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Abstract

This paper aims to forecast Bitcoin volatility using two GARCH type models, two Bayesian Markov-

switching models and two long short-term memory neural networks. Where for each model type we use

one model utilizing squared daily returns and one that incorporates realized variance. These models

are used to perform a series of one-step ahead forecasts of the realized volatility of Bitcoin. These are

evaluated based on RMSE, MAE, daily VaR forecasts and corresponding expected shortfall. The results

show that out of the six models that we test, the realized GARCH model performs the best for all

metrics. It has the lowest RMSE and MAE, the best exceedance ratio for value at risk forecasts, and

the second lowest expected shortfall. So the more complex and computationally expensive models do

not manage to perform better than the relatively simple realized GARCH. We find that the models that

incorporate realized variance outperform their respective counterpart in terms of the VaR and expected

shortfall forecasts, while for two of the three model types it also improves the RMSE and MAE.
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1 Introduction

Risk plays an important part in finance. It is one of the most thought about concepts while also being one of

the least tangible. For example, the capital asset pricing model (CAPM) states a direct relationship between

the (required) return on an asset and its risk. Similarly, the most important factor in option pricing is the

future risk of the underlying asset, its implied volatility. A good volatility forecast is useful in a business

sense, in that it is used in risk management, derivative pricing and portfolio management among others. In

each, it is the predictability of volatility that is required. A portfolio manager wants to know the volatility

of the portfolio constituents to obtain portfolio variance. An option trader will want to know the volatility

that can be expected over the future life of the contract, and be able to make trades concerning the implied

volatility in the market. A risk manager might want to get volatility forecasts in order to calculate value at

risk (VaR) for a certain position or portfolio. Therefore, having a good volatility model is beneficial in many

different aspects of finance.

While volatility forecasting is important for basically all asset classes, it might be even more important

in the case of cryptocurrencies. Over the last decade, cryptocurrencies as Bitcoin (Nakamoto, 2008) and

Ethereum (Buterin, 2013) have gone from obscure concepts for cryptography researchers and enthusiasts, to

one of the most widely known financial assets. While one can very well argue that the market of Bitcoin

and ether have matured the last years, it still demonstrates high levels of volatility and big intraday market

movements. As illustration, since 2021 we have seen an increase of over 100% followed by a drop of over 50%

twice. In such a volatile market, good risk management risk management should play an very important

role as the consequences of being on the wrong side of things is severe. A good example of this is the crypto

‘hedge fund’ Three Arrows Capital, whose CEO quoted the now infamous phrase: “Those who do not man-

age their risk will have the market manage it for them.” (Zhu, 2021), just eight months before they went

bankrupt. All in all, there is a big incentive to find what volatility models perform well on this new asset class.

The goal of this paper is to find the effect of incorporating realized measures, specifically realized volatility,

into different volatility models on the forecasting power of said models on Bitcoin. We look at three different

types of models with two different specifications, one using ‘normal’ squared daily returns, and one using

realized variance.

The first model type we will be using will be two simple GARCH type models. These types of models

are very easy to estimate and interpret and are therefore widely used. This makes them very well suited to

be used to compare with more complex models as a benchmark. We use the GJR-GARCH specification of

Glosten, Jagannathan, and Runkle (1993), which is able to model the leverage effect that is present in most

financial assets. Next to that we use the Realized GARCH model of Hansen, Huang, and Shek (2012), that
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allows for different realized measures, as well as being able to model the leverage effect.

Secondly we use two Markov-switching models, a type of regime switching model that assumes that fu-

ture states only depend on the current state. We implement a two-state Markov-switching GJR-GARCH

model as well as a Markov-switching realized variance model, where the returns and realized variance are

jointly modeled. These models divide the sample into two different regimes, in this case a high volatility and

a low volatility regime. Then based on the regime parameters get estimated. This is attractive to volatility

modeling as it could help with volatility clustering, the observation that high volatility tends to be followed

by high volatility, and low volatility by low volatility. This would suggest the presence of two distinct regimes

in volatility behavior.

The last two models we use are long short-term memory (LSTM) neural networks. This is a type of recurrent

neural network that exhibits long-term memory, something that also is present in volatility through high per-

sistence. Compared to the different models we have mentioned so far LSTM and neural networks in general

are less interpretable. We feed panel data of certain pre-specified features into the model combined with a

target variable. Then during the training process the model tweaks it internal functions in order to produce

an output that minimizes the loss function. This allows for non-linear relations between variables that other

models might not be able to model. We actually combine these LSTM models with the two GARCH models

mentioned above. By adding GARCH estimates as parameters we hope to add extra information to our

feature set. The first LSTM model contains rolling GJR-GARCH estimates as well as squared daily returns

as unique features. The other LSTM model uses rolling Realized GARCH estimates and realized variance

as unique features. Both models also use a set of shared features. In this way we can clearly see the effect

of using realized variance on volatility forecasts.

To evaluate the different models and their volatility forecasts we will be looking both at metrics to de-

termine the quality of the forecasts itself, as well as using value at risk and expected shortfall for looking at

the forecasts from a portfolio management perspective. There can be a severe disconnect between the two, as

from a portfolio management perspective one cares mostly about whether the actual volatility is higher than

a forecast. On the other hand, one that would use these forecasts to price derivatives would care about the

difference to the actual volatility, both when its positive and negative. We find that the Realized GARCH

model scores the best for both mean absolute error and root mean squared error. The other models have

very similar values to each other for the exception of the LSTM model using squared daily returns, which

performs a lot worse than the others. We find that with these two metrics the ‘simple’ benchmark models

perform better than the more complex and computationally expensive models.

When we look at value at risk and expected shortfall, we find that both GJR-GARCH and LSTM with
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squared daily returns both provide a too conservative VaR forecasts, with exceedance ratios clearly below

the intended 5%. LSTM with realized variance has the VaR estimates that are exceeded the most, with an

exceedance ratio of 9.4%. Its expected shortfall is the lowest, but this is partly caused by the high amount

of exceedances, which mostly happens at not very negative returns. For expected shortfall the three realized

variance models all outperform the models using squared daily returns. This suggests that even though

the VaR gets exceeded more often, this happens at relatively small negative returns instead of big negative

returns. The three models utilizing squared daily returns have the highest expected shortfall, which confirms

one of the disadvantages of GARCH models, that they are not great at modeling spikes in volatility. We con-

clude that utilizing realized variance over squared daily returns can improve the volatility forecasting ability

of different model types. We tested four models that were more complex and computationally expensive,

but none of them were able to outperform the Realized GARCH model.

In the next section, we discuss the literature pertaining to the models, methodology, and the problem

field as a whole. In section 3, we elaborate on the data set that will be used and what sample we use.

Section 4, describes the methodology and model specifications. In section 5 we show our results, and finally,

we present our conclusions in section 6.

2 Literature

After the seminal paper of Engle (1982) that introduced ARCH (Autoregressive Conditional Heteroskedastic)

models, and the generalizing paper of Bollerslev (1986) introducing GARCH, we have seen a large amount

of attention on time-varying volatility and how to measure, model and forecast it. There has been nothing

less than an arms race to develop new and better models to get grip on financial market volatility, such as

EGARCH (Nelson, 1991), TGARCH (Zakoian, 1994) and IGARCH (Engle & Bollerslev, 1986).

