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Abstract

This paper studies whether the sentiment of the Federal Open Market Committee

(FOMC) in their statements can predict the short-term returns of the two-year US

bond futures. Each FOMC statement is dissected into five topics, for which the

surprise in sentiment is determined separately. This paper finds that the surprise of

the FOMC’s outlook on future economic conditions and inflation is the only topic

with significant predictive power. This is then used in combination with the surprise

in the change of the federal funds rate to predict short-term returns. This paper

finds that this combination can explain roughly 12% of the variation in returns for

an in-sample analysis over the time period of 1999-2020. Furthermore, adding a

proxy for current economic conditions and the size of the pre-FOMC announcement

drift to the model almost doubles the fit. However, these findings only hold for the

time period before 2009, which is shown in both an in-sample and out-of-sample

framework.
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1 Introduction

The Federal Open Market Committee (FOMC) consists of twelve members, who hold

eight scheduled meetings per year to discuss whether any changes in monetary policy

should be made. The term “monetary policy” refers to the means by which government

authorities can influence the pace and direction of overall economic activity, both in terms

of the level of aggregate output and employment, but also the rate of inflation (Friedman,

2000). To assert this influence, the FOMC has the ability to change the Federal funds

rate (FFR) or to employ newer tools such as Quantitative Easing (QE), purchases of

private securities, negative interest rates, funding for lending programs, and yield curve

control, all of which have been proven to be helpful in some circumstances (Bernanke,

2020).

Before 1994, the FOMC was deliberately opaque regarding their communication on

changes in monetary policy, which they would not convey to the market participants until

much later after the meeting was held. However, since 1994, the FOMC has significantly

increased transparency in their communication (Mishkin, 2004). One of these was to start

releasing a statement after each meeting at a scheduled time. This statement contains

the main findings of the FOMC and any changes in monetary policy, but also signals any

possible changes in monetary policy in future meetings (Hansen and McMahon, 2016).

Thus, it is unsurprising that the release of these statements can cause a temporal increase

in volatility, which is studied extensively by Farka (2009) and Rosa and Verga (2008),

among others. Furthermore, Rosa (2011) shows that the content of these statements has

significant predictive power for short-term returns on the major US indices and the VIX.

This paper builds on this strand of literature, as it aims to further study the predictive

power of the contents of a statement.

This research is relevant for many sectors within Quantitative Finance that deal with

trading listed instruments. Knowing in which direction an instrument will likely move

on a short timescale can be useful for the risk management of dealing rooms in banks,

pension funds and market makers, as they can then hedge or close any open positions.

Furthermore, this research also has the possibility to generate alpha for traders and hedge

funds.

As mentioned earlier, the predictive power of FOMC statements is already studied

by Rosa (2011), who finds that both the unexpected change in FFR and the contents
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of the FOMC statements provide significant predictive power for short-term returns.

However, they cannot cover the out-of-sample performance of their model, since they

use data that is not available until after the release of the statement to explain the

variation in short-term returns. Thus, they can only show what moves the markets from

a retrospective point of view. Furthermore, they manually read and score each statement,

which can introduce human biases into the results. This paper investigates whether the

novel natural language processing (NLP) model BERT can extract the sentiment of the

FOMC statement and whether this too provides significant predictive power for short-

term returns. Formally, the main research question is:

• Does the (surprise in) sentiment of FOMC statements, as determined by the BERT

model, contain statistically significant predictive power for short-term bond future

returns?

To support the main research question, this paper aims to answer the following three

supporting research questions:

• Do all sentences in a statement contribute to the market’s reaction?

• Does the predictive power of the sentiment change over time?

• Are there other measures that can influence the market’s reaction to the release of

an FOMC statement?

To answer these research questions, a Latent Dirichlet Allocation (LDA) model is

used to extract the different topics within an FOMC statement. An LDA model is

used since it is widely used for topic modelling and is already successfully applied to

FOMC statements by Hansen and McMahon (2016). Then, using the BERT model, the

sentiment of each discussed topic is determined. The BERT model is chosen since it is

one of the best-performing contextual models for semantic text analysis (Devlin et al.,

2019). BERT can detect the context of words within a sentence, which is a significant

improvement over the more conventional “bag-of-words” approach that does not look at

the position of words within a sentence. In addition, the standard BERT model can

easily be further trained on domain-specific corpora, which improves its performance for

specific language uses. Araci (2019) further trains the BERT model on finance-related

text, which results in the FinBERT Model. This model has a 15% higher accuracy than
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the standard BERT model on sentiment classification tasks that are related to financial

text. As such, the FinBERT model is applied to the FOMC statements instead of the

original BERT model. As it has been shown that the market reacts to the surprise of

the sentiment, instead of the actual sentiment itself, the markets’ expectancy of each

topic is determined using an OLS model, from which the news shock can be calculated.

The news shock for each topic is then used in an OLS model to determine which topics

contain predictive power for short-term returns. Lastly, the news shocks of the topics that

show significant predictive power are used in a Macroeconomic Random Forest (MRF)

model to investigate whether machine learning (ML) can increase the predictive power of

short-term bond future returns. The MRF model is effectively an OLS model, but with

time-varying parameters that are determined through a Random Forest (RF) model.

Thus, the MRF model can incorporate reaction asymmetries which can influence the

model’s predictive power.

This research uses three types of data. Text data from FOMC statements is used

to extract its topics and their respective sentiment. Furthermore, high-frequency bond

futures data is used to measure the market’s reaction to each statement’s release, which

this paper aims to predict. Lastly, a set of macroeconomic variables is used to determine

the market’s expectancy of the sentiment regarding specific topics.

This paper finds that the surprise of the FOMC’s outlook on future economic con-

ditions and inflation contains significant predictive power for short-term bond future

returns. It also finds that this is the case for the surprise in the change of the FFR,

which is already established by a large strand of literature. The combination of these two

surprises can explain 11.9% of the variation in returns for an in-sample analysis over the

time period of 1999-2020. Furthermore, when a proxy for current economic conditions

and the size of the pre-FOMC announcement drift are added to the model it can explain

21.2% of the variation in returns over the same time period. However, the significance of

the two surprises only holds for the time period before 2009. The out-of-sample analysis

reflects the in-sample finding that both surprises lose their significant predictive power

after 2009, and shows that the MRF model consistently underperforms across all time

windows.

The remainder of this paper is structured as follows: In Section 2, the relevant lit-

erature to this research is discussed. Then, in Section 3, the data that is used for this
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research is discussed, in terms of its characteristics, origins and possible manipulations

that are applied to the data. Section 4 and Section 5 describe the textual analysis that is

used to extract the sentiment from the FOMC statements and the methodology regarding

the use of this sentiment for the prediction of short-term returns. To discuss the results,

the FOMC statements are firstly analysed in Section 6. Secondly, the in-sample results,

two robustness checks and the out-of-sample results are discussed in Section 7. Lastly,

the paper is concluded and recommendations for future research are given in Section 8.
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2 Literature review

2.1 The effect of monetary policy changes on equity returns

2.1.1 Predicting post-announcement returns

Early studies on the effect of monetary policy on equity returns find that this effect is

not insignificant, as Rozeff (1974) finds that an increase in the growth rate of money can

positively affect equity returns. Furthermore, Thorbecke (1997) and Patelis (1997) give

concrete evidence that monetary policy variables hold significant forecasting power for

future equity returns. Specifically, by using an event study over the sample period of 1987-

1994, Thorbecke (1997) finds that changes in the target funds rate have a statistically

significant negative relationship with the 24-hour returns surrounding the release of the

new target funds rate.

However, no distinction is made between expected and unexpected changes in target

rates. To address this, Kuttner (2001) uses the futures market for Federal funds to obtain

changes in the target funds rate. They separate changes into expected and unexpected

components and find that the response of the interest rates to the expected changes is

small. In contrast, if this change is unexpected, the response is large and significant.

This method is then used by Bernanke and Kuttner (2005), Gürkaynak et al. (2005) and

many others for further research. Bernanke and Kuttner (2005) find that an unexpected

25 bps (basis-point) cut in the target funds rate corresponds to an increase of 1% in

equity prices. They use daily equity returns, which can cause endogeneity, as other

economic data could be released on the same day. To correct for this, they add the values

of any other macroeconomic releases on the same day to the regression. Another way

to circumvent endogeneity is by using high-frequency data to narrow down the “event

window” surrounding the FOMC announcement; this lowers the chances of any other

economic releases happening in the same time period. Gürkaynak et al. (2005) use this

method to perform the same research as Bernanke and Kuttner (2005), from which they

draw the same conclusions.

Furthermore, Gürkaynak et al. (2005) show that the market not only reacts to target

funds rate changes, but also to the FOMC’s stand on the future path of monetary policy.

This future path is closely related to the announcements made by the FOMC. Rosa and

Verga (2008) build onto this strand of literature by creating an indicator that captures the

5



sentiment of the introductory statements for the ECB’s monthly press conferences. They

do this by manually reading these statements, and mapping words and sentences to a

value that indicates how dovish/hawkish they are. By predicting the market’s expectancy

of the ECB’s stance on future policy and subtracting this from ECB’s actual stance, they

can capture the surprise. They find that this surprise has a significant and sizeable impact

on Euribor futures returns. Rosa (2011) follows a very similar methodology, but then

for the FOMC’s impact on three leading US indices and the VIX. The same conclusion

as Rosa and Verga (2008) follows for the three US indices. Specifically, their framework

explains about 20% of the variation in US equity returns in the event window.

2.1.2 Reaction asymmetries

Orphanides (1992) is one of the first to provide empirical evidence that, depending on the

state of the economy, reactions of financial assets to macroeconomic news announcements

may vary. Guo (2004), Andersen et al. (2007), Chuliá et al. (2010) and Law et al. (2018),

among others, build onto this idea and show that the reaction of stock prices to changes

in target rates is sensitive to the current phase of the business cycle. Specifically, they

find that the reaction is larger (smaller) when business conditions are bad (good).

Chuliá et al. (2010) and Farka (2009) also show that negative surprises in the target

rate change have a more substantial impact on equity prices than positive surprises. This

contradicts Bernanke and Kuttner (2005), who do not find any evidence regarding this

asymmetry. However, Chuliá et al. (2010) argue that this is because of the use of daily

stock data instead of high-frequency data.

Furthermore, Ehrmann and Talmi (2017) find that similar statements of the Canadian

central bank reduce short-term volatility after the release of such a statement. In contrast,

changes in statements after a long streak of similar statements cause a much higher short-

term volatility.

Next to these three proven reaction asymmetries, this paper investigates whether

the pre-FOMC announcement drift also impacts the reaction. In the 24 hours leading

up to the statement’s release, assets tend to have a lot of upwards momentum. This

phenomenon is called the pre-FOMC announcement drift and has two main economic

interpretations. The first one is the so-called “announcement premium”, where the price

gets driven upwards to account for the possible uncertainty that an FOMC statement

6



brings (Hu et al. (2019) and Wachter and Zhu (2018)). Secondly, Vissing-Jorgensen et al.

(2015) provide evidence of systematic informal communication of Fed officials with the

media and financial sector as the information transmission channel, which could explain

the pre-FOMC drift, as investors then start incorporating new information before the

statement is released. Furthermore, Lucca and Moench (2015) find that pre-FOMC

returns are higher in periods when the slope of the Treasury yield curve is low, implied

equity market volatility is high, and when past pre-FOMC returns have been high. These

interpretations all imply that the magnitude of the pre-FOMC announcement drift could

impact the short-term returns after the release of a statement.

This paper aims to contribute to this strand of literature by combining all four men-

tioned asymmetries in one single framework for predicting short-term bond future returns

around FOMC announcements. Specifically, this paper uses the framework from Rosa

(2011). Their framework does not take any asymmetric effects into account, which could

increase the predictive power for bond future returns.

