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Abstract

In this paper we investigate if adding an extra relation between the volatility shocks and return

shocks in SV models improves the models ability to forecast volatility. Squared returns and

realised variance are used as a proxy for the “true” variance. The added leverage effect is the

correlation between the current volatility shock and the future return shock. We show that

on US index data this effect is generally estimated to be small and negative and including it

into a SV model improves its volatility forecasts. We show that the volatility feedback effect

and inter-temporal leverage effects are also present in the data and should also be included in

modelling financial log returns.



Contents

1 Introduction 1

2 State space models 2

3 The leverage puzzle and stochastic volatility 4

3.1 Stochastic volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 SV model of Catania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Extended SV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Bellman Filter 9

4.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Dealing with degenerate densities . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Filtering and estimating the SV models with the Bellman filter . . . . . . . . . . . . 13

5 CSIR of Malik and Pitt (2011) 18

5.1 Filtering with SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Parameter estimation and CSIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Estimating the SV models with CSIR . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Simulation study 23

7 Empirical study 35

7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Conclusion 41

References 44

A Optimisation and updating step for the SV model of Catania (2020) 45

B Optimisation and updating step for the extended SV model 46



1 Introduction

Modelling the dependence in a time series is at the core of econometrics in finance but this is not

only limited to finance as many other fields also use time series analysis. While the increases in

data availability and computational power open up opportunities for more accurate models and

methods one problem remains persistent, that of noisy data. Extracting information about a signal

from this noise-contaminated data remains a difficult task. The workhorse in finance have long

been univariate ARIMA models, these simple models have shown surprisingly good results however

they are limited by their assumptions. The main two points of criticism have been the requirement

of the observations to be linear functions of past observations and the inability to have stable and

persistent components.

A way to deal with these limitations and noise problems has been the introduction of state

space modelling. In state space models it is assumed the “true” state of an observation is unknown

as it is contaminated with noise and the distribution of the observations depends on the underlying

“true” state. As the distribution of the observations now relies on an underlying stochastic process

it can now vary over time. It is also not required that this relationship is linear. The hardest part

of state space models is determining the value of this unobservable latent state. This filtering of

the observed data has been an interesting topic as exact filtering methods are not always available.

The exception is the Kalman filter, however this filter is only exact for linear Gaussian state space

models. So lacking an exact filtering solution for non-Gaussian state space models we need to turn

to approximate solutions.

State space models are used to try and solve the “leverage puzzle”, the notion that financial

returns and volatility shocks are correlated is at the base of this conundrum. The common thought

in past literature is that an increase in volatility follows the day after a negative return, however

recent studies using state space models have shown an indication that this may not be true. In-

tuitively arguments can be made that a negative return actually follows a volatility shock. Using

state space modelling to test if this idea holds could change how we view the causality and timing

of volatility and returns and could provide a new insight into past research.

This research follows the paper of Catania (2022) closely as he has developed a stochastic

volatility (SV) model that incorporates a leverage effect and is nicely suited the explore the leverage

puzzle. In a simulation study estimating several versions of this model we find that the newly

developed Bellman filter of Lange (2020), which relies on Bellman’s dynamic programming principle,
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outperforms the continuous resampling importance resampling (CSIR) method of Malik and Pitt

(2011) originally used in Catania (2022) from both an accuracy and a computational point of view.

The Bellman filter and CSIR method are then used to estimate the Catania model with different

lags on data obtained from two major US stock indices, the Standard & Poor 500 (S&P 500) and

the National Association of Securities Dealers Automated Quotations (Nasdaq) Composite with

data ranging from the 3rd of January to the 31st of December.

To evaluate the predictive power of the models we compare their predicted volatility to two proxies,

squared returns and realised variance. We find that the original model estimated with the CSIR

method outperforms the one estimated with the Bellman filter from a predictive volatility point

of view. Even though the simulation study finds that the Bellman filter delivers more accurate

parameter estimates.

The Bellman filter is also used to estimate an extended version of the model that includes a

correlation between the future return shock and the current volatility shock. The models estimated

with this extra leverage effect provide better volatility forecasts than those without it. The best

performing models find a negative but small estimate for this extra leverage effect and also find

large negative values for the contemporaneous leverage effect. Different inter-temporal leverage

effects are also found to have significant estimates. This indicates the presence of the volatility

feedback effect and leverage effect in the log returns of US indices.

