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Abstract

In this research, we extend Automatic Differentiation Variational Inference (ADVI) (Ku-

cukelbir et al., 2015) by combining it with Importance Sampling (IS) such that the variational

density of ADVI is able to capture the posterior covariance and correlation structure of complex

Bayesian logistic regression models. In particular, we introduce ADVI-IS, which uses ADVI to

obtain an initial approximate posterior distribution that is iteratively improved in a repeated

IS procedure. The performance of ADVI-IS is compared with ADVI and the No-U-Turn Sam-

pler (NUTS) as a benchmark. We conduct a simulation and an empirical study on so-called

Watch Effect (WE) models, which are Bayesian logistic regression models with a nonlinear

Media Effect (ME) component. This ME component is used by the Nielsen Company (Nielsen,

2022) to analyze the effects of advertisement exposures on the tune-in of respondents for spe-

cific movies. The results show that ADVI and ADVI-IS are both able to outperform NUTS

in terms of run time performance and scaling capabilities. Moreover, in general ADVI-IS out-

performs ADVI in terms of approximating the posterior distribution and the ME component.

However, in the empirical study ADVI-IS has difficulties capturing the posterior distribution

of the WE model due to the complexity of this model. Nonetheless, in this case ADVI-IS is

still able to accurately estimate the ME component comparable to the NUTS.

Keywords: Bayesian Inference, Variational Inference, Importance Sampling, No-U-Turn

Sampler.
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1 Introduction

This research is done for the Nielsen Company (Nielsen, 2022), hereafter shortened to Nielsen,

which is an American media analytics firm that strives to obtain actionable insights from large

amounts of data in an efficient way. Nielsen offer advice on advertisements based on a Watch Effect

(WE) model (Nielsen, 2022), which is a Bayesian logistic regression model with a complex nonlinear

Media Effect (ME) component. In particular, the WE model is able to estimate the probability

of respondents tuning in to a specific movie on television based on their socio-demographics,

viewing behavior and advertisement exposures. Moreover, the corresponding ME component is an

important component that Nielsen estimates to analyze the effects of the advertisement exposure

of each media channel on the tune-in of respondents for specific movies. However, estimating this

complex ME component is often difficult and costs a lot of time. Especially for a large media

company, such as Nielsen, who simultaneously have to process large amounts of data.

In particular, one of the core problems of Bayesian statistics is to approximate difficult-to-

compute posterior probability densities. Let y be the observed data and θ the parameters of

interest, then the posterior probability density is defined as p(θ|y). According to Bayes’ theorem

this probability density can be computed as

p(θ|y) = p(y|θ)p(θ)
p(y)

, (1)

where p(y|θ) is the likelihood function, p(θ) the prior density and p(y) the marginal likelihood

function. Hence, the marginal likelihood is given by

p(y) =

∫
p(y|θ)p(θ)dθ, (2)

which is unavailable in closed form or requires exponential time to compute for many models

(Blei et al., 2017). For this reason, it is often difficult to compute the posterior distribution p(θ|y)

analytically and thus we often rely on approximate methods to compute the posterior distribution.

Currently, the main approaches to obtain posterior inferences are via approximate methods

such as Markov Chain Monte Carlo (MCMC) sampling methods (Hastings, 1970). These MCMC

methods are able to guarantee asymptotic reliable results, but are slow to converge and do not scale

efficiently (Blei et al., 2017). In particular, Nielsen use the No-U-Turn Sampler (NUTS) (Hoffman

et al., 2014), a MCMC method, to estimate their WE models. However, the computation time of

MCMC methods do not scale well to large data sets and complex models. The goal for Nielsen is

thus to obtain a method that is able to estimate their complex WE model in a reasonable amount

of time, while achieving comparable results to the NUTS.

To achieve this goal, one could resort to Variational Inference (VI) (Blei et al., 2017; Zhang

et al., 2018), which tends to be faster and easier to scale to large data sets, since VI formulates the

inference problem as an optimization problem instead of a sampling problem. In short, VI tries

to find the optimal approximate posterior distribution q∗ from a family of variational densities

q ∈ Q by minimizing the Kullback-Leibler (KL) divergence to the exact posterior distribution.
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In the current literature, commonly used methods for VI require the mean-field assumption

(Blei et al., 2017), which assumes that all the posterior parameters can be independently estimated,

thus implying that the posterior parameters are not correlated with each other. However, in

practice this assumption is often not able to hold. This causes the VI methods to have inconsistent

results with the asymptotically reliable results of the MCMC methods. The VI methods are thus

fast, but in practice often not accurate enough compared to the MCMC methods. For this reason,

we investigate whether it is possible to improve the approximate density q∗ by capturing the

covariance and correlation structure between the posterior parameters using a repeated Importance

Sampling (IS) (Kloek and Van Dijk, 1978) procedure. In particular, our method uses q∗ as an initial

importance function that is iteratively improved in a repeated IS procedure. From a theoretical

point of view, the main goal is thus to combine VI and IS such that we are able to efficiently

approximate the posterior distribution with comparable results to the NUTS. From a practical

point of view, the need for efficient methods such as VI is predominantly the case for large media

companies, such as Nielsen, who have to implement complex models using large amounts of data.

However, finding a suitable variational family Q for general VI methods is often hard for a

non-expert. For this reason, we consider Automatic Differentiation Variational Inference (ADVI)

(Kucukelbir et al., 2015) as the main VI method, since ADVI only requires a probabilistic model

and a data set to automatically derive an efficient VI algorithm. Mitigating the need to explore

many variational families manually. In particular, we introduce ADVI-IS, which uses the optimal

approximate posterior distribution q∗ of ADVI as an initial importance function that is iteratively

improved in a repeated IS procedure. Consequently, we formulate the following research question:

To what extent could a repeated IS procedure improve the optimal variational density of ADVI to

achieve more accurate posterior estimates comparable to those of the NUTS?.

The research question is answered by conducting a simulation and empirical study, where we

compare the run time performance, practical performance and the approximate posterior distri-

bution between ADVI, ADVI-IS and the NUTS on the WE models. The results show that the

running time of the NUTS is more prone to the complexity and scale of the model than ADVI or

ADVI-IS. Moreover, in general ADVI-IS outperforms ADVI in terms of approximating the pos-

terior distribution. However, ADVI-IS has difficulties capturing the posterior distribution of the

WE model for the empirical study due the complexity of this model. Nonetheless, in this case

ADVI-IS is still able to accurately estimate the ME component comparable to the NUTS.

The remainder of this paper is structured as follows. First, in Section 2 we discuss relevant

work about MCMC, IS and VI which are found in the current literature. Then, in Section 3

we describe the methods and the WE model which are used for the simulation and empirical

studies described in Sections 4 and 5 respectively. Lastly, in Section 6 we provide some concluding

remarks, limitations and possible extensions for future research.
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2 Related Work

In this section we discuss various landmark developments and limitations of the MCMC, IS and

VI methods used in the current literature. First, we discuss MCMC and several of its methods in

Section 2.1. Then, we describe the basic idea of IS in Section 2.2. Lastly, we discuss the general

VI problem and several VI methods in Sections 2.3 and 2.4 respectively.

2.1 Markov Chain Monte Carlo Sampling

In the current literature, MCMC sampling is an indispensable tool for the modern Bayesian

statistician. In short, MCMC methods first construct an ergodic Markov chain on the unknown

parameters θ, whose stationary distribution is the posterior distribution. Then, samples from the

stationary distribution are collected to approximate the posterior distribution with an estimate

constructed from these samples.

The first landmark developments in MCMC samplers are the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1984). These

methods are based on drawing from the full conditional distribution of each parameter and then

iterating over all these parameters until convergence (Bishop and Nasrabadi, 2006). However,

these methods may require an unreasonable long time to converge to the posterior distribution,

due to the high correlation between the drawn samples and the tendency of these methods to

explore the parameter space via inefficient random walks (Neal, 1993).

Alternatively, a faster and more efficient method is the Hamiltonian Monte Carlo (HMC) sam-

pler, also known as Hybrid Monte Carlo (Duane et al., 1987). This sampler is able to suppress

potential random walk behavior of the parameters by means of a clever auxiliary variable scheme

that transforms the problem of sampling from a target distribution into the problem of simu-

lating Hamiltonian dynamics (Neal et al., 2011). In particular, the HMC sampler solves a set

of differential equations referred to as the Hamiltonian functions (Bishop and Nasrabadi, 2006).

Consequently, HMC uses the gradient information of the parameters. This property allows for in-

dependent sampling of the parameters as discussed by Hoffman et al. (2014) and thus the problem

of correlated samples is resolved.

However, the HMC sampler requires the user specification of two nuisance parameters: a step

size and the number of steps taken. The tuning of these parameters can be costly and an incorrect

specification can lead to a large drop in efficiency. For this reason, Hoffman et al. (2014) propose

the No-U-Turn Sampler (NUTS), which can automatically determine the nuisance parameters.

The NUTS uses a recursive algorithm to build a set of likely candidate points that spans a wide

range of the target distribution, stopping automatically when it starts to double back and retrace

its steps. Empirically, the NUTS performs at least as efficient as a well tuned HMC method

according to Hoffman et al. (2014).
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2.2 Importance Sampling

As introduced by Kloek and Van Dijk (1978), IS is an alternative method to sample from a target

distribution. In particular, IS is a type of Monte Carlo integration, which relies on sampling from

a different computational-friendly distribution to approximate samples from the target distribu-

tion. Together with MCMC sampling methods, IS has provided a foundation for simulation-based

approaches to numerical integration since its introduction as a variance reduction technique in

statistical physics (Tokdar and Kass, 2010). The appeal of IS lies in a simple probability result

given by the following relationship:

Ef [g(θ)] =

∫
g(θ)f(θ)dθ =

∫
g(θ)w(θ)h(θ)dθ = Eh[g(θ)w(θ)], (3)

where g(θ) is a given function that is integrable with respect to the target distribution f , w(θ) =
f(θ)
h(θ) are the importance weights, Ef denotes the expectation with respect to f and Eh denotes the

expectation with respect to the computational-friendly density h(θ), which is also referred to as

the importance function (Kloek and Van Dijk, 1978).

The expectation Ef in Equation (3) can be approximated by a weighted average of M random

samples from h(θ) with parameters θ[m] and weights w(θ[m]) as

Ef [g(θ)] ≈
1

M

M∑
m=1

g(θ[m])w(θ[m]). (4)

Consequently, using this IS procedure we can obtain the posterior moments of p(θ|y) using different

choices of g(θ). For instance, the mean or covariance estimates of p(θ|y) are obtained by setting

g(θ) = θ or g(θ) = (θ−Ep(θ|y)[θ])(θ−Ep(θ|y)[θ])
⊺ with f = p(θ|y) in Equation (4). Moreover, if

the integrating constants of f are not available, then alternatively only the kernel of f suffices to

implement the IS procedure as described in Section 3.2.1.

