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Abstract

A model-based reinforcement learning framework is proposed for solving the dynamic portfolio
management problem in the cryptocurrency market. By formulating the problem as a Markov
decision process and working out the future dynamics of the environment, we learn an intelligent
deep learning agent to assess the trade-off between transaction costs and future utility. Moreover,
due to a reformulation of the action space, the temporal dependency of the agent’s decision-
making has been eliminated, improving the efficiency of the training process. Back-tests on
historical data have shown that the proposed methods outperform baseline methods that do not
account for transaction costs correctly. Multiple experiments were performed using time-series
cross-validation where it was found the proposed method was able to increase profit, as well
reduced risk. It was found that the proposed method is able to deal with considerably high
transaction fees such that in future research, the decision interval might be decreased as an
attempt to increase profit and to increase the amount of available data.
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1 Introduction

In an age where data plays a more prominent role each day, new models that can learn from these
large amounts of data are developed at a fast pace to solve a broad range of problems. Artificial
Intelligence (AI) is expected to have a great impact on our future daily lives as it enables outsourcing
simple and repetitive tasks like driving, data entry, bookkeeping and accounting. Even though
human peak performance might still outperform some AI algorithms, the algorithm can perform
highly repetitive tasks at great speed over great lengths of time without suffering from decreasing
performance. Moreover, robots do not require pay.

Technological advancements in the information technology (IT) sector have also impacted the fi-
nancial landscape. In 2008, in the white paper Bitcoin: A Peer-to-Peer Electronic Cash System,
a person, or group of persons under the pseudonym Satoshi Nakamoto presented to the world a
protocol designed to execute electronic transactions in a way that eliminates the need for a mutually
trusted third party [Nakamoto, 2008]. The system implemented a novel technology, known as a
blockchain, that proves the legitimacy of a transaction to both parties. In 2009, Nakamoto released
Bitcoin, the world’s first cryptocurrency that makes use of cryptography to eliminate the need for a
trusted third party such as a bank to perform peer-to-peer transactions.

Cryptocurrencies can be exchanged on cryptocurrency exchanges with Binance as today’s most
prominent example with a daily traded volume that composes 30.55% of the total market volume
of roughly two trillion dollars, according to www.coincap.com. Most exchanges allow users to place
orders and retrieve historical market data with sampling intervals as short as minute through ap-
plication programming interfaces (API’s). This infrastructure is ideal for algorithmic trading as it
provides a large amount of historical data that can be used to accurately evaluate performance, and
it provides the infrastructure that is necessary for implementation.

Even though trading rules may be implemented successfully, doing so requires expert-knowledge
about the financial exchange. Machine learning methods on the other hand may be implemented
that do not rely on financial theory. Given the high sampling intensity, we might try to increase the
frequency of the decision making process in order to react to sudden market changes more rapidly.
This however raises the importance of managing transaction costs as (i) total traded volume in-
creases and (ii) transaction costs are expected to be proportionally larger relative to short term
price changes. In classical financial investment theory that predates such small sampling intervals,
holding periods are assumed to be much longer such that transaction may even be ignored.

To successfully solve the dynamic portfolio management problem (DPMP), one needs to accom-
modate for both price changes as well as transaction costs. Deep reinforcement learning (DRL)
provides a suitable setting that may be used to solve this this problem. In DRL methods, an agent,
represented by artificial neural network (ANN), is trained to maximize cumulative future rewards.
This is done by letting the agent explore an environment through a set of actions followed by its
reinforcement using observations about the rewards with respect to its actions.

The goal of this thesis is to propose and evaluate a DRL framework for the DPMP that accommodates
for transaction costs in a general financial exchange. Various variations of the framework utilizing
different aspects of existing DRL methods will be evaluated with the ultimate goal of improving the
efficiency of the method without loss of performance. The findings in the research can be extended
to other financial markets as well as the proposed framework does not make restrictive assumptions
about the structure of the market. It is relevant for both practical applications in algorithmic trading
and for researchers in the field of computational finance.
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2 Literature study

Lucarelli and Borrotti have proposed a multi-agent deep Q-learning framework for portfolio manage-
ment in the cryptocurrency market [Lucarelli and Borrotti, 2020]. The agents were able to manage
risk by regulating financial exposure of an asset through a discretized action space. Apart from a
regular deep Q-network (DQN), a double DQN and a dueling double DQN were tested but it was
found that the regular DQN performed best. Performance of the framework was shown to outper-
form buy-and-hold (BH) baselines and the framework achieved average positive returns in nine out
of the ten test periods of 15 days. Park et al. proposed a deep Q-learning method that was tested
in a multitude of financial stock markets and was found to outperform baseline strategies including
momentum and mean reversion strategies [Park et al., 2020]. In contrast to the method proposed by
Lucarelli and Borrotti, the method used a single DQN agent that was able to trade in a multi-asset
environment. The agent had access to the combinatorial action space consisting of every possible
combination of asset positions {sell,hold,buy} for each asset. The number of output nodes was thus
equal to 3n and hence exponential in the number of assets n, leading to scalability limits.

No method was found in literature that was able to efficiently define a discrete action space
in a multi-asset environment. The main bottleneck being the impracticability of risk management:
this requires the even further discretization of an already exponential action space. Methods that
were able to incorporate risk management were thereby forced to take a multi-agent approach, likely
leading to sub-optimal performance due to the decomposition of the problem.

Betancourt and Chen proposed an actor-critic method that allows for a continuous action space.
Proximal policy optimization (PPO) was used to train a network consisting of gated recurrent unit
(GRU) structures to output a target portfolio distribution [Betancourt and Chen, 2021]. To reinforce
the agent for the transaction costs, a linear program was solved to determine the minimal transaction
costs of realizing the target distribution given the initial distribution. The method was shown to
outperform state-of-the-art methods, but due to the lack of experimental control it remains unclear
exactly what differences between the methods may have contributed. Jiang and Liang proposed
an actor-only method in which a convolutional neural network (CNN) agent outputs a portfolio
vector without being reinforced by a critic network [Jiang and Liang, 2016]. Instead, a reward
function is used that directly maps the output of the network to reward values. Thereby eliminating
the critic, improving the efficiency of the method and expectedly lowering variance. Even though
commission fees were not accounted for in the reward function, when back-testing the agent, the
agent outperformed all benchmarks except for passive aggressive mean reversion (PAMR) in terms
of average total profit. Another method that directly reinforces an agent in a continuous action
space was introduced by Moody and Saffell in 2001 before any of the model-free DRL methods had
been invented [Moody and Saffell, 2001]. The method works by recursively calculating the portfolio
value as a function of the agent’s actions over a multitude of time steps. The agent is then be
reinforced by recurrent backpropagation over what is essentially a one-layer gated recurrent unit
(GRU). For larger networks however, backpropagation over multiple time steps may slow down the
learning process.

No methods were found in literature that were able to correctly evaluate transaction costs without
the need for a critic network. The main goal of this thesis is to improve the efficiency of the
learning process by reformulating the continuous action space such that it can be used to evaluate
transaction costs directly. We can then correctly reinforce our agent with respect to its actions much
more simply and directly. Model-free reinforcement learning methods have been formulated most
generally such that they can be used to solve an immensely broad range of problems that require
close to no prerequisite knowledge. After all, it is clear that efficiency can be gained by making full
use of that which we do know about the dynamics of the problem.
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3 Problem definition

In reinforcement learning, an intelligent agent learns to maximize some form of utility that it gains
by means of interacting with a system, or environment. The environment can be characterized by
a state that is observed by the agent and that forms the basis for its decision-making. The agent
responds to the state of the system by performing that action which it deems most profitable in
terms of expected total future utility. As a result of the action, the system transitions to a next state
through a stochastic process that depends partially on the action of the agent given the state of the
system. Depending on the state transition and the action of the agent, the agent obtains a reward,
which is used to reinforce the agent in order to maximize long-term utility. Where long-term utility
is some function in the rewards that are obtained over the state transitions during the process.