2.2 Natural Language Processing models

Natural language processing (NLP) is a theory-motivated range of computational tech-

niques for the automatic analysis and representation of human language (Cambria and

White, 2014). This analysis is often split up into two parts: syntactic analysis and se-

mantic analysis. Syntactic analysis is regarding the structure of words within a sentence,

whereas semantic analysis looks at the meaning of words within a sentence. In this paper,

semantic analysis is applied to FOMC statements, by extracting the sentiment from each

sentence within a statement. As such, this section discusses commonly used NLP models

for semantic analysis and their respective advantages/disadvantages.

2.2.1 FFN

The first neural network to be used for language modelling is the feed forward neural

network (FFN), which is done by Bengio et al. (2003). The model is designed to address

the shortcomings of the n-gram model, which is introduced in Brown et al. (1992). The

n-gram model focuses on predicting the next word when the n-1 previous words in the

sentence are given. This model forms the basis of modern language modelling for speech-

to-text analysis (Schwenk, 2004), but has a significant limitation in that it has minimal
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use of context, as the number of parameters to be estimated grows exponentially when n

becomes larger. Bengio et al. (2003) show that the FFN model can achieve a 24% lower

perplexity (a performance measure that indicates how good the fit of the model is, where

a lower perplexity indicates a better fit) than the n-gram model and show that they can

take advantage of more words to provide context, without having an exponentially larger

set of parameters.

2.2.2 RNN

A downside of the FFN model is that it uses a fixed number of words to gather the context

of a sentence. This needs to be specified before training, which makes the model inflexible.

To overcome this problem, Kombrink et al. (2011) use a recurrent neural network (RNN)

for language modelling. They show that the RNN model has superior performance over

the n-gram model while retaining flexibility for more uses outside the scope of training, as

the RNN model does not use a fixed number of words for their context. They do not have

an explicit comparison between the FFN and RNN model, but show that the RNN model

has half the perplexity of the n-gram model, compared to the 24% lower perplexity of the

FFN model. The main problem for the RNN model is that it is difficult to train using

backpropagation through time, as the RNN model suffers from the so-called vanishing

gradient problem, which is studied in detail by Hochreiter and Schmidhuber (1997). The

vanishing gradient problem entails that in an RNN model, the gradient of the hidden

layer from the previous word, multiplied by a number, is used as input for the hidden

layer for the current word. Depending on the value of this multiplier and the length of

the sentence, earlier gradients can then decay (grow exponentially) if the multiplier is

smaller (larger) than one.

2.2.3 LSTM

To overcome the vanishing gradient problem of the RNN model, Hochreiter and Schmid-

huber (1997) introduce the Long Short-Term Memory (LSTM) model. Sundermeyer et al.

(2012) are the first to use the LSTM model for NLP and achieve an 8% lower perplexity

compared to the RNN model, which makes it the best performing NLP model at that

time.
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2.2.4 Transformers

All earlier NLP models have one major constriction: The input must be given sequentially.

This significantly increases the time it takes to train the model and reduces the amount

of context it can use. To overcome this, Vaswani et al. (2017) introduce the Transformer,

a network that allows for parallel computing. This means that the whole sentence can be

processed simultaneously, which significantly reduces training time and allows the model

to use the whole sentence to determine the context of a specific word. The Transformer

network is made to solve language translation tasks and outperforms the at-the-time best

model by more than 7.5%.

An important aspect of the Transformer network is the concept of self-attention, which

enables the Transformer to capture contextual relationships of words in a sentence. This

is done by determining the relevancy of each word in a sentence with respect to all

other words in the sentence. The advantage of self-attention is that the computational

complexity scales with O(1 ), opposed to the O(n) of most recurrent networks, where

n is the length of the sentence. Thus, self-attention looks at all words in a sentence

simultaneously, while recurrent networks have to cycle through each word in the sentence

to capture contextual relationships. The Transformer is the first network to solely rely

on this technique, which causes the training time of the model to be significantly faster

than existing NLP models for translation tasks.

To perform language translation tasks, the Transformer network uses an encoder-

decoder-based architecture, as seen in the Transformer schematic in Figure 1. The en-

coder takes the to-be-translated sentence as input and transforms it into a set of vectors

that encapture the meaning and context of each word in the sentence. The decoder then

uses these vectors, in combination with the previously translated word, to translate the

following word in the sentence. It does this in sequential order until the end of the sen-

tence is reached. Loosely speaking, by training the model on a set of sentences and their

corresponding translations, the encoder learns how to understand language and its con-

text, while the decoder learns how to map the words in one language to the corresponding

words in the other language.

The Transformer network forms the basis for more advanced NLP models that can

handle various NLP tasks, instead of just one. For example, Radford et al. (2018) remove

the encoder from the Transformer network and stack 12 decoders to obtain the OpenAI
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Figure 1: High-level schematic of the Transformer network. Copied from Vaswani et al.
(2017).

GPT model, which can handle textual entailment, question answering, semantic simi-

larity assessment, and document classification. Moreover, Devlin et al. (2019) remove

the decoder and stack 12 encoders onto each other to obtain the base model of BERT,

which sets new high scores for eleven different NLP tasks. From these eleven NLP tasks,

two are sentence classification tasks. This makes BERT the best performing NLP model

for sentence classification at the time, albeit for non-finance related text. However, the

BERT model can easily be further trained on domain-specific corpora, which makes the

BERT model highly flexible and ensures that it can be used for very different use cases.

For example, Araci (2019) further pre-trains the BERT model on finance-related text.

This results in the FinBERT model, which has a 15% higher accuracy than the standard

BERT model on sentiment classification tasks that are related to financial text. Since

then, numerous improvements are suggested (e.g. by Liu et al. (2019), among others),

which results in models that have an even better performance than the original BERT

model. However, none of them are further pre-trained on finance-related text. This is
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the main reason why the FinBERT model is used instead of the improved successors of

the standard BERT model.

Even though BERT is designed to be used for differing use cases, no major research

is published regarding the use of BERT models on FOMC speech. This paper aims

to contribute to this strand of literature by applying the FinBERT model to FOMC

statements.
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3 Data

For this research, three main types of data are used: text data derived from FOMC

statements, high-frequency bond futures data and macroeconomic data. This section

covers all the data in terms of its characteristics, origins and possible manipulations that

are applied to the data.

3.1 FOMC statements

After each meeting of the FOMC, a statement is released in which they summarise the

main findings of the meeting. This started in 1994, when the FOMC decided to explicitly

announce monetary policy changes at 14:15 EST after the meeting, but only if they

decided to change the monetary policy. From the 18th of May 1999 onwards, the FOMC

started releasing a statement after each meeting, regardless of any changes in monetary

policy. From this point onwards, the FOMC has consistently released statements after

each meeting that also include their opinions on current and future economic conditions

(Farka and Fleissig, 2013). Thus, to avoid endogeneity, the sample period for this research

starts on the 18th of May 1999.

The FOMC archives all their released statements, which can be found on their web-

site1. Using the BeautifulSoup package in Python, the statements and their respective

release dates are scraped. The time of the statement’s release is not stated in their

archives, but it can be found on external websites2. The time of the release is given in

EST (GMT-4) or EDT (GMT-5), depending on the time of year.

Table 1: Descriptive statistics of the FOMC statements over the whole sample period.

Full sample

Number of statements 198

Number of sentences 2450

Number of words 73513

Between the 18th of May 1999 and the 4th of May 2022, a total of 198 meetings have

been held, of which 15 were unannounced. An interesting note to the statements is that

1https://www.federalreserve.gov/monetarypolicy/fomc_historical_year.htm
2https://www.investing.com/economic-calendar/fomc-statement-398
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they have become substantially more complex since the financial crisis. This phenomena

is studied in-depth by Hernández-Murillo et al. (2014) and Coenen et al. (2017), and can

be seen in Figure 2. This figure plots the number of sentences per statement and the

number of words per sentence. It is clear that after the financial crisis (2009) both ratios

start to increase significantly.

(a) The amount of sentences per statement.

(b) The amount of characters per sentence in a statement.

Figure 2: The amount of sentences per statement and characters per sentence in each

statement, together with the moving average (MA) over the last eight values. The sample

period is 1999-2022.

3.2 Financial data

3.2.1 High-frequency bond futures

To capture the market’s response to the release of the statement, high-frequency bond

futures data is used. Specifically, the two-year US bond future is used, since short-term

bonds have a higher sensitivity to monetary policy surprises (Kuttner, 2001). Thus, the
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market’s response is easier to capture. For the remainder of this paper, the two-year US

bond future will be referred to as TU, which is its ticker symbol. The dataset runs from

the 1st of April 1993 up to the 6th of January 2021. Thus, the sample period for this

paper will end with the last statement of 2020. The data is given in an open, high, low

and close (OHLC) format and is updated per minute, which can cause the prices to be

contaminated with microstructure noise, such as the bid-ask bounce. Due to this noise,

the observed fluctuations in the bond futures prices become less representative of the

actual variance in the prices (Zhang et al., 2005). To overcome this noise, it is common

to reduce the update frequency of the prices to once per five minutes. This is done by

taking the last closing price of five one-minute intervals. Per example, for the closing

price of the interval between 8:00 and 8:05, the closing price of the one-minute interval

between 8:04 and 8:05 is substituded. Furthermore, the time in this dataset is given in

CST (GMT-6) or CDT (GMT-5). Thus, in terms of timezone, the bond futures are an

hour behind the releases of the statement. This paper aims to predict the log-returns

between t-10 and t+40, where t is the time of release of the statement and is given in

minutes. Thus, the log returns are calculated as follows:

∆Pt = log(
Pt+40

Pt−10

) ∗ 100%. (1)

For the remainder of this paper, these returns will be referred to as the market reactions.

The descriptive statistics of the market reactions, excluding unannounced meetings, are

shown in Table 2.

Table 2: Descriptive statistics

Mean Min Max St. dev. Skewness Kurtosis

∆Pt 0.013 -0.401 0.403 0.119 0.357 4.844

This table shows the descriptive statistics for the 40-minute market reactions of the US
2-year Treasury note future (TU). The sample period is from 1999-2021.

The market reactions are plotted in Figure 3(a), where the dashed line represents the

unannounced meetings. This figure shows that unannounced statements are not often

met with a much larger reaction than announced statements. Furthermore, the market

reactions are smaller after the financial crisis. To further investigate this, the estimated

distribution of the market reactions is plotted for both the sample period of pre-2009
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and post-2009 in Figure 3(b). This figure provides further evidence that the size of the

market reactions is smaller after 2009, since the distribution of the pre-2009 sample has

much fatter tails.

(a) The magnitude of the 40-minute market reactions.

(b) A histogram and its estimated distribution from kernel-density estimation using Gaussian
kernels.

Figure 3: In these two figures, the magnitude of the 40-minute market reactions and their

estimated distribution is plotted for the sample period of 1999-2021.

3.2.2 Federal funds futures

One of the variables that is used by Rosa (2011) to predict the market’s expectancy of the

content of the following FOMC statement is the difference between the three-month-ahead

federal funds futures contract and the current federal funds futures contract. The federal

funds futures contract is a future that tracks the federal funds rate (FFR), according to

the following equation:

P = 100 − r, (2)
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where r is the current federal funds rate, and P is the price of the future. Thus, the

price of the current federal funds futures contract directly reflects the current FFR, while

the price of the three-month-ahead federal funds futures contract reflects the market’s

expectancy of the FFR in three months. The difference between these two contracts, as

shown in Figure 4, then directly reflects the market’s expectancy of any future movements

in the FFR. A positive difference shows that the market expects a rise in FFR and vice-

versa. To obtain the price difference, daily updated futures data is used.

