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Abstract

We investigate the relation between extreme operational risk (OpRisk) losses and economic

categorized factors. Such a relation is recently investigated by Groll et al. (2019) using the

gamboostLSS (Mayr et al. (2012)) gradient and log-likelihood boosting optimizer. Our simula-

tion study shows that this optimizer, although the log-likelihood iteratively improves, associated

in- and out-of-sample parameter estimates deteriorate after a bliss number of iterations. There-

fore, stopping criteria must be investigated. Furthermore, we introduce a robust gamboostLSS

alternative to stabilize model term updating schemes since the scale parameter of the Gener-

alized Pareto Distribution (GPD) dominates classical log-likelihood-type updating procedures.

We apply our methodology in a real-world application using UniCredit’s (UC) OpRisk loss data

and twenty economic factors. We identify high UC’s Tier-I capital ratios, low Italian unemploy-

ment rate (UR IT), and high United States’ financial market volatility as key drivers for the

loss severity, whereas high Milano Italia Borsa returns, high UC’s deposit growth rate, and low

UR IT drive the loss frequency. We use the categorized risk drivers in a scenario analysis and

find that these factors are able to explain differences in total losses among economic conditions

of the business cycle. Associated capital charges are within a fixed set of 720 charges and hence

banks could reduce liquidity risk by the use of our methodology.

Keywords: Basel IV, categorical covariates, GAMLSS, gradient boosting optimizers, L1-norms, opera-

tional risk, requested capital charge.
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1. Introduction. Catastrophic losses in financial portfolios led to the default of

many financial institutions during the 2007-2010 subprime mortgage crisis. A notorious example

is the fourth-largest investment bank of the United States, Lehman Brothers. These extreme

losses partially originated from Operational Risk (OpRisk). Under Basel IV, banks currently

have to meet an OpRisk capital charge using a simple calculation because OpRisk is extremely

difficult to model due to its undiversifiable and unexpected nature. Nevertheless, in this thesis

we explore the possibility to model extreme OpRisk losses.

We investigate the relation between extreme OpRisk losses and economic categorized factors.

Such a relation can help to identify OpRisk drivers and to improve capital charges. We add to

the literature by examining capital charges for models that include economic categorized factors.

Furthermore, we examine these charges for two conditions of the business cycle, namely crises

and expansions. Moreover, we examine current gradient boosting optimizers for Generalized

Additive Models for Location, Shape and Scale (GAMLSS; Rigby and Stasinopoulos (2005)),

GAMLSSBoostAlt. We benchmark the best performing Groll et al. (2019) models, detailed in

Section 4.2.4, since they did a similar study.

The Basel Committee for Banking Supervision (BCBS) defines OpRisk as ‘The risk of loss

resulting from inadequate or failed internal processes, people and systems or from external

events.’ (BCBS (2004)), and Basel II lists seven risk categories, also known as event types,

that reflect all OpRisk causes. For future reference, we refer to the associated realized losses

as OpRisk losses or simply OpRisks. We estimate total OpRisk losses over a time frame by

the loss severities, which are the financial values of losses; and the loss frequencies, which are

the probable number of losses over time. We focus on the loss severities since they drive total

OpRisks (Hambuckers et al. (2018)). OpRisk loss data is scarce and hence non-parametric

methods, such as historical simulation, almost surely lead to huge estimation uncertainty. We

therefore use extreme value theory (EVT; Embrechts et al. (2013)) techniques to parametrically

model the tail of a loss series.

We apply the peaks-over-threshold (POT) method, which only considers losses above a

threshold. The resulting losses, loss severity exceedances (LSEs), are obtained by subtracting

a threshold from the loss severities above this threshold. Loss frequency exceedances (LFEs)

are the associated number of losses above a threshold. POT does not consider losses under a

threshold since these losses do not reflect the tail of loss series. LSEs approximately follow a

scaled generalized Pareto distribution GPD(ξ, σ), with a shape (ξ) and scale (σ) parameter,

for a sufficiently high threshold (Balkema and de Haan (1974)). Both GPD parameters have

their own linear predictor as we use linear relations between parameters and covariates. We use
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continuous (metric) and categorical covariates, such as risk categories and economic factors, to

model OpRisk losses.

The use of categorical covariates has clear benefits for banks: since we estimate one pa-

rameter for each non-reference covariate group, the continuously changing capital charge under

metric covariates is reduced to a fixed set of capital charges under the categorical covariate

representation. The requested capital charges do not change when data in the next time period

fall into identical groups as the current time period. If new economic data do fall in other

groups, then these groups could actually be fused by fused L1-norms (later introduced) and

hence capital charges remain identical. Even if new economic data fall into completely different

groups, for example when there is a shift in economic condition, then the new capital charge

is still within the set of fixed and known capital charges. With regard to the economic factors

that we use: the size of OpRisk losses largely depend on the availability of money, which usu-

ally is higher during expansions. Levels of economic factors reflect the current condition of the

business cycle. Therefore, economic factors proxy expansions, and expansions drive extreme

OpRisk losses. This latter is supported by the scenario analysis of Hambuckers et al. (2018).

The GPD distributed linear predictors depend on covariates, and are modelled by GAMLSSs.

However, regular GAMLSS estimation procedures are unstable when many parameters need to

be estimated. Statistical models frequently overfit data in the training set (Tibshirani (1996)),

and we require variable selection methods to identify risk drivers. For that purpose, we ap-

ply regularization. We use L1-norms, which penalize model coefficients by penalty functions,

whereby tuning (penalty) parameters control the strength of shrinkage. L1-norms apply un-

controlled shrinkage. This means that coefficients can immediately shrink to zero without any

intermediate steps. We use adaptive weights to apply ‘counter-pressure’ to L1-norms to ensure

stable estimation procedures. We use gradient boosting optimizers to obtain adaptive weight

estimates. As boosting optimizers, we introduce a derivative of the well-known gamboostLSS

optimizer (Mayr et al. (2012)) to improve model parameter estimates. Moreover, penalty func-

tions introduce biases in parameter estimates by construction. These biases could be controlled

by adaptive weights.

In our simulation, we shed light on the performance of gradient and log-likelihood boosting

estimation procedures. Our simulation study shows that the GPD scale parameter drives ex-

treme OpRisk losses, and that maximizing log-likelihoods yields inferior parameter estimates.

We therefore recommend investigating stopping criteria for these type of optimizers. Classi-

cal stopping criteria, such as Akaike Information Criteria (AIC; Akaike (1974)) and Bayesian

Information Criteria (Bayesian Information Criteria (BIC; Schwarz (1978)) do not work since
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log-likelihood functions (LLFs) are involved. The level of LLFs largely depend on the level of

the OpRisk losses and hence proper scaling procedures are required to proportionalize LLF-

levels and loss-levels. Moreover, we alternatively update both GPD parameters and find that

this slightly improves model performance.

We examine the performance of our proposed models in a real-world application in which

we use UniCredit’s OpRisk losses, which are categorized in seven risk categories, as well as

twenty economic factors. UniCredit is the largest Italian bank and is classified as a global

systemically important bank by the Financial Stability Board (latest update in 2021). This

means a default of UniCredit could disrupt the global financial system and hence it is highly

relevant to understand the drivers of their extreme OpRisk losses. We identify UniCredit’s

Tier-I capital ratios, UR IT, and a USA financial market volatility for the loss frequencies. For

the loss severities, we detect UniCredit’s deposit growth rate, UR IT, and the Milano Italia

Borsa index. However, the joint effect of the two GPD parameters is not always clear. For

example, when the GPD shape (scale) parameter increases (decreases), then we are left with

a difficult question: “Does the increase in ξ estimates outweigh the decrease in σ estimates,

or vice versa?” Lastly, all models in our study are identifiable and hence we never had to use

L2-norms to make models identifiable.

Our research has implications for the banking industry. We conduct a scenario study, and

find that the aforementioned OpRisk risk drivers are able to explain differences in conditions

of the business cycle. The associated scenario-specific and risk-category-specific parameter

estimates are used to simulate losses, and hence we attain requested capital charge estimates

for each scenario and risk category. Using our approach, banks can reduce their liquidity risk

since the capital charge always is in a set of 720 charges, compared to the set of infinite charges

under the metric covariate representation. When new quarterly economic factor information

comes in, we check in which covariate groups these factor values fall, and the associated set of

all covariate groups corresponds to one of the 720 covariate sets. Consequently, the new capital

charge is equal to one of the 720 existing capital charges.

Section 2 contrasts our ideas with the literature. Sections 3-5 consider our data, methodol-

ogy, and results, respectively. Section 6 concludes and discusses.

2. Related work. Chavez-Demoulin et al. (2016) model (semi-)parametric LFEs

and LSEs, and they include risk categories and time as covariates. We work with fully paramet-

ric models, and we use risk categories and economic factors as covariates, similar to Hambuckers

et al. (2018) and Groll et al. (2019). Time is integrated in the GAMLSS model class. The last

two papers use metric and categorical covariates, respectively. By contrast, we focus on cat-
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egorical covariates, whereas metric covariates serve for robustness testing. Groll et al. (2019)

simulate eight independent covariates in their simulation study, whereas their real-world ap-

plication includes twenty highly comoving economic factors. We simulate up to fifteen highly

comoving covariates in our simulation study to reproduce characteristics of real-world economic

factors, although we focus on eight covariates due to computational reasons.

Similar to Hambuckers et al. (2018) and Groll et al. (2019), our research focuses on the

underparametrized regime p < n, meaning that the number of model parameters p is lower

than the number of observations n. We apply a modelling procedure that uses both a gradient

boosting optimizer and regularization technique in a two-step approach. The link between the

two is investigated by Hastie et al. (2022) with a focus on the proportional and overparametrized

regimes p � n and p > n, respectively.

Hambuckers et al. (2018) use L1-norms for metric covariates, whereas Groll et al. (2019) use

‘fused L1-norms’ and group least absolute shrinkage and selection operator (LASSO) L2-norms

for categorical covariates. We focus on L1-type norms. Fused LASSO (Tibshirani et al. (2005))

for metric covariates is the sum of two components: L1-norms for coefficient dissimilarities and

individual coefficients. Groll et al. (2019) extend the first component, ‘fused L1-norms’, for

categorical covariates. The second component is not considered because parameters of dummy

encoded categorized covariates are undefined in the one-dimensional parameter space. Group

LASSO L2-norms shrink either all or none coefficients of groups within a dummy encoded

categorical covariate to zero. If the coefficients of the risk categories would be shrunk to zero,

then the associated capital charge estimates would be almost identical for all risk categories.

However, the characteristics of the UniCredit losses, shown in Table 2, illustrate clear differences

in the levels of the losses among risk categories. We therefore do not consider Group LASSO

L2-norms.

Groll et al. (2019) use a gradient boosting gamboostLSS optimizer to estimate unpenalized

GAMLSSs. However, this optimizer maximizes the associated log-likelihood function (LLF) and

thus does not concern about attaining low-biased parameter estimates for both GPD parameters.

Hence, we simultaneously update model terms of the two GPD parameters by our own optimizer,

namely GAMLSSBoostAlt.

Similar to Groll et al. (2019), we use well-specified models in our simulation study. The

term well-specified means that the assumed probability distribution in fact is the true, unknown

probability distribution. We do not consider misspecified models since our research is based on

the assumption that LSEs follow a scaled GPD.

Similar to Hambuckers et al. (2018), we conduct a scenario analysis for conditions of the
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business cycle in which we simulate losses to subsequently estimate capital charges. Hambuckers

et al. (2018) use an identical set of covariates for the loss frequency as well as the severity, whereas

we use different covariate sets. Furthermore, we use categorical covariates for the loss severity

in contrast to Hambuckers et al. (2018) who use metric covariates in their scenario analysis.

3. Data. We describe UniCredit’s OpRisk losses, motivate our choice for the thresh-

old, and present the economic covariates that we use in our real-world application.

3.1. Losses. UniCredit is an Italian international banking group and currently the world’s

34th largest bank by total assets. They publicly published their OpRisk data set consisting of

40,871 quarterly losses above e2000, divided into seven Basel II recognized risk categories,

shown in Table 1.

Table 1: Risk categories of the UniCredit loss data set, type and description.

Risk category Description
BDSF Business disruptions and system failures
CPBP Clients, products and business practices
DPA Damage to physical assets
EDPM Execution, delivery and process management
EFRAUD External fraud
EPWS Employment practices and workplace safety
IFRAUD Internal fraud

All losses are rescaled for privacy reasons and hence we can not draw conclusions with

regard to the level of parameter estimates. Nevertheless, the relation between the losses and

the economic factors remain unchanged. The losses can be downloaded from the data archive

of the Journal of Applied Econometrics.1 All OpRisks occurred between January 2005 and

June 2014, and are categorized into 38 quarterly time periods. For illustration, OpRisk losses

include losses due to fraud, unintentional failure to meet professional obligations and failed

transaction processing, detailed in Appendix A.1. Activities in Italy and Germany account for

approximately 50% and 20% of their revenue streams. Table 2 shows that CPBP and EDPM

account for approximately 72% of all losses. The losses above our threshold (explained in the

following section) capture approximately 87% of the total losses. CPBP and IFRAUD exhibit

the highest mean, standard deviation, median and third quartile and thus would be dominant if

one global threshold would be applied. Additionally, the standard errors show lower uncertainty

when machines and/or processes, BDSF and DPA, are involved, in contrast to people.

3.2. Threshold selection. We use risk-category-specific thresholds τe so that all seven

risk categories are well-represented after applying the POT method. We set τe equal to the em-

1Source: http://qed.econ.queensu.ca/jae/2018-v33.6/hambuckers-et-al/
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Table 2: Descriptive statistics of UniCredit’s losses for 1) No threshold 2) threshold. The mean, standard
deviation, median and third quartile are in thousands (×103), and the total losses are in millions (×106).

Risk category Mean Std Median Third quartile Skewness Number of losses Total losses
No threshold
BDSF 15.7 43.0 4.82 11.1 7.66 674 9.25
CPBP 77.5 1,587.2 10.37 27.1 48.7 16,138 1,218
DPA 10.9 70.5 3.46 5.73 23.4 896 8.00
EDPM 40.3 495.0 5.43 12.7 40.5 13,209 506.1
EFRAUD 21.9 490.3 4.78 10.6 73.5 6,391 127.4
EPWS 39.0 343.5 7.00 19.5 37.6 2,292 85.0
IFRAUD 151.8 1,143.3 13.6 53.0 21.3 1,271 190.5
All 54.5 1,077.9 6.76 18.6 64.9 40,871 2,145

Threshold
BDSF 37.7 76.9 10.3 46.5 4.00 169 7.91
CPBP 255.8 3,166.6 29.4 105.5 24.4 4,035 1,133
DPA 28.2 138.7 3.25 15.5 11.8 224 7,16
EDPM 133.5 982.6 15.6 61.8 20.4 3,302 476.2
EFRAUD 64.0 979.0 15.3 46.5 36.8 1,598 122.3
EPWS 117.2 678.0 29.8 100.6 19.1 573 77.2
IFRAUD 515.0 2,237.0 90.4 350.6 10.8 318 180.0
All 178.0 2,147.8 21.2 84.3 32.5 10,219 1,998

Table 3: Economic factors, categorized by their data types. The term “EU” refers to all countries in the
European Union.

Firm-specific Macroeconomic Financial
Risk category (RC) EU / Italian growth rate (GDP EU / GDP IT) 10-year Italian government bond yield (LIR IT)
Deposit growth rate (DGR) EU housing prices growth rate (HPI EU) FTSE MIB index returns (MIB IT)
Leverage ratio (LR) EU / Italian consumption loan rate (LOR EU / LOR IT) 3-month Italian interbank rate (SIR IT)
Revenue coming from fees (PRF) EU monetary aggregate M1 growth rate (M1 EU) S&P 500 returns (SP USA)
Tier I capital ratio (TCR) EU / Italian unemployment rate (UR EU / UR IT) TR EU Stock index returns (TRSI EU)
UniCredit stock returns (UCSR) S&P based volatility index (VIX USA)

FTSE 100 based volatility index (VFTSE UK)

pirical third quartile of the risk-category-specific unconditional loss series because Hambuckers

et al. (2018) find a right balance between low variance of GPD coefficients and correct model

specification for this particular threshold. In practice, we work with less than 25% of all losses

since UniCredit only collected losses above e2000. Groll et al. (2019) did a similar study using

a threshold that is based on a normality test of quantile residuals. We compare their and our

choice for threshold in Appendix A.9.

3.3. Covariates. We use twenty economic factors, constructed by Hambuckers et al.

(2018). These factors are firm-specific, macroeconomic and financial market products, summa-

rized and more extensively detailed in Table 3 and Appendix A.2, respectively. We one-period

lag economic factors to tackle two-way causality and to construct a convenient prediction frame-

work. Credible unit root tests to investigate nonstationarity can not be performed as we have

only 38 time periods, although Hambuckers et al. (2018) find that regularization adequately

deals with nonstationarity.

Appendix A.3 shows the presence of multicollinearity among economic factors, which is the

situation in which covariates are highly linearly related. Multicollinearity is to be expected

since the levels of economic factors largely depend on the same underlying, that is the current
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Table 4: Comparison of expected and realized number of observations (in %) after applying the POT method
for our threshold choice.

Data type Factor Impact Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
DGR + 0.52 -5.6 -2.95 10.93 -4.15 0.79
LR + -8.33 0.47 -1.77 8.40 4.09 NA
PRF + 0.19 -0.51 -3.06 0.76 11.02 NA
TCR * -3.08 7.80 13.44 -2.63 -16.52 NA

Firm-specific

UCSR + 1.90 -7.90 -9.92 4.49 -5.93 9.34
GDP EU + -7.90 -8.35 -1.31 11.16 3.73 -3.54
GDP IT + -12.63 -1.77 6.57 10.73 -2.13 NA
HPI EU + -1.43 -11.00 -3.62 0.56 8.06 12.78
LOR EU - -7.18 -7.75 6.40 4.77 -10.10 NA
LOR IT - -4.03 -10.73 4.21 4.76 0.61 NA
M1 EU + -11.49 -3.10 -0.09 6.77 9.62 NA
UR EU - -5.81 3.82 7.82 1.38 -5.70 -16.52

Macroeconomic

UR IT - 4.91 1.21 3.74 1.41 -13.93 -17.42
LIR IT - 6.23 4.60 -8.16 0.24 -13.18 NA
MIB IT + -4.53 -10.93 1.67 1.41 9.34 NA
SIR IT - -10.19 1.69 -3.51 7.34 2.07 -0.13
SP USA + -4.38 -7.48 -1.99 8.24 4.83 -2.18
TRSI EU + -6.21 -8.04 -2.51 10.31 1.70 NA
VIX USA * 0.54 13.06 1.43 -2.42 -11.1 -1.62

Financial market

VFTSE UK * 12.78 -3.06 7.86 -4.79 -5.60 -5.01

Note: The table elements are calculated as:
(
nPOT
C,df −E(nPOT

C,df )
)
/E(nPOT

C,df ), where nPOT
C,df and E(nPOT

C,df ) are the realized and expected number
of observations for a categorized economic factor C and categorical covariate group df after applying the POT for our threshold choice.
Positive values mean that the realized number of losses above our threshold is higher than expected. The expectations are calculated as
E(nPOT

C,df ) = nC,df/4, where nC,df is the number of observations for covariate C and group df before applying the POT method. Elements
of the column “Impact” are determined using economic reasoning and hence are independent of the values in this table. Elements + (-) in
column “Impact” mean that high values of the corresponding economic factor indicate an expansion (recession), and elements * mean that
low values indicate an intermediate economic condition, whereas high values can indicate either an expansion or recession. Lastly, “NA”
means not applicable since not all covariates have a sixth covariate group.

condition of the business cycle. The average absolute cross-correlation among covariates is

.21. Correlations above and below .9 and -.8 are many, and we have extremes .97 and -.93

between financial indices VIX USA - VFTSE UK and UR EU - SIR IT. Financial indices are

well-known to comove. UR EU and SIR IT are the EU unemployment rate and the Italian

3-month interbank rate, which is the price of short-term borrowing. The unemployment rate is

low during expansions, in which regulators often increase interest rates to counteract the effects

of the economic cycle, also known as counter-cyclical fiscal policy. Another perspective is that

multicollinearity indicates redundant covariate information, which we tackle by regularization.

We dummy encode economic categorical covariates using interval limits, whereby DPA and

lower-bound groups of economic factors serve as reference groups. Details about dummy encod-

ing procedures, and the number of groups within categorical covariates are in Appendix A.4.

To shed light on the impact of our choice for threshold on economic factors, Table 4 shows the

difference between the realized and expected number of losses after applying the POT method.

We use economic reasoning to determine the impact of economic factors on extreme OpRisks,

shown in Column “Impact”, as we presume that economic factors proxy expansions, and that

expansions increase both the severity and likelihood of extreme OpRisks losses. Therefore, we

expect groups 1 and 2 to contain fewer observations than groups 5 and 6 after applying the
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Figure 1: Number of scaled original UniCredit OpRisk losses, with a scaling factor of 1/4, and LSEs over time.

POT method when the impact of a factor is positive (+). All in all, using economic reasoning

to determine the impact of economic factors is a valid approach since Table 4 demonstrates

that our expectation of the impact of economic factors matches the associated economic factor

patterns from group 1 to group 5/6 as we illustrate in the subsequent paragraph. We therefore

are able to use economic reasoning to interpret model coefficients after model estimation.