Such a decision-making process can be mathematically expressed in terms of a Markov decision
process (MDP). Let s ∈ S be the state of the system, a ∈ A the agent’s action, and r the immediate
reward that is observed as the system transitions from the current state s to the next state s′. The
actions are determined depending on the state through a policy π : S → A that is held by the agent.
It is the goal of the agent to find the optimal policy π∗ that maximizes long-term utility, which is
usually defined as Rt, the sum of all future rewards that follow some time period t. As the time
horizon may very well be infinite, future rewards are often discounted against a discount rate γ ∈ [0, 1]
such that Rt converges according to a geometric series. Table 1 shows some important notation that
is often used in reinforcement learning and that shall be used later to derive a reinforcement learning
framework for solving the dynamic portfolio management problem.

Notation Expression Name
Rt

∑∞
k=0 γ

krt+k Discounted reward
Qπ

t (s, a) Eπ[Rt|st = s, at = a] State-action value
V π
t (s) Eπ[Rt|st = s] State value

Aπ
t (s, a) Qπ

t (s, a)− V π
t (s) Advantage

Table 1: General reinforcement learning notation.

3.1 Formulating the Markov decision process

Let st = (pt, yt) be the state of the system at time t, with price vector pt ∈ Rn
+ and portfolio vector

yt ∈ Rn
+, where n is the number of financial assets that are included in the portfolio. The price vector

pt holds for each asset in the portfolio the last period’s closing price, that is measured in terms of a
risk-less asset: the asset that sits in the first position in our portfolio such that pt0 = 1 by definition.
The portfolio vector yt holds for each asset in the portfolio the total allocated value in terms of
the risk-less asset. Right at the beginning of a time period, the agent performs an action at ∈ A
that moves the current portfolio yt to an intermediate portfolio ŷt that is held over the remainder of
that time period. Closing prices are observed at the end of each time period after which the system
transitions to the next state st+1 = (pt+1, yt+1). Here, the price changes determine the transition
of the portfolio via yt+1 = ct ◦ ŷt with price change multipliers ct = pt+1 ⊘ pt. The reward that is
awarded to the agent is defined as the logarithmic growth rate of the total portfolio value over the
transition as in (1).

rt = ln (|yt+1| / |yt|) = ln (ct
′ŷt)− ln |yt| (1)

4



3.2 Formulating the decision variables

For an agent to be able to manage a portfolio, we need to define decision variables that can be
controlled by an agent in order to change the composition of a portfolio. First, we need to define
some ground rules according to which we may change the state of a portfolio. To do so, we define
the directed graph G = (V,A) as a mathematical representation of a financial market with nodes
V representing the assets that are available for trading, and arcs A representing the exchange
environments over which the assets can be exchanged. Considering the arbitrary arc (u, v) ∈ A, we
can exchange one unit of asset u for p(u,v) units of asset v against a fixed commission rate ζ ∈ [0, 1],
such that the effective exchange rate equals p(u,v)(1− ζ) units of asset v per unit of asset u.

The portfolio can be dynamically redistributed by performing a series of ordered exchanges over the
arcs in the graph. A path h ∈ H is defined as an ordered sequence of arcs that joins a sequence
of vertices, connecting the path’s origin node h0 to its destination node h1. Where H denotes
the set of paths that are available for trading. A sequence of exchanges over a path h ∈ H can
be summarized as an exchange between the assets h0 and h1 at a path-specific exchange rate γh.
Where the path-specific exchange rate γh is the product of all exchange rates in the path as in (2).

γh =
∏
a∈h

pa (1− ζ) = (1− ζ)
|h| ∏

a∈h

pa, h ∈ H (2)

The agent is then able to manage the portfolio using the decision variables qh ≥ 0 that indicate
the quantity of asset h0 that is exchanged for asset h1 over path h for each h ∈ H. A solution to
the dynamic portfolio management problem is thus defined as a value assignment to the decision
variables qh for each h ∈ H as defined in Definition (1), where we have used the set notation in (3).

Definition 1 A solution is defined as ŷu =
∑

h∈H•u
qhγh for each asset u ∈ V . With decision

variables qh ≥ 0 for each path h ∈ H such that
∑

h∈Hu•
qh = yu for each asset u ∈ V .

Huv = {h ∈ H : u = h0, v = h1}
Hu• = {h ∈ H : u = h0} = ∪v∈V Huv

H•u = {h ∈ H : u = h1} = ∪v∈V Hvu

(3)

As the number of paths may be exponential in the size of the graph, we can not hope to include all
paths in our solution method. To reduce the number of paths, we select for each asset pair u, v ∈ V
only the path with optimal exchange rate among the set of paths Huv that have origin node u and
destination node v. The problem of finding the path with optimal exchange rate is a shortest path
problem, can be solved using a general linear programming (LP) formulation as shown below in (4).

min zuv =
∑

a∈A baxa

s.t. fw =
∑

v∈Vw•
x(w,v) −

∑
v∈V•w

x(v,w), w ∈ V
xa ≥ 0, a ∈ A

fw =


−1 if w = u

1 if w = v

0 otherwise

(4)

By solving (4) using weights ba = − ln (pa(1− ζ)) for each a ∈ A, the optimal exchange rates can be
calculated as γuv = maxw∈Wuv {γw} = e−zuv for each asset pair u, v ∈ V . To ensure boundedness
of (4), we ensure that each weight ba is positive by setting pa = 1 for each a ∈ A (this is equivalent
to the assumption of efficient market prices). Then, ba = − ln(1 − ζ) for each a ∈ A such that the
optimality of (4) is independent of market prices. The optimal exchange rates γuv are constant over
tiem and we only need to evaluate (4) once.
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We can rewrite ŷu and yu using Definition 1 and the set notation in (3) as:

ŷu =
∑

h∈H•u
qhγh =

∑
v∈V

∑
h∈Huv

qhγh =
∑

v∈V γvu
∑

h∈H∗
uv

qh u ∈ V

yu =
∑

h∈Hu•
qh =

∑
v∈V

∑
h∈Huv

qh =
∑

v∈V

∑
h∈H∗

uv
qh u ∈ V

Defining H∗
uv = {h ∈ Huv : γh = maxh∈Huv

{γh}} as the set of paths with optimal exchange rate
connecting the assets u and v, we replace Wuv by W ∗

uv. By redefining the decision variables as
quv :=

∑
h∈Huv

qh for each asset pair u, v ∈ V we have reformulated Definition 1 using a quadratic
number of decision variables as in Definition 2.

Now, let Q and γ be the matrices with respective elements quv and γuv for each asset pair u, v ∈ V .
Using this reformulation, we can effectively express the intermediate portfolio ŷ using the decision
matrix Q using simple matrix algebra as in Definition 2.

Definition 2 A solution is defined as ŷ = y + (Q ◦ γ)′1n, with Q ∈ Rn×n
+ : Q1n = y.

In Definition 2, the decision matrix Q depends on the portfolio y through the constraint Q1n = y.
However, as the portfolio varies over time, we wish to normalize the decision variables such that
they are independent of the portfolio. We rewrite the constraint Q1n = y from Definition 1 as∑

v∈V

quv = yu =⇒
∑
v∈V

quv/yu =
∑
v∈V

auv = 1

, for each asset u ∈ V . Where we have defined the normalized decision variable auv = quv/yu as the
fraction of yu, the total available fund in asset u, that is exchanged for asset v. We then substitute
the normalized decision variables in ŷ = y + (Q ◦ γ)′1n as

ŷu = yu +
∑
v∈V

(γvuqvu − quv)

= yu +
∑
v∈V

(γvuavuyv − auvyu)

= yu +
∑
v∈V

γvuavuyv − yu
∑
v∈V

auv

=
∑
v∈V

γvuavuyv

, for each asset u ∈ V . Where we have used that
∑

v∈V auv = 1 for each u ∈ V . We can then
express Definition 2 using the normalized decision variables as in Definition 3, where we can satisfy
A1n = 1n by applying the softmax activation function over the rows of a real-valued decision matrix
Z ∈ Rn×n as A = softmax (Z). As we have that softmax (Z)1n = 1n by definition, we can apply
unconstrained optimization techniques to optimize a policy π : S → Rn×n.

