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Abstract

Within the postal and parcel market, the tight labour market, decline in mail volumes, and the
strivings to reduce emissions call for innovative supply chain models to maintain an affordable,
high-quality network for last-mile delivery. Especially car-delivery areas within mail distribution,
pressurise the sustainability of the current supply chain networks. This research explores a new
supply chain model for PostNL, a large Dutch postal and parcel company, whereby we integrate
mail from car-delivery areas into the parcel network. We build a model to optimise the new delivery
areas to test the benefits of the integration. We create a column generation-based approach with
two RMP methods to find the best integer solution to the Set Covering constraints and two Pricing
methods to construct the new delivery areas. We show that it is best to use an exact RMP model
to find the integer solution and a Randomised Constructive heuristic to create the delivery areas.
With this combination, we develop new delivery areas. A central finding of the experiments is that
at most 0.35 of the total delivery time is spent delivering mail in a combined delivery area. If the
fraction increases, it is better to have the mail in a separate mail delivery area. We find substantial
savings in our case study of AC560 per day on quiet days for a hybrid delivery model in which both
integrated and separate delivery is possible. However, on busy days it remains best to deliver both
mail and parcel separate. Above all, our Randomised Constructive heuristic creates a basis allowing
the generation of all possible delivery areas. We use the delivery areas as input to a commercial
solver, which we reason is more effective than a column generation approach.
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Preface

I want to use the preface to share my personal development and learnings while writing my thesis.
I hope that writing it at the beginning of my thesis can help some of you at the start of writing
yours.

My first important lesson is to think before you read. I highly value the written word, especially
in the context of academics. Immediately reading about what others did makes your focus shift
to the best solution. My advice is first to think for yourself. What are the requirements of the
solution? Is there a basic, straightforward approach to get a first answer to your research question?
If so, please implement this approach. It shows you what data you need and gives a first answer
to your research question. Reading literature afterwards allows you to be more critical about the
limitations of the proposed models since you know what you need. Moreover, as companies do
not always work with these complicated models, you can show the added value of using advanced
models instead of simple calculations.

My second important lesson is that you cannot change the world in half a year and are neither
guaranteed to make a significant impact with your outcomes. I think it is better to write your thesis
with a development goal instead of a result-oriented goal. Think of what you want to learn and try
if you can implement that within the process. I liked to get to know PostNL and understand their
view on integrated delivery. The part of my thesis I most enjoyed was talking with different people,
from operations to directors, to understand their opinions. Their opinions hardly influenced this
thesis, but they taught me how organisations work and what drives people, a valuable insight I will
take with me during my career. Another consequence of a development goal is to let easier go of
the urge to remove unfavourable experiments. Your approach might not be beneficial, or not in all
situations, but that is alright. I believe the actual results are irrelevant to the quality of a thesis.

I did not necessarily enjoy every week of writing this thesis, but I am happy with what I have
learned over the past half a year. I hope you will learn something from my thesis as well!
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1 Introduction

PostNL is a large Dutch postal and parcel company which the government has appointed to deliver
mail to every resident in the Netherlands. For PostNL, it is essential to have an accessible, reliable
and affordable network to deliver mail and parcels. The tight labour market, decline in mail volumes,
and the striving of PostNL to reduce emissions pressurise these goals. To maintain its accessible,
reliable and affordable network, PostNL is innovative to increase the efficiency of the network. An
opportunity to boost efficiency is to keep the mail delivery and parcel delivery no longer separate
but to integrate the delivery of mail and parcels. If combining the networks leads to a more efficient
network, it resolves some of the challenges brought by the tight labour market and helps reduce
the number of daily kilometres, which will reduce delivery costs, thus alleviating the costs of an
accessible and reliable network.

To explore this possibility, we need to understand the current delivery structure. We first discuss
the current delivery situation in Section 1.1, regarding the mail and parcel network’s characteristics
and volume developments. We conclude this subsection by identifying the current challenges within
the networks. Based on our understanding of the current delivery network and its challenges,
we present a new convenient supply chain model for PostNL in Section 1.2, which includes mail
and parcel delivery integration. In Section 1.3, we define our main research question to discover
whether the new supply chain model leads to an increase in efficiency. To investigate the effects of
the new supply chain model, we need to know the division of the new delivery areas. We formulate
subquestions for our research, focusing on making the best-suited model to create new delivery
areas. Moreover, we define our assessment criteria for measuring the benefits of the new supply
chain model.

1.1 State of the art

We first present the current supply chain network for the mail and parcel network. After that, we
discuss the volume developments in both business units. We conclude this subsection by identifying
the current challenges within the delivery.

1.1.1 Mail delivery network

In the Netherlands, everyone must be able to receive mail, as was agreed in the universal service
obligation. PostNL is responsible for carrying out this service obligation in the Netherlands. To do
so, PostNL delivers mail five days a week: from Tuesday to Saturday. Another agreement is that
everyone must have a letterbox nearby, and 95% of the mail received in these letterboxes by PostNL
must be delivered the next day (PostNL).

We now discuss the supply chain that enables PostNL to satisfy the agreements of the universal
service obligation. Figure 1 gives a graphical overview of the sorting and distribution process, which
we now consider in more detail. The first step to mail delivery is the collection phase, in which
PostNL collects all letters and cards from retailers, mailboxes on the street, or specific clients.
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Figure 1: A graphical overview of the mail sorting and distribution process. From left to right, it shows
the chronological steps of the mail supply chain. The vehicles indicate the size of the different flows.

Figure 2: A. Overview of which sorting centres deliver which zip codes. B. Density of addresses in the
Netherlands per municipality. A dark blue colour indicates an average of less than 500 addresses/km2, grey
500-1000 addresses/km2, yellow 1000-1500 addresses/km2, orange 1500-2500 addresses/km2 and red 2500
addresses/km2 or more (CBS (2021)).

The collectors bring the mail to the nearest sorting centre for mail, of which there are five in
the Netherlands. In two sorting rounds, the mail is in the correct order for the delivery tour of
every mail deliverer. The first shift sorts the letters and cards into five groups, one for each sorting
centre. Each sorting centre services a different range of zip codes; see Figure 2A. After PostNL
transports the mail to the destination sorting centre, the second round of sorting starts. Within
two iterations of sorting, the mail is in the correct order for every mail deliverer. Part of the mail
sent is not suitable for the sorting machines and is sorted (partly) by hand and added later. The
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next step is distribution, where some mail is delivered to post office boxes. Most mail goes to one
of the approximately 2500 small depots, often garage boxes, where deliverers start their delivery.

A characteristic of mail delivery is its high delivery density. The mail delivery network contains
many depots, on average one depot per village or city, to fit the network to that characteristic. Due
to this structure, distances between deliveries and haul distances, the distance to get to the delivery
area, are short. In densely populated areas, these distances are even shorter. Mail is therefore
often delivered by foot or bike. Mail deliverers provide 92% of the addresses by bike or foot, 5% by
mopeds, and the final 3% by car.

PostNL decides the best vehicle for the delivery area based on the address density. As can be
seen in Figure 2B from CBS (2021), the address density in the Netherlands differs, ranging from
less than 500 addresses per square kilometre to more than 2500 addresses per square kilometre. The
north and northeast of the Netherlands contain mostly less than 500 addresses per square kilometre.
These sparsely distributed areas are often delivered by car as it takes relatively much time to get
to the following delivery location. Despite the use of cars, it takes more time and is more expensive
to travel to the next location than for bike, foot and moped delivery areas. The car delivery areas
are, therefore, the least efficient delivery areas.

1.1.2 Parcel delivery network

The structure of the parcel delivery network is similar to the mail delivery network, but both
networks are distinct. Parcel delivery starts with collecting parcels from retailers, specific clients,
the international stream and via the fulfilment centre of PostNL; this is an automatic location that
prepares the order for the customer.

Figure 3: A graphical overview of the sorting and distribution process of the parcels. From left to right, it
shows the chronological steps of the parcel supply chain. The vehicles indicate the size of the different flows.
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PostNL brings all these parcels to the nearest depot, sorting them based on their destination.
Trucks bring the roll containers with boxes to the destination depot, sometimes with an extra stop at
the cross-dock to merge smaller parcel streams with the same destination. At the destination depot,
PostNL sorts the parcels per route. The parcel deliverer places the sorted packages himself inside
the van and starts his delivery route after that. Figure 3 summarises the sorting and distribution
process by a graphical overview. Another characteristic of the parcel delivery network is that
subcontractors deliver part of the parcels. These are people or small companies hired by PostNL
to take care of the delivery of parcels. As PostNL does not employ these deliverers, PostNL has
no right to have complete control over their work activities. Therefore PostNL is not allowed to
create routes for these deliverers but only to assign delivery regions to them. This freedom, together
with the widespread working times, make that the parcel deliverers get a higher wage than mail
deliverers.

Parcels often include large volumes, and the network is about eight times as sparse as the mail
delivery network. Due to these characteristics, only about 30 parcel depots, large buildings near
the highway, are currently used. The most significant difference compared to the mail network is
that the distribution starts directly at these depots without an extra distribution step. With only
these few depots, the haul distances in the parcel delivery network are significantly higher than in
the mail delivery network. Therefore, PostNL always delivers parcels by vans. The van’s volume
and deliverer’s working hours can limit the number of packages assigned to each van.

1.1.3 Volume developments

We know the main characteristics of the supply chain model for both mail and parcel. We now
describe the volume developments for both networks. We first discuss the developments for the
volumes of parcel, after that for mail.

E-commerce had been growing steadily over the last couple of years but increased drastically
with the start of the Covid-19 pandemic. Online ordering became the sole option as all non-
essential shops had to close consecutively for at least a couple of months. The closure forced smaller
stores to establish or extend their webshop, enabling more online shopping opportunities. PostNL
expects that this change in the behaviour of customers is not only temporary but will have a lasting
impact. 85% of the growth increase is estimated to be due to recurring orders. The increase in
online shopping further enhanced the growth of parcel volumes over the last two years, as seen in
Figure 4A. The normalised earnings before income and taxes of parcels increased by 10.0%, from
AC209 million in 2020 to AC230 million in 2021 (PostNL (2022)).

Covid-19 also had an impact on the mail delivery by PostNL. With the limitations on physical
contact, people sent more cards to show attentiveness or support. The corona pandemic, combined
with the elections, led to a non-yearly recurrent increase in government mail, like vaccination invi-
tations, voting passes and many self-tests. These effects mainly opposed the overall decline in mail
volume, and the volume stayed approximately constant. PostNL assumes it cannot account on 70
million of these items for next year and expects the decline in volume to continue in the coming
year. In 2019 PostNL took over Sandd, which led to complete coverage of the postal market by
PostNL and an increase in volume. Figure 4B shows the evolution of the volume of mail. The
normalised earnings before income and taxes of mail in the Netherlands increased from AC96 million
to AC160 million in 2021, a growth of 66.7% (PostNL (2022)).

We observe two trends, leaving the effects of incidental changes out of consideration, the number
of parcels delivered increases, and the number of mail delivered decreases. Although it is unclear
for what time frame these trends will continue, PostNL expects them to persevere in the coming
years.
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Figure 4: A. Volume development of parcels in the Netherlands in millions. B. Volume development of
mail in the Netherlands in millions.

1.1.4 Challenges within the networks

In Section 1.1.1 and Section 1.1.2, we discuss how PostNL optimises both networks concerning the
characteristics of the items that need to be delivered. Mail has a compact network with depots
in almost every village as volumes are low and the delivery density is very high. The number of
parcels is lower than mail, and the volume it comprises is much higher. Therefore, faster vehicles
with more storage space are used, making the haul distance less critical. Combining this with the
scarcity of space in urban areas leads to the conclusion that having a few large depots is better than
a dense network for parcel delivery.

We identify a decrease in mail quantities in Section 1.1.3, which indicates that the current
network of PostNL will be less suitable in the future to ensure efficient mail delivery. Several
technical improvements are made to enhance tracking and make the delivery routes more efficient.
Despite these efforts, having an affordable network remains challenging, especially in car delivery
areas of the mail network.

1.2 Integrating the mail and parcel network at supply chain level

One promising solution for the pressurised efficiency within the car delivery areas of mail is to
merge the mail delivered by car into the parcel network and have only one deliverer for both mail
and parcels within a region. With the integration realised, PostNL visits each street with only one
vehicle. Integrating the parcel and mail delivery networks requires a new network that is optimal
for the characteristics of the combined delivery items. For a new optimal network, the logistic
infrastructure has to change considerably.

This research is pioneering in exploring the effects of combining both networks. PostNL needs to
validate the outcomes in real life and test for unseen problems before they can adjust the networks
on a large scale. We consider all long-term infrastructure, like depots, fixed to facilitate small-scale
implementation. Moreover, we assume the collection and sorting processes to remain independent.
However, we assume it is possible to restructure them to have the mail and parcel sorted when
needed for integration. If combining the networks delivers the promise to improve the efficiency of
PostNL, new research is required to discover the best ways to realise this assumption.

As we assume a fixed long-term infrastructure, we have to decide the best integration approach
within the current infrastructure. The current size of most mail depots is insufficient to serve as
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a storage space for parcels. As the parcel network handles high volumes, it can also store at least
parts of the mail volumes. We use the parcel network as a primary network based on these volume
limitations, which is in line with the increase in parcel volumes and decline in mail volumes. Mail
is sorted per parcel deliverer and delivered at the parcel depot. As the parcel deliverer already has
to load his van himself, he can easily load the mail as well. The parcel deliverer can place the mail
on the front seat so he can quickly get the mail during delivery without opening the back door.
Figure 5 schematically shows the assumed integration whereby PostNL brings the mail sorted per
route to the parcel depot, where the parcel deliverers start their combined delivery. Within this
research, we investigate this newly proposed supply chain model. In this new model, we connect the
sorting phase of the mail delivery network to the distribution phase of the parcel delivery network.
In Section 1.3, we explain how we analyse and asses this new supply chain model. It is out of scope
of this work to deal with the issue that PostNL cannot give subcontractors an exact route to follow,
whereas they can provide it to mail deliverers.

