
Erasmus School of Economics
Master Business Analytics and Quantitative Marketing

Product Region Detection using Faster
R-CNN and Transfer Learning for

Moonshop Technologies

Author:
Wander Marijnissen (458717)

Supervisor:
Paul Bouman

September 28, 2022

Abstract

Moonshop technologies aims to develop computer vision software using artificial intelli-
gence that can be used in small autonomous supermarkets with Just Walk Out technology.
Currently, however, this concept still requires a ’human in the loop’. To help achieve a fully
autonomous algorithm, this paper aims to solve the subproblem of automatic product region
detection, which would ease the job of the labelers. It uses a Faster R-CNN model with a
ResNet backbone initiated with weights from training on the ImageNet dataset. Also, this
paper contributes a dataset of 100 images annotated with product regions, which is used
to train the model. The highest average precision (AP) was 0.6863 achieved with a Faster
R-CNN model and ResNet-152 backbone. Furthermore, this paper discusses alternatives
routes for Moonshop technologies for future research.
keywords: object detection, neural network, Faster R-CNN, ResNet, transfer learning

Contents

1 Introduction 3

2 Literature 5
2.1 Computer Vision . 5

2.1.1 Convolutional Neural Networks . 6
2.1.2 Object Detection . 8

2.2 Transfer Learning . 9
2.3 Approaches to Supermarket Product Recognition 9

3 Method 10
3.1 Faster R-CNN . 10
3.2 Residual Neural Network (ResNet) . 13
3.3 Model Architecture . 16
3.4 Data Transformations . 18
3.5 Anchors . 18
3.6 Training . 19

4 Data 20

5 Results 25

6 Conclusion and Discussion 28
6.1 Summary of Results . 28
6.2 Discussion of Results . 29
6.3 Future Research for the Concept of Moonshop . 32

6.3.1 Different Approaches to Product Region Detection 32
6.3.2 Broader Perspective on the Problem . 33

1 Introduction

After Turing (1950) was one of the first to discuss computer intelligence, machine learning
methods have taken an important role in modern society, where enormous amounts of data are
collected continuously. While comprehension of this data strongly surpasses human capacity,
the application of artificial intelligence has proven important in industries like technology, bank-
ing and marketing. For decades, extensive domain expertise and thoughtful engineering was
required to create a feature extractor to transform raw data into usable feature vectors for the
subsequent learning system. Deep learning, however, allows computational models consisting of
multiple processing layers to learn complex patterns from raw data (LeCun et al., 2015), which
strongly improved many areas like speech recognition (Hinton et al., 2012), image classification
(Krizhevsky et al., 2012), drug discovery (Ma et al., 2015) and even genomics (Leung et al.,
2014; Xiong et al., 2015).

An important field of application of deep learning is computer vision. Today plentiful ap-
plications of computer vision are seen in many fields and industries, such as retail, automotive,
medical and manufacturing industries. For example, computer vision is used in self-driving cars
for real-time detection of different objects on the road (Agarwal et al., 2018). Numerous ap-
plications in the medical industry include skin-cancer detection (Jain et al., 2015), counting of
various types of blood cells (Alam & Islam, 2019) and glaucoma diagnosis based on eye scans (Z.
Li et al., 2018). In manufacturing, it is often used for anomaly detection (Scime & Beuth, 2018).
Furthermore, computer vision has various applications in retail, such as generating heatmaps
from customers to improve store layout (Deloitte Digital, 2018).

A prime example of a company that leverages artificial intelligence to support business deci-
sions is Cape AI. Situated in Cape Town, this cutting-edge firm provides data-driven consultancy
and creates independent ventures leveraging the power of artificial intelligence. One of these
ventures that is currently in the process of being spun-off is Moonshop Technologies, which aims
to increase customer experience in retail through its fully autonomous supermarkets.

Similar to Amazon GO (Ives et al., 2019) and Alibaba’s Hema (Wang & Coe, 2021), many
retailers worldwide are developing Just Walk Out technology (Cui et al., 2021). Moonshop aims
to develop software that uses artificial intelligence to ensure the shops can run autonomously. It
requires customers to identify themselves with the Moonshop app upon entering the store and is
currently working on implementing an NFC (Near Field Communication) payment solution, such
that customers can also enter the store with a creditcard. Customers can then grab everything
they might want and simply walk out. A computer vision algorithm is applied to the footage of
multiple cameras in the store, which can exactly identify what the customer took, after which
the customer is automatically billed.

Reasons for the adoption of autonomous supermarket technologies are plentifold. First of
all, this allows to drastically save on human labor costs. The checkout process in retail can

3

make up 30% of the total labor need (McKinsey, 2017). The Food Marketing Institute (2008)
has shown that payroll and employee benefits together can account for more than half the gross
margin of food retailers. While labor productivity is on the rise, and consequently unit labor
costs decreasing (U.S. Department of Labor, 2020), there is still room for improvement. This
is ever more relevant right now in a very tight labor market where employers are fighting over
potential employees (Abraham et al., 2020; Forsythe et al., 2020).

Second, the use of computer vision provides large potential for monitoring and further analy-
sis. For example, it can be used to efficiently keep track of in stock items and predict near-future
stock requirements to make logistics more efficient. This way, on shelf availability in stores could
be increased, reducing lost sales due to out of stock items (Higa & Iwamoto, 2018; Santra &
Mukherjee, 2019; Yilmazer & Birant, 2021). Besides increased sales, this could reduce food
waste. Annually, about 1.4 billion tons of food is wasted worldwide. In the US, this amounts
to 30-40% of the entire food supply (RTS, 2022). Predicting and monitoring stock requirements
as done in Yilmazer and Birant (2021) could reduce food waste, simultaneously contributing to
increased profit margins and better sustainability.

Furthermore, computer vision can be an interesting basis for marketing related analysis
(Wang & Coe, 2021), such as analysis of walking routes, basket and sentiment analysis. Moon-
shop provides an extensive interactive and customizable dashboard that provides important
marketing insights. This can be used to make informed decisions on assortment and lay-out of
the shops to maximize sales and customer satisfaction (Deloitte Digital, 2018).

Besides the additional marketing insights, the technology itself could lead to improved cus-
tomer experience (Santra & Mukherjee, 2019) and higher purchase intent (Esch et al., 2021)
compared to self-checkout. The rise of autonomous shopping could be similar to the introduc-
tion of Uber, which reinvented the taxi industry by erasing friction and improving customer
experience (Ives et al., 2019). Through the use of automated checkout, queuing times are elim-
inated. This would be especially welcome at busy locations where people are often in a hurry,
e.g. a train station. Furthermore, since autonomous shops are unmanned, they can still be
profitable in less busy places, even if there would be no customers in the shops for a few hours
each day. This opens up a whole range of possible new locations for supermarkets, which could
be convenient for people in more remote areas.

Although a promising outlook, the concept currently still requires a so-called ’human in
the loop’, that is responsible for labeling customers’ baskets. Different computer vision sub-
problems still have to be solved to create a fully autonomous algorithm. Many papers focus
on individual product recognition in supermarkets (Goldman et al., 2019; Merler et al., 2007;
Santra & Mukherjee, 2019). This approach often suffers from occlusion (Goldman et al., 2019),
which makes it more difficult to pin a grab action to a specific product. As opposed to individual
product recognition, this paper will focus on directly detecting product regions. This would help
the current employers to more easily label which products are being taken from the shelves, and

4

would serve as an intermediate solution before a fully autonomous algorithm is in place.
Furthermore, rather than training the model to recognize specific SKU’s (stock keeping

units), we aim to let the model simply draw product regions, even if the product itself is
unfamiliar. This could drastically reduce the amount of labeled data that is required and improve
scalability. In the case of SKU specific product detection, the model needs to be trained again
when it is applied to new shops, new products or even when a product’s packaging is changed
(Santra & Mukherjee, 2019).

This paper aims to answer the following research question;

How do we most effectively do automated product region detection?

To achieve automated product region detection, this paper uses a convolutional neural net-
work with transfer learning and data augmentation to tackle the problem of data scarcity. It
employs a Faster R-CNN architecture with ResNet backbone and created a database of 100
shelf images with annotated product regions for transfer learning. This is described in further
detail in Section 3 and 4. The model is trained in multiple hyperparameter configurations. The
best results are achieved with a ResNet-152 backbone, anchor sizes 322, 642, 1282, 2562, 5122 and
aspect ratios 1:2, 1:1 and 2:1, which led to an average precision (AP) of 0.6863, with a detection
speed of 0.816 frames per second (FPS) and training time of 74.55 seconds per epoch (SPE).
Section 5 provides an extensive discussion of the results and implications for Moonshop. Fur-
thermore, it places the problem in a wider perspective and discusses potential future research
topics for Moonshop.

2 Literature

Concepts of autonomous supermarkets like Amazon GO (Ives et al., 2019), Alibaba’s Hema
(Wang & Coe, 2021) and Moonshop strongly rely on artificial intelligence and computer vision.
This has come a long way, since Turing (1950) was one of the first to write about computer
intelligence and philosophised about the question whether machines can think. Later, this
concept of thinking machines was put into practice by Newell and Simon (1956) with their
project the Logic Theorist, which was able to produce proofs for complex problems. Shortly
after, the term artificial intelligence was conceived for the first time at the Dartmouth Summer
Research Project on Artificial Intelligence (DSPRAI) (McCarthy & Minsky, 1956). This was the
starting point for artificial intelligence, which has strongly developed with computers becoming
faster, cheaper and more widely available.

2.1 Computer Vision

An important part of artificial intelligence is computer vision, which leverages machine learning
models to extract information from image and video input. An instrumental role was played by

5

neurophysiologists Hubel and Wiesel (1959), who looked into behavior of visual cortical neurons
and the effect of cat’s visual inputs on their cortical architecture. The important discovery was
that they first detect edges and simple shapes and structures, which is fundamental to the idea
of deep learning and neural networks. This idea was further extended by Marr (1982), who
discovered that vision is hierarchical; first simple shapes, edges and curves are detected, after
which more details are filled in later. These conceptual frameworks form the basis for the deep
learning architectures for computer vision that we see today.