Definition 3 A solution is defined as ŷ = (A ◦ γ)′y, with A ∈ Rn×n
+ : A1n = 1n
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3.3 Defining the state-transitions

The definition of the action space in Definition 2 enables us to express the state transition to yt+1

using the price changes ct that is given by the data and the action At that is given by our policy
as in (5). Where we have used the matrix presentation ŷt = (At ◦ γ)′ yt of Definition 2 and we have
defined the matrix Ct = diag(ct) for the sake of notation. Consequently, the immediate reward
rt of the transition can be calculated as in (6) by substituting (5) in the original definition of the
immediate rewards in (1).

yt+1 = ct ◦ ŷt
= ct ◦

(
(At ◦ γ)′yt

)
= Diag (ct)(At ◦ γ)′yt
= Ct(At ◦ γ)′yt

(5)
rt = ln |yt+1| − ln |yt|

= ln
∣∣Ct(At ◦ γ)′yt

∣∣− ln |yt|
(6)

To make notation more compact, we define the transition matrix Pt = Ct(At ◦ γ)′ such that the
transitions are denoted by yt+1 = Ptyt. We can then efficiently express any portfolio as a sequence
of matrix products of the previous transition matrices up to the initial portfolio as in (7). Such
a sequence of transition matrices themselves form a multi-step transition matrix P k−1

t such that
yt+k = P k−1

t yt.
yt+1 = P 1

t yt = Ptyt
yt+2 = P 2

t yt = Pt+1Ptyt
...

yt+k = P k−1
t yt = Pt+k−1Pt+k−2 · · ·Ptyt

(7)

3.4 Deriving the value functions

The state transitions that have been defined in the previous subsection will now be used to express
the future rewards as a function of the action of the agent and the portfolio state that results
because of it. It are these two variables that the agent has influence over, as the price changes and
commission fees are given by the data. The immediate reward rt(y,A), the state-action value, and
the state vt(y) in (8) follow from the definition of the immediate reward in (6). Where we have used
the definition of temporal differences to define the state-action value Qt(y,A) and the definition of
the value function Vt(y) = Qt (y, πt(y)). Introducing our policy πt(y) that takes an action at time t
depending on the portfolio state at that time.

rt(y,A) = ln
∣∣Ct(A ◦ γ)′y

∣∣− ln |y|

Qt(y,A) = rt(y,A) + Vt+1

(
Ct(A ◦ γ)′y

)
= ln

∣∣Ct(A ◦ γ)′y
∣∣− ln |y|+ Vt+1

(
Ct(A ◦ γ)′y

)
Vt(y) = Qt(y, πt(y))

= ln
∣∣Ct(πt(y) ◦ γ)′y

∣∣− ln |y|+ Vt+1

(
Ct(πt(y) ◦ γ)′y

)
(8)

Again, to make notation more compact, transition matrices are introduced as was done in (7). In
this case however as we have introduced the policy π, we have that the actions depend on the
portfolio state at each time period and that the previous actions thus influence the future actions
as a result. The transition is now denoted by Pt(y) = Ct(πt(y) ◦ γ)′ such that the transition to the
next portfolio is denoted by Pt(y)y. This notation is adapted in the definition of the state value
function Vt(y) in (9) and through forward recursion a general recursive expression is derived for an
arbitrary value of k.
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Vt(y) = ln |Pt(y)y| − ln |y|+ Vt+1(Pt(y)y)

= ln |Pt(y)y| − ln |y|+ Vt+2(Pt+1(Pt(y)y)Pt(y)y)

+ ln |Pt+1(Pt(y)y)Pt(y)y| − ln |Pt(y)y|
= ln

∣∣P 2
t (y)y

∣∣− ln |y|+ Vt+2

(
P 2
t (y)y

)
= ln

∣∣P k
t (y)y

∣∣− ln |y|+ Vt+k

(
P k
t (y)y

)
(9)

As we assume a potentially infinite time horizon, the expression in (9) is an infinite series such that
it has no closed form solution; as long as the time horizon continues, the expression contains an
unknown term about the future rewards. We now take the limit of the right-hand side in (9) as k
approaches infinity and we rewrite Vt(y) as in (10). Here, we have defined vt(y) as the state value
function that takes a portfolio y and returns a vector containing for each of the assets the local state
value that is obtained for any value allocated to this asset. It follows that the value function can
be rewritten as the logarithm of a simple linear combination of the local state values with respect
to the portfolio entries. From the definition of the local state value function vt(y), we then find a
recursive relationship for it in (11) that we can use for estimation methods later on.

Vt(y) = lim
k→∞

[
ln
∣∣P k

t (y)y
∣∣− ln |y|

]
= lim

k→∞

[
ln
(
1n

′P k
t y
)
− ln |y|

]
= ln

(
1n

′ lim
k→∞

[
P k
t

]
y

)
− ln |y|

= ln
(
exp {vt(y)}′ y

)
− ln |y|

(10)

exp {vt(y)} = lim
k→∞

[
P k
t (y)

′]1n

= lim
k→∞

[
Pt(y)

′P k+1
t+1 (Pt(y)y)

′]
1n

= Pt(y)
′ lim
k→∞

[
P k+1
t+1 (Pt(y)y)

′]
1n

= Pt(y)
′ exp {vt+1(Pt(y)y)}

(11)

By filling in Pt(y) = (πt(y) ◦ γ)Ct in (11) we find that we can further decompose vt(y) into a
deterministic part that is directly determined by the action of the agent, and a random part that
includes unobserved price changes of future time periods. As the deterministic part is known, it
would be futile to include it in the target variable in our estimation methods. To prevent this, the
passive local state value function ft(y) is defined that excludes this deterministic part about the
action of the agent in the current time period. In contrast, vt(y) will from now on be referred to as
the active local state value function as it includes this part about the action of the agent. Using the
definition of the passive local state value function in (12) and (11), we can derive a similar recursive
relationship for ft(y) as we did for vt(y).

exp {vt(y)} = Pt(y)
′ exp {vt+1(Pt(y)y)}

= (πt(y) ◦ γ)Ct exp
{
vt+1

(
Ct(πt(y) ◦ γ)′y

)}
= (πt(y) ◦ γ) exp

{
ft
(
(πt(y) ◦ γ)′y

)}
exp {ft(y)} = Ct exp {vt+1(Cty)}

ft(y) = ln
(
Ct (πt+1(Cty) ◦ γ) exp

{
ft+1

(
(πt+1(Cty) ◦ γ)′Cty

)})
(12)

In (??) we substitute ft(y) for vt(y) in the definition of the value function in (10) using the rela-
tionship in (12). Before using this value function for reinforcement, we make the observation that
due to the possibly infinite time horizon, the cumulative rewards may increase indefinitely such
that we need to stabilize the value function. Usually in reinforcement learning, future rewards are
discounted at a discount rate such that the resulting cumulative rewards are guaranteed to be finite.
This method however has several drawbacks. First and foremost, discounting future rewards implies
that the agent becomes more focused on maximizing short-term rewards rather than maximizing
the long term rewards in the infinite time horizon. Thereby we alter the objective of the problem.
Another disadvantage of the discount rate is that it imposes another hyperparameter that requires
tuning, which is a complex and time consuming optimization problem. What we will do instead is
to subtract a baseline from the value function such that the relative difference between the value
function and the baseline is finite. A suitable baseline is chosen as Qt(y, In) = Ft(y), which cor-
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responds to the future reward that is obtained when holding the current portfolio using the action
In. We refer to Ft(y) as the passive state value, as it is the future reward that is associated with
passively holding a portfolio. Parallel to the relationship between the global and local active state
value functions, we have that the passive state value function Ft(y) is a weighted average of the pas-
sive local state values with respect to the portfolio entries as is shown in (13). By subtracting the
active global state value function from the passive global state value function, we get the advantage
value function in (13), which expresses the relative advantage of performing the agent’s action over
passively holding the portfolio. This is the function that is responsible for reinforcing the agents in
this thesis and it is the main theoretical result that will be presented.