While conditional variance models like ARCH and GARCH do quite well in practice, they all have a flaw in

their specification. Standard GARCH models use daily returns (often squared returns) to obtain informa-

tion about the current level of volatility. And this information is used to generate expectations about next

period’s volatility. Unfortunately, squared returns are a very noisy volatility measure. In response to this

different realized measures of volatility have been introduced such as realized variance and the realized kernel

see Andersen, Bollerslev, Diebold, and Ebens (2001), Barndorff-Nielsen and Shephard (2002) and Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008) among others. As these measures use higher frequency data to

obtain their value, they inherently contain more available information than squared daily returns. We have

seen different models that incorporate realized variance or a different realized metric in order to improve

volatility forecasts. From the fractionally integrated ARFIMA models of Andersen, Bollerslev, Diebold, and

Labys (2003) and long-memory Heterogeneous AR (HAR) model of Corsi (2009) to the Realized GARCH
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model of Hansen et al. (2012).

We have also seen an increase in the usage of neural networks to model financial time series. These types

of models do not have an as extensive history in financial literature, but follow from breakthroughs in com-

puter science. The last decades has seen major breakthroughs in deep learning, such as Alexnet (Krizhevsky,

Sutskever, & Hinton, 2012) which introduced convolutional neural networks. The advent of graphical pro-

cessing units made it so large models could efficiently be trained, while at the same time the amount of

data that is generated everyday has skyrocketed. All in all it has been a perfect storm for deep learning to

blossom. This eventually found its way to the world of finance, where people tried incorporating different

models. Vidal and Kristjanpoller (2020) uses a Long Short-Term Memory (LSTM) network in order to

forecast the volatility for gold prices, while Xiong, Nichols, and Shen (2015) uses deep learning to forecast

volatility using google search data. Others like Sirignano and Cont (2019) use deep learning models to find

a relation between order flow and price movements.

While the above-mentioned models have seen much testing on a variety of financial assets like stocks, stock

indices, commodities and currencies, the amount of literature covering the results of applying these models

to cryptocurrencies is naturally quite low. Volatility modeling for cryptocurrencies has relied mostly on

the GARCH framework, Dyhrberg (2016) uses an asymmetric GARCH model to research Bitcoin’s hedging

capabilities. Chu, Chan, Nadarajah, and Osterrieder (2017) fit a selection of 12 GARCH models on different

seven different cryptocurrencies to find out which models perform the best. There have been some papers

that researched the use of Markov-switching GARCH models on Bitcoin, such as Ardia, Bluteau, and Rüede

(2019) and Tan, Koh, Ng, and Ng (2021). There has been little research into the effects of using realized

volatility to forecast the volatility of Bitcoin returns. This is the part where this paper will add to the litera-

ture, by giving a clear comparison between models using daily returns and models utilizing realized volatility.

3 Data

In this paper we will be focusing on Bitcoin. Bitcoin is the first cryptocurrency, after being first deployed

in 2009 (Nakamoto, 2008). It is currently the biggest and most well known cryptocurrency out there, with

at the time of writing a market cap of $440,020,465,493, which constitutes 40% of the entire cryptocurrency

market cap. The data that we will be using is obtained from Glassnode, a cryptocurrency data provider.

We use both daily closing price data as well as 10 minute prices to construct the realized variance. Liu, Pat-

ton, and Sheppard (2015) argues that 5 minute data is the best in terms of calculating the realized variance,

unfortunately we do not have that data available, so we use 10 minute data to construct the realized volatility.
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Our sample is from 01-01-2016 to 24-06-2022, and contains 2367 daily observations. As Bitcoin is still

a relatively young asset we have to choose from what time we think the price movement of Bitcoin is useful

and representative of what it is now. For any earlier than 2016 it will be quite hard to argue that the price

action is similar to what it is now, as there was little liquidity and did not have many participants. For this

reason we do not consider the data before 2016 as we do not think this data is representative and useful. We

will divide this sample into a training set and a test set. Training of the models will be done on the sample

that is from 01-01-2016 up to 01-06-2020, which consists of 1613 daily observations. The models are then

tested on data from 01-06-2020 to 24-06-2022. Figure 1 shows the price series over our sample. This graph

Figure 1: Daily Bitcoin closing prices from 01-01-2016 to 24-06-2022

shows the volatile nature of Bitcoin, we see the meteoric rise in value in 2016 and 2017, and the following

downturn in 2018. In total we have four periods of major growth, with the main one being 2017.

Now we will look deeper into the dynamics of Bitcoin returns during our sample. First we transform the

daily prices into log returns:

yt = log

(
Pt

Pt−1

)
. (1)

In this formula Pt denotes the closing price of Bitcoin at time t.

Figure 2 shows these log returns for our sample, combined with the density plot of the log returns. We can

see one major negative return, which corresponds with 12th of march 2020, when Bitcoin’s price dropped

nearly 40% in one day in response to the corona virus outbreak. Other than that the distribution of log

returns shows some negative skew and clear presence of long tails. This is further confirmed by the results

reported in Table 1, where we can see the summary statistics of Bitcoin’s log returns. The table also shows

the value of the Jarque-Bera test for normality, we can see that normality of the log returns is rejected.
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Figure 2: Bitcoin log returns from 01-01-2016 to 24-06-2022 and the density plot of those log returns

Table 1: Descriptive statistics of the log returns of Bitcoin

BTC

Mean 0.002
St Dev 0.040
Minimum -0.487
Maximum 0.226
Skewness -0.804
Kurtosis 12.805
Jarque-Bera 15760
p-value 0.000

4 Methodology

4.1 GJR-GARCH

GARCH type models are one of the base models of volatility modeling. They are easily estimated, well

interpretable and have a useful and easy closed form forecast. As a relatively simple model GARCH has shown

good results in modeling volatility for different asset classes. This generalized model got first introduced in

Bollerslev (1986) and is defined as

yt = µ+ zt
√
ht,

ht = ω + αε2t−1 + βht−1,
(2)

where yt is the log return,zt = yt/
√
ht ∼ i.i.d(0, 1) and εt = zt

√
ht. While being a generally good model,

GARCH has its shortcomings. One of the characteristics that GARCH is not able to capture is the leverage

effect, where negative returns have a greater effect on future volatility than positive returns of the same
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magnitude. Therefore we will be using the GJR-GARCH model of Glosten et al. (1993), which specification

is

yt = µ+ zt
√
ht,

ht = ω + (α+ γI[εt−1 < 0])ε2t−1 + βht−1.
(3)

In this model an extra parameter γ is introduced that can capture the leverage effect. This is a characteristic

of most financial assets where negative losses have bigger impact on volatility than gains of the same mag-

nitude, such that we expect γ > 0. We will use this GJR-GARCH model as the benchmark to compare the

other models to, since it is very easy to estimate and relatively simple. So more complex or computationally

expensive models should be able to outperform this model to be worth the added complexity. Forecasting

for this model is relatively straightforward and will be a series of one-step ahead forecasts.

4.2 Realized GARCH

The first realized variance model we will be looking at is the Realized GARCH model of Hansen et al.

(2012). In this model a second measurement equation is added to the GARCH of Bollerslev (1986) to allow

for the incorporation of different realized measures. We will be using a log-linear Realized-GARCH(1,1)

specification that uses realized variance as its realized measure. We define realized variance as

RVt =

n∑
i=1

r2t+i/n. (4)

where rt+i/n = pt+i/n − pt+i−1/n

Here n is the amount of parts a day gets divided, so for 10 minute realized variance this would be 144, pt

is the log price at time t. So the realized variance is defined as the sum of intraday squared returns. The

specification of the Realized GARCH model is:

yt = zt
√
ht,

log ht = ω + β log ht−1 + ψ log xt−1,

log xt = ξ + φ log ht + τ(zt) + ut.