2 State space models

The focus of this research is on nonlinear non-Gaussian state space models where a latent state

(α1, . . . ,αt) affects the distribution of the observations (y1, . . . , yt). For convenience the following

general form data-generating process is considered:

observation equation : yt = gθ (αt, εt) , εt ∼ pθ (εt) ,

state equation : αt = hθ (αt−1,ηt) , ηt ∼ pθ (ηt) .
(1)

The observation vector yt ∈ Y has dimensions (1 × 1) and the latent state vector αt ∈ A has

dimensions (m × 1) and functions gθ and hθ are functions mapping into Y and A. εt and ηt are

i.i.d disturbances with corresponding distributions pθ (εt) and pθ (ηt). All functions depend on the

constant parameter θ.
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From the definition in (1) the implied conditional distributions can be written as

yt ∼ pθ (yt|αt) αt ∼ pθ (αt|αt−1). (2)

The difficulty lies in filtering the latent true states α out of the observations y. As these states

are unknown they cannot be used in the log-likelihood function. The estimated states are defined

as (a1, . . . ,at). Finding the states that maximise the log-likelihood is the common method of

estimating the most likely states. However there are two options, computing the mean or the

mode. If the choice would be made from a loss function point of view the mean would be optimal,

but generally speaking computing the mean would be computationally infeasible (an exception

would be for linear Gaussian models using the Kalman (1960) filter). In state space literature

it is common to calculate the posterior mode instead of the mean caused by these computational

problems. This posterior mode estimation often called the maximum a posteriori estimate might be

sub-optimal from a loss function perspective but does not outweigh the benefits of having to solve

an optimisation instead of a high dimensional integral. The posterior mode is the most likely value

of the states given the data and can thus be found by maximising the log-likelihood conditional on

the data. By deconstructing the conditional likelihood it can be seen that the posterior mode is

also the maximiser of the joint log-likelihood:

`(a1, . . . ,at|y1, . . . , yt) = `(a1, . . . ,at, y1, . . . , yt)− `(y1, . . . , yt), (3)

where `() is the log-likelihood function. The second term does not depend on the states and is

known at the moment of estimation so can be left out of the maximisation problem. The posterior

mode will then be (
â1|t, . . . , ât|t

)
:= arg max

(a1,...,at)
` (a1, . . . ,at, y1, . . . , yt) . (4)

Now for model (1) and a prior distribution p(a1) the joint log-likelihood can be written as

` (a1, . . . ,at, y1, . . . , yt) = ` (a1) + ` (y1 | a1) +

t∑
i=2

[` (yi | ai) + ` (ai | ai−1)] . (5)

A method to find an exact solution to the optimisation problem in (4) does not exist for most

state space models, e.g. nonlinear non-Gaussian state space models. Several approximate methods

have been developed to tackle the filtering and parameter estimation problem of these state space
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models. The accuracy and computational times of these approximate methods heavily depend on

the type of model used. In this article we will consider three types of stochastic volatility models

to examine the leverage effect present in stock returns.

3 The leverage puzzle and stochastic volatility

The relation between negative returns and an increase in volatility in financial data has been

the subject of many research papers and debate in the economic/econometric world ever since

Black (1976) first described it. Black and other earlier literature attributed this asymmetric re-

turn–volatility relationship to the changing leverage of a company and hence coined this effect the

leverage effect. The general idea is that a reduction in price decreases the equity value of a firm

and as the debt of this company remains the same the companies leverage ratio increases. This

will increase the perceived risk and thus increase the variance of the returns.

While this explanation seems theoretically sound from an economical point of view, later research

shows that this is not the sole explanation. On top of that the exact causality and timing has also

been subject to debate. It used to be assumed that a fall in price was accompanied by a delayed

volatility spike as this was in line with the leverage explanation. Catania (2022) find evidence that

the effect may rather be simultaneous than delayed. If negative returns and increases in volatil-

ity occur simultaneously this would go against previous literature and may lead to very different

conclusions and notions about leverage that are currently accepted as the truth. Teulings, Lange,

and van der Kroft (2020) even find evidence of a reverse causality where expected future volatility

shocks cause the price to drop today.