Vt(y) = ln
(
exp {vt(y)}′y

)
− ln |y|

= ln
(
exp

{
ft
(
(πt(y) ◦ γ)′y

)}′
(πt(y) ◦ γ)′y

)
− ln |y|

Ft(y) = Qt (y, In)

= ln
(
exp

{
ft
(
(In ◦ γ)′y

)}′
(In ◦ γ)′y

)
− ln |y|

= ln
(
exp {ft(y)}′y

)
− ln |y|

Vt(y)− Ft(y) = ln
(
exp

{
ft
(
(πt(y) ◦ γ)′y

)}′
(πt(y) ◦ γ)′y

)
− ln |y|

−
(
ln
(
exp {ft(y)}′y

)
− ln |y|

)
= ln

(
exp

{
ft
(
(πt(y) ◦ γ)′y

)}′
(πt(y) ◦ γ)′y

)
− ln

(
exp {ft(y)}′y

)

(13)

3.5 Introducing state-independency

We can see from the expression of the advantage function in (12) that the advantage function depends
on the state of the portfolio. This raises the concern that we might over fit to portfolio states that
have been visited in the training procedure. To prevent this, we might add random noise to the
policy’s output to promote visiting a more diverse set of states. A more efficient approach however
that does not require exploration of the environment in such a way would be to pre-define the states.
Here, the most simple solution is suggested in which we fix the initial state as an equally weighted
portfolio y = 1n for each time period. Thereby the policy will for each time period give a generalized
action in which each asset has equal amount of attention. Now we can simplify the results from
the previous subsection as we have fixed the initial portfolio y. As a result we get that both the
actions as well as the value functions are fully determined by the data such that we may ignore the
arguments in the value function as well as in the policy as in (14).

ft(1n) = ln
(
Ct (πt+1(Ct1n) ◦ γ) exp

{
ft+1

(
(πt+1(Ct1n) ◦ γ)′Ct1n

)})
ft = ln (Ct (πt+1 ◦ γ) exp {ft+1})

Vt − Ft = ln
(
exp{ft}′(πt ◦ γ)′1n

)
− ln

(
exp{ft}′1n

)
= ln |(πt ◦ γ) exp{ft}| − ln | exp{ft}|
= ln |(πt ◦ γ) softmax(ft)|

(14)
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3.6 Stabilizing the cumulative rewards

One topic that has remained untouched thus far is that of stabilizing the cumulative reward values.
As we assume a possibly infinite time horizon, the cumulative rewards might increase infinitely
over time. Typically a discount rate is applied to future rewards such that the cumulative reward
converges according to a geometric series. In the case we have knowledge about the future dynamics
of the problem, we might be able to develop an alternative method to stabilize reward values that dos
not require the use of an additional hyperparameter. Also, we may replace the approximate method
of discounting future rewards by an exact method such that we do not degrade the optimality of the
method.

Here, we suggest a method for stabilizing the cumulative rewards that works by calculating the
relative difference of the cumulative rewards for each asset with respect to a baseline, similar to
the method with which the advantage values are stabilized. By choosing as baseline the cumulative
reward of an asset that is included in the portfolio, we may reduce the number of values that need to
be estimated as well. By convention, we define the baseline that is subtracted from the cumulative
rewards as the cumulative reward of the risk-less asset. We denote the stabilized values using a hat-
notation and we will show that we can use these values to replace the unstabilized values without
loss of generality.

f̂t = ft − b

= ln (Ct(πt ◦ γ) exp {ft+1})− b

= ln (Ct(πt ◦ γ) exp {ft+1 − b})

= ln
(
Ct(πt ◦ γ) exp

{
f̂t+1

}) (15)

softmax(f̂t) = softmax(ft − b)

=
exp{ft − b}
|exp{ft − b}|

=
exp{ft} exp{−b}
|exp{ft}| exp{−b}

= softmax(ft)

(16)
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4 Deep reinforcement learning methods

Amongst the class of model-free reinforcement learning methods, methods can be subdivided based
on the method that is used to estimate the values to which the agent is reinforced. The reason for
this division lies in the definition of the action space, which can be either discrete or continuous. In
the case of a discrete action space, one might estimate the value function for each action individually.
In a continuous action space there exist an infinite number of actions such that the former method
becomes impossible. Even though a continuous action space might be discretized, this quickly
becomes infeasible for high dimensional action spaces. To overcome this problem, the problem can
be decomposed by training an actor network to output the actions and training a critic to estimate
the value function given an action. This gives rise to the existence of critic-only, actor-critic, and
actor-only methods. Where in the last method we use the knowledge that is available about the
future dynamics of the environment to directly reinforce the agent.

4.1 Critic-only methods

In the first class of deep reinforcement learning methods, an agent learns to interact with its envi-
ronment by learning the state-action value function that maps states to estimates of the expected
cumulative rewards for each individual action in a finite set of actions. It was first proposed by
Mnih et al. as the Deep Q-Network (DQN), in which the network has an output node for every
action in the finite set of actions depending on the problem at-hand. In the original DQN paper,
the authors learned an AI agent to play Atari games using a convolutional neural network to map
pixilated on-screen data of the video game to actions that were performed by the character of the
video game.

The state-action values, or Q-values, are denoted by Qt(s, a) and are defined as the expected cu-
mulative reward of performing action a at state s as Qt(s, a) = E[Rt|st = s, at = a]. The agent
then chooses the action based on a greedy policy that performs the action with highest expected
cumulative reward by a∗t = argmaxa∈A {Qt(s, a)}. Data is collected and stored in a data buffer
by observing the immediate rewards and state transitions that occur after performing actions. The
data buffer is a collection of tuples (s, a, r, s′) containing the state, action, reward and next state
that have previously been observed. This data is used for learning using the method of temporal
differences, in which the temporal differences in (17) are calculated as target values for the Q-value
estimates of the agent. Usually by minimizing the mean squared error between the Q-values and
the temporal differences using mini-batch gradient descent.

Qt(s, a)← rt +max
a∈A
{Qt+1(s

′, a)} (17)

In a financial market, the action space could consist of actions that tell the agent which assets to sell,
hold or buy. Optionally, the discrete action space could be expanded such that it also includes for
each action a quantity or proportion of the asset to sell, hold or buy in order to manage risk. This
approach however suffers from serious drawbacks as discretization of a high-dimensional action space
means an exponential number of actions as well. As we do not wish to suffer from an exponential
number of actions, we choose to not discretize the action space and deal only with actions that
indicate selling or buying the full amount of assets. But even then some adjustments need to be
made in order to keep the number of output nodes small in our neural network. A combinatorial
action space as was proposed by Park et al. will inevitably result in an exponentially large set
of actions. The method that is proposed in this thesis overcomes this problem by exploiting the
theoretical properties of the Markov decision process that has been defined in the precious section.
As a result, instead of estimating the action values for each possible combination, we will estimate the
value function for each asset and derive the greedy policy using the knowledge about the structure
of the market and transaction costs that have been derived in the previous section.
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In Section 3 we have defined a general problem definition for a continuous action space. We will now
discretize the continuous action space into a discrete action space by adding additional constraints
to Definition 3. To do so, we will define a set of m equally-spaced values between zero and one that
that each entry is able to take in the action matrix A. For a given value of m ≥ 2, we define the
action space of a single entry as auv ∈ {i/m, i = 0, 1, . . . ,m− 1} for each pair of assets u, v ∈ V . The
size of the complete action space is then equal to mn×n and is thereby exponential in the number
of assets in the portfolio for any value of m ≥ 2. To ensure that the critic method is scalable in
the number of assets that are included in the portfolio, we will derive a policy from our theoretical
framework in 3 that requires a number of output nodes in our network that is only linear in the
number of assets that are included in the portfolio.

