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Abstract

This paper compares different techniques to model the GPD parameters dynamically using co-
variates, for estimating the tail risk of equity returns in a high-dimensional context. Modeling is
done with different variable selection, regularization, and dimension reduction techniques within
the generalized additive models for location, scale and shape (GAMLSS) framework. The simu-
lation study shows that it is extremely hard to incorporate covariates for the shape parameter of
the GPD as gradient boosting is unable to outperform random selection of variables. However,
variable selection by gradient boosting performs quite well for the scale parameter, even with
high collinearity as well as high dimensionality. The simulation shows that applying stability
selection slightly improves the variable selection performance of gradient boosting when there
is high collinearity. This result is indifferent to the number of observations. The empirical
analysis shows that the models using principal component regression (PCR) overfit heavily,
while the gradient boosting and stability selection models do not outperform the benchmark
both in-sample and out-of-sample on Value-at-Risk (VaR) estimation. Variable selection of the
interaction terms of the informative variable proved to be very hard in simulation, and the
interaction terms of the covariates add little to no value to VaR estimation of the S&P 500.

Keywords: EVT, VaR, GAMLSS, GPD, PCR, gradient boosting, stability selection.
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1 Introduction

Mid-March 2020, the S&P 500 recorded the two largest daily losses of this century and the second and third
biggest daily losses since the introduction of the index in 1957, due to the global COVID-19 pandemic. Such
extreme losses stress the importance of measuring and managing market risk: the risk of loss of a financial
position as a consequence of changes in the value of the underlying financial instruments, such as stocks
and bonds. To assess market risk, risk measures such as VaR and expected shortfall (ES) are used. Both
statistically model the (extreme) losses, and belong to the branch of statistics called the Extreme value
theory (EVT), which aims to model extreme events of a variable of interest, such as large financial asset
losses.

The focus on large losses is statistically equivalent to the tail of the assumed underlying distribution of
the returns. The Peak-Over-Threshold (POT) method models the exceedances above some high threshold
u, which approximately follow the generalized Pareto distribution (GPD; Pickands, 1975). Because the
exceedances represent observations from the tail, the GPD is the ideal distribution to model extreme financial
asset returns. As acknowledged first by Mandelbrot (1963), one of the stylized facts of financial asset returns
is the heavy tails. Other stylized facts of financial asset returns include volatility clustering and gain/loss
asymmetry (Cont, 2001). To account for the non-normality characteristics of financial asset returns, the GPD
can be made dynamic by incorporating covariates in the estimation of the parameters. Chavez-Demoulin
and Davison (2005) are among the first to incorporate covariates when estimating the parameters of the
distribution of extremes. Later, Chavez-Demoulin, Embrechts, and Hofert (2016) modeled loss data by letting
the parameters of the GPD depend on covariates. The GAMLSS framework allows all the parameters of a
distribution of a response variable to depend on a set of explanatory variables, see Rigby and Stasinopoulos
(2005). GAMLSS allows for modeling almost all distributions, fitting parametric, semi-parametric, and non-
parametric models, making this framework extremely flexible. Moreover, different financial factors (e.g.,
Fama-French factors), market indices, government bonds, interest rates, forex rates, and commodities ensure
that a large number of covariates can be used when modeling the tail risk of financial asset returns.

The natural consequence of high dimensional data when combined with models with a high degree of
flexibility, however, is the variable selection problem. This issue has been discussed widely in the literature
(Akaike, 1973; Schwarz, 1978; Zou and Hastie, 2005; Tibshirani, 1996; Mayr, Fenske, et al., 2012). Albeit a
lot of research is done regarding variable selection, literature about this in an EVT setting is scarce. Hoxha
(2021) used gradient boosting for variable selection when estimating tail risk with covariates in the parameters
of the GPD, but the high dimensional case remains practically uninvestigated. This paper investigates the
tail risk of financial asset returns in a high-dimensional setting, with more covariates than observations.
The interaction terms of the covariates are added to ensure a large number of (possible) covariates. We
dynamically (i.e. dependent on covariates) model the parameters of the GPD to asses market risk using
different methods, and compare these methods. Estimation is done within the GAMLSS framework.

The gamlss framework allows for model selection by explicit regularization using either just the negative
log-likelihood or information criteria. Other explicit regularization methods that can be used within the
GAMLSS framework are Least Absolute Shrinkage and Selection Operator (LASSO; Tibshirani, 1996), Ridge
(Hoerl and Kennard, 1970), and Elastic Net regularization (Zou and Hastie, 2005). Explicit regularization
is done by adding a penalty to the loss function, depending on the norm (e.g., ℓ1-norm for LASSO) of the
coefficients. Implicit regularization includes boosting techniques for estimation, regularization, and variable
selection, such as gradient boosting (Friedman, 2001), adapted to GAMLSS by Mayr, Fenske, et al. (2012).
Hoxha (2021) found this technique to work well when used to estimate the tail risk of S&P 500 returns. Still,
in the high dimensional setting gradient boosting is prone to unstable results (Meinshausen and Bühlmann,
2010; Mayr, Hofner, and Schmid, 2012b). To ensure a stable set of explanatory variables is selected when
using this technique, Hofner, Boccuto, and Göker (2015) combined gradient boosting with stability selection,
where the boosted GAMLSS model is repeatedly fitted to a changing subset of the original data and the most
stable variables are selected. They find this to work well in high-dimensional settings with more predictors
than observations.

If we consider the case with more covariates than observations a dimension reduction problem rather
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than a variable selection problem, one can also perform a priori dimension reduction. A basic method to
deal with a large number of intertwined explanatory variables is singular value decomposition (SVD), which
creates principal components (PCs) as linear combinations of the covariates. Recently, Stasinopoulos, Rigby,
Georgikopoulos, et al. (2021) adapted this to the GAMLSS framework.

The simulation study of this paper shows that gradient boosting is a well-performing variable selection
technique for the scale parameter of the GPD. For increasing collinearity, stability selection offers a slight
improvement in terms of the true positive rates (TPRs). However, this is only true for the scale parameter as
variable selection by gradient boosting did not outperform random selection for the covariates of the shape
parameter. Also, informative interaction terms were very hard to identify for both gradient boosting and
stability selection in the simulation study. The empirical analysis confirmed these terms added little to no
value to the risk measures estimation.

This thesis is structured as follows. It starts with a review of the relevant current literature in Section 2,
followed by the methodology in Section 3. The methodology starts with an overview of the peak-over-
threshold (POT) approach and the generalized Pareto distribution (GPD). It then introduces the generalized
additive models for location, scale, and shape and subsequently explains the different variable selection
techniques. Then a simulation study and subsequently a sensitivity analysis are performed to select the best
hyperparameters in Section 4. In Section 5 an empirical analysis will be conducted on the S&P 500 loss
data where we fit and analyze the models selected in the previous section. Section 6 discusses the results
and gives directions for further research.
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2 Literature review

As described in the introduction, classical extreme value theory (EVT) focuses on the tail of the distribution
of a variable of interest, modeling the probabilities of extreme events. The two best-known methods are
the block maxima (BM) and peak-over-threshold (POT) methods. The first, classical EVT method, divides
the observation period into equal-sized blocks and uses the largest observation of each block for modeling,
possibly disregarding important observations. The POT method uses the GPD to model the tails of another
distribution and uses all observations above some high threshold u. The latter method is the one used in
this paper. To better account for the non-stationary characteristics that almost all financial asset returns
exhibit (Cont, 2001), the focus shifts to dynamic EVT, where the incorporation of covariates in the modeling
of extremes is an important tool.

Rigby and Stasinopoulos (2005) introduced the generalized additive models for location, scale, and shape
(GAMLSS), which allows modeling of up to four parameters of a distribution depending on covariates via
a vast number of (semi-)parametric additive functions of covariates. To fit the data by maximizing the
(penalized if not fully parametric) likelihood function, GAMLSS uses a generalization of the CG algorithm
(Cole and Green, 1992) and the RS algorithm (Rigby and Stasinopoulos, 1996). As we use the highly flexible
GAMLSS, and model both the shape and the scale of the GPD in a high dimensional setting, variable selection
is paramount. The challenge is not just variable selection, but also for which distribution parameter(s).

Variable selection can be done with regularization, where we add a regularization term to the loss function
(e.g., negative log-likelihood) to prevent overfitting. The original gamlss algorithm included a method of
explicit regularization that selects explanatory variables for each parameter of the distribution based on
the generalized Akaike information criterion (generalized Akaike information criterion (GAIC)), where the
penalty factor is proportional to the ℓ0-norm. The GAIC relies on a large number of assumptions and has
been criticized for selecting non-informative covariates (Judge, 1985; Hurvich and Tsai, 1989; Anderson and
Burnham, 2002), too many variables (Ripley, 2004), as well as being unstable (Flack and Chang, 1987).
Moreover, those techniques are infeasible in a high-dimensional setting.

Other explicit regularization methods, where the penalty term is proportional to respectively the ℓ1-norm
and ℓ2-norm squared are the least absolute shrinkage and selection operator (LASSO; Tibshirani 1996) and
ridge regularization (Hoerl and Kennard, 1970). The former produces a sparse model, but when the pairwise
correlation among covariates is high, the predictive performance of the latter dominates (Tibshirani, 1996).
When this is the case in a high-dimensional setting (p > n), LASSO also tends to select one variable of the
pairwise correlated group at random (Zou and Hastie, 2005). Moreover, LASSO tends to select uninformative
covariates in the early steps, making it impossible to avoid selecting these variables (Su, Bogdan, and Candès,
2017). Ridge, on the other hand, is by construction unable to produce a parsimonious model, since it keeps
all covariates in the model.

Implicit regularization can be done by statistical boosting, which aims to combine weak learners into
one strong learner to reduce both bias and variance. Mayr, Fenske, et al. (2012) adapted a component-
wise boosting algorithm to the GAMLSS framework, named gamboostLSS. It fits the negative gradient of
the loss function to every covariate separately by simple regression in every iteration. For each distribution
parameter, the covariate which produces the biggest decrease in the loss function, i.e. fits best, gets updated.
The negative gradient gets recomputed to select the best fitting covariate for the next iteration. Stopping the
algorithm before every covariate is updated at least once consequently makes it a variable selection algorithm.
Albeit simulations showed that in high-dimensional settings (more covariates than observations: p > n) the
algorithm performed well on both variable selection and sparsity, it still was prone to unstable results (Mayr,
Hofner, and Schmid, 2012b). The performance is similar to LASSO, but with better prediction performance
(Hepp et al., 2016).

Hofner, Boccuto, and Göker (2015) combined this component-wise boosting algorithm with stability
selection, based on the resampling technique introduced by Meinshausen and Bühlmann (2010). Stability
selection creates B random subsamples of half the data, and fits a model to each subsample, generating B
different models and thus B sets of selected covariates. The covariates that are selected for the B models
with a rate equal to or larger than the specified threshold πthr are the stable covariates and are used to fit

6



the final model to all data. This proved to improve the selection process and in addition, adds an error
control for the number of falsely positively selected covariates. The stability selection algorithm of Hofner
and Hothorn (2021) uses the improved stability selection method of Shah and Samworth (2013), which
uses complementary pairs of subsamples: if a random subsample of half the data is created, the remaining
observations make up the paired complementary subset. This method allows selecting more variables for the
same level of error control compared to Hofner, Boccuto, and Göker (2015).

Thomas et al. (2018) modified this to a cyclical gradient boosting algorithm, such that the algorithm
updates just one distribution parameter in each iteration. This is done for the combination of the distribution
parameter and covariate that result in the biggest loss reduction overall, i.e., the algorithm chooses data-
driven which distribution parameter to update in each iteration. Just one stopping hyperparameter has
to be specified compared to one for each distribution parameter with the cyclical algorithm. This is more
time-efficient than the traditional gamboostLSS algorithm, but more importantly, when combined with
stability selection, the selected covariates often had fewer false positives as well as more true positives in the
simulations.

