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Abstract

Implied volatility is widely used by participants in the financial market, such as in derivatives

pricing by market makers, risk management by portfolio managers, or even individual investors in

daily trading. Hence, an accurate prediction of the implied volatility surface could be instrumental

for participants in the financial market. This study evaluates non-parametric models in implied

volatility surface prediction. There will be two different approaches to modeling the IVS. First,

using long short-term memory neural (LSTM) and LightGBM, we portray the problem as a time

series prediction problem. In the second approach, using feedforward artificial neural network

(ANN) and LightGBM, implied volatility is modeled directly as a function of moneyness, time-to-

maturity, and other features without taking into account temporal dependencies. Results indicate

that LightGBM outperforms LSTM in the first approach. Similarly, LightGBM outperforms ANN

in the second approach.
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1 Introduction

Volatility is a measure of dispersion, or in technical terms, the squared deviation from the mean.

Volatility is an important measure in the financial industry and is especially useful for investors,

as it serves as one of the indicators of risk, which greatly supports the process of painting market

conditions. In financial literature, we can typically differentiate between realized volatility and

implied volatility. Realized volatility is calculated according to its technical definitions using as-

set return data, while implied volatility is derived from its derivatives (typically options). Both

measures are widely used by participants in the financial market, such as in derivatives pricing

by market makers, risk management by portfolio managers, or even individual investors in daily

trading. Hence, an accurate prediction of the implied volatility surface could be instrumental for

participants in the financial market. In its seminal paper, Black and Scholes (1973) proposed an

option pricing model that provides a closed-form relationship between the option price, price of

the underlying, strike price, time-to-maturity, interest rate, and volatility. The implied volatility

surface (IVS) is a mapping of an asset’s implied volatility for different strike prices and time-to-

maturity. The Black-Scholes model predicts flat implied volatility across different strike prices and

time-to-maturity. However, empirically, option prices in the market deviate from the Black-Scholes

model’s constant implied volatility. Along with the strike price dimension, the misspecification is

most often characterized by the smile shape in the implied volatility. Nonetheless, mapping implied

volatility using Black-Scholes provides a convenient way to compare options with different strike

prices and maturities.

A large body of literature studies implied volatility, particularly in option pricing. Jackwerth

and Rubinstein (1996) non-parametrically derive the underlying asset risk-neutral distributions of

the S&P 500 European options. Other examples of a non-parametric approach include Ait-Sahalia

and Lo (1998) and Wright (2018). Derman and Kani (1994), Dupire et al. (1994), Rubinstein (1994),

and Dumas et al. (1998) model the option price as a deterministic function of the moneyness and

time-to-maturity. Both Dumas et al. (1998) and Goncalves and Guidolin (2006) model the IVS as a

quadratic function of strike price and time to maturity; they also found that parameters are highly

unstable, suggesting a time-varying dynamics in the IVS. Additionally, a principal component

analysis approach to studying the dynamics of the implied volatility surfaces has also been done

(Skiadopoulos et al. (2000); Cont and da Fonseca (2002)). A larger body of literature studies

parametric modeling of option prices. Heston (1993) models option prices based on stochastic
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volatility in contrast to the constant volatility assumed in the Black and Scholes (1973) model.

Similarly, Hagan et al. (2002) proposed a closed-form approximation for the volatility smile with

its SABR (Stochastic, Alpha, Beta, Rho) model; the SABR models forward rate and volatility as

diffusion processes. More recently, Almeida et al. (2022) attempts to non-parametrically correct

the pricing error of popular parametric models, such as the Heston model. Almeida et al. (2022)

found that neural networks can correct the pricing error of different parametric models to a similar

level, which points out the potential of other non-parametric approaches.

In regards to time-varying dynamics, Corsi (2008) incorporates realized volatility with the

different horizons in its Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) to

capture strong persistence and long memory properties in realized volatility. The motivation behind

Corsi (2008) is heterogeneity in the market that arises from different time horizons. Participants

such as market makers trade with a shorter time horizon, while institutional investors are more

concerned with trades with a longer horizon. Realized volatility is a measure obtained by summing

the squares of log returns and can be easily obtained from market data. Corsi (2008) constructs

realized volatility of different horizons in its HAR-RV model to predict realized volatility.

Similar to Almeida et al. (2022), this study investigates non-parametric approaches to modeling

the implied volatility surface, specifically machine learning models. There has been limited study

on the application of machine learning techniques to implied volatility surface prediction. However,

the literature regarding realized volatility is richer. Luong and Dokuchaev (2018) recently applied

Random Forest in Realized Volatility forecasting. Similarly, Kim and Won (2018) integrates long

short-term memory neural network with GARCH-type models in its forecasting model. The univer-

sal approximation theorem states that neural networks can approximate any continuous function.

Thus, we consider the feedforward artificial neural network (ANN) and long short-term memory

recurrent neural networks. We also consider a type of gradient-boosted decision tree algorithm,

LightGBM, which is popular among practitioners in the machine learning community. Additionally,

we incorporate realized volatilities of different horizons, as in Corsi (2008) in an attempt to capture

the time-varying dynamics.

Daily options data is obtained from the OptionMetrics dataset for the period between February

2, 2016 to April 30, 2019. We focus on SPX (S&P 500 Index) European options traded at the

Chicago Board Options Exchange (CBOE). We also utilize high-frequency intra-day data from the

New York Stock Exchange (NYSE) Trade and Quote (TAQ) to construct the realized volatility

measures. Two approaches are considered to non-parametrically fit the Implied Volatility Surface
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(IVS). In the first approach, the IVS is framed as a time series for some moneyness and time-

to-maturity; three forecasting horizons are considered: 1-day, 5-day, and 21-day. From the result

of this study, LSTM and LightGBM can achieve lower implied volatility root-mean-squared error

(IVRMSE) in 21-day ahead prediction compared to Naive (implied volatility on day t) and Black-

Scholes (average implied volatility on day t). In 1-day and 5-day ahead predictions, both LSTM and

LightGBM achieve lower IVRMSE compared to Black-Scholes, but not against Naive prediction.

Additionally, there is an observable improvement in LSTM when a longer timestep is implemented.

In the second approach, we fit the feedforward neural network (ANN) and LightGBM to map

implied volatility from a set of features (including moneyness and time-to-maturity). The models

are fitted to all available options each day for a given period, and then we see how well they

generalize to the future. On average, LightGBM outperforms ANN in terms of out-of-sample

IVRMSE. From the result of this study, we see the potential of neural networks and gradient-

boosted decision trees in option pricing.