Figure 4: The price difference between the three-month-ahead federal futures contract
and the current federal funds futures contract over the whole sample period of 1999-2021.

3.3 Macroeceonomic data

In addition to the difference in federal funds futures contracts, Rosa (2011) uses two

macroeconomic variables to predict the market’s expectancy. The first variable is the

Purchasing Managers Index (PMI)3, which is an index that shows whether purchasing

managers think that market conditions are expanding, contracting or staying the same.

Afshar et al. (2007) show that the PMI is (partially) responsible for large variations

in GDP, and Koenig et al. (2002) find evidence that the PMI can be associated with

rising short-term interest rates. The second variable is a monthly survey of consumers on

their view about future movements of inflation (inflation expectation)4, conducted by the

University of Michigan. Both the PMI and the inflation expectation are updated monthly.

The reason to use surveys, instead of backwards-looking measures of economic activity

and inflation, is that survey data takes the forward-looking nature of the statements

better into account, as stated by Rosa (2011).

3https://ycharts.com/indicators/us_pmi
4https://fred.stlouisfed.org/series/MICH
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4 Methodology - Textual analysis

This research extracts two main pieces of information from all FOMC statements. Firstly,

the topics that are discussed in each statement and its associated sentiment are extracted,

of which its methodology is discussed in Section 4.1 and Section 4.2. Secondly, the

similarity between statements is extracted, which is discussed in Section 4.3.

4.1 Topic analysis

To extract the topics and their associated sentences from an FOMC statement, the Latent

Dirichlet Allocation (LDA) model, introduced by Blei et al. (2003), is used. This model

is widely used in the literature to extract topics from corpora, because of its simplicity

and the fact that it is proven to classify text in a similar way to humans (Chang et al.,

2009), which makes the results relatively easy to interpret. To support this, Hagen

(2018) finds that 87% of all LDA-generated topics make sense to human judges. In

addition, the LDA model is successfully used to extract topics from FOMC speech, as

demonstrated by Hansen and McMahon (2016) and Jegadeesh and Wu (2017). Due to

the high interpretability and its earlier success with FOMC speech, this paper uses this

model to extract topics from FOMC statements. A theoretical background of the LDA

model can be found in Appendix A.1.

As it is known that FOMC statements consist of more than one topic (Hansen and

McMahon, 2016), the aim is not to find the main topic of a statement as a whole, but

rather of each sentence individually within a statement. Then, each statement can be

dissected into a set of sentences that belong to each of the k topics. If this is done for

all the released statements, the distribution of discussed topics over time can be inferred.

Furthermore, the sentiment of each discussed topic within a statement is inferred by

performing sentiment analysis on each set of sentences that belong to the k topics. Then,

by averaging the sentiment of each set of sentences, the sentiment regarding a specific

topic in a statement is determined.

As input for the LDA model, a corpus of sentences from all released statements in the

time period of 1999-2022 is generated. Thus, unannounced statements are also included.

These sentences are then pre-processed by splitting them up into words (1), removing

all “stop words” (set of common words within a language, such as “the” and “is”) and
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special tokens (2), and stemming all remaining words (3). Stemming a word means to

remove the inflectional ending of a word, e.g. reflecting, reflected, and reflects can all

be reduced to reflect. An example of this process is given in Table 3. Next to these

individual words, n-grams can be added to the corpus. n-grams are n subsequent words

that co-occur frequently, and can provide more context. However, adding these n-grams

tends to lead to an explosion in the size of the corpus, due to the combinatorial nature

of n-grams (Denny and Spirling, 2018). Therefore, for simplicity, this paper does not

include them in the corpus.

Table 3: Example of pre-processing a sentence for the LDA model.

Sentence Inflation has risen, largely reflecting transitory factors.

(1) [’inflation’, ’has’, ’risen’, ’,’, ’largely’, ’reflecting’, ’transitory’, ’factors’, ’.’]

(2) [’inflation’,’risen’, ’largely’, ’reflecting’, ’transitory’, ’factors’]

(3) [’inflat’, ’risen’, ’larg’, ’reflect’, ’transitori’, ’factor’]

The LDA model has three parameters that can be optimised: The number of topics

k and the hyperparameters α and β, which are used as parameters for two Dirichlet

distributions, as discussed in Appendix A.1. α and β are set to 1
k
, similar to Hoffman

et al. (2010). The choice of k depends on the interpretability of the results and the goals

of the analysis (Blei and Lafferty, 2009), along with the type of data that is analysed. For

example, a corpus containing news articles can be expected to cover many topics, while

corpora with more focused text data will cover a smaller number of topics. To further

illustrate this, Hansen and McMahon (2016) use an LDA model with 15 topics to analyse

the FOMC statements and Jegadeesh and Wu (2017) use 8 topics to analyse FOMC

minutes. In comparison, Blei et al. (2003) use up to 100 topics to analyse abstracts from

various scientific papers.

Next to this, the perplexity of the model can be used for a formal comparison between

models and parameter choices. The perplexity of a model is defined as:

perplexity (n, α, β) ≜ exp

{
−

(∑
i

log p (ni | α, β)

)
/

(∑
i

ni

)}
, (3)

where ni is the vector of word counts for the ith sentence. However, there are questions

regarding the usefulness of perplexity in deciding between models. Chang et al. (2009)
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find that the perplexity of a model is inversely correlated to the interpretability of the

results, because perplexity looks solely at the fit of the model. Thus, to determine k, the

perplexity of the different models are compared with one another, but only if the results

of the models are interpretable. Furthermore, the search window is narrowed to k =

20, since both Hansen and McMahon (2016) and Jegadeesh and Wu (2017) find optimal

results below 20 topics.

The topics and their respective meanings are interpreted through three means: By

analysing the words that have a high probability of belonging to a given topic, the dis-

tribution of topics in statements over time and the output from the LDAvis system,

a web-based visualisation system designed by Sievert and Shirley (2014). The LDAvis

system provides a two-dimensional plot that shows the inter-topic distances between all

topics and the percentage of the corpus that is labelled as each topic. To compute the

inter-topic distances, Jensen-Shannon divergence (JSD) is used to compute the similarity

between the probability distributions of words for each topic, after which principal com-

ponent analysis is used to reduce the dimensionality of the output of JSD (k by k) to k

by 2. Topics with similar meanings are then placed close to each other and vice-versa.

4.2 Sentiment analysis

To perform sentiment analysis on all the sentences in a statement, the FinBERT model,

introduced by Araci (2019), is used. To obtain the FinBERT model, Araci (2019) pre-

trains BERT further on a corpus which consists of a subset of Reuters’ TRC2 corpus.

The TRC2 corpus consists of all news articles that were published by Reuters between

2008 and 2010. However, due to limited availability of computer power, Araci (2019) fil-

ters out these news articles on a set of financial keywords. The resulting corpus contains

46163 documents, more than 29M words and almost 400K sentences. Furthermore, Araci

(2019) fine-tunes the FinBERT model for sentiment classification tasks using the Finan-

cial PhraseBank dataset (created by Malo et al. (2014)). This dataset consists of 4845

randomly selected sentences from financial news articles, which are subsequently labelled

by a group of 16 people with backgrounds in finance and business. Araci (2019) shows

that the FinBERT model has a 15% higher accuracy than the standard BERT model on

classification tasks for finance-related text. Since the FOMC statements are related to

finance, the FinBERT model is the preferred choice for this use case. For a theoretical
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background of the BERT model (and therefore the FinBERT model), see Appendix A.2.

To apply the FinBERT model to the statements released by the FOMC, the model is

further fine-tuned on a labelled dataset that consists of all unique sentences that are in

the first released statement of each year. This is because the statements have changed

significantly throughout the past 23 years, as seen in Section 3. Thus, taking the first

released statement of each year ensures that a good representation of the general language

used by the FOMC is present in the dataset. Each sentence is manually labelled as either

positive, negative or neutral (see Table 4), which is subsequently fed into the BERT

model to fine-tune it further.

Table 4: The size of the dataset and the distribution of labels within the dataset. The

dataset consists of all sentences in the first released statement of the year in the period

of 1999-2021.

Total 229

Positive 77

Negative 35

Neutral 117

To select the hyperparameters for fine-tuning, this paper follows Devlin et al. (2019).

They mostly use the same parameters for fine-tuning as they do for pre-training, but with

three exceptions: The batch size, learning rate and the number of epochs. When choosing

the values for these three hyperparameters, one has to be careful to avoid catastrophic

forgetting, which means that the pre-trained knowledge is erased during fine-tuning. Sun

et al. (2019) find that especially the learning rate should be kept small to avoid this

problem. Concurring, Devlin et al. (2019) find that the following values work well across

all NLP tasks:

• Batch size: 16, 32

• Learning rate: 2e-5, 3e-5, 5e-5

• Number of epochs: 2, 3, 4

To find the optimal values for these hyperparameters, a grid search is performed

across all the mentioned values for the learning rate and the number of epochs. Due to
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computational limitations, the batch size is kept at 16. Then, the optimal set of values

is determined by comparing the fit of the in-sample framework (Section 5.1).

4.3 Similarity analysis

The cosine similarity measure is used to determine the similarity between two statements.

This measure is defined as the cosine angle between two vectors, which is calculated

by dividing the dot product between two vectors with the product of their respective

lengths. To obtain these vectors, the embedding vector of each statement as a whole

is determined using the embedding layer of BERT, as explained in Appendix A.2. The

reason for using this embedding vector, instead of other measures such as word-counting

vectors, is that the embedding vector contains contextual information about the content

in the statement. This additional information yields more accurate results for similarity

analysis, as discussed by Taeyoung et al. (2020). The definition for the cosine similarity

measure is shown in Eq. (4), where Si and Sj are the embedding vectors with dimension

768 of statement i and j respectively.

Sim(statement i, statement j) = cosine(Si, Sj) =
Si.Sj

∥Si∥∥Sj∥
(4)
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5 Methodology - Predicting short-term returns

To analyse the predictive power of the contents in a FOMC statement, an in-sample

analysis is first performed in Section 5.1 to determine which discussed topics have signif-

icant impact on the market. In Section 5.2, the fit of the in-sample model is improved

by including reaction asymmetries. Then, to determine the predictive power of the con-

tents, an out-of-sample analysis is performed in Section 5.3. Lastly, in Section 5.4, the

findings of this research are applied to a macroeconomic random forest (MRF) model to

investigate whether this can improve the predictive power.

5.1 In-sample framework

As a first step in answering the main research question of this paper, the news shocks of

the sentiment measures are determined for each of the k topics, which are then used to

explain the variation in short-term bond future returns after the release of a statement.

The framework of Rosa (2011) is mainly followed to determine the news shocks. Firstly,

to predict the sentiment of each topic i, the following AR(1) model is used:

Îndex
∗
i,t = γ1iIndex

OLD
i,t− + γ2iPMIt− + γ3iπ

e
t− + γ4iSlopet− + εt, (5)

where Îndex
∗
i,t stands for the predicted sentiment measure of topic i in the FOMC state-

ment that is released at time t, IndexOLD
i,t− stands for the sentiment measure from the

previously released FOMC statement, PMIt− stands for the PMI index at time t, πe
t−

stands for the inflation expectation at time t, Slopet− stands for the slope of the federal

funds futures at time t and εt is the error term of the AR(1) model. t− indicates that the

value is known to the market participants before the statement is released at time t. An

AR(1) model is used because monetary policy tends to change slowly over the course of

several months (Clarida et al. (2000) and Rudebusch (2002)). Thus, the sentiment too

could show signs of persistence. Furthermore, the PMI and inflation expectation both

give indications about future levels of economic activity and inflation, which could influ-

ence the sentiment of the FOMC. Lastly, the slope of the federal funds futures reveals

what the market expects the change in FFR to be. This could indicate the FOMC’s future

monetary policy decisions and therefore also their sentiment regarding future conditions.