We wish to find the policy that maximizes the advantage values in (14). Note that in the case
that ft is known, we can find this policy by solving the simple optimization problem in (18). The
solution is the greedy policy in (20). This policy makes use of the fact that ft is given. In reality,
the exact value of ft is however unknown as it is defined as a limit as the time horizon approaches
infinity. Instead, we may estimate it using for instance temporal difference learning on the recursive
expression of ft in (14). We can express a single element of ft in (19) and use our solution from (18)
to derive a simple expression of the temporal difference for each of the assets.

max ln
∣∣(π ◦ γ)′f ∣∣

s.t. π1n = 1n
⇔ max

∣∣(π ◦ γ)′f ∣∣
s.t. π1n = 1n

=
max

∑
u,v∈V πuvγuvfv

s.t.
∑

v∈V πuv = 1, v ∈ V

=
∑
u∈V

(
max

∑
v∈V πuvγuvfv

s.t.
∑

v∈V πuv = 1

)
=
∑
u∈V

max
v∈V
{γuvfv}

(18)

ftu = ln

(
ctu
∑
v∈V

πt+1
uv γuv exp {ft+1,v}

)

= ln ctu + ln

(
max
v∈V
{γuv exp {ft+1,v}}

)
= ln ctu +max

v∈V
{ln (γuv exp {ft+1,v})}

= ln ctu +max
v∈V
{ft+1,v − βuv}

(19) πuv =

{
1 if v = argmaxw∈V {γuwfw}
0 otherwise

(20)

Let fϕ(Xt) ∈ Rn denote the output of our critic network that are the estimates of the temporal
difference targets in (19). Where ϕ are the tunable weights of the critic network and Xt is the data
matrix containing the history of the market. The temporal difference targets in (19) can then be
learned to the critic network by minimizing the mean squared error between the estimates and the
target values with respect to the weights of the network ϕ as in (21).

ℓt(ϕ) =
1

n

∑
u∈V

(
fϕ
u (Xt)− ln ctu −max

v∈V
{ft+1,v − βuv}

)2

(21)
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4.2 Actor-critic methods

As the critic method uses a discrete action space, it is unable to diversify the portfolio. In order to
manage risk, we require a policy that can perform continuous actions such that it does not completely
allocate all value in a single asset. Then we can learn our agent to manage risk by optimizing over
a risk-adjusted objective function such as the Sharpe ratio. As we have seen, discretization of the
action space using a critic-only method results in an exponential number of actions. By defining
an actor agent that outputs continuous action matrix directly we can overcome this problem. We
still however need to reinforce our agent somehow. This can be done using an actor-critic method
in which we learn a critic network to estimate the value function to which the actor is reinforced.

Let πθ be the actor network with weights θ and fϕ denote the critic network that estimates the
passive local value function. We use the result in (13) to derive the temporal difference targets that
are learned to the critic network. Then, the actor network tries to maximize the advantage function
using the estimates of the critic network.

ft = ln
(
Ct

(
πθ(Xt+1) ◦ γ

)′
exp

{
fϕ(Xt+1)

})
ℓt(ϕ, θ) =

1

n

(
fϕ(Xt)− ft

)′ (
fϕ(Xt)− ft

)
− ln

∣∣(πθ(Xt) ◦ γ
)
softmax(ft)

∣∣ (22)
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4.3 Actor-only methods

The last method that is proposed in this thesis is the actor-only method, in the agent is reinforced
directly with respect to historic data data using direct reinforcement learning. In direct reinforcement
learning, we have available a direct relationship between the actions of the agent and the reward
function such that we do not need to estimate the rewards using a critic network. We effectively
replace the estimates of the critic network by approximations of the value function that are directly
calculated from the data itself. To explain as to why we can do this, we need to consider the
assumptions that have been made on the time horizon of the Markov decision process. Previously
we have assumed that the time horizon is potentially infinite. As there is no clear endpoint at which
we would like to stop the process, we simply assume that the time horizon is infinite. The implication
of an infinite time horizon however is that the exact future reward is unknown. Previously we solved
this problem by estimating the future rewards, but now we would like to derive the future rewards
directly from the data as an approximation method. We relax the assumption of the infinite time
horizon and we will optimize over a finite time horizon such that we can derive a closed form solution
to the recursive equations that we have derived in the problem definition in Section 3.

The loss function of the actor-only method can be derived almost directly from the expressions in
(14) by substituting for the policy action πt the output of the actor network πθ(Xt). We then define
the time horizon of the Markov decision process as t = 1, 2, . . . , T , where T is the last available time
period in our data set. We assume that we stop trading at time T such that fT+1 = 0, which ensures
that (23) has a closed form solution. We can now complete the recursion and find f1, f2, . . . , fT ,
which we use to directly reinforce our agent using the loss function ℓt(θ).

ft−1 = ln
(
Ct−1

(
πθ(Xt) ◦ γ

)
exp {ft}

)
, t = T, T − 1, . . . , 2

ℓt(θ) = − ln
∣∣(πθ(Xt) ◦ γ) softmax(ft)

∣∣ , t = 1, 2, . . . , T
(23)

14



5 Data

Some cryptocurrency exchanges offer publicly available data though application programming inter-
faces (API’s), which can be accessed through representational state transfer (REST) HTTP requests.
This means that data can be accessed fast and easily without complex coding and data processing.
The proposed method can be applied to any financial exchange that offers historical price data as
the price changes are used to reinforce our agent. Binance is used as data source for the following
reasons: a large number of cryptocurrencies can be exchanged, a large amount of data is available
as sampling intervals start at one minute, it offers a sufficient number of features and it contains
historical data that traces back to 2017 for the oldest cryptocurrencies.

Instead of on-line learning, historical data can be used to speed up the learning process. Two
data types that are typically used are order book data and candlestick charts. In our case, at least
the candlestick data is required as it contains the historical prices used for reinforcement. For rea-
sons of simplicity, order book data is not considered. It also makes comparison of the performance
to performance in other literature more relevant as in many cases only candlestick charts are used.

Binance offers historical candlestick data through a public API endpoint [Binance, 2022]. A candle-
stick summarizes the evolution of the price of a financial instrument in the time period between the
open and closing time. It is specified by an open, high, low and closing price. Where the open and
closing prices are the instrument’s prices upon open and closing times and the high and low prices
are the maximum and minimum value of the price in the period between the open and closing times.
This information can be graphically presented in a candlestick chart, which is a series of sequential
candlesticks over time. Nowadays, candlesticks are typically accompanied by other data types such
as information about the trading activity within the period. Table 2 shows the features that are
available through Binance’s candlesticks API endpoint.

Column Feature
1 Open time
2 Open
3 High
4 Low
5 Close
6 Volume
7 Close time
8 Quote asset volume
9 Number of trades
10 Taker buy base asset volume
11 Taker buy quote asset volume

Table 2: Binance’s historical data features.