2 Methodology

2.1 Black-Scholes

Black and Scholes (1973) introduced its closed-form relation between option price (C or P ), un-

derlying price (St), strike price (K), time-to-maturity (τ), volatility (σ) and interest rate(r). The

model assumes that the asset price St follows a stochastic process,

dSt = µStdt + σStdWt, (1)

where µ is the long-term mean of the asset, σ is the mean and instantaneous volatility of the asset,

and Wt is a Wiener process, which essentially is a continuous random walk. Using Itô′s calculus,

the Black-Scholes partial differential equation for a call option C can be expressed as follows,

rSt
∂C

∂S
+ ∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 − rC = 0 (2)

The solution for a call option price is given by,

C(S, t) = StΦ(d1) − Ke−rτ Φ(d2) (3)

d1 =
log(St

K ) + (r + σ2/2)(τ)
σ

√
τ

d2 = d1 − σ
√

τ ,
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where Φ(·) is the cumulative distribution function of the standard normal distribution. From the

market, we can observe option prices and their underlying price, assuming the risk-free rate r is

known, the only unobserved variable is σ. Hence, for a call option with strike price K, time-to-

maturity τ , we can solve for σ according to Equation 3. This is the implied volatility, and it provides

a convenient way to compare options prices with different strike prices and time-to-maturity.

2.2 Realized Volatility

Realized Volatility is the realized quadratic variation of the asset price, computed based on the

historical price of the assets. In an attempt to capture the time-varying dynamics in the implied

volatility surface, Realized Volatility measures will be included in the feature space. The HAR-

RV model by Corsi (2008) attempts to capture long memory dynamics by considering Realized

Volatility over different time horizons. In this study, the returns of an asset will be calculated

according to Weighted Average Price (WAP) defined in Equation 4, with data obtained from the

NYSE TAQ dataset. First, for each day t, we filter for data points in trading hours, between

9:30 AM to 4:00 PM. Next, we calculate WAP for every timestamp with a non-zero BidSize and

AskSize. The logarithmic returns are based on the difference of WAP at different times in the

data.

WAP = BidPrice ∗ AskSize + AskPrice ∗ BidSize

BidSize + AskSize
(4)

Realized Volatility of a given asset can be easily computed from equally spaced returns of

the asset. The NYSE TAQ dataset provides very high-frequency data up to milliseconds, giving

flexibility in asset return construction. To avoid capturing significant microstructure noise, we

construct 5-minute logarithmic returns during trading hours resulting in 78 equally spaced returns

ri,t, i = 1, 2, ..., 78. Realized Volatility with different horizons can then be constructed as the square

root of the sum of squares logarithmic returns. In this study, the primary focus will be the end-

of-day option panel with t denoting the day of observation. For example, the 60 − minute realized

volatility on day t is the square root of the sum of squares of the last 12 5-minute logarithmic

returns on day t. Since there are 78 5-minute equally spaced returns in each day, 390-minute

realized volatility is equivalent to 1-day realized volatility. Realized volatility with periods longer

than 1-day includes returns from prior days. Formally, the k-day Realized Volatility on day t,

RV
(k−day)

t is

RV
(k−day)

t =

√√√√√k−1∑
j=0

78∑
i=0

ri,t−j (5)
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In this study, in an attempt to capture temporal dynamics we consider realized volatility with

horizons: 60-minute, 4-hour, 1-day, 5-day, and 21-day (RV 60−minute, RV 4−hour, RV 1−day, RV 5−day,

RV 21−day).

2.3 Model

2.3.1 Feedforward Neural Network (ANN)

Neural networks, also known as Artificial Neural Network (ANN). Neural networks consist of an

input layer, hidden layer(s), and an output layer. The hidden layers allow for non-linear transfor-

mation, thus allowing a non-linear relationship of mapping from the input to output. Each node

in a hidden layer takes a linear combination of outputs from the previous layer and applies an ac-

tivation function z(·) that produces an output for the next layer. Mathematically, the final output

can be written as g(
∑

j

β(l)z(
∑

s

z...(z(
∑

i

β(1)xi)...)), where g is the output activation function and

xi is the i-th element of input vector X. In theory, the activation function can be any nonlinear

function. The final output function g(·) depends on the problem. As we are trying to predict

volatility, the output function with output bounds of [0, ∞) is a good candidate. ReLU (Rectified

Linear Unit) is essentially a linear function, where negative values are mapped to zero1. However,

from preliminary testing linear activation actually performs better compared to ReLu. Hence, in

this paper g(·) is specified as the linear activation function, while z(·) is specified as ReLU function.

2.3.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory is a neural network encompassed by what is also called recurrent neural

network (RNN), popularized by Hochreiter and Schmidhuber (1997). In a feed-forward neural

network, signals only travel in one direction from the input to the output layer, whereas recurrent

connection in RNN allows cycles between neurons. These recurrent connections allow storing

information of prior inputs in order to construct the sequence’s next output. In principle, this

allows the mapping of prior inputs to outputs, which can be conceptualized as "memory." However,

RNNs often suffer from the vanishing gradient (or exploding gradient) problem, where products of

subsequent derivatives caused the gradient to become increasingly small, preventing useful weights

update. LSTM was designed to tackle this specific problem, where it utilizes the concept of “gates”

to better regulate the flow of signals. The input gate regulates input to a layer, while an output
1ReLU function is formally expressed as, R(x) = max(0, x)
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gate regulates the output. Additionally, there is also a forget gate that regulates the information

that should be retained. There are variations in the structure of LSTM, however, in this research,

the LSTM can be described by the following functions,

it = σ(Uixt + Viht−1 + Wict−1 + bi) (6)

ft = σ(Uf xt + Vf ht−1 + Wf ct−1 + bf ) (7)

ct = ftct−1 + itϕ(Ucxt + Vcht−1 + bc) (8)

ot = σ(Uoxt + Voht−1 + Woct + bo) (9)

ht = otϕ(ct) (10)

Here, it, ft, ct, ot, and ht respectively represent the input gate, forget gate, cell state, output gate,

and network output (hidden state). U , V , and W with different subscripts represent the weights

vectors; b with different subscripts represents the error vectors. In each gate, σ(·) represents the

sigmoid function, σ(x) = ex

ex+1 , which has an output between 0 and 1. The choice follows by

looking at the sigmoid function as a filter for signals in each gate. Finally, the latter represents

the hyperbolic tangent function, ϕ(x) = ex−e−x

ex+e−x , which has an output between −1 and 1. The ϕ(·)

function act as the activation function, but other functions can be considered. Figure 1 illustrates

an LSTM cell concept.