3.1 Stochastic volatility

The need for stochastic volatility models arose when econometricians needed to model the dynamic

evolution of volatility over time. Adding a stochastic process for the volatility instead of a time

invariant one adds flexibility to a model that was needed to model financial time series. In SV models

the volatility is an unobservable component following some latent stochastic process (Ghysels,

Harvey, and Renault (1996), Taylor (1994)). SV models are a wide array of models that contain an

observation equation that is not necessarily linear in the volatility process. Many can be written
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as a version of this nonlinear state space model without correlation:

yt = µ+ σtεt, εt
iid∼ N(0, 1),

σt = exp

(
ht
2

)
,

ht = c+ ϕht−1 + κηt, ηt
iid∼ N(0, 1),

(6)

where yt is a financial log return with mean µ and intercept c to control the level of the log-volatility

equation, ϕ as the persistence of the log-volatility process and κ as the variance of the volatility

shock.

When a relation between the shocks is included into SV models some statistical characteristics are

also introduced into the model, for example with the asymmetric SV model of Jacquier, Polson,

and Rossi (2004) which allows for a contemporaneous relation would lead to returns being skewed

and serial correlated. Serial correlation is against the efficient market hypothesis which states

that market prices should only react to new information and the price now reflects all information

available. Assuming that asset returns follow a SV model with a contemporaneous relation one

would have to admit markets do not adhere to the efficient market hypothesis, but from a intuitive

standpoint with the ever increasing speed of information processing it is making more sense that

the volatility now would react now to return shocks and not only have a delayed reaction. If one

takes an asset pricing point of view and views volatility as a measure of risk and that the price of

an asset is dependant on its risk, then an expected return unequal to zero makes sense. To avoid

this issue researchers can also choose to only include an inter-temporal lag as done by Harvey and

Shephard (1996).

Another drawback of SV models is the complicated estimation procedure as the likelihood is

usually not easy to evaluate. There are some exceptions but in many cases there is no closed-form

derivation possible. These characteristics of many SV models limit the empirical application in

the financial literature. But luckily the growing literature continuously develops new methods and

improvements on existing methods for estimating or simulating the likelihood which alleviates the

estimation problem. We are now able to estimate parameters based on maximum likelihood for

the quasi- or simulated likelihood functions more accurate than ever before. With this improved

accuracy past research can be redone and potentially yield different results or SV models can now

be considered for more empirical applications. This could cause the financial world to realise they
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may have underestimated or even wrongly assumed the effects or causality of variables. An example

of this can be the leverage effect mentioned in the section above which was investigated in Catania

(2022) with a newly developed model that can be found in the next Section.

3.2 SV model of Catania

Catania (2022) introduces a SV model that allows for correlation of return and volatility shocks at

different temporal lags instead of only one. This model encompasses many familiar SV models such

as the simple model in equation (6), the contemporaneous specification of Jacquier et al. (2004)

and the inter-temporal specification of Harvey and Shephard (1996) that can retrieved by setting

parameter restrictions and varying the amount of lags allowed. They assume that the log returns

yt are generated from the following SV model

yt = µ+ σtεt, εt
iid∼ N(0, 1),

σt = exp

(
ht
2

)
,

ht = c+ ϕht−1 + κηt,

ηt =

m∑
j=0

ρjεt−j +

√√√√1−
m∑
j=0

ρ2j ∗ bt, bt
iid∼ N(0, 1)

(7)

where to control the variance and persistence of the volatility process, κ > 0 and |ϕ| < 1. For

identification is required that
∑m

j=0 ρj < 1. In the original Catania model σt is only multiplied

with a constant parameter β to control for the level but this is replaced with the intercept c in the

log-volatility equation. Both options control the level and using either is a matter of (mathematical)

preference.

The volatility shock ηt is a linear function of the current and lagged return shocks up till m periods

of time ago. Because of this the log-volatility at time t and the return shock at the same time

will be dependent when ρ0 6= 0. This will not be a problem for modelling financial returns as past

research such as Carr and Wu (2017) have shown that ρ0 < 0 is typically found in financial returns,

known as the “volatility-feedback effect” and causes the distribution of yt to be negatively skewed.

A consequence of this will be that µ in equation (7) is the median instead of the usual mean.

Catania (2022) sets µ = 0, however this limits the estimation of ρ0 as it can be more accurate if µ

is estimated. So in this paper µ will also be estimated.