The predicted sentiment from Eq. (5) is used to determine the news shock (NS) by

subtracting it from the actual sentiment, which is obtained through the method described
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in Section 4. Thus, the news shock is determined as follows:

NSi,t ≡ IndexNEW
i,t − Îndex

∗
i,t, (6)

where IndexNEW
i,t is the actual sentiment of topic i in the statement released at time t.

Note that this paper uses the terms news shocks and surprises interchangeably.

The k news shocks are then used in an OLS model to explain the variation in the 40-

minute returns after the statement has been released, as given by the following equation:

rt+40 = 100 · log
(
P[t+40·m]/P[t−10·m]

)
= α + βi,NSNSi,t + εt. (7)

By looking at the significance of βi,NS, it can be inferred whether the market responds

to a specific topic. To correct for small deviations in the release time, the price differ-

ence is taken between 40 minutes after the release and 10 minutes before the release.

Furthermore, the 40-minute returns are used since Rosa (2011) shows that the market

incorporates FOMC monetary surprises within 40 minutes of the announcement release.

As such, this ensures that the whole price reaction after the release of a statement is cap-

tured. Moreover, the unannounced statements are disregarded throughout this analysis,

since endogeneity issues can arise due to the unexpected nature of these unannounced

meetings. This is in line with Rosa (2011).

In addition to the k different topics, the news shock for changes in the FFR are

also determined, since Rosa (2011) shows that this news shock has significant predictive

power. However, to determine the news shocks, they follow the equation from Kuttner

(2001), which is given as:

MPSt ≡ ∆ft
D

D − d
, (8)

where ∆ft is the change in the one-month federal funds futures contract in a narrow

window (t-10, t+20) around the release of the FOMC statement, d is the day of the

month of the meeting and D is the number of days in the month. It is clear that this

method suffers from the so-called “look-ahead bias”, where information that is unknown

at time t is used to predict future returns. Thus, this method can not be used for

out-of-sample analysis and is therefore replaced by the following equation:

NS∆FFR,t ≡ ∆FFRt − (FFRthree-month ahead − FFRone-month ahead), (9)
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where ∆ FFR is the change in FFR that is mentioned in the statement, FFRthree-month ahead

is the price of the three-month ahead FFR future and FFRone-month ahead is the price of

the one-month ahead FFR future. This difference reflects the market’s expectancy of the

FFR change, as discussed in Section 3.2.2.

5.2 Reaction asymmetries

For each topic that has a significant impact on short-term returns, the fit of the regression

is improved by including four possible reaction asymmetries (as discussed in Section 2.1.2)

to Eq. (7), by including an interaction term between the reaction asymmetry and the news

shock. In doing so, this paper follows Gardner et al. (2021), who test the effect of reaction

asymmetries on regression coefficients using the following equation:

rt+40 = α + βi,NSNSi,t + βi,j,XNSi,tXj,t + βj,XXj,t + ϵt, (10)

where Xj,t is an array that contains the variables that represent each reaction asymmetry

j at time t. A statistically significant βX,i,j shows that the effect of the news shock for

topic i on short-term returns changes depending on the value of the variables in Xj,t. To

make the results easily interpretable, Xj,t is standardised by subtracting the mean and

dividing it with its respective standard deviation.

5.3 Out-of-sample framework

After establishing which topics significantly impact short-term returns and which reaction

asymmetries significantly affect the reaction, the main research question is answered

by means of an out-of-sample analysis. To do this, all significant news shocks from

Eq. (7) and all significant reaction asymmetries from Eq. (10) are combined into one

OLS regression model as follows:

r̂t+40 = α +
k∑

i=1

(βi,NSNSi,t +
r∑

j=1

βX,jNSi,tXj,t) + ϵt, (11)

where k is the set of significant topics and r is the set of significant reaction asymmetries.

Eq. (11) is used in combination with an expanding window to make predictions. Thus, all

the available data up to time t is used to determine the coefficients in Eq. (11), which is

subsequently used to predict the reaction at time t. This is done for all meetings M , after
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which the performance of the model is determined using the out-of-sample R2, which is

introduced by Campbell and Thompson (2008). The out-of-sample R2 is defined as

R2
oos = 1 −

∑M
m=1 (rm,t+40 − r̂m,t+40)

2∑M
m=1 (rm,t+40 − rm,t+40)

2
, (12)

where rm,t+40 is the actual 40-minute return after the release of the statement for meeting

m, r̂m,t+40 is the predicted return from Eq. (11) and rm,t+40 is the average over the 40-

minute returns from all previous releases. A positive R2
oos indicates that the model

performs better than the benchmark, which in this case is assuming that the return

equals the historic average, while a negative R2
oos indicates that the model performs

worse.

Then, it is tested whether the predicted values are significantly different from the

benchmark. As such, this test is equivalent to testing whether the R2
oos significantly

differs from zero. The method described in Clark and West (2007) is used to perform this

test. First, the test statistic in Eq. (13) is calculated, which is subsequently regressed on

a constant. Then, the t-statistic of the constant in this regression reflects the significance

level of the test statistic.

(rm,t+40 − rm,t+40)
2 − (rm,t+40 − r̂m,t+40)

2 + (r̂m,t+40 − rm,t+40)
2 . (13)

5.4 Macroeconomic random forest model

Next to the OLS model in Eq. (10), this paper investigates whether the use of machine

learning (ML) can aid the predictive power of the news shocks. To this end, the macroe-

conomic random forest (MRF) model, which is created by Goulet Coulombe (2020), is

employed. The MRF model is effectively an OLS model with time varying coefficients

that are determined through a random forest (RF) model. As such, the model is given

as

r̂t+40 = αt +
k∑

i=1

βi,NS,tNSi,t + ϵt with αt, βi,NS,t = F (St) , (14)

where F is an RF model with as input St, a set of variables. The OLS model in Eq. (14)

determines the linear model that should be time-varying, and the RF is used to generate

a set of Generalized Time-Varying Parameters (GTVPs) that are used as coefficients in

the OLS model. St consists of the variables that are used for all mentioned reaction
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asymmetries in Section 2.1.2, the k news shocks and a vector that contains the numbers

between 1 and the length of St, which allows the MRF model to recognise and correct

for structural breaks. For a general MRF model with the form

yt = Xtβt + ϵt

βt = F (St) ,
(15)

the tree fitting procedure can be displayed as follows:

min
j∈J−,c∈R

min
β1

∑
{t∈l|Sj,t≤c}

(yt −Xtβ1)
2 + λ ∥β1∥2

+ min
β2

∑
{t∈l|Sj,t>c}

(yt −Xtβ2)
2 + λ ∥β2∥2

 .

(16)

Similar to a standard RF model, this procedure starts by selecting a random subset

of variables from St, from which the optimal variable to split the sample with is deter-

mined. Then, the threshold c that optimally splits the sample into two children nodes is

calculated. However, contrary to standard RF models, the loss function is given as the

squared error of the OLS equation in Eq. (15), which is summed with a ridge regulari-

sation for the GVTPs. The same optimisation procedure is performed for each children

node until a stopping criterion is met. This procedure generates a single decision tree

and is performed a fixed amount of times. Through this procedure, the MRF model can

model reaction asymmetries, as the GVTPs are functions of the set of variables that are

used in the reaction asymmetries.

The MRF model has a similar set of hyperparameters as a standard RF model, which

can be fine-tuned using a search algorithm. However, as Goulet Coulombe (2020) notes,

minuscule performance gains after fine-tuning are the norm rather than the exception.

Thus, to decrease the computations necessary, this paper primarily uses the default hy-

perparameters that are determined in Goulet Coulombe (2020). However, there are two

changes: Firstly, Goulet Coulombe (2020) advises that the minimal node size is set to

10 for quarterly data and 15 for monthly data. Since there are eight released statements

each year, the minimal node size is set to 13. Secondly, Goulet Coulombe (2020) finds

that 200-300 trees are often needed to obtain credible regions for the parameters. Thus,

300 decision trees are used in the forest.

To measure the performance of the MRF model and compare it with the OLS model

in Eq. (11), the same out-of-sample framework of Section 5.3 is used.
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6 Results - Textual analysis

This section discusses the results of applying textual analysis to the FOMC statements.

Firstly, the topic analysis is discussed in Section 6.1, after which the similarity analysis

is discussed in Section 6.2.

6.1 Topic analysis

6.1.1 Parameter estimation

As a first step in dissecting the FOMC statements into topics, the number of topics k

that the LDA model should extract from each statement is determined. As discussed in

Section 4.1, both the perplexity and interpretability of the topics are taken into account

when determining this. In Figure 5, the perplexity for each of the k topics is plotted.

This figure shows that the perplexity drops quickly and levels off when k is set to five.

Therefore, k is not set to a value smaller than five. In terms of interpretability, testing

shows that large values for k can provide topics that are difficult to interpret. Or, there

are multiple topics that are very similar to each other, which can negatively impact the

interpretability of these topics. To avoid these issues, a lower value for k is preferred.

When k = 5, all topics are clearly interpretable and distinguishable. Therefore, it is

chosen to have k = 5 topics, of which its interpretation is discussed in the sections below.

Furthermore, both the hyperparameters α and β are set to 1
5
, as discussed in Section 4.1.

Figure 5: The perplexity for a varying number of topics k.
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6.1.2 Interpretation of the topics

With these parameters, the results of the LDA model are shown in Table 5. The table

shows the top ten stemmed words for each topic that have the highest probability of

belonging to that specific topic. To help with the economic interpretation of the results

in Section 7, each topic is interpreted using this set of ten words. To this end, an example

of a sentence that belongs to each topic is shown in Table 6.

Table 5: The ten words that have the highest probability of corresponding to each topic.

Topic 1: Topic 2: Topic 3: Topic 4: Topic 5:

Changes in FFR Monetary policy Market conditions Inflation FOMC’s expectation

1 feder secur market inflat committe

2 rate agenc econom expect econom

3 fund back activ longer employ

4 percent mortgag labor committe stabil

5 target purchas condit remain maximum

6 committe hold growth term price

7 rang committe remain run outlook

8 decid treasuri continu percent polici

9 market billion busi market risk

10 open maintain committe pressur continu

The top ten words that correspond to each topic. The sample consists of all statements released
between the 15th of May 1999 and the 4th of May 2022.

Table 6: Examples of sentences that correspond to a specific topic.

Topic Sentence

1 The Federal Open Market Committee decided today to lower its target for the federal funds rate by 25 basis points to 1 percent.

2 In addition, the Federal Reserve will buy up to $ 300 billion of Treasury securities by autumn.

3 Labor market conditions, however, apparently continue to improve gradually.

4 Inflation recently picked up somewhat, reflecting higher energy prices.

5 .... the Committee believes the risks continue to be weighted mainly toward conditions that may generate heightened inflation pressures in the future.

The table shows examples of sentences that correspond to a specific topic and the date of the
released statement from which these sentences are taken. All sentences have a probability of
more than 90% of belonging to this topic.

For topic 1, the top three words are regarding the FFR, while the latter seven are

regarding decisions made by the committee. Thus, topic 1 most likely covers the single

sentence within each statement that states whether changes in FFR are made. Topic 2
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talks about securities, purchases and treasuries. It also again contains the word commit-

tee, which indicates that topic 2 is regarding any further changes in monetary policy, such

as quantitative easing. Topic 3 contains words that are about labour/economic market

conditions, which indicates that topic 3 is regarding the current state of these markets.

Topic 4 has the main word “inflat”, which shows that topic 4 is mainly about inflation,

for both the current conditions and the future expected path. Topic 5 has committee as

its highest probability word, which is paired with words such as economic, employment

and inflation. As such, topic 5 is most likely regarding the committee’s expectations of

future conditions.