Furthermore, if the importance function h(θ) approximates f(θ) well, that is, the probabilities

or probability densities of h(θ) should be proportional to f(θ). Then, Equation (4) will converge

to Ef [g(θ)] for large M (Geweke, 1989). However, the main issue arises when h(θ) does not

approximate f(θ) well enough. In the worst case the importance weights w(θ[m]) are small with

high probability and large with low probability, which happens if f(θ) has heavier tails than h(θ).

For this reason, a Gaussian distribution is often not a good choice for h(θ) (Greenberg, 2012),

since a Gaussian distribution tends to have relatively light tails.

2.3 The Variational Inference Optimization Problem

Although the NUTS and HMC sampler increases the computational efficiency of the traditional

MCMC methods, these samplers can still take a substantial amount of time for large data sets.

For this reason, VI methods are considered, since the sampling procedure of the MCMC methods
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tends to be more computationally expensive than the optimization based procedure of the VI

methods, as discussed by Blei et al. (2017).

In particular, the first step of VI is to specify a variational family Q of densities over the

unknown parameters θ, where each q(θ) ∈ Q is a candidate density for the posterior p(θ|y).

Then, the goal is to find the best approximation of the posterior p(θ|y) within the family Q. This

can be done by minimizing the KL-divergence as

q(θ)∗ = argmin
q(θ)∈Q

KL
(
q(θ)||p(θ|y)

)
, (5)

where q(θ)∗ is the best approximation of the posterior within the family of Q. However, the KL-

divergence given in Equation (5) can not be easily computed, since it requires the computation of

the logarithm of the evidence p(y). This can be shown if we write the KL-divergence as

KL
(
q(θ)||p(θ|y)

)
= Eq(θ)

[
log
(
q(θ)

)]
− Eq(θ)

[
log
(
p(θ|y)

)]
= Eq(θ)

[
log
(
q(θ)

)]
− Eq(θ)

[
log
(
p(θ,y)

)]
+ log

(
p(y)

)
,

(6)

where all the expectations are taken with respect to q(θ).

For this reason, an alternative objective function called the Evidence Lower BOund (ELBO)

is maximized that is equivalent to minimizing the KL-divergence up to an added constant. As

discussed by Blei et al. (2017), the ELBO is defined as

ELBO(q) = Eq(θ)

[
log
(
p(θ,y)

)]
− Eq(θ)

[
log
(
q(θ)

)]
, (7)

which can further be rewritten to be equal to the sum of the expected log-likelihood of the data

and the KL-divergence between the priors p(θ) and q(θ) as

ELBO(q) = Eq(θ)

[
log
(
p(θ)

)]
+ Eq(θ)

[
log
(
p(y|θ)

)]
− Eq(θ)

[
log
(
q(θ)

)]
= Eq(θ)

[
log
(
p(y|θ)

)]
−KL

(
q(θ)||p(θ)

)
,

(8)

where the first term is an expected likelihood and the second term is the negative divergence

between the variational density and the prior. The first and second term encourage densities

that explain the observed data and densities that are close to the prior respectively, that is, this

objective function reflects the balance between likelihood and prior. Moreover, the name of the

ELBO can be explained if we combine Equation (6) and (7), such that

log
(
p(y)

)
= KL

(
q(θ)||p(θ|y)

)
+ ELBO(q), (9)

where we see that log
(
p(y)

)
has a lower bound equal to ELBO(q), since KL(·) ≥ 0. Overall, the

new optimization problem can be defined as

q(θ)∗ = argmax
q(θ)∈Q

ELBO
(
q(θ), p(θ,y)

)
. (10)
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2.4 Variational Inference Methods

In the current literature, commonly used VI methods are Coordinate Ascent Variational Inference

(CAVI) (Bishop and Nasrabadi, 2006), Stochastic Variational Inference (SVI) (Hoffman et al.,

2013) or Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et al., 2017). These

methods all require the mean-field assumption, that is, these methods assume that the posterior

distribution can be approximated by a mean-field variational family, where the posterior param-

eters are mutually independent. As described by Blei et al. (2017) a generic member of the

mean-field variational family can be defined as

q(θ) =

K∏
k

qk(θk), (11)

where K are the number of unknown parameters.

In particular, CAVI iteratively optimizes each parameter of this mean-field variational density,

while holding the other parameters fixed. However, this method does not easily scale, since it

requires to iterate through the entire data set. For this reason, Hoffman et al. (2013) propose SVI,

an extension of CAVI, which combines natural gradients (Amari, 1998) and stochastic optimization

(Robbins and Monro, 1951) for a gradient-based optimization procedure to substantially scale

up the VI procedure. However, manually determining a variational family might cost a lot of

time, especially for non-experts. For this reason, Kucukelbir et al. (2015) introduce ADVI, which

automatically determines an appropriate variational family, thus mitigating any computation costs

to refine and explore many variational families manually.

3 Methodology

This section elaborates on the methods and models used in this paper. First, we describe ADVI

in Section 3.1. Then, in Section 3.2 we propose how ADVI can be used in a repeated IS procedure

to improve the approximate posterior distribution. In Section 3.3 we describe the WE model used

by Nielsen and in Section 3.4 we provide some performance measures to compare our methods.

3.1 Automatic Differentiation Variational Inference

In general, VI is faster than the more commonly used MCMC techniques. However, manually

specifying a suitable variational family for VI is often time-consuming. For this reason, Kucukelbir

et al. (2017) introduce ADVI, which is able to solve this problem. The main idea of ADVI is

to first transform the the unknown parameters θ into the real coordinate space, then we posit a

variational distribution to approximate the posterior distribution. Lastly, automatic differentiation

and stochastic optimization are combined to optimize the variational objective. In more detail,

ADVI follows these four steps:
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1. The unknown parameters of the model are transformed into unconstrained real-valued variables,

such that the support of these parameters encompasses all continuous variables. This is done by

transforming p(y,θ) into p(y, ζ) with an one-to-one mapping function T : supp
(
p(θ)

)
−→ RK ,

where ζ = T (θ). The resulting joint distribution is defined as

p(y, ζ) = p
(
y, T−1(ζ) · |detJT−1(ζ)|

)
, (12)

where |detJT−1(ζ)| denotes the determinant of the Jacobian J of T−1(ζ). After this transfor-

mation, the transformed parameters ζ have support in the real coordinate space RK , such

that ADVI can use a single variational family for all models. The Gaussian distribution

is commonly used as the variational family. In particular, under the mean-field assump-

tion the unknown parameters θ are independent of each other with variational parameters

ϕ = [µ1, . . . , µK , σ2
1, . . . , σ

2
K ]. However, re-parameterizing the mean-field Gaussian removes the

constraint that the variances must always be positive (Kucukelbir et al., 2017). For this rea-

son, we consider the logarithm of the standard deviations ωk = log(σk) for k = 1, . . . ,K, such

that the support of ω is in the real coordinate space and σ is always positive. The mean-field

variational density can then be expressed as

q(ζ;ϕ) = q
(
ζ; (µ,ω)

)
=

K∏
k=1

N
(
ζk;µk, exp(ωk)

2
)
, (13)

where N denotes the Gaussian distribution.

2. Recast the gradient of the variational objective function as an expectation over q(ζ;ϕ), since

it is possible to approximate it with Monte Carlo methods by expressing the objective function

as an expectation (Ranganath et al., 2014). In particular, the ELBO in the real coordinate

space as derived by Kucukelbir et al. (2017) can be written as

ELBO(ϕ) = Eq(ζ;ϕ)

[
log
(
p
(
y, T−1(ζ)

)
+ log |detJT−1(ζ)|

)]
+H[q(ζ;ϕ)], (14)

where H[q(ζ;ϕ)] = Eq(ζ;ϕ)[log q(ζ;ϕ)] is defined as the entropy (Kucukelbir et al., 2017), such

that the ELBO is a function of the variational parameters ϕ and the entropy H.

3. Reparamaterize the objective function in terms of a standard Gaussian, since we can not use

automatic differentiation on the ELBO in Equation (14) due to an intractable expectation.

Kucukelbir et al. (2017) suggest to first standardize the parameters with

η = Sϕ(ζ) = diag
(
exp(ω)

)−1
(ζ − µ), (15)

where diag
(
exp(ω)

)
denotes the diagonal matrix of exp(ω). This standardization produces the

fixed variational density

q(η) = N (η;0K , IK) =

K∏
k=1

N (ηk; 0, 1), (16)

7



which transforms the ELBO given in Equation (14) into

ELBO(ϕ) = Eq(η)

[
log

(
p
(
y, T−1

(
S−1
ϕ (η)

))
+ log |detJT−1

(
S−1
ϕ (η)

)
|
)]

+H[q(ζ;ϕ)]. (17)

The transformation enables ADVI to efficiently compute Monte Carlo approximations as it

only needs to sample from a standard Gaussian (Kingma and Welling, 2014).

4. Optimize the ELBO defined in Equation (17) with the gradient by computing the gradient

of the terms inside the expectation and the entropy with automatic differentiation. Then,

only the intractable expectation has to be computed. This in turn can be approximated with

Monte Carlo integration, that is, draw M samples from the standard Gaussian and evaluate the

empirical mean of the relevant gradients inside the expectation. This results in noisy unbiased

gradients derived by Kucukelbir et al. (2017) as

∇µELBO = Eq(η)

[(
∇θ log p(y,θ)∇ζT

−1(ζ) +∇ζ log |detJT−1(ζ)|
)]

and (18)

∇ωELBO = Eq(η)

[(
∇θ log p(y,θ)∇ζT

−1(ζ) +∇ζ log |detJT−1(ζ)|
)
η⊺diag(exp(ω))

]
+1. (19)

These gradients can then be used in a stochastic optimization routine to automate variational

inference as shown in Algorithm 1.

Algorithm 1 Automatic Differentiation Variational Inference (ADVI)

Require: Initial learning rate ρ(0), number of iterations I and model p(y,θ)

1: Initialize µ(0) = 0 and ω(0) = 0

2: i←− 0

3: for i ≤ I do

4: Draw ηm ∼ N (0, 1) for m = 1, . . . ,M

5: Approximate ∇µELBO using Monte Carlo Integration and ηm for m = 1, . . . ,M

6: Approximate ∇ωELBO using Monte Carlo Integration and ηm for m = 1, . . . ,M

7: Calculate the step-size parameter ρ(i+1) ▷ Using Adam (Kingma and Ba, 2014).