Catania (2022) estimates the parameters with two different estimation methods, a simulated
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log-likelihood estimation using the CSIR method of Malik and Pitt (2011) and with a quasi log-

likelihood estimation (with the assumption ρ0 = 0) using the log of the squared returns and then

running the Kalman filter to obtain a likelihood. They find that from a likelihood perspective it

is worth to estimate the contemporaneous correlation of the returns and log-volatility (ρ0) and an

increase of m increases the precision of the volatility predictions.

Catania’s model implies the unconditional distribution of the log-volatility as

h ∼ N

 c

1− ϕ
,

κ2

1− ϕ2

1 + 2
m∑
s=1

ϕs
m∑
j=s

ρjρj−s

 , (8)

causing the expected value of tomorrows return to be

E (yt+1) = E

(
µ+ exp

(
ht+1

2

)
εt+1

)

= µ+
1

2
κρ0 exp

 c

2(1− ϕ)
+

κ2

8 (1− ϕ2)

1 + 2

m∑
s=1

ϕs
m∑
j=s

ρjρj−s

 ,

(9)

this is non-zero if µ = 0 and ρ0 6= 0. However by not setting µ = 0 we can now still get an expected

return of zero when ρ0 6= 0 if µ is chosen to exactly resemble the second term. Since κ > 0 the sign

of µ then depends on the sign of ρ0. Because of the volatility feedback effect generally present in

financial returns the expected estimated median of the returns will be positive.

Since both the return shock and the log-volatility are related to the volatility shock the sign of ρ0

determines the way the returns are skewed. With the in financial returns typically found ρ0 < 0

a positive volatility shock is accompanied by a contemporaneous negative return shock implying a

negatively skewed distribution of returns.

In this model the volatility shocks itself are correlated, which can be argued for. As it is now

assumed the market is not efficient so the shock of yesterday can still influence the market today.

The model could be extended to include a negative lag such that it is possible to test for a

reverse causality in the shocks. If the new model including the negative lag performs better from

a likelihood perspective or can perform better forecasts this would indicate the reverse causality

would be worth to investigate further.
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3.3 Extended SV model

Teulings et al. (2020) perform a study where they use the VIX, an index for the expected future

volatility, as a proxy for future volatility. They find that daily changes (squared to different powers)

of the VIX explain up to 60% of the daily changes of the S&P 500 with a negative correlation.

Although this is a small and simple setup using a simple regression model this is a promising enough

result to investigate this different relation between return and volatility shocks as not just the notion

that a volatility shock is determined by past return shocks. This inspired us to investigate a reverse

causality where is also a relation between the current volatility shock and the future return shock.

Catania (2022) mentions in the conclusion that the model can be extended to include a negative

lag and would be optimal to test this idea with. The extended model of Catania (2022) includes

one future return shock in the volatility shock equation and will be

yt = µ+ σtεt, εt
iid∼ N(0, 1),

σt = exp

(
ht
2

)
,

ht = c+ ϕht−1 + κηt,

ηt =

m∑
j=−1

ρjεt−j +

√√√√1−
m∑

j=−1
ρ2j ∗ bt, bt,

iid∼ N(0, 1),

(10)

with the same restrictions placed on κ > 0, |ϕ| < 1 and
∑m

j=−1 ρj < 1 as before. Including this

extra relation assumes that the current volatility shock is correlated with the future return shock.

From an economical point of view this could be argued for, investors could fear the future expected

return shock and adjust for it today. Following this reasoning we would expect the value of ρ−1 to

be negative.

The extended model shares very similar statistical characteristics with the original model only now

slightly altered to account for the incorporation of the future return shock in the equation of the

current volatility shock. As can be seen in the unconditional distribution of the log-volatility,

h ∼ N

 c

1− ϕ
,

κ2

1− ϕ2

1 + 2

m∑
s=1

ϕs
m∑

j=s−1
ρjρj−s

 . (11)
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The expected return of tomorrow given today will now also be different as it will now be

E [yt+1] = µ+
1

2
κρ0 exp

 c

2(1− ϕ)
+

κ2

8 (1− ϕ2)

1 + 2

m∑
s=0

ϕs
m∑

j=s−1
ρjρj−s

 . (12)

The same as for the original Catania model the expected value will be zero if µ = 0 and ρ0 6= 0.