6.1.3 LDAvis

As mentioned in Section 4.1, the LDAvis system is used to visually analyse the similarities

between topics, of which the results are displayed in Figure 6.

Figure 6: The inter-topic distances for the five topics. Topic 1 is about changes in
FFR, topic 2 is about additional monetary policy measures, topic 3 is regarding mar-
ket/economic conditions, topic 4 is about inflation and topic 5 is regarding the FOMC’s
expectation on future conditions.

The figure shows that topics 3 through 5 all span an equal part of the corpus, while

topics 1 and 2 span a smaller section. Furthermore, it shows that topics 3, 4 and 5 are

similar to each other and that topics 1 and 2 are largely isolated from the rest. Intuitively,

these results are plausible, since topics 3, 4 and 5 all contain components regarding both
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current and expected economic conditions. This further confirms the earlier mentioned

interpretations of the five topics.

6.1.4 distribution of topics over time

Lastly, to also support the earlier mentioned interpretation for each topic, the distribution

of discussed topics over time is plotted in Figure 7. This plot shows that the distribution

for topic 1 is inversely related to the number of sentences per statement, as given in

Figure 2(a). This further supports the hypothesis that topic 1 covers the one sentence

within a statement that mentions the possible change in FFR, since this topic will cover

a large proportion of a short statement and vice-versa. Furthermore, it shows that topic

2 is mainly present during times of crisis (both the financial crisis and COVID-19), which

further indicates that topic 2 is regarding extra monetary measures to support the econ-

omy. In addition to this, Figure 7 also shows that the share of topic 2 within a statement

shrank between the financial crisis and the COVID-19 crisis in 2020. An interpretation

for this is that after the financial crisis, the need for additional measures slowly dropped

as the economy expanded. Especially at the end of 2014, a significant drop is present,

which coincides with the ending of the third quantitative easing program in October

2014. The distribution of the other three topics is relatively consistent throughout time.

A further interesting note to Figure 7 is that the distribution of topics over time is more

stable after the financial crisis in 2009.

Figure 7: The distribution of topics over the time period between the 15th of May, 1999
and the 4th of May, 2022.
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6.2 Similarity analysis

The cosine similarity between two subsequent statements is shown in Figure 8. This

is plotted for the whole set of FOMC statements (marked by the dashed line) and the

set of FOMC statements where unannounced meetings are excluded (marked by the solid

line). The figure shows that FOMC statements are typically speaking very similar to each

other, especially after the financial crisis in 2009. Furthermore, it shows that unannounced

statements are often very different from announced statements. A comparison between

this figure and Figure 7 shows that there is an overlap in the similarity of unannounced

statements and the spikes of topic 2. This is due to the fact that unannounced meetings

are often held in times of economic distress, during which new monetary policy measures

are discussed to boost the economy.

Figure 8: The cosine similarity between all FOMC statements that have been released
between the 15th of May, 1999 and the 16th of December, 2020. The solid line represents
the cosine similarity for the set of FOMC statements that excludes the unannounced
statements, while the dashed line represents the whole sample.

In Figure 9, the similarity between a statement and all other statements is plotted

in the form of a heat map. This is plotted for the set of FOMC statements that also

includes unannounced meetings. This heat map shows that the unannounced statements

differ from all other announced and unannounced statements. An interesting finding in

this heat map is that the announced statements after 2009 are very similar to each other,

and not just similar to the statement before, which is shown in Figure 7. This indicates

that the FOMC has generalised their communication through their released statements,

even more so than before the financial crisis. Concurringly, this finding coincides with
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the finding in Section 6.1 that states that the distribution of topics over time is more

stable after the financial crisis in 2009.

Figure 9: The cosine similarity between a statement and all other statements that have
been released between the 15th of May, 1999 and the 16th of December, 2020.
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7 Results - Predicting short-term returns

This section discusses the results regarding the predictive power of the FOMC state-

ments are discussed. First, in Section 7.1, the results from the in-sample framework are

discussed. This entails determining the news shocks and measuring to what extent the

news shocks can explain the variation in returns and possible reaction asymmetries that

can affect these results. Then, in Section 7.4, the out-of-sample predictive power of the

FOMC statements is discussed using an OLS and MRF model. Lastly, the two robustness

checks are discussed in Section 7.5.

7.1 In-sample framework

7.1.1 Determining the market’s expectancy

The market’s expectancy of the FOMC’s sentiment regarding a topic is determined using

the OLS model as given in Eq. (6). The results of this regression are given in Table 7,

where Ti stands for the sentiment of each of the five topics. To capture this sentiment,

an arbitrary number of 2 epochs and a learning rate of 2e-5 are used for the FinBERT

model. These hyperparameters are further optimised in Section 7.1.3.

Table 7: Summary of the regressions that determine the market’s expectancy.

intercept yt−1 PMI FFR Slope Inflation Exp. R2
adj

T1 -0.028 0.586∗∗∗ 0.000 0.197∗∗∗ -0.014 0.449

T2 -0.097 0.154∗∗ -0.005∗ 0.037 0.035 0.036

T3 0.322∗∗∗ 0.371∗∗∗ 0.024∗∗∗ 0.157 -0.080∗∗∗ 0.366

T4 -0.126∗ 0.371∗∗ -0.003 -0.076∗ 0.037∗ 0.148

T5 -0.067 0.405∗∗∗ 0.007∗∗ 0.116∗ -0.004 0.357

This table summarises the regressions that determine the market’s expectancy on each topic
that is discussed in a FOMC statement. The sample period of this regression runs between the
15th of May 1999 and the 16th of December 2020 and contains 172 observations. The 10%, 5%
and 1% significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. Furthermore, throughout
these regressions, all unannounced FOMC statements are excluded.

As hypothesized in Section 5.1, all sentiments follow an AR(1) process, since their

first lag is highly significant. In addition, yt−1 explains a large portion of the variation in

the sentiment for each topic, since the R2
adj is highly correlated with yt−1. A larger value

33



for yt−1 indicates that the sentiment is more persistent, which causes the R2
adj to increase.

Furthermore, each sentiment has at least one macroeconomic variable that is signifi-

cant. PMI is significant for T2, T3 and T5, where topics T3 and T5 both discuss economic

conditions and how it could develop in the future, and T2 discusses any changes in mon-

etary policy. Whether any changes in monetary policy are made is dependent on the

current state of the economy, since poor economic conditions might trigger new mone-

tary policy measures, as discussed in Section 6.1.4. The FFR Slope variable is significant

for T1, T4 and T5, where T1 discusses any changes in FFR, T4 talks about inflation and

its expected course and T5 discusses the committee’s expectations on future conditions.

Lastly, the Inflation Expectation is significant for T3 and T4, two topics that discuss

inflation and economic conditions. Thus, the significant variables are in line with the

interpretation of the topics in Section 6.1.

7.1.2 Measuring the effect of news shocks on short-term returns

To measure the effect of news shocks on the 40-minute returns of TU, the model as given

in Eq. (7) is used, from which the results are given in Table 8.

Table 8: Summary of the in-sample regressions on 40-minute returns.

intercept NS1 NS2 NS3 NS4 NS5 NS∆FFR R2
adj

0.013∗ 0.103 0.013

0.013∗ 0.041 -0.003

0.013∗ -0.047∗ 0.011

0.013∗ -0.006 -0.006

0.013∗ 0.106∗∗ 0.010

0.012∗ -0.493∗∗∗ 0.108

0.012∗ -0.036 0.110∗∗∗ -0.476∗∗∗ 0.123

0.012∗ 0.106∗∗∗ -0.493∗∗∗ 0.119

This table summarises the in-sample regressions of Eq. (7) that determine what effect the news
shocks for each discussed topic and the news shocks for ∆FFR have on the 40-minute returns
of TU. The sample period runs between the 15th of May 1999 and the 16th of December 2020
and contains 172 observations. The 10%, 5% and 1% significance levels are denoted by ∗, ∗∗ and
∗∗∗, respectively. The value in bold denotes the highest R2

adj . Furthermore, throughout these
regressions, all unannounced FOMC statements are excluded.
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This table shows that the news shock for topic 3 (NS3), topic 5 (NS5) and the news

shock for ∆FFR (NS∆FFR) have a significant effect on 40 minute returns. A positive

news shock for topic 5 has a positive effect on the price of TU, whereas a positive news

shock for ∆FFR and NS3 have a negative impact on the price of TU. When all non-

significant variables are excluded from the regression, the model with the best fit is

obtained. However, this causes NS3 to lose its significance, which signals that this news

shock does not add any additional information next to NS5 and NS∆FFR. For this reason,

NS3 is excluded from the regression, which results in the model with the second-best fit.

From here on forth, this model will be referred to as the “standard OLS model”.

A positive news shock for topic 5 indicates that the FOMC is more positive about

future conditions than expected. This can lead investors to change their beliefs about

future conditions, which drives the price upwards. Next to this, an unexpected increase

in FFR indicates that the interest rates for 2Y bonds will rise too, which drives the price

of TU down.

To further interpret these results, the five topics are divided into two sets: A backwards-

looking set and a forward-looking one. The backwards-looking set consists of topics that

discuss current economic conditions, or how conditions have evolved since the last meet-

ing. The forward-looking set contains topics that discuss how the FOMC expects future

conditions to evolve or topics that discuss changes in monetary policy. Using the topic in-

terpretations from Section 6.1, the five topics are divided as follows: Backwards : {T3, T4}

and Forward : {T1, T2, T5}. Table 8 shows that none of the backwards-looking topics are

significant, which is expected, since those topics discuss information that is already known

to the market participants.

Interestingly, topic 1 and topic 2 are not significant, even though they are part of the

forward-looking set. This can be caused by the fact that both topics discuss changes in

monetary policy, which makes the extraction of the true sentiment more difficult. For

example, topic 1 mainly contains a single sentence in a statement that gives the ∆FFR.

As such, the FinBERT model should be able to tell whether a rise in interest rates is

positive or negative. If this information is not sufficiently present in the fine-tuning

dataset, the model might not be able to fully extract the true sentiment of that specific

sentence. Similarly for topic 2, the model should know whether the additional monetary

policy measures are positive or negative for the economy, which can be challenging to
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achieve due to the complex nature of the sentences that belong to this topic.

7.1.3 Hyperparameters selection

The FinBERT model has two hyperparameters that need to be optimised, namely the

learning rate and the number of epochs, as discussed in Section 4.2. These hyperpa-

rameters are optimised by using a grid search across all possible sets of values for the

hyperparameters. Specifically, the sentiment of topic 5 is determined for each set of val-

ues, since this is the only topic that has a significant impact on returns, as shown in

Table 8. This sentiment is used in Eq. (7) to determine the fit of the model, which is

then compared across all possible sets of values. The results of this process are given

in Table 9, in which the R2
adj and the significance level of NS5 are given for each set of

values. They are also given for the FinBERT model that is not further fine-tuned, as

indicated by the value for a learning rate of zero and zero number of epochs.

Table 9: The R2
adj and the significance of NS5 for various values of the two hyperparam-

eters of the FinBERT model.

Learning rate

Epochs 0 2e-5 3e-5 4e-5 5e-5

0 -0.004 - - - -

2 - 0.010∗∗ 0.009 0.013 0.019

3 - 0.000 0.021∗ 0.022 0.011

4 - 0.005 0.008 0.016 -0.001

This table displays the R2
adj for the regression model given in Eq. (7) for NS5. The sample

period runs between the 15th of May 1999 and the 16th of December 2020 and contains 172
observations. The 10%, 5% and 1% significance levels of NS5 are denoted by ∗, ∗∗ and ∗∗∗,
respectively. Furthermore, throughout these regressions, all unannounced FOMC statements
are excluded.