2.1.1 Convolutional Neural Networks

Inspired by Hubel and Wiesel, Japanese computer scientist Kunihiko Fukushima developed
Neocognitron (Fukushima, 1980), a self-organizing neural network model for pattern recognition.
After the self-organizing step, this network has a hierarchical structure comparable to that
proposed by Hubel and Wiesel (1959). It starts with an input layer, after which we see a
cascading connection consisting of simple S-cells and more complex C-cells. In unsupervised
fashion, repeated exposure to a certain stimulus pattern will lead to each C-cell in the final layer
responding to only one stimulus pattern, regardless of the pattern’s position and minor changes
in shape or size. The neocognitron acts as the inspiration for convolutional neural networks we
see today.

LeCun et al. (1989) proposed one of the first convolutional neural networks, which was later
called LeNet-5. Convolutional neural networks (CNNs) today are a common neural network
architecture for image related tasks, including object detection, image classification and pose
estimation. LeNet-5, similar to convolutional neural networks we see today, has components like
convolutional, pooling and fully connected layers. It consists of 7 layers with trainable param-
eters; 3 convolutional layers, 2 pooling layers and 2 fully connected layers. In a convolutional
layer, a feature map is extracted from an image through multiplication of the input and weights,
which is called a filter or kernel. Multiple of these filters can be applied in parallel. Furthermore,
convolutional layers can be applied hierarchically to the output of other layers. This way, the
filters that are applied in the first convolutional layers can extract lower-level features like lines
and edges, and subsequent deeper layers can detect more complex shapes from the output of
previous convolutional layers. Pooling layers are applied after a convolutional layer to reduce
the dimension of the feature map by summarizing its most important features through applying
a filter. This decreases sensitivity of feature maps to the location of features in the input. Last,
in fully connected layers, as opposed to convolutional layers, all components of the input vector
are connected to all components of the output vector. 10 years after the introduction in 1989,
LeCun et al. (1998) found that convolutional neural networks outperformed various methods,
such as K-nearest neighbors, hidden markov model and support vector machines on a standard
handwritten digit recognition task.

A problem for early stage convolutional neural networks like LeNet-5 was the computational

6

intensity, that hardware at the time was not equipped for. However, the introduction of GPUs or
graphic processing units dramatically increased the speed of CNNs by up to 4 times (Chellapilla
et al., 2006). The GPU is a processor created to accelerate real-time graphics, with applications
in gaming, artificial intelligence and more. Later, the GPU implementation of a deep CNN
created by Ciresan et al. (2011) was shown to be 60 times faster compared to the CPU version,
showing the incredible importance of GPUs. From the early 2000s, CNNs have had great success
in object and region detection, segmentation and recognition (LeCun et al., 2015).

In 2012, Alexnet participated in the ImageNet Large Scale Visual Recognition Challenge,
an image classification challenge with 1000 different classes. AlexNet achieved a top-5 error of
15.3%, 10.9 percentage points lower than the second-best model (Deng et al., 2012). Alexnet
is a convolutional neural network consisting of five convolutional layers, some followed by max-
pooling layers and three fully-connected layers with a final 1000-way max, which relates the
output to the 1000 different class labels of the ImageNet dataset. The model has 8 trainable
layers with 60 million parameters in total (Krizhevsky et al., 2012). The success of AlexNet
proved that CNNs are an excellent fit for computer vision problems and they have been the
standard to this day.

After the success of AlexNet, many different CNN model architectures arised. In 2014,
GoogLeNet, also known as Inception, brought the top-5 error for the ImageNet Large Scale
Visual Recognition Challenge down to 6.67% (Szegedy et al., 2015). A standard way of improving
deep neural networks’ performance is by increasing depth and width. However, this raises
the risk of overfitting, especially with a small amount of training data. Furthermore, this
dramatically increases computational intensity. To combat this, GoogLeNet, a 22 layers deep
network, replaced fully connected layers by sparse layers, resulting in 12 times fewer parameters
than the model of Krizhevsky et al. (2012). An important innovation is their so-called ’inception
module’, which adds an alternative parallel pooling path (Szegedy et al., 2015).

One year later, the Residual Neural Network (ResNet) did even better, with a top-5 error
rate of 3.57% on the ImageNet dataset (He et al., 2016). Despite the model being even deeper,
the researchers eased training by introducing a residual learning framework. Training deeper
models with backpropagation and gradient-based methods often leads to the vanishing gradient
problem, in which gradients become so small that certain weights are never changed. This
especially affects gradients in deeper layers, and often prevents models from converging (Glorot
& Bengio, 2010). This has been mostly overcome through normal initialization and intermediate
normalization layers. However, despite the convergence of these models, a degradation problem
arises; with additional layers accuracy gets saturated and even sharply decreases from a certain
depth. ResNets combat these problems through residual learning and short-cut connections.

Residual learning entails that the model learns residual functions with reference to the layer
inputs, instead of learning unreferenced functions. These models pile up residual blocks to
form a network. He et al. (2016) created an extremely deep network with 152 layers, which

7

achieved high accuracy on the ImageNet dataset, but also showed great generalizability for
other recognition tasks, such as ImageNet detection, ImageNet localization, COCO detection
and COCO segmentation in the ILSVRC and COCO 2015 competitions.

2.1.2 Object Detection

For the task of object detection, an important development is region-based convolutional neural
networks (R-CNN), invented by Girshick et al. (2014). Object detection essentially consists
of two tasks; localization and classification of objects. In the R-CNN model, first 2000 region
proposals are derived from the input image using selective search (Uijlings et al., 2013). Then,
a CNN is applied to these regions after which the regions are classified. When all regions are
given a score, the model uses greedy non-maximum suppression to prevent strongly overlapping
regions for each class. For object detection, the R-CNN model presented a 30% improvement
over the previous state-of-the-art on the PASCAL VOC 2012 dataset, commonly used for object
detection. Although R-CNNs generally perform well in terms of accuracy, important drawbacks
are the computational intensity for training and the slow test time, with the model taking around
47 seconds per image. Furthermore, no learning happens in the selective search algorithm.
The architecture was further improved with the introduction of Fast R-CNN. In Fast R-CNN,
the CNN is first applied to the input image to generate a feature map from which the region
proposals are determined. Then, a region of interest (RoI) pooling layer is applied to transform
the proposed regions into a fixed size. This dramatically increases the speed of fast R-CNN
compared to R-CNN because the convolution is now only done once per image, instead of for
2000 region proposals. The test time excluding the region proposal went from 47 seconds to
0.32 seconds per image (Girshick, 2015). However, the main bottleneck now was region proposal
computation, which increases test time from 0.32 to 2.3 seconds per image. To further decrease
the influence of region proposals on train and test times, Ren et al. (2015) came up with Faster
R-CNN, which replaces the selective search algorithm by a trainable region proposal network
(RPN). With Faster R-CNN test time went down to 0.2 seconds per image, including region
proposals. Besides a strong improvement in runtime, the learned RPN also enhances region
proposal quality and consequently overall object detection accuracy.

Whereas all versions of the R-CNN architecture rely on region proposals for object detection,
Redmon et al. (2016) came up with another approach. Their algorithm, You Only Look Once
(YOLO) is a single CNN predicting bounding boxes and corresponding class probabilities. The
input image is split into an SxS grid, after which B bounding boxes and confidence scores
are predicted for each grid cell. The grid containing the center of an object is responsible
for detecting the particular object. Bounding boxes with a confidence level above a certain
threshold are then selected. This approach makes YOLO magnitudes faster than other object
detection models (Redmon et al., 2016). In terms of accuracy, YOLO and Faster R-CNN are
comparable, and performance depends on the specific application (Benjdira et al., 2019). M. Li

8

et al. (2020) achieved an accuracy in the detection of agricultural greenhouses of 86.0% and
90.4% with Faster R-CNN and YOLO respectively. On the other hand, Tan et al. (2021) found
Faster R-CNN (87.69%) to outperform YOLO (80.17%).

2.2 Transfer Learning

Given scarcity in both time and resources, and the fact that machine learning problems some-
times require large amounts of data to achieve high accuracy, it is often not feasible to build a
machine learning model from scratch (Pan & Yang, 2009; Rawat & Wang, 2017). An important
solution was the prospect of transfer learning for training neural networks, first mentioned by
Bozinovski and Fulgosi (1976), and first applied on a neural network learning to recognize letters
(Bozinovski, 1981). Transfer learning is built on the assumption that training and future data
must not necessarily be in the same data space (Pan & Yang, 2009). In transfer learning, weights
from a previous learning task are copied and used as a starting point for the new learning task.
Transfer learning has proven valuable in discovery of cancer subtypes (Hajiramezanali et al.,
2018), building occupation using CO2 detection (Arief-Ang et al., 2018), text classification (Do
& Ng, 2005), digit recognition (Maitra et al., 2015) and spam filtering (Bickel, 2006). It was
also employed in the field of grocery product detection (Franco et al., 2017).

2.3 Approaches to Supermarket Product Recognition

To tackle the problem of product recognition in supermarket shelves, some have tried a sensor-
based approach, using Radio Frequency IDentification (RFID), sensors or barcodes (Ives et
al., 2019; Santra & Mukherjee, 2019; Wang & Coe, 2021). However, these approaches are
often relatively expensive and tend not to scale well. Computer vision models present a viable
alternative (Santra & Mukherjee, 2019). Gevers and Smeulders (1999) made the first attempt
to recognize isolated retail products that were cropped from the images, but did not focus on
localization. 8 years later, Merler et al. (2007) attempted localizing and recognizing products
using rack images and a product image database.

While most studies use a product image database and shelve images (Santra & Mukherjee,
2019), Goldman et al. (2019) do not train their model on specific products. Rather, they apply
object detection to densely packed retail scenes, treating all products as belonging to the same
class. To do this, they created the SKU110K dataset, in which shelf images with various lighting
and angles were annotated with bounding boxes around each item. Their approach, based on a
base detection network, soft IoU layer and EM-merger achieved an average precision of 0.492.
This shows the difficulty of the SKU110K dataset, which is composed of densely packed scenes
suffering from occlusion.