Instead of explicit regularization of the full data, we can also apply dimensionality reduction which aims
to preserve as much of the relevant information as possible whilst reducing the dimensionality of the data.
One of the earliest methods of dimensionality reduction is principal component analysis (PCA; Pearson,
1901). The principal components are uncorrelated linear combinations of the data and have maximum
variance, and the weight vectors used for the linear combinations are unit length. The first few principal
components explain most of the variance and thus contain most of the relevant information. The principal
components can be selected by e.g., the lowest GAIC or their t-values. When the model is fitted, the
coefficients of the PCs are transformed back to the covariate coefficients, for interpretation. This results in
regularized coefficients, but no variable selection is performed. Stasinopoulos, Rigby, Georgikopoulos, et al.
(2021) adapt this technique as a novelty to the GAMLSS setting, where the principal components are used to
model the parameters of the distribution of interest. They first expand the number of covariates by adding
the first-order interaction effects, increasing the number of covariates from p to p(p + 1)/2. This makes it
a high-dimensional setting as the number of covariates is higher than their number of observations. With
these methods, they were able to capture the spread behavior of the Greek-German 10-year government
bond yields quite well.

This paper investigates dynamical tail risk modeling in a high-dimensional setting with interrelated
explanatory variables by comparing different variable selection, regularization, and dimension reduction
techniques. Moreover, it assesses if incorporating first-order interaction terms aids dynamical tail risk mod-
eling.

3 Methodology

In this section, the methodology of the paper will be clarified. First, the peak-over-threshold (POT) will be
introduced, together with the related generalized Pareto distribution (GPD). Then the GAMLSS framework,
which is used for incorporating covariates in the estimation of the GPD parameters, will be described. Then
the variable selection and regularization methods adapted to the GAMLSS framework will be explained.

3.1 Classical EVT: The Peak-Over-Threshold (POT) Method

In this subsection, we start with the notation of Coles et al. (2001). Let X1, ..., Xn be a sequence of identically
and independently distributed variables with unknown distribution function G, and X an arbitrary term in
the sequence. Denote threshold u > 0, scale parameter σ > 0 and shape parameter ξ ∈ R. Then, for large
enough u, the exceedances Y = (X− u) conditional on X > u, approximately follow the generalized Pareto
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distribution, Y ∼ GPD(σ, ξ), with distribution function

Fσ,ξ(y) =

1 −
(

1 + ξy
σ

)−1/ξ
for ξ ̸= 0,

1 − exp
(
− y

σ

)
for ξ = 0,

(1)

and density

fσ,ξ(y) =

 1
σ

(
1 + ξy

σ

)(− 1
ξ−1)

for ξ ̸= 0,

1
σ exp

(
− y

σ

)
for ξ = 0,

(2)

where the support is y ≥ 0 when ξ ≥ 0 and −σ/ξ ≤ y ≤ 0 when ξ < 0. Some remarks are in order concerning
the GPD.

First, the shape parameter ξ determines the type of the tail of the underlying distribution we are
modeling. When the tails of the underlying distribution are exponentially bounded, such as with the normal
distribution, the shape parameter ξ will be equal to zero. On the other hand, ξ > 0 will shape heavy-tailed
distributions like the t-distribution while the GPD with ξ < 0 models the tail of distributions with a finite
tail.

Secondly, the choice of the threshold implies a bias-variance tradeoff. A low threshold is likely to violate
the assumptions of the asymptotics, increasing the bias. Conversely, a high threshold will lead to fewer
available observations and thus a higher variance for the fitted model. The threshold can be chosen with
methods like the mean residual life plot. Analysis of the empirical data will shed more light on the optimal
choice of the threshold.

Finally, the exceedances approximately follow the GPD, whereas for estimation we assume they follow
the GPD exactly.

3.2 Generalized Additive Models for Location, Scale and Shape (GAMLSS)

In this subsection the GAMLSS framework will be explained specifically for the GPD, where we first introduce
the full GAMLSS model in Section 3.2.1. In Section 3.2.2, we give an outline of the estimation procedure in
detail for the parametric GAMLSS, as our model in Section 3.3 has no random additive terms.

3.2.1 The Full Model

To account for the non-stationary characteristics of financial asset return data, we model the GDP dy-
namically by letting the parameters of the GPD depend on covariates through a GAMLSS model. Let
y = (y1, ..., yn)⊤ be the vector of exceedances above the threshold u, of length n. Because we want to model
dynamically such that we have fitted distribution parameters ξi and σi for each yi, we want a model for
distribution parameter vectors ξ and σ of length n. Let g1(·) and g2(·) be known monotonic link functions
that relate the GPD parameters ξ and σ to covariates by

g1(ξ) = η1 = X1β1 +

J1∑
j=1

s1j(x1j), (3)

g2(σ) = η2 = X2β2 +

J2∑
j=1

s2j(x2j), (4)

where η1 and η2 are the additive predictor vectors, and where β⊤k = (βk1, ..., βkJ ′
k
), k = 1, 2 is a

parameter vector and allows for modelling both distribution parameters as a linear function of each of the J ′k
covariates. Moreover, Xk is a fixed known design matrix with dimensions n× J ′k, k = 1, 2, and skj , k = 1, 2
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is a nonparametric smoothing function applied to covariate xkj , k = 1, 2. If there are no additive terms such
that Jk = 0, we have the parametric linear GAMLSS model

g1(ξ) = η1 = X1β1, (5)

g2(σ) = η2 = X2β2. (6)

The link functions g1(·) and g2(·) ensure that the range of the parameter estimates is valid for the GPD.
The scale parameter σ is limited to positive values, so has domain (0,∞) and therefore the link function
g2(·) is the natural logarithm, such that η2 = g2(σ) = log(σ). The shape parameter ξ can take any value,
has domain (−∞,∞) and therefore the link function g1(·) is the identity function, such that η1 = g1(ξ) = ξ.
If we incorporate the same covariates in the linear part of the model for both parameters, i.e., J ′1 = J ′2, the
design matrices will be equal: X1 = X2 = X.

3.2.2 Estimation of the parametric GAMLSS Model

As the next subsections will make clear, we only use the parametric and boosted GAMLSS model. For the
parametric GAMLSS model for the GPD as in Eqs. 5 and 6, β1 and β2 are estimated by maximizing the
log-likelihood function ℓ. As we assume that each yi ∼ GPD(ξi, σi) and given the density in Eq. 2, we
maximize the following log-likelihood:

ℓ =

n∑
i=1

log (f(yi; ξi, σi)) =

n∑
i=1

log

(
1

σi

(
1 +

ξiyi
σi

)− 1
ξi
−1
)
, (7)

where f(·) denotes the density of the GPD, again for σi > 0, ξi ∈ R for i = 1, ..., n. The support is
again yi ≥ 0 when ξi ≥ 0 and −σi/ξi ≤ yi ≤ 0 when ξi < 0. Maximization is done by either the RS
algorithm, a generalization of the algorithm of Rigby and Stasinopoulos (1996), or by the CG algorithm,
a generalization of the algorithm of Cole and Green (1992). The latter uses the first, second, and cross
derivatives of the log-likelihood function enabling joint updates of the distribution parameter estimates,
whereas the former does not use the cross derivatives and thus updates the distribution parameter estimates
iteratively. Although the CG algorithm seems advantageous, it is rather unstable at the beginning and
diverges easily. The RS algorithm is in general more stable and in most cases faster, which is why this one is
used. The GPD distribution parameter vectors of length n are denoted as θ1 = g−11 (η1) = ξ = (ξ1, ..., ξn)⊤

and θ2 = g−12 (η2) = σ = (σ1, ..., σn)⊤, with g−11 (·) and g−12 (·) the inverse of the monotonic link functions.
For fitting each distribution parameter θk, the so-called inner iteration is used. This inner iteration solves
maximum likelihood equations numerically by either Newton-Raphson or the Fisher scoring algorithm. Both
algorithms update the estimates of the predictor based on the score and its variance. The score function i.e.,
the first partial derivative of the log-likelihood with respect to the predictor, is defined as:

uk =
∂ℓ

∂ηk
=

(
∂ℓ

∂θk

)
◦
(
dθk
dηk

)
, (8)

with ◦ the Hadamard product. The vectors ∂ℓ/∂ηk, ∂ℓ/∂θk, and dθk/dηk are all of length n, with
elements ∂ℓi/∂ηk,i, ∂ℓi/∂θk,i, and dθk,i/dηk,i, for i = 1, ..., n, respectively. The iterative weights wk are
defined as:

wk = −fk ◦
(
dθk
dηk

)
◦
(
dθk
dηk

)
, (9)

where fk is defined as the expectation of the second derivative of the log-likelihood with respect to
parameter k, E

(
∂2ℓ/∂θ2

k

)
, leading to to the Fisher scoring algorithm. Instead of the actual scoring algo-

rithms, we use the result of McCullagh and Nelder (1989), who prove that iteratively reweighted least squares
(IRLS) of the modified response variable zk on the covariates with weight matrix Wk = diag(wk), gives
equal estimates as Fisher scoring in each iteration. The modified response variable to regress is calculated
as

zk = ηk + w−1k ◦ uk, (10)
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with ηk the additive predictor, wk the weight, and uk the score of distribution parameter θk, all vectors of
length n. The estimated distribution parameter coefficients are calculated by weighted least squares (WLS)
with

β̂k =
(
X⊤k WkXk

)−1
X⊤k Wkzk. (11)

With the new estimate of βk we can subsequently update the estimates of the predictor ηk, and thus the
estimates of the distribution parameter θk. The new iteration then re-evaluates the score and weight vector
at the new estimates. To run the inner iteration, the elements of the weight and parameter vector are

initialized to one and zero respectively, i.e., w
[0]
k = 1 and β̂

[0]
k = 0, for distribution parameter θk. Then, the

updating sequence for each distribution parameter is given as

β̂
[m]
k → η̂

[m]
k → θ̂

[m]
k → uk,wk

∣∣∣
ηk=η̂

[m]
k ,θk=θ̂

[m]
k ,y=y

→ ẑ
[m]
k

WLS−−−→ β̂
[m+1]
k .

This concludes the inner iteration. The updating iterations are continued until the global deviance
(GD), equal to minus two times the log-likelihood evaluated at the estimates of the current iteration, i.e.,

GD = −2 · ℓ̂[m], converges. The outer iteration is nothing but iteratively fitting both distribution parameters
performing the inner iteration. So for the GPD, repeatedly fit a model for ξ given the latest estimate σ̂, and
subsequently, fit a model for σ using the new estimate ξ̂. Again, this is repeated until the global deviance
converges. The pseudocode of the RS algorithm is given in Algorithm 3.1, where it is combined with principal
component regression. For the estimation, we use the R package gamlss (Rigby and Stasinopoulos, 2007).

3.3 Principal Component Regression in GAMLSS

Although PCR has been around for a while, it was recently adapted to the GAMLSS framework by
Stasinopoulos, Rigby, Georgikopoulos, et al. (2021). General PCR consists of three steps, where first,
compact in this case, singular value decomposition is performed on the n × p suitably scaled (zero mean,
unit variance) design matrix X of the p possible covariates:

X = UΣV⊤, (12)

where U and V consist of respectively the left and right singular vectors, which are orthogonal such that
U⊤U = V⊤V = Is, the identity matrix of size s = min{p, n}. Furthermore, Σ = diag(σ1, σ2, ..., σs) where
σ1 ≥ σ2 ≥ ... ≥ 0 are the rank-ordered singular values of X. If matrix X is rank-deficient, at least one of
the singular values will be equal to zero. When there are more observations than possible covariates, n > p,
the matrix U is rectangular with dimensions n × p and Σ and V are p × p square matrices. Conversely,
when p > n, U and Σ are n × n square matrices and V is a p × n rectangular matrix. Let matrix X
be of rank r which is equal to r non-zero singular values. The first r left singular vectors, columns of U,
form an orthonormal basis for the column space, span(X), while the first r right singular vectors, columns
of V, form an orthonormal basis for the row space, span(X⊤). The last r − k right singular vectors i.e.,
columns of V, provide an orthonormal basis for the null space of X. The scores of the PCs are equal to
T = XV = UΣ, and the loadings are equal to P = V⊤. The loadings times the scores are conveniently
equal to TP = UΣV⊤ = X, i.e., the principal components are linear combinations of the variables in X.