For reasons of simplicity, only the fifth column containing the closing prices were used. They were
used as input data for the agents as well as a means to reinforce the agents with respect to its
output. The immediate reward values to which the agent is reinforced can be expressed using simple
mathematical functions using the growth-factors cut = pt+1

u /ptu for each asset u ∈ V and time period
t = 1, ..., T − 1. By using the log-changes, which are calculated by taking the logarithm of the
growth-rates, as input data, the prices data is both linearized and stabilized. The input data was
calculated from the growth rates by Z-Score normalizing the log-changes for each asset individually
as xt

u = (ln ctu − µu) /σu, where µu and σu are the mean and standard deviation of the log-changes
of asset u respectively for each u ∈ V .
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6 Experimental procedure

To determine the effectiveness of the methods, the three methods proposed in section 4 will be
evaluated and their performance will be compared against two baseline methods. Assets that are
included in the portfolio are selected by highest traded volume during the validation period, under
the condition that the asset’s first data entry dates before the start of the training period. Only time
periods for which data was available for every asset was used, others were removed. To ensure fair
comparison, the same neural network architecture was used for each of the methods. Only minor
changes were applied depending on the needs of the method at-hand. The first baseline method
is the reinforcement learning method proposed by Jiang and Liang, in which commission fees are
ignored. This provides a suitable comparison for our models as we hope to improve the profitability
of the model by correctly modeling the transaction costs. Second, a equally weighted buy and hold
method (EWBH) is used as a baseline. In which we initially divide all our funds equally over the
assets in the portfolio and do not perform any transactions over the entire test period.

To accurately evaluate performance, time series cross-validation can be applied as visualized in
Figure 1. This method ensures that the chronologically ordered structure of the data is not violated
while using all historical data that is available for training at each test period. Part of the training
data will be kept separate as a validation set for hyperparameter tuning and model selection. Early
stopping is applied by monitoring the validation score and terminating the training process as soon
as the validation score has failed to improve for over a certain number of epochs. By choosing to
validate the models in this way, we assure that the data that is used in the training phase is relevant
for the back-test period.

Figure 1: Time series cross-validation
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6.1 Back-testing

To compare the performance of the methods, back-tests are performed on the test set after early
stopping is executed based on the validation score. The weights of model with the highest validation
score are recovered and are used for back-testing. To ensure fair comparison, the rules of the back-
test procedure is the same for each method. In Section 3, we have defined a general formulation
of the action space in Definition 2 that will be used for the back-test simulation in Algorithm (1).
Here, each agent takes the market data matrix Xt and the current portfolio state yt as input and
returns as output the exchange matrix Qt. That is in turn used to transition the portfolio to the
next state as defined in the problem definition in Section 3.

In the case of the actor-critic and actor-only methods, we have defined a redistribution matrix At that
can be used to calculate Qt by multiplying the rows of the redistribution matrix At by the portfolio
entries in yt via Qt = Diag (yt)At. For the critic-only method, the transition matrix can be found by
selecting for each asset the target asset with maximum state-value estimate. In the case the portfolio
distribution is outputted directly however, an optimization problem must be solved to find the action
matrix given the current distribution and the desired target distribution. A linear programming (LP)
formulation was proposed by Betancourt and Chen to solve this optimization problem. We take as
an input the current portfolio y and a target distribution a, and return the action matrix A by
minimizing the total traded volume. Let LP (yt, at) be the result of this optimization problem,
denoting the penalty multiplier that results from the transactions that are required to realize the
target distribution at when starting at distribution yt. It is defined as |ŷt| / |yt|, where ŷt in this case
is the portfolio that results from executing the optimal exchange quantity matrix Q that is found.
Using the general problem definition 2 we can then find ŷt as ŷt = yt + (Q ◦ γ −Q′)1n.

Algorithm 1 Back-testing procedure

Input: (D = {(Xt, Ct), t = 1, 2, . . . , T} , agent)
Output: (µr, σr)
Initialize y1 ∈ Rn

+

for t = 1, 2, . . . , T do
Qt = agent (Xt, yt)
yt+1 = Ct

(
yt +

(
Qt ◦ γ −Qt

′)1n

)
rt = ln |yt+1| − ln |yt|

end for
return r1, r2, . . . , rT

6.2 Network architecture

Several neural network architectures have been proposed in the literature that have been shown to
be able to beat the market. As the evaluation of the performance of the architecture is outside of
the scope of this thesis, the main requirements for the architecture is that its performance has been
demonstrated literature, it is easy to implement and convergence is fast. For instance, [Jiang and
Liang, 2016] proposed a convolutional neural network architecture for solving the DPMP with a
portfolio consisting of 12 assets including the risk-less asset. They found that increasing the com-
plexity of their network did not improve test results due to overfitting and they have demonstrated
in their paper that this model was able to generate steady profits. As the method that has been
implemented by the authors is similar to the methods that are proposed in this thesis, and the ar-
chitecture is relatively small, easy to implement and has been shown to converge relatively fast, this
architecture was used as a basis for each of the reinforcement learning methods. Only small changes
were applied to accommodate for the differences between the reinforcement learning methods.

17



A schematic overview of the differences between the networks architectures that were used in each
of the methods is shown in Figure 2. The network architecture was adapted to the individual
methods depending on their state-dependency, the formulation of the action space and the use of
value estimates for methods using temporal difference learning. In Figure 2, it can be seen that the
architecture is divided into individual components that were included in the architecture depending
on the method. The components can be grouped depth-wise into three layers: as shown in Figure 2
we have, from top to bottom, the input layers (shown in red), a hidden layer (shown in green), and
the output layers (shown in blue). All methods share the same prices input layer in the top right of
the figure, as well as the same hidden layer that is used for processing and combining the features
generated in the convolutional layer. The other input layer contains the portfolio entries and may
be used in methods in which the output of the network depends on the state of the portfolio. Such a
method will not be implemented however here and this is shown only for the purpose of illustration.
The output layers in blue at the bottom of the figure correspond, from left to right, to the output
of the portfolio distribution, value estimates, and redistribution matrix.

Figure 2: Architecture and its decomposition into individual components of the artificial neural
network. The architecture is based mostly on the one proposed by Jiang and Liang, with the only
adaptation being the variable action space and input layers, as well as the introduction of batch
normalization layers prior to the ReLU activation function.

Two types of input layers are used to feed the data about the state of the system to the model. First,
the prices input layer processes the prices data using a one-dimensional convolution with kernel with
kernel size four. The number of filters is set equal to n, the number of assets that are included in the
portfolio. The remaining part of the layer consists of a feed-forward through a batch normalization,
ReLU and dropout layer, where dropout was applied with dropout rate 0.7, as suggested by Jiang
and Liang. Finally, the output is flattened such that it can be concatenated with the portfolio entries
and fed to the hidden layer. The second type of input layer is the input layer of the portfolio entries
and is used in methods in which the output of the network depends on the state of the current
portfolio.

The hidden layer is used in all methods. Its purpose is to process and combine the features that are
generated by the convolutional layer and (optionally) the portfolio entries. It is a fully connected
layer consisting of 500 neurons to which the same structure of batch normalization, ReLU activation
and dropout is applied. Again with dropout rate 0.7. The hidden layer allows correlation structures
between the features to be modelled and can be seen as the intelligent part of the network that
connects the information that is available in the input features to the implications that they have
on the expected outcome of the market.
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Finally, the output layers are chosen depending on the formulation of the output space of the method.
Three types of output layers are used. Firstly, the portfolio distribution layer is defined as a layer
consisting of n nodes to which the softmax activation function is applied. This output layer is used
for methods that directly output a target distribution of the portfolio, which is done in all of the
reinforcement learning baseline methods of Jiang and Liang, Moody and Saffell and Betancourt and
Chen. The second output layer is used in the actor-only and actor-critic methods proposed in this
thesis. It is a layer consisting of n2 nodes, which is reshaped into the n × n redistribution matrix,
over which the softmax activation function is applied over the individual rows. The last output layer
is used in the actor-critic and critic-only methods and consists of n − 1 nodes, which are used to
estimate the value function to which the agent is reinforced.