A different approach was taken by Higa and Iwamoto (2018), who studied changes on the
shelves using video footage and a CNN. With this, product amounts were computed to track
on-shelf availability. They achieved an accuracy of 89.6% with an error margin less than one

9

product. In monitoring on-shelf availability, Yilmazer and Birant (2021) use semi-supervised
learning in combination with one-stage detectors RetinaNet, YOLOv3 and YOLOv4 to detect
and classify regions into ’product’, ’empty shelve’ and ’almost empty shelve’. First, the one-stage
detectors are trained on 300 labeled images to see which method performs best in terms of mAP.
Then, the best model is used to make predictions for the unlabeled data to create pseudo-labeled
data. Last, the final classifier is built using both labeled and pseudo-labeled data. The study
achieved an overall mAP of 89.27% with their best model using 80% labeled images.

In the domain of object detection of products in grocery shelves, no work has previously
addressed product region detection.

3 Method

This paper focuses on product region detection, a form of object detection. In this case product
regions rather than the individual products, as done by Goldman et al. (2019), are considered
as objects. The algorithm will thus have to detect groupings of identical products and draw
rectangular bounding boxes around these regions. This can range from one item to several items
of the same product. No distinction is made between product regions of different products, all
regions are seen as belonging to the same class. More information on the dataset and examples
of some product regions can be found in Section 4.

Since no previously annotated data is at hand, this paper faces a data scarcity constraint.
As previously discussed, transfer learning can combat this problem by using weights from a pre-
viously trained model in a different data space as starting point for the current object detection
task (Pan & Yang, 2009; Rawat & Wang, 2017). This is due to the hierarchical nature of CNNs,
where the first layers detect simple features like edges, and final layers can detect more complex
and task specific features (LeCun et al., 1989). Many image classification models are based on
transfer learning (He et al., 2016; Krizhevsky et al., 2012). In this paper, rather than training
the entire model from scratch, weights from a model pre-trained on ImageNet will be used for
initialization, after which the model will be trained on the dataset labeled with product regions.
More specifically, this paper will use the Faster R-CNN architecture with a ResNet backbone
for the CNN.

3.1 Faster R-CNN

The faster R-CNN architecture as proposed by Ren et al. (2015) consists of two parts, a so-called
’region proposal network’ (RPN) and the Fast R-CNN detector (Girshick, 2015). This RPN is a
fully convolutional network predicting object boundaries and objectness scores for each location.
These RPNs are trained to create the most accurate region proposals, which are then fed to Fast
R-CNN (Girshick, 2015) for detection. Since the RPN and Fast R-CNN should eventually come
together, it is assumed that both networks have a common set of convolutional layers, which

10

leads to small marginal costs for creating proposals. To create region proposals, Ren et al.
(2015) use a small network that slides over the feature map that is the output of the final shared
convolutional layer. This network takes an n × n spatial window of the convolutional feature
map as input, which is than mapped to a lower-dimensional feature. After, this feature is fed
into two fully-connected layers; a box-regression layer and a box-classification layer.

At each point of the sliding window, a maximum of k region proposals is generated. This
means the box-regression layer has 4k outputs representing the coordinates of k boxes. The
box-classification layer is defined as a two-class softmax layer, an activation function which
provides per class probabilities. Hence the box-classification layer has 2k scores, reflecting the
probability of object or not object for each region. The k proposals relate to k anchors, which
are centered at the particular sliding window and associated with scale and aspect ratio. A
graphical representation of Faster R-CNN is shown in Figure 1.

Ren et al. (2015) use 3 scales and 3 aspect ratios, which results in k = 9 anchors at each
sliding window. Given a convolutional feature map of size W ∗ H, there are a total of WHk

anchors. By considering anchor boxes with different scales and aspect ratios, this effectively
deals with multi-scale predictions.

Figure 1: Illustration of Region Proposal Network (RPN) in Faster R-CNN architecture (Ren
et al., 2015)

This approach leads to translation invariance. When an object in an image is translated,
the proposal will translate in similar fashion. This results in a convolutional output layer with
a dimension of (4 + 2) ∗ k = 54 in the case of k = 9. This is smaller than methods that are
not translation invariant such as the Multibox method (Szegedy et al., 2014), which has a fully
connected output layer with dimension (4 + 1) ∗ 800 = 4000. This reduces the risk of overfitting

11

on small datasets.
Regarding RPN training, a binary class label is assigned to each anchor, indicating whether

or not this is an object. This label is based on the Intersection-over-Union (IoU) between anchors
and ground-truth boxes. The IoU between two regions is defined as the area of intersection of
the two regions divided by the area of the union of the regions. A positive label is assigned to
anchors with the highest IoU with a ground-truth box or any anchor with an IoU of at least 0.7
with any ground-truth box. This means that one ground-truth box can lead to multiple anchors
with a positive label. A negative label is assigned to a non-positive anchor with an IoU below
0.3 for all bounding boxes. Neutral anchors are not considered for training. This leads to the
following loss function, as described by Ren et al. (2015);

L({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, p∗
i) + λ

1
Nreg

∑
i

p∗
i Lreg(ti, t∗

i) (1)

where i is the index of an anchor in a mini-batch, pi is the predicted probability of anchor i

being an object, p∗
i is the ground-truth label, reg stands for the box regression and cls stands

for the box classification, ti the vector representating the 4 parameterized coordinates of the
predicted bounding box and t∗

i that of the ground-truth box. Lcls is the classification log loss,
Lreg(ti, t∗

i) the regression loss as defined in Girshick (2015);

Lreg(ti, t∗
i) = smoothL1(ti − t∗

i) (2)

where

smoothL1(x) =
{

0.5x2 if |x| < 1 (3)

|x| − 0.5 otherwise (4)

Because of p∗
i ∗ Lreg, the regression loss is only calculated for positive anchors (p∗

i = 0).
Furthermore, the two terms of the loss function are normalized by Ncls and Nreg and weighted
by a parameter λ. In the paper by Ren et al. (2015), Ncls is set equal to the mini-batch size,
Nreg is set to the number of anchor locations and λ = 10 by default. They have shown that the
value of λ does not influence the results in a wide range. The 4 coordinates of the bounding box
regression are parameterized as follows;

tx = (x − xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha),

t∗
x = (x∗ − xa)/wa, t∗

y = (y∗ − ya)/ha,

t∗
w = log(w∗/wa), t∗

h = log(h∗/ha), (5)

where x and y denote the box’s middle coordinates and w and h its width and height. x, xa

and x∗ stand for the predicted box, anchor box and ground-truth box respectively. The same
holds for y, w and h. The features used for this bounding-box regression are of the same size
(3 x 3) on the feature maps. Then k bounding-box regressors are learned, all responsible for

12

one scale and one aspect ratio to deal with different sizes. These k regressors have no common
weights. This way, the model can still predict boxes of different sizes despite the fixed scale of
the features.

This RPN can be trained using backpropagation and stochastic gradient descent (SGD)
(LeCun et al., 1989). All mini-batches come from a single image containing multiple positive
and negative example anchors. Rather than optimizing over the loss functions of all anchors,
256 anchors are randomly sampled from an image to compute the loss function. The ratio of
positive to negative anchors is set to up to 1:1 to reduce the bias towards negative samples.
All new layers are initialized by draws from a zero-mean Gaussian distribution with standard
deviation 0.01 and all shared convolutional layers are initiated by loading the weights from a
model pre-trained on the ImageNet dataset.

For the detection network, Faster R-CNN uses the network from the Fast R-CNN implemen-
tation (Girshick, 2015). The Fast R-CNN network takes a complete image and object region
proposals as input. First, the image goes through several convolutional and max pooling layers
to create a convolutional feature map. For each object proposal, a region of interest (RoI) pool-
ing layer derives a fixed-length vector from the feature map. This way, differently sized region
proposals are transformed into a standard size before going into the classifier.

These feature vectors are then led into a series of fully connected layers resulting in two
output layers. One gives softmax probabilities for all object classes and one gives four real-
valued numbers for all classes, relating to bounding-box coordinates.

This Fast R-CNN network and the previously described RPN are combined with some shared
convolutional layers. However, the RPN and Fast-RCNN network are trained independently.
The networks are trained in alternating fashion; first the RPN is trained, after which the pro-
posals are used for training the Fast R-CNN. Then, the Fast R-CNN is used to initialize RPN,
but the shared convolutional layers are frozen and only RPN specific layers are trained. Last,
the unique layers of the Fast R-CNN are trained on the proposals from the RPN.

Since some region proposals might highly overlap, Ren et al. (2015) use non-maximum sup-
pression (NMS) with an IoU threshold of 0.7, leading to about 2000 proposal regions.

Like Ren et al. (2015) this paper will evaluate the performance of the object detection model
based on the PASCAL VOC benchmark (Everingham et al., 2008), a dataset of around 10.000
images over 20 categories.

3.2 Residual Neural Network (ResNet)

As the CNN backbone for the Faster R-CNN implementation, this paper uses the Residual
Neural Network (ResNet), as introduced by He et al. (2016). ResNet is a widely adopted CNN
structure and has led to good results in combination with the Faster R-CNN architecture in
the COCO 2015 competitions (Ren et al., 2015). This CNN acts as a feature extractor. As
discussed in Section 2, training deeper networks often leads to the degradation problem, where

13

accuracy gets saturated and even sharply decreases with additional depth added to a model. To
be able to still train deep models whilst preventing the degradation problem, ResNet uses the
residual learning framework. This approach leads to easier training and gained accuracy from
the additional depth of these models.

Rather than fitting the desired underlying mapping H(x), the model fits a residual mapping
F (x) := H(x) − x. The original mapping then becomes F (x) + x. As the work by He et al.
(2016) has shown, it is easier to fit the original unreferenced mapping by feedforward neural
networks that make use of short-cut connections, referencing the function to the layer inputs.
These connections skip one or multiple layers. In ResNet, these short-cut connections involve a
simple identity mapping, which does not lead to any extra parameters or computational intensity.
He et al. (2016) have shown that these networks are easy to train, while significantly reducing
training error compared to deep networks that do not involve residual learning.