Figure 5: A schematic overview of the level at which we effectuate the integration of parcel and mail. After
completing Sorting phase II of the supply chain of mail, PostNL distributes the mail to the parcel depot,
where it is integrated in Sorting phase II such that the parcel deliverer can take it with him.

1.3 Research question

We have just explained the level at which we realise the integration in the supply chain, and we can
now formulate our main research question:

Is our new supply chain model for mail from car-delivery areas beneficial
for PostNL in the last-mile delivery?

To measure the benefits, we need to know how the delivery areas for the parcel deliverers change.
As it is part of the freedom of a parcel deliverer to determine his delivery round, PostNL only
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influences the delivery area. When we investigate the effects of the integration of both networks, we
explore a hypothetical change. To answer our main research question, we build a model to create
new delivery areas, which we can then analyse. We get to this model by answering the following
subquestions of our research question:

1. Which methods exist in the literature to create new optimal delivery areas? We
investigate the state-of-the-art literature in Section 2 regarding this topic; Set Covering mod-
els, Capacitated Clustering models, Continuous Approximation and conclude how we can use
them.

2. How do we formally define the problem of creating new last-mile delivery areas?
Based on the literature, we know how to make the new delivery areas, but they also need
to be feasible for the situation of PostNL. In Section 3, we explicitly define our problem of
creating new delivery areas. We combine constraints by PostNL, like that a day’s work must
fit in one vehicle and conditions to enhance the implementation as all delivery areas must be
continuous.

3. How do we match the methods from the literature with our problem? With
inspiration from the literature and our precise problem formulation in mind, we define in
Section 4 which methods we use to create delivery areas. As we find several promising models,
we implement a column generation approach that can use either an exact model or a heuristic
approach to get an integer solution (RMP methods) and create new delivery regions (Pricing
methods).

4. What model best suits the situation of PostNL? The size and structure of the data and
the time available to solve the model can highly influence the quality of the model; we need
to test which model is best suited for the situation of PostNL. In Section 5, we investigate
the four different combinations of models and conclude that the exact RMP model is best for
solving the RMP and the Randomised Constructive heuristic to solve the Pricing Problem.
After tuning the parameters, we use this model to develop the new delivery areas, which we
analyse to answer our main research question.

5. What is the quality of the model? Before we answer our main research question, we
discuss the quality and reliability of our model in Section 6. We mention several limitations,
considering the approximations and assumptions we make earlier. We also place our work
within the theoretical framework.

Once we have an answer to all questions stated above, we finally answer our main research question
in Section 7. We measure the possible benefits at three different levels (1) human resources, (2)
environmental benefits and (3) financial benefits, stated at reciprocal importance. We explain what
we mean by each of these terms below.

1. Human resources: The changes in employment measure the human resource impact. We
quantify this by changes in full-time equivalents of mail and parcel deliverers. More efficient
use of human resources will resolve some of the challenges encountered by the tight labour
market.

2. Environmental benefits: The change in expected, driven kilometres for delivery measures
the environmental efficiency. PostNL strives to be more sustainable and constantly looks for
opportunities to operate more efficiently and not clock up unnecessary kilometres. Moreover,
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reducing emissions is important for reaching sustainable development goals 9 and 15, Industry,
Innovation and Infrastructure and Climate Action, respectively.

3. Financial benefits: The financial benefits include a combination of the monetised environ-
mental benefits and human resource impact. As financial benefits are an integral measure of
benefits, it is the most important.

Based on our findings, we show PostNL that there is potential in integrating both delivery networks.
A substantial saving can be realised on quiet days like Saturdays, whereas we calculate a loss for
integration on crowded days like Tuesdays. Promising is our rule-of-thumb that a deliverer should
spend no more than 35% of delivery time in a combined delivery area on delivering mail. With this
rule in mind, we advise PostNL to check if parcel deliverers currently have time left on Saturdays,
which they can use for mail delivery.

Moreover, we discuss in Section 6 that our work can be seen as a critical review of the work of
Bard and Jarrah (2013). In comparison to Bard and Jarrah (2013), we can generate a lower bound
to compare our algorithm’s quality and test one of our, and theirs, assumptions’ impact. Both show
the algorithm’s quality can and must be improved to be useful as a delivery area creating model.
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2 Literature review

In our search to create new optimal delivery areas, we start with the investigation of relevant
literature. This section discusses relevant research based on the topic or approach to creating these
delivery regions. We first discuss the paper of Winkenbach et al. (2016) in Section 2.1, who, to the
extent of our knowledge, are the only ones who have already investigated the merging of mail and
parcel networks. Because of this significant similarity, we discuss their work separately.

Afterwards, we discuss the Capacitated Clustering Problem (CCP) in Section 2.2. The CCP is
a problem whereby the target is to create clusters such that they satisfy a capacity constraint. The
CCP relates closely to our problem; our model should create new delivery areas satisfying capacity
constraints regarding the allowed volume and working time for deliverers.

Besides the CCP, we also investigate the Set Covering Problem (SCP) in Section 2.3. The goal
of the SCP is to find a set of clusters that cover all locations. The SCP is applied to various contexts
like line balancing production, crew scheduling and service installation, according to Crawford et al.
(2018). The SCP can easily be applied to our problem, as we need to be able to deliver mail and
parcels at all locations. Both the CCP and the SCP are NP-complete (Öncan (2007), Chvatal
(1979)). As many data points are involved in our problem, we expect that it is computationally
intensive to solve the problem exactly. To reduce computation time, we dive into the existing
heuristic approaches.

Besides the heuristic approaches, we also investigate Continuous Approximation (CA) in Sec-
tion 2.4 as another approach to efficiently deal with the vast amount of data. We can use CA to
describe the properties of the data used within our model and the delivery areas afterwards.

Finally, we discuss the literature’s relevance for our problem in Section 2.5. We conclude that
the work of Bard and Jarrah (2013) is most relevant for us from the literature regarding the CCP
and Lan et al. (2007) concerning the SCP. We use CA to evaluate the properties of the delivery
areas after creation for comparison.

2.1 Integration of the mail and parcel network

The research of Winkenbach et al. (2016) focuses on the situation of the French national postal
operator, La Poste. At La Poste, mail and parcel are already delivered together within rural areas,
and they investigate if it is cost-efficient to merge both networks for medium-sized cities. They first
create clusters of 500 x 500 m2 and capture the delivery characteristics of the locations included
through CA. Afterwards, they create a Mixed Integer Linear Program to solve a location routing
problem. A location routing problem determines both the optimal delivery route and the best
location of the depots. Their model sees the 500 x 500 m2 clusters as delivery points, not the
individual addresses. Based on the city of Nantes, the results show that it leads to a cost saving of
three per cent if both networks are combined entirely.

2.2 Capacitated Clustering Problem (CCP)

The CCP was first introduced by Fisher and Jaikumar (1981) to solve a problem similar to our
problem: to create the delivery areas and not the specific delivery routes. Fisher and Jaikumar
(1981) want to solve the exact routing problem but create a two-step approach to reduce compu-
tation time. As a first step, they make clusters of demand locations whereby the vehicles’ capacity
is sufficient to deliver to all locations, later known as the Capacitated Clustering Problem. The
second step is constructing the optimal delivery route for each cluster. Although clustering is only
half of the work in this heuristic, it is an NP-hard problem to create optimal capacitated clusters
and finding a feasible assignment is already NP-complete (Öncan (2007)).
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Another problem similar to the CCP exists in the literature: the Generalised Assignment Prob-
lem. Within this problem, the aim is to assign all locations to a specific agent (in our case, a
vehicle). According to Mahmoodi Darani et al. (2016), the main difference is how the locations
used as a reference for the assignment, the seed locations, are determined. A researcher predeter-
mines the seed locations for a GAP, whereas the algorithm chooses the seed locations for a CCP.
However, this distinction does not conform with the reviewed literature. We treat both problems
with predetermined seed locations or freely chosen seed locations as CCPs if it is named a CCP in
the corresponding research.

Mulvey and Beck (1984), Bard and Jarrah (2013) and Negreiros and Palhano (2006) each im-
plement a different method of how to determine the seed location. Mulvey and Beck (1984) create
clusters of data points that are as homogeneous as possible while certain capacity constraints are
satisfied. Their model decides which point functions as a median and thus as a reference for cluster-
ing. Their seed locations do not have to be part of the data set. Bard and Jarrah (2013) choose the
seed location beforehand, and Negreiros and Palhano (2006) take the centroid as a reference instead
of the median. However, having the centroid as a reference does result in a non-linear objective
function. Deng and Bard (2011) develop a new formulation of the CCP to deal with centroids as a
reference efficiently. This formulation is written as a quadratic binary integer program by Brimberg
et al. (2019). Within this formulation, the data points are nodes with corresponding connecting
edges. The goal is to maximise the sum of the edge weight within each cluster, therefore no longer
requiring a reference. Lewis et al. (2014) solve the formulation created by Deng and Bard (2011)
in an exact manner. They solve some of the instances of 30, 40 or 50 locations to optimality within
two hours and find a good solution for each. A nice achievement, but limited to an unrealistic small
data set for us.

To still solve a CCP to optimality, but with faster computation times such that larger instances
can be solved, researchers often use column generation (Mehrotra and Trick (1998), Lorena and
Senne (2004) and Bard and Jarrah (2013)). Mehrotra and Trick (1998) speed up the column gener-
ation process by applying a special branch-and-bound algorithm and can solve instances with up to
60 locations to optimality. Lorena and Senne (2004) use a combination of column generation and La-
grangean/surrogate relaxation, which accelerates the computational process significantly—allowing
them to solve instances with up to 400 locations to near optimality. Bard and Jarrah (2013) use a
CCP together with column generation. The model they create can solve instances of up to 10,000
locations. As their instances vary from 5,000 to 50,000 locations, they implement a preprocessing
step in which they merge the closest locations until about 8,000 locations exist. Finally, they use a
variable-fixing heuristic to get an integer solution. Their fixing heuristics iteratively fixes four new
delivery areas, one in every quarter of the total delivery region. For the work of Bard and Jarrah
(2013), it is unclear what the optimality gap is. We notice that these three pieces of research show
it is inevitable to give in on solution quality to gain computation speed, as these three methods
could solve instances about ten times as large as the previous one. However, they can account for
less and less optimality.

Another approach to speed up the computation time is to solve the CCP using heuristics entirely,
which has the disadvantage that the optimality gap is often unclear. Over the years, the developed
heuristics can solve increasingly larger data sets. Osman and Christofides (1994) combine a Tabu
Search and Simulated Annealing for the first time and find better results than previously noted
on randomly generated instances of 50 or 100 locations. Cano et al. (2002) use a Greedy Random
Adaptive Search Procedure (GRASP). GRASP consists of two phases: a construction phase, which
finds a feasible solution, and a local search phase which improves the current result, for which Cano
et al. (2002) use K-means clustering. It turns out that this method improved the results on several
existing benchmarks, ranging from 75 to 2310 locations. Brimberg et al. (2019) implement two

10



different Variable Neighbourhood Descent methods on standard instances differing in size up to
2000 locations. Zhou et al. (2019) use a combination of Tabu Search and Memetic algorithm. The
Tabu Search is also allowed to explore the infeasible solution space and therefore implemented as
a local optimisation mechanism. The Memetic algorithm is applied to have a cluster-based cross-
over of favourable properties. The results show that the algorithm outperforms the state-of-the-art
algorithms on several benchmark instances ranging from 20 to 2000 locations, including the ones
that Brimberg et al. (2019) use.

2.3 Set Covering Problem (SCP)

The SCP is a fundamental problem, and many researchers have investigated it. The input is a
matrix containing the information of which set covers which locations and a vector representing the
costs of choosing the corresponding set. The output is a combination of sets covering all locations
at least once for the least amount of costs (Lessing et al. (2004)). As mentioned, the SCP is
NP-complete (Chvatal (1979)).

Lagrangian relaxation is often applied to solve the SCP (Caprara et al. (2000)). Both heuristic
and exact approaches make use of these techniques. At first the focus was on exact approaches
(Beasley (1987), Fisher and Kedia (1990), Balas and Carrera (1996)). The exact approaches can
solve instances up to 400 rows and 4000 columns within hours of computation time (Caprara et al.
(2000)). Translated to our problem, the number of rows indicates the number of possible delivery
areas, and the number of columns resembles the number of locations.

Later, the focus shifted towards the use of heuristics. Sometimes exact approaches are enhanced
by the use of heuristics. An example is the work of Balas and Carrera (1996), who developed
DYNSGARD, a dynamic subgradient optimisation combined with Branch-and-Bound. The pro-
posed method creates a dual feasible LP solution at every iteration. Moreover, instead of relaxing
the constraints of all rows, they first define a set of non-overlapping rows and only relax the con-
straints of the rows not covered by this set. They combine this with primal and dual heuristics to
tighten the upper and lower bounds.

As our instances will be considerably larger than the exact approach can solve within reasonable
computation time, we now consider literature that focuses on large-size instances. Caprara et al.
(1999) develop a heuristic specially tailored for large-size instances. With up to 5000 rows and
1,000,000 columns. The strength of the algorithm is the combination of several approaches. Their
algorithm combines a dynamic pricing scheme for the variables with subgradient optimisation and
greedy algorithms. Moreover, column fixing is applied in a systematic way to improve the values of
the solution. They developed the algorithm as part of a competition, which it won. The combination
of dynamic pricing and subgradient optimisation drastically reduced computation time and became
the main ingredient for success.