Figure 1: LSTM memory cell illustration

As mentioned, the recurrent structure of LSTM allows cycles of signals between neurons, and

the gates are responsible for it. Before going into the gates, we clarify the difference between cell

8



state ct and hidden state ht. The hidden ht, also present in classic RNN, primarily focuses on signal

regarding output at step t. In contrast, the cell state, unique to LSTM, considers signals from the

global sequence. The forget gate ft regulates which information is prioritized and ignored from a

cell. Specifically, new input xt and the hidden state ht−1 from prior cell is passed to a sigmoid

function. Similarly, the input gate it and output gate ot takes xt and ht−1 before passing it to a

sigmoid function, but with different in weights and bias. Additionally, ct−1 are also included in ft,

it, and ot based on figure 1. This additionally allows each gate to observe the signal from prior

cell state ct−1. Although the gates look similar, they are applied to different signals in sequence.

Equation (3) on Figure 1 highlights the different role of ft and it. A gate is simply a vector of

numbers ranging between 0 and 1, here, ft is applied to ct−1 deciding signals to keep from the prior

cell state, while it is applied to the new candidate cell state. Finally, the output gate ot further

decides signals passing through from the resulting cell state ct for the resulting output ht.

In application, there are several hyperparameters to be considered in the LSTM model. In this

paragraph, we will briefly discuss hyperparameters that are more related to the structure of the

network; details of hyperparameters implemented can be found in Section 2.4.1. For those familiar

with neural networks, hidden layers and neurons are probably the first hyperparameters that come

to mind. Hidden layers are just a layer between input and output, while neurons can be seen

as the component that takes inputs, applied weights, and produce output through an activation

function. Neural networks have gained success in a wide range of application, however, it is also

prone to overfitting. Dropout layers could help avoid overfitting by randomly dropping neurons.

Srivastava et al. (2014) points out that adding dropout layers "prevents units from co-adapting

too much." In neural networks, weights are adjusted based on the derivative and the effect on the

loss function, hence, weights on certain neurons may be updated to compensate for the loss given

the weights on other neurons. This form of dependence might lead to overfitting. By randomly

dropping the neurons, dependence on the dropped neurons is eliminated. On activation functions,

a hyperbolic tangent can be considered, such as ReLU, but in general, we want a bounded function

with a derivative that is easy to calculate. Finally, there are other hyperparameters such as, but

not limited to learning rate, decay rate, epoch, and batch. However, we will not focus on those in

the implementation.
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2.3.3 LightGBM

LightGBM, popularized by Ke et al. (2017), is a popular gradient boosted decision tree method.

Decision trees resemble a tree-like structure in their decision rules to predict target value. In

principle, decision trees partition the feature space into distinct and non-overlapping regions Rj ,

j = 1, 2, ..., J . These regions are constructed by recursively splitting observations based on their

features. Each region Rj is then assigned an output value, such that for an input feature x ∈ Rj ,

the tree prediction is ŷj , which typically is just the average of yj . Mathematically, a tree can be

expressed as

T (x; Θ) =
J∑

j=1
ŷjI(x ∈ Rj), (11)

with parameters Θ = {Rj , ŷj}J
1 , and the goal is to minimize,

Θ̂ = argmin
Θ

J∑
j=1

∑
xi∈Rj

L(yi, ŷj), (12)

for some loss function L.

Boosted decision tree methods use an ensemble of decision trees to improve accuracy and ro-

bustness. In boosting algorithm, a "weak" learner (decision tree) is sequentially applied to modified

data in each step. In the context of a classification problem, at each step, different weights are ap-

plied to samples, where larger weights are assigned to misclassified samples. Formally, the boosted

tree can be expressed as

fM (x) =
M∑

m=1
T (x; Θ) (13)

In gradient boosting, we and focuses on sample with large gradient ∂L(yi,f(xi))
∂f(xi) to improve the next

decision tree. Borrowing from Hastie et al. (2017), gradient boosted decision tree algorithm can be

presented as in Algorithm 1.
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Algorithm 1: Gradient Boosted Decision Tree
1. Initialize f0(x) = argminŷ

∑N
i=1 L(yi, ŷ)

2. For m = 1 to M :

(a) For i = 1, 2, ..., N compute

rim = −
[

∂L(yi, f(xi))
∂f(xi)

]
f=fm−1

(b) Fit a regression tree to the targets rim giving terminal regions Rjm, j = 1, 2, ..., Jm

(c) For j = 1, 2, ..., Jm compute

ŷjm = argmin
ŷ

∑
xi∈Rjm

L(yi, fm−1(xi) + ŷ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 ŷjmI(x ∈ Rjm)

3. Output f̂(x) = fM (x)

LightGBM employed Gradient-based One-Side Sampling (GOSS) in its sampling algorithm.

GOSS focuses on samples with large gradients, the top-a ×100% with the largest gradients are se-

lected for subset A, while the remaining samples with small gradients are selected randomly for sub-

set B. Another novel technique in LightGBM is termed Exclusive Feature Bundling (EFB), which

essentially reduces the number of features by bundling. For example, in sparse high-dimensional

data, mutually exclusive features can be bundled to form a new feature. The concept can also be

applied to continuous non-sparse data. EFB in LightGBM does not bundle the raw input features

directly, rather, it discretized the data into bins before bundling. Both GOSS and EFB contribute

to LightGBM being an efficient and lightweight algorithm, compared to similar gradient boosting

decision tree algorithms.

2.4 Implementation

Implementation of the nonparametric models will be divided into two different exercises. In the

first exercise, we frame the problem as daily time series where we are interested in the evolution of

the implied volatility surface. Daily time series of included as features are RV 60−minute, RV 4−hour,

RV 1−day, RV 5−day, RV 21−day, VIX, LTV, LTP, ADS, TMS, and CRS. Using LSTM and LightGBM,

we attempt to predict h-day ahead implied volatility for some fixed moneyness and time-to-maturity.
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As we are modeling a time series, it is not possible to predict the implied volatility of options with

a different strike price and maturity to options to which the model is fitted. However, predicting

options with fixed moneyness and time-to-maturity could still give valuable insights into the shape

of the implied volatility surface.

For the second exercise, we implemented ANN and LightGBM to learn the implied volatility

surface in general. Using historical data, we fit our models to learn the relation between implied

volatility and predictor variables: moneyness, time-to-maturity, RV 60−minute, RV 4−hour, RV 1−day,

RV 5−day, RV 21−day, VIX, LTV, LTP, ADS, TMS, and CRS. The main difference in the second

exercise is that we are not trying to capture any temporal dynamics (apart from the inclusion of

Realized Volatility(s) as features), rather we try to model implied volatility in different situations in

the market. For both exercises, we evaluate the model based on its out-of-sample implied volatility

root mean squared error (IVRMSE).