The value -16.52% for group 5 of UR EU in Table 4 demonstrates that relatively few extreme

OpRisk losses occurred during periods of high Italian unemployment rates. This is in line with

our expectation that high UR IT proxies a recession, and a recession does not drive extreme

OpRisks. From group 1 to group 6, UR EU differences on average decreases. Therefore, low

UR EU values are linked to an increase in OpRisks. Furthermore, the pattern from group 1

and group 6 is not linear since the group differences are more extreme for the lower- (3.83–5.81)

and upper-bound groups (-16.52–5.70) are more extreme than the differences for groups 2 to

4. Therefore, categorization of factors is highly informative since metric covariates implicitly

assume linear covariate effects (effects between the covariate and the parameter). Similar find-

ings hold for most other covariates. However, group 3 of TCR contains +13.44% more extreme

OpRisk losses than expected. This means that relatively many extreme OpRisk losses occurred

during time periods of moderate Tier-I capital ratios. Groll et al. (2019) explain that this could

be due to the fact that banks reserve more capital when high future losses are anticipated.

High negative LOR EU values for groups 1 and 5 indicate that relatively many extreme losses

happened for moderate consumption loan rates in the European Union. Lastly, volatility in

financial indices (VIX USA) is low for intermediate economic conditions, whereas VIX USA is

high during both expansions and recessions.

Figure 1 shows that the frequency of losses on average slightly decrease over time. The peak

frequency of losses are during the 2007-2010 financial crisis. Furthermore, a cyclical pattern,

10



which can be linked to conditions of the business cycle, is present. The figure additionally

illustrates that the number of losses above our threshold and the expected number of losses

are quite similar. Therefore, our homogeneous threshold is valid and there is no evidence that

indicates that the threshold should be time-varying.

4. Methodology. We specify and estimate (un)penalized GAM(LSS)s, intro-

duce the simulation setup, and assess model quality.

4.1. Model specification. We have T = 38 time periods, whereby t = 1, ..., 38 is a

single time period. We denote byNt(e) and Zi,t(e) the LFEs and loss severities for a risk category

e in time period t above a threshold τe, where index i is the ith loss. Observed equivalents are

nt(e) and zi,t(e). LSEs for a pair {e, t} are yi,t(e) = zi,t(e)− τe if zi,t(e)− τe ≥ 0, and collected

by a (nt(e) × 1) vector yt(e) = [y1,t(e), ..., ynt(e),t(e)]
>. We denote by nt =

∑7
e=1 nt(e) and a

(nt× 1) vector yt = [yt(1)>, ...,yt(7)>]> the LFEs and LSEs of all seven risk categories in time

period t, where yt consists of (nt) elements yit for it = 1, ..., nt. We concatenate the LSEs over

T time periods. We denote by n =
∑T

t=1 nt and a (n × 1) vector y = [y>1 , ...,y
>
T ]> the LFEs

and LSEs over T time periods. The vector y consists of (n) elements yi for i = 1, ..., n. We

have a (n × p) model matrix X with matching n rows, where p is the total number of metric

and dummy encoded categorical covariates.

We split X = [Xmet,Xcat] into a (n × pmet) and a (n × pcat) matrix with pmet and pcat

metric and dummy encoded categorical covariates, where pmet +pcat = p. For metric covariates,

Xmet = [x1, ...,xpmet ] consists of (n× 1) vectors xj for j = 1, ..., pmet.

We have J = 1, ..., C categorical covariates. Dummy encoding is the transformation of J

into a set of dfJ + 1 binary (dummy) variables with df = 0, 1, ..., dfJ groups within a dummy

encoded covariate J , where df = 0 is the reference group, and pcat =
∑C

J=1 dfJ . The model

matrix subset Xcat = [X1, ...,XC ] consists of (n × dfJ) matrices XJ = [xJ,1, ...,xJ,dfJ ] for

J = 1, ..., C.

4.1.1. GAMLSSs & GAMs. The cumulative distribution function (CDF) of the GPD is

GPD(y; ξ, σ) =


1− (1 + ξy

σ )
− 1
ξ for ξ 6= 0,

1− e−
y
σ for ξ = 0,

(1)

where y ≥ 0, ξ ∈ R, and σ > 0. We assume ξ > 0, implicating heavy-tail dependence, which

usually holds for OpRisk data for a sufficiently high threshold (for example Chavez-Demoulin

et al. (2016)).

LSEs approximately follow a GPD, whereby the associated coefficients have their own linear
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predictors ηk for k = 1, 2. This relation is captured by the subsequent system of equations of

(n) column vectors:

y ∼ GPD
(
ξ = exp(η1),σ = exp(η2)

)
, (2)

where exponential transformations of predictors ensure positivity of GPD coefficients. We model

the predictors given the covariates in a GAMLSS as

η1 = η1(X;β1) = ξ0 +

pmet∑
j=1

xjξj +
C∑
J=1

XJξ
>
J , (3)

η2 = η2(X;β2) = σ0 +

pmet∑
j=1

xjσj +
C∑
J=1

XJσ
>
J , (4)

where we have model intercepts ξ0 and σ0, and scalars ξj and σj for j = 1, ..., pmet which are

collected by bmet consisting of scalars bj,k for {j, k}, where bj,1 = ξj and bj,2 = σj . We have

(1 × dfJ) vectors ξJ and σJ for J = 1, ..., C which are collected by bcat consisting of (1× dfJ)

vectors bJ,k for {J, k}, where bJ,1 = ξJ and bJ,2 = σJ , and bJ,k consists of (dfJ) scalars bJ,k,df

for df = 1, ..., dfJ . The model coefficients of Equations (3) and (4) are collected in β1 and β2,

which are subsequently collected in B for notational convenience. xjξj and xjσj capture the

product of scalar values for metric covariates, whereas XJξ
>
J and XJσ

>
J collect all dummy

encoded categorical covariates and associated coefficients.

The probability density function (PDF) of the GPD distributed GAMLSS linear predictors

is given by dy(y; ξ,σ). The associated log-likelihood function is

`LS(B;y,X) =
n∑
i=1

log dy
(
yi; ξi = exp(η1(xi;β1)), σi = exp(η2(xi;β2))

)
(5)

for i = 1, ..., n, where xi is the i-th row of X.

We denote by nLF the (n × 1) loss frequency exceedances vector containing (n) scalars,

whereby the value of each element is equal to the number of losses nt(e) for the corresponding

risk category e in associated time period t. We split the model matrix XLF = [XLF
e ,XLF

r ] into

a (n × 20) and (n × 6) matrix with twenty metric economic factors and six dummy encoded

risk categories, respectively. Model matrix XLF
e = [xLF

1 , ...,xLF
20 ] consists of 20 (n × 1) vectors

xLF
j for j = 1, ..., 20. We assume that LFEs approximately follow a non-homogeneous Poisson

process (NHPP; for example Chavez-Demoulin et al. (2016)). The NHPP rates κ have a linear

predictor δ as we assume linear relations between the covariates and the NHPP parameters.

Mathematically, we have (n) column vectors in the subsequent system of equations:

nLF ∼ Poisson(κ = exp(δ)), (6)
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where an exponential link function ensures positivity of NHPP rates. We model the linear

predictor given the covariates in a Generalized Additive Model (GAM; Hastie and Tibshirani

(2017)) as

δ = δ(X;k) = κ0 +

20∑
j=1

xLF
j κj +XLF

r κ>r , (7)

where we have a model intercept κ0, and scalars κj for all j, and a (1 × 6) vector κr, which

collects the coefficients of the six dummy encoded risk categories, and k collects the model

coefficients.

4.1.2. Tuning parameter frameworks. To specify penalized GAMLSS, we first need to

introduce tuning parameter frameworks. Similar to Groll et al. (2019), we consider three tuning

parameter frameworks: λ-, λk-, and λjk-type, explained in the following paragraphs.

We denote by λj,k and λJ,k (or λj/J,k) the tuning parameters for {j = 1, ..., pmet, J =

1, ..., C, k = 1, 2}, and all tuning parameters are collected in a (2× (pmet + C)) matrix λ.

A λ-type framework means that we use one global tuning parameter for both predictors and

all covariates by imposing restrictions: λj,k = λ and λJ,k = λ for all {j, J, k}. This framework is

robust, reduces model complexity, and is computationally fast. However, we risk oversimplifying

the model.

A λk-type framework uses two tuning parameters, one for each predictor. We thereby impose

the restrictions λj,k = λk and λJ,k = λk for all {j, J, k}. The intuition is that we can examine if

either predictor is more sensible to overfitting by comparing the levels of the optimal in-sample

tuning parameters after model estimation. The potential disadvantage of this framework is that

two tuning parameters must be tuned. Hence, model complexity is increased.

A λjk-type framework does not impose any restrictions upon its tuning parameters. Hence,

all covariates have their own tuning parameter. The advantage is that we can detect noisy

and/or overfitting covariates by the level of the tuning parameters. The potential disadvantage

of this framework is that the associated estimation procedure is more complex.

4.1.3. Regularization. Regularization techniques shrink coefficients to or towards zero,

and covariates are consequently in- or excluded in the model after model estimation. Metric

covariates are penalized individually, whereas we jointly penalize the groups within dummy

encoded categorical covariates. Another perspective is that penalty functions introduce biases

in the parameter estimates to decrease the associated variance, known as the bias-variance

trade-off.
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We extend the LLF of Equation (5) to allow for the inclusion of penalty functions:

`pen
LS (B,λ;y,X) = `LS(B;y,X)−

2∑
k=1

pmet∑
j=1

λj,kP
(j,k)(bj,k)−

2∑
k=1

C∑
J=1

λJ,kP
(J,k)(bJ,k), (8)

where P (j,k)(bj,k) and P (J,k)(bJ,k) are scalar penalty functions for metric and dummy encoded

categorical covariates.

L1-norm regularization for metric covariates. Classical L1-norm (LASSO) regularization for

metric covariates (RLASSOm; Tibshirani (1996)) shrinks coefficients to zero and hence ensures

sparse parameter spaces. The scalar penalty function for a pair {j, k} is given by

P
(j,k)
las (bj,k) = |bj,k|. (9)

Adaptive weights are constructed as oracle estimators (Zou (2006)). These estimators are

consistent in parameter estimation and variable selection, and have oracle properties: when

the sample size is finite, in-sample non-zero coefficients are identified; when the sample size

is infinite, then the estimators are unbiased and normally distributed with true variance. An

adaptive weight for a metric covariate for a pair {j, k} is given by

wj,k =
1

|b̂ini
j,k|

, (10)

where b̂ini
j,k is an initialized coefficient. The penalty function ALASSOm is constructed by com-

bining Equations (9) and (10) for a pair {j, k} as

P
(j,k)
alas (bj,k) = wj,k|bj,k| =

|bj,k|
|b̂ini
j,k|

. (11)

Fused L1-norm regularization. Fused L1-norms take spatial structures, which are intercon-

nections between groups of dummy encoded categorical covariates, into account. We denote by

0 ≤ l < m ≤ dfJ two groups within dummy encoded categorical covariates, and we fix bJ,k,0 = 0,

which is the reference group, for all {J, k}. Risk categories are nominal, and economic factors

are categorized based on their levels and hence ordinal. Fused L1-norms penalize dissimilar

coefficients, thus parameter sparsity is encouraged since reference groups are fixed as zero.

For nominal and ordinal covariates, we penalize dissimilar coefficients for groups {l,m} and

{l−1, l}, respectively. The coefficient of group l is indirectly encouraged to shrink to zero by the

linked structure of ordinal covariates. Fused L1-norm penalty functions (RFUSE) for nominal

and ordinal covariates are a sum of ((df2
J−dfJ)/2) and (dfJ) individual penalties. The functions

are given by

P
(J,k)
fl-n (bJ,k) =

∑
0≤l<m≤dfJ

w
(J)
lm |bJ,k,l − bJ,k,m|, (12)
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P
(J,k)
fl-o (bJ,k) =

dfJ∑
l=1

w
(J)
l |bJ,k,l − bJ,k,l−1|, (13)

where w
(J)
lm and w

(J)
l are ‘standardizing weights’ to account for differences in the number of

groups and number of observations within these groups. Bondell and Reich (2009) suggested

the following weights:

w
(J)
lm = 2(dfJ + 1)−1

√
n

(J)
l + n

(J)
m

nq
, (14) w

(J)
l =

√√√√n
(J)
l + n

(J)
l−1

nq
, (15)

where n
(J)
l and n

(J)
m are the number of observations in groups l and m within J . The term

(dfJ + 1)−1 ensures that nominal and ordinal covariates can be combined in a model with a

single tuning parameter. Adaptive weight variants are given by

w
(J)
alm = w

(J)
lm |b

ini
J,k,l − bini

J,k,m|−1, (16) w
(J)
al = w

(J)
l |b

ini
J,k,l − bini

J,k,l−1|−1, (17)

where the superscript ‘ini’ refers to initialized coefficients. We construct adaptive fused L1-

norm penalty functions (AFUSE) by replacing regular with adaptive weights. The economic

implications of fused L1-norms, as well as a downside of using adaptive weights are elaborated

in Appendix A.5.

L2−norm regularization. L2-norms do not encourage parameter sparsity as much as L1-

norms. We therefore only use L2-norms to obtain adaptive weights in case of identification

issues, that is if we cannot obtain a Maximum Likelihood (ML) estimator. We construct classical

L2-norms for metric and dummy encoded categorical covariates for pairs {j, k} and {J, k} as

P (j,k)
rm (bj,k) = b2j,k, (18) P

(J,k)
rc (bJ,k)=‖bJ,k‖22=b2J,k,1+...+b2J,k,dfJ

. (19)

4.2. Model estimation. We present methods for model estimation. Our models are

trained over either T − 1 or T time periods. We validate models, that are trained over T − 1

time periods, by the remaining time period t. Such a framework is feasible since we work with

models without a time-series structure. To validate models, we first filter the LFEs/LSEs for all

T time periods, then we exclude a time period t, fit the model, and lastly predict the remaining

period t using parameter estimates resulting from a model that trains over T − 1 time periods,

combined with economic factors in the remaining time period t.

4.2.1. Unpenalized GAMLSS & GAMLSSBoostAlt. We estimate unpenalized GAMLSSs

by gradient descent type optimizers to attain good parameter estimates. These optimizers use

a prespecified step size ν to update model coefficients. In principle, gradient descent updating

schemes are interpolators, estimators that achieve zero training error, for a sufficiently high
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number of iterations niter. However, interpolators overfit the data, which could result in inferior

parameter estimates for underparametrized regimes. Hence, we early stop gradient descent type

optimizers. Groll et al. (2019) use the gradient descent optimizer gamboostLSS. First, we show

the limitations of gamboostLSS, and we thereafter present an altered version of gamboostLSS,

GAMLSSBoostAlt, which simultaneously updates the predictors of both GPD parameters. The

performance of both optimizers is evaluated in our simulation study.

gamboostLSS updates coefficients in a two-step approach: (1) coefficients are zero-initialized;

(2) partial derivatives of both GPD predictors with respect to the coefficients of the covariates

are calculated. Then, only one covariate is updated, namely the one that improves the associated

LLF the most. Afterwards, step (2) is repeated iteratively until either the LLF converges or

the maximum number of iterations is reached. In practice, model coefficients of one GPD

parameter may impact the associated LLF substantially more. Consequently, the coefficients

belonging to one GPD parameter are updated many times, whereas the coefficients of the other

GPD parameter are updated only a few times. Hence, gamboostLSS may yield highly biased

coefficients for the latter GPD parameter. Without many coefficient updates, there is a large

difference between model parameter estimates and true non-zero parameters. Moreover, highly

biased parameter estimates likely yield worse linear predictor estimates for η1 and η2.

GAMLSSBoostAlt splits step (2) into two steps, namely (2a) and (2b). In step (2a)/(2b),

the partial derivatives of η1/η2 with respect to its coefficients are calculated. Afterwards,

only coefficient set, η1 or η2, is updated. Hence, GAMLSSBoostAlt updates the two GPD

parameters every other time. Therefore, GAMLSSBoostAlt likely yields lower biased coefficients

for the GPD parameter that received few updates under gamboostLSS. We consequently expect a

decrease in associated Root Mean Squared Errors (RMSEs) of parameter estimates for this GPD

predictor. We examine whether this is indeed the case in our simulation study. Furthermore,

we may expect a decrease in RMSEs of the out-of-sample GPD predictor estimates η̂1 and η̂2,

compared to the true linear predictor parameters. A disadvantage of GAMLSSBoostAlt is that

the overperforming predictor under gamboostLSS gets fewer updates under GAMLSSBoostAlt.

To take this into account, we iterate a sufficient number of times so that both predictors are in

fact updated many times.

We fix the number of iterations to 25,000 for both gamboostLSS and GAMLSSBoostAlt and

hence the two GPD parameters are updated unknown (between 0 and 25,000) and exactly 12,500

times, respectively. As step size ν for gradient descent optimizers, we consider ν = {.01, .05, .01}.

We increase the number of iterations for ν = .01 since a lower step size requires more updates.
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Both optimizers are implemented in the R package BAMLSS (Umlauf et al. (2019)) by

opt-boost. We implement GAMLSSBoostAlt ourselves in a branch of the BAMLSS package.

We thereby extend the select.type input option, which determines how model terms should be

selected by log-likelihood contributions, of the BAMLSS function by a new option: select.type

= 3.2 This option uses GAMLSSBoostAlt.

4.2.2. Tuning parameters. We obtain optimal tuning parameters by minimizing BIC,

which find the best fitted model among a set of candidate models by penalizing the num-

ber of non-zero coefficients. Using BIC, we are able to decrease overfitting issues. Hambuckers

et al. (2018) demonstrate that BIC yields good variable selection performance, although biases

in parameter estimates are on average increased.

We set the number of tuning parameters in a 1- and 2-dimensional grid equal to 200 and 302

for λ- and λk-type models with lower- and upper bounds equal to exp(-3) and exp(7), respec-

tively. Iterating over a (2× (pmet +C))-dimensional grid in a λjk framework is computationally

infeasible. Hence, we update the associated coefficients stepwise (Umlauf et al. (2018)). For

λ, λk, and λj,k frameworks, we use the opt-lasso (first two) and opt-bfit (third) optimizers in

BAMLSS.

4.2.3. Penalized GAMLSSs & GAMs. We quadratically approximate penalty functions

to allow for a combination of penalties in a model, and to ensure continuity and differen-

tiability of penalty functions (Oelker and Tutz (2017)). This approximation yields the LLF:

`pen-a
LS (B,λ;y,X), which replaces the LLF of Equation (8). To illustrate this approximation, a

metric L1-norm penalty function for {j, k} is approximated as

|bj,k| ≈
√
b2j,k + 10−8, (20)

which is continuous and differentiable in R. To estimate GAMLSS parameters, we use Iterated

Weighted Least Squares (IWLS) updating schemes. We obtain penalized and unpenalized ML

estimators B̂λ and B̂ by maximizing the LLFs of `pen-a
LS (B,λ;y,X) and Equation (5) with

respect to B as

B̂λ = arg max
B

{
`pen - a
LS (B,λ;y,X)

}
, (21) B̂ = arg max

B

{
`LS(B,y,X)

}
. (22)

No analytical solution exists and hence we use numerical methods (Umlauf et al. (2019)), and

we have the limiting case limλ→0{B̂λ} = B̂.

The LLF of NHHP distributed unpenalized GAMs is `LF(k;y,X).We obtain an ML esti-

2http://www.bamlss.org/reference/boost.html
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mator for k̂ by maximizing this LLF with respect to k as

k̂ = arg max
k

`LF(k;y,X). (23)

No analytical solution exists. We obtain a ML estimator by Penalized Iteratively Re-Weighted

Least Squares (P-IRLS; Wood (2011)) updating schemes by Generalized Cross Validation (GCV),

implemented in the MGCV R package (Wood and Wood (2015)).

4.2.4. Modelling details & benchmark. Our optimizers can not, and usually do not, guar-

antee optimal solutions, which means that LLFs do not converge during model estimation. We

therefore initialize coefficients in a λjk-type framework with λk coefficients in a similar context.

There is a trade-off for initialization paths: bad starting coefficients likely result in an infe-

rior solution path, whereas ‘too specific’ initialization could result in instant solutions as the

optimizer gets stuck in, or close to, the previous found solution.

We benchmark gamboostLSS to evaluate GAMLSSBoostAlt in our simulation study. In our

real-world application, we benchmark the best performing model of Groll et al. (2019), accord-

ing to their own conclusions. This model uses dummy encoded categorical covariates, fused

L1-norms in a λjk framework with λk starting coefficients, and adaptive weights. The adaptive

weight coefficients are obtained by the estimation of an unpenalized GAMLSS using gamboost-

LSS. Since unpenalized GAMLSS estimation procedures are a derivative of the original GAM

backfitting estimation procedures, updating procedures for a given iteration heavily depends on

the coefficients of the previous iteration. Hence, the number of potential coefficient paths is in-

finitely many. Therefore, we experiment with multiple optimizers to examine which optimizers

are the best fit for our application.

4.2.5. Training and testing. We standardize all covariates to ensure that all covariates are

weighted equally before applying regularization. We simulate both loss severities and covariates

in our study study. Thereafter, we randomly split the rows into a 80% and 20% train (tr)

and test (te) set. For the real-world application, we first train models over all 38 time periods

for LFE- and LSE-models. Furthermore, we train loss frequency models over 37 time periods.

Then, we use these in-samples model parameter estimates, combined with economic factor

information in the remaining time period, to predict model parameters in the remaining time

period. We thereby introduce time-variation in the NHPP distributed GAM parameters. A

similar procedure could also be applied to the loss severity models but we chose not to do so

due to time-related as well as computational reasons.

