terms of predictive power, both on individual level and on

subgroup level.

Stacked generalization involves two steps. At first, different base models are estimated to predict

the dependent variable. In the next step, these models are combined into one final prediction using

the base model predictions made on a hold-out validation set or using k-fold cross validation. These

base model predictions are the explanatory variables in the final model.

The use of k-fold cross validated predictions as explanatory variables in a stacked model is

called a Super Learner model (Van Der Laan et al., 2007). Such a Super Learner is applied earlier
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1 INTRODUCTION

to American health expenditure data by Rose (2016). The set of base models tested in this research

involves parametric regression models, penalized regression models (Lasso, Ridge and Elastic Net)

and machine learning models such as Decision Trees, Random Forests and Neural Networks. The

algorithms are trained in two ways: on the full set of descriptive variables used in the risk equaliza-

tion model in the United States and on a subset of these variables, selected by means of a Random

Forest which selects the top 10 variables with highest predictive importance.

All models trained on the subset of variables yielded lower predictive power compared to the

full models. However, the impact of the variable reduction was relatively low. This is promising, as

covariate reduction in a model leads to higher interpretability of a model, an important feature in

risk equalization.

In both the full and more parsimonious model specifications estimated by Rose, the Super

Learner performs better than every single algorithm in terms of predictive performance (R2) on

individual level, providing recent evidence for the claim that a combination of forecasts improves

the predictive performance (Bates & Granger, 1969). This result serves as motivation for further

research on the use of combined predictive models, as done in this thesis.

Stam et al. (2020) compare the use of a Random Forest and a Gradient Boosted model to the

actual OLS model for somatic health care expenditure of the total Dutch population in 2018. On

individual level the models are evaluated using R2, CPM and GGAA1. The Random Forest outperforms

the OLS model in all these metrics, the Gradient Boosted Machine fails to outperform in terms of

CPM and GGAA. However, the results for all models are very close to each other.

On subgroup level the three compared models present more divergent results. The three sub-

groups evaluated for this research are based on the level of health care expenditure in 2015 (15%

lowest spending on health care in 2015, 70% middle class and 15% highest spending in 2015). Stam

et al. (2020) indicate that the OLS model overcompensates the first two groups and undercompen-

sates the last group. The Random Forest model reduces the overcompensation of the middle class

but increases the under- and overcompensation of the other two subgroups. As the two subgroups

with lowest and highest spending on health care are specifically subject to respectively positive and

negative risk selection by health insurers, the Random Forest does not mitigate this incentive to a

large extent. In comparison, despite not having a better predictive power on the individual level

compared to OLS, the Gradient Boosted model presents interesting results on subgroup level. For

the group with 15% lowest health care expenditure in 2015 it firmly reduces the overcompensation

compared to OLS, the researchers find.

Stam et al. (2020) indicate that this currently overcompensated group is the main target for

positive risk selection by Dutch health insurers and thus this result is interesting, as it takes away

part of the incentive for positive risk selection. In contrast, the over- and undercompensation for

the other two evaluated groups increase with the use of the Gradient Boosted model compared to

1R2 and CPM are used in this thesis and discussed in detail in section 3.6.1. GGAA measures the weighted mean

absolute prediction error.
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1 INTRODUCTION

OLS. Given these divergent results on individual and subgroup level, there is no clear best option

among the two alternative algorithms compared to OLS. Therefore, the stacked combination of

predictive models used in this thesis is attractive as it can incorporate both as a base model instead

of choosing between them.

Using a French health care spendings dataset, research on a more detailed subgroup level is

presented (Vimont et al., 2022). The researchers test the use of advanced methods, which can

indicate complex interactions and relations between variables used. Using both a Generalized

Linear Model, Random Forest, and a Neural Network they find that all these models overestimate

the health care expenditure for the subgroup with lowest observed expenditure (< 100) in a year.

For the high-expenditure subgroups (> 5000 and > 15000) the Random Forest model is the most

accurate. It yields a better performance in the tail of the distribution as the algorithm is more

robust to extreme values in the data, the researchers conclude (Vimont et al., 2022).

Next to researched machine learning methods, parametric regression techniques are evaluated

for risk equalization purposes as well. Jones et al. (2015) tested the performance of sixteen para-

metric and semi-parametric regression methods, where each method makes different assumptions

on the distribution of health care expenditure. The set of models involves both widely used and

more uncommon methods. Widely used models such as linear regression, log-transformed linear

regression, and log-link gamma-variance generalized linear regression perform amongst the worst

methods in terms of Mean Prediction Error, Mean Absolute Prediction Error, and Root Mean

Squared Error. The approximation of the conditional density function as first proposed by Gilleskie

and Mroz (2004) yields the most promising results as indicated by Jones et al. (2015). In this

method, the continuous health care expenditure is divided into intervals. The conditional probabil-

ity for an insuree to fall within an interval given the set of explanatory variables is estimated via

both Multinomial and Ordered Logit regressions. The resulting probabilities are then multiplied

by the mean health care expenditure of each created interval to obtain predictions for health care

expenditure. A similar approach to model health care expenditure is followed in one of the models

of this thesis.

In addition, research performed by Van Kleef et al. (2015) focuses on the application of con-

strained regression on the Dutch health care expenditure data. This method is potentially attrac-

tive, as it can a-priori specify certain groups for which the under- or overcompensation in the risk

equalization system is reduced to a pre-specified number. Van Kleef et al. (2015) assess multi-

ple variations of subgroups in constrained regression which present similar results. The predictive

results increase for the subgroups which a constrain. This however comes at the cost of deterio-

rated results for groups incorporated in the traditional risk equalization by means of a variable, the

researchers conclude. The use of constrained regression for risk equalization therefore should be

motivated by the consideration between these two effects.

In this consideration, the magnitude of these effects plays an important role. Van Barneveld et

al. (2000) argue that small under- and overcompensations for groups of insured are not disruptive for
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1 INTRODUCTION

the equalizing effect of the system, as risk selection by means of targeting subgroups comes at a cost

as well. Next to this, Ellis and McGuire (2007) state that not only the magnitude and predictability

of under- and overcompensations are important, the predictability of the feature or subgroup that

is under- or overcompensated for matters as well. An undercompensation of people with highly

predictable health care expenditure is therefore more serious than an undercompensation of people

with less predictable expenditure patterns.

In the literature there is a clear industry standard in terms of model evaluation. Metrics often

used in papers are the R2, CPM (Cumming’s Prediction Measure), MPE (Mean Prediction Error), and

MSE (Mean Squared Error). Van Veen (2015) provides an extensive overview of measures used in

risk equalization literature, which incorporates the abovementioned metrics as well. These metrics

indicate the fit of the model to the data and therefore present meaningful insights. However, a higher

predictive performance in terms of these metrics evaluated on individual level does not necessarily

guarantee a model to outperform other models in the mitigation of risk selection incentives on

subgroup level. It is therefore of high interest to also evaluate the models on pre-defined, selective

subgroups that differ from subgroups used in the model estimation, as a group-level evaluation

indicates incentives for risk selection (Gupta, 2020; Van Veen et al., 2015; Van Veen, 2016).

None of the above-mentioned metrics is designed for a subgroup analysis. They can be applied

to subgroups, as is done by Jones et al. (2015) in the evaluation of the MPE per subgroup in the data

set. This however is not done widely. This is a discrepancy between the commonly used evaluation

metrics and the goal of risk equalization models (Vimont et al., 2022), which is the mitigation of

risk selection incentives. Therefore, in this research a subgroup level evaluation of the models is

incorporated. For a detailed discussion of the evaluation metrics used in this research, see section

3.6.
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2 DATA

2 Data

To answer the research question stated in the introduction, health care expenditure data from the

Netherlands for the period 2016-2019 is used. Permission to use this data is granted by the Dutch

Ministry of Health, Welfare and Sport and ZN, an association of health insurers in the Netherlands.

This data is used in practice to estimate the Dutch risk equalization models for 2019 to 2022. The

Dutch risk equalization model corresponding to year t is estimated with data from year t-3 as this is

the most recent data for which information is available in complete and definite form. The observed

health care expenditure in t-3 is made representative for year t, such that the cost level in the data

is equal to the cost level in year t2. In this chapter, at first data handling is discussed. Next the

variables used in this research are described in detail and descriptive statistics are discussed. At

last, the subgroups used for evaluation are created.

2.1 Data handling

The observations in the data correspond to pseudonymized individuals in the Netherlands. It is

not necessarily the case that each observation corresponds to a unique pseudonymized individual,

because each year there is a group of insurees who change their health insurer during the year.

These people are present twice in the dataset for the year in which they changed insurer, as part

of the insurees’ year corresponds to one health insurer and a part corresponds to another. These

observations are summed for this research. This leaves one observation for each unique individual.

Next to this, in each year there are new-borns, people who pass away, immigrants, and emigrants.

This group of people is present in the dataset, but they only have information corresponding to the

period that they were Dutch inhabitants. For example, if someone passes away on the 1st of July

in 2019, they have only been present in the Netherlands for 6 months of that year. Their health

care expenditure information therefore only corresponds to that period as well. To recognize this,

a variable which denotes the number of days that is accounted for in this observation, is present

in the data. This variable is transformed into a weight per observation, by dividing it through the

total number of days in each year.

The actual health care expenditure for such an individual who is only partly present in the

Netherlands in a calendar year is divided by this weight. Dividing each observation in the data by the

weight of that observation results in annualized weighted health care expenditure and observations

that are in insured years. An insured year is equal to a full calendar year, the example individual

who passes away on the 1st of July corresponds to 0.5 insured years. If this person has already

accumulated e100 of health care expenditure in that period, this is divided by a weight of 0.5. This

results in an annualized expenditure of e200. These annualized expenditures are used for further

2This is done prior to receiving the data. Data is received in the form such that 2019 expenditure is scaled to

match the 2022 cost level.
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2 DATA

analysis and estimation of the risk equalization model. The descriptive statistics, discussed in

section 2.3.1, are based on the actual (unweighted) health care expenditures to present actual costs

rather than annualized (weighted) cost information. Annualized expenditure for 2019 is discussed

in section 2.3.2.

2.2 Variables used in the Dutch risk equalization

The data used in this research contains individual-level information for all Dutch insured in the

period 2016-2019. Each individual is pseudonymized, such that data cannot be traced back to

specific people. For each observation, both financial information and all variables used in the Dutch

risk equalization system are present.

The variables used to estimate the Dutch risk equalization model are either morbidity-based

variables or variables with demographic information per individual. Together, these variables de-

termine the defined health status of an individual for the risk equalization model. The 2022 risk

equalization model consists of 13 variables, which are all divided into multiple categories. Below

all variables are discussed in detail, using information from the additional explanation to Article

6 of the Dutch Regulation risk equalization 2022 (Dutch Ministry of Health & Sport, 2021) and

information presented by the Dutch National Health Care Institute (Zorginstuut, 2021). For each

variable, the number of categories is mentioned. If this is stated as X(+1), this means there are

X categories plus one residual category, in which individuals are classified if none of the other X

categories for this variable are applicable.

• Age interacted with gender (AG). This variable has 42 categories, divided into 21 male-based

and 21 female-based groups. Within each gender, each category represents a five-year age

group. Exceptions are made for new-borns and young adults. The age group 0-4 is split up

in three categories: 0-years old (born in the year data is collected), 0-years old (born in the

previous year) and 1-4 years old. The age group 15-24 is split up in a group of 15-17 and

18-24 years old. This is done as this distinguishes the adults, who are obliged to pay health

care premiums in the Netherlands.

• Pharmacy-based cost groups (PCG). This variable is divided in 42(+1) subcategories, each

of which represents the use of specific medicines corresponding to chronic diseases. The use

of certain medicines above a pre-specified threshold in the preceding year classifies an insuree

in such a category. An insuree can be classified in multiple categories. An extra category is

created for people who do not use medicines corresponding to any of the 42 subgroups in this

variable. This acts as a residual group and totals 43 subgroups.

• Diagnosis-based cost groups (DCG). This variable is based on the combination of diagnoses

and treatments for chronic diseases in the preceding year. The variable consists of 26(+1)

categories, which represent clusters of diseases with comparable cost patterns. An insuree can
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both classify in a category multiple times as classify for multiple different categories. If none

of the categories are applicable to an insuree, the insuree classifies for the residual group.

• Medical equipment based cost groups (MCG). This variable consists of 14(+1) categories,

based on the use of medical equipment for chronic diseases. An insuree can be classified in

multiple categories. There is a residual category for insurees who do not classify for any other

category.

• Source of Income (SoI) interacted with age. This variable distinguishes insurees based on

their source of income. Insurees from 70+ years of age are classified in a separate category.

Insurees from 0 to 69 years are classified in either: fully incapacitated (with IVA benefit),

incapacitated (no IVA benefit), social welfare assistance, student, self-employed, or higher ed-

ucation. Residual categories are present for people not classified in one these abovementioned

categories. The categories are further split up in age subgroups (0-17 years, 18-34 years, 35-44

years, 45-54 years, 55-64 years, and 65-59 years), leading to 36 categories within this variable.

• Region. This variable consists of 10 categories, in which people are placed based on a two-

step process. At first, socio-economic circumstances within a postal code are quantified using

e.g. the percentages of low-income people. Next, based on this information postal codes are

clustered in ten categories.

• Socio-economic status (SES) interacted with age. This variable is based on the total household

income per address. The categories are: very low income, low income, middle income, and

high income. Within these categories, three age groups (0-17 years, 18-69 years, and 70+

years) are distinguished which results in 12 categories.

• People per address (PPA) interacted with age. This variable classifies insurees based on

the number of people living at an address. There is a separate category for children (0-17

years). Other people are divided into age groups (18-69 years, 70-79 years, and 80+ years)

and classified in either: Wlz-institution (long-term stay), Wlz-institution (influx), 1-person

households or a residual category. This variable contains 13 categories.

• Multiple year based high-cost groups (MHC). This variable is based on the somatic health

care expenditure distribution of the last three years. It has 8(+1) categories. Category zero

(the residual category) corresponds to insurees who were not present in the top 30% of the

distribution in each of the past three years. Category one classifies people present in the top

30% of the distribution in one of the previous three years. Category two classifies people

present in the top 10% of the distribution in the previous two years and category three to

eight correspond to people who were among the top 15, 10, 7, 4, 1.5 and 0.5% of the health

care expenditure distribution in each of the previous three years.
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• Physiotherapy diagnosis-based cost groups (PDG). This variable indicates the use of physio-

therapy for chronical diseases. It entails 4(+1) categories. Each category, except the residual

category, represents a group of diagnoses.