In the second step of PCR, the response variable vector v = (v1, ..., vn)
⊤

is regressed onto the principal
components, by treating the principal components scores T as the design matrix. As the score matrix T spans
the same linear space as X, any linear regression of v on T or X should give the same fitted values v̂. The
ordinary least squares (OLS) parameter estimates, denoted as β and γ will be equal to β̂ = (X⊤X)−1X⊤v

and γ̂ = (T⊤T)−1T⊤v. This gives the relation v̂ = Tγ̂ = XVγ̂ = Tβ̂ ⇐⇒ β̂ = Vγ̂. Matrix V is also
called the rotation matrix, as element Vij gives us the weight of covariate i = 1, .., p in principal component
j = 1, ..., r. Since the covariates are demeaned and scaled, the constant of both regression models will be
equal to just the mean of response variable v: β̂0 = γ̂0 = v̄.

If we do not use all principal components, but only a subset denoted by λ such that we have score matrix
Tλ, we can use PCR as a model selection technique, which regularizes implicitly. The p possibly correlated
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covariates are replaced by |λ| < p uncorrelated linear combinations of the original covariates, addressing the
problem of multicollinearity. The subset of selected principal components can be chosen by e.g., GAIC where
we start with a model with the intercept and the first principal component (corresponding with the largest
singular value), and iteratively add the next principal component as long as GAIC decreases. A possible
problem is that principal components with lower singular values are eliminated from the model while the
disregarded principal components with lower singular values can potentially even contribute more to the
reduction of the sum of squares than the selected components (Hadi and Ling, 1998). Therefore we also
use the t-statistics of the regression of the principal components on response variable v, selecting only the
principal components considered significant and therefore informative, i.e., with a t-statistic greater than
two.

To ease interpretation, we can transform the fitted coefficients of the selected principal components back
to the coefficients of the original design matrix of the covariates in a third step. The pseudocode for the
PCR in GAMLSS with the t-values approach is given in Algorithm 3.1. Estimation and optimization are
done with the R package gamlss.foreach (Stasinopoulos, Rigby, and De Bastiani, 2021).
For the GAIC approach, lines 7 to 9 are replaced with the pseudocode in Algorithm C.1.

3.4 Gradient Boosting and Stability Selection For GAMLSS

As outlined in the literature review, the high flexibility and the large number of potential covariates in the
design matrices in Eqs. 3 and 4 make variable selection of paramount importance for GAMLSS. In the case
of more covariates than observations, p > n, gradient boosting proves to work well as a variable selection
technique.

3.4.1 Component-wise gradient boosting

Gradient boosting ensembles weak base-learners to make for a strong prediction model, where each base-
learner is a function of one covariate. The base-learners should perform at least slightly better than random
guessing, e.g., a simple linear regression model for a linear term. Let hk,j(xj) denote base-learner j for
predictor ηk, a function of covariate xj . As the base-learner can be of all sorts, such as (non-)linear or
smoothing function of the covariate, we can generalize Eqs. 3 and 4. The additive predictor vectors can then
be written as a function of the covariates as

g1(ξ) = η1 = ξ0 +

p∑
j=1

h1,j(xj), (13)

g2(σ) = η2 = σ0 +

p∑
j=1

h2,j(xj). (14)

where η0 and σ0 represent the intercept in vector form, and where thus a priori all possible covariates
x1, ...,xp are incorporated in the models for both distribution parameters before gradient boosting.

To estimate the coefficients of the base-learners, gradient boosting minimizes the empirical risk R, which
is the loss summed over all observations. As we estimate the parameters of an assumed distribution, the
loss function will be the negative log-likelihood of the GPD, and the empirical risk thus the negative log-
likelihood function. As we aim to minimize our empirical risk, or negative log-likelihood function, this is
equivalent to maximizing the log-likelihood function as in Eq. 7. As an explicit solution is infeasible, we
resort to numerical optimization by the noncyclical boosting algorithm for GAMLSS of Thomas et al. (2018).

First, we compute the negative partial derivative of the negative log-likelihood of the GPD with respect
to each parameter predictor ηk and evaluate it at the estimates of the current iteration m. This is equivalent
to the partial derivative of the log-likelihood with respect to the predictor (the score) as in Eq. 8,

uk =
∂ℓ

∂ηk

∣∣∣∣∣
ηk=η̂

[m]
k ,y=y

for k = 1, 2. (15)
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Algorithm 3.1: Principal component regression for the GPD within the RS algorithm,
t-values approach.

Input:
Response variable y = (y1, ..., yn)⊤, with assumed distribution y ∼ GPD(ξ, σ),
p possible explanatory variables with n× p design matrix X = (x1, ...xp).
Output:
A GAMLSS model with fitted GPD parameters θ̂1 = ξ̂ and θ̂2 = σ̂ with PCs as covariates.
Initialization:

Derive the log-likelihood function of the GPD, ℓ =
∑n

i=1 log

(
1
σi

(
1 + ξiyi

σi

)− 1
ξi
−1
)

,

Derive uk = ∂ℓ
∂ηk

=
(

∂ℓ
∂θk

)
◦
(
dθk
dηk

)
,fk = ∂2ℓ

∂θ2
k

or E
(

∂2ℓ
∂θ2

k

)
,wk = −fk ◦

(
dθk
dηk

)
◦
(
dθk
dηk

)
,

Scale X and perform compact SVD: X = UΣV⊤, score matrix T = UΣ and rotation
matrix P = V⊤. Set r = rank(Σ), and subset the first r (non-zero) columns of T = T[1:r],

Set w
[0]
k = 1, β̂

[0]
k = 0, η̂

[0]
k = 0, and θ̂

[0]
k = g−1

k (η̂
[0]
k ) for k = 1, 2,

Set global deviance change of inner and outer iteration ∆GDOUT = ∆GDIN= 1, q,m = 0.
1 while |∆GDOUT | > 0.001 do
2 for k = 1, 2, do

3 Treat estimate θ̂j , j ̸= k as given, and:
4 while |∆GDIN | > 0.001 do
5 Evaluate score and weights at current estimates, uk,wk

∣∣
ηk=η̂

[m]
k ,θk=θ̂

[m]
k ,y=y

.

6 Update modified response variable z
[m]
k = η̂

[m]
k + w−1

k ◦ uk.

7 Estimate the PCs coefficients γ̂ =
(
T⊤WkT

)−1
T⊤Wkz

[m]
k , with

Wk = diag(wk).
8 Select subset λ of significant PCs: λ = {PCi | γ̂i

se(γ̂i)
> 2, i = 1, ..., r},

9 Set columns tk,i = 0 if PCi /∈ λ, resulting in score matrix Tλ of significant PCs.

10 Recalculate γ̂λ =
(
T⊤

λWkTλ

)−1
T⊤

λWkẑ
[m]
k

11 Transform to coefficients of the covariates β̂
[m+1]
k = Vγ̂λ.

12 Update predictor η̂
[m+1]
k = Xkβ̂

[m+1]
k , and estimate θ̂

[m+1]
k = g−1

k (η̂
[m+1]
k ).

13 Calculate GD
[m+1]
IN = −2 · ℓ̂[m+1], evaluated at current estimate θ̂

[m+1]
k .

14 Set ∆GDIN = GD
[m+1]
IN − GD

[m]
IN .

15 m = m + 1.

16 Extract estimate after convergence of inner iteration: θ̂
[q+1]
k = θ̂

[m]
k .

17 Calculate global deviance GD
[q+1]
OUT = −2 · ℓ̂, at current estimates θ̂

[q+1]
k , k = 1, 2.

18 Set ∆GDOUT = GD
[q+1]
OUT − GD

[q]
OUT .

19 q = q + 1.
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The algorithm fits each base-learner ĥk,j(xj) to the partial derivatives of the negative log-likelihood with
respect to predictor ηk in each iteration. The base-learner that fits best, i.e. minimizes the residual sum of
squares, is selected:

j∗ = argmin
j∈1,...,p

n∑
i=1

(
uk,i − ĥk,j(xj,i)

)2
for k = 1, 2, (16)

with uk,i the partial derivative of the log-likelihood with respect to predictor ηk evaluated at ηk,i =

η̂
[m]
k,i , y = yi, with xij observation i of covariate j. These are all equal to the i-th element of vectors uk, η̂

[m]
k ,y

and xj , respectively. The cyclical boosting algorithm (Mayr, Fenske, et al., 2012) then, for each distribution
parameter iteratively, uses the best fitting base-learner to update the predictor:

η̂
[m+1]
k = η̂

[m]
k + sl · ĥk,j∗(xj∗) for k = 1, 2, (17)

where 0 < sl ≪ 1 is the step length (usually set to sl = 0.1 as the value is not so important) and ĥk,j∗

is the selected, best fitting base-learner for predictor ηk. If the algorithm is stopped early, at least before
all the base-learners are selected, their corresponding covariate is not in the final model and thus variable
selection and shrinkage are performed. As long as the number of iterations m is below the specified stopping
value mstop, the predictor of every distribution parameter gets updated. This way base-learners that are
possibly of much less significance are added to the model compared to base-learners for the other distribution
parameters.

This can give problems when the algorithm is combined with stability selection, and a careful choice
of mstop for every distribution parameter is needed. Optimization of the hyperparameters thus becomes
k-dimensional, with k the number of parameters of the distribution. The noncyclical gradient boosting
algorithm of Thomas et al. (2018) solves these problems by updating only one distribution parameter in
each iteration, by selecting the combination of distribution parameter and base-learner that has the most
improvement in the negative log-likelihood. Therefore, the possible improvement in the loss function by each
updated predictor is computed first:

∆ρk = −ℓ
(
y; η̂

[m]
k + sl · ĥk,j∗(xj∗)

)
, for k = 1, 2, (18)

where ℓ is the log-likelihood of the GPD as in Eq. 7, and ĥk,j∗ is the best fitting base-learner for predictor
ηk. The predictor estimate that gets updated is determined by the overall best-fitting base-learner:

k∗ = argmin
k=1,2

∆ρk, (19)

where k∗ is the index for the distribution parameters predictor that gets updated. Now we update the
predictor with the base-learner that fits best overall :

η̂
[m+1]
k = η̂

[m]
k + sl · ĥk,j∗(xj∗) if k = k∗, (20)

η̂
[m+1]
k = η̂

[m]
k otherwise. (21)

The base-learners are partitioned and sequenced automatically based on the data while fitting, based on
just one stopping value mstop. Optimization is greatly eased because of scalar optimization, compared to
e.g., grid search for the cyclical algorithm. The pseudocode for the non-cyclical component-wise gradient
boosting for the GPD is given in Algorithm 3.2. For estimation and optimization of the noncyclical boosting
algorithm, we use the R package gamboostLSS.

3.4.2 Stability Selection

As outlined in Section 2, many variable selection techniques such as implicit regularization or boosting are
known to be unstable or include too many noise variables. Stability selection tries to overcome this by
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Algorithm 3.2: Noncyclical component-wise gradient boosting for the GPD, before sta-
bility selection

Input:
Response variable y = (y1, ..., yn)⊤,
Possible covariates x1, ...,xp,
Number of selected covariates q.
Output:
A set of selected covariates Ŝ for GPD parameters θ1 = ξ and θ2 = σ.
Initialization:
Specify a set of base-learners for each GPD distribution parameter θ1 = ξ and θ2 = σ, i.e.,
hk,1(·), ..., hk,pk(·), where pk is the cardinality of the set of base-learners specified for θk,

Set predictors η̂
[0]
1 = η̂

[0]
2 = 0, for ξ and σ respectively,

Set Ŝ = ∅, m = 0.
1 while |Ŝ| < q do
2 for k = 1, 2 do
3 Compute partial derivative of the log-likelihood of the GPD with respect to

predictor ηk and evaluate at current estimates η̂[m]:

uk =
∂ℓ

∂ηk

∣∣∣∣∣
ηk=η̂

[m]
k ,y=y

.