4.3. Assessing model quality. We elaborate our simulation setup, and present model

evaluation techniques for the simulation study as well as the real-world application.
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4.3.1. Simulation study, setup. We conduct a simulation study for well-specified models

to evaluate the performance of our proposed LSE-models. In our simulation study, we use

similar notation as introduced in Section 4.1. What is different, is that we differentiate between

informative (inf) and uninformative (unf) covariates in the simulation. We denote by Csim =

C inf+Cunf and psim = pinf+punf the number of regular and dummy encoded simulated categorical

covariates, whereby J inf = 1, ..., C inf, Junf = 1, ..., Cunf, and J sim = 1, ..., C inf, C inf + 1, ..., Csim,

and pinf =
∑Cinf

J=1 df
inf
J and punf =

∑Cunf

J=1 df
unf
J , where df inf

J and dfunf
J are the number of groups

within J inf and Junf.

We solely simulate categorical covariates, and not metric covariates since we can not compare

two non-identical covariate sets in a simulation, explained in Appendix A.6. We denote by nsim

the number of simulated losses. Let Xsim be the (nsim × psim) model matrix, that we split as

Xsim = [X inf,Xunf] into a (nsim × pinf) and a (nsim × punf) matrix consisting of (nsim × df inf
J )

and (nsim × dfunf
J ) matrices X inf

J and Xunf
J .

We use two nominal and two ordinal informative covariates, thus C inf = 4. We consider

two uninformative covariate frameworks Cunf = {4, 11}, whereby the number of nominal and

ordinal uninformative covariates is equal to 2 and Cunf − 2, respectively. Therefore, the total

number of simulated covariates is equal to Csim = {8, 15}. We use this covariate setup to reflect

real-world data sets since real-world data sets usually include many ordinal covariates and a few

nominal covariates (for example Hambuckers et al. (2018), Groll et al. (2019)). Many ordinal

covariates are included since economic factors can usually be sorted on their levels.

To simulate covariates, we first denote by P a (Csim × Csim) correlation matrix with non-

diagonal and diagonal elements ρ and 1, whereby we examine three correlation frameworks with

an average cross-correlation of ρ = {0, .3, .6}. We thereby use the multivariate normal distri-

bution (MVND) to simulate metric covariates. Metric covariates are subsequently transformed

into categorical covariates with 4 or 8 groups, whereby we alternate between both group sizes.

Afterwards, these covariates are dummy encoded into X inf
J and Xunf

J for J = J sim = 1, ..., Csim.

Initially, we attempted to construct simulated covariates with correlations above ρ = .6. Unfor-

tunately, this is not possible, as explained in Appendix A.7, because we use the MVND in our

simulation procedure.

To proxy extreme losses, we draw samples from the GPD as ysim ∼ GPD
(
ξinf = exp(ηinf

1 ),σinf =

exp(ηinf
2 )) of size nsim = {5, 000; 10, 000; 20, 000}, where isim = 1, ..., nsim, where the true non-

zero dummy parameters ξinf and σinf are fixed to values that we present in Table 5. We combine

informative dummy encoded categorical covariates and associated true non-zero parameters for

the data generating process (DGP), given by
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ηinf
1 = ξsim

0 +
4∑

J=1

X inf
J (ξinf

J )>, (24) ηinf
2 = σsim

0 +
4∑

J=1

X inf
J (σinf

J )>, (25)

where ξsim
0 and σsim

0 are true model intercepts, and (1× df inf
J ) vectors ξinf

J and σinf
J contain the

true parameters. This procedure yields losses that mirror real-world extreme OpRisk losses

since we assume that LSEs follow a GPD. Therefore, our simulation study is able to reflect all

kind of loss data, and no assumptions on the underlying distribution of original loss series are

necessary. For real-world loss data, it is the responsibility of the modeller to find a sufficiently

high threshold such that their LSEs indeed follow a scaled GPD. UniCredit’s loss data include

just over 10,000 LSEs for our threshold choice (Section 3.2), and 10,000 is within the range of

nsim.

Table 5: True non-zero parameters in our simulation.

GPD parameter Parameter True parameters
ξsim

0 -0.3

ξinf
1 (0, 0.3, 0.3, 0.3, 0.3,-0.5,-0.5,-0.5)

ξinf
2 (0, -0.4, -0.4)

ξinf
3 (0, -0.4, -0.4, -0.8, -0.8, -1.1, -1.1)

ξ

ξinf
4 (0, -0.5, -0.5)
σsim

0 -0.2
σinf

1 (0, -0.6, 0.3, 0, -0.6, 0.3, 0)
σinf

2 (0.4, 0, 0.4)
σinf

3 (0, 0, -0.4, -0.4, -0.4, -0.9, -0.9)
σ

σinf
4 (0, -0.3, -0.3)

4.3.2. Simulation study, evaluation. We exclude notational superscripts ‘sim’ for writing

convenience. The true model and subsequent GPD parameters are known in our simulation

study. We compare true and estimated model parameters by RMSEs for an individual dummy

encoded categorical covariate J and a GPD parameter k as

RMSEbJ,k =

√√√√ 1

dfJ

dfJ∑
df=1

(b̂J,k,df − bJ,k,df )2. (26)

To obtain a single performance measure for all C covariates, we aggregate the RMSEs as follows:

RMSEagg
bk

=

√√√√ C∑
J=1

(
dfJ∑C
J=1 dfJ

)
(RMSEbJ,k)2, (27)

where we use a rescaling factor
(

dfJ∑C
J=1

)
to take into account that the number of groups within

categorical covariates differ among covariates.

In Section, 4.2 we demonstrate how to estimate our models, and we thereby obtain in-

sample model parameter estimates that we use to predict out-of-sample GPD parameters in

the simulation. Let nte = n× 0.2 be the number of observations in the test set. We denote by

Xte the (nte × p) model matrix consisting of (nte × dfJ) matrices Xte
J for J = 1, ..., 4, 5, ..., C,
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where J = 4 and J = 5 are linked to the last informative covariate and the first uninformative

covariate. We predict the two GPD parameters by their corresponding predictors as

η̂1 = ξ̂0 +

4∑
J=1

Xte
J

(
ξ̂

inf

J

)>
+

C∑
J=5

Xte
J

(
ξ̂

unf

J

)>
, (28)

η̂2 = σ̂0 +

4∑
J=1

Xte
J

(
σ̂inf
J

)>
+

C∑
J=5

Xte
J

(
σ̂unf
J

)>
, (29)

where we have (nte × 1) predictor estimates on the left-hand side. On the right-hand side, we

have model intercept estimates ξ̂0 and σ̂0, and (nte×dfJ) matrices Xte
J , and (1×dfJ) parameter

estimates ξ̂J and σ̂J for J = 1, ..., C, where ξ̂
unf

J and σ̂unf
J are model coefficients of uninformative

covariates. We compare predicted and true GPD parameters by their predictor estimates for a

distributional parameter k as

RMSEηk =

√√√√ 1

nte

nte∑
i=1

(η̂i,k − ηi,k)2. (30)

We aggregate the RMSEs of Equations (27) and (30) over the two GPD parameters as follows:

RMSEagg
b =

√√√√1

2

2∑
k=1

(RMSEagg
bk

)2, (31) RMSEagg
η =

√√√√1

2

2∑
k=1

(RMSEηk)2. (32)

In Equation (31), a scaling factor 1/2 is used because the RMSEs of the two GPD parameters

are calculated by vectors of identical length (nte), and a scaling factor 1/2 in Equation (32)

is used because the model matrices of the two GPD parameters are identical. Therefore, the

number of groups within categorical covariates are identical as well since dfJ,1 = dfJ,2 for all

J , where dfJ,k is the number of groups within a dummy encoded categorical covariate J for

distributional parameter k.

Moreover, we evaluate the variable selection performance to identify: true fused categories,

uninformative and informative covariates, by false negative and positive rates, FNRs and FPRs,

respectively. FNRs (FPRs) are the likelihood that covariates or fused groups within covariates

are falsely excluded (included) in a model. A sensitivity measure, set to 10−4, determines

ex- or inclusion in models. Lastly, we report the in-sample and out-of-sample log-likelihood

scores (INS-LLH; OOS-LLH), BIC, and EDF, which is the approximated number of non-zero

coefficients.

4.3.3. Real-world application. Evaluating real-world data is difficult because the true

model and GPD parameters are unknown in the physical world. To evaluate real-world data,

we compute in-sample BICs and EDFs as well as OOH-LLH scores using the validation set.
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5. Empirical analysis. We present empirical findings for both the simulation

study and real-world application. An overview of the R functions that we use in our analyses

is presented in Appendix A.13.

5.1. Simulation study. We evaluate the performance of models that use gamboostLSS,

which we refer to as B1-type models (or B1), and GAMLSSBoostAlt, which we refer to as B2-type

models (or B2). The main analysis of the two boosting optimizers is for nsim = 5000, Csim = 8

and ρ = 0. We thereby validate our findings over 10 samples (due to high computational time)

over a grid of niter since the optimal niter is unknown.

The structure is as follows: in Section 5.1.1 we summarize our findings. In Sections 5.1.2,

5.1.3, and 5.1.4, we evaluate both optimizers in both an penalized and unpenalized framework,

and we compare updating schemes of boosting optimizers, respectively.

5.1.1. Summary of findings. Our core goals are to improve model parameter estimates

and to better perform variable selection. In Table 6, we find that B2 models slightly outperform

B1 models according to the RMSEagg
b evaluation measure. Thereby, the best performing models

are AFUSE(λk)-B2 and AFUSE(λjk)-B2. These models use our GAMLSSBoostAlt optimizer,

include adaptive weights, apply L1-norms, and use λk/λjk-type tuning parameter frameworks.

However, finding good stopping criteria for gradient boosting optimizers remains challenging.

Figure 2 demonstrates that model parameters as well as GPD parameter estimates deteriorate

after a bliss number of iterations niter
∗ and hence stopping criteria must be determined. We

consider AIC and BIC, and find that AIC does not satisfy optimality conditions since the first

derivative is never zero, whereas BIC shows potential but requires losses to be adequately scaled

to proportionalize the level of the log-likehood function and the number of model parameters

(Figure 3). BIC requires adequately scaling of loss severities since the magnitude of the losses

determines the level of associated log-likelihoods, and the BIC penalization component (number

of model parameters times the logarithm of the number of loss severities) is fixed. With regard

to the variable selection performance of B1 and B2, B2-type models identify fused groups on

average slightly better (Table 6), but these differences are marginal. We subsequently provide an

explanation for the improved model parameter estimates under B2 as follows: B1-type models

yield unstable updating schemes, as shown in Figure 6, whereas B2 updating schemes are stable

by construction. The unstable updating of B1 is due to the GPD scale parameter (σ), which

is the driving force of the involved log-likelihood function. Therefore, σ covariates are updated

many times for the first thousands of iterations (further detailed in Section 5.1.4).
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5.1.2. Comparison of gradient boosting optimizers in a penalized framework. Next,

we evaluate our regularization methods. We use coefficients that result from a model with

parameters {niter = 5, 000, ν = .05} as adaptive weights. Table 6 demonstrates that regular

weight models are inferior to adaptive weight models. This can be explained by the fact that

regular weight models use IWLS updating schemes, and IWLS insensibly iteratively updates all

model coefficients. Since we dummy encode categorical covariates, the number of parameters

that need to be estimated is high and hence IWLS updating schemes do not work well in our

application. Another perspective is that adaptive weights successfully act as stabilizing force

by applying counter-pressure to L1-norms.

With regard to the parameter estimates, Table 6 shows that both the model parameter esti-

mates slightly improve under B2, compared to B1. Although, regularization techniques worsen

GPD parameter estimates, compared to unpenalized models. This could be explained by the

fact that boosting optimizers update the model parameter estimates. In this process, the GPD

parameter estimates are not involved and hence these coefficients do not improve when applying

L1-norms. Moreover, σ model parameter estimates substantially improve when applying L1-

norms, whereas ξ model parameter estimates improve less substantially. We use Equations (31)

and (32) to aggregate RMSEs, and find that the GPD shape parameter dominates aggregated

RMSEs. This is due to the relatively high RMSEs for the GPD shape parameter, compared to

the GPD scale parameter.

We explored three tuning parameter frameworks. The λk/λjk-frameworks on average yields

better parameter estimates than a λ framework (Table 6). This means that the two GPD

parameters differ in their sensitivity to overfitting. Furthermore, a λjk-framework on average

slightly increases the model EDFs. Hence, such a framework should only be considered when

the use of a λ-/λk-framework in a similar context results in a sufficiently sparse solution.

With regard to variable selection, Table 6 demonstrates that fused L1-norms frequently

detect fused groups within categorical covariates, although detection becomes more difficult

for ρ = .6. The false negative rates show that informative covariate parameter estimates are

sometimes shrunk to zero, which is the case when the optimal high tuning parameter(s) is/are

sufficiently high. Since L1-norms add a penalty to the log-likelihood function, the associated

log-likelihood value by definition worsen due to the increase in biasses in model parameter

estimates. Nevertheless, BICs show substantial improvements, when applying L1-norms, due to

the decreased equivalent degrees of freedoms. EDFs of unpenalized models frequently are close

to 82, which is the total number of model parameters for Csim = 8. Our regularization methods

reduce the EDF to on average 15. This indicates that L1-norms successfully attain sparse model
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Table 6: Evaluation measures for of our models for Csim = 4 and ν = .05

ρ Model RMSEagg
η RMSEη1 RMSEη2 RMSEagg

b RMSEagg
b1

RMSEagg
b2

FPRfuse FPRnoise FNR LLH BIC EDF

1 1 1 1 1 1 0.98 0.88 0.02 -2929.74 6529.64 80.8
B1

(0) (0) (0) (0) (0) (0) (0.05) (0.12) (0.05) (98.48) (190.48) (1.55)
1.01 1 1.01 1.03 1.03 1.02 0.99 0.86 0.01 -2930.62 6526.43 80.2

B2
(0.02) (0.02) (0.02) (0.04) (0.04) (0.05) (0.04) (0.09) (0.04) (98.82) (193.71) (2.1)
1.5 1.56 1.02 1.2 1.23 0.99 0.46 0.26 0.25 -2980.21 6092.58 15.93

RFUSE(λ)
(0.14) (0.15) (0.16) (0.12) (0.13) (0.16) (0.1) (0.1) (0) (101.46) (199.7) (0.89)
1.1 1.16 0.62 0.91 0.95 0.57 0.35 0.16 0.14 -2959.41 6038.37 14.41

AFUSE(λ)-B1
(0.09) (0.11) (0.11) (0.12) (0.13) (0.12) (0.14) (0.15) (0.09) (98.98) (197.9) (1.03)
1.02 1.07 0.62 0.86 0.89 0.57 0.34 0.16 0.12 -2957.86 6035.23 14.41

AFUSE(λk)-B1
(0.1) (0.11) (0.14) (0.11) (0.13) (0.14) (0.13) (0.15) (0.08) (99.96) (198.84) (0.93)
1.02 1.07 0.62 0.86 0.89 0.57 0.34 0.16 0.12 -2957.86 6044.34 15.51

AFUSE(λjk)-B1
(0.1) (0.11) (0.14) (0.11) (0.13) (0.14) (0.13) (0.15) (0.08) (99.96) (199.67) (0.69)
1.1 1.16 0.62 0.91 0.95 0.58 0.36 0.19 0.15 -2959.26 6038.82 14.5

AFUSE(λ)-B2
(0.08) (0.1) (0.12) (0.12) (0.13) (0.13) (0.12) (0.15) (0.1) (98.8) (197.93) (0.85)
1 1.05 0.63 0.84 0.87 0.58 0.3 0.16 0.14 -2957.95 6035.53 14.42

AFUSE(λk)-B2
(0.09) (0.1) (0.13) (0.12) (0.14) (0.14) (0.12) (0.15) (0.09) (97.98) (198.82) (0.83)
1 1.05 0.63 0.84 0.87 0.58 0.3 0.16 0.14 -2957.95 6044.96 15.56

0

AFUSE(λjk)-B2
(0.09) (0.1) (0.13) (0.12) (0.14) (0.14) (0.12) (0.15) (0.09) (97.98) (198) (0.63)
1 1 1 1 1 1 0.96 0.85 0 -2908.1 6473.91 79.3

B1
(0) (0) (0) (0) (0) (0) (0.06) (0.08) (0) (97.33) (197.05) (1.7)
1.01 1.01 1.02 1.01 1.01 1.01 0.98 0.85 0.01 -2908.72 6475.15 79.3

B2
(0.02) (0.02) (0.02) (0.04) (0.04) (0.06) (0.05) (0.08) (0.04) (97.16) (202.94) (1.7)
1.7 1.8 1.06 1.27 1.32 0.95 0.46 0.26 0.25 -2980.21 6092.58 15.93

RFUSE(λ)
(0.28) (0.31) (0.29) (0.3) (0.34) (0.17) (0.1) (0.1) (0) (101.46) (199.7) (0.89)
1.24 1.32 0.65 0.95 1.01 0.56 0.35 0.16 0.14 -2959.41 6038.37 14.41

AFUSE(λ)-B1
(0.23) (0.24) (0.26) (0.2) (0.22) (0.17) (0.14) (0.15) (0.09) (98.98) (197.9) (1.03)
1.13 1.19 0.64 0.9 0.95 0.55 0.34 0.16 0.12 -2957.86 6035.23 14.41

AFUSE(λk)-B1
(0.16) (0.19) (0.21) (0.19) (0.21) (0.15) (0.13) (0.15) (0.08) (99.96) (198.84) (0.93)
1.13 1.19 0.64 0.9 0.95 0.55 0.34 0.16 0.12 -2957.86 6044.34 15.51

AFUSE(λjk)-B1
(0.16) (0.19) (0.21) (0.19) (0.21) (0.15) (0.13) (0.15) (0.08) (99.96) (199.67) (0.69)
1.24 1.33 0.65 0.95 1.01 0.57 0.36 0.19 0.15 -2959.26 6038.82 14.5

AFUSE(λ)-B2
(0.23) (0.25) (0.26) (0.21) (0.23) (0.17) (0.12) (0.15) (0.1) (98.8) (197.93) (0.85)
1.12 1.18 0.64 0.88 0.93 0.56 0.3 0.16 0.14 -2957.95 6035.53 14.42

AFUSE(λk)-B2
(0.18) (0.19) (0.22) (0.19) (0.21) (0.15) (0.12) (0.15) (0.09) (97.98) (198.82) (0.83)
1.12 1.18 0.64 0.88 0.93 0.56 0.3 0.16 0.14 -2957.95 6044.96 15.56

.3

AFUSE(λjk)-B2
(0.18) (0.19) (0.22) (0.19) (0.21) (0.15) (0.12) (0.15) (0.09) (97.98) (198) (0.63)
1 1 1 1 1 1 0.95 0.93 0.16 -2916.83 6503.82 80.8

B1
(0) (0) (0) (0) (0) (0) (0.06) (0.06) (0.09) (102.85) (200.19) (1.55)
0.99 0.98 1.01 1 1 1.03 0.95 0.9 0.16 -2917.11 6499.4 80.2

B2
(0.03) (0.03) (0.01) (0.03) (0.03) (0.04) (0.06) (0.08) (0.06) (102.78) (204.16) (1.55)
1.6 1.68 1.05 1.18 1.23 0.91 0.43 0.35 0.25 -2980.21 6092.58 15.93

RFUSE(λ)
(0.29) (0.34) (0.23) (0.26) (0.33) (0.14) (0.1) (0.1) (0) (101.46) (199.7) (0.89)
1.18 1.25 0.64 0.89 0.94 0.54 0.34 0.24 0.19 -2959.41 6038.37 14.41

AFUSE(λ)-B1
(0.24) (0.26) (0.23) (0.16) (0.2) (0.16) (0.16) (0.11) (0.09) (98.98) (197.9) (1.03)
1.07 1.13 0.65 0.83 0.88 0.54 0.24 0.22 0.17 -2957.86 6035.23 14.41

AFUSE(λk)-B1
(0.19) (0.22) (0.25) (0.15) (0.19) (0.17) (0.13) (0.13) (0.09) (99.96) (198.84) (0.93)
1.07 1.13 0.65 0.83 0.88 0.54 0.24 0.22 0.17 -2957.86 6044.34 15.51

AFUSE(λjk)-B1
(0.19) (0.22) (0.25) (0.15) (0.19) (0.17) (0.13) (0.13) (0.09) (99.96) (199.67) (0.69)
1.18 1.25 0.64 0.88 0.94 0.55 0.36 0.25 0.19 -2959.26 6038.82 14.5

AFUSE(λ)-B2
(0.23) (0.26) (0.24) (0.17) (0.2) (0.17) (0.12) (0.11) (0.09) (98.8) (197.93) (0.85)
1.06 1.12 0.65 0.82 0.86 0.54 0.25 0.24 0.16 -2957.95 6035.53 14.42

AFUSE(λk)-B2
(0.2) (0.22) (0.25) (0.16) (0.19) (0.18) (0.12) (0.14) (0.1) (97.98) (198.82) (0.83)
1.06 1.12 0.65 0.82 0.86 0.54 0.25 0.24 0.16 -2957.95 6044.96 15.56

.6

AFUSE(λjk)-B2
(0.2) (0.22) (0.25) (0.16) (0.19) (0.18) (0.12) (0.14) (0.1) (97.98) (198) (0.63)

Note: The evaluation measures are validated over 10 samples, whereby the associated standard deviations are between parentheses. RMSEs of model and
GPD parameter estimates are relative to model B1 as follows: RMSE(B)

RMSE(B1) , where B is a model in the column “Model”.

coefficient spaces for the optimal in-sample tuning penalty parameter(s) when using BIC.