Residual learning is applied to every few stacked layers, making use of building blocks defined
as;

y = F (x, {Wi}) + x (6)

where x and y denote the input and output vectors of the considered layers and F (x, {Wi})
denotes the residual mapping. An example of such a building block is shown in Figure 2. This
residual learning with short-cut connections is implemented in every couple of stacked layers. In
the example of Figure 2, the building block consists of 2 layers, hence F = W2σ(W1x). Batch
normalization (Ioffe & Szegedy, 2015) is applied after every convolutional layer to normalize
input for the activation function. The activation function used is a Rectified Linear Unit (ReLu),
an activation function defined as f(x) = x+ = max(0, x) (Nair & Hinton, 2010) and denoted
by σ. Biases are omitted to simplify notations. Then, a short-cut connection executes F + x

through element-wise addition, after which ReLu is applied again to F + x. Since the short-cut
connections consist merely of identity mappings, they lead to no increased amount of parameters
or computational complexity.

Figure 2: Residual learning building block (He et al., 2016)

The dimensions of F and x must be equivalent. If the dimensions differ, this can be solved
through applying a linear projection Ws as follows;

14

y = F (x, {Wi}) + Wsx (7)

An example of a ResNet compared to a plain network with 34 layers is shown in Figure 3.
The dotted lines show a linear projection as described in Equation 7, which is required since the
dimensions change in these layers. The full line shortcuts are simple identity mappings.

Figure 3: Plain network architecture (left) and ResNet architecture implementing residual learn-
ing (right) (He et al., 2016)

15

Deeper models such as ResNet-50, ResNet-101 and ResNet-152 use 3 layer building blocks
for residual function F instead of 2. To limit required training time in these deeper models,
He et al. (2016) came up with the bottleneck design, shown in Figure 4, which consists of 1x1,
3x3 and 1x1 convolutions. The 1x1 layers decrease and then increase/recover the dimensions,
leaving the 3x3 layer with smaller dimensions to work with.

Figure 4: Regular building block (left) and bottleneck building blocks used in Resnet-50/101/152
(right) (He et al., 2016)

3.3 Model Architecture

As previously described in Section 3.1, the Faster R-CNN architecture consists of 3 parts; the
feature extraction backbone, region proposal network (RPN) and region of interest (RoI) pooling
layers. As a backbone, this paper uses the ResNet model as designed by He et al. (2016). ResNet-
50, ResNet-101 and ResNet-152 have shown to be substantially more accurate than lower layer
models. However, very deep models are also more prone to overfitting, especially in the case
of a small dataset and generally have a longer train and test time. In order to explore the
ideal depth of the ResNet backbone, this study uses the ResNet-18, ResNet-50 and ResNet-152
architectures, respectively. Table 1 shows the number of parameters in the backbone and the
total number of parameters for Faster R-CNN with different ResNet backbones.

Table 1: Number of parameters in millions of Faster R-CNN with different ResNet backbones

Model Total Backbone Non-Backbone

ResNet-18 40.3 11.2 29.1

ResNet-50 165.2 23.5 141.7

ResNet-152 199.9 58.1 141.7

Figure 5 shows the composition of different ResNet models in more debt. In the first convo-
lutional layer, all models have a 7x7 convolution with 64 filters and downsampling is performed
through implementation of a stride of 2. Furthermore, in all models the second convolutional

16

layer starts with a 3x3 max pool with stride 2. Then, we see a difference between ResNet-
18 and the deeper models. ResNet-18 consists of a number of residual learning blocks of two
convolutions stacked on top of each other, whereas ResNet-50 and ResNet-152 consist of three-
layer residual learning blocks with the previously discussed bottleneck design. ResNet-50 and
ResNet-152 merely differ in the number of residual learning blocks in convolutional layers 3 and
4. Downsampling is performed in the first convolution of convolutional layers 2, 3, 4 and 5
through a stride of 2. This convolutional backbone is shared by the RPN and Fast R-CNN.

Figure 5: ResNet layers (He et al., 2016)

The feature map that is generated by the ResNet backbone is then fed into the RPN, which
performs a box-regression and box-classification for all anchor sizes and aspect ratios to create
region proposals. Next, the region proposals are reshaped by two fully connected RoI pool-
ing layers, after which the box-regression and box-classification are performed for the region
proposals.

As discussed in Section 2, transfer learning proves useful in problems that face data scarcity
(Pan & Yang, 2009; Rawat & Wang, 2017). In the case of this research, weights from the ResNet
model pre-trained on the ImageNet dataset (Deng et al., 2012) are used to initiate the backbone.
After, the Faster R-CNN structure is initiated with the pre-trained ResNet backbone, a Region
Proposal Network (RPN) and Region of Interest (RoI) pooling layer. When applying transfer
learning to a large model with a small dataset, it can be beneficial to "freeze" some of the layers,
meaning the gradient will not be calculated and hence the weights will not be updated. This
way, weights learned from training on a comparable task in a different domain can be preserved,
and computation time reduced. Furthermore, this can lead to better results with small datasets
(Pan & Yang, 2009; Rawat & Wang, 2017). To test whether freezing some of the layers leads
to a higher accuracy, the Faster R-CNN model with ResNet-50 backbone will be run in three
different configurations; (1) with all backbone layers frozen, (2) with the backbone first 5 layers

17

(lower level features) frozen and last two layers (higher level features) unfrozen and (3) with the
entire backbone unfrozen.

3.4 Data Transformations

As described in Section 4 (specifically Table 3), the available images vary greatly in input
size in terms of pixels. Before training the model, some transformations are applied to the
data when initiating the dataset. Before the images are used, they are rescaled. For this
model, the minimum and maximum size of the images is set to 1024. If necessary, a padded
margin will appear to limit image distortions. Furthermore, values of the 3 colour channels red,
green and blue are normalized. For this, the image mean and image standard deviation of the
ImageNet dataset are used, since this dataset was used to train the backbone. The values used
for normalization are (0.485, 0.456, 0.406) for the mean and (0.229, 0.224, 0.225) for the standard
deviation.

Besides, to maximize performance with the limited dataset at hand, data augmentation is
employed following the albumentation module designed by Buslaev et al. (2020). As previously
discussed, training deep models on small datasets can lead to overfitting. Through data aug-
mentation the training data is increased both in volume and variety, while maintaining output
labels. This is common practice to avoid overfitting and used to improve performance of CNNs
(Krizhevsky et al., 2012; Santra & Mukherjee, 2019). Horizontal flips are applied to the training
data with default probability 0.5. Additionally, inputs are randomly rescaled with scale limit
0.5 and probability 0.5. This means images are rescaled in the range (0.5, 1.5).

Then, dataloaders are initiated. We specify three data loaders, for training, validation and
testing. For training, we use a batch size of 2, which is the number of training samples used
per iteration. Generally, a smaller batch size will lead to quicker convergence, however a larger
batch size is more likely to lead to the global optimum and hence higher accuracy (Radiuk,
2017). Dataloaders for validation and testing work with a batch size of 1.

3.5 Anchors

Furthermore, as discussed in Section 3.1, the Faster R-CNN structure evaluates the sliding win-
dows at anchors with different scales and aspect ratios. Ren et al. (2015) use scales (1282, 2562, 5122)
and aspect ratios (2:1, 1:1, 1:2), however mention that these values are not carefully chosen for
a particular dataset. They do show, however, that 3 aspect ratios and 3 scales lead to a higher
accuracy compared to 1 aspect ratio and 3 scales, 3 aspect ratios and 1 scale or 1 aspect ratio
and 1 scale. Additionally, for detection on the COCO dataset the paper adds 642 to the an-
chor sizes to aid in the detection of small objects. In our basic model, we will use anchor sizes
(1282, 2562, 5122) and aspect ratio (1 : 2, 1 : 2 : 1). However, we expect to gain from more an-
chor sizes and ratios, given the large variety of aspect ratio and size of the boxes in our dataset,
which is shown in Section 4. Therefore we perform ablation experiments like Ren et al. (2015)

18

to assess the effect of different anchor sizes and aspect ratios on accuracy, by training the model
in 4 different configurations. As described in Section 4, bounding boxes’ height and width in the
available dataset are positively skewed. Hence, it can be assumed that adding smaller anchor
sizes could improve the results. Furthermore, the dataset shows very extreme aspect ratios,
hence we experiment with adding these as well. Therefore, the model is run in the following
configurations shown in Table 2. Results are shown in Section 5.

Table 2: Different configurations of anchor sizes and aspect ratios used in ablation experiment

Anchor sizes Aspect ratios

(1282, 2562, 5122) (2:1, 1:1, 1:2)

(322, 642, 1282, 2562, 5122) (2:1, 1:1, 1:2)

(1282, 2562, 5122) (3:1, 2:1, 1:1, 1:2, 1:3)

(322, 642, 1282, 2562, 5122) (3:1, 2:1, 1:1, 1:2, 1:3)

3.6 Training

As discussed in Section 3.1, training relies on stochastic gradient descent (SGD) (LeCun et al.,
1989) as its optimizer. Like He et al. (2016) and Ren et al. (2015), a momentum of 0.9 is used.
Momentum is used to combat the stochastic nature of the SGD optimizer, which randomly
picks a mini-batch at every iteration. Momentum ensures that the weight change of the current
step not only depends on the gradient of the mini-batch, but also on the weight change of the
previous step. This prevents oscillation and often leads to a smoother convergence with higher
accuracy (Qian, 1999).

Furthermore, like Krizhevsky et al. (2012) and Ren et al. (2015) a weight decay of 0.0005 is
employed. Weight decay acts as a regularizer, which penalizes parameters to prevent overfitting.
Krizhevsky et al. (2012) has shown that this small weight decay is more than just a regularizer,
it decreases the model’s training error. Through weight decay, parameters are penalized, which
prevents overfitting. The bigger the weight decay factor, the more parameters tend to zero. The
update formula for the weights is shown in Equation 8.