(5)

Here yt is the log return, xt is the realized measure, zt = yt/
√
ht ∼ i.i.d(0, 1) and ut ∼ i.i.d(0, σu). In the

third equation we link the observed realized measure to the latent volatility. Almost all different GARCH

specifications are nested within this Realized GARCH framework. A standard GARCH model can be con-

structed by setting xt = yt, this way the measurement equation is reduced to a simple identity and is

therefore redundant. The function τ(zt) is called the leverage function, it captures the dependence structure

between the returns and the volatility. By changing this function we are able to capture the leverage effect
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similar to an EGARCH specification. This leverage function takes on the form

τ (zt) = η1zt + η2

(
z2t − 1

)
, (6)

where η1 and η2 are variables that will also be estimated. This specification is useful as it ensures that

E(τ (zt)) = 0 as long as E(zt) = 0 and var(zt) = 1. Closely related to this leverage function is the so called

news impact curve, see Engle and Ng (1993). This curve shows how volatility reacts to positive and negative

shocks in the price. This curve is defined as

v(z) = E(log ht+1|zt = z)− E(log ht+1). (7)

100 ·v(z) measures the percentage impact on the volatility as a function of z. From Equation 5 we can derive

that we can calculate the news impact curve by multiplying the leverage function with the parameter ψ. To

estimate this model we will be using the R package rugarch Ghalanos (2022). Using the estimated model

we will forecast the realized volatility of Bitcoin using a series of one-step ahead forecasts. Here we use the

parameters that were estimated based on the training set, while using the real return and realized variance

value of the previous days.

4.3 MS-GARCH

In the GJR-GARCH specification the effect an observation has on the volatility change according to the value

of εt−1, as we have different behavior for εt−1 < 0. This can be seen as a regime switching model where the

regime is determined by εt−1. In contrast to this one could assume that the regime is not determined by

observable variable εt−1 but by a hidden Markov process. To capture this Markov process we will be using

a Markov-switching model

4.3.1 Specification

This brings us to a Markov-switching GJR-GARCH (MS-GARCH) model, that permits regime switching in

the parameters. To also get a better grasp at how the leverage effect behaves over different regimes. The

general specification for the MS-GARCH model, given it is in state st, is

yt = zt
√
ht,

ht = ωst + (αst + γstI[εt−1 < 0])ε2t−1 + βstht−1.
(8)

where yt is the log return,zt = yt/
√
ht ∼ i.i.d(0, 1) and εt = zt

√
ht. This model is subject to the parameter

restrictions ωst > 0, αst ≥ 0, βst ≥ 0 for st ∈ {1, 2, .., n} in order to ensure that ht is non-negative. zt can

follow different distributions and we denote shape parameters for a specific distribution with ν. We will be

using a two-regime model with Students-t distribution for zt, shape parameter ν will be estimated for both
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regimes.

4.3.2 Estimation and forecasting

Estimation of the Markov-switching GARCH models can be done by either frequentist or Bayesian ap-

proaches. Both approaches require the evaluation of the likelihood function. In this paper we will be

estimating the model using a Bayesian framework.

Let Θ be the vector containing all model parameters, and let θ1 be the model parameters in regime 1,

namely (ω1, α1, β1, γ1). So let Θ = (θ1, θ2, ν1, ν2,P) be the vector of model parameters for a two regime

Markov-switching GARCH model, where ν is the shape parameter of the conditional distribution of yt, if

applicable. P is the transition probability matrix. Then the likelihood function is

L(Θ|IT ) =
T∏
t=i

f(yt|Θ, It−1), (9)

here f(yt|Θ, It−1) is the density function of yt given the previous observations, It−1, and the model pa-

rameters. For the Markov-switching GARCH model with two regimes, this density function conditional on

parameters Θ and past observations IT is

f(yt|Θ, It−1) =

2∑
i=1

2∑
j=1

pi,jmi,t−1f(yt|st = j,Θ, It−1). (10)

The transition probability for going from state i to state j is given by pi,j . mi,t−1 = P (st−1 = i|Θ, It−1) is the

filtered probability of being in state i at time t−1, which is obtained via the Hamilton filter (Hamilton, 1989).

f(yt|st = j,Θ, It−1) is the conditional density of yt conditional on being in state j, the model parameters,

and the previous observations. So we get the likelihood function

L(Θ|IT ) =
T∏

t=1

 2∑
i=1

2∑
j=1

pi,jmi,t−1f(yt; νj |st = j,Θ, It−1)

 . (11)

This likelihood function is combined with prior f(Θ) to obtain the posterior kernel f(Θ|IT ). For our priors

we use the diffuse prior specifications as used in Ardia, Bluteau, Boudt, and Catania (2018). For a two
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regime model, the priors are:

f(Θ) ∝ f(θ1, ν1)f(θ2, ν2)f(P)1{h1,1 < h2,1}, (12)

f(θk, νk) ∝ f(θk)f(νk)1{(θk, νk) ∈ CSCk}, (k = 1, 2) (13)

f(θk) ∝ fN (θk;0, 1000× I)1{θk > 0}, (k = 1, 2) (14)

f(νk) ∝ fN (νk;0, 1000× I)1{νk,1 > 0, νk,2 > 2}, (k = 1, 2) (15)

f(P) ∝
2∏

i=1

2∏
j=1

pi,j1{0 < pi,j < 1}. (16)

Here we denote with 0 and I a vector of zeros and an identity matrix respectively. CSCk is the covariance-

stationarity condition for regime k as defined in Trottier and Ardia (2016). fN (x;µ,Σ) denotes a multivariate

normal density with mean vector µ and covariance matrix Σ, evaluated at value x. Finally, νk denotes the

degrees of freedom of the Student-t distribution. These prior specifications are used to guarantee specific

behavior of the estimators, like positivity of the GARCH parameters, as well as identification, by order-

ing regimes based on the variance of returns associated with that specific regime. The prior of transition

matrix P assumes that the rows in this matrix are independent and follow a Dirichlet((1,1)) prior withK = 2.

In order to estimate the parameters of our models we will be using a Gibbs sampler (Geman & Geman,

1984) which consists of the following sampling steps:

1. s(m) ∼ p(s|θ(m−1)
1 , θ

(m−1)
2 , ν(m−1), P (m−1), y),

2. P (m) ∼ p(P |s(m)),

3. θ
(m)
1 ∼ p(θ1|ν(m−1)

1 , s(m), y),

4. θ
(m)
2 ∼ p(θ2|ν(m−1)

2 , s(m), y),

5. ν
(m)
1 ∼ p(ν1|θ(m)

1 , s(m), y),

6. ν
(m)
2 ∼ p(ν2|θ(m)

2 , s(m), y).