• Multiple year based costs for nursing and caring (MNC). This variable contains 9(+1) cate-

gories. Category one to eight classify insurees present in the top 3.5%-0.25% of the distribution

of health care expenditures on nursing and caring in each of the three preceding years. Cate-

gory nine classifies children in the top 0.25% of the distribution in the previous year. Category

zero represents the residual group.

• Historical somatic morbidity (HSM). This variable has 1(+1) category, based on historical

health information. If three years ago an insuree classified for either a PCG, DCG, MCG,

PDG, and/or MHC category (not being the residual category of each variable), the HSM

variable is classified in this years’ model. If not, insurees are classified in the residual category.

• Multiple year based pharmaceutical cost groups (MPC). This variable has 1(+1) category.

Insurees classify for this variable if they were present in the top 25% of the distribution of

pharmacy-related health care expenditure in at least one of the three preceding years. If not,

they are classified in the residual category.

The total number of categories used in the 2022 model is 226. The number of categories used

in the Dutch risk equalization model has increased over time, as is visible in table A1 in the

Appendix. In the period 2019-2022, the number of categories for variables PCG, DCG, MCG, and

SoI have changed. The variables HSM and MPC are added to the Dutch risk equalization model

in 2022. Due to the large number of categories present in the Dutch risk equalization model and

continuous improvements that are made, the model is widely regarded as one of the most extensive

risk equalization models in the world.

The number of categories for the age interacted with gender (AG) variable normally is equal to

42. However, in this research subgroups of individuals are created based on the differences between

observed and predicted annualized health expenditure in the previous three years. New-borns in

2017, 2018 and 2019 cannot be classified in one of these subgroups as they are not present in all

years. They are therefore left out of the estimation process. In the resulting research sample, only

new-borns from 2016 are present. Due to this choice, the age interacted with gender categories 1,

2, 22 and 23 cannot be classified as these correspond to male and female insurees of 0 years old in

2019.

2.3 Somatic health care expenditure in the Netherlands

In this section the somatic health care expenditure in the Netherlands for the period 2016-2019,

which is used for the risk equalization in 2019 to 2022, is discussed. At first, descriptive statistics
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for all years are displayed. Next, detailed information about the annualized somatic health care

expenditure in 2019 is presented.

2.3.1 Actual somatic health care expenditure in 2016-2019

In table 1 on the next page, the descriptive statistics of the actual Dutch somatic health care

expenditures over the period of 2016 until 2019 are displayed. This table is based on the Dutch

population present in each of the four years. People for whom information in one of the years is

missing (due to birth, death, or migration) are withdrawn from the data. This is done, as they

can’t be classified in one of the subgroups that are created in section 2.4. The unfiltered descriptive

statistics, which represent the full population sample for each of the years, are presented in table

A2 in the Appendix.

As is stated in the mentioned literature, health care data typically has a complex distribution.

This distribution normally is characterized by a large peak of observations with 0 expenditure and

a long right tail with large outliers. Such a large peak of observations with 0 expenditure is absent

in this data set, as for each year the 1% percentile presents highly positive expenditures. This is

the case, as this research focuses on somatic health care expenditure. In the Netherlands, different

risk equalization systems are in use for somatic health care, mental health care and the own risk

part of health insurance. It is typically the first variant, somatic health care, that does not display

a large peak of observations with zero expenditure as this type of health care also incorporates the

costs made at the general practitioner. These costs are made very commonly by people. In this

research, this somatic health care expenditure is investigated.

However, in each of the four years visible in table 1 there is high positive skewness3. High positive

skewness indicates a large right tail in the data, insurees with very high expenditure compared to

the rest of the data set (Heij et al., 2004). This is illustrated by the large difference between the

99% percentile and the maximum health care expenditure in each of the years.

Next to this there is high kurtosis4 which indicates many observations in the tails of the dis-

tribution (Heij et al., 2004). As kurtosis for each of the four years is very high, in each year the

tails are thick. This is supported by information regarding the mean and the median in the data

for each year. The mean health care expenditure in the period 2016-2019 increases from e1,988.94

to e2,455.13. However, the median ranges from e427.91 to e502.10 in this period. The mean is

3The third standardized sample moment for a distribution is called skewness. It is calculated as:
m3
s3

=
1
n

∑n
i=1(yi−ȳ)3√

1
n−1

∑n
i=1(yi−ȳ)3

(Heij et al., 2004), in which n is the total number of observations, yi are the observations and

ȳ is the sample mean. Skewness measures the degree of symmetry of the data set. A symmetrical, normal distribution

has skewness equal to 0. A data set with a large right tail indicates positive skewness.
4The fourth standardized sample moment for a distribution is called kurtosis. It is calculated as:

m4
s4

=
1
n

∑n
i=1(yi−ȳ)4√

1
n−1

∑n
i=1(yi−ȳ)4

(Heij et al., 2004), using the same variables as used for the calculation of skewness. Kurtosis

measures the magnitude of the tails of the distribution. Large kurtosis indicates thick tails. A normal distribution

has a kurtosis around 3.

15



2 DATA

Table 1: Descriptive statistics of the actual Dutch somatic health care expenditures (in euros) in

the period 2016 until 2019, for the merged data set.

2016 2017 2018 2019

Individuals 16,327,282 16,327,282 16,327,282 16,327,282

Insured years 16,165,554.64 16,309,136.10 16,309,584.63 16,212,955.36

Mean 1,988.94 2,077.32 2,277.41 2,455.13

St. Dev. 6,679.02 6,905.77 7,572.88 8,074.31

Skewness 25.23 20.64 20.68 17.62

Kurtosis 2,712.42 1,344.67 1,926.62 1,029.30

Minimum 0.01 0.01 0.00 0.01

P1 63.59 65.81 68.25 71.53

Q25 156.51 159.20 169.81 182.19

Median 427.91 435.88 464.87 502.10

Q75 1,434.67 1,455.47 1,556.41 1,675.09

P99 25,793.76 27,591.26 30,830.25 33,556.27

Maximum 2,495,408.86 1,493,545.72 2,617,403.93 1,911,534.72

Table 1: The number of insured years is the sum of the weights corresponding to all individuals.

P1 represents the first percentile of the actual health care expenditure distribution, Q25 and Q75

respectively the 25% and 75% quantiles and P99 represents the 99th percentile of the actual health

care expenditure distribution.

shifted upwards heavily, due to a large amount of very large positive observations in the data set.

In each of the years, this results in average actual health care expenditure which lies between the

75% and 99% percentiles.

2.3.2 Annualized somatic health care expenditure in 2019

In this research, the 2022 Dutch risk equalization system is of interest. This system is based on the

2019 health care expenditure data, scaled up to match the cost level in 2022. In table 1 a general

overview of this data is visible. More detailed information is present in table 2, which is a selected

part of table A3 visible in the Appendix.

In table 2 and A3 subsets of the population are created based on the variables used in the 2022

risk equalization model. Conditional on the created subsets, annualized health care expenditure

data is displayed. Subsets that are created based on a cluster of categories within a variable include

the applicable categories within brackets.

In table 2 it is visible that irrespective of the age, female insurees on average incur higher somatic

health care expenditure in 2019 compared to male insurees. Next to this, the variables Multiple
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Table 2: A detailed overview of the annualized somatic health care expenditures (in euros) for the

2022 risk equalization model.

Population subset Individuals Insured years Frequency Mean St. Dev

Age interacted with Gender

Female (<65 years) abcd 6,436,063 6,417,502.45 39.58% 1,820.52 6,544.03

Female (>65 years) 1,827,657 1,792,789.68 11.06% 5,745.85 12,029.05

Male (<65 years) 5,944,821 5,918,553.90 36.51% 1,293.06 6,703.53

Male (>65 years) 2,118,741 2,084,109.32 12.85% 5,348.32 13,145.83

Multiple year high-cost groups

No indication (0) 8,727,778 8,693,197.89 53.62% 794.92 3,585.19

In one year (1) 6,519,381 6,473,108.72 39.93% 2,948.46 7,838.89

In two years (2) 169,698 164,754.15 1.02% 10,608.96 19,766.61

In 3 years (3-8) 910,425 881,894.60 5.44% 14,786.24 22,921.41

Multi-year costs for nursing and caring

No indication (0) 15,893,214 15,803,327.76 97.47% 2,212.93 7,345.36

Indication (1-9) 434,068 409,627.70 2.53% 17,799.55 25,105.94

Table 2: This table is a subset of the full table, visible in table A3. The number of insured years

is the sum of the weights corresponding to all individuals. The frequency is calculated based on

the relative number of insured years. The presented mean and standard deviation correspond to

annualized somatic health care expenditure in 2019.

year based high-cost groups (MHC) and Multiple year based costs for nursing and caring (MNC)

are displayed. Both variables classify insurees based on the level of health care expenditures in the

previous three years. It is made visible in table 2 that the expenditures in years t-3, t-2 and t-1

are indicative for the expenditures in year t, as the higher categories within these variables display

higher average annualized health care expenditure in 2019 as well.

2.4 Subgroups defined to evaluate model predictive performance

As mentioned in the literature, risk selection as performed by Dutch health insurers takes place

on subgroup level. It is therefore of interest to evaluate the performance of the risk equalization

models used in this research on subgroup level. In Table 3 the subgroups created for this evaluation

are displayed.

The evaluated subgroups in this research are created based on the residual annualized health

care expenditure in the period 2019-2021. Predicted annualized expenditure for each of these

years is obtained via multiplication of the 2016-2018 variables in the data set (used in practice for

the risk equalization of 2019, 2020 and 2021) with the corresponding, actual coefficients from the
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Table 3: The subgroups used for evaluation, based on summed residual annualized expenditure for

the period 2019-2021.

Subgroup Aggr. Residual UC Individuals Freq. Mean res. Median res. St. Dev.

1 AR > 0 0 8,632,223 52.87% 3,578.78 2,260.20 5,323.29

2 AR > 0 1 3,580,598 21.93% 2,148.28 1,103.29 3,856.03

3 AR > 0 2 310,696 1.90% 1,480.46 508.58 3,184.39

4 −5000 < AR < 0 1 1,303,950 7.99% -1,463.77 -1,008.81 1,353.75

5 −5000 < AR < 0 2 1,048,003 6.42% -1,637.72 -1,186.53 1,400.10

6 −5000 < AR < 0 3 194,460 1.19% -2,016.31 -1,663.36 1,363.38

7 AR < −5000 1 436,971 2.68% -16,975.44 -9,844.95 35,085.97

8 AR < −5000 2 585,051 3.58% -19,105.44 -10,773.16 39,290.76

9 AR < −5000 3 235,330 1.44% -27,921.56 -13,881.81 57,663.10

Table 3: Aggregated residual (AR) measures the difference between the predicted and observed an-

nualized somatic health care expenditure, aggregated over the period 2019-2021. UC measures the

number of years that an insuree is undercompensated in the period 2019-2021. Frequency is mea-

sured as the relative number of individuals, present in each subgroup. For the aggregated residuals,

the mean, median and standard deviation measured in euros are displayed.

risk equalization models of 2019-20215. Residual annualized expenditure is equal to the difference

between observed and predicted annualized expenditure. For each observation, the residuals for the

period 2019-2021 are aggregated.

Based on these summed residuals, three subgroups are created: insurees with an aggregated

overcompensation (AR> 0), insurees with a small aggregated undercompensation (−5000 < AR

< 0) and insurees with a large aggregated undercompensation (AR< −5000). These subgroups

are further split up based on the number of years that an insuree is undercompensated within this

period, ranging from 0 to 3 years.

The subgroups are created such that the main group of interest is clustered. Especially the

insurees with high and persistent undercompensations over the period 2019-2021 are expected to

be unwanted from the perspective of an insurer. It is this group of people, clustered in subgroups

8 and 9, that is most vulnerable to negative risk selection by an insurer.

Using the same argumentation, the individuals in persistently overcompensated subgroups 1 and

2 are most attractive for positive risk selection, from the perspective of an insurer.

5The coefficients from the risk equalization of 2019-2021 are obtained via WOR 930 (ESHPM, 2018), WOR 974

(ESHPM, 2019) and WOR 1002 (ESHPM, 2020).
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3 Methodology

In this chapter, the methods and evaluation metrics used in this thesis are described in detail. At

first the current Dutch linear risk equalization method, which is replicated in this thesis, is discussed.

Thereafter the alternative models used in this thesis are explained. These models are combined into

one combination of models, for which the procedure is explained. At last, the evaluation metrics

used in this thesis are discussed.

3.1 Current risk equalization method: linear regression

The ex-ante compensation rewarded to health insurers for each individual in their portfolio is

estimated via Ordinary Least Squares, with explanatory variables as discussed in section 2.2. The

objective function is displayed in equation 1. This function is subject to constraints 2, 3 and 4.

argmin
b

N∑
i=1

wi

yi − M∑
j=1

bjxi,j

2

(1)

s.t.

N∑
i=1

wi

42∑
j=1

bAG(j)xi,AG(j) =

N∑
i=1

yi (2)

N∑
i=1

wi

∑
j∈κ

bκ(j)xi,κ(j) = 0, (3)

κ = {PCG,DCG,MCG,Region,MHC,PDG,MNC,HSM,MPC}
N∑
i=1

wi

∑
Age,j∈Ψ

bΨ(Age,j)xi,Ψ(Age,j) = 0, (4)

Ψ = {SoI, SES, PPA}

The model is estimated without an intercept. wi are the insured years, the fraction of the year an

individual is insured in the Netherlands. yi are the corresponding annualized somatic health care

expenditures. bj are the estimated coefficients to corresponding explanatory variables xj , j ∈ M

with M = 2226. All explanatory variables are indicator variables, equal to either 0 or 1.

The constraints together ensure that in-sample total predicted annualized expenditure equals

the in-sample total observed annualized expenditure. Constraint 2 constrains total in-sample an-

nualized health care expenditure as predicted by variable ’Age interacted with gender’ to equal

total observed in-sample annualized health care expenditure. Constraint 3 is applicable to all other

variables in the risk equalization model which are not interacted with age. For each of these vari-

ables, the sum of in-sample predicted annualized health care expenditure by those variable needs

6Note that in practice 226 categories are used. In this research, four age interacted with gender categories are

ignored as discussed in section 2.2.
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to equal 0. In-sample, these variables do not increase predicted annualized health care expenditure

but redivide the predictions that are made by variable ’Age interacted with gender’. At last, con-

straint 4 is applicable to the variables ’Source of Income’, ’Socio-economic status’ and ’People per

Address’. These variables are age-interacted. Constraint 4 ensures that within each age group of

these variables, the sum of in-sample predicted annualized health care expenditure equals 0.