4 Fit each of the base-learners hk,1(x1), ..., hk,pk(xpk) specified for distribution
parameter θk to the partial derivative uk. Select the best-fitting base-learner by
the residual sum of squares with respect to the partial derivative:

j∗ = argmin
j∈1,...,p

n∑
i=1

(
uk,i − ĥk,j(xij)

)2
.

5 Compute the change in the negative log-likelihood:

∆ρk = −ℓ
(
y; η̂

[m]
k + sl · ĥk,j∗(xj∗)

)
.

6 Select the overall best-fitting combination of base-learner and predictor η̂k:
k∗ = argmink=1,2 ∆ρk.

7 Update the estimates of the predictors by:

η̂
[m+1]
k = η̂

[m]
k + sl · ĥk,j∗(xj∗) if k = k∗,

η̂
[m+1]
k = η̂

[m]
k otherwise.

8 Add the selected base-learner ĥk∗,j∗ to the set Ŝ.
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repeatedly applying a certain variable selection technique on a large number of random subsamples of the
original data, selecting only the covariates that are consistently used for fitting. The approach is rather
simple and can be combined with almost every (high-dimensional) variable selection technique. We use a
modification (Shah and Samworth, 2013) of the original approach of Meinshausen and Bühlmann (2010),
called complementary pairs stability selection.

First, a random subset of half of the observations is selected B times, where each subset complement of
the data makes the complementary pair, resulting in 2B subsamples of size n/2. Then a boosted model is
fitted to each of the subsamples until a pre-specified number of q covariates is selected, resulting in 2B sets
of size q. The relative selection frequency is equal to:

π̂j :=
1

2B

2B∑
b=1

1j∈Ŝb
, (22)

where Ŝb denotes the set of selected covariates by the boosted model, fitted to subsample b, with 1

the indicator function. Variable selection is done by specifying threshold value πthr, where covariates are
considered stable and subsequently selected if their relative selection frequency is equal to or larger than the
threshold value:

Ŝstable := {j : π̂j ≥ πthr}. (23)

Hyperparameter q is the number of selected covariates by the boosted model on each subset and πthr the
threshold value for the relative selection frequency. The simulation study will shed more light on the optimal
choice of these hyperparameters, specifically for the GPD. For estimation and optimization we use the R
package stabsel (Hofner and Hothorn, 2021). The pseudocode for complementary pairs stability selection
is given in Algorithm 3.3 (Hofner and Hothorn, 2021).
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Algorithm 3.3: Complementary pairs stability selection for component-wise gradient
boosting for the GPD parameters in the GAMLSS framework.

Input:
Response variable y = (y1, ..., yn)⊤,
Possible covariates x1, ...,xp,
The number of iterations, B, for stability selection,
Number of selected covariates q in each run by noncyclical boosting,
Relative selection rate threshold πthr,
Output:
A set of stable covariates Ŝstable for distribution parameters θ1 = ξ and θ2 = σ.

1 for b = 1, ..., B do
2 Split the data by first randomly selecting [n/2] observations, where [n/2] denotes the

largest integer ≤ n/2. The remaining subset of n− [n/2] observations makes the
complementary pair.

3 Run Algorithm 3.2 on both subsets of the data, which outputs the sets of selected

base-learners denoted as Ŝ2b−1 and Ŝ2b.
4 Compute the relative selection frequencies for each

π̂j :=
1

2B

2B∑
b=1

1j∈Ŝb
,

5 Select base-learners with a relative selection frequency of at least πthr for the final
model:

Ŝstable := {j : π̂j ≥ πthr}.
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4 Simulation Study

In this section, we compare the performance of gradient boosting technique gamboostLSS to the same tech-
nique when combined with stability selection, for variable selection. With these results informed choices can
be made about the hyperparameter choice for both models in the empirical application. No hyperparameters
need to be set for the GAIC and t-statistics principal component methods in the GAMLSS framework.

4.1 Data-generating process

The extreme observations are generated according to a generalized Pareto distribution (GPD) with linear
predictors ησ = −pinf · 1 − Xβ1 − X̃β2 and ηξ = −1.5 · pinf · 1 − Xβ3 − X̃β4, with pinf the number of
informative variables and with logarithmic link functions such that σ = exp(ησ) and ξ = exp(ηξ).

Yi ∼ GPD(σi, ξi), i = 1, ..., n.

The observations xi = (xi1, ..., xip), i = 1, ..., n were independently drawn from

x ∼ 1

2
· N (0,Σ),

and gathered in the (n × p) design matrix X. We set the number of variables to p = 20 and adding
interactions increases the number of variables to p(p + 1)/2 = 210. We set the number of observations to
n = 209, resulting in a high-dimensional setting. The interactions are gathered in the (n × (p(p − 1)/2))
design matrix X̃. The number of informative linear and informative interaction variables are equal and
varied within pinf ∈ {1, 2, ..., 10}, resulting in 10 different simulation settings, with at most 20 informative
variables for both parameters: 10 linear and 10 interaction terms. The coefficients βkj , the elements of
βk, for k = 1, ..., 4, are set to 1 for informative variables and set to 0 for the remaining variables. We use
three settings for the covariance matrix Σ:

1. independent variables, i.e., Σ = I,
2. correlated variables drawn from a Toeplitz design with covariance matrix Σkl = 0.5|k−l|, k, l = 1, ..., p,
3. highly correlated variables drawn from a Toeplitz design with covariance matrix Σkl = 0.9|k−l|, k, l =

1, ..., p.
The boxplots and mean of the average σ and ξ in the simulations, with the covariance matrix in setting 2,
for each value of pinf together with the histogram of the simulated values using mean parameter values and
10000 observations are given in Figure 1.

4.2 Choice of hyperparameters

Noncyclical gradient boosting depends, as described in Section 3.4.1, on hyperparameter mstop. To account
for different values of pinf, the value set is to mstop = 20 · pinf. For stability selection q and πthr need to be
specified, as described in Section 3.4.2. The number of covariates selected per iteration, q, should be at least
as big as the number of informative variables (Meinshausen and Bühlmann, 2010), so we set q = 2·pinf+1. For
πthr, any value ∈ (0.5, 1) is potentially acceptable (Hofner, Boccuto, and Göker, 2015), so we set πthr = 0.51
as a base case. In Section 4.4 the sensitivity with respect to πthr will be further investigated.

4.3 Results

To evaluate the gradient boosting and stability selection methods of Section 3.4 we look at the percentage
of variables that are selected correctly, the TPR. As a base case we use the first setting of the covariance
matrix, i.e., Σ = I. The number of simulation runs is 1000.
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(a) pinf = {1, 2, 3, 4, 5} (b) pinf = {6, 7, 8, 9, 10}

Figure 1: Boxplots and mean (red dots) of the average σ and ξ in the 1000 simulations for each
value of pinf together with the histogram of the simulated extreme values using mean parameter
values and 10000 observations. 18



Shape parameter ξ

The estimation even of a constant shape parameter is known to be difficult (Coles et al., 2001; Park and
Kim, 2016), and estimation only gets harder for a dynamic shape parameter in a high-dimensional setting.
In a total of 1000 simulation runs with the second setting of the covariance matrix, gradient boosting once
selected two covariates for the shape parameter, and sixteen times selected one covariate, all incorrect.
Stability selection did not once select a covariate for the shape parameter.

To check the performance of selecting variables for the shape parameter, we change component-wise
gradient boosting from noncyclical to cyclical updates, updating every parameter in every iteration, like in
the original algorithm (Mayr, Fenske, et al., 2012). This forces the method to select variables for the shape
parameter. The results are in Figure 2.

(a) TPR linear covariates (b) TPR interaction covariates

Figure 2: Boxplots and mean (circle) of the TPRs of the selected covariates by the gradient boosting
method for the shape parameter, for every setting of pinf. The expected TPR of random variable
selection is indicated by the dashed red line. The black line and the secondary vertical axis indicate
the average number of selected variables in each of the 1000 simulation runs per setting of pinf.

The slopes of the dashed red lines are equal to pinf/10 and pinf/190 for Figures 2a and 2b respectively,
the expected TPR of the linear and interaction terms respectively. We conclude that gradient boosting is
unable to outperform random selection of covariates, which is why the noncyclical algorithm hardly, and
stability selection never, selects covariates for the shape parameter.

Scale parameter σ

For both regularization methods, the TPR of the selected linear and interaction terms for σ and the corre-
sponding average number of selected variables in each simulation setting of pinf are displayed in Figure 3.

For the linear covariates of σ both methods perform very well, with the lowest average TPR at 99.26%
for gradient boosting and pinf = 10. The stability selection method seems to outperform gradient boosting
for pinf high, but the higher number of selected variables by gradient boosting causes bias. The average
number of selected linear covariates ranges between 0.62 and 8.93 for gradient boosting and between 0.83
and 8.16 for stability selection. Both averages seem to increase linearly in pinf, supporting the hyperparameter
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(a) TPR linear covariates (b) TPR interaction covariates

Figure 3: Comparison by boxplot and mean (circle) of the TPR of the selected linear and interac-
tion terms for σ of the gradient boosting and stability selection method, for every setting of pinf.
The secondary vertical axis indicates the average number of selected variables in each of the 100
simulation runs per setting of pinf.

settings. For the interaction terms, the TPR of both methods is more inconsistent as indicated by the large
ranges of the boxplots. Moreover, the average TPR shows a decreasing trend for both methods. The
average selected number of both linear and interaction terms increases in pinf for both methods. To account
for different numbers of selected covariates, Figure 4 shows the results of the simulation runs only where
stability selection and gradient boosting selected the same number of linear or interaction terms, the number
at the top indicates the number of times this was the case.

For the linear covariates, the methods perform both extremely well and exactly the same. Subsetting the
simulation runs on the same number of selected interaction effects eliminates the bias and has a magnifying
effect on the outperformance of stability selection by gradient boosting, as gradient boosting selected more
interaction terms in Figure 3b. We can conclude that both methods preferably select the easier-to-identify
linear covariates, and that stability selection does not offer an improvement to gradient boosting in this
setting.

For the interaction terms, two things stand out. The outperformance of stability selection by gradient
boosting, while stability selection is essentially repeatedly applying gradient boosting, means the selection
of interaction terms is very unstable. Secondly, the average TPR seems to decrease in pinf, while a higher
pinf means a higher a priori probability of a true positive. A relative increase in the average number of
selected interaction effects disproportionate to the relative increase in pinf is also not the case, and thus does
not explain the decrease of TPR in pinf. We conclude that gradient boosting has a hard time selecting the
informative interaction effects, becoming even more true for a higher pinf.
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(a) TPR linear covariates (b) TPR interaction covariates

Figure 4: Comparison of the gradient boosting and stability selection method, for every setting of
pinf with an equal number of selected covariates, for covariance matrix setting 1.

Collinearity

We introduce collinearity through settings 2 and 3 of the covariance matrix. First we use the second setting,
Σkl = 0.5|k−l|, k, l = 1, ..., p, where the hyperparameters of the two methods remain the same. We only look
at the simulation runs where the number of selected covariates (linear, interaction, or total) is the same for
both methods. The results are in Figure 5.

Compared to the results of Figure 4 with the unit matrix as the covariance matrix of the covariates,
the average TPRs decrease as expected, except for pinf = 1. In the simulation runs where both methods
select the same amount of covariates, there are more linear and almost the same number of interaction terms
selected on average compared to without collinearity. Both methods still have an almost equal TPR for the
linear covariates, and stability selection now performs worse than gradient boosting for every pinf if we look
at the TPR of the interaction terms. The number of cases at the top does not differ much compared to
Figure 4, meaning both methods still select the same number of covariates a lot of the time.

Finally, we increase collinearity by setting the covariance matrix to the third setting: Σkl = 0.9|k−l|, k, l =
1, ..., p. The results are in Figure 6.