A newer set of heuristics is called meta-heuristics. Within these heuristics, the objective can
deteriorate if that leads to an improvement later. The deterioration enables the algorithms to
escape from local minima (Laporte (2009)). Lan et al. (2007) create a meta-heuristic to solve
the SCP. Their approach is called Meta-heuristic for Randomized Priority Search, or Meta-RaPS.
Within this algorithm, they first create a feasible solution by a construction method, including
random components. Afterwards, the intensification phase starts with an improvement heuristic.
The algorithm can solve instances with up to 1000 rows × 10,000 columns for non-uniform cost
SCPs and 28,160 rows × 11,264 columns for uniform cost problems within reasonable computation
time.
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2.4 Continuous Approximation (CA)

According to Langevin et al. (1996) C.F. Daganzo, one of the significant contributors to the field
of continuous approximation, describes the use of CA as “a main goal of this approach is to obtain
reasonable solutions with as little information as possible, and to gain a clear understanding of
the trade-offs.” This method groups discrete data points within a cluster, for which continuous
properties are calculated based on the enclosed data points. Shortly after Daganzo introduced the
concept of CA, research showed that CA provides a high-quality approximation (Eilon et al. (1974),
and Newell (1973)). CA is ideally suited to make decisions at a strategic level or when the actual
demand is still unknown. For the operational level, discrete optimisation is indispensable. Within
our research, we have two possible uses for CA: to evaluate the properties of the delivery areas
after we create them or to describe the characteristics of clusters we make during the preprocessing,
similar to Winkenbach et al. (2016). We consider both approaches in more detail below.

As we only create the delivery areas and no explicit delivery routes, we explore if CA is a
good approach to estimate the number of driven kilometres afterwards. A basic implementation
of CA, first designed by Beardwood et al. (1959), is to approximate the optimal tour length of a
travelling salesman. They can capture this within a simple formula only involving a constant (k),
the number of points (n) and the size of the area (A); k

√
nA. They show that the created formula

is asymptotically optimal. Later Larson and Odoni (1981) show that this converges rapidly for
reasonably compact and convex regions. Stein (1978) and Jaillet (1988) estimate the constant k
for Euclidian metric and Manhattan metric respectively. Eilon et al. (1971) develop an empirical
formula to calculate the distance to visit n points uniformly scattered with a centrally located depot
within the square zone. Daganzo (1984a) extends this implementation for a formula which applies
to irregular shapes and non-uniform distributed data points. He builds on his previous research
(Daganzo (1984b)), which shows the best strategy to divide the delivery region. The main takeaway
of that research is that the solution improves when the optimisation includes the haul distances of
delivery areas. Daganzo (1984a) states that a region can always be described by a rectangle as
minor deviations only have a small impact on the expected travelling distance. He creates a new
formula, especially for rectangular areas. Daganzo et al. (1990) validate the results and refine them.
Jabali et al. (2012) combine both aspects as they radially divide the delivery area, creating circular
trapezoids, which are estimated to be rectangles.

Within the field of logistics optimization, CA is often implemented to calculate the average unit
cost or distance of delivery within a certain area (Smilowitz and Daganzo (2007), Winkenbach et al.
(2016), Ghaffarinasab et al. (2018)), building on the work of Daganzo (Daganzo (1984b), Daganzo
(1999)). The formula no longer only includes distances but takes, for example, volume and stop
time into account as well. Winkenbach et al. (2016) use the formula to accurately describe the
properties of preprocessed clusters, which enables them to reduce the problem size.

2.5 Application

Now that we have a clear overview of the state-of-the-art literature regarding the Capacitated
Clustering Problem, Set Covering Problem and Continuous Approximation, we discuss how this
research relates to our problem and which approaches we use as a basis for our implementation.

Instances for the SCP are larger for both exact methods, 60 to 400 locations, and heuristics,
10,000 to 1,000,000 locations, respectively. The origin of these differences is that the SCP contains
a smaller part of our problem than the CCP. The SCP only decides which delivery areas combined
lead to efficient full coverage, whereas the CCP also includes the step of making these delivery areas.

Next to this disparity, the number of locations gives not all information on the expected compu-
tation time. The relative demand compared to the capacity should also be considered. For example,
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suppose each location has a demand equal to the capacity. In that case, we can quickly establish the
delivery areas and conclude that we need all delivery areas for full coverage. As deliverers of PostNL
deliver at least 300 locations on average combined with that our data set consists of thousands of
locations, we can safely assume our situation is not trivial to solve; neither each location needs its
own delivery area nor can all locations be grouped in one delivery area. Based on this conclusion, it
is unrealistic to expect an exact solution to our problem within reasonable computation time, irre-
spective of whether we use a CCP or SCP. As mentioned, the CCP captures our complete problem,
and the SCP captures it only partly. Therefore, we prefer a CCP over an SCP.

The most promising research within the discussed literature regarding CCP is that of Bard and
Jarrah (2013). They solve instances containing about 8,000 locations, four times larger than the
second largest data set. They created their model within the context of combining commercial and
residential pickup and delivery networks. We can easily translate this to the context of integrating
the parcel and mail network. The largest data sets contain about 8,000 locations, which is still
limited if we want to recreate the delivery areas for both parcel and mail delivery. Therefore, we
have to group some locations beforehand. In the literature several options for pre-processing exists;
grouping the n-nearest neighbours (Bard and Jarrah (2013)) or using a simple shape like rectangles
(Daganzo (1984a)), squares (Winkenbach et al. (2016) or a radial approach (Jabali et al. (2012)).
We combine elements of the approaches of Winkenbach et al. (2016) and Bard and Jarrah (2013)
into a new approach. We create squares but prevent the creation of too large clustered locations by
only allowing the grouping as long as it satisfies a capacity limit.

The approach of Bard and Jarrah (2013) is a column generation-based method, which splits the
creation of new delivery areas and calculation of the best integer solution. This splitting enables
us to use the algorithms we discuss regarding the SCP. Within this research, the work of Lan et al.
(2007) is most interesting, as we expect our situation to be comparable to a uniform cost situation.
We only have two different costs: full-day work for either a mail deliverer or a parcel deliverer. For
a uniform cost situation, they manage to solve instances with up to about 25,000 possible delivery
areas and 10,000 possible locations. Although the algorithm of Caprara et al. (1999) can solve
instances containing ten times more locations, it could do so with only 5,000 potential delivery
areas and is, therefore, less useful. As we have to preprocess our data for implementing the CCP,
being able to solve instances of 10,000 locations is sufficient to apply the SCP to the (preprocessed)
data as well.

Finally, we use the basic CA formula of Beardwood et al. (1959) to calculate the expected
kilometres within the created delivery areas. We use this formula as it is simple and proven to
converge rapidly for reasonable compact and convex regions, which our delivery areas will be.
Moreover, we include the haul distance as a variable based on the results of Daganzo (1984a) and
enforce our delivery areas to be rectangles based on Daganzo (1984b).
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3 Problem Formalisation

We conclude in Section 2 that Bard and Jarrah (2013) and Lan et al. (2007) are the most relevant
research for us to create delivery areas. Before we create an approach based on these algorithms, we
explicitly define our problem of creating delivery areas. Section 3.1 discusses why we only optimise
over the monetised human resources. Next, we formulate the essential constraints we need to take
into account. We formulate the service constraints in Section 3.2 and the capacity constraints in
Section 3.3. In Section 3.4, we enforce a location to be assigned to a chosen delivery area and
specify the domain of each variable. This section introduces a problem formulation which we can
see as the master problem for a column generation approach. We explain the details of the column
generation approach and the extra constraints needed for implementation in Section 4.

3.1 Objective function

The main goal is to create delivery areas that optimise the benefits. Therefore we ideally optimise
over the human resources, the environmental and financial benefits. We create delivery areas and
not the explicit routing; thus, we do not know the driven kilometres and can only calculate them
afterwards. Not knowing the kilometres beforehand makes it hard to include environmental benefits
and vehicle use’s variable costs, like fuel costs. We assume that if a delivery area takes less than a
full working day to deliver, we still have to compensate the corresponding deliverer for a full working
day. We, therefore, decide only to optimise the delivery areas over the number of full working days
of the deliverers. This way, we entirely cover the possible human resource benefits. The wages
comprise a large part of the delivery costs for PostNL. The objective is given in (1a). Before
optimising, we set the maximum number of possible delivery areas p arbitrarily large. Parameter
Ck indicates the costs of using delivery area k. Depending on the delivery area, these costs equal a
full day’s loan for a mail or parcel deliverer. Binary variable ak is introduced to count the number of
actual delivery areas created. ak is equal to one if delivery area k has at least one assigned location.

Minimize

p∑
k=1

Ckak (1a)

3.2 Service constraints

The created delivery areas need a network coverage of 100% combined, as all locations in the
Netherlands can receive mail and parcels. We implement this requirement by the set covering
Constraints (1b). N represents the set of locations. zi,k is a binary variable equal to 1 if location i
is assigned to delivery area k.

p∑
k=1

zi,k ≥ 1, ∀i ∈ N (1b)

3.3 Capacity constraints

Two factors can limit complete delivery, either the volume that fits in the van or the working times
of the deliverer. It must be possible to deliver a complete delivery area within a working day
without reloading the vehicle. To restrain the volume of each delivery area to the vehicle’s capacity,
we implement Constraints (1c). Parameter Di indicates the volume of the demand at location i.

14



Parameter Q expresses the available volume in the vehicle, which is assumed to be equal for both
mail and parcel vehicles.

n∑
i=1

Dizi,k ≤ Q, k = 1, . . . , p (1c)

Next, we formulate the working time constraints. To linearly implement these constraints, we
have to make some assumptions. The most significant assumption is that we know the delivery times
of each location (τi) beforehand, including the travel time to the next neighbour. In reality, the
delivery times can vary per location per delivery and the travel time depends on the next location
in the route. We create delivery areas that must be feasible under varying delivery characteristics
and do not explicitly create the delivery route. To get reliable values for the travel time to the
next neighbour, based on the idea of Bard and Jarrah (2009), we look at the h nearest neighbours
of location i and combine this with the delivery probabilities of these neighbours. We define a
location’s delivery probability as the fraction of deliveries made over all delivery days in the data
set. We take the weighted average of the time to the h nearest neighbours and the corresponding
delivery probability. Afterwards, we add the norm time for delivery, which is distinct for parcels and
mail, to get values of τi,k. The h nearest neighbours are different when combined delivery of mail
and parcels is possible instead of only separate delivery. This difference leads to other delivery times
based on the type of delivery area, which we indicate with the index k. The extensive calculations
can be found in Appendix A.1.

Constraints (1d) implement the working time limitation. Besides the delivery time and travel
time to the next location, two other factors also impact the working time. The first one is the haul
time, the time it takes to travel from the depot to the nearest location in delivery area k (thaulk ).
Based on Daganzo (1984a), we include the haul time as a variable instead of a parameter. The
second term is T fixed, which is a parameter to account for the fixed time it takes to load the vehicle
and to do the administrative tasks afterwards.

To calculate the values of τi,k, we assume that one of the h nearest neighbours is the next
delivery location. This assumption holds best for continuous delivery areas. We state the definition
of continuous delivery areas in Property 1. A cluster in Bard and Jarrah (2013) is equal to a
delivery area in this research. Not satisfying Property 1 indicates that several deliverers are active
within the same delivery region, which is very unlikely to be the case in the optimal solution. We
expect that enforcing Property 1, on top of the already formulated constraints, reduces the solution
space without significantly reducing the solution quality. We indicate that our delivery area must
satisfy this condition by Constraints (1e). We explicitly formulate it in Section 4.4.1, as we create
a structure within Section 4 which allows for a more straightforward explicit formulation.

Property 1: Continuous Delivery Areas

Let C be a delivery area that contains a set of locations L⊆N. C is said to be continuous if
location i∈conv(L)⇒ i, where conv(L) is the convex hull of the locations in the set L (Bard
and Jarrah (2013).

The h nearest neighbours of location i are in the same delivery area for locations near the
centre of the delivery area. However, we cannot assure this for locations towards the boundaries
of the delivery areas, despite implementing Property 1. We introduce a second property to limit
the relative number of locations that are ‘at the boundaries’, namely that a delivery area must be
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robust. We formalize robustness in Property 2. By choosing the ratio parameter, we can choose the
balance to be more towards a realistic travel time (ratio = 1) or towards freedom for the algorithm
to decide on the optimal shape for delivery. Constraints (1f) indicate that a delivery area must
satisfy this condition, which we again formulate explicitly in Section 4.4.1.