2.4.1 Forecasting h − day ahead

In the first exercise, we fit the model with the goal to predict the h−day ahead implied volatility(s)

for h = 1, 5, 21, framing it as a time series problem. Implied volatility data obtained in Section

3.2 formed an imbalanced panel, with each day consisting of a different number of observations

with options having different combinations of moneyness and time-to-maturity. As LSTM requires

a balanced panel for its input, we will construct a balanced panel of daily implied volatility from

daily end-of-day option price data. We consider moneyness in the set {0.95, 0.975, 1.0, 1.1, 1, 2, 1.3}

and time-to-maturity in the set {30, 60, 180, 340} resulting in 24 combinations. Since it is not

guaranteed each option is traded for each day, we interpolate the Implied Volatility surface intro

grids with discrete points in the moneyness and time-to-maturity dimensions. This exercise of

interpolation can be seen as a precursor to generating a 3-dimensional representation of the Implied

Volatility surface. We do this by applying a linear interpolation implementation of Watson (2013).

Grids for the interpolation consist of 361 discrete points between 0.9 and 1.5 for moneyness and

359 discrete points between 7 and 365 for day-to-expiration. As interpolation heavily depends on

starting data points, it is possible that some points in the grid cannot be interpolated. Out of

815 days, we drop 1 day of the time series as it is missing some of the 24 different combinations

of moneyness and time-to-maturity. The final result is time series of 24-element vector, denoted

as the vector vt hereinafter, with 814 observations. Plotting the time series illustrates the Implied

Volatility skew of the options as shown in Figure 2.

12



Figure 2: Daily interpolated Implied Volatility of SPX (S&P500 Index) options with time-to-

maturity 30 days.

As we are essentially working with time series, we attempt to model the time series evolution.

In LSTM, this is implemented by setting the timesteps, indicating the number of past observations

used to predict the future. Keep in mind, that increasing the number of timesteps is not equivalent

to increasing the number of predictor variables. The timesteps control the length of a single input

to output pass. In this study, we consider three different timesteps = {3, 21, 42} and three different

forecast horizon h = {1, 5, 21}. For different combinations of timestep and h, different LSTM models

will be trained. As mentioned in previous sections, other predictor variables include: RV 60−minute,

RV 4−hour, RV 1−day, RV 5−day, RV 21−day, VIX, LTV, LTP, ADS, TMS, and CRS. Tuning neural

network hyperparameters is always tricky, as there is an infinite number of combinations of choice.

We focus on the choice of hidden layers and neurons, with five different combinations shown in

Table 1. Other hyperparameters are set to be the same for all eight LSTM models considered.

Each hidden layer is followed by a dropout layer with a 0.2 dropout ratio. In each hidden layer,

the recurrent activation function is set to the sigmoid function. Lastly, the final activation function

is set to the hyperbolic tangent function. Optimization is done via gradient descent algorithm,

popular optimization method includes Stochastic Gradient Descent (SGD) and Adam by Kingma

and Ba (2014). We chose to set the optimization method to Adam for all the models. Prior to fitting
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LSTM models, all data is scaled according to min-max scaling, formally expressed in Equation 14.

xscaled = x − xmin

xmax − xmin
(14)

Table 1: Summary of the eight LSTM models

LSTM1 LSTM2 LSTM3 LSTM4 LSTM5

Hidden Layers 2 3 4 3 5

Neurons 8, 4 16, 8, 4 32, 16, 8, 4 8, 8, 8 64, 32, 16, 8, 4
This table reports the number of hidden layers and number of neurons in each hidden layer

for the five LSTM models. Each hidden layer is followed by a dropout layer with a dropout

ratio of 0.2 not shown in the table.

Next, we discuss LightGBM implementation in the first exercise. To model temporal depen-

dence in LightGBM, lagged variables of all features are included as predictor variables. Simi-

lar to timesteps in LSTM, we consider up to 3, 21, and 42 lagged observation. Formally, the

predictor variables in LightGBM include the Implied Volatility(s) vt, RV 60−minute, RV 4−hour,

RV 1−day, RV 5−day, RV 21−day, VIX, LTV, LTP, ADS, TMS, CRS and their respective lagged

value at t, ..., t − (p − 1) with p = {3, 21, 42}. Data scaling is not required in LightGBM as decision

trees essentially partition the feature space into different regions, it is not sensitive to monotonic

transformation. To model vt+h with LightGBM, we fit LightGBM regressor to the training data

to predict each element in vt+h separately, as it does not support multiple output regression. Al-

though for each element in vt+h the LightGBM is fitted separately, we evaluate the model as a

whole across all vt+h, that is hyperparameters are the same for the 24 fitted series. We focus

on tuning the number of leaves, minimum samples in a leaf, number of boosted trees, maximum

tree depth, and learning rate. Leaves here refer to the non-overlapping regions partitioned by the

algorithm; perhaps the most important hyperparameter to tune as a sub-optimal choice could lead

to overfitting. We apply grid search to find the optimal hyperparameters resulting in the lowest

IVRMSE in predicting vt+h. Implementation of grid search in LightGBM is done with the Optuna

library in python which provides a convenient way to tune hyperparameters. Table 2 summarizes

the hyperparameter tuning space in this application. If step is not indicated, it means the grid

search uniformly samples from the range.
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Table 2: LightGBM Hyperparameter Tuning Space First Exercise

Type Range Step

Number of Leaves Integer 16 to 3184 32

Min. Samples in Leaf Integer 2 to 500

Number of Boosted Trees Integer 100 to 2000 100

Max. Depth Integer 3 to 12

Learning Rate float 0.005 to 0.12

In regards to cross-validation, since we are working with data where sequence matter, it is not

possible to randomly sample during model training. Hence, we will assess the model performance by

splitting the data into four different windows. Accounting for the largest h = 21 and timesteps p =

42, the Implied Volatility series with 814 observations reduces to 752 observations with dates ranging

from April 4, 2016 to April 1, 2019 to work with. Four windows of equal length are divided as

follows, window1ex1 ranging from day 1 to 611, window2ex1 ranging from day 48 to 658, window3ex1

ranging from day 95 to 705, window4ex1 ranging from day 142 to 752. For each window, training and

test set are set as the first 564 days and the last 47 days respectively. Finally, the performance of the

models is evaluated according to out-of-sample IVRMSE. In addition, two benchmark predictions

will be included in the comparison, namely Black-Scholes and Naive prediction. The Black-Scholes

model assumes flat volatility, thus Black-Scholes prediction is the average Implied Volatility in

the previous day vt. Naive prediction is defined as the Implied Volatility in the previous day vt,

basically taking the current value as a prediction. The inclusion of Naive prediction is motivated

by the high sample autocorrelation property often present in financial data. Figure 3 shows the

sample autocorrelation function of an element in the interpolated Implied Volatility series.
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Figure 3: Sample Autocorrelation Function of SPX (S&P500 Index) option

The two benchmarks serve as a purpose to evaluate whether LSTM and LightGBM could make

meaningful predictions, rather than just comparing the two.