8: µ(i+1) ←− µ(i) + diag(ρ(i)) · ∇µELBO

9: ω(i+1) ←− ω(i) + diag(ρ(i)) · ∇ωELBO

10: i←− i+ 1

11: end for

12: µ∗ ←− µ(I) and ω∗ ←− ω(I)

13: return µ∗, ω∗

3.2 Combining ADVI and IS to approximate the Posterior Distribution

In this section we describe how we can combine the optimal variational density q∗(θ) from ADVI

with a repeated IS procedure to obtain a density, which is able to approximate the posterior

8



covariance and correlation structure. First, in Section 3.2.1 we describe how to implement an IS

procedure if the target distribution f(θ) is unknown. In Section 3.2.2 we describe how to initialize

a repeated IS procedure using ADVI.

3.2.1 Importance Sampling from an Unknown Posterior Distribution

In a Bayesian approach the goal is to sample from the posterior distribution. It thus holds that the

target distribution f(θ) for an IS procedure is equal to the posterior density p(θ|y). In practice,

we are often not able to compute w(θ) = p(θ|y)
h(θ) , since we do not always know the exact density

p(θ|y) = p(θ)p(y|θ)
p(y) with its integrating constants.

Alternatively, we can use the posterior kernel p(θ)p(y|θ) to calculate Ep(θ|y)[g(θ)]. In partic-

ular, using Bayes’ theorem defined in Equation (1) we can rewrite Ep(θ|y)[g(θ)] as

Ep(θ|y)[g(θ)] =

∫
g(θ)p(θ|y)dθ =

∫
g(θ)p(θ)p(y|θ)dθ

p(y)

=

∫
g(θ)p(θ)p(y|θ)dθ∫
p(θ)p(y|θ)dθ

=

∫
g(θ)wpost(θ)h(θ)dθ∫
wpost(θ)h(θ)dθ

=
Eh[g(θ)wpost(θ)]

Eh[wpost(θ)]
,

(20)

where the posterior importance weights wpost(θ) = p(θ)p(y|θ)
h(θ) are calculated using the posterior

kernel. Consequently, we can approximate Ep(θ|y)[g(θ)] with parameters θ[m] drawn from h(θ) as

Ep(θ|y)[g(θ)] ≈
∑M

m=1wpost(θ
[m])g(θ[m])∑M

m=1wpost(θ[m])
, (21)

3.2.2 Initializing a Repeated IS Procedure using ADVI

The optimal variational density q∗(θ) = q(θ;µ∗,σ2∗) obtained from ADVI is not able to estimate

the posterior covariance and correlation structure due to the mean-field property, since it is defined

as

q(θ;µ∗,σ2∗) =

K∏
k=1

N (θk;µ
∗
k, σ

2∗
k ). (22)

For this reason, we implement the IS procedure to find a density able to estimate the posterior co-

variance and correlation structure. In particular, the posterior mean µIS and posterior covariance

matrix ΣIS can be obtained using the IS procedure with h(θ) = q∗(θ) as the initial importance

function. Then, µIS and ΣIS can be plugged into a distribution, which does have a covariance

structure. We decide to use a Multivariate Gaussian distribution, since the mean-field distribu-

tion of ADVI is originally a Gaussian distribution. Thus, we define the new approximate posterior

distribution as

qIS(θ;µIS ,ΣIS) = N (θ;µIS ,ΣIS), (23)

where we consider two approaches to improve this new density qIS as shown in Algorithm 2.
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Algorithm 2 Repeated IS using ADVI as initialization for an unknown posterior distribution

Require: The model p(y,θ), number of draws M , number of IS repeats S, blowup parameter λ,

optimal variational parameters µ∗ and σ2∗ from ADVI.

1: Draw z[m] ∼ N (0K , IK) for m = 1, . . . ,M

2: Set θ[m] ←− z[m] ⊙ λσ∗ + µ∗ for m = 1, . . . ,M ▷ Initial draws from q(θ;µ∗, λ2σ2∗)

3: h(θ) ←− q∗(θ;µ∗, λ2σ2∗) ▷ Initial importance function from ADVI

4: s←− 1

5: for s ≤ S do

6: wpost(θ
[m])←− p(θ[m])p(y|θ[m])

h(θ[m])
for m = 1, . . . ,M

7: µIS,s ←− Ep(θ|y)[θ] ▷ Using Equation (21)

8: ΣIS,s ←− Ep(θ|y)[(θ − µIS,s)(θ − µIS,s)
⊺] ▷ Using Equation (21)

9: LsL
⊺
s ←− cholesky(ΣIS,s) ▷ The Cholesky decomposition of ΣIS,s

10: Set θ[m] ←− Lsz
[m] + µIS,s for m = 1, . . . ,M ▷ Draws from qIS(θ;µIS,s,ΣIS,s)

11: h(θ) ←− qIS(θ;µIS,s,ΣIS,s)

12: s←− s+ 1

13: end for

14: return qIS(θ;µIS,S , ΣIS,S)

In particular, the first approach varies the heaviness of the tails by increasing or decreasing the

variance of each parameter of the initial importance function q∗(θ) from ADVI by multiplying σ∗
k

with a blowup parameter λ before the IS procedure for k = 1, . . . ,K. In general, a heavy tailed

importance function is preferred, since the target function should not have heavier tails than the

importance function as discussed in Section 2.2.

The second approach repeats the IS procedure S times by plugging the importance weighted

posterior means µIS,s and variances ΣIS,s into the density qIS and then performing the IS pro-

cedure again using draws from qIS(θ;µIS,s,ΣIS,s) for each subsequent IS repetition s = 1, . . . , S.

The goal is to bring the mean and covariance matrix of qIS(θ) closer to the actual posterior mean

and covariance matrix with each subsequent IS repetition.

3.3 Watch Effect Model

The WE models of Nielsen (2022) offer an extensive analysis of advertisement effects on respon-

dents by estimating the effect of advertisement exposure on the tune-in of respondents to specific

movies. In particular, Nielsen denotes the tune-in of respondent i as the dependent variable yi

for i = 1, . . . , N . This dependent variable yi is then estimated in a Bayesian logistic regression

model with a ME component using socio-demographical and viewing behavioral variables as the

control variables xctrl, and the advertisement exposures of different media channels as the exposure

variables xexp. The proposed Bayesian logistic regression model of Nielsen is defined as
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P (yi = 1|α,βctrl,βspd,βpot) = Λ

α+ xctrl⊺i βctrl +
L∑
l=1

βpot
l · tanh

(
βspd
l ·

xexpi,l

2

)
︸ ︷︷ ︸

ME component

 ∀i = 1, . . . , N,

(24)

where Λ(·) denotes the logistic function, α denotes the intercept, βctrl denotes the base effect

of the control variables, the potential parameter βpot denotes the maximum contribution of the

exposures on the tune-in and the speed parameter βspd denotes the rate at which this maximum

contribution is achieved.

The estimated potential βpot and speed βspd parameters obtained by estimating the WE model

defined in Equation 24 can be used to construct ME curves for each media channel. These curves

show the effect of advertisement exposure on the tune-in of respondents, where the hyperbolic

tangent tanh(·) ensures that the effect of the advertisement exposure exhibits diminishing returns.

In particular, the ME of media channel l for a certain level of advertisement exposure xexp ∈ R+

can be calculated as

MEl = βpot
l · tanh

(
βspd
l · x

exp

2

)
∀l = 1, . . . , L. (25)

3.3.1 Prior Specification Watch Effect Model

The priors for the WE model are specified similarly as the specification that Nielsen uses in

their previous projects. We consider these prior specifications, since Nielsen has already done

substantial research regarding these priors and the goal of this research is to improve upon the

current setting of Nielsen.

In particular, the control variables are centered and scaled in such a way that the intercept

α can be interpreted as the baseline tune-in probability. Consequently, due to this centering and

scaling the effects of the control variables is expected to be centered around zero with some small

deviation. Nielsen thus specifies a standard normal prior distribution for the C control parameters

βctrl as

βctrl ∼ N (0C , IC), (26)

where 0C is a C × 1 vector of zeros and IC denotes the C × C identity matrix.

Next, the prior distribution for the intercept α is also considered to be a Gaussian. However,

a standard Gaussian distribution would not seem to be reasonable, since we can interpret α as

the baseline for the probability of tune-in due to the specified prior for βctrl. In particular, if the

prior for α is standard normal and if there are no explanatory variables, then the modal baseline

probability of tune-in for a respondent is Λ(0) = exp (0)
1+exp (0) = 0.5, which is a rather high probability.

For this reason, Nielsen specifies the prior distribution for α as

α ∼ N (−5, 1). (27)
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This corresponds to a more reasonable modal baseline probability of Λ(−5) = exp (−5)
1+exp (−5) = 0.0067,

which implies that roughly 1 in 150 respondents watch a specific movie, if they are not exposed

to any advertisements.

Lastly, the speed βspd and potential βpot parameters are assumed to be non-negative. For this

reason, Nielsen specifies the priors for these parameters to be a lognormal distribution expressed

as

βspd ∼ logN (−0.5 · 1L, 0.8 · IL) and βpot ∼ logN (0L, 0.05 · IL), (28)

where 1L is a L × 1 vector of ones and IL denotes the L × L identity matrix for the L media

channels. These values work well according to previous researches done by Nielsen, which results

in a mean and standard deviation equal to 0.61 and 0.80 respectively for βspd and a mean and

standard deviation equal to 0.15 and 0.08 respectively for βpot. These prior distributions imply

that on average the maximum contribution of the exposures is around 0.15, while the rate is on

average 0.61 at which this maximum contribution is achieved.

3.3.2 Reparameterizing constrained Parameters

Currently, the βspd and βpot parameters specified in the Bayesian logistic regression model live

in a constrained parameter space, since these parameters have to be non-negative. However, the

VI methods that are used to estimate this model can be more efficiently implemented if all the

parameters are unconstrained. This is done by taking the logarithm of βspd and βpot as

ωspd = logβspd and ωpot = logβpot.

Consequently, the unconstrained logistic regression model is defined as

P (yi = 1|α,βctrl,ωspd,ωpot) = Λ

α+ xctrl⊺i βctrl +
L∑
l=1

exp(ωpot
l ) · tanh

(
exp(ωspd

l ) ·
xexpi,l

2

)
︸ ︷︷ ︸

ME component

 .