The application of OLS is highly interpretable on individual level, as the effect of an indication

in a specific category is quantified by the corresponding coefficient. Each coefficient bj is therefore

interpreted as the ceteris-paribus change in predicted annualized somatic health care expenditure

for an individual and thus the change in ex-ante compensation rewarded to an insurer, given that

this indicator variable equals 1. However, there are downsides to this stringent model as well,

as this method results in chronic under- and overcompensations of specific groups of insurees.

Therefore, alternative methods to estimate the Dutch somatic health care expenditure are tested

in this research. In the remainder of this chapter, these methods are explained in detail.

3.2 Regularized regression model

Regularized regression is a natural extension to linear regression to consider in this context. Given

the large number of explanatory variables in the OLS model, risk of overfitting to the estimation

data applies. Out-of-sample predictions made by an overfitted model typically display high variance

and low bias, compared to underfitted models which typically display low variance and high bias.

Regularized regression models respond to this bias-variance trade-off by decreasing model flexibility.

This is done by means of a penalty term on the estimated coefficients (Hastie et al., 2017). Decreased

model flexibility leads to reduced variance and increased bias for the predictions made by the model.

The most well-known types of regularized regression are Ridge regression, Elastic Net and Lasso

regression. These models differ in terms of the penalty placed on the estimated coefficients. In

Ridge regression, a penalty is placed on the squared values of the estimated coefficients. In Lasso

regression, a penalty is placed on the absolute value of the estimated coefficients. The Elastic

Net is a combination of both Ridge and Lasso regression, in which a variable determines what

weight is placed on respectively the absolute and squared penalty term. The objective function of

a regularized regression model is displayed in equation 5 (Hastie et al., 2017).

argmin
b

N∑
i=1

wi

yi − b0 −
M∑
j=1

bjxi,j

2

+ λ

α M∑
j=1

|bj |+ (1− α)

M∑
j=1

b2j

 (5)

The parameters to tune within this function are α and λ. The value of α determines what type of

regularized regression is performed. If α = 1, the penalty on the absolute value of the coefficients

is activated and thus Lasso regression applies. If α = 0, the penalty is placed on the squared

coefficients leading to Ridge regression. Each value of α between 0 and 1 applies to Elastic Net, a
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combination of both Ridge and Lasso regression. The magnitude of the penalty term is determined

by λ. A higher λ indicates a larger penalty term. Note that, when λ = 0 equation 5 reduces to

equation 1, a simple linear regression. In this research, the optimal values of α and λ are determined

based on a grid search, as discussed in section 4.1.

3.3 Conditional Density Approximation using Ordered Logit

As opposed to the widely used two-part models to estimate the probability to have positive health

care expenditure, the extended two-part model which estimates the probability of insurees to fall

within a pre-defined cost interval (Gilleskie & Mroz, 2004) is not yet applied regularly, Jones et

al. (2015) note. Given the promising results in literature (Gilleskie & Mroz, 2004; Jones et al.,

2015) combined with the high interpretability of the model, this technique provides an attractive

alternative to the current OLS model.

The first step of this conditional density approximation is to create an ordinal categorical vari-

able, as this is the only type of dependent variable an Ordered Logit model can be estimated on.

Therefore, intervals of insurees are created based on annualized health care expenditure level in

2019. Individuals in the merged data set are ordered ascendingly based on the invididual level

of annualized expenditure in 2019. Thereafter, intervals of insurees are clustered together. Each

interval is responsible for a percentage of the total somatic health care expenditure in the Nether-

lands in 2019. For example, given 10 intervals the total annualized expenditure within each interval

corresponds to 10% of the total somatic health care expenditure in the full sample.

The number of intervals K in the model estimation is of great influence, as different numbers

of intervals cluster different individuals together. This changes the mean and median annualized

expenditure within these intervals, used in the next step of this model. Note that for K created

intervals, equation 6 with Nk the number of individuals in each interval holds. Therefore, especially

the higher intervals with less individuals in it, are heavily influenced by the chosen number of

intervals K. A low number of intervals creates highly heterogeneous clusters of insurees, a high

number of intervals results in very small group sizes Nk within intervals.

N1 ≥ N2 ≥ ... ≥ NK , k = 1, ...,K (6)

Gilleskie and Mroz (2004) indicate that the use of 10 to 20 intervals to partition the data in

presents good results. Jones et al. (2015) use 15 intervals, each of which contain an equal number of

individuals, to partition the data in. In this research, different numbers of intervals are tested. Using

5-fold cross validation, the optimal number of intervals K is chosen based on a grid search among

10, 12, 15, 17 and 20 intervals. Given the interval indication as the ordinal dependent variable, for

each individual i the Ordered Logit regression model estimates the probabilities pi(k)(Xi) to be

classified in each interval.
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The resulting probabilities pi(k)(Xi) for k = 1, ...,K are used to predict the annualized somatic

health care expenditure for individuals by means of equation 7 (Jones et al., 2015) and 8.

E [yi|Xi] =

K∑
i=1

pi(k)(Xi)ȳi (7)

E [yi|Xi] =

K∑
i=1

pi(k)(Xi)ỹi (8)

Predictions are made both on mean and median annualized health care expenditure within intervals.

This is done as the mean expenditure is expected to be influenced heavily by high-cost individuals

within each interval. This is not the case for median expenditure. By incorporating both metrics

in the model estimation, the effect of these high-cost individuals on the model outcome can be

assessed.

3.4 Regression Tree models

A class of models found to be very promising regarding the literature are regression tree models

(Rose, 2016; Stam et al., 2020; Vimont et al., 2022). In this section, the conceptual idea of regression

trees is explained. Next, two extensions of regression trees are introduced for this research: a

Random Forest, and a Gradient Boosted model. The models are explained using formulas presented

by Hastie et al. (2017).

Regression tree models rely on recursive binary splits of the data into disjoint subsets. The

binary splits are based on splitting variables and points as illustrated in equation 9 (Hastie et al.,

2017). In this equation, xj is the variable chosen to partition on and s is the partition point. All

observations that respectively meet and do not meet the condition are clustered together into the

subsets S1 and S2.

S1(j, s) = {x|xj ≤ s} S2(j, s) = {x|xj > s} (9)

This choice of variable xj and s is based on the minimization of the sum of loss functions L
[
yi, f̂(xi)

]
over the subsets created by the data partition, with f̂(xi) the predicted value of yi based on the

resulting regression tree. Given a squared error loss function, this results in equation 10 (Hastie

et al., 2017), in which the aggregated sum of squared residuals over the two created subsets S1 and

S2 is minimized. To find the optimal binary split the regression tree algorithm evaluates all possible

combinations of xj and s. For the data split as presented in equation 10, the optimal value assigned

to each observation within the two subsets are equal to γ1 and γ2. Finding these values for each

data split is an optimization problem as well.

For each possible data partition into subsets S1 and S2, taking the first derivative of equation

10 with respect to γ1 and γ2 and setting these equal to 0 yields the optimal values for γ1 and γ2,
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displayed in equation 11 (Hastie et al., 2017). The optimal values are equal to the conditional mean

within the respective created subsets of the data.

argmin
j,s

argmin
γ1

∑
xi∈S1(j,s)

1

2
(yi − γ1)

2 + argmin
γ2

∑
xi∈S2(j,s)

1

2
(yi − γ2)

2

 (10)

γa = ȳSa = E [yi|xi ∈ Sa(j, s)] , a = 1, 2 (11)

The data partitioning procedure as displayed in equation 10 and 11 can be repeated multiple times,

to further divide the created disjoint subsets of observations into smaller and more specific disjoint

subsets. The data partitioning is stopped when an a-priori defined stopping condition is met.

As indicated by Hastie et al. (2017) the outcome of the fully fitted regression tree is equal to

equation 12, in which Θ captures the parameters {Sa, γa}Aa=1, each corresponding to one of the A

created disjoint subsets of the data, called final nodes.

terminal nodes of the regression tree in equation 12 (Hastie et al., 2017). The values for γa, a =

1, ..., A are obtained via equation 11.

T (x; Θ) =
A∑

a=1

γa1{xiϵSa} (12)

Regression trees are highly interpretable. The model explained in this section can easily be visualised

by means of a 2D-graphic which illustrates how each terminal node is constructed. Next to high

interpretability, a single regression tree generally has a low bias (Hastie et al., 2017). This originates

from the fact that it does not make assumptions on the distribution of the data. A regression tree

can therefore fit the training data very well. However, this comes at the cost of high variance. In

the procedure of fitting the model, the binary splits of a regression tree are highly dependent on

the training data, a change in training data could therefore have major impact on the outcomes of

the regression tree.

Extensions on this technique include the use of a large number of separately build trees, merged

into one prediction model to reduce this variance. Two of these extensions, a Random Forest, and

a Gradient Boosted model, are used in this research.

3.4.1 Random Forest

A Random Forest, as first introduced by Breiman et al. (2001), is a bootstrap aggregated variant

of regression trees. This method grows multiple regression trees and averages out the predictions

from all trees into one final prediction. The final prediction of a Random Forest is displayed in

equation 13 (Hastie et al., 2017), with T (x; Θk) the predictions from regression tree k as indicated

in equation 12.
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f̂RF (x) =
1

K

K∑
k=1

T (x; Θk) (13)

Each regression tree in the Random Forest model is estimated using bootstrapping (sampling with

replacement) to draw a random sample of observations from the full data set used in the estimation

process. Furthermore, only a subset of all variables is presented to each separately grown tree in

the Random Forest. These restrictions are imposed on the regression trees to reduce the variance

of the predictions from equation 13. This variance is equal to (Hastie et al., 2017):

V ar

[
1

K

K∑
k=1

T (x; Θk)

]
= ρΣ+

1− ρ

K
Σ (14)

With ρ the correlation between separately grown trees and Σ the covariance matrix. As the number

of trees K within the Random Forest grows large, the second term of equation 14 converges to 0.

This leaves only the first term, dependent on the correlation between the trees. The restrictions

regarding bootstrapping and the consideration of only a subset of variables for each data split are

used to lower this correlation between trees and thus to lower the variance of the Random Forest

predictions.

3.4.2 Gradient Boosted Regression Tree

Gradient Boosting relies on a recursively build set of regression trees. In each iteration of the

algorithm, a tree is added to the current version of the model. Tree iteration m is hereby generated

based on the optimization of Θ̂m for the loss function in equation 15 (Hastie et al., 2017).

Θ̂m = argmin
Θm

N∑
i=1

L [yi, (fm−1(xi) + ηT (xi; Θm))] (15)

Here, fm−1(xi) equals the latest version of the model evaluated at xi, the result of iteration m−1 of

the algorithm. Regression tree T (xi; Θ̂m) is added to this in step m, which results in a new version

of the model. The magnitude of the effect of tree m on model m-1 is determined by the learning

rate η. This learning rate is the model adaptation to each new iteration. An increased learning

reate results in larger updates to the existing model by each new iteration.

The fastest decrease in the value of the loss function in equation 15 can be obtained by taking

the negative gradient of the loss function with respect to the prediction model (Hastie et al., 2017).

Using a squared error loss function, Hastie et al. (2017) indicate that this negative gradient evaluated

through all predictions of model fm−1 is equal to the residuals of the predictions made by model

fm−1, as displayed in equation 16 (Hastie et al., 2017).
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−
[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

= −

[
∂ 1
2(yi, f(xi)

2

∂f(xi))

]
f(xi)=fm−1(xi)

= yi − fm−1(xi) = ei,m−1 (16)

Therefore, to optimize equation 15 the regression tree corresponding to iteration m of the Gradient

Boosted algorithm should be fitted to the residuals of the preceding prediction model fm−1. This

translates into equation 17 (Hastie et al., 2017), in which the sum of squared errors between the

residuals of model m− 1 and tree T (xi; Θm) is minimized:

Θ̂m = argmin
Θm

N∑
i=1

(ei,m−1 − T (xi; Θm))2 (17)

The regression tree T (xi; Θ̂m) resulting from equation 17 is then added to model fm−1, using the

learning rate η. This creates the updated model fm. This process is iterated M times, resulting in

the final model fM .

3.5 Combined model: stacked generalization

All four predictive models discussed in sections 3.2 to 3.4 are evaluated against the current linear

risk equalization model. Next to this a linear combination of the four models is generated. This

is called a stacked model (Wolpert, 1992). This model builds upon the idea of a combination of

forecasts as introduced by Bates and Granger (1969). Predictions made by the stacked model are

in essence the outcome of a two-stage process: predictions are made by the underlying models and

these predictions are weighted by the fitted stacked model. Given the use of estimation models in

both the first and second stage of the stacked model, it is of high importance to take caution on

the use of data and avoid overfitting on the data used in the estimation process. Therefore, in this

section both the use of data and the estimation process of the stacked model are discussed.

3.5.1 Optimal model specifications of the underlying models

As outlined in the data section of this research, the data set with merged information over 4 years

contains 16,327,282 individuals. These insurees are present in the full period 2016-2019. This data

is randomly split in two parts using an 80/20 division which results in the learning set (13,060,528

individuals) and the test set (3,266,754 individuals). The learning set is used to train and validate

the models in this research. The test set is used to evaluate the predictive performance of the

models on out-of-sample data.

Using the learning set to train the models in this research, the first step is to decide on the

optimal model specifications. Hyperparameters that require tuning are displayed in table 4.
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Table 4: Hyperparameters tuned to determine optimal model specifications.

Model Hyperparameter Explanation

Regularized regression α Determines the type of regularized regression.

λ Determines the magnitude of the penalty term.

Ordered Logit K Number of cost intervals.

Random Forest Trees Number of trees.

Node size Minimum node size of each final node in a tree.

Mtry Number of variables considered in each data split.

Gradient Boosted model Iterations Number of iterations.

Depth Number of data splits in each tree.

η Learning rate.

Table 4: Hyperparameters of the models used in this research that require tuning.

The hyperparameters are tuned based on 5-fold cross validated predictive performance for a subset

of 2,000,000 observations from the learning set7. This subset of 2,000,000 observations is validated

to be representative for the full learning set in terms of the distribution of annualized expenditure,

as indicated by table A4 in the Appendix. The metrics used to measure predictive performance are

introduced in section 3.6.

3.5.2 Combined model using stacked generalization

Given the cross-validated optimal model specifications of each method, the models are trained in

two ways. This training process is displayed in figure 1. Using an 80/20 division, the learning

set is randomly split again into the training set (10,450,146 observations) and the validation set

(2,610,382 observations). The models used as input for the stacked model are estimated on the

training set. Predictions based on these estimated models are made for the validation set. These

hold-out validated predictions for annualized somatic health care expenditure are denoted as F̂ =

{f̂RR, f̂OL, f̂RF , f̂GB}, where RR, OL, RF and GB respectively correspond to Regularized regression,

Ordered Logit, Random Forest and Gradient Boosted model.