2.4.2 General Prediction

In the second exercise, we revisit daily Implied Volatility data described in Section 3.2. In principle,

we train our models to learn the shape of the Implied Volatility Surface for a period of time and see

how well it generalizes in the future. The main difference with the first exercise is we do not model

the dependence with past observation directly, rather it is only introduced through the Realized

Volatility features.

LSTM model is not included as it required a balanced panel of data. Instead, we include

a feedforward neural network (ANN) to compare with LightGBM. Similar to LSTM, min-max

scaling will be applied to the data prior to model fitting. We consider five ANN models with

different setup summarized in Table 3.

LightGBM hyperparameter tuning is slightly different in the second exercise as the number

of observations is much larger; changes can be seen in Table 4. Similar to the first exercise, we

split the data into four windows with equal lengths. The first 20 days of daily options data is

omitted as RV 21−day cannot be calculated. From 815 days, four windows of equal length are

divided as follows, window1ex2 ranging from day 1 to 611, window2ex2 ranging from day 69 to 679,
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Table 3: Summary of ANN models

ANN1 ANN2 ANN3 ANN4 ANN5

Hidden Layers 1 2 3 4 5

Neurons 8 16,8 32,16,8 64,32,16,8 128,64,32,16,8

Table 4: LightGBM Hyperparamter Tuning Space Second Exercise

Type Range Step

Number of Leaves Integer 16 to 3184 32

Min. Samples in Leaf Integer 50 to 1000

Number of Boosted Trees Integer 100 to 2000 100

Max. Depth Integer 3 to 12

Learning Rate float 0.005 to 0.12

window3ex2 ranging from day 137 to 747, window4ex2 ranging from day 205 to 815. The model

is trained using all available options available in the first 542 days of each window. Afterward,

Implied Volatility predictions are made for all options in the last 68 days of each window. In other

words, we train the model to predict an option’s implied volatility for given moneyness, time-to-

maturity, and features observed. Features included in this exercise are VIX, ADS, LTV, LTP, TMS,

CRS, RV 60−minute, RV 4−hour, RV 1−day, RV 5−day, RV 21−day. Again, we include Black-Scholes as

a benchmark comparison. Naive prediction is no longer included, as it is not straightforward in

this setup, requiring Implied Volatility Surface interpolation with finer grids.

3 Data

3.1 Options and Features

In this section, we discuss the reasoning and source of data being used in the research. More

details on implementation will be discussed in the section 2. We primarily focus on options for

the underlying S&P500. As of this writing, S&P 500 options are the most actively traded options

by volume in the U.S. market, making them a good candidate for studying the implied volatility

surface. Numerous studies of option pricing in the past focused on the S&P500 options such as
17



Goncalves and Guidolin (2006) and Skiadopoulos et al. (2000). Options on the S&P 500 can be

traded in the form of SPY options and SPX options. SPY options are derivatives for the S&P 500

ETF (Exchange-traded funds), while SPX options are derivatives for the S&P 500 index. Another

key difference is that the former are American-style options, while the latter are European-style

options. For the purpose of this research, we will consider SPX options traded at the Chicago Board

Options Exchange (CBOE). Daily data of the options with dates ranging from January 4, 2016 to

April 30, 2019, constituting 835 trading days, are obtained from the OptionMetrics dataset accessed

through Wharton Research Data Services (WRDS). In total, there are 8,698,633 observations before

filtering. After filtering, there are 1,655,780 observations, which will be discussed in section 2. As

a proxy for the risk-free rate, we will use the 3-month Treasury Bill rate from the Federal Reserve

H15 Reports.

As mentioned, we will also utilize the realized volatility of the S&P 500 index as features to

possibly capture time-varying dynamics in the IVS. For this purpose, intraday transaction data

for the underlying is obtained from the New York Stock Exchange (NYSE) Trade and Quote

(TAQ) datasets. The NYSE TAQ datasets provide order book data at very high frequency, up to

millisecond accuracy. From the dataset, we construct asset returns from level 1 market data; for

more details, go to Section 2. In addition to the constructed realized volatility measures, the VIX

index from Chicago Board Options Exchange (CBOE) datasets will also be included. In this study,

we use the open VIX index of the day. The VIX index attempts to capture the market’s expectation

of volatility for the S&P 500 for the next 30 days. The NYSE TAQ, Federal Reserve Bank Reports,

and VIX CBOE datasets will all be obtained through WRDS. Similar to Almeida et al. (2022), we

also include other features that might be relevant to the problem. Torben Andersen and Viktor

Todorov’s website, https://www.tailindex.com/, provides Left Tail Volatility (LTV) and Left Tail

Probability (LTP). LTV "estimates the expected (risk-neutral) return volatility that stems from

large negative price jumps," while LTP "estimates the probability that the index drops by 10% or

more over the coming week." LTV and LTP are included with the idea to capture market jump

risk, as opposed to the VIX which is more closely related to the volatility diffusion process.

Several features related to macroeconomic conditions are included. The Economic Policy Un-

certainty Index (EPU) of Baker et al. (2016) from https://www.policyuncertainty.com quantifies

economic condition uncertainty by extracting information from newspapers with different publish-

ers. The Aruoba et al. (2009) business condition index (ADS) is constructed with the idea of

capturing current business conditions. ADS index will be obtained from the Federal Reserve Bank
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of Philadelphia database. Additionally, the first differences in the term spread (TMS) and the first

differences in the credit spread (CRS) are obtained from the St. Louis Federal Reserve Economic

Data (FRED) database. TMS is the 10-Year Treasury Constant Maturity Minus 3-Month Treasury

Constant Maturity (T10Y3M), Historically, a negative TMS has been viewed as a sign of recession

by practitioners. CRS is Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity (BAA10Y). Corporate bond rates reflect the probability of default.

In corporate bonds, AAA-rated bonds are the highest-rated bonds, while BAA-rated bonds are

slightly below. Both are seen as investment-grade; however, Baa-rated bonds offer higher returns,

which implies higher risk. Hence, the CRS can also be seen as a measure to capture the business

condition, since we can see the 10-year Treasury yield as a risk-free rate.

3.2 Implied Volatility

Options data from the OptionMetrics dataset already includes implied volatility; however, we will

instead retrieve implied volatility by inverting the Black-Scholes formula. Several initial filters will

be applied to the OptionMetrics dataset before further processing. On each day, option prices will be

constructed as the midpoint of the end-of-day best bid and end-of-day best ask. Observations with

zero volume, zero bid price, zero ask price, and an ask price lower than the bid price are discarded.