With regard to the number of observation included in the simulation study: the per-

formance of models for nsim = {10, 000; 20, 000} is similar to nsim = 5, 000 and therefore

not shown. This can be explained as follows: we do not run into identification issues since

nsim = 5, 000 >> max(psim), and nsim = 5, 000 is sufficiently large so that asymptotic prop-

erties can hold. However, we do emphasize that overfitting issues are more likely to arise for

nsim > 5, 000. Therefore, optimal tuning parameters for nsim = 5, 000 should be considered as a

conservative estimate for the optimal tuning parameters for nsim > 5, 000. In our test samples,

this issue was restricted by considering BICs since BICs penalize log-likelihoods by a product
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of the estimated EDFs, and a scalar that is equal to log(nsim), which increases in nsim. For

nsim > 5, 000, there seems to be a relation between nsim and the optimal stopping iteration

of gradient descent optimizers (negative relation), and the optimal tuning parameters (positive

relation). This can be explained by the fact that overfitting issues are more likely to arise when

the model is trained over a higher number of observations nsim. Therefore, by stopping the

boosting optimizers earlier or by choosing higher tuning parameters, the risk of overfitting and

consequently model misspecification can be mitigated.

5.1.3. Comparison of gradient boosting optimizers in an unpenalized framework. We

subsequently investigate both B1 and B2 in an unpenalized framework for comparison as well as

to attain a deeper understanding of these model optimizers. We provide figures to demonstrate

differences between B1- and B2-type models. Hereby, we mainly evaluate one sample. Although

there are marginal differences among the 10 samples that we consider, data characteristics of

one sample also hold for other samples.

Figure 2 shows that B2 slightly improves model and GPD parameter estimates. This can be

explained by the fact that few GPD shape parameters are updated for low to intermediate niter

for B1-type models (later illustrated in Section 5.1.4). The boosting optimizer step size ν does

not substantially impact the level of optimal RMSEs, albeit that the slopes of the associated

RMSEs are much steeper for high ν. We find that the optimal niter
∗ , based on the RMSEs

of the model and GPD parameter estimates, is inversely proportional to ν. After reaching

niter
∗ , parameter estimates deteriorate, as shown in Figure 2. Therefore, B1 and B2 do not

behave as interpolators since zero training error is not achieved. The reason is that boosting

optimizers maximize log-likelihood functions and hence they do not directly optimize model

and GPD parameters. Particularly, β̂1 and η̂1 estimates are substantially improved under

GAMLSSBoostAlt because the associated covariates of the GPD shape parameter receive many

more updates. The η̂ parameter estimates are more volatile over niter than B̂ estimates since

the GPD parameter is represented by a single instance, whereas the GPD model parameters

are many, and only one covariate can be updated per iteration.

With regard to the information criteria, Figure 3 demonstrate that AIC does not penalize

coefficients sufficiently severely since AICs do not reach a global minimum. On the other hand,

BICs attains a global minimum for low niter. However, BICs achieve optimality when niter is

much lower than the number of iterations for which the model coefficients are optimally fit (niter
∗ ;

Figure 2). Upward shifts in AICs and BICs (Figure 3) occur when the associated optimizer

updates a new covariate group for the first time.

Figures 4a, 4c, and 4d show that in-sample log-likelihoods converge, whereas out-of-sample
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(a) {η̂, ν = .01} (b) {η̂, ν = .05} (c) {η̂, ν = .10}

(d) {B̂, ν = .01} (e) {B̂, ν = .05} (f) {B̂, ν = .10}

Figure 2: RMSE (y-axis) over the number of iterations (x-axis), whereby RMSEagg
bk

/RMSEagg
ηk for k = 1, 2 are

visualized by lines “xi-B1”, “xi-B2”, “sigma-B1”, and “sigma-B2”. Additionally, the lines “agg-B1” and
“agg-B2” are linked to RMSEagg

b /RMSEagg
η . Solid and dotted lines refer to model types B1 and B2, respectively.

(a) AIC, niter ∈ [1; 5, 000] (b) AIC, niter ∈ [1; 25, 000] (c) AIC, niter ∈ [1; 100, 000]

(d) BIC, niter ∈ [1; 5, 000] (e) BIC, niter ∈ [1; 25, 000] (f) BIC, niter ∈ [1; 100, 000]

Figure 3: AIC/BIC (y-axis) over the number of iterations (x-axis). The terms “v0.01/v0.05/v10” refer to the
step size v. The lines “v0.05-B1” and “v0.05-B2” are almost identical in figures (a), (b), and (c).

log-likelihoods reach a global maximum and worsen afterwards. Notice that log-likelihoods

of gamboostLSS are not always better than GAMLSSBoostAlt. GamboostLSS directly max-
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imizes log-likelihood functions, whereas GAMLSSBoostAlt imposes the restriction of alterna-

tively updates. Such a restriction introduces a bias in model parameters and subsequently in

associated log-likelihoods functions. However, B2-type models do not necessarily yield worse

log-likelihoods, both in- and out-of-sample. This could be explained as follows: log-likelihood

functions depend on the shape as well as the scale parameter. Since gamboostLSS updates

one GPD parameter consecutively for many iterations, the resulting coefficient solution paths

could deteriorate. Therefore, log-likelihoods in subsequent iterations do not always improve

under B1 since the current position of the model coefficients could be worse compared to the

previous iteration. For high niter, log-likelihoods of both optimizers converge towards similar

values. Figure 4b illustrates that covariate groups, that have not yet been updated, on average

are updated sooner when ν is high.

(a) In-sample log-likelihood; niter ∈ [1; 100, 000]. (b) EDF; niter ∈ [1; 25, 000].

(c) OOS-LLH; niter ∈ [100; 15, 000]. (d) OOS-LLH; niter ∈ [1; 100, 000].

Figure 4: Log-likelihoods and equivalent degrees of freedom (y-axis) over the number of iterations (x-axis). The
terms “v0.01/v0.05/v10” refer to the step size v.

With regard to the variable selection, Figures 5b and 5a demonstrate that FNR and FPR of

informative and uninformative covariates start at 1 and 0 since coefficients are zero-initialized,

and then steadily converge to 0 and 1 for niter sufficiently high. The speed of converge positively

depends on step size ν. Moreover, there is a trade-off between the false positive rates of noisy

covariates and the false negative rates of the informative covariates. Therefore, optimizers

gamboostLSS and GAMLSSBoostAlt are not able to optimize both rates and hence we use

regularization techniques (Section 5.1.2) to tackle this issue. Additionally, not all covariates
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(a) FPR; niter ∈ [1; 35, 000]. (b) FNR; niter ∈ [1; 25, 000].

Figure 5: FPR of uninformative and FNR of informative covariates (y-axis) over the number of iterations
(x-axis). The terms “v0.01/v0.05/v10” refer to the step size v.

are updated once when niter = 100, 000. In our simulation study, such covariates frequently are

uninformative. However, this phenomenon is undesired for real-world covariate data sets, since

zero-coefficients in unpenalized frameworks effectively ensure that subsequent regularization

procedures likely will not update these coefficients to non-zero when using adaptive weights,

explained in Appendix A.5.

5.1.4. Comparison of gradient boosting updating schemes. Let riter be the aggregated

number of GPD shape parameter updates over the total boosting optimizer iterations niter. In

Figure 6, we observe that GPD shape and scale parameters are on average updated a few and

many times for the first thousand iterations, respectively. In fact, for ν = .01 under gamboostLSS

(line “v001-xi-B1”), the GPD shape is never updated in the first 500 iterations. Furthermore,

Figure 6 demonstrates that the ratio riter increases when niter increases under gamboostLSS. In

fact, ξ coefficients are updated many times when niter > 5, 000. In our test cases, the associated

LLFs never converged. Hence, the number of GPD shape and scale parameter updates heavily

depend on niter under gamboostLSS. Due to this dependency, we find that the updating scheme

of gamboostLSS is unpredictable, whereas the updating scheme of GAMLSSBoostAlt is fixed

and known before model estimation and thus predictable. All in all, the function of GPD shape

(scale) parameter with respect to the log-likelihood function is extremely flat (steep) for the

first iterations, whereas this function is steep (flat) for a sufficiently high niter. Moreover, Figure

6 demonstrates that the intersection of the number of GPD shape and scale parameter updates

(riter = 0.5), is inversely proportional to the step size ν. Additionally, the update ratio riter

appears to converge towards 1 for sufficiently high niter.

For other specifications, Tables 20 and 21 in Appendix A.8 show that Csim = 15 on average

yields lower ratios riter. The reason is that, due to the higher number of covariates, more

iterations are required to attain a bliss level of GPD scale parameter updates before GPD shape

parameters impact the associated LLF substantially more. Moreover, these tables illustrate that

28



(a) niter ∈ [1; 10, 000]. (b) niter ∈ [1; 100, 000].

Figure 6: Number of updates (y-axis) over the number of iterations (x-axis). The terms “v0.01/v0.05/v10”
refer to the step size v, “xi/sigma” refer to the corresponding GPD parameter, and “B1/B2” refer to the two

optimizers B1 and B2. The lines ‘xi-B2’ and ‘sigma-B2’ are almost identical because B2-type models alternately
update the two GPD parameters.

high ρ requires high niter to filter out the noise.

5.2. Real-world application. We investigate the performance of our proposed mod-

els using UniCredit’s OpRisk loss data. We model LFEs/LSEs conditional on the following

covariate sets, which include the seven risk categories, and additionally the following covariates:

none (model M1), 20 economic factors (model M2, M2-met/M2-cat), the covariates in model

M2, whereby we apply a variable selection method (model M3, M3-met/M3-cat).

The structure of this section is as follows: we present our loss severity and frequency models

in Sections 5.2.1 and 5.2.2. In Section 5.2.3, we conduct a scenario analysis and subsequently

estimate capital charges.

5.2.1. Loss severity exceedances. Figure 7 presents the log-LSEs of the losses above our

threshold. We observe that the shape and scale of the losses differ among the risk categories.

Particularly, the distribution of the risk-category-specific LSEs differs between (1) BDSF, DPA,

EPWS, and IFRAUD; (2) CPBP, EDPM, and EFRAUD. Hence, associated GPD parameters

should reflect these differences.

To identify risk drivers of the loss severity exceedances, we use a model in which we apply

L1-norms to filter the signal from the noise and to tackle overfitting, and apply adaptive weights

from a similar unpenalized model, and use optimizer B1. The results of this model (model M3-

cat) are shown in Table 7. We thereby find that the factor Tier-I capital ratios is identified for the

GPD shape parameter, whereby the three upper covariate groups have been fused. Furthermore,

UR IT and VIX USA exhibit high coefficients. With regard to the risk categories, CPBP-EPWS

and BDSF-EDPM have been fused. This means that the LSE distributions are similar for these
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(a) Risk-category-specific log-LSEs (b) Aggregated log-LSEs

Figure 7: Log-LSEs (y-axis) over the loss indices (x-axis), sorted on the risk-category-specific LSE levels. The
risk categories in (a) from left to right are BDSF, DPA, IFRAUD, EPWS, EFRAUD, EDPM, and CPBP.

Table 7: Estimated LSE parameters over all 38 time periods using model M3-cat in a penalized λ framework,
whereby the optimal tuning parameter using BIC is λopt = 1.572. We use use unpenalized M2-cat estimates in

a similar context (Table 9) as adaptive weights.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Intercept* 0.01 NA NA NA NA NA
RC* 0.08 -1.16 -0.32 -0.33 -0.68 -0.68
DGR 0 0 0 0 0 NA
LR 0 0 0 0 NA NA
PRF 0 0 0 0 NA NA
TCR -0.01 0.14 0.14 0.14 NA NA
UCSR 0 0 0.05 0.02 0.02 NA
GDP EU 0 0 0 0 0 NA
GDP IT 0 0 -0.03 -0.03 NA NA
HPI EU 0 0 0 0 0 NA
LOR EU 0 0 0 0 NA NA
LOR IT 0 -0.04 -0.04 -0.04 NA NA
M1 EU 0 0 0 0 NA NA
UR EU -0.05 -0.08 -0.08 -0.08 -0.08 NA
UR IT 0 -0.07 -0.09 -0.09 -0.19 NA
LIR IT 0 0 0 0 NA NA
MIB IT 0 0 0 0 NA NA
SIR IT 0 0 0 0 0 NA
SP USA 0 0 0 0 0 NA
TRSI EU 0 0 0 0 NA NA
VIX USA 0.06 -0.01 -0.01 -0.01 0.05 NA
VFTSE UK 0 0 0 0 0 NA

Note: There is only 1 intercept for each GPD parameter, and parameter estimates of the risk
categories are in the order: IFRAUD, EFRAUD, EPWS, CPBP, EDPM, BDSF. In the rows
that correspond to the economic factors, “NA” values mean that the covariate group does not
exist for that economic factor. The interval limits and number of groups for each economic
factor are in Appendix A.4, Table 17.

pairs. Parameter estimates of σ are not shown since the coefficients of the economic are all

shrunk to zero, whereas the parameters belonging to the risk categories are identical to those

of Table 10. All factors that are linked to the scale parameter are unidentified due to the levels

of ξ and σ being vastly different. It is challenging to shrink both GPD parameters adequately

since differences in levels require differences in the levels of the tuning parameters.

In this and the following paragraphs, we present other LSE-models to attain a deeper un-
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Table 8: Estimated LSE parameters over all 38 time periods using model M2-cat in an unpenalized GAMLSS
framework using the IWLS optimizer.

ξ σ
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Intercept* 0 NA NA NA NA NA 0 NA NA NA NA NA
RC* -0.95 -0.99 -0.76 -0.82 -0.28 -0.28 3.39 1.73 2.4 2.41 1.65 1.3
DGR -0.39 -0.69 -0.54 -0.22 -0.32 NA 1.69 2.04 1.89 1.71 1.27 NA
LR 0.57 0.69 0.28 -0.03 NA NA 0.25 0.25 0.29 1 NA NA
PRF 0.2 0.1 0.21 0.12 NA NA -0.08 0.13 -0.09 -0.05 NA NA
TCR -0.33 -0.23 0.05 0.23 NA NA 0.37 -0.04 0.15 -0.22 NA NA
UCSR -0.14 -0.09 0.07 0.03 0.07 NA 0.2 -0.04 0.01 -0.4 -0.31 NA
GDP EU 0.16 -0.09 -0.09 0.2 0.38 NA -0.35 0.29 -0.07 -0.17 -0.42 NA
GDP IT 0.04 0.05 -0.16 0.02 NA NA 0.04 0.02 -0.13 -0.11 NA NA
HPI EU -0.09 0.14 0.16 -0.2 0.11 NA -0.08 0.09 0.02 -0.18 -0.07 NA
LOR EU 0.03 -0.15 0.03 -0.07 NA NA 0.27 0 -0.09 0.3 NA NA
LOR IT -0.16 -0.15 0.02 0.1 NA NA 0.38 0.16 -0.06 0.01 NA NA
M1 EU 0.03 -0.15 0.22 -0.01 NA NA -0.27 0.27 -0.15 0.29 NA NA
UR EU -0.14 0 0.18 -0.21 0.14 NA 0.21 -0.08 -0.04 -0.24 -0.44 NA
UR IT 0.3 0 -0.13 0.31 -0.38 NA -0.51 0.22 -0.1 0.16 0.18 NA
LIR IT 0.05 -0.21 -0.02 -0.01 NA NA 0.04 0.13 -0.03 -0.19 NA NA
MIB IT -0.09 0.12 -0.24 0.2 NA NA -0.12 -0.04 0.27 -0.52 NA NA
SIR IT -0.05 0.16 -0.05 -0.07 -0.11 NA 0.03 -0.3 0.21 0.07 0.02 NA
SP USA -0.08 -0.03 0.21 -0.13 0 NA 0.09 -0.21 -0.27 0.48 -0.01 NA
TRSI EU -0.14 0.13 -0.01 -0.04 NA NA -0.07 0.02 0.08 -0.05 NA NA
VIX USA 0.15 -0.18 0.21 -0.38 -0.01 NA 0.08 -0.22 0 0.15 -0.05 NA
VFTSE UK 0.14 0.04 -0.09 -0.11 -0.01 NA -0.18 -0.23 0.36 0.08 -0.01 -

Note: There is only 1 intercept for each GPD parameter (presented in the column “Group 1”), and risk-category-specific parameter estimates
are from left to right: IFRAUD, EFRAUD, EPWS, CPBP, EDPM, BDSF (presented in the row “RC*”). In the rows that correspond to the
economic factors, “NA” values mean that the covariate group does not exist for that economic factor. The interval limits and number of groups
for each economic factor are in Appendix A.4, Table 17.

Table 9: Estimated LSE parameters over all 38 time periods using model M2-cat in an unpenalized framework
and the gamboostLSS gradient boosting optimizer for niter = 100, 000 and ν = .01.

ξ σ
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Intercept* -0.34 - NA NA NA NA 7.14 - NA NA NA NA
RC* -0.48 -0.55 -0.31 -0.36 0.16 0.15 2.94 1.29 1.95 1.96 1.21 0.86
DGR 0 0 0 0 0 NA 0 -0.01 -0.06 0.01 -0.1 NA
LR 0 0 -0.01 0 NA NA -0.03 -0.12 0.04 -0.07 NA NA
PRF 0 0.01 0 -0.02 NA NA -0.01 0 -0.01 0.02 NA NA
TCR -0.14 0.06 0.06 -0.03 NA NA -0.12 0.06 0 -0.04 NA NA
UCSR -0.05 -0.21 0.05 -0.04 -0.02 NA -0.02 -0.03 0.01 -0.09 -0.09 NA
GDP EU 0 0 0 -0.01 -0.01 NA -0.03 0.02 -0.02 -0.08 -0.16 NA
GDP IT 0.04 0.04 -0.09 -0.02 NA NA -0.01 0.01 -0.02 -0.02 NA NA
HPI EU -0.01 0 0.01 -0.02 0.01 NA 0 0 0 0 0 NA
LOR EU 0 0 0 0 NA NA 0.02 -0.02 -0.01 0.02 NA NA
LOR IT 0.04 -0.05 -0.01 0.01 NA NA 0.01 -0.04 -0.01 0.02 NA NA
M1 EU 0.09 -0.04 -0.01 0 NA NA -0.11 0.02 -0.03 -0.05 NA NA
UR EU -0.07 -0.11 0.1 0.05 -0.03 NA 0 -0.04 0.01 -0.01 -0.01 NA
UR IT 0 0.05 -0.05 0.06 -0.09 NA -0.01 -0.02 0.01 0 -0.02 NA
LIR IT 0.03 -0.03 0.03 -0.03 NA NA -0.01 -0.03 0.02 -0.06 NA NA
MIB IT 0 0 0 0 NA NA 0 0 0 0 NA NA
SIR IT -0.03 0.02 -0.01 0 0 NA -0.01 -0.09 -0.01 0.03 -0.02 NA
SP USA 0.05 0.08 -0.07 -0.08 -0.02 NA 0.03 -0.02 0.02 -0.02 0 NA
TRSI EU 0 0 0 0 NA NA -0.12 -0.03 0.05 -0.01 NA NA
VIX USA 0.09 -0.01 0.03 -0.06 0.04 NA 0.08 -0.08 0.01 -0.05 0 NA
VFTSE UK 0 0 0 0 0 NA -0.17 -0.04 -0.07 -0.02 0 NA

Note: Identical to Table 8.

derstanding of the relation between the loss severity exceedances and the involved economic

factors. Table 8 presents the results from the using IWLS updating schemes, whereby BIC is

the stopping criteria. Unlike the gradient boosting optimizers, the log-likelihood function of the

IWLS optimizer converged, namely after 382 iterations. IWLS does not put any weight into

the model intercept, whereas economic factors exhibit high weights. The parameter estimates

in Table 8 illustrate the trade-off between the two GPD parameters. For example, the GPD
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shape parameter estimates of the leverage ratios decrease from group 1 to 6, whereas GPD

scale parameter estimates increase from group 1 to 6. Therefore, the effect of LR is unclear.

Furthermore, Table 8 indicates a relation between the signs of the two GPD parameters ξ and

σ for the economic factors. Economic factors that have positive ξ coefficient frequently have

negative associated σ coefficient for the same group. Moreover, we identify high absolute levels

of the deposit growth rate factor. High deposit growth rates are associated with high shape and

scale parameter estimates. Similarly, the Tier-I capital ratio parameter estimates for both GPD

parameters are highly negative in column “Group 1”. This means that low financial market

volatility indicates low OpRisk losses. The factors UR EU and UR IT, which are highly cor-

related, illustrate the consequence of multicollinearity. Associated coefficients are substantially

non-zero, and the signs of these factors are complementary. Therefore, UR EU and UR IT ef-

fectively dominate other factors. This could be explained by the fact that two highly comoving

factors exhibit substantially diversification effects from a modelling perspective.

Next, we model LSEs using model M2-cat and gamboostLSS for niter = 100, 000 and ν =

0.01, as shown in Table 9.3 We thereby discover that 0 < ξ < 1 holds for all risk categories,

after applying an exponential transformation to the risk-category-specific parameter estimates

to revert the logarithmic link function to the covariates. For illustration, reverted ξ estimates

for DPA and IFRAUD are exp(−0.34) and exp(−0.34 − 0.48). In line with Hambuckers et al.

(2018), IFRAUD exhibits the highest GPD scape parameter estimate. With regard to the

economic factors, it appears that leverage ratios, tier-I capital ratios, unemployment rates in

the European Union, and USA S&P volatility index explain model variation since these factors

have at least one group that has an absolute coefficient above 0.10. A plausible explanation is

that optimal stopping conditions for gradient boosting optimizers are yet unclear and thus we

let the gradient boosting optimizer run for niter = 100, 000. Therefore, the differences between

B1 and B2 are minimal since our findings in Section 4.1.1 illustrate that B1 and B2 perform

similarly for sufficiently high niter.