Further increasing the collinearity surprisingly increases the number of selected variables, for both the
linear and interaction terms. It also further decreases the average TPRs. The TPRs seem to decrease
slightly in pinf, for both the linear and interaction terms. This is unexpected, as a higher pinf means a higher
a priori probability of correctly selecting a covariate. For the first time, stability selection improves the TPR
compared to gradient boosting for some settings, but only for the linear covariates and increasingly for higher
pinf. Moreover, the number of cases as indicated at the top of Figure 6b is much lower compared to Figure 4b,
indicating collinearity magnifies the instability of selecting the interaction terms resulting in lower TPRs for
both methods and a decrease in the number of selected interaction terms for stability selection. Stability
selection still gets outperformed and there is still a decreasing trend of the TPRs in pinf. We conclude that
with the added uncertainty of the high collinearity, the selection of interaction terms becomes even more
unstable. Therefore stability selection resorts to mainly selecting linear covariates.
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(a) TPR linear covariates (b) TPR interaction covariates

Figure 5: Comparison of the gradient boosting and stability selection method, for every setting of
pinf with an equal number of selected covariates, for covariance matrix setting 2.

(a) TPR linear covariates (b) TPR interaction covariates

Figure 6: Comparison of the gradient boosting and stability selection method, for every setting of
pinf with an equal number of selected covariates, for covariance matrix setting 3.
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4.4 Sensitivity Analysis

Number of Observations n

To analyze the sensitivity to n, we both increase and decrease the number of observations. First, we decrease
the number of observations from 209 to 105, almost half the number of covariates. We use the third setting
of the covariance matrix, so the results are comparable to Figure 6. The number of simulation runs is 1000.
The results are in Figure 7.

(a) TPR linear covariates (b) TPR interaction covariates

Figure 7: Comparison of the gradient boosting and stability selection method, for every setting of
pinf with an equal number of selected covariates, for low number of observations n.

The number of selected linear covariates is slightly lower when compared to Figure 6a. Reducing the
number of observations seems to magnify the differences in the TPRs of Figure 6. For the linear covariates
and pinf > 6, stability selection performs better than gradient boosting with the differences bigger now the
number of observations is low. For the interaction terms, gradient boosting still performs better but again
the differences in TPR are bigger than before. The TPRs are still not increasing in pinf: both gradient
boosting and stability selection have a harder time selecting the right linear covariates.

Next, we increase the number of observations to 420, double the number of covariates. We use the third
setting of the covariance matrix, so the results are comparable with Figures 6 and 7. The results are in
Figure 8.

The number of selected variables increases for both the linear and interaction terms, compared to the
base case of Figure 6. The TPRs do not change much: they appear to be the same as for the regular n for
the linear covariates, and also for the interaction terms the TPRs are not significantly higher. The number of
selected variables however is higher, and thus the number of correctly selected variables also. Doubling the
number of observations increases the performance of both methods, but the performance difference between
the methods does not change.

Relative Selection Rate Threshold πthr

Meinshausen and Bühlmann (2010) propose to use πthr ∈ (0.6, 0.9), while Hofner, Boccuto, and Göker (2015)
state that any value ∈ (0.5, 1) is potentially acceptable. To analyze the sensitivity with respect to the relative
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(a) TPR linear covariates (b) TPR interaction covariates

Figure 8: Comparison of the gradient boosting and stability selection method, for every setting of
pinf with an equal number of selected covariates, for high number of observations n.

selection threshold, we let πthr ∈ {0.51, 0.6, 0.7, 0.8, 0.9}, with covariance matrix setting 3 and 100 simulation
runs per setting of pinf. The results are in Figure 9.

For the linear covariates, The number of selected covariates is still almost linear in pinf, just with a
different slope for every different threshold. There is no clear pattern in the TPRs for every threshold, with
pinf = 1 producing a remarkable result where the highest threshold does not produce the highest average
TPR. This means that the selection rate of an uninformative linear covariate is higher than that of the
only informative linear covariate, which in turn means gradient boosting regularly selects an uninformative
linear covariate before the informative. For pinf > 1, a higher threshold results in a higher TPR on average.
Until pinf = 6, it seems advantageous to increase the threshold to improve the TPRs, but the difference in
variables selected should be taken into account. Especially, for pinf high, the TPRs differences are small but
the difference in linear covariates selected is very large. Taking this into account we conclude that a lower
threshold will select more informative variables.

For the interaction terms, the highest threshold selects an interaction covariate in just one of the 1000
simulation runs, underlining the preference of gradient boosting to select the linear covariates. The results
are unstable, sometimes higher thresholds return higher TPRs on average, but that is not the case for
pinf = 7, 8 and 10.

4.5 Conclusion

The hyperparameter settings lead to an average selected number of linear covariates that are very close to
the real number of informative variables, for both the stability selection and the gradient boosting method.
Cyclical gradient boosting does not outperform random guessing for both the linear and the interaction terms
for the shape parameter, which underlines how difficult it is to model the shape parameter. The noncyclical
version of gradient boosting as in the simulation therefore rarely selects covariates for the shape parameter
and is incorrect when it does. The performance of both methods is very good for the scale parameter on the
other hand, and not too sensitive to the number of observations. Without collinearity, both methods have
TPRs close to perfect for the linear covariates.
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(a) TPR linear covariates

(b) TPR interaction covariates

Figure 9: TPRs for different thresholds of the stability selection technique.
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The informative interaction terms are very hard to identify resulting in low and unstable TPRs for both
methods. Without collinearity, stability selection does not offer an improvement to gradient boosting. For
the linear terms, it does offer a very small improvement when we increase collinearity and this remains valid
for both a lower and higher number of observations. This also resembles the context of the empirical study
the best, as Chmielewski et al. (2015) find lagged and unlagged correlations above 0.98 between stock indices
around the world. For the stability selection threshold choice, the sensitivity analysis shows a higher threshold
increases the TPR for linear covariates, but the average number of selected linear covariates decreases a lot.
If we take that into account, models with a lower threshold select more informative linear covariates than
with higher thresholds, despite the slightly lower TPRs. This could be an advantage in an empirical setting.
For a relatively large number of (informative) variables, a low threshold seems advantageous.

5 Empirical Analysis

Using the simulation study results, we fit all models to empirical data.

5.1 Data Description

The negative returns, or losses, of the S&P 500 index make up the response variable. The time series is
from September 1st, 2001 till December 31st, 2021 based on availability, resulting in 5113 daily observations
excluding public holidays. Missing values due to e.g., public holidays are linearly interpolated. Figure 10
shows the plots of both the log losses and the excess log losses.

Figure 10: S&P 500 log losses and excess log losses.

The descriptive statistics of the losses are presented in Table 1.

Table 1: Descriptive statistics for the S&P 500 log losses and excess log losses in percentages.

n Mean Median SD Min Max D1 D9 Skew. Kurtosis

S&P 500 losses 5113 -0.044 -0.070 1.223 -12.307 11.319 -1.217 1.201 -0.065 12.318
S&P 500 excess losses 512 0.999 0.6133 1.207 0.001 10.118 0.106 2.191 3.064 13.411

The covariates consist of the Russel 2000 index and 12 stock indices of the largest trading partners of
the United States, together with the corresponding 8 exchange rates to the U.S. dollar. Other covariates
are the commodities gold, silver, crude oil, copper, platinum, and natural gas. Also included are the risk
factors of the Fama-French 5-factor model (Fama and French, 1993), except for the market return, together
with the corresponding risk-free rate. All covariates are log returns. Furthermore, the market yield on the
U.S. Treasury securities at 3-month, 6-month, 1, 3, 5, 10, and 20-year constant maturity and the Effective
Federal Funds Rate (EFFR) are included, in log percentages, as well as the log percentage changes of the
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CBOE Volatility Index. We also consider all interaction terms, resulting in a total of (41)(41 + 1)/2 = 861
covariates. All descriptive statistics are in Table 2.

Table 2: Descriptive statistics for covariates, in percentages.

Mean SD Min Max Skewness Kurtosis JB-test (p-value)

Indices
FTSE 100 0.007 1.172 -11.512 9.384 -0.312 8.785 16524 (0.000)
Russell 2000 0.031 1.541 -15.399 8.976 -0.592 7.973 13842 (0.000)
AEX 0.009 1.387 -11.376 10.028 -0.173 7.668 12551 (0.000)
DAX 0.023 1.453 -13.055 10.797 -0.125 6.222 8260 (0.000)
GSPTSE 0.022 1.073 -13.176 11.295 -1.008 20.588 91171 (0.000)
SSE 0.026 1.531 -9.256 9.401 -0.419 5.091 5671 (0.000)
CAC 40 0.010 1.418 -13.098 10.595 -0.164 6.989 10429 (0.000)
Nikkei 225 0.015 1.444 -12.111 13.235 -0.430 6.918 10353 (0.000)
VIX -0.011 7.235 -35.059 76.825 1.046 6.613 10249 (0.000)
KOSPI 0.029 1.313 -11.172 11.284 -0.434 6.562 9334 (0.000)
IPC Mexico 0.041 1.187 -7.266 10.441 -0.029 5.762 7075 (0.000)
BSE Sensex 0.062 1.391 -14.102 15.990 -0.308 11.176 26690 (0.000)
FTSE MIB 0.000 1.530 -18.546 10.874 -0.582 9.578 19831 (0.000)
HSI 0.018 1.404 -13.582 13.407 -0.060 8.492 15365 (0.000)
Currency Rates
USDEUR 0.005 0.567 -3.003 4.621 0.112 3.046 1988 (0.000)
INRUSD 0.006 0.433 -3.756 3.792 -0.044 9.304 18442 (0.000)
CNYUSD -0.005 0.156 -2.019 1.816 0.233 20.381 88539 (0.000)
JPYUSD -0.001 0.597 -5.216 3.343 -0.331 5.028 5479 (0.000)
KRWUSD -0.004 0.655 -13.222 10.135 -0.501 53.672 613915 (0.000)
MXNUSD 0.015 0.706 -5.960 8.114 0.827 11.465 28587 (0.000)
USDGBP 0.001 0.581 -8.169 4.435 -0.611 11.213 27102 (0.000)
CADUSD -0.005 0.556 -5.072 3.807 -0.092 5.644 6793 (0.000)
Commodities
Gold 0.035 1.111 -9.821 8.643 -0.369 5.466 6481 (0.000)
Silver 0.031 2.019 -19.546 12.196 -0.911 7.364 12259 (0.000)
Crude Oil 0.029 2.618 -28.221 31.963 0.039 18.830 75542 (0.000)
Natural Gas 0.007 3.334 -19.899 32.375 0.601 5.825 7537 (0.000)
Copper 0.035 1.714 -11.693 11.769 -0.203 4.277 3932 (0.000)
Platinum 0.013 1.365 -12.347 11.176 -0.580 6.380 8957 (0.000)
Security Market Yields
U.S. 3MO 1.211 1.440 0.000 5.060 1.279 0.680 1493 (0.000)
U.S. 6MO 1.313 1.472 0.020 5.193 1.229 0.522 1346 (0.000)
U.S. 1Y 1.415 1.446 0.040 5.164 1.104 0.213 1047 (0.000)
U.S. 3Y 1.867 1.329 0.100 5.126 0.731 -0.527 515 (0.000)
U.S. 5Y 2.308 1.250 0.190 5.098 0.425 -0.856 310 (0.000)
U.S. 10Y 2.972 1.157 0.519 5.297 0.044 -1.049 236 (0.000)
U.S. 20Y 3.511 1.197 0.866 5.874 -0.040 -1.190 303 (0.000)
Interest Rates
EFFR 1.297 1.506 0.040 5.269 1.306 0.706 1561 (0.000)
Fama-French Factors
SMB 0.006 0.614 -4.625 5.572 0.107 4.317 3980 (0.000)
HML -0.005 0.730 -5.087 6.532 0.352 9.532 19463 (0.000)
RMW 0.015 0.451 -2.758 3.218 0.078 2.748 1614 (0.000)
CMA 0.004 0.343 -2.634 2.430 -0.053 3.720 2950 (0.000)
RF 0.005 0.006 0.000 0.022 1.301 0.791 1575 (0.000)
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All stock index and commodities log returns have a positive mean and thus a positive return over the sample
period. The FTSE MIB is the worst performing stock index. The VIX has the highest standard deviation
by some margin, which is not unexpected as it is an index for volatility itself. Furthermore, all covariates are
not normally distributed as indicated by very significant p-values on the Jarque-Bera test. The simulation
showed that collinearity affects the performance of variable selection for gradient boosting, and therefore a
correlation plot is given in Figure A.1. To aid the comparison of the stock indices, we use the log returns of
the S&P 500, instead of the log losses, in the correlation plot.