The table shows that NS5 is only significant for two sets of hyperparameters, which

shows that NS5 is highly sensitive to the paramaters of the FinBERT model. To choose

the optimal set of hyperparameters, a higher significance level is preferred over a higher

R2
adj. Therefore, two epochs and a learning rate of 2e-5 are used to obtain the sentiment

from the statements for the rest of this paper. Furthermore, this table provides evidence

that fine-tuning is necessary for training the FinBERT model, since the non-fine-tuned
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model has the weakest fit.

7.2 Reaction asymmetries

As NS5 and NS∆FFR are the only two significant variables for short-term returns, it is

determined whether reaction asymmetries significantly affect these two variables. The

results from Eq. (10) are given in Table 10. First, in regression (1), it is determined

whether a negative surprise in ∆FFR causes a larger reaction than a positive surprise, by

multiplying NS with the two indicator variables I1 and I2. I1 is set to one if the surprise

has a positive sign and I2 is set to one if the surprise has a negative sign.

Table 10: The effect of four reaction asymmetries on the two news shocks NS5 and

NS∆FFR.

NS5 NS∆FFR

(1) (2) (3) (4) (1) (2) (3) (4)

Intercept 0.058 0.014∗ 0.013∗∗ 0.013∗ 0.053 0.013∗∗ 0.011∗∗ 0.011∗∗

NS -0.092 0.114∗ 0.088∗∗∗ 0.098 -0.350∗∗ -0.489∗∗∗ -0.377∗∗ -0.426∗∗∗

NS ∗ I1 0.189 -0.264

NS ∗ I2 0.169 -0.086

NS ∗ cos 0.015 0.023

NS ∗ PMI -0.026 0.073∗∗

NS ∗ PD 0.002 0.077

I1 -0.068∗ -0.039

I2 -0.019 -0.039

cos 0.003 0.005

PMI -0.022∗∗∗ -0.012∗

PD -0.038∗∗∗ -0.035∗∗∗

R2
adj 0.034 0.012 0.035 0.104 0.100 0.117 0.121 0.192

This table summarises the in-sample regressions of Eq. (10) that determine which reaction
asymmetries affect the reaction of the market to NS5 and NS∆FFR. The sample period runs
between the 15th of May 1999 and the 16th of December 2020 and contains 172 observations.
The 10%, 5% and 1% significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. Furthermore,
throughout these regressions, all unannounced FOMC statements are excluded.

Table 10 shows that this reaction asymmetry does not hold for both NS5 and NS∆FFR,
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as NS ∗ I1 has the larger coefficient and none of the interaction terms are significant. For

NS∆FFR, this contradicts Chuliá et al. (2010) and Farka (2009). However, this is caused

by the fact that they use Kuttner (2001)’s measure to determine NS∆FFR, whereas this

paper uses Eq. (9), as discussed in Section 5.1. To show this, Eq. (9) is replaced with

Kuttner (2001)’s measure in Appendix B.1. The results in Appendix B.1 show that the

reaction asymmetry does hold true when Kuttner (2001)’s measure is used.

Regression (2) shows that the second reaction asymmetry, namely whether changes

in the statement cause a larger reaction, also does not hold for both news shocks, as the

interaction terms are not significant.

Regression (3) shows that the current economic conditions, as proxied by the PMI

index, only affect the reaction of the market to NS∆FFR. The results show that poor

(good) economic conditions cause a larger (smaller) reaction, as poor economic conditions

cause the sign for NS∆FFR∗PMI to be negative, which is the same as the sign for NS∆FFR.

Furthermore, current economic conditions also directly impact the short-term returns,

since the coefficients for PMI are negative and significant for both news shocks. As the

signs are negative, the short-term returns tend to be higher when economic conditions

are poor and vice-versa.

Lastly, regression (4) shows that the size of the pre-drift (PD) does not significantly

impact the market’s reaction to the news shocks, but that the pre-drift does have a

highly significant impact on the short-term returns. The negative sign of the coefficient

indicates that there is a mean-reverting process, where a large pre-drift has a negative

impact on short-term returns and vice-versa. An economic interpretation for this finding

is that investors may tend to overestimate the uncertainty and risk a statement brings,

or that they overreact to the informal communication of FOMC members, as discussed

in Section 2.1.2.
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7.3 Final OLS model

To finalise the in-sample regression model, all significant variables of Table 10 are com-

bined into one regression model, as given in Eq. (11). This results in regression (1) in

Table 11. The table shows that all variables, except for NS∆FFR∗PMI, are still significant

and that the coefficients hold the same signs. When NS∆FFR ∗ PMI is omitted from the

regression, the model with the best fit as given in regression (2) is obtained. From here

on forth, regression (2) will be referred to as the “full OLS model”. Interestingly, none of

the reaction asymmetries end up being significant for this model. However, adding PMI

and PD do cause a 9.3 percent point increase in R2
adj.

Table 11: The full OLS model that incorporates all significant reaction asymmetries.

(1) (2)

intercept 0.011∗∗ 0.012∗∗∗

NS5 0.097∗∗ 0.099∗∗

NS∆FFR -0.374∗∗ -0.423∗∗∗

NS∆FFR ∗ PMI 0.046

PMI -0.013∗∗ -0.014∗∗∗

PD -0.034∗∗∗ -0.035∗∗∗

R2
adj 0.211 0.212

This table summarises the in-sample regression of Eq. (11), which includes all the significant
reaction asymmetries as shown in Table 10. The sample period runs between the 15th of May
1999 and the 16th of December 2020 and contains 172 observations. The 10%, 5% and 1%
significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. The value in bold denotes the
highest R2

adj . Furthermore, throughout these regressions, all unannounced FOMC statements
are excluded.

7.3.1 Two regimes

Throughout this paper, evidence is found that indicates that there has been a change

in communication from the FOMC to the market participants through their released

statements. Firstly, as discussed in Section 3.1 and Section 6.2, this paper finds that

the statements have become more complex and similar to each other after the financial

crisis. Next to this, the responses of the market to the release of the statements have also

decreased, as discussed in Section 3.2.1. Therefore, to investigate whether this shift also
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affects the predictive power of NS5 and NS∆FFR, the following regression is run:

rt+40 = α + β1NS5,tI1 + β2NS∆FFR,tI1 + β3NS5,tI2 + β4NS∆FFR,tI2 + εt, (17)

where I1 is an indicator variable that is set to one if t < 2009 and zero otherwise and

I2 is an indicator variable that is set to one if t > 2009 and zero otherwise. The results

of this regression are given in Table 12 and show that both NS5 and NS∆FFR are highly

significant for the time period of 1999 till 2009, but lose their significance in the time

period of 2009 till 2021. Thus, both news shocks lose their predictive power for short-term

returns after the financial crisis in 2009.

Table 12: The time-varying effect of news shocks on 40-minute returns.

NS5 ∗ I1 NS∆FFR ∗ I1 NS5 ∗ I2 NS∆FFR ∗ I2 R2
adj

0.110∗∗∗ -0.608∗∗∗ 0.072 -0.068 0.131

This table summarises the in-sample regression of Eq. (17). The sample period runs between
the 15th of May 1999 and the 16th of December 2020 and contains 172 observations. The
10%, 5% and 1% significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. Furthermore, all
unannounced FOMC statements are excluded.

7.3.2 Varying time windows

Up till now, all results are obtained using the 40-minute returns of TU, as Rosa (2011)

finds that it takes 40 minutes for the market to incorporate new information from a

statement into the price. However, different time windows could impact the fit of the

in-sample models. Therefore, following Taeyoung et al. (2020), the standard and the full

OLS model are run for seven additional time windows that vary between 10 minutes and

120 minutes. In Table 13, the columns corresponding to regression (1) show the results

for the standard OLS model, and regression (2) gives the R2
adj for the full OLS model.

For the full OLS model, the coefficients and their respective significance levels have been

omitted for the sake of redundancy. The table shows that NS∆FFR is significant for all

time windows, that NS5 is significant for time windows larger than 20 minutes and that

the fit for the standard OLS model is the highest at a time window of 30 minutes, whereas

the best fit for the full OLS model is achieved with a time window of 20 minutes. In

addition, the table also shows that the largest reaction is reached at 40 minutes after

the release of the statement, as both NS5 and NS∆FFR have their highest value for this
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time window. At a time window of 50 minutes, a reversal seems to occur, after which the

price stabilises. Similar to Rosa (2011), this indicates that the market takes roughly 40

minutes to incorporate new information regarding monetary policy.

Table 13: The effect of varying time windows on the fit of the standard and full OLS

models.

(1) (2)

Time window NS5 NS∆FFR R2
adj R2

adj

10 0.045 -0.381∗∗∗ 0.104 0.199

20 0.041 -0.427∗∗∗ 0.120 0.237

30 0.066∗∗∗ -0.464∗∗∗ 0.126 0.233

40 0.106∗∗∗ -0.493∗∗∗ 0.119 0.212

50 0.084∗∗ -0.458∗∗∗ 0.115 0.180

60 0.090∗∗ -0.455∗∗∗ 0.113 0.173

90 0.095∗∗ -0.455∗∗ 0.111 0.164

120 0.106∗∗ -0.484∗∗ 0.121 0.165

This table summarises the in-sample regressions of Eq. (7) (regression (1)) and Eq. (11) (re-
gression (2)) for eight varying time windows. Regression (1) shows the coefficients and their
significance for all variables, while regression (2) only shows the R2

adj . To obtain NS5, two epochs
a learning rate of 2e-5 are used. The sample period runs between the 15th of May 1999 and
the 16th of December 2020 and contains 172 observations. The 10%, 5% and 1% significance
levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. The value in bold denotes the highest R2

adj .
Furthermore, throughout these regressions, all unannounced FOMC statements are excluded.
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7.4 Out-of-sample framework

This section discusses the out-of-sample results for the standard OLS model, the full

OLS model and the MRF model. For all three models, an expanding window is used to

predict the short-term returns after the release of a statement. Similar to Section 7.3.2,

the out-of-sample performance is determined for eight time windows that span 10 and 120

minutes. The out-of-sample prediction starts with the first released statement of 2004

on the 28th of January 2004, and continues till the last statement of 2020 on the 16th of

December 2020.

Table 14: R2
oos for the standard OLS, full OLS and MRF model for various time windows.

10 20 30 40 50 60 90 120

Standard OLS 0.085∗ 0.122 0.131 0.130 0.110 0.107 0.106 0.120

Full OLS 0.118∗∗ 0.174∗∗ 0.172∗ 0.148∗ 0.141∗ 0.130 0.126 0.122

MRF 0.037 0.103∗ 0.127 0.132∗ 0.088 0.077 0.073 0.065

This table shows the R2
oos for the standard OLS, full OLS and the MRF model. These values are

obtained using an expanding window, where the sample period runs from the 28th of January
2004 till the 16th of December 2020. The sample contains 134 predictions. The 10%, 5% and
1% significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. The value in bold denotes
the highest R2

oos for each model. Furthermore, throughout these regressions, all unannounced
FOMC statements are excluded.

Table 14 displays the R2
oos and its significance level for each model and each of the eight

time windows. The table shows that for each time window all three models outperform

the benchmark and that for the standard and full OLS models the best performance is

achieved with a time window of 30 and 20 minutes respectively, whereas the MRF model

has the highest R2
oos for a time window of 40 minutes.