The combined model is estimated via OLS of the annualized somatic health care expenditure on

the set of predictions F̂ . The estimated coefficients are weights, they weigh the predictive outcomes

of the single predictive models into one final prediction. This combined model is called a stacked

model, as introduced by Wolpert (1992).

The resulting stacked model is thus estimated using both the training and the validation set, i.e.

7A subset of the full learning set is used for hyperparameter tuning, as this substantially reduces runtime of the

models. This research uses confidential data and therefore is performed on an isolated server, which has limited

computational capacity. Therefore, this choice based on computational feasibility is made.
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Figure 1: Overview of the final estimation procedure of the models used in this research.

Figure 1: The estimation process of the final models in this research. Prior to this, optimal model

specifications for the Regularized regression, Ordered Logit regression, Random Forest model and

Gradient Boosted model are determined using 5-fold cross validated predictive results on a subset of

2,000,000 observations of the full learning data set.

the full learning set. The OLS model as discussed in section 3.1 is trained on the full learning set as

well. A fair comparison of the stacked model and OLS model to the other models in this research,

therefore requires the other models to be trained once on the full learning set as well. This results

in 6 models considered in this research, trained on the same set of data. These models are evaluated

using the test data. This data is completely new to each model, not used earlier in the estimation

process.

3.6 Evaluation of predictive performance

An important first note in the evaluation of the models, is that expenditure as predicted by all

models is rescaled such that total predicted annualized expenditure by each model equals total

observed annualized expenditure for the data set for which predictions are made. Risk equalization

in essence is a redistribution of the risks over health insurers and thus each model should be assumed

to redivide the same amount of money over health insurers. The use of rescaled predictions such

that total annualized predicted expenditure is equal among all models is good practice in risk

equalization literature.

As indicated in the introduction, one of the purposes of risk equalization is to reduce incentives

for risk selection. Risk selection takes place on subgroup level and thus the evaluation of risk
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equalization models should also be based on non-random subgroups (Van Veen et al., 2015), as

created in section 2.4 of this research.

The use of these subgroups however makes it hard to evaluate overall performance of the models

(Van Veen et al., 2015). For example, in the parameter tuning process one model specification can

perform good on a certain subgroup, but another specification can present favourable results for

another subgroup. Therefore, the models are evaluated both on individual level and on non-random

subgroup level. Optimal model specifications are determined based on individual-level metrics. In

this section, the metrics used to evaluate the predictive performance of the models are discussed.

3.6.1 Individual level evaluation metrics: R2, CPM and MSE

R2 is the most popular metric (Van Veen et al., 2015). It uses weighted squared differences between

predicted and observed annualized expenditure relative to the weighted squared differences between

observed and mean observed annualized expenditure, as outlined in equation 18 (Heij et al., 2004).

The weights wi correspond to the fraction of the year, an insuree is registered. The R2 indicates

the predictive performance of an algorithm in terms of total variance explained by the model.

R2 = 1−
∑N

i=1wi(yi − ŷi)
2∑N

i=1wi(yi − ȳ)2
(18)

The CPM (Cummings Prediction Measure) as introduced by Cumming et al. (2002) is similar to

R2, but uses the weighted absolute differences instead of weighted squared differences, as outlined

in equation 19 (Cumming et al., 2002). This is informative to compare with R2 values, as the R2

is based on squared differences and thus heavily influenced by large differences between predicted

and observed annualized expenditure. This magnified effect of large differences is not present using

absolute differences.

CPM = 1−
∑N

i=1wi|yi − ŷi|∑N
i=1wi|yi − ȳ|

(19)

Both the R2 and CPM display outcomes between 0 and 1, hence they are called standardized eval-

uation metrics (Van Veen et al., 2015). For both metrics, a value closer to one indicates higher

predictive performance.

Next to these standardized individual level metrics, the non-standardized weighted mean squared

error (MSE) is calculated by equation 20. As this metric presents the weighted average squared

residual of the predictions of a model, a lower MSE value indicates higher predictive performance.

MSE =

∑N
i=1wi(yi − ŷi)

2∑N
i=1wi

(20)
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3.6.2 Subgroup level evaluation metric: MPE

To evaluate subgroup level predictive performance, the mean prediction error (MPE) within each

subgroup as defined in section 2.4 is calculated in equation 21.

MPE =

∑N
i=1wi(ŷi − yi)∑N

i=1wi

(21)

Given that this metric uses untransformed differences between observed and predicted annualized

health care expenditure, positive and negative differences within a subgroup cancel out. Therefore,

this metric does not present a clear insight in the accuracy of a model. It is however very informative,

as for a health insurer the MPE of a subgroup equals the expected gain or loss, obtained by

incorporating an individual from a subgroup in their portfolio.

Note that the ordering of terms in the numerator of equation 21 is changed compared to the

numerators of the equations for R2, CPM and MSE. As the other metrics use absolute or squared

differences, the ordering of the terms does not matter. In the calculation of MPE the values are

untransformed and thus, the ordering does matter. Changing the ordering of the terms leads to a

neater interpretation of the MPE value for subgroups. Using equation 21, a negative MPE value

corresponds to lower predicted annualized expenditure compared to observed annualized expendi-

ture, and thus an expected undercompensation. A positive MPE value indicates higher predicted

annualized expenditure and thus an expected overcompensation.
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4 Results

In this chapter, the results of the estimated models are presented. At first, the optimal model

specifications for the Regularized regression, Ordered Logit regression, Random Forest model and

Gradient Boosted model are determined based on the cross validated predictive results for the subset

of 2,000,000 observations as discussed in section 3.5.1. Next, the definitive models are estimated

and stacked into one final predictive model. The predictive results of this stacked model and the

single predictive models trained on the full learning set are used as an evaluation benchmark against

the current OLS risk equalization model in the Netherlands.

4.1 Regularized regression model

The regularized regression model requires optimization of two hyperparameters. A grid search is

performed for parameter α on the interval {0.0, 1.0} with steps of 0.1 (11 model specifications). This

results in a spectrum of one Lasso regression, nine Elastic Net regressions and one Ridge regression.

For each of these models, λ values ranging from 0 to 300 (with step size 2) are evaluated. The

optimal λ is chosen based on the minimal cross-validated mean squared error within the set of

models for a given α. The results of this grid search are displayed in table 5.

Table 5: Cross-validated predictive results for model specifications of the regularized regression.

α λ MSE R2 CPM

1.0 - 0.3 0 49,281,428 0.366 0.352

0.2 2 49,279,731 0.366 0.353

0.1 10 49,276,433 0.366 0.353

0 254 49,232,163 0.367 0.352

Table 5: Optimal model specifications of the regularized regression for each level of α and the corre-

sponding cross-validated predictive performance of these models. The chosen model specification is

indicated in grey.

Results for α = 0.3 to α = 1.0 are clustered together, as for each of these model specifications an

optimal λ of 0 is obtained. Referring to equation 5 in section 3.2, regularized regression with λ = 0

reduces to Ordinary Least Squares. Therefore, the optimal model specifications for α = 0.3 to 1.0

are identical OLS models. The observed cross-validated predictive results for these models differ

by very small amounts due to randomization in the cross-validation process. However, as each of

these models essentially is the same the results are grouped in one row. The best cross-validated

predictive outcome among these 8 OLS models is displayed in table 5.

For the Elastic Nets with α = 0.2 and α = 0.1 a non-zero optimal value of λ is obtained, as

well as for the Ridge regression (α = 0). Therefore, in these models the penalty term is activated

30



4 RESULTS

leading to different model specifications and outcomes. The regularized regression with highest

predictive performance in terms of cross-validated MSE and R2 is the Ridge regression. Despite

slightly inferior predictive results in terms of CPM compared to the Elastic Net models, the Ridge

regression with λ = 254 is therefore chosen as the model specification and thus used further in this

research.

4.2 Ordered Logit model

As discussed in section 3.3, the predictive outcome of the Ordered Logit model highly depends on

the number of cost intervals K the data is partitioned in. In this section, a grid search among

K = {10, 12, 15, 17, 20} is conducted. For each of these number of intervals, predictions are made

both using mean and median annualized health care expenditure within these intervals. In table 6

the cross-validated individual level predictive performance for each evaluated model specification is

displayed.

Table 6: Cross-validated predictive results for model specifications of the Ordered Logit regression.

Intervals Metric MSE R2 CPM

10 Mean 56,900,958 0.265 0.355

10 Median 54,388,214 0.298 0.386

12 Mean 58,814,791 0.241 0.355

12 Median 55,528,535 0.283 0.381

15 Mean 60,756,222 0.216 0.353

15 Median 57,121,373 0.262 0.372

17 Mean 68,596,383 0.114 0.332

17 Median 62,533,701 0.193 0.351

20 Mean 79,094,730 0.020 0.279

20 Median 69,978,620 0.096 0.299

Table 6: Cross-validated predictive results for the grid of Ordered Logit models. The chosen model

specification is indicated in grey.

The use of median annualized expenditure compared to mean annualized expenditure improves

the predictive performance for each of the evaluated interval levels. Next to this, for each of the

evaluated models the CPM value is considerably higher compared to R2. This indicates a set of

large residuals in the predictions made by the models, as these are weighted more heavily in the

computation of R2 and therefore penalize predictive performance in terms of this measure. Next to

this, an increase of the number of intervals deteriorates the predictive performance of the models.

Based on the results displayed in table 6, the Ordered Logit model with K = 10 intervals and the

use of median expenditure is chosen to work with in this research.
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4.3 Random Forest

For a Random Forest, hyperparameters that require tuning are the number of trees in the algorithm,

the minimum number of observations required in every final node of each tree and the number of

variables (Mtry) considered for each data splitting rule within a regression tree. In table 7 the

different model specifications are displayed. Each hyperparameter of the Random Forest algorithm

is tuned in a different round of iterations.

In the first round, Random Forests with 100 trees and 14 variables8 to consider for each data split

are fitted. For these models, minimum node size is varied from 5 to 100. In this round, the models

with a minimum node size of 15 and 50 display the highest predictive performance. These models

are fitted again in the second round with the number of trees increased to 500. In this round, the

model with a minimum of 50 observations per final node performs best on two of the three evaluated

metrics. In the last round this model is fitted again with different numbers of variables considered

for each data split in a regression tree. This results in highest predictive performance obtained by

a Random Forest with 500 trees, a minimum of 50 observations in each final node and 20 variables

considered per data split. This model specification is used further in this research.

Table 7: Cross-validated predictive results for model specifications of the Random Forest model.

Round Trees Node size Mtry MSE R2 CPM

1 100 5 14 50,134,327 0.355 0.353

100 15 14 49,976,245 0.357 0.352

100 50 14 49,969,284 0.357 0.351

100 100 14 50,075,799 0.356 0.350

2 500 15 14 49,825,642 0.359 0.353

500 50 14 49,793,347 0.360 0.352

3 500 50 10 50,084,197 0.356 0.349

500 50 20 49,639,143 0.362 0.353

500 50 30 49,696,227 0.361 0.353

Table 7: Cross-validated predictive results for each of the evaluated model specifications of the Ran-

dom Forest model. Node size displays the minimum number of observations required in each final

node of a regression tree, Mtry equal the number of variables considered for each data split in a

regression tree. The chosen model specification is indicated in grey.

8In the first 2 rounds of hyperparameter tuning of the Random Forest model, the number of variables considered

in each data split is set to 14. This is equal to the square root of the total number of explanatory variables (M=222),

a rule of thumb normally applicable to classification trees. For regression trees, the rule of thumb is to consider M/3

variables per data split. Deviation from this rule of thumb is motivated by limited computational capacity. In the

third round of hyperparameter tuning the number of variables is varied. Here is shown that the initial chosen value

of 14 is not far apart from the optimal value found, equal to 20.
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4.4 Gradient Boosted model

For the Gradient Boosted model the number of iterations, the depth of each fitted tree in an iteration

and the learning rate need tuning. The depth is equal to the number of data splits performed in

each regression tree. The learning rate is the model adaptation to each new iteration, denoted by

η. The parameter tuning process of the Gradient Boosted model is conducted in four rounds, as

displayed in table 8.

In the first round, a model with 100 iterations and η = 0.2 is fitted. These are arbitrary choices,

as these parameters are tuned at a later stage. The depth of each tree in the algorithm is differed

from 1 to 5. Highest predictive performance is obtained by a depth of 3, followed by a depth of 1.

In the next two rounds of the tuning process, these two best performing models from round 1 are

repeated with an increased number of iterations. In terms of both MSE and R2, a tree depth of

1 displays the best results for the models with 250 and 500 iterations. This model specification is

fitted again, varying the learning rate from 0.1 to 0.4. Presented with the cross-validated predictive

results, the Gradient Boosted model with 500 iterations, a depth of 1 and learning rate 0.3 performs

best on both MSE and R2. Despite small outperformance by other model specifications in terms of

CPM, this model is used further in this research.

Table 8: Cross-validated predictive results for model specifications of the Gradient Boosted model.

Round Iterations Depth η MSE R2 CPM

1 100 1 0.2 51,535,502 0.337 0.315

100 3 0.2 50,285,079 0.353 0.343

100 5 0.2 51,847,113 0.333 0.350

2 250 1 0.2 49,968,953 0.357 0.337

250 3 0.2 50,762,900 0.347 0.351

3 500 1 0.2 49,496,662 0.363 0.346

500 3 0.2 51,479,551 0.338 0.354

4 500 1 0.1 50,017,480 0.357 0.335

500 1 0.3 49,355,249 0.365 0.350

500 1 0.4 49,397,414 0.361 0.353

Table 8: Cross-validated predictive results for each of the evaluated model specifications of the Gra-

dient Boosted model. Depth equals the number of data splits performed in each regression tree, η

is the learning rate, the model adaptation to each new iteration. The chosen model specification is

indicated in grey.
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4.5 Stacked predictive model

For the stacked predictive model, the selected model specifications from sections 4.1 to 4.4 are fitted

on the training set. These fitted base models are used to predict annualized somatic health care

expenditure for individuals in the validation set. These validation set predictions for the base models

are used as explanatory variables for the final stacked model, in which the annualized somatic health

care expenditure is regressed on these predictions by means of a multiple linear regression. The

model estimation output is displayed in table 9.

Table 9: Model estimation results of the stacked multiple linear regression model.

Model Coefficient Standard deviation t-value p-value

Ridge regression 0.042 0.005 8.38 < 0.01

Ordered Logit -0.024 0.002 -11.36 < 0.01

Random Forest 0.467 0.005 103.27 < 0.01

Gradient Boosted 0.532 0.005 113.84 < 0.01

Table 9: Model estimation results of the stacked model, using validation set predictions of the other

models as explanatory variables.