Table 10 compares the updates and log-likelihood contributions of the two gradient boosting

optimizers using model M2-cat over all 38 time periods. We calculate these contributions as

follows: in the current iteration, we evaluate what would happen if we would update a single

involved covariate (we have 40 involved covariates under B1, and 20 under B2). Due to the

changes in model parameter estimates for a particular covariate, we obtain a changed linear

predictor estimate. We then calculate the associated log-likelihood for this particular covariate

using the changed linear predictor estimates. After calculating the set of all log-likelihoods, we

3B2-type models perform similar to B1-type models, thus these results are not presented.
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Table 10: Percentage of updates per covariate and log-likelihood improvement for model M2-cat using
optimizers B1 and B2 for niter = 100, 000 and ν = 0.01.

GamboostLSS GAMLSSBoostAlt
ξ σ ξ σ

Factor % LLH+ % LLH+ % LLH+ % LLH+

Intercept 100 6.17 100 34.58 100 4.68 100 29.65

RC 15.45 49.06 45.5 379.94 20.03 314.94 37.0 359.17
DGR 0 0 1.84 1.9 0.04 0.01 1.23 1.1
LR 0.26 0.06 2.1 3.15 0.23 0.2 1.6 2.7
PRF 0.75 0.16 0.47 0.24 0.29 0.08 0.37 0.69
TCR 1.23 6.51 0.8 5.25 1.77 16.72 0.88 3.49
UCSR 3.29 3.42 1.44 3.41 3.49 11.87 1.07 2.59
GDP EU 0.21 0.07 1.12 2.97 0.65 0.96 0.96 2.12
GDP IT 1.59 1.71 0.54 0.27 2.36 7.26 0.46 0.16
HPI EU 0.55 0.14 0.1 0.02 0.65 0.8 0.01 0.02
LIR IT 1.72 0.48 1.11 0.84 3.17 4.67 0.84 0.86
LOR EU 0 0 0.22 1.61 0.09 1.02 0.27 1.04
M1 EU 2.21 1.21 1.58 3.7 2.94 4.46 1.24 3.61
UR EU 1.81 6.61 0.2 1.86 1.92 13.29 0.09 0.84
UR IT 2.21 1.27 0.68 0.37 3.06 5.27 0.32 0.31
LIR IT 1.72 0.48 1.11 0.84 3.17 4.67 0.84 0.86
MIB IT 0.23 0.05 0.04 0.02 0.84 1.03 0 0
SIR IT 0.23 1.17 1.22 2.52 0.16 2.09 0.86 2.51
SP USA 2.23 2.04 0.14 2.07 3.42 7.41 0.16 2.4
TRSI EU 0 0 0.89 4.76 0 0 0.8 4.61
VIX USA 2.41 1.29 0.5 6.84 2.46 7.29 0.57 6.25
VFTSE UK 0 0 1.87 10.96 0.84 0.92 1.22 10.08

All 37.47 82.14 62.53 469.52 50 411.17 50 436.07

Note: Columns “%” show the percentage of updates per factor for niter = 100, 000, whereby
the model intercepts are updated in each iteration. Columns LLH+ illustrate the total log-
likelihood improvement for all updates of the corresponding covariate. Table elements that are
exactly equal to 0 mean that the corresponding covariate received no updates whatsoever.

update the covariate that positively impacts the log-likelihood the most (which is the covariate

that maximizes the log-likelihood). The associated contribution, summed over all iterations, is

presented in columns “LLH+”.

In Table 10, we find that model terms that belong to the GPD scale parameter receive the

most updates under B1 (62.53%). This is mainly due to the model terms of the GPD scale

parameter of the risk categories (45.5%) contributed the most to the log-likelihood. Economic

factors TCR, UCSR and UR EU contribute the most to the log-likelihood of the GPD shape

parameter. The high contribution of TCR is in line with Groll et al. (2019) and could be due to

banks anticipating large losses and hence they improve their core capital positions in advance of

the anticipated future extreme losses. Moreover, TCR, VFTSE UK, and VIX USA contribute

the most to the GPD scale parameters. The impact of the financial market volatility indices

could be explained by the fact that high associated values signal an expansion. However, high

financial market volatility indices also indicate a recession and hence caution is warranted in
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the interpretation of these factors. For the interested reader, in Appendix A.10; Table 23, we

present LSE estimates over all 38 time periods for models M1 and M2-met using unpenalized

IWLS updating schemes, whereby we use IWLS because the number of model parameters is

sufficiently low for IWLS to yield good performance.

5.2.2. Loss frequency exceedances. Next, we evaluate our loss frequency exceedances

models. Similar to LSE models, we use models M1 - M3 but exclusively using metric covari-

ates. Model M3 is constructed as follows: we re-estimate model M2 after removing insignificant

economic factors (p-values > 0.05). Thereafter, we keep removing covariates based on p-values

until three economic factors remain to attain a parsimonious model, namely model M4.

Table 11 presents LFE-models M1 - M4. We thereby find that the remaining economic

factors in model M4 are DGR, MIB IT, and UR IT. Using the impact of these factors based

on economic reasoning (explained in Section 3.3), we interpret these factors as follows: high

deposit growth rates, low Italian unemployment rate, and high Milano Italia Borsa stock returns

increase the likelihood of the occurrence of extreme OpRisk losses. Moreover, we discover that

the LFEs significantly differ among risk categories due to associated close-to-zero p-values.

Table 11: NHPP distributed κ̂ coefficients over all 38 time periods. whereby the corresponding p-values are in
parentheses. The row “CV-OOS-LLH” presents the out-of-sample cross-validated log-likelihood scores,

aggregated over all risk categories and time periods.

Factor Model M1 Model M2 Model M3 Model M4
Intercept 3.024 (0) 2.982 (0) 2.983 (0) 2.998 (0)
IFRAUD 0.123 (0) 0.123 (0) 0.123 (0) 0.123 (0)
EFRAUD 0.692 (0) 0.692 (0) 0.692 (0) 0.692 (0)
EPWS 0.331 (0) 0.331 (0) 0.331 (0) 0.331 (0)
CPBP 1.018 (0) 1.018 (0) 1.018 (0) 1.018 (0)
BDSF -0.068 (0.05) -0.072 (0.039) -0.071 (0.04) -0.069 (0.052)
EDPM 0.948 (0) 0.948 (0) 0.948 (0) 0.948 (0)
DGR - 0.068 (0) 0.081 (0) 0.072 (0)
LR - -0.035 (0.073) - -
PRF - -0.013 (0.625) - -
TCR - 0.006 (0.89) - -
UCSR - -0.161 (0) -0.138 (0) -
GDP EU - -0.073 (0.139) - -
GDP IT - 0.031 (0.415) - -
HPI EU - 0.025 (0.736) - -
LOR EU - 0.313 (0.003) 0.269 (0) -
LOR IT - -0.128 (0.116) - -
M1 EU - 0.047 (0.24) - -
UR EU - 0.686 (0) 0.699 (0) -
UR IT - -0.594 (0) -0.575 (0) -0.271 (0)
LIR IT - -0.032 (0.303) - -
MIB IT - 0.218 (0) 0.194 (0) 0.084 (0)
SIR IT - 0.235 (0.002) 0.161 (0) -
SP USA - -0.107 (0.006) -0.102 (0) -
TRSI EU - -0.009 (0.85) - -
VIX USA - -0.112 (0.04) -0.097 (0) -
VFTSE UK - 0.004 (0.949) - -

AIC 3012.83 2208.67 2201.2 2343.05
CV-OOS-LLH 1554.9 1943.4 1232.4 1241.0
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With regard to the economic factors, model M2 in Table 11 illustrates that many are sig-

nificant. Nevertheless, the inclusion of economic factors barely impacts the level of the risk-

category-specific parameter estimates. Model M3 is preferred by comparing AICs and out-of-

sample cross-validated log-likelihood scores (CV-OOS-LLH). Moreover, model M2 exhibits an

inferior CV-OOS-LLH score. Model M2 includes all twenty economic factors, and these factors

are highly collinear. Therefore, taking large positive and negative positions in such factors

could potentially yield vast diversification effects, resulting in unstable out-of-sample LFE pre-

dictions and consequently an inferior CV-OOS-LLH score. Another perspective is that model

M2 overfits the data (due to the inclusion of many economic factors) and hence underperforms

out-of-sample. For the interested reader, we conduct further analyses to attain a better under-

standing of the relation between loss frequency exceedances and economic factors in Appendix

A.11.

5.2.3. Scenario analysis for economic conditions of the business cycle. Independent

scenario analyses are conducted for both the loss frequency and severity for three economic

conditions: recession (SC1), intermediate (SC2), and expansion (SC3). We compare these

conditions to a constant scenario (SC0), which uses long-term average risk-category-specific

parameter estimates. Our approach for the scenario analysis is to fix the involved economic

factors to plausible values such that they represent scenarios SC1 - SC3. In this procedure, we

evaluate the impact of the scenarios by “impact coefficients”. These coefficients are calculated

as the sum of the product of predetermined covariate values and associated parameter estimates.

Thereafter, we add the impact parameter, which is scenario-specific, to the risk-category-specific

parameter estimates of the constant scenario to obtain scenario-specific parameter estimates for

the risk categories.

For the loss severity, we use the key risk driving economic factors TCR, UR IT, and VIX

USA (elaborated in Section 5.2.1). We estimate a model over all 38 time periods using the

risk categories and these economic factors as covariates. Re-estimation is necessary since other

models include economic factors that we do not use in the scenario analysis and hence these

factors distort the parameter estimates of the covariates that we do use. Furthermore, the

penalized M2-cat model, which identifies these factors, primarily serves to identify risk drivers

since the connected parameter estimates are unstable. All in all, we estimate a new model

using B1, whereby niter = 100, 000 and ν = .01. The corresponding parameter estimates that

belong to the risk categories represent the constant scenario SC0, and are presented in Table 12.

Although we already interpreted parameter estimates (Section 5.2.1), we further analyse the

impact of TCR due to its anomalous behaviour. Moderate Tier-I capital ratios yield a drastic
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increase in ξ (group 3) and σ (group 2) parameters, whereas extremely low Tier-I capital ratios

slightly substantially decrease model coefficients. Valencia (2016) argues that banks self-insure

against future shocks through holding more bank capital, whereby a higher uncertainty around

future losses is associated with a higher level of self-insurance. Another possible explanation

is that extremely low and high Tier-I capital ratios are not necessarily related to an economic

condition but reflect the internal risk policy and/or UniCredit’s state of health at that time.

Table 12: Scenario analysis, LSEs; unpenalized GAMLSS parameter estimates.

ξ σ
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Intercept* -0.49 - - - - - 8.17 - - - - -
RC* -0.54 -0.62 -0.36 -0.40 0.12 0.11 2.98 1.32 1.99 1.98 1.23 0.91
UR IT 0.07 0.04 -0.15 -0.14 -0.15 NA 0.01 -0.05 -0.20 -0.16 -0.21 NA
VIX USA 0.18 0.20 0.25 0.17 0.21 NA 0.09 -0.13 0.02 -0.02 0.05 NA
TCR -0.20 0.07 0.19 0.07 NA NA -0.01 0.23 0.10 0.14 NA NA

Note: There is only 1 intercept for each GPD parameter, and parameter estimates of the risk categories are in the order: IFRAUD, EFRAUD,
EPWS, CPBP, EDPM, BDSF. In the rows that correspond to the economic factors, “NA” values mean that a particular covariate group does
not exist for the corresponding economic factor.

Since we categorize covariates for LSE-models, we link specific covariate groups (one group

per scenario) to economic conditions using economic reasoning. Table 13 presents these pre-

determined covariate groups, whereby each covariate group is linked to a corresponding model

parameter estimate (Table 12) and interval limit (Appendix A.4; Table 17). For illustration,

UR IT has a negative impact on the loss severity, thus we select groups 4, 1, and 0 for scenarios

SC1 - SC3. The factor that proxies U.S.’ financial market volatility (VIX USA) requires addi-

tional explanation: we presume high values during recessions (group 4), low values during an

intermediate scenario (group 1), and relatively high values during expansions (group 3), in line

with Hambuckers et al. (2018). For categorized LSE-models, impact coefficients are obtained

as the sum of the product of the covariate groups (conditional on the scenario) and associated

coefficients, whereby only one group in a categorical covariate is equal to 1, and all other groups

are equal to 0. For illustration, the impact coefficient in a recession is equal to the sum of 0

(TCR), -0.14 (UR IT) and 0.17 (VIX USA) = 0.03 (Table 13).

Table 13: Scenario analysis, LSEs; predetermined covariate groups that represent scenarios SC1 - SC3. For
clarification, we added the corresponding coefficients and interval limits.

Recession Intermediate Expansion

Impact Group ξ̂ σ̂ Interval Group ξ̂ σ̂ Interval Group ξ̂ σ̂ Interval
TCR + 0 0 0 [−∞, 0.06] 1 -0.20 -0.01 [0.06, 0.07] 2 0.07 0.23 [0.07, 0.08]

UR IT - 4 -0.14 -0.16 [10,12] 1 0.07 0.01 [6,7] 0 0 0 [−∞,+6]
VIX USA * 4 0.17 -0.02 [15,18] 1 0.18 0.09 [11.9, 13] 3 0.19 0.02 [13, 15]

Impact coefficient NA NA 0.03 -0.18 NA NA 0.05 0.09 NA NA 0.26 0.25 NA

Note: Group 0 refers to the reference group. The coefficients of this table match the coefficients in Table 12, and interval limits are as
presented in Appendix A.4; Table 17.

For the loss frequency, we use the average number of losses above our threshold to represent

SC0. For illustration, BDSF has an average of 169/38 losses (number of losses are in Table

2). For scenarios SC1 - SC3, we use the included economic factors in LFE-model M4, which
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are DGR, MIB IT, and UR IT. We use both the impact (+/-/*) and levels of economic fac-

tors to determine plausible values for the scenarios, shown in Table 14. Since all covariates

are transformed to standard normal distributions before model estimation, we use normalized

equivalents of the factors in the scenario analysis. Normalized equivalents are obtained by an

approximation: we add the prespecified economic factor value to the associated vector in the

model matrix that consists of 38 scalars (equal to the number of time periods) for a given eco-

nomic factor, and thereafter standard normalize this (1 × 39) vector. We subsequently extract

the value for the factor that we added. Impact coefficients for LFE scenarios SC1 - SC3 are

calculated as the sum of the product of normalized covariate values (Table 14) and associated

model coefficients (Table 11; model M4). For illustration, the impact coefficient in a recession

is equal to the sum of -1.08×0.072 (DGR) - 1.81×0.084 (MIB IT) + 2.67×-0.271 (UR IT) =

-0.95 (Table 14).

Table 14: Scenario analysis, LFEs; original factor values and normalized equivalents using model M4 that
represent scenarios SC0 - SC3.

Constant Recession Intermediate Expansion
Factor Impact Norm. value Value Norm. value Value Norm. value Value Norm. value
DGR + 0 -0.15 -1.08 0.03 -0.04 0.20 0.95

MIB IT + 0 -0.20 -1.81 0.00 -0.03 0.20 1.76
UR IT - 0 0.13 2.67 0.09 0.54 0.05 -1.59

Impact coefficient NA 0 -0.95 -0.14 0.66

Final scenario- and risk-category-specific parameter estimates for LFEs and LSEs are in

Table 15, and are calculated as the sum of the corresponding risk-category-specific parameter

estimate in a constant scenario and the impact coefficient, conditional on the scenario. For

illustration, we calculate the Poisson and GPD parameter estimates for SC0 and SC1 for risk

category DPA. The Poisson parameter estimates for SC0 and SC1 are 224/38 = 5.89 and

exp(log(5.89)-0.95) = 2.27. The GPD shape parameter estimates are exp(-0.49) = 0.61 and

exp(log(0.61)+0.03) = 0.63, and the GPD scale parameter estimates are exp(8.17) = 3,528 and

exp(log(3,528)-0.18) = 2,948 for SC0 and SC1, respectively. Thereby, -0.95 (κ̂), 0.03 (ξ̂), and

-0.18 (σ̂) are the impact coefficients in a recession, and -0.49 and 8.17 are the model coefficients

as presented by Table 12.

Table 15 demonstrates that loss severity exceedances are on average higher during favourable

economic conditions due increased ξ̂ and σ̂, in line with our hypothesis that expansions drive

extreme OpRisk losses. Therefore, the involved factors TCR, UR IT, and VIX USA are able

to capture differences among economic conditions. The constant scenario frequently represents

an average scenario, which means that the associated coefficients lie within the range of other

scenarios.
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Table 15: LFE and LSE estimates for scenarios: constant (SC0), crisis (SC1), intermediate scenario (SC2), and
expansion (SC3). The column “Exp.” shows the expected coefficient, calculated as

.25× (κ̂SC1 + κ̂SC3 + 2× κ̂SC2).

LFE; κ̂ LSE; ξ̂ LSE; σ̂
SC0 SC1 SC2 SC3 Exp. SC0 SC1 SC2 SC3 SC0 SC1 SC2 SC3

BDSF 4.45 1.71 3.85 8.62 4.51 0.69 0.71 0.72 0.94 8,778 7,334 9,657 11,284
CPBP 106.18 40.93 92.00 205.74 107.67 0.41 0.43 0.43 0.56 25,559 21,355 28,121 32,857
DPA 5.89 2.27 5.11 11.42 5.98 0.61 0.63 0.64 0.84 3,528 2,948 3,882 4,536
EDPM 86.89 33.50 75.29 168.37 88.11 0.69 0.71 0.72 0.95 12,038 10,058 13,245 15,476
EFRAUD 42.05 16.21 36.44 81.48 42.64 0.33 0.34 0.35 0.46 13,198 11,027 14,521 16,967
EPWS 15.08 5.81 13.06 29.22 15.29 0.43 0.45 0.45 0.59 25,925 21,662 28,524 33,328
IFRAUD 8.37 3.23 7.25 16.21 8.48 0.36 0.37 0.37 0.49 69,433 58,014 76,393 89,259
All 268.91 103.66 233.00 521.06 272.68 - - - - - - - -

With regard to the loss frequency exceedances, Table 15 illustrates that the number of

estimated loss frequency exceedances is higher during favourable economic conditions, again in

line with our hypothesis. We therefore conclude that the LFE parameter estimates for scenarios

SC1 - SC3 are plausible and hence the associated economic factors DGR, MIB IT, and UR IT

help in explaining differences in LFEs among economic scenarios. The estimate, aggregated

over the risk categories, is around a factor 5 (521.06 versus 103.66) higher during expansions

than crises. Let us assume that a crisis, intermediate condition, and expansion occur with

probabilities .25, .5, and .25, respectively. Then, the expected number of extreme OpRisk losses

is equal to .25× (103.66 + 521.06 + 2× 233.00) ≈ 272.68, which is close to the true number of

average losses, namely 268.91. A similar analysis for LFEs using LFE-model M3 (our preferred

LFE-model) yields counter-intuitive insights, elaborated in Appendix A.12.

We subsequently estimate requested capital charge estimates, which are scenario- and risk-

category-specific. To simulate total losses above our threshold, we use the associated parameter

estimates as presented in Table 15, whereby 106 instances for 100 samples for each scenario/risk-

category pair are drawn from the Poisson (LFE) and GPD (LSE) distributions. The 100 samples

serve to quantify the uncertainty around the simulated instances. After the simulation of

these instances, we add the risk-category-specific threshold to the loss series since we originally

subtracted the threshold by applying the POT method. We fix the losses under our threshold

to zero. Hence, this loss series consists of a 40,871-10,219 = 30,652 vector of zeros because our

threshold (Section 3.2) excludes 75% of all losses.

The requested capital charge estimate is equal to the 99.9% quantile of the concatenated

sorted loss series (also known as the 99.9% Value-at-Risk), which is a vector that includes the

losses under as well as above our threshold, for a given scenario and risk category. Banks and

regulators commonly use the 99.9% VaR measure to predict the level of extreme losses. We

present the risk-category-specific capital charge estimates in Figure 8. We thereby observe that

a crisis (SC1) yields the lowest charge, followed by the constant scenario (SC0) and intermediate

scenario (SC2), whereas the expansion scenario (SC3) is responsible for most total losses. These
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findings are in contrast with Hambuckers et al. (2018) since their estimated capital charges are

highest in their constant scenario. This is not in line with the general principle that a constant

scenario, which is constructed by the long-term average parameter estimates, is by definition not

an extreme case. Our capital charge analysis shows that the constant scenario yields moderate

capital charge estimates. The clear pattern from the total loss increases for SC1 - SC2 - SC3

supports that our hypothesis, that economic factors proxy expansions, and that expansions

drive extreme OpRisk losses. Ratios between the charge estimates among the scenarios are

quite alike, in line with Hambuckers et al. (2018). This could be due to the fact that shifts in

economic conditions impact all risk categories to a similar extent.

An upside of our capital charge framework is that the charges are partially based on cat-

egorized covariates. Since the LSE covariates are categorical, we now have a fixed number of

possible capital charges, namely 5× 6× 6× 4 = 720. This number is partially obtained by the

fact that we use three economic factors in our final LSE model, namely TCR, UR IT and VIX

USA, which contain 5, 6, and 6 covariate groups, respectively. Although the capital charges

are stochastic, a final capital charge could be approximated for a sufficient number of instances.

The second component concerns the loss frequency. Since LSEs drive total losses, we argue

that LFEs could be fixed to one of the associated model estimates (Table 15) conditional on

the current condition of the business cycle. This is a plausible framework since it is typically

known what the current condition of the business cycle is and hence the associated κ̂ parameter

estimates can represent this condition.

With our approach, banks can reduce their liquidity risk because the set of 720 charges

covers all possible charges. When the covariates in a new time period are known, we could

place these covariate values into one of our dummy encoded categorical covariate groups. This

set of associated covariate groups corresponds to one of the 720 known charges. Although Figure

8 only represents four out of 720 charges, all other charges can be estimated using a similar

approach.