(29)

It holds that the logarithm of a lognormal random variable is Gaussian distributed (Bain and

Engelhardt, 1992). Thus, the prior specifications for ωspd and ωpot are defined as

ωspd ∼ N (−0.5 · 1L, 0.8 · IL) and ωpot ∼ N (0L, 0.05 · IL). (30)

In this research our methods estimate the unconstrained logistic regression model defined in

Equation (29). Moreover, the IS repetitions of ADVI-IS also use the reparameterized ωspd and ωpot

parameters to compute the importance weights. In particular, after estimating the unconstrained

model we take the exponents of ωspd and ωpot to obtain inferences about βspd and βpot.

12



3.4 Performance Measures

This research aims to obtain results of ADVI-IS, which are comparable to the results of the NUTS.

For this reason, we assume that the NUTS is able to produce samples from the true posterior

distribution. Moreover, we describe three main performance measures, alongside the ME curves,

which we use to compare and evaluate the implemented estimation methods.

First, similar to Kucukelbir et al. (2015), we consider the predictive likelihood against the

running time to compare the run time performance and scaling capabilities of the estimation

methods on a common scale. The predictive likelihood can be interpreted as the probability of

the held-out test data conditional on the training data under the given estimation method as

described in Section 3.4.1. This measure evaluates to what extent ADVI-IS improves the run time

performance and scaling capabilities compared to the NUTS, and whether ADVI-IS is able to

achieve similar predictive performances as the NUTS.

Secondly, the main problem of ADVI is that it is not able to capture any posterior covariance

or correlation structure due to the mean-field assumption. On the contrary, the NUTS is able to

capture this structure. For this reason, we compare the posterior covariance and correlation of

ADVI-IS to that of the NUTS. In particular, we use the Frobenius norm as described in Section

3.4.2 to measure the distance of the covariance or correlation matrices between ADVI(-IS) and

the NUTS, where we assume that the NUTS is able to produce the true posterior covariance and

correlation structure.

Lastly, in Section 3.4.3 we define a quality measure to measure the similarity between the

approximate posterior distribution of ADVI(-IS) and the actual posterior distribution using the

posterior importance weights wpost. This quality measure can then be used to select the optimal

number of repeats S and blowup λ for ADVI-IS, since we aim to produce the approximate posterior

distribution closest to the actual posterior distribution.

3.4.1 Log Predictive Likelihood

The predictive likelihood is used as a predictive performance measure for a specific estimation

method. In particular, this likelihood is defined as

p(ytest|ytrain) =
N∏
i=1

p(ytest,i|ytrain) =
N∏
i=1

∫
p(ytest,i|θ)p(θ|ytrain)dθ (31)

where ytest is the held-out test data and ytrain is the training data. Moreover, the integral in

Equation (31) can be computed using Monte Carlo estimation as

Ep(θ|ytrain)[p(ytest,i|θ)] =
∫

p(ytest,i|θ)p(θ|ytrain)dθ

≈ 1

M

M∑
m=1

p(ytest,i|θ[m]) for i = 1, . . . , N,

(32)

13



where in the cases of ADVI, ADVI-IS and NUTS the samples θ[m] are drawn from q∗(θ), qIS(θ),

and the Markov chain after the NUTS warmup phase respectively. Consequently, the log predictive

likelihood can be estimated as

log
(
p(ytest|ytrain)

)
≈

N∑
i=1

log

(
M∑

m=1

p(ytest,i|θ[m])

)
− log(M). (33)

3.4.2 Frobenius Norm

The Frobenius norm, also called the Euclidean norm, is used to measure the distance between two

matrices A = (aij) and B = (bij) as

||A−B||F =

√√√√ K∑
i=1

K∑
j=1

(aij − bij)2. (34)

Consequently, this distance measure can then be used to measure the similarity between the NUTS

and ADVI(-IS) in terms of the posterior covariance or posterior correlation matrix of the posterior

distribution, which we denote by Fcov and Fcorr respectively.

3.4.3 Quality Measure for the Approximate Posterior Distribution

The importance function h(θ) used in Equation (3) is optimal, if w(θ) = f(θ)
h(θ) = 1 for m =

1, . . . ,M , since this implies that the importance function h(θ) resembles the target distribution

f(θ) perfectly. Thus, if h(θ) is optimal, then

Eoptimal
f [g(θ)] ≈ 1

M

M∑
m=1

g(θ[m])w(θ[m]) =
1

M

M∑
m=1

g(θ[m]), (35)

where θ[m] is drawn from h(θ).

Similarly, this optimal approximation should also hold when implementing the IS procedure

for an unknown posterior distribution as

Eoptimal
p(θ|y) [g(θ)] ≈

∑M
m=1wpost(θ

[m])g(θ[m])∑M
m=1wpost(θ[m])

=
1

M

M∑
m=1

g(θ[m]), (36)

where θ[m] is drawn from h(θ). Now, from Equation (36) we can see that the optimal approxima-

tion is obtained, if

wpost(θ
[m])∑M

m=1wpost(θ[m])
=

1

M
⇔ Mwpost(θ

[m])∑M
m=1wpost(θ[m])

= 1 ∀m = 1, . . . ,M. (37)

Using this property we can compute the average squared posterior deviation σ2
post between

Mwpost(θ[m])∑M
m=1 wpost(θ[m])

and 1 as

σ2
post =

1

M

M∑
m=1

(
1− Mwpost(θ

[m])∑M
m=1wpost(θ[m])

)2

, (38)

14



where θ[m] is drawn from the approximate posterior distributions q∗(θ) or qIS(θ). The posterior

deviation σpost can then be used as a quality measure to measure the similarity between the

approximate posterior distribution and the actual posterior distribution.

3.5 Experimental Setup and Algorithm Configurations

In this research, we first conduct a simulation study in Section 4 to obtain a better understanding

on the characteristics and performances of ADVI, ADVI-IS and the NUTS. Then, in Section 5

we implement ADVI, ADVI-IS and the NUTS on an empirical data set to evaluate how these

methods perform on a real world data set.

Furthermore, in our studies, ADVI is implemented using the Adam optimizer for 2000 training

iterations with an initial learning rate of 0.1. The NUTS is implemented using 500 warmup

samples, an acceptance probability of 0.8, a maximum tree depth of 10 and an initial step size of

1.0. On the contrary, we use the posterior deviation σpost of the optimal importance function to

determine the optimal number of repeats S and blowup λ for ADVI-IS, since we aim to determine

whether ADVI-IS with an optimal configuration is able to obtain similar results as a the NUTS

with a simple configuration.

Lastly, in the simulation and the empirical studies, a Dell notebook with an i9 processor

and 32GB of RAM is used to implement the methods and models in Python. In particular, the

NumPyro package (Phan et al., 2019; Bingham et al., 2019), a probabilistic programming library,

is used to implement the NUTS and ADVI, where the repeated IS procedure is implemented from

scratch. A brief description of the Python code can be found in Appendix C.

4 Simulation Study

In this section we investigate the performance and properties of our estimation methods using

multiple simulated data sets. The simulated models are specified in Section 4.1 and in Section 4.2

the results of our simulation study are discussed.

4.1 Model Specifications

We consider three simulated models. First, we consider a simple linear regression model as specified

in Section 4.1.1 to obtain a better understanding of our estimation methods. Then, we consider

a logistic regression model as specified in Section 4.1.2, since this is a starting point for the WE

models of Nielsen. Lastly, in Section 4.1.3 a ME component is added to the previous specified

logistic regression model, since the ME component is the most important part of the WE model,

which is often difficult to estimate due to the high nonlinearity in the parameters.
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4.1.1 Linear Regression Model

The data generating process and model specification for the linear regression model can be sum-

marized as

yi = α+

6∑
c=1

xctrli,c βctrl
c + ϵi, where α = −1, βctrl = [−3,−2,−1, 1, 2, 3]⊺,

xctrli ∼ N (06,Σ
ctrl), and ϵi ∼ N (0, 2) ∀i = 1, . . . , N.

(39)

In this case, Σctrl is the covariance matrix of the control variables for which all variances and

covariances are equal to 2 and 1 respectively, such that we incorporate some dependence between

the posterior distribution of the parameters. The priors for α and βctrl are all set to be standard

normal.

4.1.2 Logistic Regression Model

For a logistic regression model we extend on the linear regression model summarized in Equation

(39). In particular, we set α and βctrl, and generate xctrl similarly as the linear model described

in Section 4.1.1. Then, samples from the logistic regression model can be generated as

yi ∼ Bernoulli

(
Λ(α+

6∑
c=1

xctrli,c βctrl
c )

)
∀i = 1, . . . , N, (40)

where Λ(·) is the logistic function, and the priors for α and βctrl are set to be standard normal.

4.1.3 Logistic Regression Model with Media Effect

Lastly, we add a ME component to our logistic regression model from Section 4.1.2 as

yi ∼ Bernoulli

Λ

α+
6∑

c=1

xctrli,c βctrl
c +

5∑
l=1

βpot
l tanh

(
βspd
l ·

xexpi,l

2

)
︸ ︷︷ ︸

ME component


 ,

where βpot = [0.1, 0.3, 0.5, 0.7, 0.9]⊺, βspd = [1.0, 0.8, 0.6, 0.4, 0.2]⊺

and xexpi,l ∼ logN (1, 2) ∀i = 1, . . . , N and ∀l = 1, . . . , 5.

(41)

Here, we note that the exposure variables xexp has to be non-negative and in practice most people

are only exposed a few times. For this reason, we sample xexp from a lognormal distribution with

the location and scale parameters equal to 1 and 2 respectively, since this distribution has high

probability mass for small exposures and low probability mass for large exposures.

Furthermore, we specify a standard normal prior for both α and βctrl, while a lognormal

distribution is specified for βpot and βspd as

βpot ∼ logN (05, 0.7 · I5)) and βspd ∼ logN (05, 0.7 · I5), (42)
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since these potential and speed parameters are assumed to be non-negative. Then, the model

defined in Equation (41) can be efficiently estimated using the same parameter reparameterization

as described in Section 3.3.2. This results in the following unconstrained logistic model with ME

yi ∼ Bernoulli

(
Λ

(
α+

6∑
c=1

xctrli,c βctrl
c +

5∑
l=1

exp (ωpot
l ) tanh

(
exp (ωspd

l ) ·
xexpi,l

2

)))
, (43)

where the prior specifications for ωspd and ωpot are defined as

ωpot ∼ N (05, 0.7 · I5) and ωspd ∼ N (05, 0.7 · I5). (44)

Note that our methods estimate the unconstrained model defined in Equation (43). Moreover, the

IS repetitions of ADVI-IS use the reparameterized ωpot and ωspd parameters, whereafter we take

exponents of ωpot and ωspd to obtain inferences about βpot and βspd.