In table 9 it is visible that each of the estimated coefficients are significantly different from 0 at

1% significance level. Next to this, both the predictions from the Ordered Logit model as from the

Ridge regression model receive a very small coefficient compared to the Random Forest and Gradient

Boosted model predictions. Therefore, the predictions made by the stacked model are mostly

influenced by the Random Forest and Gradient Boosted model. Predictions from the Ordered Logit

model are even weighted negatively. Note that predictions from the Ordered Logit model are always

positive, as they are the outcome of predicted probabilities to fall in certain intervals multiplied

with median expenditure within these intervals. Both these values are non-negative. Therefore,

annualized somatic health care expenditure predictions from the stacked model are decreased by

the predictions from the Ordered Logit regression.

4.6 Evaluation of predictive performance

In this section, the predictive performance of the current OLS risk equalization method and the

alternative models is presented. All predictive models evaluated in this section are estimated using

the full learning set, whereby the stacked model uses the training set to estimate base models and

the validation set predictions from these base models to estimate the coefficients. This training and

validation set together form the learning set.

At first, individual level performance of the models is displayed. Next, the subgroup level

performance as well as the variance of the predictions is presented. Note that the displayed results
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correspond to rescaled predicted expenditure by each model, to match total observed annualized

health care expenditure level. The unscaled final results of this research are presented in table A5

and A6 in the Appendix.

4.6.1 Individual level predictive performance

The individual level predictive results are displayed in table 10. Note that both the Ridge regression

as the Ordered Logit regression fail to outperform OLS regression on any of the evaluated metrics.

The Random Forest, Gradient Boosted model and stacked model do outperform the OLS regres-

sion on all metrics, albeit with small amounts. The stacked model displays the highest predictive

performance of all models, which indicates that this model fits the data best.

Table 10: Individual level predictive performance of the evaluated models for the test set.

Model MSE R2 CPM

Base models Ridge regression 47,609,155 0.371 0.374

Ordered Logit 54,800,557 0.276 0.366

Random Forest 47,183,396 0.377 0.381

Gradient Boosted model 46,977,305 0.379 0.380

Stacked model 46,651,273 0.384 0.382

OLS regression 47,319,674 0.375 0.377

Table 10: Predictive results on the test set, for the final models fitted using the full learning set.

Model specifications for the base models are chosen as outlined in section 4.1 to 4.4.

4.6.2 Subgroup level predictive performance

In table 11 the predictive results on subgroup level are displayed, next to the observed mean

annualized expenditure within each subgroup. The MPE values for each regression model display

the mean deviation of predicted annualized expenditure from observed annualized expenditure.

Positive MPE values indicate an average overcompensation compared to the observed annualized

expenditure level, negative MPE values indicate an undercompensation.

Note that subgroups 1 to 9 are created based on the aggregated results on risk equalization9 for

the risk equalization models of 2019 to 2021, as discussed in section 2.4. Subgroups 1 to 3 display

a mean aggregated positive result on risk equalization over the years 2019 to 2021, which indicates

a historic overcompensation for individuals in these subgroups. Subgroups 4 to 9 display negative

historic results, which indicate a historic undercompensation. For individuals in subgroups 7 to 9

this undercompensation was severe (>e5000).

9The result on risk equalization is a term used in risk equalization literature. It represents the residual between

observed and predicted annualized health care expenditure for each individual.
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Table 11 displays that individuals present in these severely undercompensated subgroups 7 to 9

on average have considerably higher annualized somatic health care expenditure in 2019 compared

to subgroups 1 to 6. Highest mean annualized somatic health care expenditure in 2019 is found for

subgroup 9, the subgroup which consists of individuals that are undercompensated in each of the

past three years and whose undercompensation adds up to more than e5000.

Next to this, the indicative value of historic information can be assessed. Except for the mean

prediction by the Ordered Logit for individuals in subgroup 8, all models predict an average un-

dercompensation for individuals in subgroups 7 to 9 in this year as well. Furthermore, historically

overcompensated individuals in subgroups 1 and 2 are overcompensated by all predictive models in

this year as well, except for the mean prediction by the Ordered Logit model for subgroup 1. The

indicative value of the historic results of the risk equalization model, on which the subgroups are

created, therefore is present in this data.

Table 11: Subgroup level predictive performance in terms of MPE (in euros) of the evaluated

models for the test set.

Group Observed Ridge Ord. Logit RF GBM Stacked OLS

1 1,523.93 120.28∗∗∗ -5.73∗∗∗ 101.77 103.10 105.84 105.91

2 2,406.67 90.88∗ 160.92∗∗∗ 89.43∗ 83.53∗∗∗ 84.76∗∗ 107.27

3 3,430.59 -35.01 165.37∗∗∗ -38.94 -45.36 -46.86 2.62

4 2,335.69 -32.35∗∗ -45.43∗∗∗ -12.47 -15.52 -14.22 5.30

5 2,469.93 -258.32∗∗∗ -196.86 -212.60 -228.33∗∗ -223.28∗ -193.98

6 1,981.34 -470.56∗ -477.52∗∗ -407.56 -411.73 -411.04 -416.90

7 7,626.01 -154.58∗∗∗ -331.51 -173.90∗∗ -149.02∗∗∗ -156.39∗∗∗ -437.93

8 9,751.06 -680.42 165.00∗∗∗ -630.04∗ -622.37∗∗ -647.02∗ -749.24

9 14,542.22 -2126.49∗∗∗ -745.97∗∗∗ -1868.82 -1791.34 -1866.94 -1744.37

Table 11: Subgroups 1-9 are defined as in Table 3 in section 2.4. The column with ’Observed’

values presents observed mean annualized somatic health care expenditure within each subgroup. In

the column titles, Random Forest and Gradient Boosted model are abbreviated with respectively RF

and GBM. MPE values indicated with (*), (**) or (***) differ significantly from the MPE values

obtained by the OLS model on respectively 10%, 5% or 1% significance level as tested by means of

a two-sample t-test.

Note that in table 11, for each subgroup MPE values close to 0 are desired. Values close to

0 indicate, on average, a small residual between observed and predicted annualized expenditure

within a subgroup. In that case, there is no clear incentive for positive or negative risk selection on

this subgroup from the perspective of an insurer.

For subgroups 3, 4, 5, and 6 there is no significant outperformance of the OLS model. The
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MPE values of the alternative models for these subgroups that are significantly different from

those obtained by the OLS model display significantly worse predictions for the alternative models

compared to the OLS model, as the MPE values are further away from 0.

For subgroups 1, 8 and 9, the Ordered Logit model displays significantly better results com-

pared to the OLS model. It predicts a small undercompensation for subgroup 1 instead of a high

overcompensation as is done by all other models, including the OLS model. For subgroup 9 it

predicts a significantly lower overcompensation compared to the OLS model. However, the Ordered

Logit model significantly underperforms for subgroups 2, 3, 4, and 6 compared to the OLS model.

Next to this, the Ordered Logit model does not produce good results on individual level predictive

performance.

Figure 2: Mean annualized expenditure and variance of this expenditure within each subgroup.

Figure 2: Mean annualized somatic health care expenditure for each subgroup is displayed against

the variance of annualized expenditure within each subgroup. Both the predictions by all models as

observed values are plotted.

The main models of interest are the Random Forest, Gradient Boosted model and stacked model as

these models outperform the OLS model on individual level. In terms of subgroup level, the Gradient

Boosted model and stacked model display significantly lower predictive performance for subgroup

5, compared to the OLS model. However, for subgroups 2, 7 and 8 the predictive results are a

significant improvement compared to the OLS model. The e107.27 overcompensation of subgroup

2 and undercompensations of e-437.93 and e-749.24 for subgroups 7 and 8 as estimated by OLS,
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shrink with the use of the Random Forest, Gradient Boosted or stacked model. Especially the

reduction in the undercompensation for subgroup 7 is large, as predicted annualized somatic health

care expenditure by the Random Forest, Gradient Boosted and stacked model for this subgroup

is approximately e300.00 higher. As subgroup 7 and 8 capture individuals that are historically

undercompensated by a severe amount (>e5000), this result is promising.

In addition to the discussion of average under- and overcompensations for specific subgroups,

it is interesting to note how each of the discussed models can capture observed variance within

these subgroups. Figure 2 displays the relation between average annualized somatic health care

expenditure and variance of this expenditure within the evaluated subgroups.

For both the predictions of each model and for the observed values, the mean and variance of

annualized expenditure for each subgroup is plotted and a first-order local polynomial regression

line is fitted through the points for each model and the observed values. Note that for each model

as well as for the observed values, the relation between average annualized expenditure and the

variance of annualized expenditure within subgroups is strictly positive.

Next to this, substantially higher variance is visible for the subgroups with high average annu-

alized somatic health care expenditure. This result holds for both the observed values as for the

predictions made by the models. The group of individuals captured in these subgroups therefore

is considered much more heterogeneous in terms of annualized expenditure, compared to the sub-

groups 1 to 6 which capture on average low-cost individuals which display much lower variance in

annualized somatic health care expenditure.

Note also that the variance of the predictions made by the models are substantially lower com-

pared to the observed variance within the subgroups. This effect is especially visible for subgroups

7 to 9, which incorporate on average more high-cost individuals.

Finally, in the comparison of all models the stacked model best captures the variance within

subgroups, as it is closest to the fitted line of observed variance in figure 2.
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5 Discussion and conclusion

In this chapter, the results as presented in chapter 4 are discussed. Furthermore, the conclusions

and the answer to the research question are presented, along with the limitations of this research

and recommendations for further research.

5.1 Discussion

Based on the results displayed in table 10, the current Dutch OLS risk equalization model is not

heavily outperformed by any of the alternative models on individual level. These results are in

line with the literature, as in research performed by Stam et al. (Stam et al., 2020) on Dutch

risk equalization data the OLS model was not heavily outperformed on individual level by machine

learning techniques as well.

However, albeit just slightly, the outperformance of the OLS model by the Random Forest,

Gradient Boosted and stacked model is visible on individual level. These models are slightly better

able to predict annualized somatic health care expenditure on individual level compared to the OLS

model. Highest predictive performance is visible for the stacked model. Therefore, for this dataset

the historic claim that a combined predictive model is favored over any of the underlying single

predictive models, as stated by Bates and Granger (1969), holds as well. This however does not

present a clear motivation for the use of this model on the available risk equalization data, as the

interpretability of the model is much lower compared to the OLS model.

On subgroup level, this research presents an insight in the possibilities for risk selection per-

formed by health insurers. The models benchmarked against the current OLS method can be seen

as models that could be exploited by Dutch health insurers, as the models use no more information

than what is available to health insurers in practice. From that perspective, the predictive results

for subgroups 2, 7 and 8 stand out. The Random Forest, Gradient Boosted and stacked model

present significantly better results for these subgroups compared to the OLS model. Furthermore,

for none of the evaluated subgroups the Random Forest is a worse fit to the data compared to the

OLS model. For the Gradient Boosted and stacked model this holds as well, except for subgroup

5. For this subgroup, a higher undercompensation is predicted by these models compared to OLS.

Subgroup 2 captures individuals which are overcompensated in two of the previous three years.

In the estimated OLS model, this overcompensation takes place again with an average magnitude of

e107.27. This overcompensation is significantly reduced by the Random Forest, Gradient Boosted

and stacked model as these models predict lower average annualized somatic health care expenditure

compared to the OLS model. If one of these models is used by a health insurer, it presents a clear

incentive for positive risk selection. The expected average compensation which is received based on

the OLS estimation, is significantly higher than the expected average annualized expenditure within

this subgroup as predicted by the Random Forest, Gradient Boosted or stacked model. Therefore,
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individuals within this subgroup are expected to be overcompensated and thus attractive.

Subgroup 7 and 8 capture individuals who are severely undercompensated in the past three

years. For subgroup 7 this is the result of one severe undercompensation in the past three years,

for subgroup 8 this is the result of two undercompensations in the past three years. For both these

subgroups, average annualized expenditure as predicted by the Random Forest, Gradient Boosted

or stacked model is higher compared to the predictions made by the OLS model. Predictions

for subgroups 7 and 8 by these models are therefore closer to the observed average annualized

expenditure within these subgroups. This presents a clear incentive for negative risk selection

on individuals in these subgroups. The expected average compensation as estimated by OLS is

significantly lower compared to the average annualized expenditure as predicted by the Random

Forest, Gradient Boosted model, and stacked model. Therefore, based on these predictions the

individuals within these subgroups are on average loss-giving and are considered as unwanted from

the perspective of an insurer.

The use of these models as benchmarks against the current OLS model therefore present clear

possibilities to identify subgroups of individuals which are attractive or unattractive. The use

of more detailed information about individuals within these subgroups can further identify the

characteristics of these individuals. Note that this data was not available for this research but is

available to health insurers.

Another remarkable result which is visible in table 11 is the indicative value of information

from the past. This result motivates the use of historical information in the estimation process

of risk equalization models. This is currently done by means of several variables which indicate if

an insuree incurred high costs in the previous years. However, this information could possibly be

exploited to a larger extent. For example, continuous health care expenditure data from the past

could be used in the estimation process.

5.2 Conclusion

In the introduction to this research, the central research question was posed. It reads:

Which added value brings the application of the stacked algorithm to serve as a policy evaluation

instrument for the current Dutch risk equalization model?

This question is answered by creating several alternative risk equalization models, using different

techniques. Interpretability of these models is considerably lower compared to OLS, but this is not

of high interest for the policy evaluation tool. For the evaluation, maximum predictive performance

is of interest as this identifies possibilities for risk selection to the largest extent.

Presented with the predictive results of the models, an informed answer to the research question

can be formed. From individual level perspective, the use of alternative models (which include the

stacked model) to evaluate the current Dutch risk equalization model does not bring much added
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value, as the model performance is only slightly better. However, on subgroup level the use of

these alternative models presents meaningful insights. It proves that models with slightly better

performance on individual level, are also able to better predict the annualized somatic health care

expenditure for specific subgroups of the population, compared to the OLS model. This identifies

clear opportunities for risk selection by health insurers. In addition, this research proves that the use

of readily available information, such as historic results on risk equalization, to create subgroups can

already bring specific subgroups to light which are expected to be under- or overcompensated by the

OLS model compared to alternative model predictions. Health insurers have access to more detailed

data, such as data underlying to the variables used in the risk equalization model. Therefore, health

insurers are expected to be able to further identify the specific characteristics of these subgroups

and adjust their (marketing) policy to these results.