Of these different steps we can do the first two using established methods, we obtain the state probabilities

using the Hamilton filter of Hamilton (1989). From the state probabilities we can estimate the state for each

observation using the Viterby algorithm of Viterbi (1967). Combining the conjugate prior for each row of

transition matrixP : Pj ∼ Dir(1, 1) and the likelihood function, we will get the posteriorDir(1+ni,1, 1+ni,2)

for row i. Here ni,j is the amount in the sample that we transition from state i to state j. Since the other

posterior densities we obtain from combining these truncated normal priors with the likelihood function are

from an unknown form, we will be using a different sampling techniques to generate their draws. We apply

the adaptive random-walk Metropolis-Hastings sampler introduced by Vihola (2012) to sample from there

posteriors. This Metropolis-Hastings algorithm consists of the following steps:
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1. Compute θ∗ := θ(m−1) + Sm−1Um, where Um is a draw from a spherically symmetric proposal density

q. Sm−1 is a non-singular shape matrix.

2. Accept the proposal draw with probability αm := min{1, π(θ∗)/π(θ(m−1))}, where π(•) is a probability

density function. Set

θ(m) := θ∗ if proposal draw is accepted, (17)

θ(m) := θ(m−1) if proposal draw is denied. (18)

3. Compute the lower diagonal matrix Sm with positive diagonal elements, that satisfies

SmS
T
m = Sm

(
I + ηm(αm − α∗)

UmU
T
m

∥Um∥2

)
ST
m−1. (19)

Here {ηn}n≥1 ⊂ (0, 1] is a series of step sizes decaying to 0, and α∗ is the target mean acceptance rate

of the algorithm.

This third step is where the algorithm of Vihola (2012) differs from a traditional Metropolis-Hastings or

Adaptive Metropolis-Hastings algorithms. The reason one wants to have the matrix S be a random variable

instead of a constant, is that if chosen right an evolving shape matrix Sm can reduce the amount of samples

needed before we are sampling from the target density function. The basic idea behind this approach is

that when the acceptance probability is lower than desired (αm < α∗) the proposal distribution is shrunk

in the direction of the current proposal, and vice versa. As Sm in Equation 19 is the Cholesky factor of the

right hand side of the equation, it always exists. Vihola (2012) provides proof that this resulting matrix is

symmetric and positive definite. This result will lower the amount of samples we need to reach convergence,

which lowers the computation time needed to fully estimate the Markov-switching model. Since Bayesian

models are known to be computationally expensive, every change to improve time to convergence is a useful

one. To obtain the posterior results that follow from these methods to estimate the different parameters, we

will be using the R package MSGARCH (Ardia, Bluteau, Boudt, et al., 2019).

Using these posterior results we will be forecasting the realized variance using a series of one-step ahead

forecasts. Ideally we would be retraining the model in order to have it be estimated with the most recent

available information, but we are not able to do that due to the computational expense. This also keeps it

in line with the method of forecasting for the other models. For each one step ahead forecasts we calculate

the prediction step, the probabilities for being in the two states based on the estimated parameters and past

observations. We can then calculate the one-step ahead volatility forecast for each state separately. Multi-

plying these forecasts with the probabilities from the prediction step gives us the forecasted volatility. For

the next one-step ahead forecast the predicted probabilities will be updated using the value of that current

observation.
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4.4 Markov-switching realized variance

4.4.1 Specification

The fourth model we use is a model that jointly models returns and a realized measure in a Markov-

switching framework, a Markov-switching realized variance model. This model was introduced by Liu and

Maheu (2018). As with the realized GARCH model of Section 4.2 we will be using realized variance as our

realized measure in this model, but in further research it could be interesting to examine the effect of other

ex-post volatility measures. The model specification from Liu and Maheu (2018) is

yt|st ∼ N(µst , σ
2
st),

RVt|st ∼ IG(ω + 1, ωσ2
st),

pi,j = p(st = j|st−1 = i).

(20)

The main assumption and idea of this model is that both returns and realized variance are subjected to

the same regimes, and that they are connected by the shared parameter σ2
st . This seems a rather fair

assumption to make, since realized variance is a function of intraday returns. As the conditional distribution

of the realized variance, given the current regime, is an inverse gamma distribution with shape parameter

ω + 1 and scale parameter ωσ2
st , it has expected value

E(RVt|st) =
ωσ2

st

(ω + 1)− 1
= σ2

st , (21)

and variance

Var(RVt|st) =
(ωσ2

st)
2

(ω2)(ω − 1)
=

(σ2
st)

2

ω − 1
. (22)

So RVt is centered around the regime dependent variance, with the variance of its distribution being positively

correlated with this regime dependent variance. So in high a variance regime we get higher expected realized

variance as well as a larger variance of its distribution.

4.4.2 Estimation and forecasting

Like the MS-GARCH model of Section 4.3, the estimation of this joint Markov-switching model will be done

using Bayesian inference. We will be using different MCMCmethods in order to simulate from the conditional

posterior distributions. For a two state Markov-switching model we have the parameters θ = {µ1, σ1, µ2, σ2},

ω and transition matrix P. We will use different priors for µ1 and µ2 to avoid labeling issues, as well as
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restricting µ1 < µ2. The priors we use follow those used by Liu and Maheu (2018), and are

µ1 ∼ N(−1, 1), (23)

µ2 ∼ N(1, 1), (24)

Pj ∼ Dir(1, 1), j = (1, 2) (25)

σ2
j ∼ G(RVT , 1), j = (1, 2) (26)

ω ∼ IG(2, 1). (27)

Here RVT is the sample mean of the in-sample realized variance. Using these priors we iterate over the

following MCMC steps in order to estimate the variables.

1. s1:T |y1:T , RV1:T , θ

In the first step we estimate the state probabilities based on the return and realized variance data, as

well as the current model parameters. In this step we use the forward filter backward sampler method

of Chib (1996). This method contains the following steps:

(a) p(s1 = j|y1, RV1, θ, ω,P) = πj for j = 1, 2

We initiate the distribution of s1 by setting it equal to the left eigenvector that corresponds to

the eigenvalue of 1.

(b) p(st|y1:t−1, RV1:t−1, θ, ω,P) ∝
∑2

j=1 Pj,st · p(st = j|y1:t−1, RV1:t−1, θ, ω,P)

In this prediction step we multiply the current distribution of st with the transition matrix, in

order to generate a prediction for the distribution of st at the next time period.

(c) p(st|y1:t, RV1:t, θ, ω,P) ∝ p(yt, RVt|st, θ, ω) · p(st|y1:t−1, RV1:t−1, θ, ω,P) →

p(st|y1:t, RV1:t, θ, ω,P) ∝ ϕ(yt;µst , σst) · IG(RVt;ω + 1, ωσ2
st) · p(st|y1:t−1, RV1:t−1, θ, ω,P)

In this updating step we update the distribution of the prediction step by multiplying with the

likelihood function, updating the prediction using the current observation. We get to the second

equation by plugging in the likelihood function that corresponds to the specification in Equation

20. Here ϕ(·) is the normal density valued at yt with parameters µst and σst .

2. µj |y1:T , RV1:T , s1:T , σ2
j

For this second step we will be sampling µj from its conditional distribution, where we treat σj as a

known variable. We do this for both regimes separately. Given the priors of Equations 23 and 24 the

conditional posterior distributions of µ1 and µ2 are

µ1 ∼ N

(∑
st=1 yt − 1 · σ2

1

σ2
1 + n1

,
σ2
1

σ2
1 + n1

)
(28)
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and

µ2 ∼ N

(∑
st=2 yt + 1 · σ2

2

σ2
2 + n2

,
σ2
2

σ2
2 + n2

)
(29)

respectively. Here nj denotes the number of observations that we are in state j according to the series

ST = s1, s2, . . . sT

3. σ2
j |y1:T , RV1:T , µj , s1:T , ω

To get the conditional posterior of σ2
j we multiply the likelihood function with the prior σj ∼ G(RVT , 1)

and take all values that depend on σ2
j . We get the following conditional posterior:

p(σ2
j |y1:T , RV1:T , µj , s1:T , ω) ∝ σ

−nj

j · (ωσ2
j )

nj ·(ω+1)
T∏

t=1

exp

(− (yt − µj)
2

2σj
−
ωσ2

j

RVt

)
· 1{st = j}


(30)

· (σ2
j )

RVT−1 exp(−σ2
j ).