4.2 Simulation Results

In this section we discuss the simulation results of the three simulated models, where we set the

number of observations N = 20, 000 and the number of posterior samples M = 1, 000. These

results consist of three main analyses.

First, in Section 4.2.1 we compare the run time performances and scaling capabilities of the

estimation methods for different number of observations N ∈ {20, 000; 100, 000; 200, 000} and

number of repeats S ∈ {1, 5, 10, 20, 30} to determine whether it is possible to efficiently replace

the NUTS with ADVI-IS. Moreover, we set the blowup λ = 1, since different values of λ do not

influence the time performance or scaling capabilities substantially.

Secondly, in Section 4.2.2 we analyze the effects of the number of repeats S and the blowup λ on

the approximate posterior distribution of ADVI-IS to determine whether different values of S and

λ are able to improve this approximate posterior distribution. Moreover, in this section we also

determine the optimal number of repeats S∗ and blowup λ∗ based on the lowest posterior deviation

σpost between the approximate posterior distribution and the actual posterior distribution.

Lastly, in Section 4.2.3 we use S∗ and λ∗ to compare the practical performance between ADVI,

the optimal ADVI-IS and the NUTS to determine whether the optimal ADVI-IS could efficiently

replace the NUTS.

4.2.1 Run Time Performance and Scaling Capabilities

Figure 1 shows us the convergence rate of the average log predictive likelihood for the different

estimation methods. In particular, the line markers show the speed at which ADVI and ADVI-IS

converge to the same predictive likelihood as the NUTS.
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Linear Model Logistic Model Logistic Model with ME

N = 20, 000 N = 20, 000 N = 20, 000

N = 100, 000 N = 100, 000 N = 100, 000

N = 200, 000 N = 200, 000 N = 200, 000

Figure 1: The average log predictive likelihood against the running time in seconds of the NUTS and ADVI-IS,

where the line markers indicate that ADVI-(IS) has converged within ± 2% of the highest average log predictive

likelihood of the NUTS. Note that the predictive likelihood is calculated using 70% of the N observations as training

data and the remaining 30% as test data. Moreover, we run the models and methods three times using the same

seed to obtain an accurate representation of the running time.

Moreover, the graphs in Figure 1 show that the convergence rate of ADVI-IS becomes relatively

faster than the convergence rate of the NUTS as the number of observations increases or as the

complexity of the model increases, where we consider the linear model to be the simplest and the

logistic model with ME to be the most complex. This indicates that ADVI-IS could potentially

be used as an efficient replacement of the NUTS for cases with large scale data sets or complex

models.

4.2.2 Effects of the number of IS repeats S and the blowup λ on ADVI-IS

We first determine the effect of the number of IS repeats S and the blowup λ on the covariance

and correlation structure of the approximate posterior distribution of ADVI-IS. This is done by
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analyzing the Frobenius norms of the posterior covariance and correlation matrices between ADVI-

IS and the NUTS for different values of S and λ as shown in Figure 2, where we assume that

the NUTS produces the true posterior covariance and correlation structure. This figure shows us

three important observations.

Firstly, we notice that the Frobenius norms of the logistic model with ME requires the high-

est number of IS repeats to converge. This is not surprising as the ME component adds some

nonlinearity between the parameters of the posterior distribution, which increases the difficulty

to converge to the true posterior covariance and correlation structure.

Secondly, we see that all Frobenius norms are able to converge to a smaller value than ADVI for

at least one combination of S and λ, which implies that ADVI-IS is able to improve the posterior

covariance and correlation structure with respect to ADVI.

Thirdly, we see in almost all cases that the frobenius norms without blowup (λ=1) or a

shrinkage (λ=0.5) of the variance of the initial importance function has difficulties to converge.

On the other hand, we do see that in all cases a slight blowup (λ=1.5 or λ = 2.0) of the variance

of the initial approximate posterior distribution improves the convergence rate of the Frobenius

norms. This implies that a slight blowup is able to improve the initial approximate posterior

distribution for the repeated IS procedure by blowing up the tails of this approximate distribution.

Linear Model Logistic Model Logistic Model with ME

Figure 2: The first and second rows contain the Frobenius norms of the correlation and covariance matrices between

the NUTS and ADVI-IS respectively, where the NUTS is assumed to produce the true covariance and correlation

matrices. Note that S = 0 corresponds to ADVI without blowup.

Although the frobenius norms are able to give a good initial indication of the quality of the

approximate posterior distribution, we can not use it as a reliable measure to choose the optimal

number of repeats S∗ and blowup λ∗, since this measure only considers the covariance and cor-
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relation structure between the samples from ADVI-IS and NUTS. For this reason, we choose S∗

and λ∗ based on the lowest posterior deviation σpost between the approximate posterior distri-

bution and the actual posterior distribution, since we aim to produce the approximate posterior

distribution closest to this actual posterior distribution. In particular, Figure 3 shows the effects

of S and λ on σpost, where the cross markers indicate the lowest posterior deviation between the

approximate posterior distribution of ADVI-IS and the actual posterior distribution.

These results show us that the approximate posterior distribution of ADVI-IS approaches

the actual posterior distribution for all models as S increases, which is also visualized with the

posterior importance weights wpost shown in Figures 17, 18 and 19 of Appendix A.1. Moreover,

similarly to the results of Figure 2 we notice that σpost for the linear and logistic models converge

faster compared to the logistic model with ME due to the added complexity of the nonlinear

ME component. The optimal number of IS repeats and blowup parameter shown in Table 1 are

based on the lowest posterior deviation. These optimal parameter values are used to compare the

practical performance of the optimal ADVI-IS with ADVI and the NUTS in Section 4.2.3.

Linear Model Logistic Model Logistic Model with ME

Figure 3: The posterior deviation σpost between the approximate posterior distribution of ADVI-IS and the actual

posterior distribution for different blowups and number of IS repeats, where the cross marker indicates the lowest

deviation. Note that S = 0 corresponds to ADVI without blowup.

Table 1: Optimal number of IS repeats S∗ and blowup λ∗ for the linear, logistic and logistic with ME models

based on the lowest posterior deviation σpost between the approximate posterior distribution and the actual posterior

distribution.

Model

Linear Logistic Logistic with ME

S∗ 10 6 17

λ∗ 2.5 2.0 1.5

4.2.3 Practical Performance

In Figure 4 we show the posterior correlation and covariance of ADVI and the optimal ADVI-IS

against those of the NUTS to visualize to what extent ADVI-IS improves the posterior covariance

and correlation structure compared to ADVI. In particular, these results show us that ADVI is

not able to capture any covariance or correlation structure of the posterior distribution for the
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three simulated models. On the other hand, ADVI-IS is able to capture a posterior covariance

and correlation structure, which are close to the posterior covariance and correlations structure of

the samples from NUTS for the three simulated models. This is especially the case for the logistic

model, where the correlations and covariances are almost all on the 45 degrees line.

Linear Model Logistic Model Logistic Model with ME

Figure 4: The first row contains the scatterplot of the posterior VI correlations against the NUTS correlations

and the second row contains the scatterplot of the posterior VI covariances against the NUTS covariances, where

the NUTS is assumed to produce the true covariance and correlation matrices. The dashed black line corresponds

to a 45 degrees line through (0,0).

Next, we show the posterior sample means of all the parameters for each simulated model

in Figure 5. This figure shows us that all the methods produce posterior sample means close to

the actual intercept and control parameters for the three simulated models. Moreover, for the

logistic model and logistic model with ME we see that posterior samples from ADVI do not vary

much compared to posterior samples from ADVI-IS and the NUTS as can be seen by the more

established 5th and 95th quantiles of the latter two methods. In particular, the similar quantiles

and mean of ADVI-IS and the NUTS indicate that these two methods produce posterior samples

from a similar distribution.

Furthermore, in Figure 6 we show caterpillar plots of the posterior sample mean of the po-

tential and speed parameters for the logistic model with ME. This figure shows us that the three

methods often have difficulty estimating the actual values of the potential and speed parameters.

Nonetheless, the actual values of the speed and potential parameters are always within the 5th

and 95th quantiles of the parameter estimates of ADVI-IS and the NUTS, while this is not the

case for the parameter estimates of ADVI for βpot
2 , βpot

3 , βpot
4 , βspd

2 and βspd
3 . This indicates that

ADVI has difficulties capturing the ME component due to the lack of a variance structure in its
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parameter estimates. In general, ADVI-IS and the NUTS produce similar posterior sample means

of the potential and speed parameters. Except for βspd
1 , where we clearly see that ADVI-IS pro-

duces better sample means than the NUTS. This indicates that ADVI-IS outperforms the NUTS

in terms of parameter estimation. Moreover, ADVI-IS produces similar quantiles as the NUTS,

indicating again that these two methods produce posterior samples from a similar distribution for

the potential and speed parameters.

Linear Model Logistic Model Logistic Model with ME

Figure 5: Catterpillar plots of the posterior samples means for the intercept α and the control parameters βctrl,

where the error lines indicate the 5th and the 95th quantiles.

Logistic Model with ME

βpot βspd

Figure 6: Catterpillar plots of the posterior samples means for the potential βpot and speed βspd parameters of

the logistic model with ME, where the error lines indicate the 5th until the 95th quantiles.

In Figure 7 we visualize the potential and speed parameters as a joint distribution per media

channel to further analyze the ME component. This figure clearly shows that the three methods

are able to capture similar posterior sample means. However, we see a clear difference in the

posterior covariance structure between the methods. In particular, ADVI-IS is able to capture

similar dependencies as the NUTS, which can be seen by the similar contour lines. On the contrary,

ADVI has smaller dependencies between the potentials and speeds compared to ADVI-IS and the

NUTS, as can be see by the denser contour lines. These results thus imply that ADVI-IS is able

to replicate the joint distribution between the potential and speed parameters of the NUTS.
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Figure 7: Contour plots of the joint distribution between the potential βpot and βspd parameters for the logistic

model with ME, where the NUTS is assumed to produce the true joint distributions.

Lastly, in Figure 8 we show the ME curves of each media channel. In particular, this figure

shows that ADVI produces worse ME curves for media 2 and media 4 compared to ADVI-IS and

the NUTS, while producing similar ME curves for the other medias. On the other hand, ADVI-IS

is able to produce a better ME curve for media 1, while producing similar ME curves for the

other media compared to the NUTS. These results thus imply that ADVI-IS produces the best

ME curves, which means that ADVI-IS is able to outperform the NUTS in terms of estimating

the ME component.