5.3 Recommendations for further research

This research therefore provides a motivation to further research the predictive performance of

risk equalization models on subgroup level, with the use of more detailed and preferably historic

data. Next to this, it provides a motivation to benchmark the OLS model used in practice to new

techniques, which can be exploited by health insurers.

Note, the results of this research should be interpreted in line with the limitations faced in

this research. Given the confidentiality of the data, this research is performed in a restricted

environment. This has limited this research in terms of the models used for estimation. The

hyperparameter tuning process in chapter 4 is adjusted to the limited available computational

power. Models that could present insightful results, such as tree-based algorithms with even more

trees or the Ordered Logit model estimated via an iterative boosting procedure, were not feasible

in terms of computational time and memory usage for this research. These are therefore models

advised to evaluate further in future research.

Next to this, a limitation of this research is the unavailability of data underlying to the variables

used in the actual risk equalization model. For this research, the exact same data set as used in

practice for risk equalization is exploited. With the use of the data underlying to the variables in

the risk equalization model, an even more sophisticated predictive model could be built or an even

more precise characterization of the undercompensated people in the Dutch population could be

made.
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6 APPENDIX

6 Appendix

6.1 Variables in the Dutch risk equalization models over time (2019-2022).

Table A1: Overview of variables and the number of categories used for the Dutch somatic ex-ante

risk equalization models in the period 2019 to 2022.

Acronym Description 2019 2020 2021 2022

Age/Gender Interaction between age and gender 42 42 42 42

PCG Pharmaceutical cost groups 38 38 39 43

DCG Diagnostic cost groups 24* 24* 27 27

AMG Medical equipment cost groups 11 11 15 15

SoI Source of income 25 36 36 36

Region Region based on postal address 10 10 10 10

SES Social-economic status 12 12 12 12

PPA Persons per address 13 13 13 13

MHC Multiple-year high cost groups 9 9 9 9

PDG Physiotherapy diagnosis cost groups 5 5 5 5

MNC Multiple-year costs nursing and caring 10 10 10 10

HSM Historical somatic morbidity X X X 2

MPC Multi-year pharmaceutical costs X X X 2

Table A1: In the 2019 and 2020 risk equalization model, variable DCG was split up in two seperate

variables: primary DCG and secondary DCG. In 2021 these are merged. In this table, the categories

for primary and secondary DCG for 2019 and 2020 are added together, resulting in 24 categories.
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6.2 Descriptive statistics for actual somatic health care expenditure in the full

data set.

Table A2: Descriptive statistics of the actual Dutch somatic health care expenditure (in euros) for

the period 2016 until 2019, for the full data set.

2016 2017 2018 2019

Individuals 17,035,930 17,128,081 17,251,477 17,364,717

Insured years 16,749,741.44 16,839,944.32 16,949,009.52 17,058,676.05

Mean 2275.49 2278.76 2330.80 2407.93

St. Dev. 7699.61 7712.76 7865.29 8073.02

Skewness 19.36 17.90 19.40 18.34

Kurtosis 1549.24 983.59 1587.02 1094.11

Minimum 0.01 0.01 0.00 0.01

P1 42.51 40.66 30.74 4.81

Q25 156.99 158.23 166.79 176.81

Median 438.70 441.12 459.90 487.36

Q75 1,518.71 1511.12 1560.04 1635.98

P99 31,953.67 31,935.58 32,183.62 33,046.11

Maximum 2,495,408.86 1,493,545.72 2,617,403.93 1,911,534.72

Table A2: The number of insured years is the sum of the weights corresponding to all individuals.

P1 represents the first percentile of actual health care expenditure distribution, Q25 and Q75

respectively the 25% and 75% quantiles and P99 represents the 99th percentile of actual health care

expenditure distribution.
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6.3 Descriptive statistics for annualized somatic health care expenditure in

2019.

Table A3: A detailed overview of the annualized somatic health care expenditure in 2019 (in

euros), used for the 2022 risk equalization model.

Somatic health care expenditure in 2019 (in euros)

Population subset Individuals Insured years Frequency Mean St. Dev

Age interacted with Gender

Female (<65 years) abcd 6,436,063 6,417,502.45 39.58% 1,820.52 6,544.03

Female (>65 years) 1,827,657 1,792,789.68 11.06% 5,745.85 12,029.05

Male (<65 years) 5,944,821 5,918,553.90 36.51% 1,293.06 6,703.53

Male (>65 years) 2,118,741 2,084,109.32 12.85% 5,348.32 13,145.83

Pharmacy based cost groups

No indication (0) 13,368,220 13,301,986.74 82.05% 1,473.35 5,569.08

Indication (1-42) 2,959,062 2,910,968.61 17.95% 7,277.75 15,669.27

Diagnosis-based cost groups

No indication (0) 14,314,192 14,241,696.52 87.84% 1,573.33 5,278.33

Indication (1-26) 2,013,090 1,971,258.84 12.16% 9,322.43 18,937.85

Medical-equipment based cost groups

No indication (0) 15,523,937 15,434,618.22 95.20% 2,080.37 7,159.29

Indication (1-14) 803,345 778,337.13 4.80% 11,144.35 21,379.28

Source of Income interacted with age

70+ 2,409,074 2,348,620.21 14.49% 6,660.39 13,434.50

IVA benefit 154,339 153,278.02 0.95% 8,001.41 18,673.70

Incapacitated 930,844 926,858.98 5.72% 4,337.39 12,539.95

Assistance 640,794 638,097.08 3.94% 2,784.11 9,033.76

Student 593,370 595,111.15 3.67% 749.81 3,989.30

Self-employed 1,410,458 1,405,899 8.67% 1,260.27 5,709.67

High education 1,196,699 1,192,505.79 7.36% 1,197.57 4,653.95

Reference 8,988,704 8,952,584.36 55.22% 1,616.50 6,600.05

Region

Region 1-5 8,093,602 8,028,452.66 49.52% 2,643.07 8,886.53

Region 6-10 8,223,680 8,184,502.70 50.48% 2,390.38 8,370.65

Socio-economic status interacted with age

Very low 3,384,820 3,346,849.82 20.64% 3,208.78 9,723.58

Low 3,218,382 3,200,304.51 19.74% 2,661.06 8,837.78

Continued on next page
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Table A3 : continued from previous page

Annualized somatic health care expenditure in 2019 (in euros)

Population subset Individuals Insured years Frequency Mean St. Dev

Middle 4,855,243 4,830,168.96 29.79% 2,349.15 8,238.89

High 4,868,837 4,835,632.06 29.83% 2,105.52 8,008.39

People per address interacted with age

0-17 years 2,833,745 2,828,521.11 17.45% 1,105.41 6,668.12

WLZ long-term stay 197,981 177,773.28 1.10% 3,224.83 8,869.97

WLZ influx 42,915 42,842.50 0.26% 17,789.25 22,968.88

1-person household 2,282,882 2,257,354.01 13.92% 4,248.48 11,261.48

Reference 10,969,759 10,906,464.45 67.27% 2,450.97 8,217.99

Multiple-year high cost groups

No indication 8,727,778 8,693,197.89 53.62% 794.92 3,585.19

In one year 6,519,381 6,473,108.72 39.93% 2,948.46 7,838.89

In two years 169,698 164,754.15 1.02% 10,608.96 19,766.61

In 3 years 910,425 881,894.60 5.44% 14,786.24 22,921.41

Physiotherapy diagnosis-based cost groups

No indication (0) 15,875,368 15,768,244.05 97.26% 2,338.59 8,070.22

Indication (1-4) 451,914 444,711.31 2.74% 8,788.66 19,132.27

Multiple-year costs for nursing and caring

No indication (0) 15,893,214 15,803,327.76 97.47% 2,212.93 7,345.36

Indication (1-9) 434,068 409,627.70 2.53% 17,799.55 25,105.94

Historical somatic morbidity

No indication (0) 8,375,165 8,339,075.59 51.43% 1,086.40 5,020.31

Indication (1) 7,952,117 7,873,879.76 48.57% 4,029.05 11,056.18

Multiple-year pharmaceutical cost groups

No indication (0) 11,023,593 10,979,503.28 67.72% 1,052.76 4,461.93

Indication (1) 5,303,689 5,233,452.08 32.28% 5,584.29 13,232.50

Table A3: A subset of this table is presented in the main text, in table 2. The number of insured

years is the sum of the weights corresponding to all individuals. The frequency is calculated based

on the relative number of insured years. The presented mean and standard deviation correspond to

annualized somatic health care expenditure in 2019.
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6.4 Descriptive statistics for the subsets of data used in this research.

Table A4: Descriptive statistics of annualized somatic health care expenditure in 2019.

Learning set Cross-Val. set Training set Validation set Test set

Individuals 13,060,528 2,000,000 10,450,146 2,610,382 3,266,754

Insured years 12,968,874 1,986,001 10,377,096 2,591,778 3,244,075

Mean 2514,31 2518.72 2514.06 2515.31 2520.31

Median 506,16 507.04 506.29 505.65 506.92

St. dev. 8161,05 8293.58 8151.61 8157.60 8255.25

Table A4: Descriptive statistics for the five different subsets of the full data sample (16,327,282

observations), used in this research. Mean, median and the standard deviation of annualized expen-

diture is displayed in euros.

49



6 APPENDIX

6.5 Predictive results: unscaled expenditure level

Table A5: Unscaled individual level predictive performance of the evaluated models for the test

set.

Model MSE R2 CPM

Base models Ridge regression 47,821,631 0.368 0.351

Ordered Logit 55,240,734 0.270 0.358

Random Forest 47,298,957 0.375 0.358

Gradient Boosted model 47,246,117 0.376 0.357

Stacked model 46,875,094 0.381 0.352

OLS regression 47,321,583 0.375 0.386

Table A5: Unscaled individual-level predictive performance for the evaluated models.

Table A6: Unscaled subgroup level predictive performance in terms of MPE (in euros) of the

evaluated models for the test set.

Group Observed Ridge Ord. Logit RF GBM Stacked OLS

1 1523,93 228.83∗∗∗ 24.31∗∗∗ 210.08∗∗∗ 206.98∗∗∗ 242.50∗∗∗ 62.96

2 2406,67 255.77∗∗∗ 211.71∗∗∗ 255.73∗∗∗ 242.53∗∗∗ 293.68∗∗∗ 41.02

3 3430,59 189.17∗∗∗ 236.50∗∗∗ 187.03∗∗∗ 170.78∗∗∗ 236.88∗∗∗ -87.85

4 2335,69 119.71∗∗∗ -0.12∗∗∗ 142.31∗∗∗ 132.62∗∗∗ 180.45∗∗∗ -56.39

5 2469,93 -112.31∗∗∗ -151.90∗∗∗ -62.21∗∗∗ -85.21∗∗∗ -34.89∗∗∗ -253.95

6 1981,34 -370.82∗∗∗ -447.77 -302.71∗∗∗ -311.51∗∗∗ -279.37∗∗∗ -458.12

7 7626,01 338.68∗∗∗ -187.23∗∗∗ 322.60∗∗∗ 328.37∗∗∗ 469.97∗∗∗ -627.34

8 9751,06 -81.58∗∗∗ 361.14∗∗∗ -22.35∗∗∗ -39.52∗∗∗ 116.40∗∗∗ -986.45

9 14542,22 -1306.80∗∗∗ -473.07∗∗∗ -1024.44∗∗∗ -977.22∗∗∗ -804.06∗∗∗ -2081.61

Table A6: Observed mean annualized expenditure is displayed for each subgroup. The unscaled

average deviation from this mean, denoted with the MPE, is presented for all models. MPE values

indicated with (***), (**) or (*) differ significantly from MPEvalues obtained by the OLS model on

respectively 1%, 5% or 10% significance level as tested by means of a two-sample t-test.
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6.6 Final model estimation results.

6.6.1 Model estimation results: parametric regressions

Table A7 displays the estimated regression coefficients for the OLS model, the Ordered Logit re-

gression with K=10 intervals and the Ridge regression with λ = 254, all trained on the full learning

set. Both the Ridge regression and Ordered Logit regression capture intercepts and therefore need

to omit categories of variables in the estimation procedure. For each variable in the data, one of

the categories is therefore omitted from the estimation model. For the variable Age interacted with

gender, for both genders one category is withheld from the estimation procedure. For variables

interacted with age, a category is withheld from the estimation procedure for each different age

group.

Table A7: Estimation results for the OLS, Ordered Logit and Ridge regression model.

OLS Ord. Logit Ridge

Age interacted with Gender

1-4 years (M) 2398.04∗∗∗ - -

5-9 years (M) 2093.80∗∗∗ 0.02∗∗ -305.88

10-14 years (M) 2079.09∗∗∗ −0.22∗∗∗ -341.65

15-19 years (M) 2173.07∗∗∗ −0.04∗∗∗ -251.60

20-24 years (M) 1964.49∗∗∗ 0.03∗∗∗ -473.67

25-29 years (M) 1963.20∗∗∗ 0.07∗∗∗ -488.90

30-34 years (M) 1968.31∗∗∗ 0.16∗∗∗ -474.91

35-39 years (M) 2012.36∗∗∗ 0.13∗∗∗ -472.61

40-44 years (M) 2060.48∗∗∗ 0.22∗∗∗ -428.39

45-49 years (M) 2159.53∗∗∗ 0.28∗∗∗ -347.35

50-54 years (M) 2273.95∗∗∗ 0.38∗∗∗ -228.48

55-59 years (M) 2502.07∗∗∗ 0.55∗∗∗ 37.88

60-64 years (M) 2704.90∗∗∗ 0.74∗∗∗ 264.86

65-69 years (M) 2969.08∗∗∗ 0.86∗∗∗ 437.80

70-74 years (M) 3344.11∗∗∗ 0.95∗∗∗ 1062.53

75-79 years (M) 3710.67∗∗∗ 1.13∗∗∗ 1641.84

80-84 years (M) 4067.83∗∗∗ 1.23∗∗∗ 2365.70

85-89 years (M) 4572.13∗∗∗ 1.57∗∗∗ 3323.87

90+ years (M) 5453.13∗∗∗ 1.99∗∗∗ 4749.02

1-4 years (F) 2109.92∗∗∗ - -

5-9 years (F) 2077.42∗∗∗ −0.06∗∗∗ -326.18

Continued on next page
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10-14 years (F) 2122.10∗∗∗ −0.13∗∗∗ -294.24