As this conditional posterior distribution is not of a known form we will be using a Metropolis-Hastings

sampler to sample σ2
j . The candidate density that we use is the likelihood function from the RV

component combined with the prior,

(c)σ2
j ∼ G

nj(ω + 1) +RVT , ω
∑
st=j

1

RVt
+ 1

 . (31)

In this equation
∑

st=j
1

RVt
denotes a summation of 1

RVt
over all periods t for which st = j.

4. ω|y1:T , RV1:T , s1:T , σ2
1 , σ

2
2

With the prior ω ∼ IG(2, 1) we obtain the following posterior:

p(ω|y1:T , RV1:T , s1:T , σ2
1 , σ

2
2) ∝

T∏
t=1

 (ωσ2
j )

(ω+1)

Γ(ω + 1)
RV −v−2

t exp

(
−
ωσ2

st

RVt

) · ω−1 exp

(
− 1

ω

)
. (32)

To sample ω we use a Metropolis-Hastings sampler with random walk proposal, where the negative

draws get rejected. This candidate density is a normal distribution centered around the current value

of ω.

5. P|s1:T
Combining the conjugate prior for each row of transition matrix P : Pj ∼ Dir(1, 1) and the likelihood

function, we will get the posterior Dir(1 + ni,1, 1 + ni,2) for row i. Here ni,j is the amount in the

sample that we transition from state i to state j.

Generating forecasts with this model is similar to the way we forecast using the MS-GARCH. We perform
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a series of one step ahead forecasts, where we first calculate the prediction for the probabilities for being

in a specific state. We can then calculate the forecast density for RV by multiplying the state probabilities

with the conditional distribution of RV, which is given in Equation 20. To generate point forecasts we draw

samples from this distribution and take the mean of these draws.

4.5 LSTM-GARCH

The final type of model we are going to implement will be a LSTM (Long Short Term Memory) model that

utilizes estimated variables from GARCH models. We will be implementing two different LSTMs, one using

squared daily returns, and one utilitzing the realized variance.

Artificial neural networks are models developed in the discipline of computer science, inspired by the biolog-

ical neural network in the brain. It constitutes of different layers of so called neurons which are connected

to the other neurons. Each neuron gets a signal and processes it, and puts it through to the neurons that

are connected to it. This output is in the form of a real number. To get an output of a layer and with

that a neural network, a non-linear function is calculated with the outputs of the neurons. This output is

then scored using a loss function. During the training process the score of this loss function is minimized by

changing the weight of different neurons and edges between neurons.

4.5.1 Recurrent Neural Networks

Standard feedforward neural networks only allow signals to flow one way, from input to output. There is no

feedback, so the signals of a certain layer are not able to affect that same layer. This is good to estimate

short memory processes where there is not a lot of dependence between different observations. For other

tasks like speech recognition and handwriting generation this does not work as there is temporal dependence

between observations. This is also the case for volatility forecasting, as volatility seems to be a long memory

process (Breidt, Crato, & De Lima, 1998).

In these cases it is needed to have some sort of feedback loop in the architecture of the neural network,

such that past signals influence the current signal. This is the main idea behind recurrent neural networks

(RNN), an idea that came up in research as early as Minsky and Papert (1969) and based on Rumelhart,

Hinton, and Williams (1986). By introducing memory into the architecture of the network RNNs can pro-

cess and learn sequences in the observations of input sequences. This makes it ideal to deal with sequence

problems like time series. Instead of just mapping inputs to outputs, the network is capable of learning

how the so called context affects the output, not just the input that has been presented. To train an RNN,

backpropagation through time is often the method of choice. In this method one ‘unrolls’ a recurrent network

and represents it as N duplicates of the original network, each representing the network at a different point

in time, as illustrated in Figure 3.
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Figure 3: Unrolling a recurrent neural network. (Olah, 2015)

In the calculation of the gradient, which is necessary for backpropagation, the weights of every follow-

ing layer are included, so for a normal feedforward network this would be w1 · α1 · . . . · wn · αn. But as in

the recurrent network all layers represent the same network at a different point in time, the weights are all

the same, so we get wn · (α1 · . . . · αn). This often leads to an exploding or vanishing gradient for a large

n. To overcome this challenge Hochreiter and Schmidhuber (1997) introduced Long Short Term Memory

(LSTM), a special kind of RNN that is explicitly designed to learn long-term dependencies and deal with

the exploding or vanishing gradient problem.

4.5.2 Long Short Term Memory

A usual LSTM unit consists of a cell state, an input gate, an output gate and a forget gate. The different

gates are used to filter the amount of information. The key idea of LSTMs is that the cell state that keeps

track of the current information, the upper horizontal line in Figure 4. As we can see it interacts with the

gates to either add or subtract information, these gates are a way to optionally let information through. At

each gate a sigmoid function is used that gives a vector of values between 0 and 1 based on the incoming

data and learned weights. The result of this sigmoid function decides the amount of information that is

let through. The workings of the memory cell that is at the core of the LSTM model is determined by the

following equations:

ft = σ(Wfxt + Ufht−1 + bf ), (33)

it = σ(Wixt + Uiht−1 + bi), (34)

ot = σ(Woxt + Uoht−1 + bo), (35)

c̃t = tanh(Wcxt + Ucht−1 + bc), (36)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (37)

ht = ot ⊙ tanh(ct). (38)
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Figure 4: Layout of a memory cell in an LSTM network. (Olah, 2015)

Here σ denotes a sigmoid function, ⊙ denotes element-wise multiplications. In these equations, U and W

are weight matrices that are gate specific and are learned during the training of the model, b are bias vectors.

The first three equations describe how the three different gates work. A linear combination of the input and

the previous output go into the sigmoid function to return a vector of values between 0 and 1. Equation 33

describes the forget gate, denoted by the first upwards line in Figure 4. This gate determines the amount of

information of the previous cell state is kept. The second gate is the input gate, that determines the amount

of current information that is added to the cell state. Equation 37 shows how the forget and input gate

interact with the previous cell state and the transformed input data (Equation 36) to form the current cell

state. This current cell state is then used as an input in the next time step. To get an output for this time,

the cell state goes through a hyperbolic tangent function to push the values between -1 and 1. It is then

multiplied by the value of the output gate in Equation 38, which decides the amount of information that is

actually in the output.

4.5.3 Our model

Instead of using this LSTM network as a standalone model we will be combining it with a GARCH model.

Studies as Roh (2007), Kristjanpoller, Fadic, and Minutolo (2014) and Kristjanpoller and Hernández (2017)

have integrated time series models and feedforward networks as a way to improve the models. By using esti-

mates from a GARCH model as features for our LSTM, we hope to be able to capture some characteristics

of those GARCH models. Characteristics like the leverage effect and volatility clustering. We will have two

separate LSTM networks, with slightly different features. The first neural network will be using squared daily

returns and estimated parameters of a GJR-GARCH model as unique features. The second model will use

estimated parameters from the Realized GARCH model as well as the realized volatility as unique features.