To train the model, a learning rate of 0.001 is used as done by Girshick (2015) and Ren
et al. (2015). Setting the learning rate is important, since a value too low can result in a slow
training process, whereas a value that is too high can lead to an unstable process or result in

19

sub-optimal outcomes.

vi+1 := 0.9 ∗ vi − 0.0005 ∗ ϵ ∗ wi − ϵ ∗ ⟨ ∂L

∂w
|wi⟩Di

wi+1 := wi + vi+1 (8)

Here, i is the iteration index, v is the momentum variable, ϵ is the learning rate and ⟨ ∂L
∂w |wi⟩Di

is the average of the derivative of the loss function with respect to w at wi, over batch Di.
During training, the model is saved periodically by monitoring the validation AP, which

saves a model to the checkpoints when it achieves the maximum AP so far. Furthermore, the
use of early stopping ensures that training is stopped when validation AP stops improving for a
certain number of epochs. This is done to prevent overfitting (Ying, 2019) and avoid unnecessary
training time. This study implements a patience of 30, which is the number of epochs to continue
after the validation AP has stopped increasing. Due to this patience that prevents overfitting,
we can specify a relatively high maximum number of epochs. It was observed that training never
really improved after more than 150 epochs, which is why this is set as the maximum number
of epochs. Furthermore, by choosing the best model based on the validation AP, rather than on
training accuracy, overfitting is avoided.

As GPUs are known to drastically improve training time (Chellapilla et al., 2006; Ciresan et
al., 2011), training is executed on a Quadro P5000 16 GB GPU offered by Paperspace Gradient.
To compare training and detection speed between different models and evaluate their feasibility
in employment, the number of seconds per epoch (SPE) during training and number of frames
per second (FPS) during detection are logged and reported in Section 5.

4 Data

For dataset generation, this paper looked at the SKU110K dataset, which was generated by
Goldman et al. (2019) and consists of 11,762 images of densely packed grocery shelves, varying in
scale, angles, lighting conditions and noise levels. This dataset contains 110,712 different object
classes, and on average contains 147.4 individually annotated products and 86 different classes
per image. Items on grocery shelves are often tightly packed to maximize sales, which is reflected
in the SKU110K dataset. The dataset contains images made in thousands of supermarkets
around the world, usually made with cellphones.

From this dataset, 100 images where selected. These were divided in 80 images (80%) for
training, 10 images (10%) for validation and 10 images (10%) for testing. With the task in mind,
images consisting almost entirely of single products were not taken into account. This way, it is
ensured that the images in the dataset provide sufficient opportunity for learning groupings of
multiple identical products.

Since the SKU110K dataset was originally annotated with individual products, custom an-
notations where generated for this research. Rectangular bounding boxes where created around

20

all different product regions. This means there is one detectable class; ’region’ which is labeled
as 1, all background is labeled as 0. Pictures are saved in the .jpg format and the annotations
are saved in .json format. This annotation file contains the labels and coordinates (x_top_left,
y_top_left, x_bottom_right, y_bottom_right). The full dataset used for training, validation
and testing can be found at https://github.com/wandermarijnissen/product-region-detection.

In Tables 3, 4 and 5 some summary statistics of the custom dataset are displayed. Images
are inputted in (3, W, H) shape, where 3 represents the 3 colour channels red, green and blue,
W and H stand for the width and height of the image in terms of pixels. Table 3 shows the
minimum, maximum and average image sizes, showing a strong variety. This stems from the
large variations in image size in the SKU110K dataset.

As shown in Table 4, the dataset consists of 100 labelled images, with a total of 5149 bounding
boxes. The density of the images in terms of the number of product regions varies greatly, with
a minimum of 8 (Figure 6) and maximum of 117 (Figure 7) regions per image.

Furthermore, Table 5 shows strong differences between bounding boxes. For example, height
ranges from 36.0 to 2029.0, width ranges from 21.0 to 2097.0 and aspect ratio ranges from 0.0638
to 8.3734. Before using the data, some transformations are applied, as discussed in Section 3.4.
Table 6 shows bounding box summary statistics after the images have been rescaled. Although
this normalizes height and width, the high variation in aspect ratios remains. Per visualisation,
the highest aspect ratio is shown in Figure 8.

Table 3: Summary statistics image height, width and size in terms of pixels

minimum maximum average

Height 842 4208 2745

Width 1010 4160 2048

Size 1113020 (1010x1102) 13128960 (3120x4208) 5794601

21

Table 4: Image level summary statistics

Number of images 100

Total number of regions 5149

Minimum number of regions per image 8

Maximum number of regions per image 117

Average number of regions per image 51.49

Table 5: Bounding box level summary statistics before transformations

minimum maximum average

Height 36.0 2029.0 278.1

Width 21.0 2097.0 238.5

Area 4826.0 1786785.0 73768.4

Aspect ratio 0.0638 8.3734 0.8982

Table 6: Bounding box level summary statistics after transformations

minimum maximum average

Height 8.0 767.2 85.0

Width 10.3 690.5 102.2

Area 402.9 191102.0 9585.3

Aspect ratio 0.0638 8.3734 0.8982

22

Figure 6: Least dense image
with 8 regions

Figure 7: Most dense image
with 117 regions

Figure 8: Region with the highest aspect ratio (8.37)

To give a better idea of the distribution of the bounding box summary statistics height,
width, area and aspect ratio after the transformations, the histograms of these variables are
shown in Figure 9. From these histograms and summary statistics (Table 6), it becomes clear
that these variables are positively skewed. Despite the fact that there are some very large
bounding boxes in the dataset, the majority of bounding boxes are on the smaller end of the
spectrum. This has implications for the choice of anchor size and aspect ratios, described in
more detail in Section 3.5.

23

(a) Height (b) Width

(c) Area (d) Aspect ratio

Figure 9: Histograms showing distribution of bounding box height (a), width (b), area (c) and
aspect ratio (d) in the dataset, after transformations as described in Section 3.4. The x- and
y-axes are based on the range in which these values occur in the dataset, showing a strong
positive skew for height, width and area

Products included in the dataset fall into product, brand and sub-brand (Goldman et al.,
2019). Due to the variety of products, the detector faces enormous within-class variability. This
is even further increased by focusing on object regions as opposed to individual objects. In this
case, variability not only comes from the difference in products, but also from the difference in
number of products in a product region. Sub-brands, however, can differ only by very slight
packaging differences, making it an even harder challenge. An example of this is shown in
Figure 10.

24

Figure 10: Example of sub-brands posing challenging detection environment

5 Results

To evaluate the effectiveness of the different models, the results are discussed in terms of average
precision (AP), considered the most important measure of object detection (Ren et al., 2015).
After bounding boxes are predicted, they are counted as true or false positives, depending on
their Intersection-over-Union (IoU) with ground-truth boxes. In accordance with the PASCAL
VOC challenge (Everingham et al., 2008), boxes with an IoU greater than 0.5 are counted
as true positives. Furthermore, different detections of the same object are counted as false
positives. After the true and false positives are defined, all detections are ranked based on the
confidence level of the prediction. Then, precision is calculated as the number of true positives
over the number of predictions, and recall is the number of true positives over the total number
of ground-truth bounding boxes. Now, the interpolated Average Precision (AP) is calculated as
done by Salton and McGill (1983). The AP summarizes the precision/recall curve, being the
mean precision at eleven equally spaced recall levels [0, 0.1, ..., 1]. This precision at each recall
level is interpolated by taking the maximum precision at all recall levels exceeding the current
one;

pinterp(r) = max
≥ r

p(r̃) (9)

The average precision is then calculated as;

AP = 1
11

∑
r∈{0.0,...0.1}

pinterp(r) (10)

Besides accuracy, it is important to consider runtime analysis. Like Goldman et al. (2019)
and Ren et al. (2015), this paper reports frames per second (FPS) during inference. Also, graphs
of the validation AP during training are shown in the Appendix, showing the learning curves
of the model. Last, it is important to consider training speed in order to evaluate whether the
model could easily be trained on a larger dataset. Therefore, for each training run the number
of seconds per epoch (SPE) is reported.

First, as discussed in Section 3.3, the model is trained with a ResNet-50 backbone with
different numbers of layers frozen. Results are displayed in Table 7. Looking at the reported

25

AP, it becomes clear that freezing the entire backbone leads to a considerably lower accuracy
(0.2398), compared to a partly frozen (0.6097) or unfrozen (0.6100) backbone. As expected, the
training time in seconds per epoch is slightly lower for the frozen backbone (40.45) compared
to the partly frozen (49.84) and unfrozen (54.68) backbone. However, the differences in FPS
and SPE are not deemed large enough to compromise on accuracy. Therefore, from here on all
models are trained with a completely unfrozen backbone.

Table 7: Results from training Faster R-CNN model with ResNet-50 backbone with; 1) the
weights completely frozen, 2) the first 5 layers of the backbone frozen and 3) the backbone
completely unfrozen, respectively. Results show average precision (AP), frames per second
(FPS) and seconds per epoch (SPE) as described above.

AP FPS SPE

ResNet-50 frozen 0.2398 0.6434 40.45
ResNet-50 partly frozen 0.6097 0.6353 49.84
ResNet-50 unfrozen 0.6100 0.6232 54.68

Furthermore, as discussed in Subsection 3.3, this study compares performance between the
Faster R-CNN model with a ResNet-18, ResNet-50 and ResNet-152 backbone, respectively.
Results are displayed in Table 8. These backbones led to an AP of 0.6096, 0.6100 and 0.6531.
Whereas the accuracy with ResNet-18 and ResNet-50 are very similar, it is noteworthy that the
accuracy with the ResNet-152 backbone is considerably higher. Furthermore, what is interesting
and perhaps somewhat unexpected, is the fact that the detection speed is highest with the
ResNet-152 backbone (0.8415 FPS) compared to ResNet-18 (0.3174 FPS) and ResNet-50 (0.6232
FPS). Although the model with ResNet-152 backbone is deeper, increased detection speed is
likely due to higher quality region proposals. Regarding training time, the model with ResNet-
152 backbone needed considerably longer to train with 72.33 SPE. However, total training was
performed in 3 hours, which is still within reasonable margins.

Table 8: Results from training Faster R-CNN model with ResNet-18, ResNet-50 and ResNet-
152 backbone, respectively. The weights of the backbone are all unfrozen. Results show average
precision (AP), frames per second (FPS) and seconds per epoch (SPE) as described above.