15-19 years (F) 2282.75∗∗∗ 0.32∗∗∗ -140.14

20-24 years (F) 2224.88∗∗∗ 0.46∗∗∗ -276.80

25-29 years (F) 2663.80∗∗∗ 1.10∗∗∗ 193.15

30-34 years (F) 2813.92∗∗∗ 1.13∗∗∗ 349.83

35-39 years (F) 2419.62∗∗∗ 0.68∗∗∗ -62.99

40-44 years (F) 2219.10∗∗∗ 0.39∗∗∗ -273.91

45-49 years (F) 2260.78∗∗∗ 0.50∗∗∗ -245.83

50-54 years (F) 2309.84∗∗∗ 0.53∗∗∗ -207.21

55-59 years (F) 2381.5∗∗∗ 0.53∗∗∗ -108.75

60-64 years (F) 2515.45∗∗∗ 0.67∗∗∗ 47.07

65-69 years (F) 2727.34∗∗∗ 0.80∗∗∗ 181.57

70-74 years (F) 2852.58∗∗∗ 0.89∗∗∗ 620.56

75-79 years (F) 3217.25∗∗∗ 1.03∗∗∗ 1025.36

80-84 years (F) 3688.68∗∗∗ 1.27∗∗∗ 1638.62

85-89 years (F) 4223.95∗∗∗ 1.55∗∗∗ 2329.08

90+ years (F) 4856.18∗∗∗ 1.87∗∗∗ 3420.57

Pharmacy based cost groups

Residual group -286.56∗∗∗ - -

Thyroid affection -59.15∗∗ 0.10∗∗∗ 142.79

Glaucoma 31.18 0.17∗∗∗ 148.05

Depression −6.03 0.11∗∗∗ 273.09

Psychosis 39.13 0.26∗∗∗ 412.73

Epilepsy 343.98∗∗∗ 0.23∗∗∗ 582.71

Chronic anticoagulation 633.31∗∗∗ 0.31∗∗∗ 772.26

Transplants 2338.81∗∗∗ 1.11∗∗∗ 4567.06

Parkinson 2781.71∗∗∗ 0.55∗∗∗ 2954.51

Heart diseases: other 1679.94∗∗∗ 0.37∗∗∗ 2457.35

Chronic pain excl. opioids 731.70∗∗∗ 0.33∗∗∗ 988.72

Neuropathic pain 1261.23∗∗∗ 0.22∗∗∗ 1412.89

Diabetes II without hypertension 253.45∗∗∗ 0.29∗∗∗ 519.84

Diabetes II with hypertension 638.78∗∗∗ 0.34∗∗∗ 840.32

Diabetes I without hypertension 1102.49∗∗∗ 0.89∗∗∗ 1318.73

Diabetes I with hypertension 1681.88∗∗∗ 0.71∗∗∗ 1902.28

Cystic fibrosis/Pancreatic enzymes 3162.00∗∗∗ 0.54∗∗∗ 3472.04

Continued on next page
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Growth disorders (add-on) 2300.93∗∗∗ 2.75∗∗∗ 2325.59

Brain disorder / spinal: other 3297.68∗∗∗ 0.42∗∗∗ 3339.46

Brain disorder / spinal: MS 4563.61∗∗∗ 2.15∗∗∗ 4521.72

HIV/AIDS 1077.18∗∗∗ 1.29∗∗∗ 869.69

Psoriasis 356.17∗∗∗ 0.44∗∗∗ 494.61

Crohns disease / Ulcerative colitis 411.42∗∗∗ 0.46∗∗∗ 554.94

Rheumatishm 589.33∗∗∗ 0.34∗∗∗ 751.05

Autoimmune diseases (add-on) 2311.48∗∗∗ 1.54∗∗∗ 2603.74

Kidney diseases 8644.96∗∗∗ 0.64∗∗∗ 10060.25

Acromegaly 14447.35∗∗∗ 2.21∗∗∗ 151013.77

Immunoglobulin (add-on) 12532.93∗∗∗ 0.66∗∗∗ 11675.34

Asthma 150.95∗∗∗ 0.26∗∗∗ 388,02

COPD / severe asthma 1278.94∗∗∗ 0.55∗∗∗ 1936.64

COPD / Severe asthma (add-on) 11645.76∗∗∗ 2.04∗∗∗ 11754.49

Hormone-sensitive tumors 819.10∗∗∗ 0.26∗∗∗ 1212.48

Cancer 696.21∗∗∗ 0.54∗∗∗ 593.02

Cancer (add-on) 8402.97∗∗∗ 1.06∗∗∗ 9461.48

Pulmonary arterial hypertension 15458.83∗∗∗ 3.47∗∗∗ 14633.08

Macular degeneration 2287.62∗∗∗ 0.66∗∗∗ 2719.05

Hypercholesterolemia 2467.55∗∗∗ 1.62∗∗∗ 2345.77

Heart diseases: anti-arrhytmics 576.13∗∗∗ 0.30∗∗∗ 607.07

Addiction excl. nicotine 1052.79∗∗∗ 0.40∗∗∗ 1450.60

Extreme high costs cluster 1 101324.15∗∗∗ 15.69∗∗∗ 98668.08

Extreme high costs cluster 2 180774.57∗∗∗ 11.78∗∗∗ 183717.92

Extreme high costs cluster 3 327867.71∗∗∗ 18.75∗∗∗ 317929.20

Extreme high costs cluster 4 487160.17∗∗∗ 8.19∗∗∗ 486621.43

Diagnosis-based cost groups

Residual group −371.40∗∗∗ - -

DCG 1 189.21∗∗ 0.25∗∗∗ 392.38

DCG 2 763.30∗∗∗ 0.31∗∗∗ 1178.92

DCG 3 1014.34∗∗∗ 0.41∗∗∗ 1357.13

DCG 4 1691.38∗∗∗ 0.56∗∗∗ 2421.47

DCG 5 2309.74∗∗∗ 0.43∗∗∗ 3193.74

DCG 6 2922.30∗∗∗ 0.54∗∗∗ 3896.22

DCG 7 2969.54∗∗∗ 0.83∗∗∗ 4357.03

Continued on next page
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DCG 8 3466.81∗∗∗ 0.68∗∗∗ 5596.09

DCG 9 4113.30∗∗∗ 0.84∗∗∗ 5959.23

DCG 10 4234.28∗∗∗ 1.20∗∗∗ 6422.42

DCG 11 4636.97∗∗∗ 0.43∗∗∗ 5136.81

DCG 12 5444.85∗∗∗ 0.74∗∗∗ 7216.38

DCG 13 5397.0∗∗∗2 0.70∗∗∗ 8844.55

DCG 14 7884.01∗∗∗ 0.97∗∗∗ 10422.30

DCG 15 7696.00∗∗∗ 1.03∗∗∗ 8180.67

DCG 16 10865.20∗∗∗ 1.49∗∗∗ 15086.89

DCG 17 13089.04∗∗∗ 1.11∗∗∗ 13429.64

DCG 18 11600.71∗∗∗ 1.62∗∗∗ 12591.57

DCG 19 10938.59∗∗∗ 0.17∗∗∗ 10130.49

DCG 20 14203.68∗∗∗ 1.16∗∗∗ 22504.45

DCG 21 14088.11∗∗∗ 1.89∗∗∗ 17384.69

DCG 22 17891.62∗∗∗ 1.42∗∗∗ 22032.82

DCG 23 20573.71∗∗∗ 2.24∗∗∗ 21458.49

DCG 24 30061.94∗∗∗ 2.72∗∗∗ 38498.96

DCG 25 50876.98∗∗∗ 4.01∗∗∗ 52618.76

DCG 26 55435.22∗∗∗ 24.18∗∗∗ 56780.23

Medical equipment based cost groups

Residual group −77.37∗∗∗ - -

MCG 1 376.82∗∗∗ 0.35∗∗∗ 318.33

MCG 2 292.79∗∗∗ 0.16∗∗∗ 247.14

MCG 3 1448.75∗∗∗ 0.50∗∗∗ 1316.20

MCG 4 3158.64∗∗∗ 0.16∗∗∗ 3460.52

MCG 5 1920.32∗∗∗ 0.51∗∗∗ 3227.51

MCG 6 1830.22∗∗∗ 0.30∗∗∗ 2804.03

MCG 7 3233.02∗∗∗ 0.38∗∗∗ 5876.22

MCG 8 7430.32∗∗∗ 0.70∗∗∗ 9829.83

MCG 9 13020.85∗∗∗ 1.70∗∗∗ 10997.19

MCG 10 6694.59∗∗∗ 1.00∗∗∗ 9394.00

MCG 11 1868.47∗∗∗ 0.20∗∗∗ 2755.88

MCG 12 999.60∗∗∗ 0.40∗∗∗ 771.49

MCG 13 1972.31∗∗∗ 0.83∗∗∗ 1945.45

MCG 14 1063.21∗∗∗ 0.75∗∗∗ 1048.30

Continued on next page

54



6 APPENDIX

Table A7 : continued from previous page

OLS Ord. Logit Ridge

Source of Income interacted with age

70+ years 0 - -

IVA benefit 0-17 years 53.00 0.22∗∗∗ 34.65

IVA benefit 18-34 years 1070.74∗∗∗ 0.54∗∗∗ 710.38

IVA benefit 35-44 years 916.14∗∗∗ 0.73∗∗∗ 497.18

IVA benefit 45-54 years 774.30∗∗∗ 0.45∗∗∗ 302.97

IVA benefit 55-64 years 658.62∗∗∗ 0.42∗∗∗ 77.83

IVA benefit 65-69 years 402.46∗∗∗ 0.23∗∗∗ 613.23

Incapacitated 0-17 years 102.98∗∗∗ 0.25∗∗∗ 66.84

Incapacitated 18-34 years 303.34∗∗∗ 0.25∗∗∗ 118.19

Incapacitated 35-44 years 471.02∗∗∗ 0.43∗∗∗ 281.49

Incapacitated 45-54 years 414.60∗∗∗ 0.42∗∗∗ 219.77

Incapacitated 55-64 years 323.20∗∗∗ 0.37∗∗∗ -1.64

Incapacitated 65-69 years 390.99∗∗∗ 0.23∗∗∗ 526.50

Social assistance 0-17 years 113.34∗∗∗ 0.07∗∗∗ 82.75

Social assistance 18-34 years 191.93∗∗∗ 0.11∗∗∗ 131.54

Social assistance 35-44 years 225.38∗∗∗ 0.20∗∗∗ 164.81

Social assistance 45-54 years 256.63∗∗∗ 0.17∗∗∗ 181.51

Social assistance 55-64 years 253.42∗∗∗ 0.29∗∗∗ 42.11

Social assistance 65-69 years 251.78∗∗∗ 0.21∗∗∗ 519.09

Student 0-17 years 23.36 0.16∗∗∗ -108.31

Student 18-34 years −159.07∗∗∗ −0.29∗∗∗ -194.89

Self-employed 0-17 years −53.33∗∗ −0.09∗∗∗ -97.69

Self-employed 18-34 years −53.69∗ −0.12∗∗∗ -106.28

Self-employed 35-44 years −102.94∗∗∗ −0.15∗∗∗ -112.45

Self-employed 45-54 years −125.18∗∗∗ −0.20∗∗∗ -105.44

Self-employed 55-64 years −175.33∗∗∗ −0.06∗∗∗ -161.38

Self-employed 65-69 years −38.81 −0.02 140.90

Higher education 0-17 years −93.10∗∗ −0.15∗∗∗ -155.85

Higher education 18-34 years 9.83 −0.00 1.57

Higher education 35-44 years −57.01∗∗∗ −0.13∗∗∗ -63.03

Reference group 0-17 years −3.19∗∗∗ - -

Reference group 18-34 years 22.95∗∗∗ - -

Reference group 35-44 years −20.97∗∗∗ - -

Reference group 45-54 years −45.48∗∗∗ - -

Continued on next page
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Reference group 55-64 years −63.24∗∗∗ - -

Reference group 65-69 years −100.76∗∗∗ - -

Region

Region 1 39.77∗∗∗ 0.05∗∗∗ 126.90

Region 2 32.86∗∗∗ 0.07∗∗∗ 110.11

Region 3 14.07 0.03∗∗∗ 87.40

Region 4 11.64 0.05∗∗∗ 82.45

Region 5 −3.19 −0.01∗∗ 55.05

Region 6 −5.95 0.01∗ 51.24

Region 7 −15.60 −0.07∗∗∗ 18.03

Region 8 −13.52 0.02∗∗∗ 33.11

Region 9 −18.09 0.04∗∗∗ 36.38

Region 10 −39.08∗∗∗ - -

Socio-economic status interacted with age

Very low 0-17 years 28.92 0.44∗∗∗ -35.66

Very low 18-69 years −30.03 −0.06∗∗∗ -35.36

Very low 70+ years −144.52∗∗∗ 0.04∗∗∗ -1152.90

Low 0-17 years 15.62 0.31∗∗∗ -71.47

Low 18-69 years 15.12∗ −0.06∗∗∗ 31.66

Low 70+ years −0.67 0.03∗∗∗ -514.78

Middle 0-17 years −14.97 0.22∗∗∗ -93.45

Middle 18-69 years 23.45∗∗∗ −0.01∗∗∗ 40.39

Middle 70+ years 59.57∗∗∗ 0.07∗∗∗ -90.73

High 0-17 years −13.97 - -

High 18-69 years −13.58∗∗∗ - -

High 70+ years 67.83∗∗∗ - -

People per address interacted with age

Children 0-17 years 0 - -

Wlz-institution long-term 18-69 years −658.25∗∗∗ −0.42∗∗∗ -351.87

Wlz-institution long-term 70-79 years −2102.62∗∗∗ −0.80∗∗∗ -1251.22

Wlz-institution long-term 80+ years −3171.51∗∗∗ −1.46∗∗∗ -2375.25

Wlz-institution influx 18-69 years 10416.74∗∗∗ 0.41∗∗∗ 9787.16

Wlz-institution influx 70-79 years 11303.85v 1.32∗∗∗ 11211.20

Wlz-institution influx 80+ years 8904.14∗∗∗ 1.57∗∗∗ 8252.64

One-person household 18-69 years 16.22 0.08∗∗∗ 40.92

Continued on next page
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One-person household 70-79 years 235.82∗∗∗ 0.09∗∗∗ 755.97