The stock indices show positive intercorrelation, with some strongly correlated like the German DAX
index with the Dutch AEX index and the American S&P 500 index with the Russel 2000 index. The same is
true for the commodities and Fama-French risk factors small minus big (SMB) and high minus low (HML).
The indices, commodities, and risk factors all are negatively correlated with the VIX, and the stock indices
all have a positive but weak correlation with the commodities, SMB and HML. Conversely, there is a weak
negative correlation between the exchange rates to the US dollar and the stock indices, and a weak positive
correlation between the VIX and those exchange rates. The profitability risk factor (RMW) has similar
correlations to the exchange rates. The market yield on U.S. Treasury securities with constant maturity and
the risk-free rate (RF) logically have strong positive intercorrelations. However, they are uncorrelated to
almost all other covariates.

5.2 Threshold choice

The Peak-Over-Threshold method states that the excesses of i.i.d. variables over a high threshold u approxi-
mately follow the GPD with distribution function Gξ,σ. The choice of the threshold u implies a bias-variance
tradeoff. A low threshold is likely to violate the assumptions of the asymptotics, increasing the bias. Con-
versely, a high threshold will lead to fewer available observations and thus a higher variance for the fitted
model. The mean excess function e(u) as described by Embrechts, Mikosch, and Klüppelberg (1997) can be
plotted to make a substantiated choice for the threshold. For a random variable X with distribution function
Gξ,σ,

e(u) = E (X − u|X > u) =
σ + ξu

1 − ξ
, ξ < 1, (24)

so e(u) is linear in threshold u. The empirical mean excess function given sample X1, ..., Xn is defined as

en(u) =
1

Nu

∑
i∈∆n(u)

(Xi − u), u > 0, (25)

where Nu = card{i : i = 1, ..., n,Xi > u} = card∆n(u). Based on the linearity of the mean excess function,
u should be chosen such that en(u) is approximately linear for x ≥ u. The empirical mean excess function
for the S&P 500 log losses is plotted in Figure 11.

The full empirical mean excess function appears to be somewhat linear, and most threshold choices seem
to be fine. The 80% and 90% quantiles are indicated as blue lines, which results in 1023 or 512 threshold
exceedances of the losses respectively. A higher threshold is less likely to violate the assumptions of the
threshold, and Section 4.4 showed that the variable selection performance of the machine learning models is
not too sensitive to a low number of observations. Therefore, we set u = 1.2%, such that P (X ≤ u) = 0.9.

5.3 Hyperparameter choice

Before we fit all the models, the hyperparameters of the gradient boosting and stability selection need to
be set. For gradient boosting, the optimal number of boosting iterations mstop will be determined based on
cross-validated empirical predictive risk based on 25 folds as proposed by Mayr, Hofner, and Schmid (2012a),
with the results in Figure 12.

The optimal mstop = 1491, which results in model GBrich, with 74 selected covariates for the scale
parameter and an intercept for both the shape and scale parameter. Producing rich models despite early
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Figure 11: Mean excess plot for S&P 500 losses. The blue lines indicate the 80% and 90% quantiles.

Figure 12: Out-of-bag risk of 25-fold cross-validation, optimal number of iterations indicated.
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stopping and regularization is a known problem for boosting (Mayr, Hofner, and Schmid, 2012a; Meinshausen
and Bühlmann, 2010). Therefore, based on Figure 12, we also set mstop = 400 as the average out-of-bag
predictive risk does not increase much compared to mstop = 1491, but the number of selected covariates
decreases to 18 for the scale parameter. This model is indicated as GBsparse.

For stability selection, we set the number of selected covariates per run q = 20, such that in theory all
18 covariates and the two intercepts selected by the GBsparse model can be selected in every run, following
Meinshausen and Bühlmann (2010). Together with relative selection frequency threshold πthr = 0.51, sta-
bility selection selects 7 covariates for the scale parameter and an intercept for both the shape and the scale
parameter. Stability selection only performs variable selection, so a model still needs to be fitted. To prevent
overfitting we fit a gradient boosting model, but with just the selected stable covariates and with optimal
mstop = 1997, again based on cross-validated empirical predictive risk. This model is indicated as SSopt.
We also fully fit a regular GAMLSS model with just the 7 selected stable covariates, indicated as model
SSfull, to investigate the effect of regularization. This results in four models that can be regarded as machine
learning models. For the models using PCR in GAMLSS, no hyperparameters need to be set. The PCR
model using GAIC selects the first 8 principal components to minimize the GAIC, while the t-VAL model
selects 130 PCs with significant t-values. The characteristics of all models are summarized in Table B.1 and
the selected covariates by the four machine learning models are presented in Table B.2.

5.4 Tail Risk and Performance Measures

Value-At-Risk

Because the GPD for the excess losses is used to estimate the tail of the underlying distribution F of the log
losses, the VaR is estimated as the quantile of the fitted GPD distribution. Using the notation of McNeil,
Frey, and Embrechts (2005), for x ≥ u,

F̄ (x) = F̄ (u)P (X > x|X > u) = F̄ (u)H̄σ,ξ(x− u), (26)

where F̄ (u) is the threshold exceedance probability, and Hσ,ξ the distribution function of the GPD as in
Equation 1. If we know F̄ (u), this formula can be inverted to obtain the VaR for confidence level α ≥ F (u),
equal to

VaRα = qα(F ) = u +
σ

ξ

((
1 − α

F̄ (u)

)−ξ
− 1

)
. (27)

with qα(F ) = F←(α) the quantile function of F and u, ξ and σ the threshold, and shape and scale parameter
respectively of the GPD. We can estimate this using the GPD parameters estimated by the model.

Performance measures

To measure the performance of the V̂aRα, we define the hit function as

Ii(α) =

{
1 if xi > V̂aRα,i,

0 if xi ≤ V̂aRα,i,
(28)

with xi the realized log loss i. The number of violations, I(α) =
∑n

i=1 Ii(α) can be compared to the empirical
number of violations, (1 − α)n, to give an indication if the model has a tendency to over or underestimate.
To evaluate the accuracy, we use two backtests to see if the hit function satisfies two properties. The first
property, the unconditional coverage property, is tested by the Kupiec (1995) proportion of failures test,
with the test statistic equal to

POF = 2 ln

[(
1 − α̂

1 − α

)n−I(α)(
α̂

α

)I(α)
]
∼ χ2(1), (29)
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where α̂ = 1
nI(α). This restricts the number of allowed violations and indicates if the number of violations

is significantly too high or low. The second, independence property restricts the timing of these violations.
Consecutive realizations of the hit function should be independent, tested by the Christoffersen (1998) test
for independence, which first calculates the probabilities of a violation conditional on the previous realization
of the hit function,

Nkj =

n∑
i=2

1k(Ii−1(α))1j(Ii(α)) for k, j = 0, 1,

πk =
Nk1

Nk0 + Nk1
for k = 0, 1,

π =
N01 + N11

N00 + N01 + N10 + N11
,

with 1 the indicator function. Under the null hypothesis, the probability of a violation should be independent
of the hit function the day before, i.e. π0 = π1, resulting in the test statistic

LR = −2 ln
[
(1 − π)

N00+N10 πN01+N11

]
+ 2 ln

[
(1 − π0)

N00 πN01
0 (1 − π1)

N10 πN11
1

]
∼ χ2(1). (30)

Both backtests treat all data as binary, discarding relevant information. To measure the performance of the
estimated VaR using all information, we calculate the quantile loss function as used in quantile regression,

L(V̂aRα,i, xi) = max
[
α(xi − V̂aRα,i), (α− 1)(xi − V̂aRα,i)

]
, (31)

with again xi the realized log loss i. We use this loss function to calculate the average quantile loss (AQL).
As Section 5.2 sets u = 1.2% such that P (X ≤ u) = 0.9, we have the unconditional threshold exceedance
probability F̄ (u) = 0.1. For all models, the estimated VaRs that exceed the highest empirical loss are set
equal to that loss.

5.5 Results

In this section, we evaluate the performance of the different models. We look at the violations, AQL and the
backtests and compare them to a benchmark model. First Section 5.5.1 presents the results for the subset
of excess losses, while Section 5.5.2 looks at all losses and fits a model which also predicts exceedances.

5.5.1 Performance of VaR Estimation For Excess Log Losses

We start off by fitting the stability selection, gradient boosting, and PCR models to the excess log losses
in Figure 10. Because the excess losses exceed the threshold by construction, we have u = 0 and hence
F̄ (u) = 1, simplifying the VaR of Equation 27.

Benchmark Model

To compare the models, we also set up a benchmark model. This benchmark model will be a fully fitted
regular GAMLSS model for the GPD distribution. Because the regular GAMLSS models can not fit high-
dimensional data, we only use the linear terms and not the interaction terms of the variables as the covariates.
Therefore, besides acting as a benchmark, comparing with this model sheds light on the added value of the
interaction terms, as the GAIC and t-VAL models are also fully fitted GAMLSS models, but with both the
linear and interaction terms of the variables as the covariates.
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Performance

The in-sample results of the VaR estimation of all models for the excess log losses and the benchmark are in
Table 3. The Christoffersen test is not conducted as the subset of excess log losses is not a valid time series.

Table 3: In-sample VaR estimation performance of all models and the benchmark model for excess
losses.

GBsparse GBrich SSopt SSfull t-VAL GAIC Benchmark Empirical

V̂aR95%

Violations 342 374 351 353 393 471 359 256
Kupiec (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -
AQL 0.219 0.188 0.231 0.233 0.171 0.189 0.221 -

V̂aR97.5%

Violations 68 74 123 131 90 6 121 128
Kupiec (0.000) (0.000) (0.682) (0.684) (0.000) (0.000) (0.538) -
AQL 0.127 0.120 0.138 0.138 0.149 0.063 0.137 -

V̂aR99%

Violations 0 0 0 0 1 0 0 51
Kupiec (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -
AQL 0.127 0.119 0.106 0.103 0.130 0.101 0.106 -

At a confidence level of 95%, all models significantly underestimate the VaR, resulting in many violations
and Kupiec backtest p-values close to zero. The PCR models produce relatively low AQLs, while the gradient
boosting models outperform the benchmark model which in turn outperforms the stability selection models.

At a confidence level of 97.5%, the stability selection models and the benchmark model produce similar
violations and do not significantly over- or underestimate the VaR, while the PCR models and gradient
boosting models do overestimate. The former models also produce similar AQLs and are outperformed by
the gradient boosting models. The GAIC model has the lowest AQL by some margin, but the extremely low
number of violations indicates overfitting.

At the highest confidence level, all models significantly overestimate the VaR99% which results in just one
violation. The GAIC model again produces the lowest AQL, while the machine learning models (GBsparse,
GBrich, SSopt, SSfull) collectively do not outperform the benchmark. Between those models, the stability
selection models produce lower AQL, but the reverse is true for the lower confidence levels of 95% and 97.5%.

The rich gradient boosting model performs similarly to or better than the sparse model on all confidence
levels for both the AQL and the Kupiec backtest, an indication that the performance is sensitive to the
choice of mstop for gradient boosting. The performance of the fully fitted and shrinked (optimal) coefficients
stability selection models SSopt and SSfull is very similar. Once the stable covariates are selected, shrinking
does not add value to in-sample estimation.

Out-Of-Sample Performance

We also evaluate the out-of-sample performance to detect overfitting. The data consist of 103 observations
from January 3rd, 2022 till May 31st 2022, containing 26 excess log losses of the S&P 500 above the threshold
u = 1.2%, a considerably higher rate than the in-sample rate of 0.1. The mean and standard deviation of the
excess losses are 0.863% and 0.807% respectively, lower than the in-sample mean and standard deviation of
0.999% and 1.207% reported in Table 1. The minimum and maximum excess losses are 0.006% and 2.759%
respectively. The out-of-sample performance of the risk measure estimation of all models, the benchmark,
and the empirical violations are presented in Table 4.