AP FPS SPE

ResNet-18 0.6096 0.3174 25.84
ResNet-50 0.6100 0.6232 54.68
ResNet-152 0.6531 0.8415 72.23

Finally, ablation experiments were performed to establish the individual influence of anchor
sizes and aspect ratios on model performance, as done by Ren et al. (2015). Since the ResNet-152

26

backbone led to the highest AP in the previous experiments, this backbone is also used for the
ablation experiments. Results are shown in Table 9. As previously mentioned, the model with
ResNet-152 and 3 anchor sizes and 3 aspect ratios led to an accuracy of 0.6531. Whereas two
extra aspect ratios only slightly improved accuracy (0.6537), the addition of two extra anchor
sizes increased accuracy to an AP of 0.6863. This AP was almost the same as the configuration
with 5 anchor sizes and 5 aspect ratios (0.6819). Considering detection speed (FPS) and training
speed (SPE), all configurations are feasible.

Table 9: Results from training Faster R-CNN model with ResNet-152 backbone with different
anchor scales and anchor sizes. The weights of the backbone are all unfrozen. Results show
average precision (AP), frames per second (FPS) and seconds per epoch (SPE) as described
above.

anchor sizes aspect ratios AP FPS SPE

(1282, 2562, 5122) (2:1, 1:1, 1:2) 0.6531 0.8415 72.23
(322, 642, 1282, 2562, 5122) (2:1, 1:1, 1:2) 0.6863 0.816 74.55
(1282, 2562, 5122) (3:1, 2:1, 1:1, 1:2, 1:3) 0.6537 0.725 71.01
(322, 642, 1282, 2562, 5122) (3:1, 2:1, 1:1, 1:2, 1:3) 0.6819 0.7693 58.18

All in all, the best accuracy was achieved by a Faster R-CNN model with ResNet-152 back-
bone, anchor sizes 322, 642, 1282, 2562, 5122 and aspect ratios 2:1, 1:1, 1:2. To give an idea of
what this model can achieve, Figure 11 shows an example of predictions this model makes on
unseen data. A score threshold of 0.85 is applied to the predictions to avoid redundant bounding
boxes.

27

Figure 11: Example predictions of Faster R-CNN model with ResNet-152 backbone, anchor sizes
322, 642, 1282, 2562, 5122, aspect ratios 2:1, 1:1, 1:2 and a score threshold of 0.85.

6 Conclusion and Discussion

This study employed a Faster R-CNN (Ren et al., 2015) model with a ResNet (He et al., 2016)
backbone trained on ImageNet (Deng et al., 2012) to solve the task of automatic product region
detection. The model was trained on 100 labelled images (see Section 4) and uses transfer
learning to combat the issue of data scarcity. This approach is aimed at directly drawing up
regions of identical products and is not trained on specific SKU’s. Results are displayed in
Tables 7, 8 and 9.

6.1 Summary of Results

Whilst some hyperparameters were previously determined (see Section 3.4 & 3.6), some other
hyperparameters were experimented with. First of all, the number of frozen layers in a ResNet-
50 backbone was experimented with, of which results are shown in Table 7. The highest accuracy
was achieved with all backbone layers unfrozen, which led to an AP of 0.61 at 0.623 FPS.

28

Then, the depth of the model was experimented with, when a Faster R-CNN model with
ResNet-18, ResNet-50 and ResNet-152 were compared, with all weights unfrozen. ResNet-18 and
ResNet-50 backbones led to roughly the same accuracy, whereas the model with a ResNet-152
backbone outperformed these with an AP of 0.6531.

Last, ablation experiments were performed to assess the influence of extra anchor sizes and
aspect ratios. The highest accuracy was achieved with anchor sizes 322, 642, 1282, 2562, 5122 and
aspect ratios 2:1, 1:1, 1:2, which led to an AP of 0.6863 at 0.816 FPS. This is the highest AP
that was achieved overall.

6.2 Discussion of Results

Figure 11 in Section 5 shows predictions of the model with the highest AP. In this example, it
becomes clear that the model picked up grouping of similar products quite well. This makes for
a promising outlook. However, more work is necessary to further improve the accuracy of the
model.

The term "Garbage in, Garbage out", first used by Mellin (1957), shows that researchers
have long been aware of the influence of data quality on machine learning results. Feed low
quality data into a model, no matter how sophisticated, and results will be poor (Geiger et al.,
2021). In this regard, it is important to critically think about the data used for this problem,
described in Section 4.

First of all, it is important to consider the size of the dataset. Where models in other studies
are trained on very large amounts of data (Goldman et al. (2019) use 11,762 images, Ren et al.
(2015) train on PASCAL VOC 2007 (9,963 images), PASCAL VOC 2012 (11,530 images), COCO
(328K images) and combinations of these), this study faces a data-scarcity problem with 100
labelled images. This makes it difficult to compare results of this study with those presented in
Goldman et al. (2019) and Ren et al. (2015). To combat the problem of data scarcity, Yilmazer
and Birant (2021) used a semi-supervised approach, where the model is first trained on the
labeled dataset, then used to make predictions for the unlabeled data which are then added to
the dataset and used to train the model again. However, unsatisfactory detection results in the
first step likely make this an unfeasible approach for this study, since the predictions are too
inaccurate and would feed to much noice into the dataset.

To optimally use the data at hand, data augmentation is performed as described in Sec-
tion 3.4. Furthermore, transfer learning drastically reduces the amount of data required to train
object detection models (Pan & Yang, 2009). Since the model was originally trained on Ima-
geNet, which consists of over 1 million images (Deng et al., 2012), a small dataset in combination
with data augmentation should suffice in learning the current task. However, since the results
show that the model does pick up on grouping of products, it would be interesting to assess
whether expanding the dataset could further improve accuracy.

Also, data was labelled by hand. Bounding boxes were applied to fit regions as closely as

29

possible, but not too close such that edges could be better detected. Data labelling was not
outsourced, but everything was done in-house to have full control over the labelling process. The
annotations were carefully checked after labelling was done. However, it is still vulnerable to
human inconsistencies. Northcutt et al. (2021) have shown that even the test sets of the 10 most
common computer vision, natural language programming and audio datasets contain on avarage
at least 3.3% errors. For ImageNet, this is at least 6%. This study found that in real-world
applications with high proportions of wrongly annotated data lower complexity models could be
more beneficial than more complex models.

Besides human inconsistencies, there are some inconsistencies caused by the definition of a
product region. Whereas for an individual product it is generally clear what the boundaries
should be, this is not always the case for a product region. Sometimes product regions can
be very clear (Figure 12). However, in some cases it becomes more complex to label product
regions. An important issue is the fact that product regions can strongly overlap. In some
situations this overlap is simply caused by the fact that rectangular bounding boxes are used to
annotate product regions that are not necessarily rectangular (Figure 13). This becomes even
more of a problem when images are strongly angled.

Figure 12: Example of clearly defined
bounding boxes

Figure 13: High product region over-
lap due to rectangular bounding boxes

Next to strong overlap between regions, there are some more general concerns regarding
product regions. For example, do we see the cardboard box that the products are in as part
of the product region, or only the products themselves? Products in the background also often

30

present some ambiguity. In the example of Figure 14 the 6 products in the front clearly belong
to the same product region. However, it is debatable whether the products lying in the back
should be included or not. This ambiguity leads to two different ways to label the product
region, with highly different outcomes in terms of the region. If this is not done consistenly, the
model will have difficulties learning the desired outcome.

Figure 14: Products in background making product region ambiguous

Even when assuming data annotation is done without any errors, the data still presents a
very challenging detection environment. First of all, shelves in the images are densely packed
(Goldman et al., 2019), with a high number of products and sometimes also product regions
per image (Figure 7). Furthermore, there is a large variability within the products in terms of
shape, size and colours. This variability is enlarged through the use of product regions contrary
to individual products. Now variability is not only caused by the many different products, but
also by different numbers of products in every product region. This is made even more difficult
by products being slightly turned, more in the background, shown from a different side or put
upside down. Last, minor packaging differences in sub-brands (Figure 10) make it even harder to
distinguish between different products to detect product regions (Goldman et al., 2019; Santra
& Mukherjee, 2019). This seems to be an important driver of mistakes in the predictions shown
in Figure 11.

The question is; would the model perform a lot better if images were less cluttered and
densely packed? In the few pilot shops that Moonshop has launched, the layout is a lot more
spacious, with more distance between different products. Since these shops are relatively small
in terms of size and assortment, there are less very similar sub-products than in the current
dataset. All in all, detection should be somewhat easier in the setting of the current Moonshops.
However, if performance were a lot better in these circumstances, this would mean that the
model is highly sensitive to changes in store layout. This has two important implications. First
of all, if an unmanned shop gets restocked once a day, large clutter can build up during that

31

day, which could strongly influence the accuracy of the model. If customers become aware of
this, they could mess with the algorithm by misplacing items and use this to their advantage.
Furthermore, Moonshop offers a "white-label" solution, which is to be implemented in any small
supermarket or vendor. This means that Moonshop will not always have control over store
layout and assortment.

6.3 Future Research for the Concept of Moonshop

Further hyperparameter tuning leaves some room for improvement. For example, the hyperpa-
rameters that were experimented with in this study, like anchor sizes and aspect ratios, could be
further studied in more different configurations. Also, experimenting with the learning rate and
batch size can influence training (Smith et al., 2017). Besides further hyperparameter tuning, as
previously mentioned, it would be interesting to evaluate the influence of expanding the dataset
on detection accuracy. While the use of transfer learning greatly reduces the amount of data
needed to achieve satisfactory detection results (Pan & Yang, 2009; Rawat & Wang, 2017), the
high variability within product regions could mean that more data than usual is required to
learn the specific task.

A different approach would be to first pre-train the model on individual product recognition
with the SKU110K dataset (Goldman et al., 2019). Then, the weights from this could be used for
the ResNet backbone, instead of those pre-trained on ImageNet. Since these weights are derived
from training on a dataset even more similar to the current one, it could be hypothesized that
the backbone would extract features that are even more relevant to this specific task. However,
as shown by Pan and Yang (2009), transfer learning does not necessarily require the two tasks
to be in the same domain, so it is uncertain whether pre-training the model on the SKU110K
dataset would lead to an improved accuracy.