Next, we filter out options with prices lower than 1/8. For standard options, time-to-maturity τ

is calculated as the number of days between the timestamp of the data and the expiration date

for each contract, while for AM-settled options, it is the number of days between the timestamp

of the data and the expiration date for each contract minus 1. The stock price St at the end of

each day is the WAP, constructed from the latest order book observation no later than 4 PM on

each day from the NYSE TAQ dataset. After obtaining St, moneyness can be defined as mi,t ≡ St
K .

Options data are then filtered with respect to time-to-maturity and moneyness; we keep options

with a time-to-maturity of at least 6 days and moneyness between 0.8 and 1.6. Furthermore, we

only consider out-of-the-money (OTM) options and disregard in-the-money (ITM) options. OTM

options are usually priced lower since they have no intrinsic value, making them considerably more

liquid compared to ITM options. Additionally, there should be minimal loss of information because

of the put-call parity, as Almeida et al. (2022) points out.

As the S&P 500 index typically pays dividends, we estimate q using the put-call parity expressed

as,

C + Ke−rτ = P + Ste
−qτ (15)
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Solving for q yields, q = −1/τ(ln((C − P + KE−rτ )/St). Interest rate r is the 3-month Treasury

Bill rate from Federal Reserve H15 Reports. For each day we compute q for every different time-

to-maturity τ using a pair of put and call options that are closest to the money (mi,t closest to

1). We can see the different q as investors’ expectations of the asset for the given time horizon

τ . Afterward, we further filter the remaining data according to the no-arbitrage condition given

below,

C ≥ max(0, St − K, Ste
−qτ − Ke−rτ )

P ≥ max(0, K − St, Ke−rτ − Ste
−qτ )

(16)

Implied volatility is then inverted from the option prices according to Black-Scholes, as in 3. The

RQuantlib package in R is used to invert the implied volatility for European options.

As briefly mentioned, there will be two different approaches to modeling the IVS. In the first,

we portray the problem as a time series prediction problem. In the second approach, implied

volatility is modeled directly as a function of moneyness, time-to-maturity, and other features

without taking into account temporal dependencies. To have an indication of model performance

in different parts of the implied volatility surface, we divide the options based on their time-to-

maturity and moneyness. We divide options into three groups of time-to-maturity: SHORT term

if τ ∈ [6, 30), MEDIUM term if τ ∈ [30, 180), and LONG term if τ ∈ [180, ∞). In terms of

moneyness, we adopt Almeida et al. (2022), so that options are divided into five intervals: deep

OTM call (DOTMC) with moneyness if mi,t ∈ [0.80, 0.90), OTM call (OTMC) if mi,t ∈ [0.9, 0.97),

ATM if mi,t ∈ [0.97, 1.03), OTM (put) if mi,t ∈ [1.03, 1.10), and deep OTM put (DOTMP) if

mi,t ∈ [1.10, 1.60].

Table 5 reports a summary of 1,655,780 observations from filtered options data. The Number

column indicates the number of observations. Among the most actively traded are MEDIUM-

term DOTMP and SHORT-term ATM options with 261,114 and 255,920 observations respectively.

The Mean IV column indicates the average implied volatility for each category of options. For

all grouping of time-to-maturity, we observe the volatility skew is present and most pronounced

in SHORT-term options. According to the Black-Scholes model, higher implied volatility would

translate to higher option prices. One possible explanation contributing to the skew could be

hedging premiums, especially for DOTMC and DOTMP options. Finally, the Std. dev column

indicates the standard deviation of the implied volatility in each category. In general, we see a

higher variation in implied volatility as moneyness increases, which indicates time-varying skew of
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the implied volatility surface.

Table 5: Summary statistics of S&P 500 Implied Volatility data

Number Mean IV Std. dev

SHORT MEDIUM LONG SHORT MEDIUM LONG SHORT MEDIUM LONG

Moneyness

[0.8,0.9) 2840 12466 15646 0.213 0.145 0.120 0.045 0.028 0.021

[0.9,0.97) 83631 134868 26226 0.127 0.107 0.122 0.044 0.031 0.027

[0.97,1.03) 255920 198176 26110 0.116 0.120 0.148 0.047 0.038 0.026

[1.03,1.1) 212581 184287 23871 0.195 0.171 0.174 0.052 0.036 0.024

[1.1,1.6] 147413 261144 70601 0.341 0.276 0.239 0.110 0.070 0.042

All m 702385 790941 162454 0.189 0.182 0.184 0.108 0.086 0.061
This table reports summary statistics of S&P 500 index options Implied Volatility data with dates ranging from January 4, 2016

to April 30, 2019. The columns Number, Mean IV, and Std. dev refers to the number of options, mean implied volatility, and

standard deviation of implied volatility. SHORT, MEDIUM, and LONG are the time-to-maturity grouping.

4 Results

4.1 h − day Prediction

Table 6 reports the average IVRMSE across all windows in the first exercise. The column Average

reports the average IVRMSE prediction across all h and timestep. LightGBM performs the best

on average with Naive prediction performing slightly behind, while Black-Scholes prediction per-

forms significantly worse than the other models. Looking at 1-day ahead prediction, we see that

Naive prediction achieves an average IVRMSE of 0.0084 across all windows, outperforming LSTM

and LightGBM. Intuitively, this can be explained by the high autocorrelation depicted in Figure

3, that is, we would not expect a large change overnight. Increasing timestep does not result in

a noticeable improvement in 1-day ahead forecasting for both LSTM and LightGBM, indicating

overfitting of the models. Moving to 5-day ahead, Naive prediction still outperforms any of the

non-parametric models. Similarly, both LSTM and LightGBM do not indicate any improvement in

5-day ahead forecasting when the timestep is increased. In contrast, our results indicate improve-

ment in LSTM and LightGBM 21-day ahead forecasting when timestep is increased, presenting
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evidence of temporal dynamics captured in a longer sequence of data. On 1-day and 5-day ahead

prediction, LightGBM outperforms all LSTM models, while in 21-day ahead prediction, we start

to see some LSTM models outperforming LightGBM in terms of IVRMSE. Additionally, both

LSTM and LightGBM manage to achieve lower IVRMSE in 21-day ahead prediction. In regards to

LSTM, additional hidden layers beyond 4 do not seem to improve LSTM in general, with LSTM5

performing worst on average among all the models.