A noticeable finding is that the full OLS model consistently outperforms the standard

OLS model across all time windows. This indicates that adding PMI and PD, as discussed

in Section 7.2 and Section 7.3, also increases the predictive power in an out-of-sample

framework. Next to this, Table 14 shows that both OLS models consistently outperform

the MRF model. This is met with one exception, where the MRF outperforms the

standard OLS model for a time window of 40 minutes. A potential reason for this

underperformance is that none of the in-sample reaction asymmetries in Section 7.2 are

significant. This, in combination with the expanding window, could cause the MRF
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model to have a tendency to overfit; Due to the expanding window, the MRF model does

not have the whole sample size to determine its trees, which may cause the model to find

spurious reaction asymmetries that are not significant over the whole sample.

Furthermore, the table shows that only a few of the R2
oos are significant. This is be-

cause there is a single significant outlier in the set of predictions on the 16th of December

2008, when the FOMC unexpectedly cut the FFR by 75 basis points. This single outlier

can skew the results of the test statistic in Eq. (13), since this effectively tests the consis-

tency of the out-of-sample performance. In Appendix B.2, this outlier is removed from

the dataset to test this finding. If this outlier is removed, most values of R2
oos have an

increased significance and are still positive, albeit a lot smaller than displayed in Table 14.

This indicates that most of the gain in R2
oos comes from this single correct prediction.

In Figure 10, the evolution of the R2
oos for a time window of 40 minutes is plotted over

time. The figure shows that most of the gain in R2
oos is achieved in the time period of

2006 till 2009, after which the R2
oos drops to its displayed level in Table 14. This reflects

and further strengthens the finding of Section 7.3.2, which states that after 2009 both

NS5 and NS∆FFR lose their significant predictive power for short-term returns.
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Figure 10: The R2
oos over time for the full OLS model (thick solid line), standard OLS

model (thin solid line) and the MRF model (dashed line). The time period runs from the
28th of January, 2004 till the 16th of December, 2020.
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7.5 Robustness checks

7.5.1 Including unannounced meetings

In all previous results, unannounced statements were excluded from the dataset. These

unannounced statements can cause issues with endogeneity, since it is not known whether

the market reacts to the content of these statements, or purely to the fact that a statement

is unannounced. However, these unannounced meetings can still have an impact on

short-term returns. Thus, for the first robustness check, these unannounced meetings are

included in the dataset and the in-sample results for both the standard and the full OLS

model are replicated. Table 15 gives the results of using the complete set of statements

on both the standard OLS model (1) and the full OLS model (2).

Table 15: Summary of the regressions of the standard and full OLS model when the

unannounced statements are included in the dataset.

(1) (2)

intercept 0.009 0.009∗

NS5 0.086 0.092∗

NS∆FFR -0.329∗∗∗ -0.262∗∗∗

PMI -0.011∗∗∗

PD -0.036∗∗∗

R2
adj 0.120 0.208

This table summarises the in-sample regressions for both the standard OLS model (1) and the
full OLS model (2) when the unannounced statements are included in the dataset. The sample
period runs between the 15th of May 1999 and the 16th of December 2020 and contains 187
observations. The 10%, 5% and 1% significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively.

The table shows that NS5 loses its significance, or has a reduced significance level,

when the unannounced statements are included in the dataset. This is due to the fact that

most of these unannounced statements are very different in content from the announced

statements, as discussed in Section 6.2. These unannounced statements mostly contain

sentences that are regarding topic 2, which is about other monetary policy measures.

This can be inferred by looking at the similarity between Figure 7 and Figure 8, which

shows that the main spikes of the unannounced statements in Figure 8 are also present

in Figure 7. These spikes in Figure 7 show that they mostly contain sentences from topic

44



2. As Table 8 shows, news shocks in this topic do not contain any predictive power.

It is therefore expected that the content of the unannounced statements also does not

contain predictive power (except for any changes in FFR), which can cause NS5 to lose

its significance.

7.5.2 Excluding possible bias

To gather the training data for the FinBERT model, all of the unique sentences from the

first announced statement of each year are taken. However, this could skew the sentiment

score for these statements since I effectively “tell” the model whether those statements

are positive or negative. Since this sentiment is used in an AR(1) model, this could skew

the results for the first two statements of the year. Thus, to test whether any bias is

introduced into the FinBERT model, the first two released statements of the year are

excluded from the dataset and the in-sample results are replicated for both the standard

(1) and the full OLS model (2), which results in Table 16.

Table 16: Summary of the regressions of the standard and full OLS model when the first

two statements of the year are excluded from the dataset.

(1) (2)

intercept 0.009 0.011∗

NS5 0.082∗∗ 0.059∗∗

NS∆FFR -0.502∗∗∗ -0.449∗∗∗

PMI -0.006

PD -0.041∗∗∗

R2
adj 0.161 0.284

This table summarises the in-sample regressions for both the standard OLS model (1) and the
full OLS model (2) when the first two statements of the year are excluded from the dataset.
The sample period runs between the 15th of May 1999 and the 16th of December 2020 and
contains 128 observations. The 10%, 5% and 1% significance levels are denoted by ∗, ∗∗ and
∗∗∗, respectively.

The table shows that excluding the first two statements of each year causes PMI to

lose its significance. However, more importantly, NS5 is still significant. This shows that

the chosen fine-tuning method does not introduce a lot of human bias into the results.
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8 Conclusion

In this paper, each FOMC statement is dissected into five topics, for which the senti-

ment is determined separately. This paper then mostly follows the method described

in Rosa (2011) to determine the market’s expectancy of the sentiment for each topic.

The difference between the market’s expectancy and the actual sentiment is defined as

the news shock. For each topic, an in-sample OLS regression is performed to investi-

gate whether the news shock significantly impacts the 40-minute return of the two-year

bond futures market directly after the release of the statement. Furthermore, this pa-

per investigates whether a set of four reaction asymmetries significantly influences the

market’s reaction. Then, the in-sample OLS regressions are combined with the reaction

asymmetries to improve the fit of the model. Lastly, the findings are applied to the

Macroeconomic Random Forest (MRF) model, whose out-of-sample performance is com-

pared with the out-of-sample performance of the OLS models. The results of this paper

can be summarised as outlined below.

This paper finds that the market only reacts to the sentences within an FOMC state-

ment that display the FOMC’s outlook on future economic conditions and inflation. The

surprise of this sentiment is significantly positive, which indicates that a better-than-

expected outlook causes a positive reaction to the release of the statement. Next to

this, the surprise in changes in the Federal Funds Rate (FFR) is significantly negative,

which shows that an unexpected increase (decrease) in FFR has a significant negative

(positive) effect on bond future returns. Together, they can explain 11.9% of the vari-

ation in returns for an in-sample analysis over the time period of 1999-2020. For the

reaction asymmetries, this paper finds that differing FOMC statements do not cause a

significantly larger reaction to news shocks. Furthermore, negative surprises in changes

in the FFR also do not have a significant effect, but that can be explained by the type of

measure that is used to determine this surprise. In addition to this, this paper finds that

good (bad) economic conditions cause a significantly decreased (increased) reaction of the

market to surprises in the change in FFR, and that good (bad) economic conditions have

a significantly negative (positive) effect on short-term returns altogether. Furthermore,

the size of the pre-FOMC announcement drift does not impact the market’s reaction to

news shocks, but a large (small) pre-FOMC announcement drift does have a significantly

negative (positive) effect on short-term returns. When a proxy for current economic
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conditions, the size of the pre-FOMC announcement drift, the surprise in sentiment and

surprise in changes in the FFR are combined in a single OLS model, it can explain 21.2%

of the variation in returns over the same time period of 1999-2020. Furthermore, this

paper provides evidence that both the news shocks for the sentiment and the surprises

in changes in the FFR lose their significant predictive power after the financial crisis in

2009.

Performing out-of-sample analysis on the OLS model (both with and without the

reaction asymmetries) and the MRF model shows that all three models outperform the

benchmark, which in this case is assuming that the reaction equals the historical average.

This is tested for eight time windows, ranging from 10 to 120 minutes. The results show

that the OLS model that incorporates the earlier mentioned findings consistently outper-

forms both other models across all tested time windows. Furthermore, the MRF model

consistently underperforms, which could be due to a tendency to overfit. In addition, this

paper finds that for most time windows the out-of-sample performance is not significant.

This is due to a single outlier in the set of predictions. If this outlier is removed from

the dataset, most out-of-sample results become significant, but also have a decreased

performance. This demonstrates that most of the out-of-sample performance comes from

a single outlier. Lastly, this paper shows that the out-of-sample performance peaks in

2009, but then halves over the next 12 years. This is in line with the findings from the

in-sample analysis which state that the news shocks lose their predictive power after the

financial crisis in 2009.

Thus, to answer the four research questions, this paper finds that the surprise in the

sentiment of the FOMC statements, as extracted by the FinBERT model, has significant

predictive power for short-term bond future returns. However, this is only the case for

one specific topic within an FOMC statement and only holds for the time period before

2009. Furthermore, poor economic conditions cause a significantly larger reaction of the

market to news shocks and have a positive impact on the reaction altogether. Lastly, a

large pre-FOMC announcement drift has a direct negative impact on the reaction.

For future research, improvements could be made regarding the fine-tuning process

of the FinBERT model. This research uses a self-labelled dataset that consists of 229

sentences. However, a lot more text data is available in the form of minutes, speeches and

transcripts of meetings. With a better fine-tuned FinBERT model, one might be able
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to extract a more accurate sentiment from the FOMC statements. This could especially

be useful for the period after 2009, as statements are significantly more complex and

similar to each other, making it more difficult to obtain the true sentiment. Next to this,

n-grams are currently excluded from the corpus with which the LDA model is trained.

However, adding n-grams can provide more detailed topics and an increased insight in the

content of a FOMC statement and the topics to which the market responds to. Lastly, to

determine the market’s expectancy on the FOMC’s sentiment, a linear model is used with

three variables, following Rosa (2011). However, this relation does not need to be linear,

or there could be other variables that have an impact. As this model directly impacts

the size and direction of the surprises in the sentiment, a better-performing model could

yield more information that could better predict the market’s reaction to the release of

an FOMC statement.
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Appendix A Theoretical background

In this section, a theoretical background is given for both the LDA and BERT model, as

they are the two main NLP models that are used in this paper.

A.1 The LDA model

A.1.1 Model description

The LDA model is a generative probabilistic model for text data. The main idea of

the LDA model is that documents are mixtures over k latent topics, where each topic

is characterised by a probability distribution over the whole vocabulary of the corpus.

The LDA model assumes that documents consist of a bag-of-words, where the order of

words within a document can be neglected. It further assumes that each document d is

generated according to the following generative processs (Blei et al. (2003)):

1. Choose the amount of words (N), according to a Poisson(ξ) process.

2. Choose a topic mixture θd ∼ Dirichlet(α).

3. For each topic, choose a word mixture φk ∼ Dirichlet(β).

4. Determine each of the N words wd,n in document d as follows:

(a) Draw a topic zd,n ∼ Multinomial(θd).

(b) Draw a word wd,n ∼ Multinomial(φzd,n).

This generative process can be modelled as a joint posterior distribution of the topic

mixture θ, word mixture φ, the set of topics z and all words w in the corpus, which is

given as follows:

p(z,w,θ,φ|α,β) =
D∏

d=1

p (θd|α)
K∏
k=1

p (φk|β))

Nd∏
n=1

p (zd,n|θd) p (wd,n|zd,n,φ) . (18)

By computing this distribution, the topic mixture of a document and the words mixture

for each of the k topics is obtained. The topic mixture shows what topic a document

likely belongs to, while the word mixture shows which words relate to each topic. In this

generative process and the corresponding joint posterior distribution, only the corpus’s

documents and words w are observed. The variables z, θ and φ are all latent. The

amount of topics k and the hyperparameters α and β are chosen in advance. Thus,
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to use the LDA model, the posterior distribution of the hidden variables, as shown in

Eq. (19), should be computed.

p(z,θ,φ|w,α,β) =
p(z,w,θ,φ|α,β)

p(w|α,β)
(19)

This posterior distribution cannot be computed directly, but can be approximated by

a variety of approximate inference algorithms. One of such algorithms is the online vari-

ational Bayes (OVB) algorithm, which is introduced by Hoffman et al. (2010). The main

advantage of the OVB algorithm is that it converges much faster than other algorithms,

such as the standard variational Bayes algorithm or Markov Chain Monte Carlo sampling,

while retaining the same accuracy. Therefore, this algorithm is used to approximate the

posterior distribution of Eq. (19).