Property 2: Robust Delivery Areas

Let Xmax −Xmin be the length of delivery area C and let Y max − Y min be its width, where
Xmax = max{Xi : i ∈ C}, Xmin = min{Xi : i ∈ C}, and similarly for Y max − Y min. C is
said to be robust if its aspect ratio ρ = (Xmax − Xmin)/(Y max − Y min) lies in the interval
[ 1
Ratio , Ratio] (Bard and Jarrah (2013)).

n∑
i=1

τi,kzi,k + thaulk ≤ Tmax − T fixed, k = 1, . . . , p (1d)

{i : zi,k = 1, i = 1, . . . , n} , k = 1, . . . , p satisfy Property 1 (1e)

{i : zi,k = 1, i = 1, . . . , n} , k = 1, . . . , p satisfy Property 2 (1f)

3.4 Final constraints

We already mentioned that ak is equal to one if at least one location is assigned to the delivery area
k; Constraints (1g) enforce this. Constraints (1h) indicate that all zi,k and ak variables are binary.
Constraints (1i) ensure that thaulk are positive.

zi,k ≤ ak, i = 1, . . . , n; k = 1, . . . , p (1g)

zi,k, ak ∈ {0, 1}, i = 1, . . . , n; k = 1, . . . , p (1h)

thaulk ∈ R≥0, k = 1, . . . , p (1i)
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4 Methods

In Section 3 we formalise our problem. Based on the literature in Section 2, we expect that we
cannot solve our problem to optimality within reasonable computation time, as this is limited
to instances containing about 400 locations. In reality, we are dealing with more than 100,000
locations. We group our data before applying the algorithm and divide our entire delivery region
into smaller subregions, which we explain in Section 4.1, to find good solutions within acceptable
computation time. We create a column generation-like approach to solve our problem based on these
subregions. In Section 4.2, we give a general overview of the algorithm’s workings. We implement
two approaches to solve the Restricted Master Problem (RMP) in our algorithm. We formulate
one approach as an exact Mixed Integer Linear Programming (MILP) model, and the other as a
Set Covering heuristic; Section 4.3 describes both. We also propose two different methods to solve
the Pricing Problem, which is the problem of creating new possible delivery areas. In Section 4.4,
we explain two different Pricing methods: an exact model as a MILP model and a Randomised
Construction heuristic. Finally, we discuss the other general methods part of our algorithm in
Section 4.5. These include calculating the initial solution, removing double occurring locations,
deciding for which we subregions we solve the Pricing method and how we implement column
management. We define the formula for estimating the driven kilometres in Section 4.6.

4.1 General preprocessing

4.1.1 Grouping the data

We group several data points into one location beforehand to limit the computation time of the
model. To allow separate delivery to remain possible, we only group locations with the same type
of delivery. We group locations within a certain amount of meters of each other, given that their
combined volume or delivery time is at most x% of the allowed van’s volume or deliverer’s working
time, respectively. When not placing this restriction on the volume and delivery time, too large
locations are created, limiting the model’s flexibility. We test for the best value of x in Section 5.3.

We sum the key properties of delivery time and volume of the locations grouped, which becomes
the respective property of the grouped location. The centroid of all addresses is the address of the
grouped location.

4.1.2 Creating subregions

We divide the entire delivery region into smaller subregions to improve the computation speed of
the algorithm. Creating subregions increases the computation speed in two different ways. First,
it is a suitable division for a column generation-based approach. Using column generation, we only
deal with useful delivery areas instead of all possible options, reducing the problem size. Secondly,
as explained in more detail below, we create new potential delivery areas within a subregion, which
cuts the number of options for each new delivery area.

The procedure to divide the delivery region into subregions consists of three steps: creating
a grid, selecting the corresponding seed location, and determining which locations belong to its
subregion. We now explain these steps’ main points, based on the approach of Bard and Jarrah
(2009).

The most elaborate step in constructing subregions is creating a grid. Figure 6A - C show how
we construct the grid line by line. Figure 6A depicts the original situation: we have locations spread
out over the entire area. Our goal is to divide the entire region in a grid, whereby each grid box
contains at most x% of the limiting capacity, which can either be delivery time or volume. We use
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Figure 6: A. Start situation with the entire region. B. One grid box created bottom left with max 5%
capacity. C. Situation with the entire grid. D. The location closest to the centroid is selected as the seed
location for each grid box. E. The subregion for one of the seed locations.
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the same value of x as in Section 4.1.1 To create the desired grid, we first determine the location of
the first vertical line based on the estimated number of grids needed. After that, we add horizontal
lines to satisfy each grid box’s x% capacity requirement. Figure 6B shows the situation with one
vertical and one horizontal line. In this case, these four locations’ volume or delivery times are too
close to x% to add another location. After placing a vertical line at the left of the service area,
we place the following line at the region’s right. We repeat this procedure until each location is
captured within a grid box satisfying the imposed constraints, as shown in Figure 6C. We refer to
Appendix A.2 for the full details.

With the grid created, our next step is to establish the seed location of each grid box. We
determine the centroid of the locations contained in a grid box. The seed location is the location that
is closest to the centroid of that grid box. Figure 6D shows all grid boxes with their corresponding
seed location in blue. The only use of the grid is to ensure the seed locations are evenly divided
over the region, as the seed locations play a crucial role. We use the determined seed locations
throughout the entire model.

Finally, we decide which locations, besides the grid box locations, are part of the subregion of
interest as Figure 6E shows. We do so by adding all locations within a 20-kilometre range from
the seed location, as long as the new location has the potential to be part of a feasible delivery
area. A 20-kilometre range is sufficient for all seed locations, except those at the boundaries.
When we increase the range to satisfy the boundary locations, the middle subregions contain many
locations, drastically increasing computation time. The procedure to determine if a new location
has this potential is similar to a part of the Randomised Construction heuristic, which Section 4.4.2
explains in detail.

We create these subregions with three different settings: subregions that consider only mail
locations, only parcel locations, and all locations. Combined, the first two represent separate
delivery, the last integrated delivery and all of them together hybrid delivery. Note that as we
explained in Section 3.3, the delivery times of a location differ depending on separate or combined
delivery, which also causes the subregions to vary with different settings.

4.1.3 Delivery area assumptions

The seed location is the centre of all created delivery areas within the subregion. This way, we can
create delivery areas in several subregions and are sure they never completely overlap. We formulate
this in Property 3. Property 3 not only introduces the desired centrality but also limits the shape
of the delivery area to a rectangle. We pick the rectangular shape as it allows for straightforward
implementation of Property 1 and Property 2. For rectangular delivery areas Property 1, the con-
tinuity property, is always satisfied and the ratio property, Property 2, is easily checked. Moreover,
we know by the results of Daganzo (1984a) that rectangles are a good fit to describe delivery areas
since deviations from a rectangle have a limited impact on the expected travelling distance.

We further restrict the properties of each created delivery area by imposing Property 4. We
implement Property 4 to conveniently know which locations need be included to satisfy Property 3.

Property 3: Centrality Delivery Areas

Any delivery area generated for a subregion should span a symmetric rectangle centred at the
seed location s (Jarrah and Bard (2012)).

19



Property 4: Parallel Delivery Areas

Any delivery area generated must be parallel to the X-axis or Y-axis.

4.2 Overview general algorithm

The general solution approach is given in Algorithm 1. We depict the algorithm to give a general
overview without describing the updating of all mentioned parameters completely. We explain these
details during the thorough discussion of the methods, which we do in the indicated subsections.

Right now, we consider the coherence between all methods. We start our algorithm with the
calculation of subregions as described above (line 1, Section 4.1), after which we find an initial
solution to be able to start the column generation (line 2, Section 4.5.1). We solve the LP relaxation
of the exact RMP model formulation (line 4, Section 4.3.1) to obtain the dual values. Based on the
duals arising from the solution, we try to improve the solution by creating new delivery areas in a
subset of the subregions (lines 8 - 12, Section 4.5.3). We construct the new delivery area using one
of the two methods to solve the Pricing Problem (line 9, Section 4.4). We add the new delivery
areas to the set of possible delivery areas and again solve the LP relaxation to see if our solution
improved and to obtain new dual values. We repeat this process until we reach a certain number
of delivery areas (line 5, Section 4.5.4). We then also calculate the integer solution, as we need an
integer solution in the end, and save this (line 6, Section 4.3). When the integer solution does not
improve over the last five iterations, the algorithm stops and returns the best-found solution. We
define no improvement as when the current solution improves the best integer solution so far with
less than 0.01 or does not improve it at all.

Algorithm 1 General overview of solution approach

1: subregions ← createSubregions(preprocessed locations)
2: delivery areas ← initialSolution(preprocessed locations)
3: while iterations constant objective ≤ 5 do
4: duals, objective ← LPRelaxationRMP (delivery areas)
5: if len(delivery areas) > delivery areas amount then
6: int objective, int delivery areas ← RMP (delivery areas)
7: end if
8: for highest potential subregions do
9: if pricingProblem(subregioni, duals) ≤ 0 then

10: delivery areas ← delivery areas + pricingProblem(subregioni, duals)

11: end if
12: end for
13: end while
14: final solution ← removeDoubles(best int delivery areas)
15: return best int objective, final solution

4.3 RMP methods

We implement two different methods to find an integer solution of which delivery areas give the
best solution from the set of delivery areas, the Restricted Master Problem (RMP). An exact model
formulated as a Mixed Integer Linear Program, to which we refer as the exact RMP model and
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an approximate Set Covering heuristic based on Lan et al. (2007). The exact RMP model is easy
to implement, but it can take a long time before it reaches optimality. The Set Covering heuristic
is more involved to implement, and we can give no guarantee on the obtained results. However,
as the results of Lan et al. (2007) are very promising, it might give better results within a certain
time window. To test this, we implement both methods and compare them in Section 5.2. We first
describe the exact RMP model in Section 4.3.1. Section 4.3.2 explains the second approach based
on the Set Covering heuristic of Lan et al. (2007).

4.3.1 Exact RMP model

The exact RMP model aims to decide from all possible delivery areas which delivery areas cover all
locations at least once with the least amount of costs, which is essentially the Set Covering Problem.
We explain the formulation of the exact RMP model below. Besides using the model to obtain an
integer solution, we solve the LP-relaxation to get the dual variables, which we use to create new
delivery areas (line 4 of Algorithm 1).

Exact RMP model Formulation
Sets and indexes

N = set of locations, i = location index i ∈ N

K = set of delivery areas, k = delivery area index k ∈ K

Decision Variables

ak =

{
1 if delivery area k is chosen;

0 otherwise.

Parameters

Zk
i = binary parameter, 1 if delivery area k serves location i and 0 otherwise

Ck = cost of delivery area k

Exact RMP model

Minimise
∑
k∈K

Ckak (2a)

Subject to
∑
k∈K

Zk
i ak ≥ 1, i ∈ N (2b)

ak ∈ {0, 1}, k ∈ K (2c)

The objective function (2a) of the exact RMP model is similar to the objective of the master problem
(1a); they both minimise the costs of the delivery areas created. For our exact RMP model, we do
not have an arbitrarily limit of p delivery areas, but we create the delivery areas k beforehand. At
every iteration of the total algorithm, the set K will be larger as each iteration adds new delivery
areas (lines 8 - 12 of Algorithm 1). Constraints (2b) implement the set covering constraints and
make sure each location is covered at least once. An important difference with Constraints (1b) is
that we indicate which locations a delivery area covers beforehand with parameters Zk

i , instead of
using decision variables zi. The Pricing method determines the values of Zk

i during the creation of
the delivery areas. Finally, Constraints (2c) ensure that the ak variables are in the binary domain.
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4.3.2 Set Covering heuristic

As mentioned before, we base the Set Covering heuristic on the work of Lan et al. (2007). The goal
of the Set Covering heuristic is equal to that of the exact RMP model: to find a set of delivery
areas that cover all locations for the least cost. In general, the heuristic consists of two steps: an
initial solution is created, followed by an improvement step in which we try to improve the initial
solution by neighbourhood search. We now explain the main workings and refer to the work of Lan
et al. (2007) for the complete description.

Before we create our initial solution, we first check if any of the generated delivery areas dom-
inates another delivery area. A delivery area dominates if it contains at least all locations of the
dominated delivery area. If this is the case, the dominated delivery area is never favourable, and
we remove it from the possible delivery areas.

The creation of the initial solution is a randomised greedy approach. In most cases, the algorithm
iteratively picks the best delivery area to add until all locations are covered. We define best as the
delivery area with the most new locations for the least amount of costs per new location. However,
with 10% probability, it is possible to add a delivery area that differs at most 15% from the best
delivery area. After constructing our initial solution, we check if any redundant delivery areas are
present and remove them. A delivery area is redundant if it only contains locations that are covered
by other delivery areas as well.

Now that we have our initial solution, we try to improve it by performing a neighbourhood
search. We randomly remove at most 20% of the delivery areas and create a smaller Set Covering
subproblem containing the locations we no longer cover and all delivery areas that cover at least one
of these locations. We use our initialisation algorithm to find a new solution for this subproblem.
We combine the new solution with the retained delivery areas. After we remove any redundant
delivery areas, we check if our solution is improved. If this is the case, we will update our solution.
After the algorithm performs the neighbourhood search 30 times, it returns the best-found solution
and its objective.

4.4 Pricing methods

Similar to solving the RMP, we have two approaches to solve the Pricing Problem. We formulate
one approach again as an MILP model, which we call the exact Pricing model. The second approach
is a Randomised Construction heuristic. To goal of the Pricing methods is to create a new delivery
area which has lowest objective. Both approaches are subregion specific, so both methods create a
new delivery area in a predetermined subregion r. Each delivery area we create must comply with
Constraints (1c) - (1f) as indicated in Section 3 and with Property 3, which we define in Section 4.1.

The exact Pricing model guarantees that the constructed delivery area is optimal regarding the
current dual values. As the formulation is vast, we conveniently build the Randomised Construction
heuristic that creates feasible delivery areas that satisfy all the constraints. In Section 5.2, we test if
a possible increase in computation speed of the heuristic opposes the lack of guarantee of optimality.
We explain the formulation of the exact Pricing model in Section 4.4.1. Section 4.4.2 introduces
the Randomised Construction heuristic.