6.3 Hyperparameter settings

As in any machine learning algorithm, hyperparameters have to be tuned as they determine the
way the agent learns. The methods that have been developed in this thesis make use of less tunable
parameters due to the fact that they exploit the properties of the Markov decision process according
to which the DPMP is modeled. Due to the smaller number of hyperparameters, tuning of these
models was found to be considerably more efficient than was the case in other models. Table 3
shows the tuned hyperparameter values that have been used for each of the reinforcement learning
methods.

Name Value
Risk-less asset Bitcoin

# Assets 12
Interval 30 minutes

Commission rate 0.0025
# Lags 50

Learning rate 1e-4
# Batches per epoch 8

Patience 200
Warm-up 50

Table 3: Hyperparameters and their respective values as implemented in the experimental procedure.
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7 Results

Prices data was gathered from Poloniex for 11 assets such that including the risk-less asset, the
portfolio consisted of twelve assets. Assets were included based on highest total traded volume
of during the validation period. The experiments were performed using data from 2015/06/27 to
2016/08/27 and the risk-less asset was chosen as Bitcoin. Both the validation and test periods
consisted of 7 weeks of data and the experiment was repeated for three test periods. The test
periods were thus defined as the time periods between 2016/04/02 to 2016/05/21, 2016/05/21 to
2016/07/09 and 2016/07/09 to 2016/08/27. Results were gathered according to the principle of
time-series cross-validation in Figure 1 with a constant number of training observations. By fixing
the number of training observations, we prevent that (i) the network overfits on early test periods
that don’t have as much data available and (ii) it underfits for later test periods when more data
becomes available. Moreover, by fixing the number of training examples, we keep the batch size
constant and prevent the need for adjustable tuning over the different periods.

Early stopping was applied with a patience of 200 epochs after which the weights of the best
scoring model on the validation set were recovered. The methods were allowed a warm-up time
of 50 epochs, meaning that during the first 50 epochs, the validation score was left unmonitored
to allow the validation score to stabilize in order to prevent premature termination of the training
process. Data was shuffled and split in eight equal-sized batches that were fed to the optimization
algorithm one by one. In the case of the Actor-Only method, the target values were updated after
each training epoch and were directly used to compute the validation score as well. Finally, after
reaching failing to improve the validation score for 150 epochs, back-tests were performed on the
test set using the back-test algorithm in Algorithm 1.

Figure 3 shows the back-test results for each method over each of the three test periods. The vertical
axis shows the total logarithmic return over time for each of the methods. The horizontal axis shows
the number of time periods (30 minutes) that have passed since the beginning of the test period. In
the case of the reinforcement learning methods, the portfolio was initialized as y1 = (1, 0, 0, . . . , 0),
such that during each back-test, the agent started with a single unit of the risk-less asset. In the case
of the baseline method, which is the equal weighted buy and hold (EWBH) method, the portfolio
was initialized as 1n/n, after which no transactions were applied during the remainder of the test
period.

Figure 3: Back-test results for each of the methods for each of the three test periods. With, from
left to right the tests period 2016/04/02 to 2016/05/21, 2016/05/21 to 2016/07/09 and 2016/07/09
to 2016/08/27. The vertical axis shows the total logarithmic return, which is equal to the natural
logarithm of the total portfolio value. The horizontal axis shows the total number of time periods
of 30 minutes that have passed since the start of the test period.
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Some performance measures were calculated from the back-test results and they are reported below
in Table 4. These are simple functions of the rewards rt for each time period as defined in (8). Apart
from the average return µr, we also include a variety of performance measures that tell us something
about the risk that results from the trading methods. The values of σr and σ−

r measure the risk
that is involved in each of the methods. Where σr is simply the standard deviation of the reward
values, and σ−

r is defined as the down-side risk, which is the standard deviation of the downside
losses r−t = min {rt, 0}. Finally, in the far right two columns we have the Sharpe ratio Sr and the
Sortino ratio S−

r that are calculated as µr/σr and µr/σ
−
r . They are measures of risk-adjusted profit

as the ratio of profit to risk, where the Sortino ratio adjusts only for downside risk.

µr (×10−4) σr (×10−3) σ−
r (×10−3) Sr (×10−3) S−

r (×10−3)
Actor-critic 6.39 7.62 3.93 8.39 16.25
Actor-only 6.84 8.50 5.24 8.05 13.05
Critic-only 3.43 8.55 5.17 4.01 6.63

Jiang 3.90 9.02 5.16 4.32 7.56
EWBH -0.60 2.74 1.71 -2.17 -3.49

µr (×10−4) σr (×10−3) σ−
r (×10−3) Sr (×10−3) S−

r (×10−3)
Actor-Critic 11.13 14.36 8.03 7.75 13.85
Actor-Only 11.15 15.30 8.66 7.29 12.88
Critic-Only 13.40 15.75 8.88 8.51 15.10

Jiang 8.62 16.04 9.06 5.37 9.51
EWBH 0.99 7.92 4.82 1.26 2.06

µr (×10−4) σr (×10−3) σ−
r (×10−3) Sr (×10−3) S−

r (×10−3)
Actor-Critc 4.54 9.50 5.28 4.78 8.60
Actor-Only 2.74 7.64 4.44 3.58 6.16
Critic-Only 3.18 10.69 6.42 2.97 4.95

Jiang 0.14 11.76 7.08 0.12 0.20
EWBH 1.29 3.68 2.18 3.49 5.90

Table 4: Back-test results for the reinforcement learning and baseline methods on the three test
periods. With, from top to bottom, test period 1 from 2016/04/02 to 2016/05/21, test period 2
from 2016/05/21 to 2016/07/09 and test period 3 from 2016/07/09 to 2016/08/27.

Considering the results in Table 4, we see that the baseline method EWBH has lowest average
returns during the first two test periods, and second lowest in the third period. As this method
completely relies on the performance of the market, the reinforcement learning methods have beaten
the market in almost all cases. With the exception of the method proposed by Jiang and Liang, and
only for the third test period. On the other hand, we can clearly see that the EWBH-strategy has
lowest risk as measured by both σr and σ−

r of all methods. This (perhaps inevitable) result is the
well-known trade-off of profit and risk that one is confronted with upon investing in volatile assets
such as cryptocurrency. Still however, after adjusting the profit for risk, the reinforcement learning
methods score considerably higher on the risk-adjusted performance measures of the Sharpe (Sr)
and Sortino (S−

r ) ratios. With the only exception of the method proposed by Jiang and Liang, and
the Critic-Only method during the last test period.
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Comparing the Critic-Only method with discrete action space to the Actor-Critic and Actor-Only
methods with continuous action space, we see that in each of the three test periods the Critic-Only
method has highest risk in both measures, with the exception of the downside risk during the first
test period. In terms of absolute profit, the Critic-Only method scores considerably lower than the
Actor-Critic and Actor-Only methods during the first test period and scores relatively low as well
during the third test period. With the great exception however for the second test period, where it
outperforms all other models in terms of absolute profit and surprisingly also in terms of the risk-
adjusted performance measures of the Sharpe and Sortino ratios. In general however, the Critic-Only
method shows unstable results over the test periods and it has been shown that even in terms of
absolute profit, the Critic-Only method does not necessarily perform better than the Actor-Critic
and Actor-Only methods. It is thus safe to say that by using a continuous action space instead of
a discrete one, we have successfully reduced risk. This was expected considering the ability of the
agent to diversify the portfolio.