A.2 The BERT model

The BERT model, created by Devlin et al. (2019), stands for Bidirectional Encoder

Representations from Transformers. This model is designed so that it can be used for

various NLP tasks, for which it takes relatively little time to train. Furthermore, it can

easily be further trained on domain-specific corpora, which improves its performance for

specific language uses. Since this paper uses BERT for sentiment analysis; this section

focuses on this specific task. For a global overview of the BERT model and its other use

cases, see Devlin et al. (2019).

A.2.1 Architecture

Figure 11 shows a high-level overview of the architecture of the BERT model for an

input sentence of three words, with sentiment analysis as an NLP task. The figure shows

that the BERT model contains four main layers: The embedding layer, encoder stack,

classification layer and softmax layer. In the remainder of this subsection, each layer of

the BERT model is explained in more detail.

Input

Before BERT can interpret a sentence, it needs to be pre-processed, the first step of

which is that the sentence needs to be tokenised. Tokenising a sentence means that the

sentence is split up into words or subwords and mapped to their respective IDs, such
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Figure 11: High-level overview of the BERT model.

that each sentence can be conveyed by a vector of numbers, which are called tokens.

These vectors can then be used as input for BERT. To perform the tokenisation, BERT

uses the WordPiece tokeniser, which is created by Wu et al. (2016). It is a subword

tokenisation algorithm which maps common words directly to numbers, but splits more

rare and complex words into smaller sub-words before mapping these sub-words to their

respective IDs.

Next to this, two extra tokens are added to the sentence: The classification ([CLS])

and sentence separator ([SEP]) tokens. The classification token is placed at the beginning

of the sentence and is used by BERT as an output for any classification tasks, such as

sentiment analysis. For most other NLP tasks, the encoder stack has an output for

each input token. However, in Figure 11 it can be seen that for sentiment analysis the

encoder stack has one output which corresponds to the classification token, from which

the sentiment of the sentence is deducted.

The sentence separator token is placed at the end of the sentence. This token is

typically used when the input consists of more than one sentence, for example when

BERT is used to perform next sentence prediction tasks. The input then consists of a

classification token, the tokens of sentence 1, a sentence separator token and the tokens

of sentence 2. Furthermore, the sentence separator is also used to signal that the end
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of the input is reached. The base BERT model can take up to 512 tokens as input

simultaneously.

Embedding Layer

The first layer of BERT has as its purpose to embed the input tokens; this means that

each token is converted into a vector of numbers which hold information about the word

itself (token embeddings), to which sentence it belongs (segment embeddings) and its

position within the sentence (position embeddings). A representation of this embedding

process can be seen in Figure 12. Firstly, the three different embeddings are determined

and then summed to form the final embedding for that specific token.

Figure 12: Embedding

To obtain token embeddings, the token is mapped onto an embedding space with

dimension d. For the base BERT model, this dimension is set to 768. This embedding

space places tokens with a similar meaning close together, so that these embeddings hold

information about the meaning of the word. The segment embeddings show to which

sentence a token belongs, thus whether the token comes before the sentence separator

token or afterwards. For sentiment analysis, this embedding is the same for each token,

since only one sentence is used at a time. Position embeddings show the position of

the token within the sentence. This is determined using a lookup table with dimension

512x768, where each row corresponds to a specific position. The final embedding vector

then consists of a summation of the token, segment and position embeddings.

Encoder stack

As mentioned earlier, the base model of BERT consists of L = 12 stacked encoders taken

from the Transformer network. The input and output of each encoder consists of n vectors

with dimension d = 768, where n stands for the amount of tokens. The input of the first
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encoder is the embedding vector for each token, which then gets manipulated and sent to

the next encoder. During this process, the dimension does not change. Thus, the output

of the encoder stack is still a vector with the same dimension d for each token.

Each of these encoders contains two main layers: A Multi-Head Attention layer and

an FFN layer, as seen in Figure 1. In the multi-head attention layer, self-attention is

used to calculate an attention vector, which conveys how much each token relates to the

others. In every encoder, this is done 12 times for each token, after which a weighted

average is taken of these 12 attention vectors. This allows the encoder to capture more

information about the relationship between the tokens, since different relationships are

discovered in each attention vector. Thus, a total of 144 attention vectors are calculated

for a single token. After each multi-head attention layer, the output is normalised and

used as input for an FFN network. This network processes the output from the attention

layer in such a way that it better fits the input for the next encoder. The parameters in

these FFN networks are determined during the pre-training phase of BERT.

Classification Layer

If the BERT model is used for a classification task, such as sentiment analysis, a clas-

sification layer is connected to the output of the encoder stack that corresponds to the

classification token. This layer consists of an FFN network that converts the vector with

dimension d to a vector with dimension l, where l is the number of labels that is used for

the classification task. For sentiment analysis, this is set to three, since the output is a

vector with values that correspond to how positive, negative or neutral a sentence is. The

weights of the FFN network in the classification layer are determined during fine-tuning.

Softmax Layer

Lastly, the softmax layer normalises the output of the classification layer using the soft-

max function, which is given as follows:

σ(zi) =
ezi∑l
j=1 e

zj
, (20)

where z is the output vector of the FFN network in the classification layer. The output

of the softmax layer is a vector with dimension l which contains the probability of the

59



specific sentence being classified as a certain label. In the case of sentiment analysis, it

would contain the probability of a sentence being positive, negative or neutral.

A.2.2 Pre-training

One of the main advantages of the BERT model is that it can be used for various NLP

tasks. Furthermore, it takes relatively little time to further train the BERT model for

these NLP tasks. This is because the BERT model has already been pre-trained by Devlin

et al. (2019), who applied the following two unsupervised learning tasks simultaneously

to the model: Masked language modelling and next sentence prediction.

During masked language modelling, Devlin et al. (2019) mask 15% of all tokens in

the sentence. The BERT model then has to predict these masked tokens, given all other

tokens in the input sequence. This causes the model to understand the bi-directional

context within a sentence. Next sentence prediction is a classification task with two

sentences as input, which are separated by the sentence separator token. The model

then has to predict whether sentence B naturally follows sentence A. Figure 12 shows an

example for this task, sentence A: “My dog is cute”, sentence B is: “He likes playing”.

In this example, it is clear that sentence B is a natural follow-up to sentence A. This

unsupervised task teaches the model how to understand the relationship between different

sentences. Using these tasks, the weights in the encoder stack are determined in such a

way that the BERT model can understand context and language.

The corpus that is used for pre-training consists of the BooksCorpus (800M words)

and English Wikipedia (2,500M words).

A.2.3 Fine-tuning

After pre-training, the model is fine-tuned for a specific NLP task using supervised learn-

ing. This is often a relatively straightforward and quick process, since the weights of the

encoder stack are already determined during pre-training. When the BERT model is fine-

tuned for sentiment analysis, only the weights of the FFN network in the classification

layer are determined.
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Appendix B Extra checks

B.1 Using Kuttner (2001)’s measure to determine NS∆FFR

Throughout this paper, the following equation is used to determine NS∆FFR:

NS∆FFR,t ≡ ∆FFRt − (FFRthree-month ahead − FFRone-month ahead). (21)

For this measure, the sign of NS∆FFR does not influence the size of the market reactions,

which contradicts Chuliá et al. (2010) and Farka (2009). However, they use Eq. (22) to

determine the news shock for the change in FFR. This measure is the standard in the

literature, but is not used in this paper since it suffers from look-ahead bias, which this

paper aims to avoid. Therefore, this section aims to show that this reaction asymmetry

does hold for the measure in Eq. (22) when looking at the short-term returns of bond

futures.

MPSt ≡ ∆ft
D

D − d
(22)

To this end, the exact same method is used as described in Section 5.2, except for the

fact that Eq. (22) is used instead of Eq. (21).

Table 17: Comparison between NS∆FFR and MPS.

NS∆FFR MPS

Intercept 0.053 0.003

NS -0.350∗∗ -0.399∗∗∗

NS ∗ I1 -0.264 -0.108

NS ∗ I2 -0.086 -0.291∗∗∗

I1 -0.039 0.011

I2 -0.039 0.014

R2
adj 0.100 0.127

This table shows whether the sign of NS∆FFR and MPS have a significant impact on the size of
the market reactions to the mentioned news shocks. The sample period runs between the 15th
of May 1999 and the 16th of December 2020 and contains 172 observations. The 10%, 5% and
1% significance levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. Furthermore, throughout these
regressions, all unannounced FOMC statements are excluded.

The result is shown in Table 17, where I1 is set to one if the surprise has a positive

sign and I1 is set to one if the surprise has a negative sign. The table shows that in this
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case, NS ∗ I2 is highly significant. Thus, the reaction asymmetry holds for the measure

given in Eq. (22).

B.2 Removing an outlier in the set of out-of-sample predictions

In Figure 13, the out-of-sample predictions for a time window of 40 minutes are displayed

for each of the three models. As noted in Section 5.3, there is a significant outlier in this

figure on the 16th of December, 2008, where the full OLS model predicts a log return of

0.477%. During this meeting, the FOMC unexpectedly cut the FFR by 75 basis points.

Next to this, the other two models predict similar values. As discussed in Section 5.3,

the test-statistic in Eq. (13) is regressed on a constant, whose significance level indicates

the significance level of the R2
oos. Thus, the higher the significance level, the lower the

variation of the test statistic. Therefore, a single significant outlier can skew the results

of the regression.
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Figure 13: The out-of-sample predictions of the full OLS model (thick solid line), standard
OLS model (thin solid line) and the MRF model (dashed line). The time period runs
from the 28th of January, 2004 till the 16th of December, 2020.

To measure the effect of this outlier on the significance level of R2
oos, this outlier is

removed from the dataset and the results of Section 7.4 are replicated. The results are

given in Table 18 and show that most R2
oos become more significant, which indicates that

the single outlier skews the results in Table 14. However, an extra note is that most R2
oos

are much smaller than their respective values in Table 14. This shows that most of the
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gain in R2
oos comes from this single correct prediction, since removing this large outlier

causes the out-of-sample performance to roughly halve across all time windows and all

models.

Table 18: R2
oos for the standard OLS, full OLS and MRF model for various time windows.

10 20 30 40 50 60 90 120

Standard OLS 0.020∗ 0.028∗ 0.040∗ 0.041∗ 0.018 0.013 0.019 0.038∗

Full OLS 0.071∗∗ 0.085∗∗∗ 0.085∗∗ 0.063∗∗ 0.050∗ 0.040∗ 0.037∗ 0.039∗

MRF -0.030∗ 0.004∗ 0.036∗ 0.047∗ -0.007 -0.016 -0.015 0.004∗

This table shows the R2
oos for the standard OLS, full OLS and the MRF model. These values are

obtained using an expanding window, where the sample period runs from the 28th of January
2004 till the 16th of December 2020. This dataset excludes the FOMC statement on the 16th
of December 2008. The sample contains 133 predictions. The 10%, 5% and 1% significance
levels are denoted by ∗, ∗∗ and ∗∗∗, respectively. The value in bold denotes the highest R2

oos for
each model. Furthermore, throughout these regressions, all unannounced FOMC statements
are excluded.
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