To get the parameter estimates for the two GARCH models we use a rolling window of 60 days. So for each

observation we use the past 60 days in order to estimate the volatility model and get the parameter estimates.
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Besides these model unique features we use several common features for both networks, these are:

• Difference between the daily high and low price,

• Daily closing price of BTC,

• Daily trading volume in BTC,

• Returns over the past 7 days.

Both models will be trained on realized volatility data with a root mean squared error (RMSE) loss function,

RMSE =

√√√√ 1

N

N∑
i=1

(R̂V i −RVi)2. (39)

By using two different models we can see the impact that incorporating realized volatility has on the predictive

performance versus using squared daily returns. We divide the test set into both a test set and a validation

set, which of the last 200 days of the original test set. By doing this we can tune the hyperparameters of

the two models based on the RMSE on the validation set. This reduces the probability that we overfit on

the training set. So we train the model on the training set, get the optimal parameters using the validation

set and test its forecasts on the test set. One of the hyperparameters that we will be tuning is the amount

of LSTM layers in the model, either 2, 3 or 4 layers, consisting of 32-16, 64-32-16 or 128-64-32-16 neurons

respectively. The other two are the the activation function and the dropout value. The models contain

dropout layers that randomly sets input units to 0 with a frequency of the dropout rate at each training

step. This form of regularization is a cheap and effective way to reduce overfitting.

4.6 Evaluating Results

To evaluate the performance of our different models we will be comparing the forecasts to the actual realized

volatility with several loss functions, namely root mean squared error, and mean absolute error (MAE)

MAE =
1

N

N∑
i=1

∣∣∣R̂V i −RVi

∣∣∣ , (40)

as well as evaluating value at risk estimates and corresponding expected shortfall. While the results for the

two loss functions are relevant and interesting most if you would be trading volatility or pricing derivatives,

from a portfolio and risk management perspective the value at risk and expected shortfall are the more

interesting metrics. To calculate the VaR estimates we will be using the Filtered Historical Simulation

method proposed by Hull and White (1998) and Barone-Adesi, Bourgoin, and Giannopoulos (1998). In this

method the historical returns are standardized using the estimated conditional mean and estimated volatility,
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ẑt = (yt − µ̂t)/σ̂t. Using the series of standardized return we can then forecast the value at risk using the

formula

V aRα
T+1 = µ̂+ σ̂T+1Quantile({ẑt}Tt=1, α). (41)

So for every day in our sample set we calculate the 5% value at risk by adding the average return of the

model to the volatility forecasts times the 5% quantile of returns. We calculate this quantile based on the

training data. This VaR evaluation based on the different volatility models gives us insight into whether the

forecasted volatilities are either too conservative or not conservative enough. Preferably a model would have

the amount of exceedances that corresponds to the used quantile, where an exceedance occurs when the daily

return is lower than the value at risk. So we would like to see and exceedance ratio of around 5% for each

of the models. Even though value at risk has become a standard metric in financial risk management, it has

several downsides. First of all, the value at risk does not say anything about the possible size of loss that

exceeds the value at risk level. This may lead to optimizing such that the value at risk stays acceptable, while

the underlying potential losses can be extreme. Secondly, VaR is not subadditive, the VaR of a portfolio can

exceed the sum of the VaR of its constituents. In our case this is not a relevant problem as we consider only

1 asset, but for broader research this is definitely important to keep track of. One metric that has neither of

these liabilities, is the Expected Shortfall (ES). It says something about the losses exceeding the VaR and is

subadditive. Expected shortfall is the average return conditional on the return exceeding the value at risk

on the downside, and is calculated as

ESα =

∑T+N−1
t=T yt · 1{yt+1 > V aRα

t+1}∑T+N−1
t=T 1{yt+1 > V aRα

t+1}
. (42)

So it can be used to determine whether most of the exceedances occur at ‘higher’ low returns or that they

mostly happen at the extremes. Ideally we would like to have an as low as possible expected shortfall, as this

signals that when we exceed the value at risk, the loss is not that big on average. But for clear conclusions

we need both the VaR and the expected shortfall, as they paint the most complete picture when combined.

5 Results

In this chapter we will discuss the results of the model estimations and their forecast. We start by taking a

look at the estimated models before comparing the volatility forecasts for all the models in Section 5.2.

5.1 In-Sample results

5.1.1 GJR-GARCH

We estimated a GJR-GARCH(1,1) model as our benchmark, as it is simple and performs rather well. We

use a t-distribution for the errors. Table 2 shows the results of the GJR-GARCH estimation. Something
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that catches the eye is the negative estimate for γ. This signals there to be some sort of an inverted leverage

effect. Although his effect is not significant at a 5% confidence level. So there is no significant leverage effect

present in our sample. Therefore we can conclude that there is no significant difference in the way positive

and negative returns affect the volatility.

Table 2: Parameter estimates for the GJR-GARCH model. Estimates significantly different from 0 at a 5%
significance level are indicated by *.

Estimates Standard Errors

µ 0.002* < 0.000
ω 0.000 < 0.000
α 0.127* 0.019
γ −0.038 0.024
β 0.892* 0.021

5.1.2 Realized GARCH

In this Realized GARCH model we add the incorporation of a measurement equation that allows the in-

corporation of different realized measures. We use the realized variance that is calculated by summing the

squared 10 minute returns over a day. In Table 3 we see the parameter estimates, where significant param-

eters are shows with an *. We can see that β has a higher estimated value than ψ. This indicates that the

Table 3: Parameter estimates for the Realized GARCH model. Estimates significantly different from 0 at a
5% significance level are indicated by *.

Estimates Standard Errors

ω −1.550* 0.164
β 0.524* 0.028
ψ 0.424* 0.035
ξ 2.644* 0.469
φ 0.967* 0.072
σu 0.385* 0.007
η1 −0.016 0.010
η2 0.026* 0.002

lagged value ht, so ht−1 has a larger impact on ht than xt−1, the realized variance in period t − 1. Using

the estimates for η1, η2 and ψ we can construct the News impact curve, this is shown in Figure 5. We

can see that lower values for zt−1 leads to higher increases in volatility. Whether the skew in the effect of

positive and negative returns on the volatility is positive or negative is determined by the estimate of η1.

From Table 3 we know that this estimate is not significantly different than zero, which in turn signals that

there is no significant leverage effect present in our sample. A result that matches what we have seen with

the GJR-GARCH model.
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Figure 5: News impact curve, introduced by Engle and Ng (1993), for our Realized GARCH model showing
the percentage change in

√
ht for different values of zt−1

5.1.3 MS-GARCH

We have a 2 regime GJR-GARCH specification with t-distribution for the errors. To estimate the values

of the parameters, we run 55,000 iterations with a burn-in of 5,000 and a thinning value of 10. Therefore

we end up with a posterior sample of 5000 draws. In Table 4 we can see the posterior mean and standard

deviation for our parameter estimates. The model recognizes a low and a high volatility regime. Regime

Table 4: Posterior means and standard deviation for the 2 regime GJR-MS-GARCH model. The GJR
specification in regime st is ht = ωst + (αst + γstI[εt−1 < 0])ε2t−1 + βstht−1. The estimates are obtained

from the posterior sample of 1000 draws. The value in brackets is the posterior standard deviation.