4.4.1 Exact Pricing model

We first introduce the exact Pricing model formulation and then explain the formulation of the
constraints in more detail. We base the formulation of the exact Pricing model on Bard and Jarrah
(2013).
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Exact Pricing Model Formulation
Sets and indexes

N(r) = set of locations belonging to subregion r, i = location index i ∈ N(r)

s = index of seed location of subregion r s ⊂ N(r)

A = ordered list of the |N(r)| locations ordered by their increasing

absolute X-distance from the seed a = index of location i in list A i ∈ N(r)

B = ordered list of the |N(r)| locations ordered by their increasing

absolute Y-distance from the seed b = index of location i in list B i ∈ N(r)

Decision Variables

zi =

{
1 if location i is assigned to the created delivery area

0 otherwise.

tmin
i =

{
1 if location i has the shortest travel time to the depot within the created delivery area;

0 otherwise.

xa =

{
1 if corresponding location i of index a satisfies convexity and centrality property in X-direction;

0 otherwise.

y{i} =

{
1 if corresponding location i of index b satisfies convexity and centrality property in Y-direction;

0 otherwise.

ξmax
i (ξmin

i ) =

{
1 if location i has the largest (smallest) X-coordinate within the created delivery area;

0 otherwise.

νmax
i (νmin

i ) =

{
1 if location i has the largest (smallest) Y-coordinate within the created delivery area;

0 otherwise.

Xmax(Xmin) = largest (smallest) X-coordinate within the created delivery area

Y max(Y min) = largest (smallest) Y-coordinate within the created delivery area

thaul = time to drive from depot to nearest location of created delivery area

Parameters

θi = dual variable associated with Constraints (2b) for location i of the LP-relaxation

τi = delivery time of location i, including travel time to next location

Cr = costs of creating a delivery area in subregion r

Di = demand of location i

Q = capacity of the vehicle

Ratio = aspect ratio for a delivery area

Tmax = maximal allowed working time for a deliverer

T fixed = fixed time it takes to load the vehicle and to do the administrative tasks afterwards
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Ti = two-way travel time between point i and the depot it is served from.

Ti = 2
√

(Xi −X2
depot,i) + (Yi − Y 2

depot,i)/Vhaul,i

Vhaul = average speed during the distance between the delivery area and nearest depot for locationi

Xdepot(Ydepot) = X (Y)-coordinate of the nearest depot for location i

Xi(Yi) = X (Y)-coordinate of location i

Xs(Ys) = X (Y)-coordinate of the seed location s

X̂max
r (X̂min

r ) = largest (smallest) X-coordinate in subregion r

Ŷ max
r (Ŷ min

r ) = largest (smallest) Y-coordinate in subregion r

Min. Cr −
∑

i∈N(r)

θizi (3a)

S.t.
∑

i∈N(r)

Dizi ≤ Q (3b)

∑
i∈N(r)

τizi + thaul ≤ Tmax − T fixed (3c)

zi ≤ xi, zi ≤ yi, zi ≥ xi + yi − 1, ∀i ∈ N(r) (3d)

xa ≤ xa−1, ∀a ∈ A \ 0 (3e)

yb ≤ yb−1, ∀b ∈ B \ 0 (3f)

Xmax ≥ Xizi, ∀i ∈ N(r) (3g)

Xmax =
∑

i∈N(r)

Xiξ
max
i ,

∑
i∈N(r)

ξmax
i = 1, ξmax

i ≤ zi, ∀i ∈ N(r) (3h)

Xmin ≤ Xizi +Xs (1− zi) ,∀i ∈ N(r) (3i)

Xmin =
∑

i∈N(r)

Xiξ
min
i ,

∑
i∈N(r)

ξmin
i = 1, ξmin

i ≤ zi,∀i ∈ N(r) (3j)

Y max ≥ Yizi,∀i ∈ N(r) (3k)

Y max =
∑

i∈N(r)

Yiν
max
i ,

∑
i∈N(r)

νmax
i = 1, νmax

i ≤ zi,∀i ∈ N(r) (3l)

Y min ≤ Yizi + Ys (1− zi) , ∀i ∈ N(r) (3m)

Y min =
∑

i∈N(r)

Yiν
min
i ,

∑
i∈N(r)

νmin
i = 1, νmin

i ≤ zi, ∀i ∈ N(r) (3n)

thaul ≤ Tizi + Ts(1− zi), ∀i ∈ N(r) (3o)

thaul =
∑

i∈N(r)

Tit
min
i ,

∑
i∈N(r)

tmin
i = 1, tmin

i ≤ zi,∀i ∈ N(r) (3p)

1/Ratio ≤
(
Xmax −Xmin

)
/
(
Y max − Y min

)
≤ Ratio (3q)

xa ∈ {0, 1}∀a ∈ A, yb ∈ {0, 1}∀b ∈ B (3r)

zi, ξ
max
i , ξmin

i , vmax
i , vmin

i ∈ [0, 1], ∀i ∈ N(r) (3s)

Xmax ∈
[
Xs, X̂

max
r

]
, Xmin ∈

[
X̂min

r , Xs

]
, Y max ∈

[
Ys, Ŷ

max
]
, Y min ∈

[
Ŷ min
r , Ys

]
(3t)

thaul ∈ R≥0 (3u)
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Solving the exact Pricing model results in a new delivery area, which we add to the list of
delivery areas that the overall algorithm can use. The objective (3a) is to minimise the costs of the
created delivery area. The costs consist of a standard fee for the subregion r; this is equal to the
labour costs of a full-day delivery, which we reduce by the dual value of each assigned location.

Constraint (3b) implements the condition that a delivery area cannot exceed the vehicle capacity.
Constraint (3c) ensures that delivering all included locations within the allowed working time is
possible. A deliverer spends most of the time delivering the items and driving towards the next
location (τi). Please note that we give an extensive explanation of the calculation of τi in Section 3
and Appendix A.1. We determine the total time delivering items and driving to the next location
with the first term of Constraint (3c) (

∑
i∈N(r) τizi,r). Besides this, we also consider the time to

travel between the delivery area and the depot by the decision variable thaul. Combined, this must
be smaller than the total working time of a day (Tmax) minus the time the fixed operations take
(T fixed).

We desire each delivery area to be continuous as formulated in Property 1. In Section 3 Con-
straints (1e) we only formulate it in a global manner. Now we combine Property 1 with Property 3
and Property 4 and formulate it explicitly for the exact Pricing model. These properties are im-
plemented by Constraints (3d) - (3f). Constraints (3e) make sure that if a location is part of the
delivery area, the help variables corresponding to locations with a smaller X-distance to the seed,
xa−1, ..., x0, will have to be equal to 1 as well. Constraints (3f) apply similar reasoning regarding
the Y-distance of locations to the seed. Constraints (3d) ensure that a location can only be part of
the delivery area if both its corresponding help variables are equal to 1. Together, these constraints
ensure that every created delivery area will be a continuous rectangle centred at the seed.

Constraints (3g) - (3p) each serve to set the relevant decision variables to the correct value.
Constraints (3g) and Constraints (3h) enforce that Xmax is set to the largest X-coordinate found
within the selected locations. To keep notation neat, we state that we implement these constraints
for all locations within N(r). However, as we enforce a symmetric rectangle around the seed, we
know that locations with a smaller X-coordinate than the seed location will never be the location
with the largest X-coordinate. Constraints (3g) and Constraints (3h) are therefore actually only
implemented for locations with a higher or equal X-coordinate than the seed location. Constraints
(3g) ensure Xmax is at least as large as the location with the largest X-coordinate. Constraints (3h)
enforce that the value Xmax attains is exactly equal to the largest X-coordinate and not larger. In
a similar way the value of Xmin is set to the smallest X-coordinate by Constraints (3i) - (3j). We
include an additional term in Constraints (3i) compared to Constraints (3g) to prevent locations
not part of the newly created delivery area from enforcing Xmin to be less than or equal to zero,
which often leads to infeasibility. As the largest value for Xmin is Xs, which is always included,
Xs can be used to ensure positive values Analogous the values of Y max and Y min are set to the
correct value by respectively Constraints (3k) - (3l) and Constraints (3m) - (3n). To make sure we
use the minimal haul time within the model, we implement Constraints (3o) and Constraints (3p)
to set thaul to its correct value. We only implement these constraints for locations with a shorter
distance to the depot than the seed location. With similar reasoning as above, we conclude that
thaul attains the value of the haul time to the seed location in all other situations. We include the
second term in Constraints (3o) again to prevent locations not part of the newly created delivery
area from enforcing thaul to be less than or equal to zero.

Constraint (3q) implements Property 2 and thus limits the ratio between the length and width of
each created delivery area. Whereas Constraint (3q) implements Property 2 explicitly, Constraints
(3g) - (3m) are solely implemented to enforce the correct values for the variables used in Constraint
(3q). Property 2 is thus costly to implement in terms of variables and constraints.

Finally Constraints (3r) - (3u) implement the allowed domain for all variables. Constraints (3r)
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ensure that the x and y variables are binary variables. By Constraints (3d) zi is also forced to be
binary, so we do not need to enforce this by a separate constraint. It is, therefore, sufficient to state
that zi must be continuous between 0 and 1, as done in Constraints (3s). Similar reasoning holds
for ξmax

i , ξmin
i , νmax

i and νmin
i . Constraints (3t) limit the domain of Xmax, Xmin, Y max and Y min to

range between the location of the seed and either the highest or lowest value present in the data
set, as each delivery area will be a symmetric rectangle around the seed. Constraint (3u) ensures
that thaul attains a non negative value.

4.4.2 Randomized Construction heuristic

As input for our Randomised Construction heuristic, we define the subregion r for which we want to
create a new delivery area. As output we have a delivery area satisfying all constraints as mentioned
in the Section 3, Property 3 and Property 4.

We start our algorithm by randomly picking a location within subregion r that functions as our
boundary location. First, this location is our boundary location in the X-direction and afterwards
in the Y-direction. As we know that the seed location must be in the middle of the rectangle by
Property 3 and we have a ratio limitation by Property 2, we create the smallest possible delivery
area based on our boundary location. Suppose the smallest delivery area already exceeds either the
volume or time capacity constraint, similar to Constraints (3b) and (3c), respectively. In that case,
we drop this delivery area and continue to the next iteration. We also use this procedure when we
create the subregions to test if a location has the potential to be a part of a feasible delivery area,
as we mention in Section 4.1.

For clarity of explanation, we now assume our boundary location bounds the delivery area’s
width and thus X-distance. If the smallest possible delivery area is feasible, we add locations with
increasing Y-distance from the seed, given that their X-location is within bounds. We continue to
add these locations as long as all our constraints hold. When adding a new location will violate one
of our constraints, we will stop and have created our new delivery area.

We do a final feasibility check to make sure the delivery area satisfies all constraints as formulated
in Section 3, Property 3 and Property 4. If the delivery area satisfies all constraints, we store it
as a potential delivery area. When we have 30 different possible delivery areas or all locations are
used as the boundary location, we calculate the objective value for each of them, similar to (3a).
We return the delivery area with the lowest objective.

The most significant difference with the exact Pricing model is that we create a random delivery
area, which is not directly guided by the dual variables. However, the dual variables are not entirely
untouched. We make multiple possible delivery areas and use the dual variables to calculate the
quality of the delivery areas afterwards.

4.5 General methods

So far, we have discussed the general outline and two options to find an integer solution (RMP
methods) and two to create new delivery areas (Pricing methods). We now discuss the methods
part of the general approach. We first clarify how we use the Pricing Problem to develop an initial
solution in Section 4.5.1. Section 4.5.2 explains two methods to ensure that each location is covered
by exactly one delivery area. Afterwards, Section 4.5.3 explains how we choose the subregions for
which we solve the Pricing Problem in the next iteration and how the tabu list is updated. Finally,
we discuss our column management approach in Section 4.5.4.
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4.5.1 Initial solution

We use a Pricing method combined with artificial dual variables to create a useful and feasible
initial solution. We start with all artificial dual variables equal to one and set them to zero if the
created delivery area covers the corresponding location. We set the standard costs (Cr) to zero, as
we only focus on adding new locations.

First, we solve a Pricing method for every tenth subregion and add the created delivery area
to the initial solution if at least one new location is covered. After completing this first iteration,
we select the 25 subregions with the highest number of uncovered locations nearby for the next
iteration. A location is seen as nearby if it belongs to either the first half of the locations ordered
based on X-distances from the seed location or the first half based on the Y-distances.

When we solve a Pricing method for a subregion, we add the subregion to a tabu list, and the
algorithm can no longer choose it in all following iterations. When the final five selected subregions
do not lead to a delivery area with a new location, we reset the tabu list. The algorithm can then
choose from all subregions in the next iteration.

Once at least one delivery area covers every location, we have an initial solution and return the
created delivery areas.

4.5.2 Making locations uniquely covered

The algorithm ensures that the chosen delivery areas serve each location at least once. However,
multiple delivery areas can service the location. To ensure unique servicing in our final solution,
the double removing method removes multiple times serviced locations from all but one delivery
area. We discuss two methods: one with the centroid as reference and one with the delivery time
as reference. We compare both methods in Section 5.5 to find which suits our situation the best.

The double removing method removes the locations with a greedy approach. In the first method,
we determine the distance to the centroid of each delivery area where the location occurs. The
double removing method removes the location from all delivery areas except the one with the
smallest distance to the centroid.

The second approach is similar, except that we calculate the delivery time of each delivery area
in which the location occurs. We remove the location from all delivery areas except the one with
the largest delivery time.

4.5.3 Region determination

At every iteration, we solve a Pricing method for a limited amount of subregions. We solve a Pricing
method for 50 subregions or five per cent of the subregions, whichever is larger.