Figure 8: Media effect curves for the five different simulated media channels.

In short, these results shows us that ADVI is not able to capture any posterior covariance
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and correlation structure, while ADVI-IS is able to capture a similar structure as the NUTS. The

lack of the covariance structure in the parameter estimates of ADVI causes it to have difficulties

estimating the ME component. Furthermore, the similar posterior quantiles between ADVI-IS and

the NUTS imply that these two methods produce posterior samples from a similar distribution,

which shows us that ADVI-IS can be used a replacement of NUTS. Moreover, ADVI-IS produces

similar ME curves as the NUTS. Except for Media 1, where we see that ADVI-IS produces a

better ME curve than the NUTS. This means that ADVI-IS could replace and even outperform

the NUTS in terms of estimating the ME component. This is especially useful, since ADVI-IS

scales better for complex models or large scale data sets.

5 Empirical Study

The simulation study in Section 4 shows us that ADVI-IS is able to outperform NUTS in terms

of run time performance and scaling capabilities, while producing similar or even better posterior

samples. ADVI-IS thus seems to be a viable alternative to the NUTS. To validate whether ADVI-

IS is indeed a viable alternative to the NUTS, we consider an empirical study, where the data is

provided by Nielsen (2022). The provided data is considered to be reliable as Nielsen is a large

global data analytics conglomerate that focuses on media research and measurements.

In particular, Nielsen provides this research with their Nielsen People Meter (NPM) data,

where households participate in a panel for a small compensation. This allows Nielsen to install

a smart meter in their households, which obtains accurate data of the viewing behavior of the

respondents from all the households. The pre-processing of the used empirical data set is further

described in Section 5.1, where the results of the empirical study are discussed in Section 5.2.

5.1 Empirical Data Set

The NPM data contains information of multiple television channels in the United States. However,

this research only focuses on the Hallmark channel, since it would be computationally infeasible

to consider the data of all the channels for the implemented estimation methods.

In particular, we investigate the viewing behavior of households for 10 different Christmas

movies, which are aired in the time period of November 2020 until December 2020. This part of

the NPM data set contains 66 variables and 170,750 observations after the respondent and variable

selections described in Sections 5.1.1 and 5.1.2 respectively. Moreover, the 170,750 observations

consists of 17,075 respondents each with one observation per movie.

5.1.1 Respondent selection

In practice, the NPM data set is continuously changing with respondents dropping in and out

at any given time. This means that not all respondents in the NPM data set are relevant, since

individuals that were only part of the panel for a few days are not likely to be representative for

the entire sample due to the lack of information about these respondents.

24



For this reason, Nielsen determines a subset of the NPM data set with only respondents that

are representative for the entire population. This process is called unification, where Nielsen

unifies the data by only considering respondents that are present in the panel for at least 75% of

the complete measurement period.

5.1.2 Variable Selection and Preprocessing

The tune-in is the dependent variable for our models, which is defined as a binary variable equal

to 1 if the duration of watching a movie is longer than 6 minutes and equal to 0 otherwise.

Furthermore, a detailed description of the explanatory variables from the Hallmark data set is

described in Appendix B. These variables of the Hallmark data set were selected by Nielsen

through the evaluation of partial dependence plots obtained with Gradient Boosting Machines

(GBM) (Natekin and Knoll, 2013). In particular, we can categorize the explanatory variables

intro three main groups:

• Social Demographics (xsd): this group contains 17 variables about the characteristics of

the respondents, such as the age or ethnicity.

• Advertisement Exposures (xexp): this group contains 24 variables about the number

of advertisement exposures that a respondent receives regarding a movie. This number is

based on the media channel, promotion type and the recency, where the recency indicates

how long ago a respondent got exposed to a promotion relative to the day of the premiere

of the movie.

• Viewing Behavior (xvb): this group contains 25 variables about the viewing behavior of

respondents, such as the duration of watching a certain channel, show or genre.

However, the advertisement exposures have many zero valued columns and rows in xexp for each

movie as can be seen in Table 2. In particular, we group the exposure variables of each promotion

type and recency per media channel to resolve the sparsity in the columns. This results in a total

of six combined advertisement exposure variables without empty columns corresponding to six

different media channels: cross, dd, bcsimul, comcast, locals and on. Each of these media channels

correspond to different networks, who promote the specific advertisements. The groupings and

networks for each media channel are described in Tables 7 and 8 of Appendix B respectively.

One of the main goals of Nielsen is to estimate the ME curves properly, which are estimated

using the advertisement exposures xexp. In table 2 we can see that the majority of the respondents

who tune in are exposed to advertisements, hence the low percentage of empty rows. On the con-

trary, the majority of the respondents who do not tune in are not exposed to any advertisements,

hence the relatively high percentage of empty rows. Thus, the respondents who tune in have the

most information regarding the ME curves, as they have the least sparse advertisement exposures.

However, on average only 1.72% of the respondents tune in to the specific movie, which implies

that the advertisement exposure variables are highly sparse on average.
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The sparsity of the advertisement exposures could cause the estimation of the ME component

to be difficult for our methods due to the lack of information. For this reason, we extend the

data set by bootstrapping respondents who tune in to movies until there is an equal proportion

between the two classes. It has to be noted that this bootstrapped data set is not used to obtain

actual inferences about the effects of advertisement exposures on the tune-in of respondents, since

now it has a bias for respondents who tune-in to a specific movie. Instead, this bootstrapped data

is used such that we can determine whether the sparsity of the advertisement exposures has a

negative effect on the estimation of the ME curves by our methods.

Table 2: The missing values of the 24 Advertisement Exposures xexp variables for each movie.

Movie ID

1 3 13 17 19 22 26 28 29 35 Average

Number of empty columns in xexp 10 10 6 7 7 8 7 4 4 7 7

% Respondents with tune-in=1 1.57% 1.50% 1.78% 1.93% 1.75% 1.21% 1.75% 2.35% 1.62% 1.69% 1.72%

% Respondents with tune-in=0 98.43% 98.50% 98.22% 98.07% 98.25% 98.79% 98.25% 97.65% 98.38% 98.31% 98.29%

% Empty rows in xexp if tune-in=1 10.82% 5.08% 4.93% 2.43% 5.35% 3.40% 3.34% 1.24% 1.81% 4.15% 4.26%

% Empty rows in xexp if tune-in=0 84.95% 81.12% 74.34% 77.15% 76.81% 76.37% 76.10% 68.07% 73.19% 72.85% 76.10%

5.2 Empirical Results

In this section we only present the results for the movie with ID 28, since the results of other

movies are similar to each other. Moreover, this movie has the lowest percentage of empty rows

if a respondent tunes in and it also has the highest tune-in percentage. This movie thus requires

the least number of bootstrap samples for the bootstrapped Hallmark WE model. In particular,

the regular Hallmark WE model has 17,075 observations, while the bootstrapped Hallmark WE

model has 33,346 observations.

Furthermore, we set the number of posterior samples M = 1.000 and we perform three main

analyses on these Hallmark models similarly as the simulation results in Section 4.2. Specifically,

in Section 5.2.1 we evaluate the run time performance of the Hallmark models, in Section 5.2.2

we analyze the effects of the number of IS repeats S and the blowup λ on ADVI-IS and in Section

5.2.3 we compare the practical performances between ADVI, the optimal ADVI-IS and the NUTS.

5.2.1 Run Time Performance

Figure 9 shows that ADVI and ADVI-IS are able to converge faster than the NUTS for both

Hallmark models. However, ADVI and ADVI-IS are not able to converge to the same predictive

likelihood as the NUTS for the Hallmark WE model, while they do converge to the same predictive

likelihood as the NUTS for the bootstrapped Hallmark WE model.

These results indicate that ADVI and ADVI-IS have difficulties estimating the ME component

of the Hallmark WE model, since the corresponding advertisement exposures are highly sparse.

Thus, ADVI-IS could be a more efficient alternative than the NUTS for the bootstrapped Hallmark

WE model in terms of predictive performance, while the Hallmark WE model should be further

analyzed to determine whether ADVI-IS could be used as an alternative to the NUTS.
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Hallmark WE model Bootstrapped Hallmark WE model

Figure 9: The average log predictive likelihood against the running time in seconds of NUTS and the ADVI-IS,

where the line markers indicate that ADVI-(IS) has converged within ± 2% of the highest average log predictive

likelihood of the NUTS. Note that predictive likelihood is calculated using 70% of the observations are used as

training data and the remaining 30% as test data. Moreover, we run the models and methods three times using the

same seed to obtain an accurate representation of the running time.

5.2.2 Effects of the number of IS repeats S and the blowup λ on ADVI-IS

First, we analyze the posterior covariance and correlation structure to determine whether ADVI-IS

improves the posterior covariance and correlation structure of ADVI for the Hallmark models. In

Figure 10 we show that the covariance and correlation Frobenius norms are not improved as we

increase the number of repeats or the blowup.

Hallmark WE Model

Bootstrapped Hallmark WE Model

Figure 10: The Frobenius norms of the correlation and covariance matrices between the NUTS and ADVI-IS

respectively, where the NUTS is assumed to produce the true covariance and correlation matrices. Note that S = 0

corresponds to ADVI without blowup.
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In particular, the covariance Frobenius norms shows a high peak for the first IS repetition,

whereafter it converges quickly to the same value as ADVI. This indicates that the first repetition

causes too high covariances, which is due to first repetition having the most change in the approx-

imate posterior distribution, since it changes from multiple independent Gaussians distributions

to a single multivariate Gaussian distribution.

Table 3 shows the optimal blowup and number of repeats for the Hallmark WE models based

on the lowest posterior deviation between the approximate posterior distribution and the actual

posterior distribution, which are shown in Figure 11. This figure shows that the approximate

posterior distribution of ADVI-IS is not able to converge to the actual posterior distribution.

Hallmark WE Model Bootstrapped Hallmark WE Model

Figure 11: The posterior deviation σpost between the importance function of ADVI-IS and the posterior density

function for different blowups and number of repeats, where the cross marker indicates the lowest deviation. Note

that S = 0 corresponds to ADVI without blowup.

Table 3: Optimal number of IS repeats S∗ and blowup λ∗ for the Hallmark and bootstrapped Hallmark WE models

based on the lowest posterior deviation σpost.