The performance in terms of violations is fairly better than the in-sample performance for most models.
The estimated VaRα of all the machine learning models only produces significant Kupiec p-values at the
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Table 4: Out-of-sample VaR estimation performance of all models and the benchmark model for
excess losses.

GBsparse GBrich SSopt SSfull t-VAL GAIC Benchmark Empirical

V̂aR95%

Violations 19 21 19 19 13 16 19 13
Kupiec (0.016) (0.001) (0.016) (0.016) (0.695) (0.237) (0.016) -
AQL 0.228 0.178 0.207 0.199 0.368 0.283 0.187 -

V̂aR97.5%

Violations 6 6 6 6 9 11 5 7
Kupiec (0.822) (0.822) (0.822) (0.822) (0.131) (0.054) (0.819) -
AQL 0.087 0.079 0.075 0.070 0.339 0.284 0.070 -

V̂aR99%

Violations 0 0 0 0 8 5 0 3
Kupiec (0.237) (0.237) (0.237) (0.237) (0.001) (0.158) (0.237) -
AQL 0.072 0.060 0.056 0.056 0.288 0.201 0.058 -

95% confidence level, compared to significant p-values and thus over and underestimation at all confidence
levels for the gradient boosting and at the 95% and 99% confidence levels for stability selection in-sample.
They also produce lower AQL at all confidence levels compared to the in-sample result, except GBsparse at
95% confidence, which is just slightly higher. While in-sample at all confidence levels one of the PCR models
produces the lowest AQL, the reverse is true out-of-sample, and this relative outperformance by the machine
learning models and the benchmark increases for higher confidence levels. Although violations for the PCR
models are only significantly too high for the t-VAL model at the 99% confidence level, the deteriorated
out-of-sample AQLs indicate overfitting by the PCR models. Between those models, the t-VAL model seems
to overfit the heaviest, evidenced by a higher AQL at all confidence levels.

The machine learning models and the benchmark produce almost equal violations, only significantly un-
derestimating the VaR95%. In terms of AQL none of the machine learning models outperforms the benchmark
on all confidence levels. Between the machine learning models, the stability selection models produce lower
AQLs than the gradient boosting models for the highest confidence levels. Between the stability selection
models, SSfull just slightly outperforms SSopt on the out-of-sample AQL, while there was no outperformance
in-sample. This confirms that if variable selection leads to a sparse model, shrinking does not add value to
the estimation.

However, GBrich outperforms GBsparse on the AQL both in-sample and out-of-sample for all confidence
levels. Gradient boosting models thus are sensitive to mstop even for small differences in the out-of-bag CV
risk. As there is no outperformance by the gradient boosting models on the Kupiec backtest, the GBrich

model seems preferable.
As the machine learning models do not consistently outperform the benchmark on the out-of-sample

VaR estimation, the overfitting problem of the benchmark is not tackled. In-sample, the GAIC model
outperforms the benchmark on AQL, but the out-of-sample surge of AQL of the GAIC and t-VAL model
prove these models increase overfitting rather than tackle it. These results also question the added value of
the interaction terms in the models, which will be investigated later.

5.5.2 Performance of VaR Estimation For Log Losses

In reality, the log losses that exceed threshold u are unknown in advance, so we need to estimate the threshold
exceedance probability F̄ (u). We model this dynamically using covariates too. Embrechts, Mikosch, and
Klüppelberg (1997) suggest that for an i.i.d. sample, the excesses over a high threshold can be modeled by
the GPD, where the number of exceedances independently follows a Poisson process, Nt ∼ Pois(λt). The
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time between exceedances thus follows the exponential distribution. The threshold exceedance probability
F̄ (u) is then given by 1 − exp(−λ), with λ the intensity parameter of the exponential distribution. We
dynamically model the intensity parameter of the exponential distribution with the previously mentioned
covariates and their interaction terms using gradient boosting with mstop = 1995, which minimizes the
out-of-bag risk of 25-fold cross-validation. The model selects 4 linear and 11 interaction terms, specified in
Tables B.1 and B.2. The fitted λ̂ give estimated threshold exceedance probabilities. The estimated VaRα

is only valid for α ≥ F (u) or equivalently F̄ (u) ≥ 1 − α. Therefore if the estimated threshold exceedance

probability, 1 − exp(−λ̂) ≥ 1 − α, it will produce a valid V̂aRα, and it thus predicts an exceedance. For

every 1− exp(−λ̂) < 1−α, it predicts no exceedance. The in-sample and out-of-sample true negatives, true
positives, false negatives, and false positives (TN, TP, FN, FP) and the performance of the prediction of
exceedances of this gradient boosting model are reported in Table 5.

Table 5: Prediction performance gradient boosting exponential model.

TN TP FN FP Accuracy Sensitivity Specificity

In-sample
α = 95% 4549 496 16 52 0.987 0.989 0.969
α = 97.5% 4537 498 14 64 0.985 0.986 0.973
α = 99% 4517 505 7 84 0.982 0.982 0.986

Out-of-sample
α = 95% 77 24 2 0 0.981 1.000 0.923
α = 97.5% 77 26 0 0 1.000 1.000 1.000
α = 99% 76 26 0 1 0.990 0.987 1.000

The fitted prediction model has high accuracy, sensitivity, and specificity in-sample, and performs even
better out-of-sample for the two highest confidence levels. The unconditional expectation of the conditional
exceedance probabilities is equal to 9.39% in-sample and 21.46% out-of-sample, compared to the exceedance
rates of 10% in-sample and 25.42% out-of-sample respectively. For the 16 false negatives for α = 95%,
the highest realized log loss which was predicted no threshold exceedance equals 1.39% or 0.19% above
the threshold u in-sample, and 1.22% or 0.02% above threshold u for 2 false negatives out-of-sample. The
model predicts an exceedance if 1− exp(−λ̂) ≥ 1−α, an undesirable feature as the number of predicted ex-
ceedances increases in α. Solving this means a trade-off between specificity and sensitivity as more predicted
exceedances lead to fewer false negatives but more false positives. From a risk management perspective,
specificity is arguably more significant, but this is not investigated in this paper as the main focus is on
dynamically modeling the GPD distribution.

For the predicted threshold exceedances, the VaRα is now equal to

VaRα = u +
σ

ξ

((
1 − α

1 − e−λ

)−ξ
− 1

)
, (32)

which can be estimated using the fitted GPD parameters ξ̂, σ̂ by the different models together with the
fitted λ̂. The threshold u = 1.2%. The in-sample performance of the estimated VaR for all models using the
conditional exceedance probability is reported in Table 6, for the predicted exceedances.

The model estimates a VaRα for the predicted threshold exceedances instead of the realized excess
losses which are a priori unknown. The threshold exceedance probability was equal to F̄ (u) = 1 for excess

losses but is now estimated as F̄ (u) = 1 − exp(−λ̂), decreasing the V̂aRα of each predicted excess loss if

1 − exp(−λ̂) < 1. This increases the number of violations of the V̂aRα at all confidence levels, while the

false negatives decrease the number of V̂aRα violations. This results finally in more V̂aRα violations for the
benchmark and machine learning models.

In comparison to Table 3 the AQL is lower for all models at all levels but not comparable as we now
estimate for the log losses instead of the subset of excess log losses. The performance of the GAIC model
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Table 6: In-sample performance of the VaR estimation of all models and the benchmark model for
the log losses.

GBsparse GBrich SSopt SSfull t-VAL GAIC Benchmark Empirical

V̂aR95%

Violations 400 427 409 412 79 274 415 256
Kupiec (0.000) (0.000) (0.000) (0.000) (0.000) (0.244) (0.000) -
Christoffersen (0.000) (0.000) (0.000) (0.000) (0.000) (0.191) (0.000) -
AQL 0.100 0.098 0.099 0.099 0.112 0.096 0.099 -

V̂aR97.5%

Violations 116 123 171 180 63 119 172 128
Kupiec (0.282) (0.664) (0.000) (0.000) (0.000) (0.424) (0.000) -
Christoffersen (0.040) (0.757) (0.000) (0.000) (0.000) (0.338) (0.001) -
AQL 0.038 0.037 0.039 0.040 0.067 0.046 0.039 -

V̂aR99%

Violations 32 34 34 34 44 54 34 51
Kupiec (0.004) (0.010) (0.010) (0.010) (0.305) (0.689) (0.010) -
Christoffersen (0.013) (0.030) (0.030) (0.030) (0.412) (0.806) (0.030) -
AQL 0.015 0.015 0.015 0.015 0.037 0.019 0.015 -

stands out, with no significant over- or underestimation of the VaRα and dependence in the violations at all
confidence levels according to the Kupiec and Christoffersen backtests.

The Christoffersen backtest for independence yields similar results as the Kupiec backtest in terms of
significance. Only the V̂aR97.5% of GBsparse produces no significant overestimation according to the Kupiec
backtest, but the violations are significantly dependent. We investigate this visually with the plot of the
predicted and actual exceedances, and V̂aR97.5% violations of the GBsparse model in Figure 13.

It looks like the low log excess losses are overrepresented in the violations, but the mean of the violations
is almost equal to the mean of all excess losses. The median of the violations is even higher than the
median of all excess losses, so this does not explain the significant dependence. It can be explained by
the characteristics of the empirical data itself, as the Ljung-Box test with lag 1 for the absolute log losses
(p < 0.001) and squared log losses (p < 0.001) indicate volatility clustering. This means the realized excess
log losses, and consequently, the predicted excess log losses because of high prediction accuracy, are clustered,
and so are the violations.

In Table 3 one of the PCR models, GAIC and t-VAL, produced the lowest AQL at every confidence level,
but when combined with the conditional threshold exceedance probability they now are outperformed by
the other models and the outperformance increases for higher confidence levels. This is another indication
of overfitting, especially for the t-VAL model which is much worse than the GAIC model.

The differences between the AQL of the stability selection and gradient boosting models in Table 3 seem
to disappear, with all models producing very similar results without consistent outperformance. Only the
difference in violations of the V̂aR97.5% is still large, with significantly too many violations for the stability
selection model. GBrich performs at least equal to the benchmark on all measures at the two highest
confidence levels, while there is no outperformance of the benchmark for the other models.

Between the gradient boosting models, GBrich not only outperforms GBsparse on AQL like in Table 3,
but also performs equal or better on the backtests. The conditional threshold exceedance probability does
not change much for the stability selection models. Both the full and optimal model perform similarly, with
no outperformance between them.

Finally, we look at the out-of-sample performance of the models, combined with the conditional threshold
exceedance probability, reported in Table 7.
Just like before the number of violations increases for the benchmark and the machine learning models, which
results in underestimation of the VaR97.5% compared to the Table 4, although not significantly. However,
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Figure 13: V̂aR99% of the SSfull model with realized log losses.

Table 7: Out-of-sample performance of the VaR estimation of all models and the benchmark model
for the log losses.

GBsparse GBrich SSopt SSfull t-VAL GAIC Benchmark Empirical

V̂aR95%

Violations 23 24 23 22 9 18 23 13
Kupiec (0.007) (0.003) (0.007) (0.014) (0.212) (0.157) (0.007) -
Christoffersen (0.001) (0.001) (0.001) (0.002) (0.446) (0.094) (0.004) -
AQL 0.259 0.239 0.252 0.248 0.315 0.272 0.242 -

V̂aR97.5%

Violations 10 9 10 10 7 13 8 7
Kupiec (0.187) (0.337) (0.187) (0.187) (0.841) (0.019) (0.557) -
Christoffersen (0.141) (0.612) (0.418) (0.418) (0.585) (0.010) (0.425) -
AQL 0.101 0.102 0.099 0.098 0.188 0.152 0.097 -

V̂aR99%

Violations 3 3 3 3 5 8 3 3
Kupiec (0.806) (0.806) (0.806) (0.806) (0.180) (0.006) (0.806) -
Christoffersen (0.886) (0.886) (0.886) (0.886) (0.315) (0.012) (0.886) -
AQL 0.043 0.044 0.042 0.042 0.089 0.069 0.043 -

the number of violations of the V̂aR99% are now very close to the empirical value. The PCR models again
perform the worst based on the AQL, with the t-VAL model estimating extremely poor.