Comparing the methods with continuous action space to each other, we see that the Actor-Critic
method outperforms the Actor-Only method in all three test periods based on the risk-adjusted
performance measures that are the Sharpe and Sortino ratios. In terms of absolute returns, the
Actor-Only method scores higher on the first two test periods, but shows a sudden drop in perfor-
mance over the third test period. As to why this is the case we can only speculate, but a probable
reason for this is instability of the training process. As the number of models that are included
in the experimental procedure is quite large, and models were re-trained for each test periods, the
learning rate was set relatively high to promote fast convergence. Perhaps this has resulted in un-
stable results. Where some methods more than others have suffered due to the fact that the same
hyperparameter settings were used for all methods.
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8 Limitations and recommendations

It is not unthinkable that the outcomes presented in this thesis depend on the case-specific problem
instance, i.e. the graph G = (V,E) that represents the structure of the market, the number of
assets that are included in the portfolio, the commission fee rate ζ etc. In order to obtain more
robust results, the experimental procedure presented in Section 6 should be repeated while varying
the problem instance. For example by performing the experiment for a variety of markets. Or
to repeat the experiment for a set of different commission fees to assess the extend to which the
methods are able to adjust the policy for transaction costs. Expanding on instance-specific biases
that are imposed on the learning process, we consider the fact that commission fees might have
changed over the course of time. Or that the structure of the market may have changed over time
such that the penalty matrix γ in reality changes over time. These are all factors that influence
the way in which consumers interact with the exchange and thus how prices change over time.
Gathering and implementing this information may be difficult. In general, to avoid such problems,
it is recommended to consider mostly recent data for learning such that these changes in conditions
become less influential.

Even though the network architecture is outside the scope of this thesis, it would be interesting to
explore more developed and complex architectures than the one used here. Several other options for
network architectures have been proposed in literature with promising results on recent data. For
example the results obtained by Betancourt and Chen, where a significantly larger network structure
was used that includes multi-head attention layers to extract features from the data. In general, it
is very reasonable to assume that the performance depends on the network architecture such that
exploration of this area is highly recommended. Moreover, for reasons of simplicity, only the prices
data was used as an input to the agents. As the closing prices capture only a small part of the state
of the market, it is possible that by including more features, the performance may be improved.

Several limitations exist that could negatively impact the performance of a real-time implementa-
tion of the proposed methods in financial market. First and foremost, depending on the volume
of the orders that are placed by the agent, interaction of the agent with the financial market may
influence the state of the market and thus the profitability of the actions. As we have only made use
of historical price data, the true influence that the actions would have on the state of the market
can not be learned. For small volumes however, it can safely be assumed that the influence of the
agent’s actions on the state of the market is negligible.

Another complication that might occur in a real-time implementation is the occurrence of slip-
page, which is defined as the discrepancy between the expected and the actual price of an executed
order. Depending on the size of the slippage and the profit margins of the trades, this could hurt
performance and should thus be considered in order to manage risk. Especially in the case a high
commission fee is applied or in the case of high sampling intensities, where the price changes are
expected to be small. As the sampling intensity decreases however, the profit margin increases in size
such that the negative effect that slippage has on profitability becomes smaller. Moreover, slippage
depends on the liquidity of the market and may even be negligible when dealing with markets with
high liquidity. As a result, in some cases, the effect that slippage has on total profitability may be
sufficiently small such that they may be ignored in the model.
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To deal with the aforementioned complications that could arise due to slippage or capital impact,
one could apply on-line learning strategies. In on-line learning algorithms, the agent explores an
unknown environment as it simultaneously stores data about the state transitions in a data buffer
that is sampled for learning. By observing the state transitions that follow its actions, the agent
could learn the influence of its own actions on future rewards. In theory the agent could then exploit
its influence over the market prices in order to generate profit, especially when trading in low-
volume markets where its influence is larger. Furthermore, prices of executed orders could be stored
and used to learn to predict the occurrence of slippage based on the state of the market. As the
introduction of slippage and capital impact severely complicate the dynamics of the environment, if
one wishes to, it is highly recommended to first try and implement model-free reinforcement learning
algorithms; they do not require any previous knowledge about the dynamics of the environment.
On the other hand, some of the most successful reinforcement learning implementations make use of
model-based reinforcement learning algorithms. As we have seen in the results section, by exploiting
the problem structure we have improved the learning efficiency as well as improved the performance.
Even though the model does not incorporate for slippage or capital impact, it could serve as a base
for a model that does consider these factors in the future.

It has been shown that the proposed method is able to generate profit by accounting for the incurred
transaction costs in the decision mechanism of the model. This means that the model is able to
maintain a profitable strategy for smaller profit margins than when compared to methods that do not
account for transaction costs. Thereby it is able to trade with shorter holding periods. It would be
interesting to see how far we can take this by decreasing the holding period. Modern cryptocurrency
exchanges offer historical candlesticks data with sampling frequencies as high as one observation per
minute. Alternatively, the sampling frequency could be increased even further by making use of
data streams, which sometimes even have sampling frequencies of one observation per millisecond.
The enormous amount of data that comes available for such high sampling frequencies could lead to
better generalization of the models, as well as it could give more reliable performance estimates. No
to mention the benefit of being able to respond quickly to market changes. Moreover, by the law of
large numbers we get the result that as the number of trading periods increases, the long-term profit
converges to the true performance of the agent. Such that the probability of unexpected long-term
losses decreases as the number of periods increases.
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9 Conclusion

In this thesis, we have proposed a general reinforcement learning framework for solving the dynamic
portfolio management problem in a general financial market. Where we have developed a model-
based reinforcement learning algorithm that enables an artificial neural network agent to learn to
assess the trade-off between expected benefit and transaction costs, while managing the risk to which
the portfolio is exposed. We have shown very clearly that by including the future dynamics of the
market with respect to the price changes and transaction costs, we have both increased profit and
reduced risk. By working out the future dynamics of the environment as a Markov decision process,
we have improved the learning efficiency of the reinforcement learning method. By redefining the
continuous action space using a continuous redistribution matrix that contains asset pair-specific
actions, we have derived a differentiable reward function such that no optimization methods are
needed to determine transaction costs. Rather, the reward function is fully differentiable, improving
the efficiency of the learning method.

In the future, the proposed learning method can be extended to deal with more complex scenario’s.
Most notably, by implementing an on-line learning method we could learn an agent to take advantage
of the influence that it has over the market prices in order to generate profit. As we have improved
the learning efficiency as well as the ability of the agent to make short-term decisions by including
transaction costs in the model, we may try to increase the trading frequency. Greater quantities of
more relevant data may be collected by shortening the decision interval. It is highly recommended
to explore more complex network structures, as it is highly doubted that the network structure used
in these experiments may realize these predictions.

Model-free reinforcement learning is often seen as a brute-force technique, where compensate for our
lack of knowledge about the dynamics of the environment using incredible computational power.
Even though such equipment might be incredibly powerful and lead to better results, the limitations
that arise due to our lack of knowledge persists. The absence of a simple, but well-defined model
does impose a bottleneck to the training process. By developing model-based reinforcement learning
methods we might improve the efficiency of the learning process and eliminate time-consuming
processes such as exploration of an unknown environment, or learning a highly complex and unknown
reward function. I hope that this thesis opens the door to a real-time implementation of deep learning
agents in financial markets, and I do believe that this method can be used to develop on-line learning
strategies that may act on arbitrarily small decision intervals in the near future.
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10 Appendix: Python implementation

This project was implemented using the Python programming language, specifically using the Ten-
sorFlow library for deep learning. Where the auto-differentiation tool was heavily used for the
custom loss functions used in reinforcement learning. The code was run on Windows 10 OS 64-bit,
with processor Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz, 8.00 GB of DDR3 RAM memory,
with NVIDIA GeForce RTX 2060 GPU 6GB memory.

Data was gathered from Poloniex’ public API with end-point https://api.poloniex.com/ using REST
requests and processed using Python’s NumpPy package. The full project is included in a ZIP
file. Hyperparameters can be tuned in the JSON files in the settings folder for the individual
methods. Code for each of the methods and baselines can be found in the methods folder. The
complete experimental procedure can be run by executing the main file. Results are then gathered
automatically in a new folder that is named as the time stamp of the time of execution of the code
in the results folder. The results folder includes for each of the methods the backtest results for
training, validation and test periods. As well as a text file showing loss of the current training session
that to monitor the progress.
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