Model

Hallmark WE Model Bootstrapped Hallmark WE Model

S∗ 17 21

λ∗ 2.5 1.0

The multivariate Gaussian distribution of ADVI-IS is thus not flexible enough to capture

the actual posterior distribution of both the bootstrapped and original Hallmark WE models,

which can also be seen in Figure 12. Optimally all the normalized weights are in the [0.8, 1.0]

bin in the, but almost no normalized weights are in the [0.8, 1.0] bin, while the majority of the

weights are in the [0.0, 0.4] bin and a few weights are in the [2+] bin. The approximate posterior

distribution thus produces weights with a low probability for large weights and a high probability

for small weights, which implies that the tails of the multivariate Gaussian distribution are too

light compared to the actual posterior distribution as is discussed by Greenberg (2012). These

weights cause the posterior moments obtained from the IS procedure to be mainly based on the

few posterior samples with the highest weights, which results in highly inefficient IS repetitions

that are not able to converge to the actual posterior distribution.
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Hallmark WE Model Bootstrapped Hallmark WE Model

Figure 12: Barplots of normalized weights times the number of posterior samples M = 1.000 obtained from the

approximate posterior distribution of the optimal ADVI-IS.

5.2.3 Practical performance

Although the approximate posterior distribution of ADVI-IS is not able to capture the actual

posterior distribution, we can still show how the optimal ADVI-IS would perform in practice. In

particular, first we show in Figure 13 the posterior correlation and covariance of ADVI and the

optimal ADVI-IS against those of the NUTS.

Hallmark WE Model

Bootstrapped Hallmark WE Model

Figure 13: The comparison between the VI and NUTS correlations and the comparison between the VI and NUTS

covariances, where the NUTS is assumed to produce the true covariance and correlation matrices. The dashed black

line corresponds to a 45 degrees line through (0,0).
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Figure 13 shows one of the main reasons that causes ADVI-IS to be unable to capture the

posterior distribution, which is the inability to capture the posterior covariance correlation struc-

ture of the Hallmark models. These results show that similarly to ADVI, ADVI-IS almost does

not have any covariance structure. Moreover, ADVI-IS has some correlation structure, but it

tends to overestimate this structure, which causes the relatively high correlation Frobenius norms.

Nonetheless, the inability to capture the posterior covariance structure of ADVI and ADVI-IS does

not influence the log predictive performance much as seen in Figure 9, since the sample means of

all the parameter estimates are still relatively close to the sample means of the NUTS as can be

seen in the potential and speed catterpillar plots of Figure 14 and the control catterpillar plots

of Figure 20 in Appendix A.2. Moreover, although the potential and speed estimates of ADVI-IS

lack a variance structure, we do see that the estimates of ADVI-IS are substantially closer to the

estimates of the NUTS compared to the estimates of ADVI. This indicates that ADVI-IS is able

to estimate the ME component better than ADVI.

Hallmark WE model Bootstrapped Hallmark WE model

Figure 14: Catterpillar plots of the posterior samples means for the social demographic potential βpot and speed

βspd parameters, where we assume that the NUTS produces the true posterior sample means and the error lines

indicate the 5th and 95th quantiles

Furthermore, we analyze the ME component to determine whether ADVI-IS is preferred over

ADVI or the NUTS for the Hallmark models, since the ME component is the most difficult and

important part to estimate. The catterpillar plots in Figure 14 show three important observations.

First, ADVI-IS has little variance for the potential and speed parameters compared to ADVI and

the NUTS, which indicates that ADVI-IS focuses on estimating the correct posterior mean, rather

than the posterior covariance and correlation structure. Secondly, ADVI has difficulty estimating

the potential and speed parameters for the original Hallmark WE model, while ADVI-IS is able

to estimate similar values as the NUTS. Thirdly, ADVI, ADVI-IS and the NUTS are all able

to estimate similar values for the bootstrapped Hallmark model. The latter two results imply

that ADVI has difficulty estimating the ME curves, if the corresponding advertisement exposure

variables are sparse. In this case, the repeated IS procedure of ADVI-IS is able to improve the
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posterior parameter estimates to be closer to the NUTS estimates.

The potential and speed parameters can be visualized as contour plots as shown in Figure 15.

These contour plots clearly show that ADVI-IS focuses on estimating the true posterior mean,

while ADVI has difficulty estimating this mean for the comcast and dd media channels of the

original Hallmark model. On the contrary, ADVI is able to find the true posterior mean for the

bootstrapped Hallmark model. In particular, ADVI has less dense contour lines than ADVI-IS for

the bootstrapped Hallmark WE model, which indicates that the IS repeats cause the approximate

posterior distribution to trade off its covariance structure for a more concentrated mean.

Hallmark WE Model

Bootstrapped Hallmark WE Model

Figure 15: Contour plots of the joint distribution between the potential βpot and βspd parameters for the six

different media channels: comcast, locals, dd, bcsimul, cross and on, where the NUTS is assumed to produce the

true joint distributions.
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In Figure 16 we show the ME curves of each media channel for the Hallmark models. This

figure shows that ADVI is not able to estimate similar ME curve as the NUTS for every media

channel of the Hallmark WE model, while ADVI-IS is able to estimate similar ME curve as the

NUTS for all media channels except for the cross and bcsimul media channels. Thus, ADVI-IS

outperforms ADVI in terms of estimating the ME curve for the Hallmark WE model. On the

other hand, we see that both ADVI and ADVI-IS produce similar ME curves as the NUTS for the

bootstrapped Hallmark WE model, where ADVI-IS performs better than ADVI for the locals and

cross media channels. These results imply that the repeated IS procedure substantially improves

the estimated ME curves of ADVI, especially if the advertisement exposures are sparse.

Hallmark WE Model

Bootstrapped Hallmark WE Model

Figure 16: Media effect curves for the six different media channels of the Hallmark and bootstrapped Hallmark

WE model, where the NUTS is assumed to produce the true ME curves.
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In short, ADVI and ADVI-IS are scalable and could outperform NUTS in terms of convergence

rate. However, the Multivariate Gaussian used in ADVI-IS is not complex enough to capture the

actual posterior covariance and correlation structure of the Hallmark models. Nonetheless, ADVI-

IS is able to reliably estimate the posterior potential and speed parameter estimates. Especially

when the corresponding advertisement exposures are sparse, since in this case the repeated IS

procedure substantially improves the initial posterior mean of ADVI to be closer to the posterior

mean of NUTS, which can also be seen by the superior ME curves of ADVI-IS compared to ADVI

for the original Hallmark WE model.

6 Concluding Remarks

In this section we provide the findings of our research. First, a summary of the research and the

concluding remarks are provided in Section 6.1. Then limitations and possible extensions of our

methods for future research are discussed in Section 6.2

6.1 Conclusion

In this research we investigated whether the optimal approximate posterior distribution of ADVI

can be improved by plugging it into a repeated IS procedure. In particular, the main goal is to

obtain a method that is faster than the NUTS, while having comparable results to the NUTS. To

investigate this we performed a simulation and empirical study to answer the following research

question: To what extent could a repeated IS procedure improve the optimal variational density of

ADVI to achieve more accurate posterior estimates comparable to those of the NUTS?.

The results of the simulation and empirical study show that the running time of the NUTS is

more prone to the complexity and scale of the model than ADVI-IS. This implies that ADVI-IS is

thus a good potential replacement of the NUTS depending on the performance of the approximate

posterior distribution of ADVI-IS.

Moreover, the simulation study shows that increasing the number of IS repeats or slightly

increasing the blowup parameter improves the quality of the approximate posterior distribution.

In particular, the optimal approximate distribution of ADVI-IS is able to obtain comparable

posterior estimates, covariances and correlations to the NUTS for all the simulated models, while

ADVI fails to capture the posterior covariance correlation structure due to the mean-field property.

The simulation results further show that ADVI-IS outperforms ADVI in terms of estimating the

ME component. Specifically, ADVI-IS estimates the ME component comparable to the NUTS. In

these simulated models ADVI-IS could thus be used as an efficient replacement of the NUTS.

However, the empirical study shows that ADVI-IS is not able to capture the posterior dis-

tribution for both the original Hallmark WE model and the bootstrapped Hallmark WE model.

This can be explained by the too light tails of the multivariate Gaussian distribution, which causes

large importance weights with low probability and small importance weights with high probability.

This implies that the IS repetitions practically only use the few posterior samples with the highest
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weights to obtain the posterior moments, which is highly inefficient and thus cause ADVI-IS to

not be able to capture the actual posterior distribution.

Nonetheless, the empirical results do show that ADVI-IS estimates the potential and speed

parameters of the ME component substantially better than ADVI for the original Hallmark WE

model. In particular, ADVI-IS produces ME curves almost identical to the ME curves of the NUTS

for all the media channels, except for the bcsimul and cross media channels. Thus, although ADVI-

IS is not able to capture the covariance and correlation structure of the Hallmark WE model, it

is at least able to capture the ME component reasonably well.

In conclusion, the repeated IS procedure improves the optimal variational distribution of ADVI

by achieving posterior means, covariances and correlations more comparable to the NUTS. In

particular, the simulation study shows that ADVI-IS is able to capture the complex posterior dis-

tribution of the WE models, while the empirical study shows that ADVI-IS handles sparse adver-

tisement exposures better than ADVI. However, ADVI-IS has difficulties capturing the posterior

distribution of the empirical WE models due to the high complexity of these models. Nonetheless,

in this case ADVI-IS is still preferred over ADVI, since ADVI-IS is able to accurately estimate the

ME component of the WE model. Thus, ADVI-IS could be used to obtain fast preliminary results

of the ME component for complex and large scale models, since the running time of ADVI-IS

scales better to the complexity and scale of the model compared to the NUTS.

6.2 Limitations and Future Research

This research focuses on efficient estimation methods for Bayesian logistic models, specifically, the

Hallmark WE model of Nielsen (Nielsen, 2022). A limitation of this model is the corresponding

data set. Although the Hallmark data set is fairly large, the advertisement exposure variables are

highly sparse. This sparsity cause the estimation methods to have difficulty learning the nonlinear

ME component of the model. To possibly mitigate this problem, we suggest to incorporate a

hierarchical structure for each movie of the data set into the logistic model, since this results in

more information in the data regarding the ME curve.

Furthermore, the results have shown that the used multivariate Gaussian distribution of ADVI-

IS is not flexible enough to capture the actual posterior distribution in the empirical study. We

thus propose to further investigate this repeated IS procedure with a more flexible distribution such

as the Student-T distribution, which has heavier tails than the Gaussian distribution. Moreover,

it could be worthwhile to investigate the use of mixtures of Student-t distributions in this repeated

IS procedure, since the target distribution could be multimodal. In particular, Ardia et al. (2009)

have already done research on using mixtures of Student-t Distributions in a regular IS procedure.
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A Additional Results

A.1 Simulation Study: Barplots of the Importance Weights

In Figures 17, 18 and 19 we present the normalized importance weights times M for the linear,

logistic and logistic with ME models respectively. If the importance function performs well, then

the bar in the range [0.8, 1.2] should be the highest, since an optimal importance function implies

that
Mwpost(θ[m])∑M
m=1 wpost(θ[m])

= 1 ∀m = 1, . . . ,M as discussed in Section 3.4.3.