For the first iteration after initialisation, we pick the subregions for which we solve a Pricing
method at random. A more complicated method to determine the subregions exists for all other
iterations. We use a tabu list to prevent picking subregions with little improvement potential.
Figure 7A shows an overview of how the tabu list is updated. The subregions for which the Pricing
method results in a delivery area with a positive objective value are tabu for seven iterations. We
split the subregions leading to a delivery area with a negative objective value into four quartiles
based on the size of the objective value. The most negative quartile is not tabu for any iteration
and is available in the next iteration. The second quartile is tabu for one iteration, the third for
two iterations and the fourth and final quartile for three iterations.

Figure 7B gives a graphic representation of the structure of the subregions, which we select to
explore in the next iteration. Half of the subregions for the next iteration are chosen based on
their potential to improve the solution. We examine the subregions with the highest summed dual
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Figure 7: A. Overview of how we determine the number of iterations a subregion is tabu. B. Overview of
how we choose the subregions for the next iteration.

values in the next iteration. We randomly pick the other half of the subregions out of all possible
subregions that are not tabu and not already chosen.

4.5.4 Column management

Besides previously described algorithms, we also implement a column management approach. We
implement column management for two reasons. First, we do not want to continuously solve the
RMP method as this is more computationally intensive than calculating the LP-relaxation. Sec-
ondly, we want to limit the number of possible delivery areas, as this reduces computation time.

We decide to calculate the first integer solution after we obtain 500 delivery areas and, after
that, every 400 new delivery areas. As the first columns are generally not used in the final solution,
we want to remove these after a while. We delete all delivery areas not used by the first integer
solution, which has at least 1500 delivery areas as input.

4.6 Kilometre estimation

For our analysis, after we find a solution by our algorithm, we estimate the delivery distance within
each area with the simple formula of Beardwood et al. (1959) (k

√
nA). The constant k is set to

be 0.765 as calculated by Stein (1978). n is the number of locations, and A is the area in km2.
The number of preprocessed locations is used for n in this analysis, as the assumption of uniformly
distributed points does not hold for the unprocessed locations. Moreover, the distance between the
locations represented by the same preprocessed location is minimal. We calculate the area by finding
the smallest and largest X- and Y-coordinates of the locations covered by the delivery area. The
area of the rectangle with these coordinates as vertices is A. We add the haul distance twice to the
formula of Beardwood et al. (1959) to get a complete estimation of the delivery distance travelled
by the deliverer within a working day. The formula is limited in its precision, but it provides an
indication of the delivery distances within a delivery area.
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5 Computational experiments

Within this section, we test the performance of our algorithm. The analysis centres around a case
study of the service area of the parcel depot in Kolham, a village in the northeast of The Netherlands.
First, we explore in Section 5.1 whether the integration of both networks improves the delivery times
within the service area of Kolham. Only if we note an improvement in delivery times the new supply
chain model has the potential to be better. Next, we compare the four possible combinations of
RMP methods, namely the exact RMP model and Set Covering heuristic, and Pricing methods, i.e.
the exact Pricing model and Randomised Construction heuristic, in Section 5.2. We test on a subset
of about one-fourth of the case study’s data to test on real data, but with reduced computation
time. We use the best combination for our case study. Afterwards, we investigate the best settings
for the preprocessing phase in Section 5.3. To know whether the outcomes of our algorithm are
robust to changes in the cost parameters, we analyse whether the model responds intuitively to
changes in the cost parameters in Section 5.4. We expect that our two double removing methods
result in different created delivery areas. To test the impact, we apply both our double removing
methods to the same data in Section 5.5. With the algorithm and parameters determined, aware of
the impact of the double removing method, we perform our case study experiments in Section 5.6.
We explore both the optimal delivery method on the quietest and busiest day. Finally, we explore
the impact of our defined Properties. In Section 5.7, we dive into the effects of Property 4, that
delivery areas must be parallel to either the X- or Y-axis, by rotating the data set.

We execute experiments on a PC with a 2.6 GHz Intel Core i5-1147G7 processor and 16.0
GB RAM. The solution methods are implemented in Pycharm using Python 3.9, and all MILP
models are solved using the commercial solver Gurobi 9.5.1 with default settings unless mentioned
otherwise. The Ratio parameter is 5 for all experiments.

5.1 Impact of integration on delivery times

We first analyse the effects of switching from separate delivery to our integrated model in which
PostNL delivers mail and parcels together. Table 1 shows that there is a slight improvement for the
parcel delivery, only visible in the total delivery time. However, for mail delivery, the delivery times
for combined delivery decrease on average from 0.48 to 0.36, a decrease of 25%. The decrease of 25%
in delivery times is a first indication that integration of the networks is more efficient. One reason is
that it takes no time to deliver mail when PostNL hands over a parcel as well. Another argument is
that the next delivery location is closer, as parcel locations can also be the next location. However,
Table 1 also shows the more efficient delivery comes at the cost of a tenfold increase in haul time
for mail, as delivery rounds now always start at the parcel depot.

Moreover, Table 1 shows parcel is on average faster delivered than mail. An unexpected result
at first sight, as for parcel delivery, a driver must stop, ring and wait for the person to answer the
door, which takes longer than delivering a card in a mailbox. However, τi represents the weighted
delivery time according to the probability of visiting the location. The visiting probability reduces
the calculated delivery time significantly.

5.2 Algorithm comparison

Within Section 4, we describe the main structure of the algorithm and two options for calculating the
integer solution (RMP) and two for obtaining new delivery areas (Pricing Problem). We combine
these four approaches into four different algorithms. We either use an entire model approach, the
exact RMP model and exact Pricing model or a complete heuristic approach with the Set Covering
heuristic and Randomised Construction heuristic. We also have two combinations of an exact model
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Table 1: Analysis of the values for τi, the estimated weighted delivery time of location i and thauli , twice the
time to travel between location i and the nearest depot, of mail and parcel for both separate and integrated
delivery. We perform the analysis before grouping the locations

Delivery method Average τi (min) Total τi (min) Average thaul (min)

Mail
Separate delivery 0.48 4492 4.29
Combined delivery 0.36 3366 46.99

Parcel
Separate delivery 0.34 43009 27.65
Combined delivery 0.34 42420 27.65

and heuristic (exact RMP model and Randomised Construction heuristic or Set Covering heuristic
and exact Pricing model). We explore which of these four combinations delivers the best results
by applying all four approaches to a relatively small data set of 2260 locations, of which 1705 are
parcel locations and 555 mail locations. This small data set is a subset of the data set of the case
study in Kolham on Saturdays, obtained by drawing a rectangle on the map such that it contains
no more than 2500 locations. We limit the number of locations to 2500 to allow for a comparison
to optimality, as we explain below, within reasonable time, but still use real data.

Both RMP methods stop when they reach our stopping criteria, which is for the exact RMP
model to achieve an optimality gap of 0.01% and for the Set Covering heuristic when the objective
does not improve over the last five iterations. Moreover, we also limit the run time for each iteration
to 10 minutes. During our test runs, the run time of the exact RMP model increased significantly
with a growing number of delivery areas. If more than 1000 delivery areas are possible, the exact
RMP model approach cannot reach optimality within 12 hours. For our test cases with a run time
of one hour, the integer objective only decreased during the first 10 minutes. An optimality gap
is impossible to implement for the Set Covering heuristic as it does not generate a lower bound;
therefore, we did not choose an optimality gap. During all our experiments described, we include
this time cap of 10 minutes on the RMP method.

We want to know to what extent our algorithms reach optimality. We generate all delivery areas
using only a small data set. We give them to the exact RMP model, which returns a lower bound
that functions as an approximation of optimality. We generate the delivery areas by changing our
Randomised Construction heuristic to no longer pick a random location as the boundary but to
iterate over all locations as boundary locations in both X- and Y-directions. When we iterate over
all subregions, we create all possible delivery areas. We generate all, namely 42765, delivery areas
in 110 minutes. For the lower bound, we set an optimality gap of 5% and a time limit of 3 hours
for the exact RMP model. The best integer solution the model finds is 3339.84. This objective is
used as a reference in Table 2 to obtain the gap values. We calculate all gap values by taking the
difference between the integer solution and the best-bound relative to the integer solution.

Table 2 shows the performance of our four combinations of algorithms. We observe two trends.
The algorithm with the exact RMP model as the integer algorithm outperforms the Set Covering
heuristic by about 20% irrespective of the Pricing method. Moreover, the different objectives for
both Pricing methods when combined with the Set Covering heuristic show the Set Covering heuris-
tic’s randomised nature. The constructive methods do return the same objective when combined
with the exact RMP model.

Concerning the Pricing methods, we see that the Randomised Construction heuristic is approx-
imately twice as fast as the exact Pricing model, without loss of quality. Therefore, we take the
exact RMP model as the RMP method and the Randomised Construction heuristic as the method
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Table 2: The objective, gap and computation time of the four possible combinations of integer and con-
structive methods on a data set with 2260 locations. The gap is determined based on a lower bound, which
originated from solving the exact RMP model with all possible delivery areas.

RMP method & Pricing method Objective Gap (%) Time (min)

Exact RMP model & Exact Pricing model 4053.12 17.6 266
Exact RMP model & Randomised Construction 4053.12 17.6 130
Set Covering & Exact Pricing model 5129.28 34.9 218
Set Covering & Randomised Construction 4970.88 32.8 86

to create new delivery areas. This combination results in the best-found objective and is more than
twice as fast as the methods which contain the exact Pricing model.

When we generate all possible solutions, the optimality gap to the best-found integer solution
is significant, even for the best algorithm (17.6%). We keep this in mind when discussing the other
experiments’ results.

5.3 Determining preprocessing parameters

We test which preprocessing parameters for the procedure described in Section 4.1.1 give the best
results for our problem. We examine five different combinations of two preprocessing parameters:
the parameter indicating within which distance locations can be grouped (proximity) and the pa-
rameter indicating the maximum allowed capacity of one location (% capacity). The results in
Table 3 show that enlarging the distance has only a minor impact on the number of subregions,
as increasing the distance from 200 to 500 only reduces the subregions by 2. Seen from the most
restrictive situation, the number of locations halves as either one of the variables increases. Further
expanding the allowed capacity only slightly reduces the number of locations.

Table 3: This table shows the objective and computation times for delivery in Kolham on Saturdays for
different values of grouping proximity and allowed capacity in one location.

Parameters (proximity, % capacity) (200, 5) (200, 7) (500, 5) (500, 7) (500, 10)

# of locations 9980 4860 5424 4491 4417
# of subregions (total) 5218 3736 5216 3741 2613

Separate delivery
Objective (AC ) 22417.92 22259.52 21784.32 22101.12 21691.20
Computation time (min) 201 190 366 184 220

Combined delivery
Objective (AC ) 21859.20 22017.60 22334.40 21700.30 21859.20
Computation time (min) 404 184 276 179 154

Hybrid delivery
Objective (AC ) 22264.32 22450.56 22991.04 21630.72 21789.12
Computation time (min) 597 233 207 304 234

In theory, the objective of hybrid delivery should be the lowest for each situation as it contains
all delivery areas from separate and combined delivery. However, this behaviour only occurs for a
proximity value of 500 metres and 7% capacity. The model cannot select the subregions leading
to a decrease in objective in time for the other approaches, probably due to the large optimality
gap as we see in Section 5.2. The hybrid model contains about twice the number of subregions as
the others, potentially increasing the optimality gap. To thoroughly investigate the new delivery
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areas, we use the preprocessing parameter values that enable the model to pick the best type of
delivery for each location. We conclude that the preprocessing parameter values of 500 metres and
7% capacity are optimal for our problem.

5.4 Impact of costs parameter

As mentioned in Section 1.1.2, mail deliverers get a lower wage than parcel deliverers. We investigate
the model’s sensitivity to these cost parameters in this section.

Table 4 shows the results. Our model responds intuitively to the variation in cost ratio. A
relative more expensive parcel deliverer leads to an increase in mail deliverers. We also test if
having more diverse costs leads to a shorter computation time. Looking at the computation time
in Table 4, we see no such pattern; the computation times go up and down when the cost difference
increases. Furthermore, we note that the total number of delivery areas is equal for a cost ratio of
1:1 and 1:1.26. We conclude that the current wage difference does not lead to less efficient utilisation
of the delivery areas, to enhance the delivery by the cheaper mail deliverer.

The ratio of 1:2 does lead to an unexpected result, an increase in mail areas not accompanied
by a decrease in parcel areas. A possible explanation is that our preprocessing parameter values are
not optimal for this ratio, and better solutions exist, but the algorithm cannot reach them in time.
With this in mind, we can still conclude that our model responds intuitively to the cost parameters.

Table 4: This table shows for different cost ratios the number of delivery areas specific for mail (m), parcel
(p) and total (t) and the computation time.

Cost ratio (mail:parcel) # of delivery areas (m/p/t) Computation time (min)

1:1 3/135/138 273
1:1.26 (reality) 7/131/138 207
1:2 10/131/141 222

5.5 Impact of double removing method

As our model uses set covering constraints and not set partitioning constraints, our algorithm
contains a separate double removing method to ensure each location is only covered once. We
investigate the impact of our double removing method by comparing the results of our two double
removing methods as described in Section 4.5.2, with the centroid and delivery time as a reference,
respectively. Table 5 shows that the total number of delivery areas is independent of the double
removing method, just like the number of delivery areas entirely focused on mail delivery. Figure 8A
- B shows that different methods to remove the double locations result in a considerable difference
between total delivery time per delivery area. With the longest time as a reference, mail delivery
areas contain more locations, meaning that less mail is part of a combined delivery area. Almost
half of the combined delivery areas become strictly parcel delivery areas. As the double removing
method determines whether a delivery area is a combined or parcel area, we conclude there is no
usable information in the split between parcel and combined delivery areas.