6.3.1 Different Approaches to Product Region Detection

Besides thinking about how to reach the maximum accuracy with the current approach, it is
important to consider different approaches that could be beneficial to the concept of Moonshop.
For example, the model could be trained to recognize individual products such as in Goldman
et al. (2019). With this output, the labelers could then click on all the items of the same product,
after which a product region is automatically drawn around the boundaries of these products.
While this is a relatively simple and straight-forward approach, it suffers from some drawbacks.
First of all, this involves extra action from the labelers, which is not certain to speed up the
work over the labelers drawing up the product regions themselves. Especially in product regions
with many products this would be a problem. Furthermore, Goldman et al. (2019) still fail to
detect a lot of products in their approach.

As an extension of this approach, a model could be trained to learn whether two products
are the same or not. This is often done using siamese neural networks (Chicco, 2021), which

32

consist of two networks with equal weights. Two images are passed through the networks,
after which the two outcomes are compared through a distance measure. An example of this is
DeepFace, where a siamese neural network is used for face verification using two images. Trained
on four million facial images belonging to more than 4000 identities, this approach achieved an
accuracy of 97.35% (Taigman et al., 2014). A similar structure as that used in DeepFace could
be employed, where weights are copied and the new task is learned through transfer learning.

This could then be combined in a two-stage detector. First all the individual products are
detected using an approach similar to Goldman et al. (2019). Then, all detections are compared
with each other to say if they are identical products or not. With the outcomes of the second
stage, product regions can be drawn and compared against the ground-truth boxes in our dataset.
This way outliers within a product region could also be automatically detected.

It would be important to think about how to draw product regions. For example; what to
do when the transitivity constraint does not hold? If product a is identical to product b, product
b is identical to product c, but product a is not identical to product c, a problem could arise.
This is very likely to occur in product regions with a large number of products.

This approach also suffers from some other important drawbacks. First of all, as previously
discussed, accuracy of individual product detection is not extremely high (Goldman et al., 2019).
When a lot of individual product detections are missing in the first stage, it would be hard to
draw accurate product regions in stage two. Furthermore, this would mean that the current
dataset would have to be relabeled in a different way. Also, identical products can look very
dissimilar if they are shown from completely different angles. Last, the problem of occlusion will
play an important role here, since many products are partially covered. Therefore it is unlikely
that the second stage approach will lead to an accuracy as high as that of Taigman et al. (2014).

6.3.2 Broader Perspective on the Problem

A completely different avenue of product region detection would be to train SKU specific object
detection models. With these individual products, product regions can be drawn. SKU specific
approaches have shown to lead to considerably higher accuracy (Merler et al., 2007; Santra &
Mukherjee, 2019). However, this approach also faces some drawbacks, the main one being that
it requires lots of product specific data. This means that whenever a new shop is opened with
a different assortment or when products’ packaging is changed, Moonshop must go through the
whole process of gathering and labelling data and training the model again (Santra & Mukherjee,
2019). This is a time-consuming process and could limit scalability. However, if this leads to a
much higher accuracy, this could be a trade-off worth considering.

More generally, what also deserves some thought, is the choice between product regions or
individual products. In the first place, this study decided to focus on detecting product regions
rather than individual products to combat the problem of occlusion. However, this approach
also poses some practical limitations. How do we deal with overlapping regions? What do we

33

do if a customer takes a product from a spot where two or more regions overlap? When the
footage is judged by a labeller, they can simply see to which region the product belongs and
click on this region. For making the shops fully autonomous, however, this could be a problem.
In the end, the idea is to couple a customer action classified as taking a product to a specific
product region. This way, we can conclude that a customer has taken a certain product. In
this scenario, there are two ways to deal with overlapping regions. First of all, shops can be
designed in such a way that there will never be overlapping regions. However, this might not
always be possible in future shops and is again very sensitive to customers misplacing products.
Second, another model could be applied to determine which product region a product more
likely belongs to if it sits in overlapping regions. This, however, creates another step that would
increase computational intensity and the possibility for more errors. Both ways to deal with
this are not desirable. Therefore, product region detection can be a good intermediate step to
aid labelers in doing their work more efficiently in the near future. In the transition to fully
autonomous supermarkets, however, SKU specific individual product based methods might be
a more efficient approach.

More generally, Moonshop should think about other measures to increase detection, rather
than just computer vision. For example, like Amazon GO (Ives et al., 2019), it is important to
consider alternative forms of input to aid in detecting which products a customer takes. The
use of scales could not only help detect how many products a person takes, it would also pave
the way for weighted products, such as fresh cheese, fruits and vegetables. Another option is
Radio-Frequency IDentification (RFID) (Bottani et al., 2017; Santra & Mukherjee, 2019), which
can be seen as the successor of the bar code and is for example used by Hema (Wang & Coe,
2021). This is mainly used to track on-shelf availability and product freshness (Bottani et al.,
2017). However, sensor-based approaches are often very expensive and face scalability issues
(Santra & Mukherjee, 2019).

All in all, the problem can be approached from many different angles, all with their own
drawbacks and advantages. For now, product region detection could be a helpful tool to aid
labelers. As Ives et al. (2019) argues, a well developed Just Walk Out technology could disrupt
not only grocery shopping, but the wider retail sector. Therefore, Moonshop should carefully
think about the right approach, strongly keeping scalability in mind. When this is done well, a
bright future lies ahead.

34

References

Abraham, K. G., Haltiwanger, J. C., & Rendell, L. E. (2020). How tight is the us labor market?
Brookings Papers on Economic Activity, 2020 (1), 97–165.

Agarwal, N., Chiang, C.-W., & Sharma, A. (2018). A study on computer vision techniques for
self-driving cars. International Conference on Frontier Computing, 629–634.

Alam, M. M., & Islam, M. T. (2019). Machine learning approach of automatic identification and
counting of blood cells. Healthcare technology letters, 6 (4), 103–108.

Arief-Ang, I. B., Hamilton, M., & Salim, F. D. (2018). A scalable room occupancy prediction
with transferable time series decomposition of co2 sensor data. ACM Transactions on
Sensor Networks (TOSN), 14 (3-4), 1–28.

Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., & Ouni, K. (2019). Car detection us-
ing unmanned aerial vehicles: Comparison between faster r-cnn and yolov3. 2019 1st
International Conference on Unmanned Vehicle Systems-Oman (UVS), 1–6.

Bickel, S. (2006). Ecml-pkdd discovery challenge 2006 overview. ECML-PKDD Discovery Chal-
lenge Workshop, 1–9.

Bottani, E., Bertolini, M., Rizzi, A., & Romagnoli, G. (2017). Monitoring on-shelf availability,
out-of-stock and product freshness through rfid in the fresh food supply chain. Interna-
tional Journal of RF Technologies, 8 (1-2), 33–55.

Bozinovski, S. (1981). Teaching space: A representation concept for adaptive pattern classification
(tech. rep.). COINS Technical Report, University of Massachusetts at Amherst.

Bozinovski, S., & Fulgosi, A. (1976). The influence of pattern similarity and transfer learning
upon the training of a base perceptron b2. Proceedings of Symposium Informatica, 3–121.

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A.
(2020). Albumentations: Fast and flexible image augmentations. Information, 11 (2), 125.

Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural networks
for document processing. Tenth international workshop on frontiers in handwriting recog-
nition.

Chicco, D. (2021). Siamese neural networks: An overview. Artificial Neural Networks, 73–94.
Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2011). Flexible,

high performance convolutional neural networks for image classification. Twenty-second
international joint conference on artificial intelligence.

Cui, Y. G., van Esch, P., & Jain, S. P. (2021). Just walk out: The effect of ai-enabled checkouts.
European Journal of Marketing.

Deloitte Digital. (2018). Connected stores. transforming store fleet through connectivity [Last ac-
cessed 29 May 2022]. https://www2.deloitte.com/content/dam/Deloitte/ar/Documents/
Consumer_and_Industrial_Products/Connected_Stores_Deloitte_POV.pdf

35

https://www2.deloitte.com/content/dam/Deloitte/ar/Documents/Consumer_and_Industrial_Products/Connected_Stores_Deloitte_POV.pdf
https://www2.deloitte.com/content/dam/Deloitte/ar/Documents/Consumer_and_Industrial_Products/Connected_Stores_Deloitte_POV.pdf

Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., & Fei-Fei, L. (2012). Imagenet large scale
visual recognition competition 2012 (ilsvrc2012). See net. org/challenges/LSVRC, 41.

Do, C. B., & Ng, A. Y. (2005). Transfer learning for text classification. Advances in neural
information processing systems, 18.

Esch, P. v., Cui, Y., & Jain, S. P. (2021). Stimulating or intimidating: The effect of ai-enabled
in-store communication on consumer patronage likelihood. Journal of Advertising, 50 (1),
63–80.

Everingham, M., Zisserman, A., Williams, C. K., Van Gool, L., Allan, M., Bishop, C. M.,
Chapelle, O., Dalal, N., Deselaers, T., Dorkó, G., et al. (2008). The pascal visual object
classes challenge 2007 (voc2007) results.

Food Marketing Institute. (2008). Marketing costs [Last accessed 11 July 2022]. https://www.
fmi.org/docs/facts-figures/marketingcosts.pdf?sfvrsn=2

Forsythe, E., Kahn, L. B., Lange, F., & Wiczer, D. G. (2020). Searching, recalls, and tightness:
An interim report on the covid labor market (tech. rep.). National Bureau of Economic
Research.

Franco, A., Maltoni, D., & Papi, S. (2017). Grocery product detection and recognition. Expert
Systems with Applications, 81, 163–176.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202.

Geiger, R. S., Cope, D., Ip, J., Lotosh, M., Shah, A., Weng, J., & Tang, R. (2021). “garbage
in, garbage out” revisited: What do machine learning application papers report about
human-labeled training data? Quantitative Science Studies, 2 (3), 795–827.