In particular, these figures show that frequency of and around the [0.8, 1.2] bar increases, as

the number of repeats S increases. This implies that the importance function improves as the

number of repeats increases. These results thus visualize how the posterior deviation σpost in

Figure 3 from Section 4.2.2 decreases, as S increases.

Linear Model

Figure 17: Barplot of the normalized importance weights times the number of posterior samples for the linear

model.
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Logistic Model

Figure 18: Barplot of the normalized importance weights times the number of posterior samples for the logistic

model.

Logistic Model with ME

Figure 19: Barplot of the normalized importance weights times the number of posterior samples for the logistic

model with ME.

A.2 Empirical Study: Catterpillar Plots of the Control Parameters

The lack of the posterior covariance structure produced by the approximate posterior distribution

of ADVI-IS for the Hallmark WE models can be seen in Figure 20, where we barely see any variance

of the posterior sample means for the social demographical and viewing behavior parameters.
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Hallmark WE Model

βsd βvb

Bootstrapped Hallmark WE Model

βsd βvb

Figure 20: Catterpillar plots of the samples means for the social demographic βsd (left column) and viewing

behavior βvb (right column) parameters, where the error lines indicate the 5th and 95th quantiles.
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B Data Description

Table 4: Description of the variables in the social demographics data xsd in the Hallmark data set.

Social Demographics

Variable Description

sd age [43,54] Dummy for age between 43 and 54

sd education [other] Dummy for education: other

sd countysize [b] Dummy for the country size: b

sd countysize [c] Dummy for the country size: c

sd countysize [d] Dummy for the country size: d

sd hhincome [100k,) Dummy for a household income of 100.000 or more.

sd hhincome [50k,100k] Dummy for a household income between 50.000 and 100.000

sd hhsize [2,4] Dummy for a household size between 2 and 4

sd languagespoken [onlyenglish] Dummy for the language spoken: only English

sd languagespoken [somespanish] Dummy for the language spoken: some Spanish

sd majorterritory [east] Dummy for major territory: east

sd majorterritory [south] Dummy for major territory: south

sd majorterritory [metropolitan] Dummy for major territory: metropolitan

sd occupation [professional/managerial] Dummy for occupation: professional/managerial

sd occupation [unemployed] Dummy for occupation: unemployed

sd resprace [other] Dummy for ethnicity: other

sd resprace [white] Dummy for ethnicity: white
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Table 5: Description of the variables in the viewing behavior data xvb in the Hallmark data set.

Viewing Behavior

Variable Description

vb on inherited viewing Total watching minutes, 15 minutes prior to the premiere on the Hallmark channel

vb put inherited viewing Total watching minutes, 15 minutes prior to the premiere

vb tercile group [midheavy] Dummy for total watching minutes for the midheavy tercile group

vb total hallmark drama group [low] Dummy for total watching minutes of the Hallmark Drama channel in the low group

vb total hallmark drama group [high] Dummy for total watching minutes of the Hallmark Drama channel in the high group

vb total hmm group [low] Dummy for total watching minutes of the Hallmark Movies & Mysteries channel in the low group

vb total hmm group [high] Dummy for total watching minutes of the Hallmark Movies & Mysteries channel in the high group

vb total dish group [low] Dummy for total watching minutes of the Dish channel in the low group

vb total dish group [high] Dummy for total watching minutes of the Dish channel in the high group

vb total broadcast cable group [low] Dummy for total watching minutes of the Broadcast & Cable channel in the low group

vb total broadcast cable group [high] Dummy for total watching minutes of the Broadcast & Cable channel in the high group

vb total directv group [low] Dummy for total watching minutes of the DirectTV channel in the low group

vb total directv group [high] Dummy for total watching minutes of the DirectTV channel in the high group

vb total comcast group [low] Dummy for total watching minutes of the Comcast channel in the low group

vb total comcast group [high] Dummy for total watching minutes of the Comcast channel in the high group

vb total simulmedia group [low] Dummy for total watching minutes of the Simulmedia channel in the low group

vb total simulmedia group [high] Dummy for total watching minutes of the Simulmedia channel in the high group

vb total on prime prop group [low] Dummy for the proportion of total watching minutes on the Hallmark channel

during prime time in the low group

vb total on prime prop group [high] Dummy for the proportion of total watching minutes on the Hallmark

during prime time in the high group

vb put weekday prime group [low] Dummy for the proportion of total watching minutes in weekdays during prime time

in the low group

vb put weekday prime group [mid] Dummy for the proportion of total watching minutes in weekdays during prime time

in the mid group

vb put weekday prime group [high] Dummy for the proportion of total watching minutes in weekdays during prime time

in the high group

vb other dummy hmm Dummy for watchingother category on the Hallmark Movies & Mysteries channel

vb prior pct hallmark ln Prior percentile of watching the Hallmark channel for the lightnon tercile

vb prior pct hallmark mh Prior percentile of watching the Hallmark channel for the mediumheavy tercile
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Table 6: Description of the variables in the advertisement exposures data xexp of the Hallmark data set.

Advertisement Exposures

Variable Description

exp cross before general Exposures for the Hallmark channel via the cross media channel during the whole campaign period

exp cross before specific Exposures for the specific movie via the cross media channel during the whole campaign period

exp cross premiereweek general Exposures for the Hallmark channel via the cross media channel a week before the premier of the movie

exp cross premiereweek specific Exposures for the specific movie via the cross media channel a week before the premier of the movie

exp dd before general Exposures for the Hallmark channel via the dd media channel during the whole campaign period

exp dd before specific Exposures for the specific movie via the dd media channel during the whole campaign period

exp dd premiereweek general Exposures for the Hallmark channel via the dd media channel a week before the premier of the movie

exp dd premiereweek specific Exposures for the specific movie via the dd media channel a week before the premier of the movie

exp bcsimul before general Exposures for the Hallmark channel via the bcsimul media channel during the whole campaign period

exp bcsimul premiereweek general Exposures for the Hallmark channel via the bcsimul media channel a week before the premier of the movie

exp bcsimul premiereweek specific Exposures for the specific movie via the bcsimul media channel a week before the premier of the movie

exp comcast before general Exposures for the Hallmark channel via the comcast media channel during the whole campaign period

exp comcast premiereweek general Exposures for the Hallmark channel via the comcast media channel a week before the premier of the movie

exp comcast premiereweek specific Exposures for the specific movie via the comcast media channel a week before the premier of the movie

exp locals before general Exposures for the Hallmark channel via the locals media channel during the whole campaign period

exp locals before specific Exposures for the specific movie via the locals media channel during the whole campaign period

exp locals premiereweek general Exposures for the Hallmark channel via the locals media channel a week before the premier of the movie

exp locals premiereweek specific Exposures for the specific movie via the locals media channel a week before the premier of the movie

exp on before general Exposures for the Hallmark channel via the on media channel during the whole campaign period

exp on before specific Exposures for the specific movie via the on media channel during the whole campaign period

exp on premiereday general Exposures for the Hallmark channel via the on media channel a day before the premier of the movie

exp on premiereday specific Exposures for the specific movie via the on media channel a day before the premier of the movie

exp on premiereweek general Exposures for the Hallmark channel via the on media channel a week before the premier of the movie

exp on premiereweek specific Exposures for the specific movie via the on media channel a week before the premier of the movie

Table 7: Description of the combined advertisement exposures variables.

Combined Advertisement Exposures

Variable Applied Transformation

exp cross exp cross before general + exp cross before specific + exp cross premiereweek general + exp cross premiereweek specific

exp dd exp dd before general + exp dd before specific + exp dd premiereweek general + exp dd premiereweek specific

exp bcsimul exp bcsimul before general + exp bcsimul premiereweek general + exp bcsimul premiereweek specific

exp comcast exp comcast before general + exp comcast premiereweek general + exp comcast premiereweek specific

exp locals exp locals before general + exp locals before specific + exp locals premiereweek general + exp locals premiereweek specific

exp on exp on before general + exp on before specific + exp on premiereday general +

exp on premiereday specific + exp on premiereweek general + exp on premiereweek specific

Table 8: The different networks that each media channels represents.

Media Channel Networks

comcast The Comcast Corporation

locals All the local networks in its region

dd Dish media or DirecTV

bcsimul Broadcast cable or Simulmedia

cross The Hallmark Mysteries & Movies channel or the Hallmark Drama channel

on The Hallmark channel
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C Code Description

Table 9: Python classes for the implemented methods and NumPyro models

Methods Description

numpyro base.py Base class which all the method classes inherit from

numpyro nuts.py Class that implements the NUTS via NumPyro

numpyro advi.py Class that implements the ADVI via NumPyro

numpyro advi is multi normal.py Class that inherits numpyro advi.py by adding the

repeated IS procedure for a Multivariate Gaussian

NumPyro Models Description

linear covariance.py Simulated linear model in NumPyro

logit covariance.py Simulated logistic model in NumPyro

logit covariance me.py Simulated logistic model with ME in NumPyro

hallmark WE.py The Hallmark WE model with empirical data in NumPyro

models.py Class that initializes all the above models in classes

Table 10: Main and run classes to configure and run the methods, models and plots.

Main Classes Description

main.py Main class to implement the methods on all models

main time.py Main class to measure the time performances of the methods for all models

main computation.py Main class to obtain the results from the trained models from main.py

main plot.py Main class to obtain the relevant plots using the results

from main computation.py

Run Classes Description

run.py Class to run main.py

run computation.py Class to run main computation.py

run plot.py Class to run main plot.py

run time.py Class to run main time.py

Table 11: Utility classes.

Utility Classes Description

utils.py Class containing helper functions for everything

utils plot.py Class containing helper functions for plotting purposes
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D Abbreviations

Table 12: Description of the abbreviations used in this research.

Abbreviation Definition

Nielsen The Nielsen Company

NPM Nielsen People Meter

ADVI Automatic Differentiation Variational Inference

CAVI Coordinate Ascent Variational Inference

SVI Stochastic Variational Inference

KL Kullback-Leibler

ELBO Evidence Lower BOund

MCMC Markov Chain Monte Carlo

HMC Hamiltonian Monte Carlo

NUTS No-U-Turn Sampler

IS Importance Sampling

WE Watch Effect

ME Media Effect
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