In our further analysis, we use the double removing algorithm with the centroid as reference. By
using the centroid as reference, we place more emphasis on maintaining Property 1, the centrality
property. However, as the double removing method greatly impacts the division between parcel
and combined delivery areas, we only analyse the delivery areas by delivery: either mail or parcel,
whereby delivery areas delivered by the parcel deliverer might also contain mail.
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Table 5: This table shows the comparison of centroid-focused double removing and time-focused double
removing on the data of Saturday deliveries in Kolham.

Double removing method # of mail # of parcel # of combined Total # of areas

Centroid 7 71 60 138
Time 7 99 32 138

Figure 8: Histograms showing the total delivery time of each delivery area with different reference for
removing double occurring locations. A. The centroid is the reference. B. The total delivery time is the
reference.

5.6 Case study results

With the best algorithm and preprocessing parameters defined, we apply it to a case study of
the data from the service region of the parcel depot in Kolham, a city in the eastnorth of the
Netherlands. We perform our experiments within this region for two reasons. First, the northeast
of the Netherlands contains a large area in which PostNL delivers mail by car, making it a suitable
candidate for an extensive exploration of which types of neighbourhoods are ideal for integrating
the delivery. Furthermore, to investigate the full impact on the parcel supply chain, we want to
analyse an entire service area of a parcel depot. The delivery region of the parcel depot in Kolham
satisfies both of these conditions.

We explore the effects of the integrated delivery on the quietest day (Saturday, Section 5.6.1),
for which we think our supply chain model has the most potential, and after that, the busiest day
(Tuesday, Section 5.6.2). Table 6 shows an overview of the sizes of the data sets. The data for
each location is an average of eight analysed days. For each situation, we investigate three delivery
options: to deliver mail and parcels separately as is currently the case, to deliver mail and parcels
always combined, and the last option to choose between these, which we call hybrid delivery.

Table 6: This table shows an overview of the data used in case studies of delivery on Saturdays and Tuesdays
in Kolham. It shows the number of locations specific for mail (m), parcel (p) and total (t), both before and
after preprocessing and the final number of subregions.

Saturday Tuesday

# locations original (m/p/t) 9323/126,601/135,601 9207/145,236/154,443
# locations after preprocessing (m/p/t) 1255/3236/4491 1394/3987/5381
# subregions after preprocessing 3741 4721
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5.6.1 Case study Saturday

We first analyse the delivery in the service area of Kolham on Saturdays. Figure 9 gives a general
overview of the division of the different delivery areas. Table 7 shows the detailed results for the
three different delivery options on Saturdays in Kolham. The option to deliver mail and parcels
separately, which is the current practice, is the most expensive for our data. A fully integrated
model with combined delivery of parcels and mail leads to a 3.5% decrease in required human
resources, a loan saving of AC400. Besides this saving in labour costs, the environmental benefits
consist of an estimated reduction in kilometres of 720 km, a decrease of 9.5 %. With a fuel cost of
AC0.19 per kilometre, the total financial benefits account for AC537 a day.

The hybrid model shows even more potential. Although the decrease in human resources and
the environmental benefits are smaller, the hybrid model makes use of the lower wages for mail
deliverers. The lower wages lead to an extra increase in financial benefits of AC70 compared to the
fully integrated approach, even though an additional employee is needed. For the hybrid model,
the estimated total savings are AC560 per Saturday in the region of Kolham.

Table 7: This table shows the results of the analysis of delivery on Saturdays in Kolham in terms of the
objective, number of delivery areas specific for mail (m), parcel (p) and total (t) and estimated delivery
distance.

Delivery method Separate delivery Combined delivery Hybrid delivery

Objective (AC ) 22101.12 21700.30 21630.72
# of delivery areas (m/p/t) 12/130/142 0/137/137 7/131/138
Delivery distance (km) 7614 6894 7138

Now that we have established a possible improvement in business operations when we allow for
combined delivery, we explore the properties of these integrated delivery areas. Our main finding
is a rule-of-thumb regarding the size of mail in combined delivery areas. Figure 10A shows that
at most 0.35 of the total delivery time is spent delivering mail in a combined delivery area. If the
fraction is larger, it is better to deliver the mail in a separate mail delivery area.

Next, we explore the efficiency of the delivery areas. A delivery area is efficient if it contains
a full-days work for a deliverer, as payment goes per day and not per hour. Figure 10B shows
the delivery times per delivery area with locations still occurring in multiple delivery areas. Our
model cannot use the full potential of working hours for a deliverer as Figure 10B shows. The
model can do so for mail, with all delivery areas taking at least 440 minutes out of a possible 450
minutes to deliver. However, for the parcel and combined delivery areas, we see most delivery areas
take between 390 and 420 minutes to deliver. That the model cannot create delivery areas fully
utilising the delivery time is probably due to both the preprocessing step and the combination of
assumptions. During the preprocessing phase, the algorithm can merge locations until they reach
7% of the capacity, which is 31.5 minutes. With our premises of a central seed location, it is
impossible to use the potential delivery hours fully. We only consider the delivery times, as the
volume of the delivery areas is never a limitation for our data set.

34



Figure 9: An overview of the delivery areas for the service area of Kolham on Saturdays. We show parcel
and combined delivery areas separately for illustrative purposes. The colour of the mail or parcel location
indicates to which type of delivery area it belongs.
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Figure 10: A. A histogram showing the fraction of time to deliver mail in combined delivery areas. B. A
histogram showing the different delivery times for each delivery area.

5.6.2 Case study Tuesday

Now we explore the delivery on the busiest days, Tuesdays. Table 8 shows that separate delivery
results in the best objective. A peculiar observation is that allowing for hybrid delivery does not
result in the best objective value, which also happens in Section 5.4. Not resulting in the best
objective can have several causes. First, it can again be due to the large optimality gap of the
algorithm, which we show in Section 5.2 is already 17.6% for the small data set. Secondly, it can
be due to non-optimal preprocessing parameters. In the experiments in Section 5.3, we see that
the preprocessing parameters highly influence the algorithm’s ability to find the best option for
hybrid delivery. Finally, this can be due to the increase in subregions. With more subregions,
the chances of randomly picking the subregion needed for improvement reduce. The implemented
stopping criteria, five consecutive iterations without improvements, likely leads to an even larger
optimality gap for larger data sets.

Separate and combined delivery use a similar number of subregions, so we expect comparable
optimality gaps for these methods meaning that we can compare their results. Combined delivery
requires one extra deliverer compared to the separate delivery, which is an increase of 0.6% in human
resources. However, in total, the loan difference is AC518 for one day of delivery, as the loans are
lower for mail deliverers. Combined delivery has the environmental benefits of an approximate 600
km (6.5%) reduction. The fuel savings cannot counterbalance the extra loan costs as the financial
benefits of combined delivery compared to the current separate delivery are AC -406. Based on these
results, we conclude that for Tuesday, the busiest day, it is best to maintain a separate delivery.

Similar to delivery on Saturdays, a fraction of at most 0.35 of the available delivery time is
available to deliver mail, which confirms our rule of thumb previously established.

Table 8: This table shows the results of the analysis of delivery on Tuesdays in Kolham in terms of the
objective, number of delivery areas specific for mail (m), parcel (p) and total (t), and estimated delivery
distance

Delivery method Separate delivery Combined delivery Hybrid delivery

Objective (AC ) 27994.56 28512.00 28851.84
# of delivery areas (m/p/t) 11/168/179 0/180/180 9/175/184
Delivery distance (km) 9126 8534 8893

36



5.7 Impact of only parallel delivery areas

In Section 4.1.3, we state that all delivery areas must be parallel to either the X-axis or Y-axis. We
investigate the effect of this assumption by creating rotated data sets. We use the same data set of
Saturday deliveries in Kolham as in Section 5.6.1, but we rotate all locations and depots by either
22.5◦ or 45◦ around the centroid of all locations.

Table 9 shows that not being able to rotate the delivery areas is a potential limitation of the
model. The hybrid delivery option for our original, not rotated, data set is almost the best. Rotating
the data by 45◦ and having separate delivery leads to an improvement of AC5. However, we see that
the estimated benefits in Section 5.6.1 are mere luck than wisdom. If our data, or axis, were rotated
by 22.5◦, the benefits would have been much smaller. It can very well be that a different rotation
increases the benefits.

Moreover, when we apply a rotation of 45◦, the model with hybrid delivery can no longer find the
best solution. These findings are likely again due to a large optimality gap for the hybrid delivery,
as we see in Section 5.4 and Section 5.6.2 as well. However, combined delivery does outperform
separate delivery under all scenarios.

Table 9: This table shows the objective of the 22.5◦ and 45◦ rotated data and compares them to original
data of delivery on Saturdays in Kolham.

Objective (AC ) Separate delivery Combined delivery Hybrid delivery

Original data 22101.12 21700.30 21630.72
22.5◦ rotated 22101.12 22017.60 21914.88
45◦ rotated 21625.92 21542.40 21914.88
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6 Discussion

This section discusses the limitations of our model and how future research can solve them in
Section 6.1. We position our work within the theoretical research in Section 6.2.

6.1 Limitations

Although we notice in Section 5 that our model indicates substantial savings when mail and parcel
delivery are integrated and delivered together on Saturdays, we should consider some significant
limitations.

The most disturbing limitation is that hybrid delivery does not always result in the best objec-
tive value. However, knowing that the model contains all options available for either separate or
combined delivery, we know allowing for hybrid delivery in the model must result in an objective
as least as good as for the individual ones. As this is not always the case, we reach our stopping
criteria, no improvement for five times while improvement is still possible. For the case study data
sets, the optimality gaps are likely to be larger than for the small data sets used in Section 5.2.
Several options exist to resolve this in future research. One could alter the used stopping criteria.
Increasing the required consecutive iterations without improvement might lead to a more optimal
solution. Another possibility is to increase the time cap on the RMP method. Moreover, one could
extensively explore the impact of the tabu list. We used the values indicated by Bard and Jar-
rah (2013), which might not be optimal for our situation. By similar reasoning, a more extensive
hyperparameter tuning for all other used parameters could also improve the results.

Secondly, we limit the flexibility of the delivery areas we can create by our assumptions. The
parcel and combined delivery areas contain mostly between 390 and 420 minutes of work, instead
of the allowed 450 minutes ( Section 5.6.1). We base all our properties on the work of Bard and
Jarrah (2013). An exception is the assumption of parallel delivery areas, which is also implemented
in their work but not explicitly stated. We could not find any tested limitations of their introduced
properties. To know these limitations, we investigate the impact of only parallel delivery areas
in Section 5.7, which shows it is a considerable limitation. The size of the benefits depends on
the rotation of the data set. However, combined delivery outperforms separate delivery under all
scenarios, indicating that the quality is high enough to draw general conclusions.

Thirdly, the number of needed delivery areas for separate delivery of parcels and mail is much
lower than the number of delivery areas in real life. About two times as many delivery areas exist for
parcels, and for mail, it increases up to seven times. Having fewer, and thus smaller, delivery areas
in our model is an indication that our model underestimates delivery times. This underestimation
is because we use distances as the crow flies instead of the car drives. Furthermore, we use average
velocities to calculate the time it takes to drive the distances. Even though we use different speeds
when distances are below 20 km, the average rates underestimate short distances and overestimate
long distances. This overestimation mainly results in too high haul times. Moreover, the estimation
of the total number of kilometres in a delivery area is straightforward, and it is unclear with what
quality the formula approximates the actually driven kilometres. Further work can compare the
before-mentioned assumptions to reality and try to improve them where needed.

In Section 5.5, we observe the significant impact of the double-removing algorithm. Although
we fully stand behind the shift from set partitioning constraints to set covering constraints in an
attempt to keep the computation times within bounds, we do think it is a valuable change to in-
corporate the double removing algorithm within the iterative search. After we make all locations
uniquely occurring, we are no longer guaranteed to satisfy the properties we enforce on our delivery
areas. However, as we relax the properties this way, we might also relax them during the itera-
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tive optimisation. Relaxation of the properties will enable extra space for improvement. A good
compromise between computation time and preventing covering locations very often is to include
the covering as a soft constraint in the objective in future work. This way, the iterative search is
already focused on preventing double-occurring locations as much as possible.

To conclude, we want to mention extrapolation limitations due to the region we investigate. We
first select the day and region based on their potential to improve when we allow integrated delivery.
Afterwards, we find that using Tuesdays gives significant worse results regarding the potential of
combined delivery. Other regions than the service area of the depot in Kolham likely result in more
minor benefits as well. Further research should analyse other areas to allow for better extrapolation
of the results.

6.2 Theoretical implications

Because of the abovementioned limitations, our research can be considered a critical review of Bard
and Jarrah (2013). The first idea was to mimic their model and use it to analyse the data. However,
during the implementation, we deviate in three main aspects. First, we create the subregions
differently. In mimicking their work, the subregions we constructed according to their procedure
did not turn out to be logical, so we decided to use a different method. Second, we use two
different methods to obtain an integer solution (RMP). Moreover, the idea arose to develop a
heuristic instead of the exact Pricing model based on Bard and Jarrah (2013). The Randomised
Constructive heuristic turns out to be of similar quality and faster, as we discuss in Section 5.2.
An important note is that Bard and Jarrah (2013) does mention several extra constraints to speed
up the exact Pricing model, which we did not implement. Besides these differences, we expect that
the disclosure that rotating the delivery areas impacts the quality also applies to their work.

Finally, we want to emphasise the potential of the fact that we can create all delivery areas for
the small data set of 2260 locations to generate a lower bound. We show there is a lot of potential
in generating all delivery areas for our current assumptions and properties. A column generation
approach is no longer needed when this procedure is enhanced to reduce the computation time.
Solving all possible delivery areas with a commercial solver will give better results, as we see in
Section 5.2 and indicates an optimality measure, which can function as stopping criteria. This
approach is more straightforward, gives better results and directly shows the results’ quality. When
future work implements this approach, the same experiments can be conducted with higher certainty
that the results are correct.
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7 Conclusions

Within this section, we conclude our research. We first answer the subquestions (Section 7.1), which
mainly function as a recap and summary of the work until now. Next, we answer our main research
question in Section 7.2. We end it with some practical advice to PostNL in Section 7.3.