We emphasize that our capital charge estimates may be underestimates since we set the

losses under our threshold to zero as an approximation. Nevertheless, it is unlikely that the

losses under threshold are equal or above the 99.9% quantile and hence these losses likely do

not affect the calculation of the requested capital charge. Additionally, we stress that we can

not directly draw conclusions with regard to the levels of the capital charge estimates since

UniCredit rescaled their losses with an unknown factor for privacy reasons. Therefore, the face

values of the capital charge estimates can not be interpreted. Nevertheless, these capital charge

estimates shed light on the differences of these charges among risk categories as well as the
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(a) BDSF (b) CPBP

(c) DPA (d) EDPM

(e) EFRAUD (f) EPWS

(g) IFRAUD

Figure 8: Scenario-specific and risk-category-specific capital charges estimates using Monte Carlo experiments.

sensitivity of the risk categories to several economic conditions of the business cycle.
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6. Conclusion. We independently model the loss frequency and severity using the

hypothesis that economic factors proxy expansions, and expansions drive extreme operational

risk losses. This hypothesis is empirically supported in Section 3.3. We thereby investigate sev-

eral model optimizers to attain a better understanding of the relation between extreme OpRisk

losses and economic categorized factors. Our simulation study illustrates that the scale param-

eter σ of the GPD is the driver of log-likelihood functions, when using gradient boosting type

optimizers. Alternatively updating ξ and σ parameters yields slightly improves model param-

eter estimates. Furthermore, within our extreme value framework, it is necessary to early-stop

boosting optimizers since associated in-sample and out-of-sample parameter estimates deteri-

orate after a bliss level of boosting optimizer iterations. However, finding adequate stopping

conditions is challenging and hence must be further researched.

In our real-world application, we model extreme OpRisk losses of the global systemically

important bank UniCredit. We thereby use 20 economic factors capturing a wide spectrum

of financial information. Due to high levels of multicollinearity, it remains a challenge to truly

identify economic key risk drivers of OpRisks. Our analysis demonstrates that TCR, UR IT, and

VIX USA explain variation in loss severity exceedances, whereas the loss frequency exceedances

could be partially explained by DGR, MIB, and UR IT. Our scenario analysis illustrates that

these factors are able to explain differences in loss frequencies and severities of extreme losses

among economic scenarios. Subsequently, the associated parameter estimates are used to esti-

mate capital charges.

The banking industry can benefit from our methodology. The required capital charge is re-

duced from a infinite number of possibilities to 720 charges by the use of categorized economic

factors. These charges are known after model estimation. Conditional on new economic infor-

mation, the new capital charge can always be mapped to an existing capital charge. Therefore,

banks could reduce liquidity risk, which subsequently reduces default risk. Additionally, the

economic factors that drive OpRisk losses could be predicted and tracked to anticipate changes

in future extreme OpRisk losses. Furthermore, we add to the literature by attaining a deeper

understanding of current gradient and log-likelihood optimizers. Besides the banking indus-

try, our GAMLSSBoostAlt optimizer could be used for other probability distributions than the

GPD. Note that the GAMLSS model class can be used to model any probability distribution

with up to four distribution parameters. Therefore, it seems plausible that other probability dis-

tributions, especially those that exhibit more than two distributional parameters, could benefit

from alternatively updating its distributional parameters using GAMLSSBoostAlt.

With regard to suggestions for future research, Herawati et al. (2018) argue that a downside
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of L1-norm regularization is the impossibility of properly dealing with multicollinearity among

covariates. We therefore suggest investigating ways to deal with collinearity among covariates.

Moreover, Ali et al. (2019) find that early-stopping gradient descent type optimizers are closely

linked to L2-norm regularization for proportional and overparametrized regimes. Similarly,

Tibshirani (2015) find a link, within a classification framework, between L1-norm regulariza-

tion and gradient descent optimizers that behave as interpolators. We therefore recommend

further researching gradient boosting optimizers using adequate stopping conditions. These op-

timizers may be modified such that multicollinearity could be tackled. Additionally, parameter

uncertainty could be tackled by applying our methodology in a Bayesian framework.

Furthermore, we suggest researching a framework in which OpRisk losses are not immedi-

ately known in the current time period but one or a few subsequent time period(s). It seems

likely that losses that occur in a given time period, are not identified immediately. For exam-

ple, such losses could be related to internal/external fraud, software errors, or unintentional

contract breaches. In particular, such an analysis is especially relevant since the majority of

the total losses occur during expansions. Hence, part of these losses are presumably noticed

during the next economic condition, which could be a recession. Liquidity positions of banks

generally worsen during recessions. Therefore, huge “lagged OpRisk losses” could potentially

put an immense amount of pressure on the liquidity of banks.

Lastly, our research is based on the hypothesis that economic factors proxy expansions,

and expansions proxy extreme OpRisk losses. Since economic factors highly comove, another

approach is to exclusively use a small subset of economic factors that represent all factors. The

conditions of the business cycle could be modelled immediately, conditional on the associated

subset of covariate groups that proxy that particular condition. The economic upside of such an

approach is that capital requirements do not change when the current condition of the business

cycle is equal to the previous condition thereof. Additionally, Markov processes could be used

to model the likelihood to jump or stay in conditions of the business cycle based on recent

economic information. Therefore, changes in capital requirement could be predicted. This

approach potentially solves the issue of multicollinearity since the subset of factors could be

constructed such that collinearity among these factors is low.
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A. Appendix

A.1. Description of risk categories

BDSF - losses due to business disruption and system failures, including soft- and hardware

issues.

CPBP - losses from unintentional failure to meet professional obligations, including contract,

fiduciary and privacy breaches, unlicensed activities, model errors.

DPA - losses due to damaged physical assets, where damage could arise from both natural and

human causes.

EDPM - losses due to failed transaction processing or process management, resulting from

interaction with counterparties and vendors. These losses include incorrect information, mis-

communication, data issues, and others.

EFRAUD - losses due to committed fraud by externals, including cyberfraud, falsely forged

documents, theft.

EPWS - losses due to breaches of external employment, health or safety laws or internal

discrimination/diversity events.

IFRAUD - losses due to committed fraud by internal employees, including unauthorized trans-

actions, bribes, tax evasion, insider trading.

A.2. Description of economic factors

Firm-specific UniCredit factors

Deposit growth rate (DGR) - proportional variation of total deposits from quarter to quar-

ter.

Leverage ratio (LR) - value of total assets divided by value of total liabilities.

Percentage of revenue coming from fees (PRF) - proportion of non-interest income.

Tier-I capital Ratio (TCR) - ratio between core capital and total assets of a bank. A higher

TCR ensures a better liquidity position for the minimum capital requirement for extreme losses

under Basel IV.

UniCredit stock returns (UCSR) - quarterly log-returns of UniCredit publicly tradeable

stock price.

Macroeconomic factors

GDP growth rate (GDP EU / GDP IT) - compares the year-over-year (or quarterly)

change of the European Union / Italian economic output to measure how fast an economy is
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growing, adjusted for seasonality.

Housing prices growth rate (HPI EU) - tracks movement of single-family house prices in

the EU.

Consumption loan rate (LOR EU / LOR IT) - floating rate for European Union and

Italian consumption loans.

Monetary Aggregate M1 growth rate (M1 EU) - the growth rate of the sum of currency

in circulation and overnight deposits.

Unemployment rate (UR EU / UR IT) - percentage of the total labour force that is

unemployed but actively seeking employment and willing to work in the European Union (UR

Eu) and in Italy (UR IT).

Financial market factors

10-year Italian government bond yield (LIR IT) - long-term interest rate for Italy.

Milano Italia Borse returns (MIB IT) - quarterly log-returns of MIB index.

3-month Italian interbank rate (SIR IT) - short-term interest rate for Italy.

SP USA - quarterly log-returns of S&P 500 stock index.

Thomson Reuters European stock index log-returns (TRSI EU) - quarterly log-returns

of TRSI index.

VIX USA - volatility index, calculated from a variety of S&P 500 options prices.

VFTSE UK - volatility index, based on options of the FTSE 100 index, based on stocks in

the UK.

A.3. Correlation matrix of covariates

Table 16 shows the correlation among the seven risk categories and economic factors.

A.4. Categorical covariates, intervals limits and group sizes

We construct interval limits based on intervals. We set −∞ and +∞ as lower and upper

bound since we do not know the out-of-sample covariate values. Observations are not equally

divided between groups, although all groups capture a substantial number of observations to

ensure consistent parameter estimates of all groups. The exact interval limits are shown in

Table 17, and Tables 18 and 19 show the number of observations within the covariates before

and after applying the POT method for our threshold choice.

46



Table 16: Pearson correlation coefficients among the risk categories and economic factors.

IFRAUD EFRAUD EPWS CPBP BDSF EDPM DPA UR EU UR IT GDP EU GDP IT HPI M1 LOR EU LOR IT LIR SIR UCSR TRSI SP VIX VFTSE MIB PRF DGR TCR LR

IFRAUD 1 -0.08 -0.04 -0.14 -0.02 -0.12 -0.03 -0.01 -0.01 0.01 0.01 0.04 0.01 0 0.02 -0.01 0.02 0 0 -0.01 -0.02 -0.02 0 0.03 0.02 -0.01 0.01

EFRAUD 1 -0.1 -0.35 -0.06 -0.3 -0.06 -0.01 -0.01 0.04 0.04 0.09 0.05 -0.01 0.02 -0.05 0.01 0.02 0.03 0.01 -0.06 -0.06 0.03 0.08 0.01 -0.03 0.03

EPWS 1 -0.2 -0.03 -0.17 -0.04 -0.02 -0.03 0.02 0.03 0.03 0.01 0.01 0.02 -0.01 0.02 -0.01 -0.01 0 -0.01 -0.01 -0.01 0.02 -0.01 -0.01 0.01

CPBP 1 -0.1 -0.56 -0.12 0 0.01 0 0 -0.05 -0.02 0.02 -0.01 0.02 0 0.01 0.01 0.02 0.02 0.02 0 -0.05 0.01 0.01 -0.02

BDSF 1 -0.09 -0.02 -0.03 -0.01 0 0 0.03 -0.01 0.03 0.03 -0.02 0.03 -0.01 0.01 0 -0.01 -0.01 0 0.03 0 -0.02 0.02

EDPM 1 -0.1 0.02 0.02 -0.04 -0.04 -0.04 -0.02 -0.01 -0.02 0.02 -0.03 -0.02 -0.03 -0.02 0.04 0.04 -0.02 -0.03 -0.02 0.02 -0.01

DPA 1 0.02 0.01 -0.02 -0.02 -0.03 -0.01 -0.02 -0.03 0.03 -0.03 -0.01 0 0.01 0.02 0.02 0 -0.03 -0.02 0.01 -0.02

UR EU 1 0.9 -0.1 -0.03 -0.47 0.08 -0.86 -0.84 0.02 -0.93 0.25 0.23 0.32 -0.12 -0.22 0.3 -0.46 -0.16 0.93 -0.67

UR IT 1 -0.16 -0.14 -0.45 -0.04 -0.73 -0.76 -0.02 -0.78 0.17 0.12 0.21 -0.15 -0.22 0.2 -0.35 -0.08 0.85 -0.6

GDP EU 1 0.94 0.65 0.39 -0.13 0.05 -0.25 0.24 0.38 0.45 0.43 -0.66 -0.63 0.4 0.45 -0.04 -0.09 0.21

GDP IT 1 0.61 0.48 -0.16 0.05 -0.31 0.13 0.41 0.48 0.44 -0.62 -0.63 0.42 0.39 -0.01 -0.05 0.09

HPI 1 0.37 0.18 0.49 -0.42 0.56 0.13 0.18 0.09 -0.61 -0.6 0.14 0.83 0.18 -0.52 0.54

M1 1 0.04 0.32 -0.74 -0.19 0.6 0.51 0.41 -0.42 -0.52 0.52 0.25 0.09 -0.07 0.07

LOR EU 1 0.9 -0.19 0.77 -0.12 -0.21 -0.31 0.25 0.33 -0.2 0.25 0.16 -0.83 0.56

LOR IT 1 -0.4 0.73 0.01 -0.07 -0.21 0.02 0.06 -0.07 0.46 0.18 -0.87 0.62

LIR 1 0.02 -0.58 -0.39 -0.27 0.43 0.51 -0.5 -0.36 -0.08 0.13 -0.09

SIR 1 -0.24 -0.19 -0.27 -0.05 0.07 -0.28 0.54 0.19 -0.84 0.71

UCSR 1 0.85 0.72 -0.59 -0.63 0.92 -0.1 0.01 0.06 -0.04

TRSI 1 0.91 -0.68 -0.7 0.93 -0.08 -0.06 0.08 -0.02

SP 1 -0.64 -0.65 0.86 -0.19 -0.02 0.21 -0.08

VIX 1 0.97 -0.62 -0.41 -0.08 -0.02 -0.18

VFTSE 1 -0.66 -0.39 -0.06 -0.1 -0.12

MIB 1 -0.11 -0.05 0.13 -0.07

PRF 1 0.22 -0.44 0.44

DGR 1 -0.19 -0.02

TCR 1 -0.72

LR 1

Table 17: Interval limits of dummy encoded categorical covariates.

Data type Factor Impact Groups Minimum Maximum Intervals
RC NA 7 NA NA NA
DGR + 6 -0.32 0.44 -0.2, 0, 0.02, 0.1, 0.25
LR + 5 14.0 30.8 15, 18, 21, 24
PRF + 5 0.24 0.42 0.27, 0.31, 0.35, 0.39
TCR + 5 0.05 0.11 0.06, 0.07, 0.08, 0.1

Firm-specific

UCSR + 6 -0.26 0.21 -0.23, -0.14, -0.05, 0.05, 0.14
GDP EU + 6 -3.00 1.10 -0.5, 0, 0.5, 0.75, 1
GDP IT + 5 -2.90 1.00 -0.5, 0, 0.5, 0.75
HPI EU + 6 -4.45 7.52 -2, 0, 3, 5, 7.3
LOR EU - 5 5.09 8.75 5.3, 6.5, 7.5, 8.5
LOR IT - 5 5.42 11.2 5.9, 8.5, 10, 10.8
M1 EU + 5 0.60 12.6 3, 6, 9, 12
UR EU - 6 7.00 12.0 7.5, 8.5, 9.5, 10.5, 11.5

Macroeconomic

UR IT - 6 6.00 14.0 6, 7, 8, 10, 12
LIR IT - 5 3.09 6.61 4, 4.3, 4.6, 5
MIB IT + 5 -0.27 0.23 -0.17, -0.6, 0.06, 0.17
SIR IT - 6 0.20 4.98 0.5, 1, 2, 3, 4.5
SP USA + 6 -0.26 0.14 -0.1, -0.02, 0.02, 0.05, 0.08
TRSI EU + 5 -0.27 0.22 -0.04, 0, 0.04, 0.10
VIX USA - 6 11.4 44.1 11.9, 13, 15, 18, 25

Financial market

VFTSE UK - 6 10.1 39.7 11, 13, 16, 18, 2

Note: This table includes the number of groups, minimum and maximum covariate values, interval limits, whereby
we exclude the lower- and upper bound, which are fixed to −∞ and +∞ for all covariates. The term “RC”
is an abbreviation for the risk categories. Elements of the column “Impact” are + (-) when high values of the
corresponding economic factor indicate an expansion (recession), and “NA” means not applicable.
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Table 18: Number of observations within dummy encoded economic categorized factors before applying the
POT method.

Data type Factor Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
DGR 4,035 11,920 8,726 8,045 3,887 4,258
LR 8,506 16,446 6,713 6,229 2,977 NA
PRF 1,034 9,689 15,850 10,746 3,552 NA
TCR 12,720 6,144 5,630 11,306 5,071 NA

Firm-specific

UCSR 1,134 3,716 7,246 20,910 5,555 2,310
GDP EU 3,716 9,223 13,799 8,902 3,127 2,104
GDP IT 8,132 13,560 11,032 3,878 4,269 NA
HPI EU 8,074 7,912 8,824 5,521 6,186 4,354
LOR EU 5,569 8,715 10,622 12,292 3,673 NA
LOR IT 6,604 7,680 5,441 14,507 6,639 NA
M1 EU 6,141 9,275 13,708 9,491 2,256 NA
UR EU 5,697 8,760 8,761 9,187 3,395 5,071

Macroeconomic

UR IT 3,020 9,053 12,417 9,776 3,632 2,973
LIR IT 7,637 12,558 8,380 8,045 4,251 NA
MIB IT 4,666 5,005 18,534 10,356 2,310 NA
SIR IT 6,880 6,119 6,836 7,661 7,948 5,427
SP USA 5,549 5,529 8,388 7,719 5,356 8,330
TRSI EU 8,841 4,071 11,092 8,248 8,619 NA
VIX USA 2,375 6,211 5,366 11,610 5,964 9,345

Financial market

VFTSE UK 4,354 3,809 8,219 4,749 11,671 8,069

Note: “NA” means not applicable for factors that do not have 6 groups. The rows sum
to 40,871, which is the total number of observations before applying the POT for our
threshold (Section 3.2).

Table 19: Number of observations within dummy encoded economic categorized factors after applying the POT
method.

Data type Factor Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
DGR 1,014 2,822 2,119 2,258 933 1,073
LR 1,963 4,131 1,649 1,700 776 NA
PRF 2,59 2,410 3,845 2,707 998 NA
TCR 3,085 1,666 1,626 2,754 1,088 NA

Firm-specific

UCSR 289 861 1,648 5,473 1,311 637
GDP EU 861 2,128 3,405 2,505 812 508
GDP IT 1,805 3,331 2,952 1,086 1,045 NA
HPI EU 1,990 1,782 2,129 1,388 1,682 1,248
LOR EU 1,299 2,022 2,837 3,227 834 NA
LOR IT 1,587 1,734 1,420 3,808 1,670 NA
M1 EU 1,377 2,249 3,424 2,545 624 NA
UR EU 1,346 2,277 2,376 2,329 803 1,088

Macroeconomic

UR IT 794 2,291 3,225 2,479 797 633
LIR IT 2,036 3,291 1,937 2,016 939 NA
MIB IT 1,116 1,128 4,712 2,626 637 NA
SIR IT 1,561 1,556 1,651 2,067 2,029 1,355
SP USA 1,329 1,286 2,056 2,103 1,407 2,038
TRSI EU 2,081 942 2,705 2,299 2,192 NA
VIX USA 597 1,786 1,361 2,834 1,342 2,299

Financial market

VFTSE UK 1,248 924 2,230 1,133 2,763 1,921

Note: “NA” means not applicable for factors that do not have 6 groups. The rows sum to 10,219, which
is the total number of observations after applying the POT for our threshold (Section 3.2).
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A.5. Economic interpretation of fused L1-norms, and a downside of using

adaptive weights

For illustration, we use the economic metric factor GDP EU, which reflects the GDP growth

rate in the EU. We transform this factor, based on their levels, into an ordered categorical co-

variate J , which we dummy encoded into 6 groups df = 0, 1, ..., 5. In is likely that not all (or

none) covariate groups explain much variation in the LSEs. In that case, the associated coeffi-

cients are shrunk to/towards zero by the (in)direct link with the reference category. If one or

more groups do explain much variation in the model, then fused L1-norms can successfully filter

these groups as follows: most coefficients are shrunk to zero, hence fused L1-norms encourage

‘relevant’ groups to shrink to zero as well. However, relevant groups do not ‘give in’, and ‘stand

their ground’. In this particular case, since expansions drive extreme OpRisks, we expect the

upper-bound group of GDP EU to be significantly higher than zero.

We subsequently illustrate why penalized estimation procedures likely yield zero coefficients

when adaptive weights are zero. Assume that we have a AFUSEm penalty function for a pair

{j, k}, combined with a corresponding close to zero adaptive weight b̂ini
j,k = 10−8, as given by

Equation (10). Therefore, we have P j,kalas(bj,k) =
|bj,k|
10−8 . If bj,k is not close to zero after an iteration

during model estimation, then P j,kalas(bj,k) becomes huge. We subtract the product of tuning

parameters and penalty functions from the original loss severity log-likelihood function. Hence,

the log-likelihood, which we maximize, consequently shrinks drastically. Therefore, in practice,

regularization techniques do not update model coefficients to substantial non-zero values if the

corresponding adaptive weight is close to zero. All in all, boosting optimizers implicitly perform

variable selection when there still are zero-coefficients after model estimation, although we want

our regularization methods to select driving covariates and not the boosting optimizers. This

interpretation can be extended to other adaptive weight specifications.
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A.6. Finding comparable true linear predictors for different covariate sets

in GAMLSSs

The ‘true losses’ in a simulation study are the result of random draws from the GPD,

and these draws depend on true linear predictors, which are constructed by true distributional

parameters. To investigate whether data transformations (metric to categorical, or vice versa)

increase modelling performance, we must model the same vector of losses. Unfortunately, the

losses are based on random draws. Now, let us assume that we can find a reasonable way to

obtain deterministic draws from the probability distribution. For example, instead of a random

draw from the probability distribution, one might consider taking a deterministic draw from

predetermined quantiles of the probability distribution.

We denote by M1 and M2 two models. In a GAMLSS framework, we have (n × 1) vectors

yM1 ∼ GPD
(
ξM1 = exp(ηM1

1 ),σM1 = exp(ηM1
2 )
)

and a yM2 ∼ GPD
(
ξM2 = exp(ηM2

1 ),σM2 =

exp(ηM2
2 )
)

. In our simulation, we predetermine the true distributional parameters. Then, we

use the product of these parameters and simulated covariates to obtain true linear predictors.