For the expected return to be zero if ρ0 6= 0 the value of µ will now be different to account for the

extra ρ−1 term. If ρ−1 = 0 the original model is retrieved with the same characteristics.

To estimate these SV models two different methods are used to address the filtering and esti-

mation problem.

4 Bellman Filter

The first method is a new method developed for the filtering of state space models, that of Lange

(2020). The Bellman filter is a generalisation of the Kalman filter based on Bellman’s dynamic pro-

gramming principle and is based on the mode. The goal is to find good filtered states a1|1, . . . ,at|t

that maximise the likelihood ` (a1, . . . ,at, y1, . . . , yt).

4.1 Filtering

Assume the existence of the mode and for now that the fixed hyper-parameters θ are known. All

following equations are indexed on θ however for notational purposes this is suppressed.

The function hθ (at−1,ηt) in the state equation of (1) takes the general form

at = c+ Tat−1 + ηt, ηt
iid∼ N(0,Q). (13)

Define a value function that maximises the likelihood with respect to all states apart from the most

recent state at as,

Vt (at) := max
a1,...,at−1

` (a1, . . . ,at, y1, . . . , yt) , (14)

or rewritten like equation (3) such that the value function satisfies the recursive relation known as

Bellman’s equation,

Vt (at) = ` (yt | at) + max
at−1

{` (at | at−1) + Vt−1 (at−1)} . (15)
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The filtered states will then be at|t
at−1|t

 := arg max at
at−1

∈R2m

{` (yt | at) + ` (at | at−1) + Vt−1 (at−1)} , (16)

where the estimate of the previous state is revised now that there is more information available.

The value function Vt−1() is usually not available in closed form but the only thing needed is

its behaviour around the peak. Lange (2020) use a quadratic approximation that is parameterised

by the location of its maximum at−1|t−1 and the negative Hessian, also known as the information

matrix It−1|t−1, as the researcher’s knowledge will be approximated by a quadratic function. This

approximation will be

Vt−1(at−1) = −1

2
(at−1 − at−1|t−1)′It−1|t−1(at−1 − at−1|t−1) + constants. (17)

Plugging this equation into the maximisation a viable function-space is created where standard

optimisation methods such as Newton’s method (Nocedal & Wright, 1999) can be deployed

 at
at−1

←
 at
at−1

+

 J11
t −

d2`(yt|a)
dada′ J12

t

J21
t It−1|t−1 + J22

t

−1  J1
t + d`(yt|at)

dat

J2
t − It|t−1(at−1 − at−1|t−1)

 ,
(18)

where  J1
t

J2
t

 :=

 d`(at|at−1)
dat

d`(at|at−1)
dat−1

 ,
 J11

t J12
t

J21
t J22

t

 := −

 d2`(at|at−1)
datda′t

d2`(at|at−1)
datda′t−1

d2`(at|at−1)
dat−1da′t

d2`(at|at−1)
dat−1da′t−1

 (19)

Another well known optimisation method, that of Fisher, is achieved by replacing d2`(yt|at)
datda′t

with

its expectation. These optimisation methods can also be combined where d2`(yt|at)
datda′t

is replaced with

a weighted sum of d2`(yt|at)
datda′t

and E
(
d2`(yt|at)
datda′t

)
. To start the optimisation (after initialising a0|0, I0|0

as the unconditional mean and a sufficiently large multiple of the identity matrix) predict the next

state and information matrix as

at|t−1 = arg max
at∈R

`(at | at−1|t−1) (20)
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and

It|t−1 = J11
t − J12

t (It−1|t−1 + I22t )−1J21
t |at=at|t−1,at−1=at−1|t−1

. (21)

Now using Newtons step for the optimisation as

St ← J11
t − J12

t (It−1|t−1 + J22
t )−1J21

t −
d2` (yt | at)

datda′t
,

Dt ← It−1|t−1 + J22
t ,

G1
t ← J1

t +
d` (yt | at)

dat
,

G2
t ← J2

t − It−1|t−1(at−1 − at−1|t−1),

at ← at + S−1t G1
t − S−1t J12

t D
−1
t G

2
t ,

at−1 ← at−1 −D−1t J21
t S

−1
t G1

t + (D−1t +D−1t J
21
t S

−1
t J12

t D
−1
t )G2

t .