Gevers, T., & Smeulders, A. W. (1999). Color-based object recognition. Pattern recognition,
32 (3), 453–464.

Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer
vision, 1440–1448.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. Proceedings of the IEEE conference on
computer vision and pattern recognition, 580–587.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. Proceedings of the thirteenth international conference on artificial intelligence
and statistics, 249–256.

Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., & Hassner, T. (2019). Precise detection
in densely packed scenes. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 5227–5236.

Hajiramezanali, E., Zamani Dadaneh, S., Karbalayghareh, A., Zhou, M., & Qian, X. (2018).
Bayesian multi-domain learning for cancer subtype discovery from next-generation se-
quencing count data. Advances in Neural Information Processing Systems, 31.

36

https://www.fmi.org/docs/facts-figures/marketingcosts.pdf?sfvrsn=2
https://www.fmi.org/docs/facts-figures/marketingcosts.pdf?sfvrsn=2

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition, 770–
778.

Higa, K., & Iwamoto, K. (2018). Robust estimation of product amount on store shelves from
a surveillance camera for improving on-shelf availability. 2018 IEEE International Con-
ference on Imaging Systems and Techniques (IST), 1–6.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal processing
magazine, 29 (6), 82–97.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148, 574–591.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. International conference on machine learning, 448–456.

Ives, B., Cossick, K., & Adams, D. (2019). Amazon go: Disrupting retail? Journal of Information
Technology Teaching Cases, 9 (1), 2–12.

Jain, S., Pise, N., & Jagtap, V. (2015). Computer aided melanoma skin cancer detection using
image processing. Procedia Computer Science, 48, 735–740.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436–444.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel,

L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural com-
putation, 1 (4), 541–551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86 (11), 2278–2324.

Leung, M. K., Xiong, H. Y., Lee, L. J., & Frey, B. J. (2014). Deep learning of the tissue-regulated
splicing code. Bioinformatics, 30 (12), i121–i129.

Li, M., Zhang, Z., Lei, L., Wang, X., & Guo, X. (2020). Agricultural greenhouses detection in
high-resolution satellite images based on convolutional neural networks: Comparison of
faster r-cnn, yolo v3 and ssd. Sensors, 20 (17), 4938.

Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2018). Efficacy of a deep learning
system for detecting glaucomatous optic neuropathy based on color fundus photographs.
Ophthalmology, 125 (8), 1199–1206.

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., & Svetnik, V. (2015). Deep neural nets as a method
for quantitative structure–activity relationships. Journal of chemical information and
modeling, 55 (2), 263–274.

37

Maitra, D. S., Bhattacharya, U., & Parui, S. K. (2015). Cnn based common approach to hand-
written character recognition of multiple scripts. 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), 1021–1025.

Marr, D. (1982). Vision: A computational investigation into the human representation and pro-
cessing of visual information. MIT press.

McCarthy, J., & Minsky, M. (1956). The dartmouth summer research project on artificial intel-
ligence. Artificial intelligence: past, present and future.

McKinsey. (2017). The future of grocery — in store and online [Last accessed 13 July 2022].
https://www.mckinsey.com/industries/retail/our- insights/the- future-of-grocery- in-
store-and-online.pdf

Mellin, W. D. (1957). Work with new electronic ‘brains’ opens field for army math experts. The
Hammond Times, 10, 66.

Merler, M., Galleguillos, C., & Belongie, S. (2007). Recognizing groceries in situ using in vitro
training data. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1–8.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.
Icml.

Newell, A., & Simon, H. A. (1956). The logic theory machine - a complex information processing
system. IRE Transactions on information theory, 2, 61–79.

Northcutt, C. G., Athalye, A., & Mueller, J. (2021). Pervasive label errors in test sets destabilize
machine learning benchmarks. arXiv preprint arXiv:2103.14749.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22 (10), 1345–1359.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural net-
works, 12 (1), 145–151.

Radiuk, P. M. (2017). Impact of training set batch size on the performance of convolutional
neural networks for diverse datasets.

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A
comprehensive review. Neural computation, 29 (9), 2352–2449.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. Proceedings of the IEEE conference on computer vision and pattern
recognition, 779–788.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28.

RTS. (2022). Food waste in america in 2021 [Last accessed 11 July 2022]. https://www.rts.com/
wp-content/uploads/2021/04/RTS_Food_Waste_Guide_2021.pdf

Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. mcgraw-hill.

38

https://www.mckinsey.com/industries/retail/our-insights/the-future-of-grocery-in-store-and-online.pdf
https://www.mckinsey.com/industries/retail/our-insights/the-future-of-grocery-in-store-and-online.pdf
https://www.rts.com/wp-content/uploads/2021/04/RTS_Food_Waste_Guide_2021.pdf
https://www.rts.com/wp-content/uploads/2021/04/RTS_Food_Waste_Guide_2021.pdf

Santra, B., & Mukherjee, D. P. (2019). A comprehensive survey on computer vision based
approaches for automatic identification of products in retail store. Image and Vision
Computing, 86, 45–63.

Scime, L., & Beuth, J. (2018). Anomaly detection and classification in a laser powder bed additive
manufacturing process using a trained computer vision algorithm. Additive Manufactur-
ing, 19, 114–126.

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2017). Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE
conference on computer vision and pattern recognition, 1–9.

Szegedy, C., Reed, S., Erhan, D., Anguelov, D., & Ioffe, S. (2014). Scalable, high-quality object
detection. arXiv preprint arXiv:1412.1441.

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface: Closing the gap to human-
level performance in face verification. Proceedings of the IEEE conference on computer
vision and pattern recognition, 1701–1708.

Tan, L., Huangfu, T., Wu, L., & Chen, W. (2021). Comparison of yolo v3, faster r-cnn, and ssd
for real-time pill identification.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433–460.
Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search

for object recognition. International journal of computer vision, 104 (2), 154–171.
U.S. Department of Labor. (2020). Productivity and costs by industry. wholesale trade and retail

trade industries [Last accessed 11 July 2022]. https://www.bls.gov/news.release/pdf/
prin1.pdf

Wang, Y., & Coe, N. M. (2021). Platform ecosystems and digital innovation in food retailing:
Exploring the rise of hema in china. Geoforum, 126, 310–321.

Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K., Hua, Y.,
Gueroussov, S., Najafabadi, H. S., Hughes, T. R., et al. (2015). The human splicing
code reveals new insights into the genetic determinants of disease. Science, 347 (6218),
1254806.

Yilmazer, R., & Birant, D. (2021). Shelf auditing based on image classification using semi-
supervised deep learning to increase on-shelf availability in grocery stores. Sensors, 21 (2),
327.

Ying, X. (2019). An overview of overfitting and its solutions. Journal of physics: Conference
series, 1168 (2), 022022.

39

https://www.bls.gov/news.release/pdf/prin1.pdf
https://www.bls.gov/news.release/pdf/prin1.pdf

Appendix

Figure 15: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-50
backbone. Weights of the entire backbone are frozen. Anchor sizes 1282, 2562, 5122 and aspect
ratios 2:1, 1:1, 1:2. Y-axis shows validation AP, x-axis shows the number of training steps.

Figure 16: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-50
backbone. Weights of the first 5 layers of the backbone are frozen. Anchor sizes 1282, 2562, 5122

and aspect ratios 2:1, 1:1, 1:2. Y-axis shows validation AP, x-axis shows the number of training
steps.

40

Figure 17: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-50
backbone. Weights of the entire backbone are unfrozen. Anchor sizes 1282, 2562, 5122 and aspect
ratios 2:1, 1:1, 1:2. Y-axis shows validation AP, x-axis shows the number of training steps.

Figure 18: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-18
backbone. Weights of the entire backbone are unfrozen. Anchor sizes 1282, 2562, 5122 and aspect
ratios 2:1, 1:1, 1:2. Y-axis shows validation AP, x-axis shows the number of training steps.

41

Figure 19: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-152
backbone. Weights of the entire backbone are unfrozen. Anchor sizes 1282, 2562, 5122 and aspect
ratios 2:1, 1:1, 1:2. Y-axis shows validation AP, x-axis shows the number of training steps.

Figure 20: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-152
backbone. Weights of the entire backbone are unfrozen. Anchor sizes 322, 642, 1282, 2562, 5122

and aspect ratios 2:1, 1:1, 1:2. Y-axis shows validation AP, x-axis shows the number of training
steps.

42

Figure 21: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-152
backbone. Weights of the entire backbone are unfrozen. Anchor sizes 1282, 2562, 5122 and aspect
ratios 1:3, 2:1, 1:1, 1:2. 1:3. Y-axis shows validation AP, x-axis shows the number of training
steps.

Figure 22: Learning curve in terms of validation AP of Faster R-CNN model with ResNet-152
backbone. Weights of the entire backbone are unfrozen. Anchor sizes 322, 642, 1282, 2562, 5122

and aspect ratios 1:3, 2:1, 1:1, 1:2. 1:3. Y-axis shows validation AP, x-axis shows the number
of training steps.

43

Figure 23: Overview of all learning curves in terms of validation AP in one graph. Y-axis shows
validation AP, x-axis shows the number of training steps. Different colours correspond to the
same models as in the figures above, in the same order as previously described; blue = ResNet-50
with backbone frozen, red = ResNet-50 with backbone partially frozen, light blue = ResNet-
50 with backbone unfrozen, pink = ResNet-18 with backbone unfrozen, green = ResNet-152
with backbone unfrozen, grey = ResNet-152 with backbone unfrozen & extra anchor sizes, dark
orange = ResNet-152 with backbone unfrozen & extra aspect ratios, orange = ResNet-152 with
backbone unfrozen, extra anchor sizes & aspect ratios

44

	Introduction
	Literature
	Computer Vision
	Convolutional Neural Networks
	Object Detection

	Transfer Learning
	Approaches to Supermarket Product Recognition

	Method
	Faster R-CNN
	Residual Neural Network (ResNet)
	Model Architecture
	Data Transformations
	Anchors
	Training

	Data
	Results
	Conclusion and Discussion
	Summary of Results
	Discussion of Results
	Future Research for the Concept of Moonshop
	Different Approaches to Product Region Detection
	Broader Perspective on the Problem