Regime 1 Posterior mean Regime 2 Posterior mean

ω1 0.000 ω2 0.002
(0.000) (0.001)

α1 0.083 α2 0.139
(0.020) (0.120)

γ1 0.014 γ2 0.286
(0.016) (0.232)

β1 0.889 β2 0.308
(0.031) (0.207)

ν1 3.400 ν2 50.678
(1.880) (27.528)

P11 0.905 P22 0.567
(0.035) (0.106)

1 is the low volatility regime, with an in-sample unconditional volatility of 25.37%. Regime 2 is the high

volatility regime with an in-sample unconditional volatility of 151.77%. One interesting difference between

the two different regimes is the value of γst . We see that in the second regime the reaction to negative returns

is more than 10 times as strong as in regime 1. Besides the unconditional volatility and reaction to negative
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returns, the volatility persistence in the two regimes is very different. In regime 1 it is α1+
1
2γ1+β1 = 0.979

and for regime 2 it is α2 +
1
2γ2 + β2 = 0.59. So the two different regimes are characterized by:

• Regime 1

• Low unconditional volatility,

• Weak reaction to negative returns,

• High volatility persistence.

• Regime 2

• High unconditional volatility,

• Strong reaction to negative returns,

• Low volatility persistence.

5.1.4 Markov-switching realized variance

For this Bayesian Markov-switching Realized variance model we implemented the model of Liu and Maheu

(2018). We run the model for 30000 iterations, with a burn-in of 1000 iterations and a thinning value of 10.

We end up with a posterior sample of 2900 draws. For the internal Metropolis-Hastings samplers we have

25,000 iterations with a burn-in of 5,000 values. By tweaking these values for the iterations we can generate

posterior samples of high quality with relatively low amount of iterations. Table 5 shows the posterior results

for the model. We can see that regime 1 corresponds with a low volatility regime with an unconditional

volatility of
√
365 ∗ 2.27 = 43.45%. The second regime is the high volatility regime, with an unconditional

volatility of 113.91%. We see that for this high volatility regime the mean of the returns is much higher,

Table 5: Posterior means and standard deviation for the 2 regime Markov-switching realized variance
model. In this model the returns and realized variance get jointly modeled. Given that we are in state st,
the realized variance is then distributed as RVst = IG(ν + 1, σ2

st). Pii denotes the posterior transition
probability from state i to state i. The amount of observations that are in state i is denoted with ni. The

value in brackets is the posterior standard deviation.

Regime 1 Posterior mean Regime 2 Posterior mean

µ1 0.192 µ2 1.653
(0.192) (1.466)

σ2
1 2.270 σ2

2 5.963
(0.039) (0.189)

P11 0.984 P22 0.953
(0.004) (0.012)

n1 1205.750 n2 407.250
(18.169) (18.169)

almost 10 times as high as in the low volatility regime. Both of the regimes are very persistent with 98.4%

and 95.3% average probability respectively to stay in the same state. This is different than the result for the

MS-GARCH model where the high volatility regime was not very persistent.

This difference can clearly be seen in Figure 6, which shows the in-sample probabilities of being in the high

volatility regime for both the Markov-switching GARCH model (MS-GARCH) and the Markov-switching

realized variance model (MS-RV). While the MS-GARCH model mostly has spikes into high probabilities
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for the second regime, the MS-RV model has prolonged periods where the probability of being in the high

volatility regime is almost 1. Another interesting observation one can make from this figure is that the spikes

for MS-GARCH during high levels of realized variance are as high as those in periods where the realized

variance is rather low. This is the result of MS-GARCH using squared daily returns, which does not behave

the same as realized variance. For example, a day of steady upwards price movement would have high

squared daily return, while the realized variance is low.

Figure 6: State probability to be in the high volatility regime for our two Markov-switching models in the
test sample, along with the realized variance which is shown in black

5.1.5 LSTM with GARCH

As LSTM neural networks do not have interpretable parameter weights, we will be discuss at the results of

the hyperparameter tuning. We tuned three different parameters:

• Number of LSTM layers,

• Dropout value,

• Activation function.

We found the optimal values for each model by doing a grid search over the different values and choosing

the combination with the lowest RMSE on the validation set. For both models we got an optimal dropout

value of 0.05, so at every training step an input has a 5% chance to be set to 0, this reduces overfitting.

Both models also had ’sigmoid’ as the best activation function. The difference between the two is in the

amount of LSTM layers. For the model using squared daily returns 2 LSTM layers was optimal, one with
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32 neurons and one with 16 neurons. For the other model another added layer of neurons was optimal, so it

has 3 layers. One with 64 neurons, one with 32 neurons and one with 16 neurons.

5.2 Out-of-sample results

The real goal of this research is to forecast the volatility using the different volatility models, and determine

whether the utilization of realized variance improves the forecasts of different types of models. Figure 8

shows the out-of-sample volatility forecasts for all six of our models, compared against the realized volatility.

The left three figures show the results for the models utilizing squared daily returns, while the right three are

from the models incorporating realized variance. The result that catches the eye is for LSTM with squared

Figure 7: Out-of-sample volatility forecasts compared to the realized volatility, for our six different models

daily returns, as its out-of-sample forecasts are quite poor, especially compared to the other models. So our

feature set combined with daily squared returns is not able to capture the dynamics of realized variance

when using an LSTM model. The GJR-GARCH forecast follows the realized variance pretty well, but is not

able to capture the larger spikes in volatility. This is something that is known for GARCH type models. For

the Realized GARCH we can see a clear improvement over GJR-GARCH by adding the realized variance

to the model. The forecast seems way more responsive, and is also better in capturing larger moves up or

down in the volatility.
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The MS-GARCH forecasts look quite accurate, but the model clearly has problems with forecasting pe-

riods of low volatility. Besides periods of high realized volatility with some spikes, the volatility estimates

from this model are mostly higher than the realized volatility. For applications like VaR forecasting this is

not as bad, as you would rather be too conservative than to underestimate the risk. But for an application

like option pricing this would not be great, as you would consistently price options too high. MS-RV forecasts

are the most volatile, and are also not that great at capturing the low volatility periods, this is especially

clear at the start of our test sample. One reason for this can be deduced from Figure 6, as for MS-RV the

state probabilities are rather binary. There are not a lot of observations where the probability of being in the

high volatility regime is between 0.2 and 0.8. This has the effect that observations in low volatility periods

all have the same expected value. So as the realized volatility changes quite a bit, the probability of being

in the high volatility regime goes from 0 to 0.05 for example, which causes the forecast stay similar.

The biggest difference in forecasts between using squared daily returns and realized variance is in the LSTM

models. Where adding using estimates from Realized GARCH and the realized variance itself show a clear

improvement over using GJR-GARCH estimates and squared daily returns. The latter is not able to cap-

ture the dynamics of the realized variance for most of the test sample, with only some good results at the

end. In Table 6 we can see the forecast valuations of the different models using four metrics, RMSE, MAE,

Table 6: Forecast evaluations for our different models, exceedance ratio is defined as the percentage of
observations that exceeds the value at risk estimate

RMSE MAE Exceedance ratio Expected shortfall

GJR-GARCH 0.014 0.010 3.851% -8.452%
Realized GARCH 0.009 0.007 4.914% -7.319%
MS-GARCH 0.015 0.012 5.312% -7.983%
MS-RV 0.015 0.013 5.445% -7.858%
LSTM Squared daily returns 0.030 0.024 3.320% -7.912%
LSTM Realized variance 0.016 0.011 9.429% -5.917%

exceedance ratio and expected shortfall. We can see that indeed LSTM with squared daily returns is clearly

the worst performer. Realized GARCH seems to be the best performer with both the lowest RMSE and

MAE. GJR-GARCH also performs rather well for both metrics. To evaluate the value at risk forecasts we

look at both the exceedance ratio and the expected shortfall. These metrics need to be both looked at to

get a clear indication how the model performed, as the metrics on their own do not tell the whole story.