Performance difference for each model with different timestep can be more easily seen from

Table 7, reporting percentage change in IVRMSE when timestep is increased from 3 to 21 or

42. In general, implementing longer timestep= 21 and timestep= 42 does not improve LSTM

and LightGBM performance in 1-day and 5-day ahead prediction. Most notably, in 1-day ahead

prediction, all non-parametric models considered performed worst as timestep is increased. In 5-day

prediction, we also observe implementing a timestep of 21 and 42 does not lead to improvement

compared to a timestep of 3. Implementing a longer timestep seems to have the largest positive

effect on 21-day ahead prediction for both LSTM and LightGBM, with timestep= 42 generally

leading to better performance compared to a smaller timestep. This is evident by looking at

both Table 6 and Table 7, with LSTM4 timestep= 42 achieving lowest IVRMSE in 21-day ahead

prediction. A possible explanation for this result is that 21-day ahead prediction could be more

dependent on a longer sequence of the time series, whereas prediction with a shorter horizon is less

dependent on long-term temporal dynamics. Nevertheless, overfitting is also likely in 1-day and

5-day ahead prediction. Overall, our results show that LSTM models require a longer sequence

of data to outperform LightGBM. While LSTM models show larger improvement with a longer

timestep, LightGBM achieves a lower IVRMSE in general. LSTM outperforms LightGBM in 21-

day ahead prediction but requires a more diligent tuning evident from higher variation of IVRMSE

in LSTM models shown in Table 6.

Investigating further, we look at the IVRMSE of LightGBM and LSTM1 in the four different

windows shown in Table 8. Both LightGBM and LSTM2 have similar patterns in their IVRMSE

between different windows, having the largest IVRMSE in the 3rd window. With the current setup,

LightGBM and LSTM appear to be sensitive to regime switching in the data. As an illustration

of the Implied Volatility skew in the different windows, see Figure 4. This result highlights the

problem of time-varying dynamics. Including more observations and features could be beneficial for

both LSTM and LightGBM, however, this would exacerbate the already time-consuming training

time.
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Table 6: IVRMSE Summary in First Exercise

h=1 h=5 h=21 Average

Timestep 3 21 42 3 21 42 3 21 42

LSTM1 0.0142 0.0141 0.0142 0.0254 0.0285 0.0284 0.0284 0.0229 0.0196 0.0218

LSTM2 0.0156 0.0151 0.0180 0.0250 0.0359 0.0272 0.0333 0.0273 0.0212 0.0243

LSTM3 0.0144 0.0176 0.0207 0.0238 0.0261 0.0308 0.0278 0.0245 0.0291 0.0239

LSTM4 0.0142 0.0149 0.0188 0.0264 0.0309 0.0284 0.0311 0.0232 0.0188 0.0229

LSTM5 0.0142 0.0192 0.0227 0.0253 0.0317 0.0269 0.0316 0.0292 0.0256 0.0252

LightGBM 0.0127 0.0139 0.0144 0.0218 0.0240 0.0243 0.0245 0.0256 0.0242 0.0206

Naïve 0.0084 0.0084 0.0084 0.0172 0.0172 0.0172 0.0275 0.0275 0.0275 0.0177

Black-Scholes 0.0745 0.0745 0.0745 0.0757 0.0757 0.0757 0.0787 0.0787 0.0787 0.0763
This table reports the IVRMSE summary of model predictions considered in the first exercise. Timestep denotes the different timesteps

implemented in the models. The columns h = 1, h = 5, h = 21, denotes h-day prediction IVRMSE. The column Average denotes the

average IVRMSE across all h fitted with different timesteps.

Table 7: IVRMSE percentage with different timestep implemented

h=1 h=5 h=21

Timestep 3 21 42 3 21 42 3 21 42

LSTM1 - -1.4% 0.0% - 12.0% 11.7% - -19.2% -30.9%

LSTM2 - -3.0% 15.6% - 44.0% 9.0% - -18.0% -36.3%

LSTM3 - 22.3% 43.7% - 9.6% 29.2% - -12.1% 4.5%

LSTM4 - 4.9% 32.6% - 16.9% 7.4% - -25.5% -39.6%

LSTM5 - 35.4% 59.9% - 25.2% 6.2% - -7.8% -19.2%

LightGBM - 9.5% 13.4% - 10.2% 11.6% - 4.5% -1.2%
This table reports the IVRMSE percentage change of each model when timestep is in-

creased. A positive value means an increase in IVRMSE, while a negative value indicates

a decrease in IVRMSE.
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Table 8: Comparison of LightGBM and LSTM1 IVRMSE in different windows for the first exercise

LightGBM LSTM1

Window 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Timesteps=3

h=1 0.0055 0.0122 0.0238 0.0092 0.0075 0.0134 0.0259 0.0102

h=5 0.0049 0.0137 0.0289 0.0080 0.0117 0.0311 0.0413 0.0177

h=21 0.0054 0.0125 0.0272 0.0123 0.0310 0.0273 0.0351 0.0201

Timesteps=21

h=1 0.0095 0.0235 0.0377 0.0165 0.0078 0.0143 0.0255 0.0086

h=5 0.0088 0.0227 0.0426 0.0220 0.0212 0.0324 0.0360 0.0243

h=21 0.0117 0.0191 0.0447 0.0217 0.0279 0.0263 0.0279 0.0097

Timesteps=42

h=1 0.0077 0.0379 0.0330 0.0194 0.0081 0.0147 0.0266 0.0076

h=5 0.0105 0.0411 0.0375 0.0133 0.0218 0.0178 0.0432 0.0308

h=21 0.0082 0.0451 0.0316 0.0119 0.0131 0.0209 0.0308 0.0137
This table reports the IVRMSE of LightGBM and LSTM1 in four different windows for

the first exercise.
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Figure 4: Daily interpolated Implied Volatility of SPX (S&P 500 Index) options with time-to-

maturity 30 days in four different windows.

4.2 General Prediction

Table 9 shows IVRMSE summary of each models considered in the second exercise. All ANN

and LightGBM models achieved lower average IVRMSE compared to Black-Scholes flat volatility

prediction. In exception to ANN4, we see a detrimental effect for each addition of a hidden layer in

ANN, failing to improve the model’s ability to capture additional non-linear relations in the IVS.

However, focusing on DOTMC options, we see large improvement with additional hidden layers.

ANN3, ANN4, and ANN5 achieved significantly lower IVRMSE on DOTMC options compared

to ANN1. Specifically, ANN5 achieved the lowest IVRMSE for DOTMC options among all the

ANN models. Nevertheless, DOTMC options only account for roughly 2% of the options in the

test set across all windows, in contrast to ATM options constitutes around 28%. LightGBM and

ANN perform better in predicting options with longer time-to-maturity and deep out-the-money

options. Intuitively, options with longer time-to-maturity are more stable as they are less affected

by short-term fluctuations in the market condition. Additionally, shorter period options have higher

theta, which refers to the rate option price changes with respect to time. Although the dynamics

change over time, a considerable portion of non-linear relationships in the future could still be

captured with ANN and LightGBM trained using historical data. Furthermore, we typically see

market conditions as cyclical, thus including more historical data could potentially improve model
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fit. Table 10 reports IVRMSE of the models in four different windows for the second exercise.