7.1 Answers to the subquestions

We answer the subquestions, which help us to summarize the process and get an overview of the
approach.

1. Which methods exist in the literature to create new optimal delivery areas? After
extensive investigation of the literature regarding Set Covering models, Capacitated Clustering
models and Continuous Approximation, we find that the works of Bard and Jarrah (2013)
and Lan et al. (2007) are the most important. The work of Bard and Jarrah (2013) contains
the methods and frame on which we base our approach, and the work of Lan et al. (2007)
explains how to construct the Set Covering heuristic.

2. How do we formally define the problem of creating new last-mile delivery areas?
We formalise our problem to minimise the number of delivery areas used while satisfying a
set covering constraint together with two capacity constraints for volume and delivery time.

3. How do we adjust the methods from the literature to our problem? We first make
additional assumptions to fit our situation to the procedures in the literature. We assume that
the delivery areas must be symmetric rectangles centred at a seed and parallel to either the X-
or Y-axis. This way, we can use the framework presented by Bard and Jarrah (2013) and their
RMP and Pricing method. We add the approach of Lan et al. (2007) to the possible RMP
methods and create a new Pricing method, the Randomised Constructive heuristic, ourselves.

4. What model best suits the situation of PostNL? We conclude that the exact RMP
model is best for solving the RMP, and the Randomised Constructive heuristic is best for
solving the Pricing Problem. With this combination, we develop the new delivery areas,
which we analyse to answer our main research question. A central finding of the experiments
is that at most 0.35 of the total delivery time is spent delivering mail in a combined delivery
area. If the fraction increases, it becomes better to have the mail in a separate mail delivery
area.

5. What is the quality of the model? We discuss that several options exist to improve the
quality of the model. These options include ensuring the hybrid delivery gives the best result,
limiting the number of assumptions and using better time estimations. We emphasise that
instead of column generation, a better approach is to generate all possible delivery areas and
use them as input to a commercial solver.

7.2 Answer to the main research question

With the answers to subquestions in mind, we now answer our main research question. Our main
research question is:

Is our new supply chain model for mail from car-delivery areas beneficial
for PostNL in the last-mile delivery?
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We answer our main research question through the lens of the three criteria as previously defined:
Human resources, environmental, and financial benefits.

1. Human resources: For the delivery on the quietest day, Saturday, we note our new supply
chain model is beneficial for PostNL. Integration has the potential to reduce the required
personnel by 3.5%. For Tuesdays, the busiest day, we note that it leads to an increase of
0.6%, which is one person.

2. Environmental benefits: Both the hybrid and integrated models decrease the kilometres
that deliverers must drive. On average, the savings are about 6% or 500 km.

3. Financial benefits: On Saturday, our newly proposed supply chain model leads to a daily
saving of AC512 for the service area of Kolham, which can increase to AC560 when hybrid
delivery is possible. However, on Tuesdays, combined delivery leads to extra costs of AC406 a
day.

To conclude, we answer our main research question: our new supply chain model for mail from
car-delivery areas is beneficial for PostNL in the last-mile delivery on quiet days, like Saturdays.
Our model shows that keeping the delivery separately for busy days is more beneficial.

We think the model’s quality is high enough that our general conclusion, as stated above, holds.
However, as we explain in Section 6, our approach has several shortcomings. These shortcomings
give such a significant level of uncertainty to our model that we advise to not use the actual numbers
generated by our experiments.

Instead of realistic indications of the benefits, we have two main findings we want to mention.
First, we find that at most 35% of the delivery time should be spent delivering mail for every
deliverer. The maximum of 35% holds for both quiet and busy days.

Our second finding is an improvement to the theoretical knowledge regarding the optimisation
of delivery areas. We show that instead of creating a column generation-like approach, there is a
lot of potential in generating all delivery areas for our current assumptions and properties. This
approach is more straightforward, gives better results and directly shows the results’ quality.

7.3 Advice to PostNL

We advise PostNL first to investigate the bottleneck of the current supply chain model in more
detail. An example is conducting field research with the deliverers to test the best improvement
from their perspective. Moreover, PostNL should spend more time getting an overview of the current
practices. When they know the current working hours of deliverers and their corresponding delivery
areas, PostNL can explore possibilities for a less drastic implementation of our new proposed supply
chain model. Saturday is the quietest day for both parcel and mail deliverers; it might very well
be that parcel deliverers have time to deliver mail. PostNL can redistribute the mail to the parcel
deliverers if this is the case while keeping the current delivery areas. This approach might already
be effective, especially when new regulations will decrease mail on Saturdays as of next year. Within
this approach, PostNL can use our finding that at most 35% of the delivery time should be spent
delivering mail for every deliverer.

If PostNL wants to continue this research, we suggest changing the algorithm to generate all
available delivery areas instead of a column generation approach. As mentioned before, this improves
the generated results significantly.

Finally, we advise PostNL to adapt its way of working with an Agile mindset. The current state
of the art is that once a PostNL employee draws a delivery area by hand, an algorithm indicates the
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expected volume and delivery times for the delivery area. The employee adjusts the delivery area
until he creates a feasible delivery area. To fully automate this procedure within a thesis is a giant
leap. A better approach is to improve this procedure with small incremental steps. First, PostNL
can develop an algorithm to do the employee’s work. Later, PostNL can realise full integration,
which enables optimising all delivery areas instead of only one.
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for the set covering problem. In International Conference on Bioinspired Methods and Their
Applications, pages 88–99. Springer, 2018.

Carlos F Daganzo. The distance traveled to visit n points with a maximum of c stops per vehicle:
An analytic model and an application. Transportation science, 18(4):331–350, 1984a.

Carlos F Daganzo. The length of tours in zones of different shapes. Transportation Research Part
B: Methodological, 18(2):135–145, 1984b.

Carlos F Daganzo. Logistics Systems Analysis. Springer, 1999.

RF Daganzo, CF Souleyrette, and R Reginald. Implementing vehicle routing models. Transport.
Res. Part B: Methodol., Elsevier, 24(4):263–286, 1990.

43

https://cbsinuwbuurt.nl/#gemeenten2020_bevolkingsdichtheid_inwoners_per_km2
https://cbsinuwbuurt.nl/#gemeenten2020_bevolkingsdichtheid_inwoners_per_km2


Yumin Deng and Jonathan F Bard. A reactive grasp with path relinking for capacitated clustering.
Journal of Heuristics, 17(2):119–152, 2011.

S Eilon, C. D. T. Watson-Gandy, and N. Christofides. Distribution Management: Mathematical
Modelling and Practical Analysis. Hafner, 1971.

Samuel Eilon, Carl Donald Tyndale Watson-Gandy, Nicos Christofides, and Richard de Neufville.
Distribution management-mathematical modelling and practical analysis. IEEE Transactions on
Systems, Man, and Cybernetics, (6):589–589, 1974.

Marshall L Fisher and Ramchandran Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109–124, 1981.

Marshall L Fisher and Pradeep Kedia. Optimal solution of set covering/partitioning problems using
dual heuristics. Management science, 36(6):674–688, 1990.

Nader Ghaffarinasab, Tom Van Woensel, and Stefan Minner. A continuous approximation approach
to the planar hub location-routing problem: Modeling and solution algorithms. Computers &
Operations Research, 100:140–154, 2018.

Ola Jabali, Michel Gendreau, and Gilbert Laporte. A continuous approximation model for the fleet
composition problem. Transportation Research Part B: Methodological, 46(10):1591–1606, 2012.

Patrick Jaillet. A priori solution of a traveling salesman problem in which a random subset of the
customers are visited. Operations research, 36(6):929–936, 1988.

Ahmad I Jarrah and Jonathan F Bard. Large-scale pickup and delivery work area design. Computers
& operations research, 39(12):3102–3118, 2012.

Guanghui Lan, Gail W DePuy, and Gary E Whitehouse. An effective and simple heuristic for the
set covering problem. European journal of operational research, 176(3):1387–1403, 2007.
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A Detailed derivations and algorithms

A.1 Detailed calculation of delivery distances

To estimate the expected driving time, we first need to estimate which neighbour will be delivered
next. Based on this information, we calculate the expected driving time, which is the distance
divided by the average speed. However, as uncertainty plays a crucial role in this calculation, we
consider a range of neighbours, each with a different weight based on their distance and probability
that they are delivered. The extensive calculations are described next, based on the expressions
used by Bard and Jarrah (2009).

First, we calculate the delivery probability per location for both mail and parcels (πmail and
πparcel). For location i, we do so with the following formulas

πmail,i =
Unique dates of mail delivery to i

Total unique delivery dates
and πparcel,i =

Unique dates of parcel delivery to i

Total unique delivery dates
,

for mail and parcel respectively. The extra index to indicate whether the calculation is for parcel
or mail values is purely for explanatory means, as location i can only receive either mail or parcels.
When an address receives both, it becomes two locations. We drop the extra index for further
explanations.

Now that we know the delivery probability of each location, we can calculate the likelihood wi,[j]

that location [j] follows location i on the route. We do so by combining the delivery probability
(π), the ranking of the jth closest locations to i (Ri,[j]) and the number of neighbours considered
(n = 15) in the following way

wi,[j] =
πj(n−Ri,[j] + 1)∑n
l=1 πj(n−Ri,[j])

,

thereby combining the chances that a neighbour is delivered and the relative closeness to this
neighbour.

Next, we use this likelihood to calculate the delivery time

ti =

n∑
j−1

wi,[j]

D(i,[j])

v(i,[j])
,

whereby D(i,[j]) is the distance to location [j] and v(i,[j]) is the average velocity when traveling there.
v(i,[j]) is equal to 30 if the distance is smaller than 20 km, and 50 otherwise. In the end the average
delivery time is calculated as

τi = πi(STOPi + ti),

with STOPi being the norm time for the actual delivery of the items. For parcel locations, STOPi

is increased by 0.1 minutes for every package that PostNL delivers at that location. Finally, we
multiply the expression by the delivery probability to account for irregular delivery at this location.

A.1.1 Combining the data sets

With the key properties calculated for the separate data sets, we use these properties when combin-
ing both data sets. The grouped data set maintains locations where mail and parcel are delivered
as separate locations to allow the model to decide between combined or separate delivery. However,
the expected delivery time will be different for the combined delivery as the network is denser, and
PostNL can deliver mail and parcels in one go.
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The expected driving time to the next location changes automatically when we apply the calcu-
lations as explained in Section A.1 to the combined data set, as more, and thus closer, locations can
be the next location. However, as PostNL can deliver mail and parcels at one location, the delivery
probability of each location changes. We assume that the delivery probabilities of delivering mail
and parcel at one location are independent. We use a Bernoulli trial to calculate the probability of
a combined delivery πcombined,i = 1− (1− πparcel,i)(1− πmail,i). We also assume that for combined
delivery, the actual delivery time is equal to the average norm time of parcel delivery, indicating
that delivery can include mail without inducing extra delivery time. A mail deliverer can often
deliver the mail while seated in the car if the post box is near the road. However, this is not the
case for a parcel deliverer, as the seating in a parcel van differs. We, therefore, assume that delivery
of mail takes ten more seconds when delivered from a parcel van. The delivery time for the mail
location becomes

τcombined,mail,i = (STOPcombined,mail,i(πmail,i − πcombined,i) + πmail,itcombined,i.

For the parcel delivery the delivery time is calculated with the same formula as previously,

τcombined,parcel,i = πparcel,i(STOPparcel,i + tcombined,i).

The model uses these values of τcombined for combined delivery, and the previously calculated values
of τmail and τparcel for separate delivery. Again note that the index indicating whether the values
regard mail or parcel are purely illustrative.

A.2 Creation of a grid

In Section 4.1.2, we explain the basics behind grid construction. Algorithm 2 provides the applied
procedure in more detail.
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Algorithm 2 Overview of grid procedure (createGrid)

Input: preprocessed locations

list X ← sortOnXCoordinate(preprocessed locations)
list Y ← sortOnY Coordinate(preprocessed locations)
Nunassigned ← preprocessed locations ▷ to keep track of the unassigned locations
while Nunassigned ̸= ∅ do

range X ← Xmax(Nunassigned) −Xmin(Nunassigned) ▷ easily obtained from list X
range Y ← Y max(Nunassigned) −Y min(Nunassigned) ▷ easily obtained from list Y

ratio ← range X
range Y

lowerbound ← max(⌈demand(Nunassigned)
xQ ⌉, ⌈ time(Nunassigned)

xTmax ⌉
vertical lines ← ⌈

√
ratio · lowerbound⌉

if
demand(Nunassigned)

xQ >
time(Nunassigned)

xTmax then

exp locations ← ⌈demand(Nunassigned)
vertical lines ⌉

else
exp locations ← ⌈ time(Nunassigned)

vertical lines ⌉
end if
horizontal locations ← selectT illExpLocationsNew(list X) ▷ behind the last added
location the vertical line is drawn ▷ For a line at the right, loop list X backwards
while horizontal locations ̸= ∅ do

grid locations ← grid locations + selectT illxCapacity(list Y,

horizontal locations) ▷ each time x times the limiting capacity has been reached a horizontal
line is drawn
end while
list X ← list X \ horizontal locations

list Y ← list Y \ horizontal locations

Nunlocated ← Nunlocated \ horizontal locations

end while
return grid locations
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