Consequently, even if the random draw from a probability distribution can be fixed in some way,

we still have to solve yM1 = yM2. Equivalently, we solve ηM1
1 = ηM2

1 and ηM1
2 = ηM2

2 . We define

jM1 = 1, .., pM1 and jM2 = 1, .., pM2 as the number of metric covariates, and JM1 = 1, ..., CM1

and JM2 = 1, ..., CM2 as the number of categorical covariates for models M1 and M2. The

categorical covariates JM1 or JM2 contain groups of size dfM1
J and dfM2

J . We have the subsequent

set of equations:

ηM1
1 = ξM1

0 +

pM1∑
jM1=1

xM1
j ξM1

j +

CM1∑
JM1=1

XM1
j ξM1>

J (33)

= ξM2
0 +

pM2∑
jM2=1

xM2
j ξM2

j +
CM2∑
JM2=1

XM2
j ξM2>

J = ηM2
1 ,

ηM1
2 = σM1

0 +

pM1∑
jM1=1

xM1
j σM1

j +
CM1∑
JM1=1

XM2
j σM1>

J (34)

= σM2
0 +

pM2∑
jM2=1

xM2
j σM2

j +

CM2∑
JM2=1

XM2
j σM2>

J,2 = ηM2
2 ,

where x
(·)
j is a (n× 1) vector for all j, and X

(·)
j is a (n× df (·)

J ) matrix for all J . We have scalars

ξ
(·)
0 and σ

(·)
0 , and (1× df (·)

J ) coefficient vectors ξ
(·)
J and σ

(·)
J .

Why is this relevant? If we can solve the set of equations above, then we can evaluate

whether data transformations in a GAMLSS framework improve modelling performance in a
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simulation study. Then, we can compare different covariate sets or identical covariate sets

consisting of different numbers of covariates and/or number of groups within these covariates.

A.7. Simulation study, limitations of the MVND when simulating comov-

ing covariates

We use the MVND to simulate comoving covariates. In this procedure, we start by per-

forming a Cholesky decomposition on the correlation matrix P . In order to perform such a

decomposition, a necessary condition is that P needs to be positive definite (PD). However,

for high correlations ρ and/or high numbers of covariates Csim, P frequently is not PD. In

our simulation study, we work with many covariates Csim = {8, 15}. In our application, P is

usually only PD for ρ = 0 and not for ρ = {.3, .6}. To attain the nearest PD matrix P PD, we

use the nearPD function of the Matrix R-package.4 However, much aimed correlation is lost

when using this function. Therefore, we are not able to simulate extremely high average levels

of cross-correlations among simulated categorical covariates in our simulation study.

4https://cran.r-project.org/web/packages/Matrix/index.html
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A.8. Simulation study, number of GPD parameter updates

Tables 20 and 21 compare the updates schemes of B1 and B2 over a grid of niter.

Table 20: Mean, standard deviation and ratio riter of the number of GPD parameter updates over ten samples,
where the standard deviation is in parentheses, and niter = [1; 10, 000].

niter 100 500 1,000 5,000 10,000

Optimizer ρ Csim ν ξ σ riter ξ σ riter ξ σ riter ξ σ riter ξ σ riter

gamboostLSS

0 8 .01
0 100 0 0 500 0 86 914 0.09 2,010 2,990 0.4 5,025 4,975 0.5

(0) (0) - (0) (0) - (43) (43) - (318) (318) - (508) (508) -

0 8 .05
0 100 0 147 353 0.29 404 596 0.4 3,202 1,798 0.64 7,143 2,857 0.71

(0) (0) - (27) (27) - (63) (63) - (166) (166) - (273) (273) -

0 8 .1
9 91 0.09 203 297 0.41 508 492 0.51 3,584 1,416 0.72 7,621 2,379 0.76

(4) (4) - (31) (31) - (50) (50) - (135) (135) - (168) (168) -

0 15 .01
0 100 0 0 500 0 53 947 0.05 1,562 3,438 0.31 4,363 5,637 0.44

(0) (0) - (0) (0) - (40) (40) - (232) (232) - (376) (376) -

0 15 .05
0 100 0 109 391 0.22 314 686 0.31 2,971 2,029 0.59 6,789 3,211 0.68

(0) (0) - (21) (21) - (46) (46) - (158) (158) - (291) (291) -

0 15 .1
6 94 0.06 158 342 0.32 441 559 0.44 3,408 1,592 0.68 7,451 2,549 0.75

(4) (4) - (23) (23) - (37) (37) - (144) (144) - (224) (224) -

.3 8 .01
0 100 0 6 494 0.01 112 888 0.11 1,997 3,003 0.4 4,961 5,039 0.5

(0) (0) - (18) (18) - (73) (73) - (241) (241) - (367) (367) -

.3 8 .05
1 99 0.01 157 343 0.31 402 598 0.4 3,177 1,823 0.64 7,045 2,955 0.7

(4) (4) - (28) (28) - (48) (48) - (181) (181) - (276) (276) -

.3 8 .1
12 88 0.12 201 299 0.4 502 498 0.5 3,535 1,465 0.71 7,499 2,501 0.75

(7) (7) - (24) (24) - (37) (37) - (137) (137) - (246) (246) -

.3 15 .01
0 100 0 0 500 0 96 904 0.1 1,894 3,106 0.38 4,698 5,302 0.47

(0) (0) - (0) (0) - (44) (44) - (194) (194) - (295) (295) -

.3 15 .05
0 100 0 144 356 0.29 380 620 0.38 3,031 1,969 0.61 6,822 3,178 0.68

(0) (0) - (18) (18) - (38) (38) - (96) (96) - (145) (145) -

.3 15 .1
10 90 0.1 191 309 0.38 475 525 0.47 3,425 1,575 0.69 7,391 2,609 0.74

(4) (4) - (19) (19) - (29) (29) - (71) (71) - (138) (138) -

.6 8 .01
0 100 0 0 500 0 78 922 0.08 1,994 3,006 0.4 4,849 5,151 0.48

(0) (0) - (0) (0) - (49) (49) - (260) (260) - (366) (366) -

.6 8 .05
0 100 0 152 348 0.3 401 599 0.4 3,076 1,924 0.62 6,895 3,105 0.69

(0) (0) - (29) (29) - (52) (52) - (118) (118) - (266) (266) -

.6 8 .1
8 92 0.08 202 298 0.4 490 510 0.49 3,462 1,538 0.69 7,511 2,489 0.75

(5) (5) - (26) (26) - (36) (36) - (131) (131) - (233) (233) -

.6 15 .01
0 100 0 2 498 0 157 843 0.16 2,076 2,924 0.42 4,925 5,075 0.49

(0) (0) - (5) (5) - (48) (48) - (178) (178) - (286) (286) -

.6 15 .05
0 100 0 170 330 0.34 417 583 0.42 3,053 1,947 0.61 6,772 3,228 0.68

(1) (1) - (19) (19) - (36) (36) - (68) (68) - (148) (148) -

.6 15 .1
16 84 0.16 209 291 0.42 497 503 0.5 3,400 1,600 0.68 7,223 2,777 0.72

(5) (5) - (18) (18) - (28) (28) - (74) (74) - (180) (180) -

50 50 .5 250 250 .5 500 500 .5 2,500 2,500 .5 5,000 5,000 .5
GAMLSSBoostAlt [-1,1] > 1 (0,∞)

(0) (0) - (0) (0) - (0) (0) - (0) (0) - (0) (0) -

Note: Csim, ρ, and ν are the number of simulated categorical covariates, the average absolute correlation among covariates and the step size of
the gradient descent optimizers, respectively. The standard deviations of both GPD parameters are equal because niter is fixed as the sum of the
number of ξ and σ updates. Therefore, the number of σ updates is equal to the number of total iterations minus the number of ξ updates, and the
standard deviation is not effected by a constant and a change of sign.
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Table 21: Mean, standard deviation and ratio riter of the number of GPD parameter updates over ten samples,
where the standard deviation is in parentheses, and niter = [25, 000; 100, 000].

niter 25,000 50,000 75,000 100,000

Optimizer ρ Csim ν ξ σ riter ξ σ riter ξ σ riter ξ σ riter

gamboostLSS

0 8 .01
15,950 9,050 0.64 35,616 14,384 0.71 55,702 19,298 0.74 75,832 24,168 0.76

(835) (835) - (1,372) (1,372) - (1,704) (1,704) - (1,732) (1,732) -

0 8 .05
19,212 5,788 0.77 - - - - - - - - -

(345) (345) - - - - - - - - - -

0 8 .1
19,662 5,338 0.79 - - - - - - - - -

(361) (361) - - - - - - - - - -

0 15 .01
14,792 10,208 0.59 33,838 16,162 0.68 53,726 21,274 0.72 74,078 25,922 0.74

(795) (795) - (1,462) (1,462) - (1,957) (1,957) - (2,281) (2,281) -

0 15 .05
18,983 6,017 0.76 - - - - - - - - -

(495) (495) - - - - - - - - - -

0 15 .1
19,952 5,048 0.8 - - - - - - - - -

(429) (429) - - - - - - - - - -

.3 8 .01
15,827 9,173 0.63 35,123 14,877 0.7 - - - - - -

(906) (906) - (1,396) (1,396) - - - - - - -

.3 8 .05
18,931 6,069 0.76 - - - - - - - - -

(646) (646) - - - - - - - - - -

.3 8 .1
19,427 5,573 0.78 - - - - - - - - -

(700) (700) - - - - - - - - - -

.3 15 .01
15,095 9,905 0.6 34,001 15,999 0.68 53,549 21,451 0.71 73,475 26,525 0.73

(483) (483) - (738) (738) - (1,025) (1,025) - (1,400) (1,400) -

.3 15 .05
18,782 6,218 0.75 - - - - - - - - -

(373) (373) - - - - - - - - - -

.3 15 .1
19,675 5,325 0.79 - - - - - - - - -

(423) (423) - - - - - - - - - -

.6 8 .01
15,318 9,682 0.61 34,358 15,642 0.69 - - - - - -

(593) (593) - (1,345) (1,345) - - - - - - -

.6 8 .05
19,077 5,923 0.76 - - - - - - - - -

(473) (473) - - - - - - - - - -

.6 8 .1
19,687 5,313 0.79 - - - - - - - - -

(281) (281) - - - - - - - - - -

.6 15 .01
15,205 9,795 0.61 33,758 16,242 0.68 52,570 22,430 0.7 71,767 28,233 0.72

(345) (345) - (744) (744) - (1,262) (1,262) - (1,818) (1,818) -

.6 15 .05
18,318 6,682 0.73 - - - - - - - - -

(483) (483) - - - - - - - - - -

.6 15 .1
19,299 5,701 0.77 - - - - - - - - -

(483) (483) - - - - - - - - - -

12,500 12,500 .5 25,000 25,000 .5 37,500 37,500 .5 50,000 50,000 .5
GAMLSSBoostAlt [-1,1] > 1 (0,∞)

(0) (0) - (0) (0) - (0) (0) - (0) (0) -

Note: Identical to Table 20.
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A.9. Reflection upon the threshold analysis of Groll et al. (2019)

Groll et al. (2019) filter 25,134 LSEs based a normality test of resulting quantile residuals.5

Figure 9 shows their and our log-LSEs after our respective threshold analyses. We observe that

their log-LSEs are smoother and hence the lower-tail of their LSEs likely better fits a scaled

GPD compared to our own log-LSEs. However, by including many more losses, the fit of the

upper-tail likely worsen. This argument is in line with their own conclusion, which is that 2-98%

quantiles of the LSEs are adequately modelled but not the upper 98-100% quantile. Moreover,

it is unknown how their analysis performs out-of-sample since they do not present out-of-sample

evaluation measures. On the other side, an advantage of their framework is that they include

more losses for all risk categories except EFRAUD, as shown in Table 22. Therefore, the risk

categories that do not contain many losses are better represented.

(a) Log-LSEs; Groll et al. (2019) (b) Log-LSEs; our choice for threshold (Section 3.2)

Figure 9: Comparison of log-LSEs. From left to right: BDSF, DPA, IFRAUD, EPWS, EFRAUD, EDPM, and
CPBP.

Table 22: Comparison of number of losses for different thresholds.

Threshold
None Groll et al. (2019) Ours

IFRAUD 1,271 1,233 318
EFRAUD 6,391 1,392 1,598
EPWS 2,292 1,706 5,73
CPBP 16,138 9,378 4,035
BDSF 674 542 169
EDPM 13,209 10,499 3,302
DPA 896 384 224

All 40,871 25,134 10,219

5Source: https://doi.org/10.1016/j.csda.2019.06.005
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A.10. Real-world application, loss severity exceedances

Table 23: Estimated LSE parameters using models M0, M1-met and M2-met. Model M0 is a model in which
the LSEs are conditional on the model intercepts.

M0 M1-met M2-met
ξ σ ξ σ ξ σ

Intercept -0.343 3.822 -0.516 3.862 -0.545 3.87
IFRAUD - - -0.162 0.585 -0.159 0.578
EFRAUD - - -0.359 0.61 -0.353 0.601
EPWS - - -0.162 0.543 -0.167 0.539
CPBP - - -0.377 1.148 -0.378 1.141
BDSF - - -0.036 0.164 -0.033 0.155
EDPM - - -0.11 0.741 -0.112 0.738
DGR - - - - 0.334 0.488
LR - - - - -0.204 -0.223
PRF - - - - 0.012 0.061
TCR - - - - 0.014 -0.037
UCSR - - - - 0.09 -0.04
GDP EU - - -0.007 -0.11
GDP IT - - - - 0.337 0.021
HPI EU - - - - -0.326 0.184
LOR EU - - - - 0.017 -0.027
LOR IT - - 0.028 0.199
M1 EU - - - - -0.012 -0.055
UR EU - - - - 0.074 -0.02
UR IT - - - - -0.066 0.048
LIR IT - - - - 0.137 -0.003
MIB IT - - - - -0.19 -0.002
SIR IT - - - - -0.077 0.059
SP USA - - - - -0.015 0.075
TRSI EU - - - - 0.027 -0.019
VIX USA - - - - -0.11 0.035
VFTSE UK - - - - -0.095 -0.055
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A.11. Real-world application, loss frequency exceedances

We investigate time-varying LFE-models. Thereby, we use model M3 to train in-sample on

all but one time period, where the remaining time period serves as validation set. To predict the

number of losses in the validation set, we use the in-sample coefficients and the economic factors

in the validation set. Figure 10 shows the time-varying NHPP distributed GAM parameters,

whereby the horizontal lines show the average number of losses over all 38 time periods. We

thereby observe a downward trend for all risk categories. The most extreme upward peaks

are in 2006, just before the 2007-2010 financial crisis. Furthermore, CPBP and EDPM exhibit

the highest number of losses, and the associated parameter estimates are quite close to the

true parameters over time periods in which the volatility of the LFEs is high for CPBP and

EDPM. However, the peaks belonging to the other risk categories are frequently difficult to

estimate, especially for risk categories with a low number of losses. For example, the peak of

the sixth subfigure belongs to fourth quarter in 2006 of EPWS, whereby we estimate 22.87

losses, whereas 71 losses in fact occurred. The reason is that we use a logarithmic link function

to the LFE predictor and hence the parameter estimates are transformed back by an exponential

transformation to these estimates. For illustration, a one-level shift in parameter estimates from

3 to 4 has a much larger impact than a change from 2 to 3 since (e4 − e3) >> (e3 − e2).

Tables 24 - 27 present the out-of-sample log-likelihood scores of the validation set, and

demonstrate huge differences in log-likelihoods scores, both in the cross-section of risk categories

and over time. The inclusion of a few economic factors (model M3) substantially improves OOS-

LLH scores for EFRAUD since the aggregated OOS-LLH score for EFRAUD is 364.6 for model

M1 and 264.0 for model M3. Furthermore, BDSF is barely affected by the in- or exclusion of

economic factors since OOS-LLHs are within a small range of 95.2 - 100.0 for all four models.

With regard to the time-varying OOS-LLH scores, we observe that model M3 is superior in

time periods in which the number of losses unexpected in- or decrease. The OOS-LLH score,

aggregated over all risk categories, in 2006 Q4 is 204.9, 223.5, 96.2, 120.8 for models M1 -

M4, respectively. Lastly, we are surprised that most firm-specific factors are unidentified. The

number of losses ought to be partially driven by firm-specific factors because latent factors,

such as internal compliance, bonus structure, general level of risk-aversion of employees and

the organization’s culture, are probable to affect the likelihood of losses occurring. Perhaps

these factors could be explained by economic factors. Another theory is that both economic

and latent firm-specific factors have the same underlying, which is the condition of the business

cycle.

Additionally, we find that the sensitivity of the economic factors with respect to risk cate-
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(a) BDSF (b) CPBP

(c) DPA (d) EDPM

(e) EFRAUD (f) EPWS

(g) IFRAUD

Figure 10: Number of losses (y-axis) over the 38 quarterly time periods (x-axis). The estimated (black) and
true (blue) parameters are solid. Estimated parameters are obtained using model M3. The long-term average

number of losses is the horizontal dotted black line.
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gories differs. The number of CPBP and EDPM losses are highly sensitive to economic condi-

tions since estimated LFEs substantially change between time periods. This change is frequently

positive, which means that the estimates LFEs moves towards the true LFEs for a given time

period. Risk categories with fewer losses, such as BDSF and DPA are not able to anticipate as

abruptly. All in all, we conclude that our LFE models are able to adequately predict the number

of losses for risk categories that have sufficient losses. All risk-category-specific estimated and

true losses are in Table 28.
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Table 24: OOS-LLH scores of the LFEs in the validation set using model M1. The scores are calculated for
individual and aggregated risk categories for individual and aggregated time periods, whereby “NA” values

mean that the particular risk category has no observation in that given time period.

Time period EFRAUD IFRAUD EPWS CPBP EDPM DPA BDSF All
2005 Q1 10.8 7.5 2.4 2 9.2 20.6 1.8 54.3
2005 Q2 4 1.8 9.7 4.6 3.3 2.5 5.9 31.7
2005 Q3 3.6 2.6 4 5.2 2.3 1.9 2 21.5
2005 Q4 22.3 30.4 20.9 5.4 26.1 2.4 1.8 109.2
2006 Q1 11.3 2 2.4 6.8 3.2 2 NA 27.7
2006 Q2 3.3 5.1 10.2 2.5 2.2 2.9 1.8 28
2006 Q3 3.3 11.7 2.6 4.8 5.5 1.9 3.1 33
2006 Q4 63.1 45.8 16.7 41.2 2.4 31.3 4.4 204.9
2007 Q1 3.6 5.4 8.2 2.8 4.9 4.4 3.3 32.6
2007 Q2 3.9 2.5 5 3.4 3.5 2 2.3 22.7
2007 Q3 4.7 2 3.3 2.7 4 2.3 1.7 20.7
2007 Q4 21.2 9.7 61.6 10.7 7.3 2.9 2 115.4
2008 Q1 5.2 2.1 3.6 2.4 2.8 2.4 3.1 21.5
2008 Q2 10.8 3.6 2 3.1 2.7 2.4 2 26.5
2008 Q3 3.2 3.4 3.6 3.8 3.5 1.7 4.2 23.4
2008 Q4 14.1 2.6 3.8 3.2 3.2 5.3 5.6 37.7
2009 Q1 3.9 9.2 2 2.5 2.9 3.4 1.8 25.8
2009 Q2 4.3 5.8 4.5 2 3.3 2.8 2.3 25.1
2009 Q3 3.9 6 3.3 4.6 6.5 1.8 1.9 28
2009 Q4 16.4 16.4 2 3.5 4.8 3 3.3 49.5
2010 Q1 4.7 3.9 3.1 2.3 4 1.8 2.4 22.2
2010 Q2 3.3 3.4 2 3.1 2.7 2.4 1.8 18.7
2010 Q3 4.7 6.8 4 2.2 2.9 2.4 2.4 25.5
2010 Q4 5.8 3.5 3.5 3.9 2.9 4 2.4 26
2011 Q1 3.7 3.2 2 2.5 5.8 2 NA 19.2
2011 Q2 3.6 2.2 7.7 2 2.5 3 1.9 22.9
2011 Q3 17.9 6.8 2.6 8.5 3.1 2.4 1.8 43.2
2011 Q4 3.3 2.2 4.9 2 2.9 2.8 NA 18.1
2012 Q1 10.5 2.2 27.2 5.5 4.3 1.9 4.2 55.9
2012 Q2 7.5 6.8 2 1.8 4.7 9.2 2.4 34.5
2012 Q3 11.3 3.1 13.7 3.3 4.7 10.7 3.3 50.2
2012 Q4 2.7 2.6 6.7 4.9 1.7 3 5.6 27.1
2013 Q1 22.2 4.3 3.9 6.5 4 2.4 2 45.3
2013 Q2 8.4 7.9 1.8 3.1 7.3 1.7 3.5 33.8
2013 Q3 18.6 2.2 6.5 12 14.3 2.4 2.4 58.5
2013 Q4 3.2 2.2 5.2 2.9 1.7 2.3 2.4 19.9
2014 Q1 14.3 4.9 9.1 1.9 4.3 6.5 4.2 45.3
2014 Q2 2 14.4 11.3 7.6 8.5 3.1 2.4 49.4

All 364.6 258.2 288.9 193.3 186.2 163.7 100 1554.9
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Table 25: OOS-LLH scores of the LFEs in the validation set using model M2. The scores are calculated for
individual and aggregated risk categories for individual and aggregated time periods, whereby “NA” values

mean that the particular risk category has no observation in that given time period.