Again, we see relatively large IVRMSE on the 3rd window compared to IVRMSE on the other

windows. LightGBM in the second exercise seems to suffer from changing market conditions than

LightGBM in the first exercise. Overall, LightGBM and ANN could generalize relatively well

compared to Black-Scholes prediction. Overall, LightGBM performs significantly better compared

to ANN, achieving lower IVRMSE even when grouping options on different time-to-maturity and

moneyness

Table 9: IVRMSE Summary in Second Exercise

Time-to-maturity Moneyness Average

SHORT MEDIUM LONG DOTMC OTMC ATM OTMP DOTMP

LightGBM 0.0215 0.0135 0.0097 0.0210 0.0198 0.0195 0.0169 0.0120 0.0171

ANN1 0.0442 0.0314 0.0249 0.0634 0.0344 0.0317 0.0306 0.0444 0.0370

ANN2 0.0500 0.0473 0.0319 0.0349 0.0365 0.0502 0.0491 0.0503 0.0477

ANN3 0.0541 0.0381 0.0220 0.0399 0.0341 0.0428 0.0386 0.0557 0.0448

ANN4 0.0398 0.0277 0.0186 0.0292 0.0301 0.0333 0.0236 0.0401 0.0329

ANN5 0.0600 0.0426 0.0250 0.0254 0.0378 0.0450 0.0331 0.0696 0.0499

Black-Scholes 0.1114 0.0898 0.0649 0.0865 0.1025 0.0933 0.0502 0.1274 0.0982
This table reports the IVRMSE summary of model predictions considered in the second exercise. SHORT, MEDIUM, and

LONG refer to options with time-to-maturity of 1 to 29 days, 30 to 179 days, and 180 days or longer. DOTMC, OTMC, ATM,

OTMP, DOTMP refer to options with moneyness [0.8, 0.9), [0.9, 0.97), [0.97, 1.03), [1.03, 1.1), and [1.1, 1.6] respectively. The

column Average denotes the average IVRMSE for all options.
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Table 10: Comparison of LightGBM and ANN IVRMSE in different windows for the second exercise

Windows

1st 2nd 3rd 4th

LightGBM 0.0098 0.0135 0.0279 0.0096

ANN1 0.0291 0.0324 0.0562 0.0170

ANN2 0.0340 0.0737 0.0306 0.0258

ANN3 0.0219 0.0574 0.0508 0.0345

ANN4 0.0316 0.0383 0.0305 0.0285

ANN5 0.0610 0.0517 0.0477 0.0341
This table reports the IVRMSE summary of LightGBM

and ANN models in different windows for the second

exercise.

5 Conclusion

In this research, we attempt to predict the implied volatility surface (IVS) using popular contem-

porary non-parametric approaches. Models in this study include the artificial feed-forward network

(ANN), long short-term memory recurrent neural network (LSTM), and gradient boosted decision

tree LightGBM. We consider two different approaches. In the first approach, we frame the problem

as time series prediction, whereas in the second approach we try to learn the shape of IVS in gen-

eral. In an attempt to capture time-varying dynamics, we also include Realized Volatility measures

with different horizons. Using SPX (S&P 500 Index) European options, we train the models and

evaluate their out-of-sample prediction.

We found that LSTM and LightGBM could capture the dynamics of IVS better when a longer

sequence of features is included. In LSTM, this is implemented by allowing longer timestep, and in

LightGBM lagged observations of the features up to 42 days in the past are included as predictor

variables. Based on the result, non-parametric models implemented did not manage to outperform

Naive prediction in 1-day and 5-day ahead prediction. However, in 21-day ahead prediction, both

LSTM and LightGBM performed favorably against Naive prediction in terms of IVRMSE. Imple-

menting a longer timestep could potentially improve model performance, especially in 21-day ahead

prediction. However, this would substantially increase computational time, as in the case of LSTM

the complexity scales quadratically with respect to timestep. Another possible improvement could
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be including other relevant features that might be excluded in this study. Additionally, as the time

series is generated from interpolated IVS, other methods of interpolation can be considered.

In the second approach, we see that ANN and LightGBM show promising capability in learning

the Implied Volatility Surface in general. Both models can partially capture the non-linear rela-

tionship in the implied volatility surface and could potentially benefit from adding more relevant

features, with the downside of additional computational time. Taking into account the first and

second exercises, LightGBM shows the most promising result. Particularly, with the setup in the

second exercise, LightGBM could predict the Implied Volatility as a function of time-to-maturity

and moneyness. Modeling the implied volatility as time series in the setup in this study restricts

prediction to a chosen moneyness and time-to-maturity combination. Although, accurate time

series prediction of several options with different time-to-maturity and moneyness could give an

impression of future the Implied Volatility Skew. Hence, it is possible to use the predictions from

the first exercise as features in the second exercise.

Overall, this study shows the ability of non-parametric approaches in predicting IVS, namely

ANN, LSTM, and LightGBM. With minimal requirements (none about the data generating process

modeling), neural networks and gradient boosted decision trees provide great flexibility in modeling

the non-linearity between the Implied Volatility Surface and correlated features. Furthermore, as

Almeida et al. (2022) has shown, non-parametric approaches could be augmented with parametric

approaches, improving model prediction. Although methods such as neural networks and gradient-

boosted decision trees lack interpretability, they offer an uncomplicated approach to modeling non-

linear relations. For example, different forecasting method predictions can be included as features

in the gradient boosting decision tree method.
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6 Appendix

A LightGBM Hyperparameters

A.1 First Exercise

Table 11: LightGBM Hyperparameter Exercise 1

h=1 h=5 h=21

Timestep 3 21 42 3 21 42 3 21 42

Number of Leaves 3184 1136 3184 48 208 2160 2320 2736 1584

Min. Samples in Leaf 15 31 18 86 137 237 84 164 87

Number of Boosted Trees 50 100 800 1450 50 1200 1200 1550 600

Max. Depth 9 8 6 9 6 8 5 12 9

Learning Rate 0.114 0.020 0.024 0.007 0.076 0.109 0.030 0.106 0.099

A.2 Second Exercise

Table 12: LightGBM Hyperparameter Exercise 1

Hyperparameter Value

Number of Leaves 400

Min. Samples in Leaf 313

Number of Boosted Trees 2000

Max. Depth 11

Learning rate 0.029
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