One-person household 80+ years 226.88∗∗∗ 0.04∗∗∗ 667.01

Residual group 18-69 years −4.28∗∗∗ - -

Residual group 70-79 years −121.30∗∗∗ - -

Residual group 80+ years −193.86∗∗∗ - -

Multiple-year high cost groups

Residual group −531.51∗∗∗ - -

Top 30% costs in at least 1 of last 3 years 62.28∗∗∗ 1.22∗∗∗ 538.94

Top 10% costs in the 2 preceding years 2211.84∗∗∗ 1.92∗∗∗ 2656.73

Top 15% costs in the 3 preceding years 1994.53∗∗∗ 1.93∗∗∗ 2332.19

Top 10% costs in the 3 preceding years 3277.83∗∗∗ 2.23∗∗∗ 3523.34

Top 7% costs in the 3 preceding years 4891.83∗∗∗ 2.41∗∗∗ 5290.16

Top 4% costs in the 3 preceding years 8468.73∗∗∗ 2.67∗∗∗ 8515.81

Top 1.5% costs in the 3 preceding years 17986.79∗∗∗ 3.20∗∗∗ 17194.59

Top 0.5% costs in the 3 preceding years 43739.72∗∗∗ 3.31∗∗∗ 41801.38

Physiotherapy diagnosis-based cost groups

Residual group -23.70∗∗∗ - -

PDG 1 404.54∗∗∗ 0.55∗∗∗ 345.82

PDG 2 1285.73∗∗∗ 0.49∗∗∗ 1221.50

PDG 3 5800.22∗∗∗ 0.16∗∗ 7492.82

PDG 4 9485.96∗∗∗ 0.98∗∗∗ 8673.75

Multiple-year costs for nursing and caring

Residual group −174.92∗∗∗ - -

Top 3.5% costs in 3 preceding years 1009.37∗∗∗ 0.31∗∗∗ 1724.16

Top 3.0% costs in 3 preceding years 1520.56∗∗∗ 0.35∗∗∗ 2257.59

Top 2.5% costs in 3 preceding years 2763.12∗∗∗ 0.76∗∗∗ 4007.17

Top 2.0% costs in 3 preceding years 5100.00∗∗∗ 1.07∗∗∗ 6747.56

Top 1.5% costs in 3 preceding years 7661.44∗∗∗ 1.59∗∗∗ 9511.28

Top 1.0% costs in 3 preceding years 10949.06∗∗∗ 2.13∗∗∗ 12815.54

Top 0.5% costs in 3 preceding years 15317.72∗∗∗ 2.28∗∗∗ 17068.16

Top 0.25% costs in 3 preceding years 26153.80∗∗∗ 2.72∗∗∗ 28413.15

Top 0.25% costs in 3 preceding years (0-17 years) 56544.37∗∗∗ 5.21∗∗∗ 55202.38

Historical somatic morbidity

Residual group -95.36∗∗∗ - -

HSM 1 101.00∗∗∗ 0.40∗∗∗ 202.19

Continued on next page
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Multiple-year pharmaceutical cost groups

Residual group -151.41∗∗∗ - -

MPC 1 317.63∗∗∗ 0.64∗∗∗ 514.18

Intercept

Intercept - - 769.48

Intercept 1—2 - 2.93∗∗∗ -

Intercept 2—3 - 4.15∗∗∗ -

Intercept 3—4 - 5.12∗∗∗ -

Intercept 4—5 - 5.95∗∗∗ -

Intercept 5—6 - 6.74∗∗∗ -

Intercept 6—7 - 7.63∗∗∗ -

Intercept 7—8 - 8.52∗∗∗ -

Intercept 8—9 - 9.57∗∗∗ -

Intercept 9—10 - 11.28∗∗∗ -

Table A7: The coefficients for the OLS, Ordered Logit and Ridge regression estimated on the full

learning set. For the OLS and Ordered Logit regression, coefficients indicated with an (***), (**)

or (*) are significantly different from 0 at 1%, 5% or 10% significance level.

6.6.2 Model estimation results: tree-based regression models

Table A8 displays variable importance for the tree-based non-parametric regression models used

in this research. For the Random Forest, impurity is displayed. This is measured as the increase

in squared errors of the predictions obtained by a model fitted on randomly permuted values of a

specific variable, compared to the model fitted on actual values for this variable. This thus denotes

the predictive importance of each specific variable. The variable importance values of the Random

Forest presented in table A8 are divided by 1,000,000.

Shap values are presented for the Gradient Boosted model. These values indicate the mean

absolute marginal contribution of each variable to the predictions made for the test set by this

model.

For both importance measures it holds that higher values in table A8 indicate higher predictive

importance of variables.
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Table A8: Variable importance for the tree-based Random Forest and Gradient Boosted model.

Random Forest Gradient Boosted model

Age interacted with gender

1-4 years (M) 341,392 3.26

5-9 years (M) 49,894 0.19

10-14 years (M) 89,712 0.72

15-19 years (M) 72,920 0.04

20-24 years (M) 49,911 30.82

25-29 years (M) 75,039 22.68

30-34 years (M) 27,080 18.80

35-39 years (M) 163,250 18.10

40-44 years (M) 41,744 12.22

45-49 years (M) 99,917 6.53

50-54 years (M) 77,260 0.01

55-59 years (M) 118,066 8.46

60-64 years (M) 250,556 19.73

65-69 years (M) 168,064 29.40

70-74 years (M) 148,840 0.59

75-79 years (M) 152,184 8.71

80-84 years (M) 148,993 1.88

85-89 years (M) 155,064 6.97

90+ years (M) 163,612 7.88

1-4 years (F) 36,480 0.36

5-9 years (F) 25,158 0.70

10-14 years (F) 61,302 0.56

15-19 years (F) 13,637 1.94

20-24 years (F) 108,816 0.39

25-29 years (F) 33,665 22.90

30-34 years (F) 36,977 30.85

35-39 years (F) 36,075 8.01

40-44 years (F) 48,441 0.03

45-49 years (F) 62,450 0.14

50-54 years (F) 59,774 1.30

55-59 years (F) 175,806 0.04

60-64 years (F) 156,398 5.59

65-69 years (F) 82,355 17.27

Continued on next page
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70-74 years (F) 144,278 15.09

75-79 years (F) 107,868 1.15

80-84 years (F) 101,891 5.03

85-89 years (F) 88,029 1.34

90+ years (F) 126,331 11.61

Pharmacy based cost groups

Residual group 2,243,619 50.32

Thyroid affection 159,378 1.77

Glaucoma 224,445 1.67

Depression 324,513 0.92

Psychosis 90,004 0.72

Epilepsy 161,939 1.50

Chronic anticoagulation 132,708 4.61

Transplants 215,135 4.52

Parkinson 154,872 4.01

Heart diseases: other 823,917 46.97

Chronic pain excl. opioids 263,116 6.38

Neuropathic pain 168,635 4.41

Diabetes II without hypertension 107,293 1.17

Diabetes II with hypertension 157,914 7.27

Diabetes I without hypertension 268,515 3.97

Diabetes I with hypertension 269,160 13.65

Cystic fibrosis/Pancreatic enzymes 340,559 1.77

Growth disorders (add-on) 40,970 0.22

Brain disorder / spinal: other 50,736 1.20

Brain disorder / spinal: MS 20,511 2.14

HIV/AIDS 20,121 1.20

Psoriasis 84,544 0.10

Crohns disease / Ulcerative colitis 103,094 1.01

Rheumatishm 82,516 0.65

Autoimmune diseases (add-on) 89,053 5.37

Kidney diseases 160,209 4.05

Acromegaly 39,658 2.16

Immunoglobulin (add-on) 167,515 2.35

Asthma 221,248 2.35

Continued on next page
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COPD / severe asthma 244,308 29.71

COPD / Severe asthma (add-on) 24,438 1.54

Hormone-sensitive tumors 132,392 3.20

Cancer 9,359 0.07

Cancer (add-on) 2,464,087 27.69

Pulmonary arterial hypertension 68,396 1.31

Macular degeneration 46,034 4.86

Hypercholesterolemia 11,777 1.07

Heart diseases: anti-arrhytmics 54,253 0.11

Addiction excl. nicotine 67,349 1.10

Extreme high costs cluster 1 410,550 2.24

Extreme high costs cluster 2 316,953 1.58

Extreme high costs cluster 3 1,094,220 1.66

Extreme high costs cluster 4 524,086 0.55

Diagnosis-based cost groups

Residual group 4,066,249 156.30

DCG 1 364,652 8.98

DCG 2 310,786 23.48

DCG 3 501,906 35.53

DCG 4 844,441 25.61

DCG 5 841,932 59.22

DCG 6 430,043 28.82

DCG 7 347,042 21.96

DCG 8 217,621 6.88

DCG 9 249,187 8.42

DCG 10 256,484 6.48

DCG 11 65,981 2.74

DCG 12 2,708,034 44.05

DCG 13 131,753 1.67

DCG 14 412,484 9.56

DCG 15 355,958 7.42

DCG 16 659,173 22.99

DCG 17 324,692 2.86

DCG 18 129,773 6.05

DCG 19 330,240 3.35
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DCG 20 375,206 6.14

DCG 21 156,730 3.99

DCG 22 476,387 5.34

DCG 23 538,570 12.97

DCG 24 894,394 7.12

DCG 25 2,536,382 20.42

DCG 26 149,852 2.09

Medical equipment based cost groups

Residual group 1,519,754 57.23

MCG 1 90,547 6.46

MCG 2 108,726 10.29

MCG 3 91,905 1.50

MCG 4 155,998 2.49

MCG 5 410,084 11.02

MCG 6 217,923 3.52

MCG 7 198,116 6.06

MCG 8 311,659 3.97

MCG 9 42,610 0.30

MCG 10 256,559 4.65

MCG 11 165,135 8.60

MCG 12 112,160 0.66

MCG 13 33,620 0.58

MCG 14 15,565 0.15

Source of Income interacted with age

70+ years 823,976 221.34

IVA benefit 0-17 years 11,430 0.00

IVA benefit 18-34 years 13,252 0.05

IVA benefit 35-44 years 19,505 0.35

IVA benefit 45-54 years 53,750 0.51

IVA benefit 55-64 years 62,044 1.08

IVA benefit 65-69 years 46,697 0.62

Incapacitated 0-17 years 28,259 0.33

Incapacitated 18-34 years 53,780 2.70

Incapacitated 35-44 years 41,903 2.24

Incapacitated 45-54 years 49,419 3.15
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Incapacitated 55-64 years 71,255 3.72

Incapacitated 65-69 years 95,937 5.32

Social assistance 0-17 years 26,537 0.45

Social assistance 18-34 years 17,721 0.00

Social assistance 35-44 years 12,038 0.39

Social assistance 45-54 years 29,029 1.53

Social assistance 55-64 years 52,398 2.41

Social assistance 65-69 years 54,940 1.87

Student 0-17 years 7,688 0.00

Student 18-34 years 17,235 18.57

Self-employed 0-17 years 62,355 1.57

Self-employed 18-34 years 6,937 3.22

Self-employed 35-44 years 13,873 5.04

Self-employed 45-54 years 43,438 2.44

Self-employed 55-64 years 72,941 0.06

Self-employed 65-69 years 58,181 0.09

Higher education 0-17 years 65,361 0.43

Higher education 18-34 years 36,934 1.37

Higher education 35-44 years 32,960 3.74

Reference group 0-17 years 120,576 1.40

Reference group 18-34 years 59,389 4.00

Reference group 35-44 years 135,537 0.09

Reference group 45-54 years 112,034 2.37

Reference group 55-64 years 299,898 34.08

Reference group 65-69 years 139,730 0.00

Region

Region 1 354,924 8.88

Region 2 243,239 5.00

Region 3 224,184 1.81

Region 4 256,472 2.53

Region 5 261,245 0.06

Region 6 206,668 0.00

Region 7 272,202 2.98

Region 8 183,543 1.17

Region 9 255,640 0.06
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Region 10 224,589 9.83

Socio-economic status interacted with age

Very low 0-17 years 36,847 0.06

Very low 18-69 years 92,808 3.51

Very low 70+ years 141,425 13.43

Low 0-17 years 249,233 0.17

Low 18-69 years 131,244 2.62

Low 70+ years 108,107 2.01

Middle 0-17 years 72,209 0.75

Middle 18-69 years 121,856 6.97

Middle 70+ years 198,715 9.32

High 0-17 years 74,841 1.10

High 18-69 years 302,327 1.12

High 70+ years 268,604 10.16

People per address interacted with age

Children 0-17 years 141,493 17.13

Wlz-institution long-term 18-69 years 40,924 3.64

1 Wlz-institution long-term 70-79 years 20,957 12.35

Wlz-institution long-term 80+ years 54,519 44.34

Wlz-institution influx 18-69 years 169,838 8.52

Wlz-institution influx 70-79 years 137,603 6.63

Wlz-institution influx 80+ years 226,295 15.97

One-person household 18-69 years 156,515 11.11

One-person household 70-79 years 152,575 3.07

One-person household 80+ years 213,089 20.20

Residual group 18-69 years 218,227 7.63

10 Residual group 70-79 years 141,863 12.16

Residual group 80+ years 161,285 17.25

12 Multiple-year high cost groups

Residual group 1,216,257 357.44

Top 30% costs in at least 1 of last 3 years 1,991,908 82.87

Top 10% costs in the 2 preceding years 134,598 18.39

Top 15% costs in the 3 preceding years 307,264 34.41

Top 10% costs in the 3 preceding years 216,286 31.89

Top 7% costs in the 3 preceding years 493,804 41.28
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Top 4% costs in the 3 preceding years 1,042,846 52.60

Top 1.5% costs in the 3 preceding years 1,022,521 20.93

Top 0.5% costs in the 3 preceding years 4,599,873 24.13

Physiotherapy diagnosis-based cost groups

Residual group 164,743 8.85

PDG 1 128,541 0.51

PDG 2 200,152 11.47

PDG 3 293,456 0.54

PDG 4 18,136 0.04

Multiple-year costs for nursing and caring

Residual group 5,701,667 269.45

Top 3.5% costs in 3 preceding years 174,905 30.23

Top 3.0% costs in 3 preceding years 258,884 24.74

Top 2.5% costs in 3 preceding years 92,579 17.41

Top 2.0% costs in 3 preceding years 110,836 7.02

Top 1.5% costs in 3 preceding years 191,680 3.08

Top 1.0% costs in 3 preceding years 372,526 15.15

Top 0.5% costs in 3 preceding years 288,398 13.54

Top 0.25% costs in 3 preceding years 1,556,847 24.64

Top 0.25% costs in 3 preceding years (0-17 years) 225,086 2.43

Historical somatic morbidity

Residual group 20,821 1.32

HSM 1 433,757 101.67

Multiple-year pharmaceutical cost groups

Residual group 32,592 7.21

MPC 1 1,528,869 172.80

Table A8: Variable importance for the tree-based regression models used in this research. For the

Random Forest, variable importance is calculated as the increase in squared errors of the predictions

obtained by a model fitted on randomly permuted values of a specific variable, compared to the model

fitted on actual values for this variable. For the Gradient Boosted model, shap values are displayed

which equal the average absolute marginal contribution of a variable to predictions made by the

Gradient Boosted model.
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