(22)

After this optimisation set at|t = at, at−1|t = at−1 and

It|t−1 = J11
t −J12

t (It−1|t−1 +J22
t )−1J21

t |at=at|t−1,at−1=at−1|t−1
. And move to the next time step to

repeat the entire process again.

4.1.1 Dealing with degenerate densities

Lange (2020) also provide a slightly altered version of the Bellman filter to deal with model filtering

and estimation of models with degenerate observation and/or state-transition densities. If the state-

transition density is degenerate some elements of the current state are deterministic functions of

the previous state and can be dropped from the optimisation. To account for this the prediction

of the state and information matrix will be changed to

at|t−1 = c+ Tat−1|t−1,

It|t−1 = Q−1 −Q−1T
(
It−1|t−1 + T ′Q−1T

)−1
T ′Q−1 =

(
TI−1t−1|t−1T

′ +Q
)−1

,
(23)

with Q as the covariance matrix of the shocks in the state equation. Also the optimisation step

will now be

at ← at +

{
It|t−1 −

d2` (yt | at)
datda′t

}−1{
d` (yt | at)

dat
− It|t−1

(
at − at|t−1

)}
, (24)
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and a slightly different updating step of the information matrix as this will now be

It|t = It|t−1 −
d2` (yt | at)

datda′t

∣∣∣∣
at=at|t

. (25)

4.2 Parameter estimation

So far it was assumed the set of hyper parameters θ was known, however this will obviously not be

the case and along with the state will also need to be estimated. This is done by decomposing the

likelihood. A single observation’s contribution to the likelihood will be

`(yt | Ft−1) = `(yt,αt | Ft−1)− `(αt | yt,Ft−1) = `(yt | αt) + `(αt | Ft−1)− `(αt | Ft). (26)

But as the exact state αt is not known it is impossible to calculate this quantity exactly, the closest

approximation will be to evaluate the expression at the filtered state at|t found by the Bellman

filter. Swapping the last two terms and evaluating the likelihood at at|t leaves a nice optimisation

function where the first part represents the ”fit” which we needs to be maximised, penalised by the

realised Kullback-Leibler (KL) divergence between the filtered and predicted state,

`(yt | Ft−1) = `(yt | at|t)−
{
`(at|t | Ft)− `(at|t | Ft−1)

}
. (27)

However the exact expression to calculate the KL divergence is also generally unknown, but can be

approximated. Like the researcher’s knowledge before it is once again presumed the function can be

approximated by a multivariate quadratic function, such that the two terms in the KL divergence

can be approximated by

` (αt | Ft) ≈
1

2
log det

{
It|t/(2π)

}
− 1

2

(
αt − at|t

)′
It|t
(
αt − at|t

)
` (αt | Ft−1) ≈

1

2
log det

{
It|t−1/(2π)

}
− 1

2

(
αt − at|t−1

)′
It|t−1

(
αt − at|t−1

)
,

(28)

where αt will be replaced with its closest approximation at|t. Using the output of the Bellman

filter all terms are now either known or computable using known quantities and thus allow one to

calculate an approximate likelihood. To obtain the estimates θ̃, a maximum-likelihood estimator
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can be used where

θ̃ := argmax
θ

N∑
t=t0+1

{
`(yt | at|t) +

1

2
log det

{
It|t−1

}
− 1

2
log det

{
It|t
}
− 1

2

(
at|t − at|t−1

)′
It|t−1

(
at|t − at|t−1

)}
.

(29)

4.3 Filtering and estimating the SV models with the Bellman filter

As the basic SV model in equation (6) is actually nested in the model of equation (7) and can be

retrieved with m = 0, ρ0 = 0 it is only needed to workout how to filter and estimate the model in

(7) and then set m = 0 and ρ0 = 0 to retrieve the needed formulas for the simple SV model. In

his paper Catania (2022) found that a m between 2 and 5 performs better than previously defined

models. But to keep notation general we will continue with m and once again all distributions in

the filtering steps are indexed with θ but this will be suppressed for convenience.

To start first define the state as at = (ht, ht−1, . . . , ht−m)′ In state space representation con-

ditional on the information at t −m − 1, Ft−m−1, the shock will be jointly normally distributed

as 

ηt

εt

εt−1
...