Time period EFRAUD IFRAUD EPWS CPBP EDPM DPA BDSF All
2005 Q1 53.2 39.5 6.5 4.5 3.3 11.6 3.5 122.2
2005 Q2 5.1 1.9 8.8 3.8 3.6 2.4 7.6 33.2
2005 Q3 14.4 4.4 14.4 3 3.7 2.9 3.1 45.8
2005 Q4 7.9 13.2 15.2 3.3 14.1 2 2 57.7
2006 Q1 22 2 2.4 3.1 6.4 2.6 NA 38.4
2006 Q2 3.4 6.7 12.2 2.6 2.4 3.2 1.9 32.3
2006 Q3 10.9 40.9 5 3.6 11.2 3.2 5.5 80.4
2006 Q4 66.3 51.8 17.8 46.3 2.2 34.5 4.7 223.5
2007 Q1 5.5 13.9 3.9 4.5 7 3.2 2.4 40.3
2007 Q2 3.3 2.2 3.3 2.9 2.8 1.8 2.1 18.4
2007 Q3 8.6 3 10.8 3 13 2 2.2 42.7
2007 Q4 3.4 4.1 11.6 3 2.8 2 2.4 29.3
2008 Q1 3.4 2.1 6.1 2.9 3.5 2.1 3.8 23.8
2008 Q2 64.8 15.8 3.5 8.4 8.1 5.1 1.8 107.7
2008 Q3 8.1 2.4 7.9 5.8 6.1 1.9 6 38.2
2008 Q4 17.7 9.9 49 30.1 6.4 2.1 2.2 117.5
2009 Q1 31.4 7.3 2.8 3.5 6.4 7.2 3.2 61.9
2009 Q2 5.1 46.3 35 2.8 1.5 3 5.2 99
2009 Q3 4.7 3.8 4.7 6.6 7.9 1.9 2.2 31.7
2009 Q4 5.3 4.2 3.9 3.1 2.3 13.9 6.6 39.2
2010 Q1 3.1 7.4 2.4 2.3 2.8 1.9 2 22
2010 Q2 3.3 3.4 2 3.2 2.6 2.4 1.8 18.6
2010 Q3 5.5 8.1 4.5 2.3 2.7 2.5 2.5 28.2
2010 Q4 6.6 3.8 3.3 4.1 2.8 3.8 2.5 27
2011 Q1 5.7 7.3 2 3.9 2.7 2.7 NA 24.4
2011 Q2 14.2 2.2 50.2 3.9 3.3 8.2 1.6 83.5
2011 Q3 39.6 19 4.1 17.2 5.5 3.5 2.4 91.3
2011 Q4 21.5 4.6 29.8 3.7 7.8 8.9 NA 76.2
2012 Q1 5 1.9 15.7 3.8 2.8 1.6 3.3 34.1
2012 Q2 6.7 10 3.5 3.2 1.9 2.5 1.3 29
2012 Q3 4.6 2.2 6.4 2.5 3.1 6.1 4.5 29.4
2012 Q4 3.2 2.2 11.4 8.1 1.8 2.8 6.7 36.1
2013 Q1 16.6 3.2 3.3 5.4 3.2 2.1 1.8 35.7
2013 Q2 10.3 8.3 3.5 1.6 3.2 3.2 2.4 32.6
2013 Q3 8.8 1.9 4.4 5.5 8.8 1.8 1.8 33
2013 Q4 3.8 2.4 7.6 2.8 1.8 2.2 2.1 22.7
2014 Q1 3 2.3 3.6 1.5 3.7 2.6 2.1 19
2014 Q2 2.5 2.8 3.9 3 2.5 1.6 1.4 17.7

All 508.4 368.3 386.3 224.7 178 169.1 108.7 1943.4
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Table 26: OOS-LLH scores of the LFEs in the validation set using model M3. The scores are calculated for
individual and aggregated risk categories for individual and aggregated time periods, whereby “NA” values

mean that the particular risk category has no observation in that given time period.

Time period EFRAUD IFRAUD EPWS CPBP EDPM DPA BDSF All
2005 Q1 25.3 18.1 3.5 2.7 4.2 16.2 2.3 72.4
2005 Q2 4.6 1.9 9.1 4.1 3.5 2.4 6.9 32.4
2005 Q3 8.4 3.5 8.9 3.1 2.9 2.4 2.6 31.8
2005 Q4 7.5 12.6 14.9 3.2 13.6 1.9 2.1 55.9
2006 Q1 13.3 2 2.3 5.2 3.2 2.1 NA 28.1
2006 Q2 3.6 4.2 8.7 2.4 2.2 2.7 1.8 25.5
2006 Q3 5.4 26.3 3.8 2.9 8.6 2.6 4.4 54
2006 Q4 41.6 12.8 9.9 12.5 4.1 12.6 2.7 96.2
2007 Q1 4.8 12.3 4.2 4.2 6.7 3.3 2.5 38.1
2007 Q2 3.2 2.2 3.4 2.9 2.8 1.9 2.1 18.5
2007 Q3 3.9 2.3 5.1 2.4 7.9 2 1.8 25.5
2007 Q4 3.6 3.8 9 3.2 2.6 2 2.6 26.7
2008 Q1 3.5 2 5.4 2.8 3.3 2.1 3.7 22.8
2008 Q2 20.8 3.4 2.1 2.8 3.5 2.9 1.7 37.1
2008 Q3 4.3 2.8 5 3.4 4.5 1.8 4.9 26.7
2008 Q4 3.4 4.8 9.7 9.7 2.6 3.2 3.2 36.5
2009 Q1 9.4 3.7 1.9 2.2 3.9 2.8 2 25.9
2009 Q2 2.9 12 8.9 1.9 2.6 2.2 2.8 33.4
2009 Q3 4.9 3.4 5.5 7.4 8.5 1.9 2.3 33.9
2009 Q4 3.5 3.4 3.1 2.6 2.6 9.7 5.6 30.5
2010 Q1 3.1 7 2.5 2.3 2.9 1.9 2 21.7
2010 Q2 3.2 3.3 2 3.4 2.5 2.5 1.8 18.7
2010 Q3 3.4 4.5 3.1 2 3.4 2.1 2.1 20.7
2010 Q4 3.6 3.2 4.5 3.2 3.5 4.8 2 24.8
2011 Q1 6.1 7.8 2 4 2.7 2.7 NA 25.3
2011 Q2 7.6 1.9 32.7 3.1 2.5 5 1.5 54.4
2011 Q3 16.9 6.3 2.5 8.1 3 2.3 1.8 41
2011 Q4 4.8 2.6 8.7 2.3 3.7 3.1 NA 25.1
2012 Q1 4.8 1.9 15 3.7 2.7 1.6 3.2 32.9
2012 Q2 3.5 4.8 2.7 2.5 2.2 2.9 1.5 20.1
2012 Q3 4.4 2.2 6 2.4 3 5.8 4.6 28.6
2012 Q4 2.6 2.7 5.8 4.4 1.7 3.1 5.4 25.7
2013 Q1 8.8 3.7 2.5 3.9 2.7 1.7 1.6 25
2013 Q2 9.7 7.8 3.4 1.6 3.1 3.1 2.4 31.2
2013 Q3 6 1.8 3.7 3.9 6.9 1.6 1.7 25.6
2013 Q4 3.8 2.4 7.8 2.8 1.8 2.2 2.1 23
2014 Q1 3.1 2.2 3.9 1.5 3.9 2.5 2.1 19.3
2014 Q2 2.4 2.9 3.7 3.1 2.5 1.6 1.4 17.6

All 275.7 206.7 236.9 139.7 148.7 129.5 95.2 1232.4
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Table 27: OOS-LLH scores of the LFEs in the validation set using model M4. The scores are calculated for
individual and aggregated risk categories for individual and aggregated time periods, whereby “NA” values

mean that the particular risk category has no observation in that given time period.

Time period EFRAUD IFRAUD EPWS CPBP EDPM DPA BDSF All
2005 Q1 21.3 15.1 3.2 2.5 5 17 2.1 66.2
2005 Q2 4.6 1.9 9.1 4.1 3.5 2.4 6.9 32.5
2005 Q3 5.1 3 5.6 4 2.5 2.1 2.2 24.4
2005 Q4 11.4 17.7 16.9 3.8 17.4 2 1.9 71.2
2006 Q1 8 2.3 2.8 11.1 4.1 1.9 0 30.2
2006 Q2 4.3 3.6 7.4 2.3 2.1 2.6 1.9 24.1
2006 Q3 4.1 21.2 3.4 3.1 7.5 2.4 4 45.6
2006 Q4 47.2 19.8 11.6 18.7 3.5 16.9 3 120.8
2007 Q1 4.9 12.6 4.2 4.2 6.7 3.2 2.5 38.3
2007 Q2 3.9 2.1 3.7 3 2.5 1.8 2 19.1
2007 Q3 3.6 2.3 4.6 2.4 7.4 2 1.8 24.2
2007 Q4 4.6 5.1 19.5 3.4 3.3 2 2.1 40.1
2008 Q1 3.9 2.2 9.4 3.5 4.7 2 4.4 30.1
2008 Q2 11.1 3.5 2 3 2.7 2.4 2 26.7
2008 Q3 4.6 2.8 5.2 3.5 4.6 1.8 5 27.4
2008 Q4 7.8 3.2 3.6 4.8 2.6 4.3 4.5 30.8
2009 Q1 8 4.3 1.9 2.2 3.7 2.7 2 24.7
2009 Q2 4.4 5.7 4.5 2 3.4 2.8 2.3 25
2009 Q3 5.9 3.9 9 10.4 10.3 2.1 2.7 44.2
2009 Q4 5.7 6.2 2.4 2.5 3.4 5.6 4.5 30.3
2010 Q1 3.1 8.8 2.3 2.4 2.7 2 1.9 23.1
2010 Q2 3.2 3.3 2 3.5 2.5 2.6 1.8 18.9
2010 Q3 3.1 3.9 2.9 1.9 3.7 2 2 19.6
2010 Q4 5.9 3.5 3.5 3.9 2.8 4 2.4 26.1
2011 Q1 3.2 3.3 1.9 2.7 4.7 2.1 0 18
2011 Q2 3.5 2.2 8 2 2.5 2.9 1.9 23.1
2011 Q3 17.9 6.8 2.6 8.5 3.1 2.4 1.8 43.1
2011 Q4 5.3 2.7 9.4 2.3 3.9 3.2 0 26.8
2012 Q1 5.8 1.9 17.5 4.1 2.9 1.7 3.4 37.3
2012 Q2 3 3.2 2.3 2.2 2.7 4.2 1.7 19.2
2012 Q3 3.2 1.9 4.2 2.2 2.5 4.4 5.3 23.8
2012 Q4 3.4 2.1 13.1 9.3 1.8 2.8 7 39.6
2013 Q1 6.4 4.9 2.2 3.3 2.9 1.6 1.6 23.1
2013 Q2 7.5 6.1 3.1 1.6 2.8 2.9 2.2 26.2
2013 Q3 3.7 1.9 2.9 2.9 4.9 1.5 1.5 19.4
2013 Q4 8.7 3.3 18.1 4.1 2.1 2.7 1.7 40.7
2014 Q1 3.1 2.3 3.8 1.5 3.9 2.5 2.1 19.2
2014 Q2 2.3 3.1 3.2 3.5 2.7 1.7 1.5 17.9

All 266.7 203.6 233 156.3 156.3 127.3 97.9 1241
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Table 28: Time-varying true (“True”) parameters and parameter estimates using model M3 (“Est.”).

BDSF CPBP DPA EDPM EFRAUD EPWS IFRAUD

Time period Est. True Est. True Est. True Est. True Est. True Est. True Est. True

2005 Q1 6.02 22 143.75 69 7.98 5 117.63 61 56.93 66 20.41 13 11.33 7

2005 Q2 4.82 1 115.13 94 6.39 5 94.22 66 45.6 54 16.35 17 9.07 21

2005 Q3 5.73 3 136.78 97 7.59 4 111.93 75 54.17 56 19.42 14 10.78 5

2005 Q4 6.07 7 144.88 173 8.04 6 118.57 161 57.38 91 20.57 25 11.42 30

2006 Q1 4.33 0 103.46 80 5.74 7 84.67 85 40.97 70 14.69 13 8.15 7

2006 Q2 4.91 8 117.17 104 6.5 6 95.88 105 46.4 68 16.64 17 9.23 10

2006 Q3 5.99 3 142.99 67 7.94 2 117.01 91 56.63 55 20.31 6 11.27 5

2006 Q4 6.74 10 161.04 210 8.94 3 131.79 176 63.78 97 22.87 71 12.69 27

2007 Q1 5.8 10 138.38 114 7.68 10 113.24 68 54.8 64 19.65 11 10.91 2

2007 Q2 5.32 6 127.12 125 7.06 8 104.03 98 50.35 49 18.05 21 10.02 11

2007 Q3 5.88 5 140.32 123 7.79 8 114.83 91 55.57 32 19.93 18 11.06 8

2007 Q4 8.1 8 193.37 230 10.73 7 158.25 146 76.58 69 27.46 28 15.24 21

2008 Q1 5.23 7 124.77 126 6.93 2 102.1 78 49.41 41 17.72 13 9.83 9

2008 Q2 3.84 7 91.71 147 5.09 4 75.05 78 36.32 37 13.02 18 7.23 8

2008 Q3 5.25 5 125.3 116 6.96 1 102.54 84 49.63 34 17.79 9 9.88 13

2008 Q4 6.87 11 163.98 116 9.1 13 134.19 132 64.94 36 23.29 20 12.92 5

2009 Q1 3.62 8 86.32 73 4.79 6 70.64 98 34.19 35 12.26 12 6.8 7

2009 Q2 3.85 1 92 129 5.11 8 75.29 102 36.44 31 13.07 11 7.25 7

2009 Q3 5.47 3 130.51 130 7.25 6 106.8 82 51.69 30 18.53 5 10.29 3

2009 Q4 7.13 1 170.23 161 9.45 12 139.31 137 67.42 38 24.17 21 13.42 8

2010 Q1 3.95 2 94.24 117 5.23 6 77.12 71 37.32 32 13.38 14 7.43 4

2010 Q2 4.85 2 115.78 112 6.43 6 94.75 92 45.85 37 16.44 18 9.12 8

2010 Q3 4.16 2 99.38 80 5.52 3 81.33 71 39.36 32 14.11 19 7.83 6

2010 Q4 4.04 2 96.51 84 5.36 11 78.98 79 38.22 44 13.71 21 7.61 3

2011 Q1 3.27 0 78.04 96 4.33 7 63.86 86 30.91 27 11.08 17 6.15 7

2011 Q2 2.93 3 69.92 137 3.88 7 57.22 78 27.69 38 9.93 12 5.51 6

2011 Q3 4.54 2 108.35 56 6.02 5 88.67 63 42.91 22 15.39 10 8.54 5

2011 Q4 3.98 0 94.92 108 5.27 7 77.68 104 37.59 41 13.48 19 7.48 10

2012 Q1 3.68 3 87.8 44 4.87 1 71.85 54 34.77 31 12.47 6 6.92 6

2012 Q2 2.84 2 67.76 80 3.76 6 55.45 61 26.84 21 9.62 7 5.34 8

2012 Q3 3.58 1 85.46 68 4.74 10 69.93 48 33.84 19 12.14 7 6.73 4

2012 Q4 4.78 5 114.23 133 6.34 13 93.48 104 45.24 38 16.22 18 9 5

2013 Q1 3.4 2 81.06 50 4.5 4 66.33 73 32.1 32 11.51 5 6.39 3

2013 Q2 2.11 5 50.31 75 2.79 6 41.17 60 19.92 24 7.14 9 3.96 4

2013 Q3 3.26 2 77.94 55 4.33 3 63.79 51 30.87 15 11.07 5 6.14 6

2013 Q4 4.2 5 100.25 126 5.57 3 82.03 89 39.7 39 14.24 14 7.9 10

2014 Q1 2.53 3 60.47 62 3.36 1 49.48 57 23.95 31 8.59 5 4.77 2

2014 Q2 2.58 2 61.66 68 3.42 2 50.46 47 24.42 22 8.76 4 4.86 7
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A.12. Real-world application, scenario analysis

Table 29 presents the economic factors in this scenario analysis, where we again use economic

reasoning to determine predetermined values for the economic factors. For this analysis, we fix

LOR EU to the long-term average since Table 3 presents that the realized and expected number

of losses deviate from what we expect using economic reasoning. After conducting the scenario

analysis, LF parameter estimates in Table 30 are not aligned with our central argument that

expansions drive extreme losses. This can be explained by the fact that model M3-met includes

too many factors and hence the presence of multicollinearity yields extreme economic factor

weights with contemporary signs for factors that exhibit high cross-correlations. We present

the scenario analysis results for LFE-model M3 and further elaborate on the issues at hand

in Appendix A.12. The reason is that we earlier found that “unemployment rate” has a net

positive and strong impact for similar levels of UR EU and UR IT on extreme OpRisk losses.

This is the case, because the sum of UR EU and UR IT coefficients of model M3 is positive, and

both levels are high, as illustrated by Table 11. Since both UR EU and UR IT are used in the

scenario analysis, the impact of the joint unemployment rate levels therefore is both positive

and substantial. Consequently, the estimated number of losses is lower for favourable economic

conditions.

Table 29: LFE; original values and normalized equivalents of economic factors using model M3 that represent
scenarios SC0 - SC3.

Constant Recession Intermediate Expansion

Factor Impact Value Value Norm. value Value Norm. value Value Norm. value
DGR + NA -0.15 -1.08 0.03 -0.04 0.20 0.95

LOR EU - NA 6.8 -0.04 6.8 -0.04 6.80 -0.04
MIB IT + NA -0.20 -1.81 0 -0.03 0.20 1.76
SIR IT - NA 5 1.74 2.50 0.17 0.5 -1.09
SP USA + NA -0.12 -1.61 0 -0.17 0.10 1.04
UCSR + NA -0.23 -2.31 0 0.12 0.15 1.7
UR IT - NA 13 2.67 9 0.54 5 -1.59
UR EU - NA 12 1.92 10 0.50 7 -1.62

VIX USA * NA 35 1.62 15 -0.55 20 0.00

Table 30: Scenario analysis; κ̂ estimates using the normalized economic factors in Table 29 as well as the
M3-met model coefficients in Table 11.

Constant Crisis Intermediate Expansion
BDSF 4.45 4.28 4.93 3.21
CPBP 106.18 102.21 117.73 76.65
DPA 5.89 5.67 6.54 4.26
EDPM 86.89 83.64 96.35 62.73
EFRAUD 42.05 40.48 46.63 30.36
EPWS 15.08 14.51 16.72 10.89
IFRAUD 8.37 8.06 9.28 6.04
All 268.92 258.86 298.17 194.13
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A.13. R program and associated functions

We hereby present an overview of the core functions used in this research. These functions

can be called by the main file: “Main.R”. We implemented all instances in a branch of the

BAMLSS R package (Umlauf et al. (2019)). Our code can be viewed and downloaded in our own

fork of the official BAMLSS GitHub page.6 The functions start with “C.” since our functions

are added to the set of current BAMLSS functions.

#Simulation study , main functions.

#WARNING: these functions are computationally expensive

C.SimStudyFormulae ()

C.SimStudySimulateData ()

C.SimStudyMainUnpenalized(N = 5000, p_unf = 4, c = 1, nu = 0.05,

maxit = 100000 , samples = 10)

C.SimStudyMainPenalizedP4(c = 1, samples = 10)

C.SimStudyMainPenalizedP11(c = 1, sample = 1)

#Simulation study , evaluation;

#WARNING: these functions are computationally expensive

C.SimStudyEvaluateAllModels(c = 1, s = 1)

C.SimStudyEvaluationOverAllIter ()

C.SimStudyEvaluateP11 ()

#Simulation study , plots

C.SimStudyPlotAIC ()

C.SimStudyPlotBIC ()

C.SimStudyPlotEDF ()

C.SimStudyPlotLLHInsample ()

C.SimStudyPlotFNRandFPR ()

C.SimStudyPlotMaxiter ()

C.SimStudyPlotBetaCoef ()

C.SimStudyPlotEtaCoef ()

C.SimStudyPlotLLHOutofSample ()

#Simulation study , tables

C.SimStudyEvaluateAllModelsTable ()

C.SimStudyTableNumberofUpdates ()

C.SimStudyTablePrepP4 ()

6https://github.com/ConstantijndeJonge/bamlss
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C.SimStudyTablePrepP11 ()

C.SimStudyTableP4 ()

C.SimStudyTableP4L1norms ()

#Simulation study , miscellaneous

#WARNING: These functions are computationally expensive

C.SimStudyCreateSimulatedCovaritates ()

C.SimStudyDGP ()

C.SimStudyMiscConvertRDAtoRDS_p4_B1()

C.SimStudyMiscConvertRDAtoRDS_p4_B2()

C.SimStudyMiscConvertRDAtoRDS_p11_B1()

C.SimStudyMiscStoreNumberofIterationsP4 ()

C.SimStudyMiscStoreNumberofIterationsP11 ()

#Real -world analysis , models

C.UniCreditFormulae ()

C.UniCreditLFMain ()

C.UniCreditLSEUnpen ()

C.UniCreditLSEPen ()

#Real -world analysis , scenario analysis & estimation of capital charges

C.UniCreditScenarioAnalysis ()

C.UniCreditCapitalChargeEstimates ()

#Real -world analysis , data preparation , tables , visualization

C.UniCreditDataPreparation ()

C.UniCreditDataSummary ()

C.UniCreditLLHContTable ()

C.UniCreditLoadData ()

C.UniCreditLSEEvalBoostingModels ()

C.UniCreditLSEPenModelsTable ()

C.UniCreditPlotLF ()

C.UniCreditPlotLossesOverTime ()

C.UniCreditCapitalChargePlots ()

#Real -world analysis , miscellaneous

C.UniCreditEconomicFactorsCategorical ()

C.UniCreditEconomicFactorsImpact ()

C.UniCreditEconomicFactorsIntervalLimits ()
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C.UniCreditEconomicFactorsMetric ()

C.UniCreditReadDataFile ()

C.UniCreditRiskCategories ()

C.UniCreditScenarios ()

C.UniCreditTimePeriods ()

C.UniCreditTimePeriodToInteger ()
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