The differences between the benchmark and machine learning models AQLs are a lot smaller compared to
Table 4, and the violations are still very similar for those models. All those violations are not significantly too
high, too low, or dependent for the 97.5% and 99% confidence levels and still none of the models outperforms
the benchmark on all confidence levels, just like in Table 4.
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Just like with unconditional threshold exceedance probabilities, the stability selection models produce
lower AQL for the higher confidence levels compared to the gradient boosting models. Between the stability
selection models, SSfull again produces equal or lower AQL, but the differences are still very small.

Between the gradient boosting models, GBrich outperformed GBsparse on AQL on all confidence levels
out-of-sample, but with conditional exceedance probabilities this advantage does not hold. The AQLs for
both models are also much closer at all confidence levels.

5.6 Sensitivity with respect to relative selection frequency threshold

In Section 4.4 we evaluated the sensitivity of stability selection with respect to πthr by comparing the TPR
for different thresholds. Empirically, we evaluate this sensitivity by looking at the performance of the SSfull

model for different πthr. First of all, the relative selection frequencies π̂ of the 10 most selected covariates
are presented in Figure 14.

Figure 14: Relative selection frequencies for the 10 most selected covariates.

The first thing to notice is that the intercept for ξ and the intercept and Russel 2000 index for σ are
selected in each run of the algorithm. The grey vertical lines show that πthr ∈ {0.51, 0.7, 0.9} results in three
different sets of (stable) covariates, ranging from three to seven covariates, plus intercepts. We fully fit the
stability selection model for the different πthr, with the conditional threshold exceedance probability. The
in-sample and out-of-sample performance of the estimated VaR at a 99% confidence level are presented in
Table 8.

Table 8: Performance of the SSfull model for different πthr.

πthr = 0.51 πthr = 0.7 πthr = 0.9 Empirical

V̂aR99% In-sample
Violations 34 34 65 51
Kupiec (0.010) (0.010) (0.061) -
Christoffersen (0.030) (0.030) (0.001) -
AQL 0.015 0.015 0.017 -

V̂aR99% Out-of-sample
Violations 3 3 5 3
Kupiec (0.806) (0.806) (0.180) -
Christoffersen (0.886) (0.886) (0.315) -
AQL 0.042 0.043 0.043 -

Setting πthr = 0.9 results in the highest AQL and too many violations both in-sample and out-of-sample,
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although not significantly according to the Kupiec backtest. The violations produced by the other two
thresholds are equal, significantly too few in-sample but the exact right number of violations out-of-sample.
We also investigate visually, by plotting the VaR99% estimations and the realized log losses for the model
with πthr = 0.51 and πthr = 0.9 in-sample and out-of-sample in Figure 15.

(a) In-sample (first 50). (b) Out-of-sample.

Figure 15: Out-of-sample V̂aR99% for the (predicted) threshold exceedances against the benchmark
together with realized log losses.

In Figure 15a the model with πthr = 0.9 severely underestimates the VaR99% with 13 violations where 5
(10% of 50) are expected, and the model with πthr = 0.51 seems to capture the movements of the realized
log losses better. Together with the results of the backtests, we conclude a low threshold is preferable. This
is in line with the simulation results in Section 4.4.

5.7 Added value interaction terms

The GAIC and t-VAL models do not perform variable selection, but they are regularized by subsetting
the principal components. Section 5.5 shows that these models are outperformed on AQL out-of-sample
by the fully fitted benchmark, with only the linear terms and not the interaction terms of the variables as
covariates. Adding interaction terms without variable selection thus magnifies the effect of overfitting, and
regularization based on significant t-values or lowest GAIC of the principal components does not make up
for it. To evaluate if the interaction terms itself add value for VaR estimation, we fit the models GBsparse

and GBrich both to the full dataset and to a subset with just the linear covariates. The results are reported
in Table 9.

Between the models with all terms and just the linear terms, there is no collective outperformance on all
confidence levels both in-sample and out-of-sample for the backtests or the AQL. The differences between the
models with all terms and the models with the linear terms in the number of VaR97.5% violations in-sample
stand out, with no clear cause. The Christoffersen test shows these violations are not independent for the
sparse models, while the violations are not significantly too high or low. These significant p-values on the
Christoffersen test can be explained by volatility clustering as stated before.

In-sample, the sparse gradient boosting models with all terms produces equal or slightly lower AQLs and
equal or higher p-values for the backtests on all confidence levels, outperforming its model equivalents with
just the linear terms. Remarkably, the reverse is true out-of-sample as the sparse gradient boosting model
with linear terms produces a more accurate number of violations, higher p-values on the backtests, and lower
AQL on all confidence levels.

The rich gradient boosting model with all terms in-sample produces equal or lower AQLs and equal or
higher p-values for the backtests on all confidence levels compared to the rich gradient boosting model with
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Table 9: In-sample and out-of-sample comparison of the estimated VaR of gradient boosting models
with just the linear terms, and with all terms.

In-sample Out-of-sample

All terms Linear terms All terms Linear terms

GBsp. GBrich GBsp. GBrich Emp. GBsp. GBrich GBsp. GBrich Emp.

V̂aR95%

Violations 400 427 400 414 256 23 24 22 24 13
Kupiec (0.000) (0.000) (0.000) (0.000) - (0.007) (0.003) (0.014) (0.003) -
Christof. (0.000) (0.000) (0.000) (0.000) - (0.001) (0.001) (0.002) (0.001) -
AQL 0.100 0.098 0.101 0.099 - 0.259 0.239 0.257 0.252 -

V̂aR97.5%

Violations 116 123 145 164 128 10 9 8 9 7
Kupiec (0.282) (0.664) (0.132) (0.002) - (0.187) (0.337) (0.557) (0.337) -
Christof. (0.040) (0.757) (0.012) (0.008) - (0.141) (0.612) (0.425) (0.263) -
AQL 0.038 0.037 0.038 0.039 - 0.101 0.102 0.098 0.096 -

V̂aR99%

Violations 32 34 32 34 51 3 3 3 3 3
Kupiec (0.004) (0.010) (0.004) (0.010) - (0.806) (0.806) (0.806) (0.806) -
Christof. (0.013) (0.030) (0.013) (0.030) - (0.886) (0.886) (0.886) (0.886) -
AQL 0.015 0.015 0.015 0.015 - 0.043 0.044 0.043 0.042 -

linear terms. Although the performance in-sample is slightly better for the models with all terms compared
to their equivalents with just the linear terms, we have to conclude this does not hold out-of-sample. If
anything, the models with just the linear terms perform better out-of-sample. We conclude that adding the
interaction terms does not increase the performance of the gradient boosting models.

6 Conclusion

This paper compares models for high-dimensional market tail risk by fitting the GPD with dynamical pa-
rameters using the machine learning techniques gradient boosting, gradient boosting combined with stability
selection, and PCR techniques. The high-dimensional characteristic stems from adding the interaction terms
of the covariates.

Stasinopoulos, Rigby, Georgikopoulos, et al. (2021) propose to use interaction terms of economic vari-
ables to model complex economic relationships and provide a new method to fit distributional regression
models to interrelated high-dimensional data, by adapting PCR to the GAMLSS framework. This technique
performs implicit regularization by subsetting principal components but does not perform variable selection.
Both variants, based on significant t-values and lowest GAIC, perform reasonably well in-sample, but un-
satisfactory out-of-sample due to severe overfitting. Both models perform far worse than the benchmark
model without the interactions, so adding interactions seems to increase overfitting, and regularization by
subsetting the principal components does not solve this.

The simulation proves that variable selection for the shape parameter of the GPD is extremely difficult,
which is in line with the models fitted to the empirical data selecting only the intercept for the shape
parameter. The simulation shows that gradient boosting is good at selecting informative covariates for
the shape parameter. For high collinearity, applying stability selection offers a slight improvement. This
improvement is bigger for a lower number of observations, although gradient boosting itself is not too sensitive
to the number of observations. Although the empirical data exhibits high collinearity, applying stability
selection did not improve the estimation of the tail risk when compared to the gradient boosting, although
it has similar performance and fewer selected variables. After applying stability selection, the regularized
and fully fitted model perform similarly, so after variable selection, regularization is not so important. For
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gradient boosting, the rich model using optimal mstop outperforms the sparse model in-sample, but this is not
true out-of-sample. We conclude that the choice of mstop is important for in-sample results, but if economic
interpretation is preferred one should lower mstop as long as the out-of-bag-risk does not increase too much,
yielding a sparser model. Because gradient boosting performs variable selection, it eases the (economic)
interpretation of the models and it is also applicable to non-linear models. Gradient boosting both with
and without stability selection should be preferred over the PCR methods for tail risk estimation. The large
out-of-sample performance difference could indicate gradient boosting is superior to PCR for GAMLSS, but
further research could show if PCR is of value as a method to handle high-dimensional data for GAMLSS.

In the simulation the informative interaction terms for the scale parameter proved to be hard to identify,
resulting in both low and unstable TPRs of the selected covariates. In the empirical setting, adding the
interaction terms of the variables as covariates did not improve tail risk estimation, neither for the PCR
models nor the gradient boosting models. On top of worsening interpretation, adding interaction terms does
not add value to tail risk modeling when using the GPD.

Further research could try different methods to obtain high-dimensional daily time series by e.g. adding
lagged variables. Also, modeling the parameters as non-linear functions of the covariates is outside the scope
of this paper but it could increase risk measure estimation and is well within the capabilities of gradient
boosting and GAMLSS. One could also change the time interval of the time series to estimate e.g. intraday
VaR which is useful for high-frequency trading.
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Appendices

A Figures

Figure A.1: Correlations between the S&P 500 log losses and the covariates.
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B Models

Table B.1: Characteristics of the models fitted on empirical data.

Model Number of covariates Linear terms Hyperparameter settings

GBsparse 18 7 mstop = 400
GBrich 75 12 mstop = 1491
SSopt 7 4 q = 0.51, πthr = 0.51 +mstop = 1997 (gradient boosting)
SSfull 7 4 q = 0.51, πthr = 0.51 + regularly fully fitted
GAIC First 8 PCs -
t-VAL 130 PCs -
Benchmark 41 (fully fitted) 41 -
Exponential 15 4 mstop = 1995

Table B.2: Selected variables by the machine learning models.

Model Selected variables

GBsparse RUT, GDAXI, VIX, MXX, HG, SMB, RMW, RUT:BSESN, RUT:DGS20,
GDAXI:DGS20, GSPTSE:SI, GSPTSE:DGS20, SS:PL, DEXUSEU:RMW, DEX-
CHUS:HML, DEXUSUK:GC, SI:NG, DGS5:SMB.

GBrich RUT, GDAXI,GSPTSE,VIX, MXX,HSI,DEXINUS,CL,HG,DGS10,SMB,RMW. +
63 interaction terms.

SSopt RUT, VIX, MXX, SMB, RUT:DGS20, DGS20:GSPTSE, SMB:DGS5
SSfull RUT, VIX, MXX, SMB, RUT:DGS20, DGS20:GSPTSE, SMB:DGS5
Exponential RUT, VIX, SMB, RMW,FTSE:DGS20, FTSE:CMA, RUT:DGS20, SS:FTSEMIB,

VIX:DGS20, KS:CMA, DEXUSEU:CMA, DEXMXUS:DGS3MO, DGS20:SMB,
DGS20:CMA, RMW:CMA
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C Algorithms

Algorithm C.1: Lines 7-11 of the RS algorithm for principal component regression for
the GPD, GAIC approach.

7 for λ = 1, 2, ..., r do

8 Estimate first λ PCs coefficients: γ̂λ =
(
T⊤λWkTλ

)−1
T⊤λWkz

[m]
k , with Wk = diag(wk) and

Tλ = T[1:λ].

9 Compute fitted values ẑ
[m]
k,i = Tλγ̂λ.

10 Get local GAICλ =
∑n

i=1 wk,i(z
[m]
k,i − ẑ

[m]
k,i )2 + log(n) · (λ + 1).

11 The λ that corresponds to the minimum GAIC is chosen.
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