As we forecast the VaR at a 5% level we would expect around 5% of the observations to exceed the es-

timate. The exceedance ratio shows the percentage of observations that indeed exceeded the VaR estimate.

We can see that both the GJR-GARCH and LSTM using squared daily returns provide too conservative VaR

forecasts. This is expected for the LSTM model as for large parts of the test sample the volatility forecast is
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way too high, which in turns causes the VaR estimate to be lower. Like said before, GARCH models perform

quite good in volatility forecasts, except in forecasting spikes in volatility. So we would expect a exceedance

ratio around 5%, while having high expected shortfall. Its exceedance ratio is a bit lower than 5% but the

expected shortfall is indeed high. This signals that of the observations that exceed the VaR estimate, most

of them are in high volatility periods. Compare this to the LSTM model where the expected shortfall is 50

percentage points lower, signaling that some of those exceedances happened at lower volatility periods.

The three models that are closest to the expected exceedance ratio are Realized GARCH, MS-GARCH

and MS-RV. When comparing the expected shortfall of these models we notice that Realized GARCH has

the lowest value, while also having the lowest exceedance ratio of the three. This shows that are objectively

better, as the lower expected shortfall is not caused by a larger number of exceedances bringing down the

average. This is confirmed by the values in Table 7, which shows the summary statistics of the observations

where the return exceeds the VaR estimate. We an see that out of Realized GARCH, MS-GARCH and

MS-RV the former has the bast values for the 25th, 75th and 100th percentiles. MS-RV slightly outperforms

MS-GARCH in terms of the different percentile values of the exceedances, but overall their forecasting per-

formance is rather similar in quality.

The highest value for expected shortfall in Table 6 is for the LSTM model utilizing realized variance. This

model has also the worst exceedance ratio of all, almost twice as high as expected. These two results go

somewhat hand in hand, since a higher exceedance ratio often lowers the expected shortfall, as more ex-

ceedances happen at not that negative returns. This idea is somewhat confirmed in Table 7, as we can see

that the 75th percentile for this LSTM model is higher than the max for 2 models. This shows that a lot of

the exceedances for this model happen for smaller negative returns. This is not a great result, but one would

rather have a model that underperforms at forecasting VaR in lower volatility environment than one that

does not perform in high volatility regimes. To get an even better idea how the exceedances are distributed

for the different models, Appendix A shows the densities of the exceedances.

Table 7: Summary statistics of the value at risk exceedances for the different models. These exceedances
are defined as the daily returns that are lower than the forecasted value at risk. If exactly 5% of the

observations exceed the VaR estimates, it would correspond to a count of 37.65.

Count Mean Min 25% 75% Max

GJR-GARCH 29 -8.452 -15.964 -10.481 -5.811 -4.352
Realized GARCH 37 -7.319 -15.964 -9.205 -5.089 -2.523
MS-GARCH 40 -7.983 -15.964 -9.870 -5.724 -4.352
MS-RV 41 -7.858 -15.964 -9.744 -5.591 -3.422
LSTM Squared daily returns 25 -7.912 -15.964 -10.481 -5.535 -3.321
LSTM Realized variance 71 -5.917 -15.964 -6.932 -3.750 -2.058

27



6 Conclusion

In this paper we introduced six different approaches to modeling the realized volatility of Bitcoin. We can

divide those models in different groups, first of all we have the divide between the three models that use

squared daily returns as the volatility proxy and the three models that incorporate realized variance. Over

those two groups of models we have used three model types. We started off with two GARCH type models,

GJR-GARCH and realized GARCH. These are the two simplest models and serve as a benchmark for the

other models. Secondly we used two Markov-switching models that were estimated using a Bayesian frame-

work, which allows for model parameters to switch based on the regime that we are in. Finally we used two

long short-term memory neural networks, a type of recurrent neural network that is well suited to model

time series data. We want to find what the effects of incorporating realized variance into different model

types are on the quality of volatility forecasts.

Using four different metrics we look at the forecasting ability of the different models. We look at both

RMSE and MAE to determine the quality of the forecast, while looking at the value at risk and expected

shortfall to determine how these forecasts would do in a risk management setting. We find that the realized

GARCH model has the lowest forecast error as measured by both RMSE and MAE, while the LSTM model

with squared daily returns give the worst forecasts by quite a large margin. We find that incorporating

realized variance into the different model types improves the volatility forecasts for the standard GARCH

models and the LSTM models. The two Markov-switching models perform very similarly with the same value

for the RMSE and a small difference in MAE in favor of MS-GARCH. Out of the three model types, the

standard GARCH models perform the best in terms of RMSE and MAE, with the LSTM models performing

the worst. Comparing the VaR estimates and the corresponding expected shortfall is more difficult as the

results of those two metrics need to be looked at collectively. We find that realized GARCH once again

performs the best overall, with an exceedance ratio close to the expected value and a low expected shortfall.

For these two metrics the models incorporating realized variance outperform their opposite number for all

three model types. We thus conclude that utilizing realized variance over squared daily returns can improve

volatility forecasting ability of different model types. While we tested four models that were much more

complex and computationally expensive, none of them were able to outperform the realized GARCH model.

There are multiple limitations to our research. First is the availability of data, Bitcoin has existed for

just 13 years, and we deem most of that price history not very usable as it was a market with very low

liquidity and due to that big price movements. This has improve in the last 7 years, but it leaves us with

less data than desired. We would also have preferred to use 5 minute data to construct the realized variance

as research has shown that that seems to be the optimal time frame, unfortunately we did not have that

data available. Secondly, concerning our methodology is in the prediction for our Bayesian Markov-switching
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models. Estimation of these models is quite computationally expensive. To improve the forecasting ability

of these models we would like to re-estimate our models with every new point in our out-of-sample dataset,

in this way we would be able to incorporate all new data into our parameter estimates as it becomes avail-

able. Unfortunately this was not feasible for this paper. It would be interesting how these models would

perform if they were re-estimated and if that would significantly improve their forecasting ability. Another

improvement could be made in the LSTM models. We chose to use a relatively simple feature set as we

wanted the focus to be more on the model than on the feature engineering. If one would incorporate more

potentially interesting and useful features, the model performance would almost certainly improve. One can

think of other realized measures like the realized quarticity, but also of Bitcoin specific features like certain

on-chain metrics, data that is derived from blockchain data.
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Figure 8: Densities of the returns that exceeded the value at risk observation, for the different models.

33


	Introduction
	Literature
	Data
	Methodology
	GJR-GARCH
	Realized GARCH
	MS-GARCH
	Specification
	Estimation and forecasting

	Markov-switching realized variance
	Specification
	Estimation and forecasting

	LSTM-GARCH
	Recurrent Neural Networks
	Long Short Term Memory
	Our model

	Evaluating Results

	Results
	In-Sample results
	GJR-GARCH
	Realized GARCH
	MS-GARCH
	Markov-switching realized variance
	LSTM with GARCH

	Out-of-sample results

	Conclusion
	References
	Exceedance Densities