εt−m


| Ft−m−1 ∼ N





0

0

0
...

0


,



1 ρ0 ρ1 . . . ρm

ρ0 1 0 . . . 0

ρ1 0 1 . . . 0
...

...
...

. . .
...

ρm 0 0 0 1




. (30)

Now, conditional on all information known at time t − 1, where Ft−1,at−1 imply εt−1, . . . , εt−m,

the joint normal distribution of the current shocks ηt, εt will be

 ηt

εt

 | Ft−1,at−1 ∼ N

 ∑m
j=1 ρjεt−j

0

 ,
 1−

∑m
j=1 ρ

2
j ρ0

ρ0 1

 . (31)

which follows from the Normal lemma. From rewriting εt−j = (yt−j − µ) exp(−ht−j/2) together

with that the marginal distribution of ηt is Gaussian and that the state-transition equation is a

13



linear transformation of ηt it implies that

ht | Ft−1,at−1 ∼ N
(
µh,t, σ

2
h,t

)
, where

µh,t = c+ ϕht−1 + κ
m∑
j=1

ρj
yt−j − µ

exp (ht−j/2)
, σh,t = κ

√√√√1−
m∑
j=1

ρ2j .
(32)

Using the conditional-Gaussian lemma again, the distribution of εt conditional on Ft−1,at−1 and

ηt will be

εt | Ft−1,at−1, ηt ∼ N
(
µε,t, σ

2
ε,t

)
, where

µε,t =
ρ0

1−
∑m

j=1 ρ
2
j

ηt − m∑
j=1

ρj
yt−j − µ

exp(ht−j/2)

 , σε,t =

√
1− ρ20

1−
∑m

j=1 ρ
2
j

.
(33)

Now since at−1 and ηt together imply at, the distribution of yt conditional on Ft−1,at will be

N(µy,t, σ
2
y,t) with

µy,t = µ+ exp(ht/2)µε,t, (34)

and

σ2y,t = exp(ht)σ
2
ε,t. (35)

The state-transition is a degenerate Gaussian with pdf

p (at | at−1,Ft−1) =
1

σh,t
√

2π
exp

(
−

(ht − µh,t)2

2σ2h,t

)
×

m∏
j=1

δ (aj+1,t − aj,t−1) , (36)

where aj,t is the j-th element in at = (ht, ht−1, . . . , ht−m) and δ is the Dirac delta function with

mass at zero such that the second element of at equals that first element of at−1. Because of

these variables that the current state and past state have in common it is a degenerate density.

Because this model has a degenerate state-transition density we will need to use the modified filter

of Subsection 4.1.1.
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The optimisation to be solved will be

argmax
ht,ht−1,...,ht−m−1

{` (yt | at,Ft−1) + ` (ht | at−1,Ft−1) + Vt−1(at−1)} ,

argmax
ht,ht−1,...,ht−m−1

{−1

2
log(2π)− log(σy,t) +

(yt − µy,t)2

σ2y,t
+−1

2
log(2π)− log(σh,t) +

(ht − µh,t)2

σ2h,t
+

1

2
log det

{
It|t−1

}
− 1

2
log det

{
It|t
}
− 1

2

(
at|t − at|t−1

)′
It|t−1

(
at|t − at|t−1

)
},

(37)

instead of the usual optimisation in equation (16).

In the optimisation step we will use an equally weighted sum of the Newton updating steps and

the Fisher updating steps. The exact optimisation and updating steps of the state can be found in

Appendix A.

For the parameter estimation the distribution we use the maximisation in equation (29) knowing

that yt | at,Ft−1 ∼ N(µy,t, σ
2
y,t) and using the Gaussian log-likelihood with these parameters.

Now as the extended model is very similar to the original model of Catania (2022) the derivation

will be very similar only now altered to include the negative lag. In state space representation

conditional on the information at t−m−1, Ft−m−1, the shocks will be jointly normally distributed

as 

ηt

εt+1

εt

εt−1
...

εt−m


| Ft−m−1 ∼ N





0

0

0

0
...

0


,



1 ρ−1 ρ0 ρ1 . . . ρm

ρ−1 1 0 0 0 0

ρ0 0 1 0 0 0

ρ1 0 0 1 0 0
...

...
...

...
. . .

...

ρm 0 0 0 . . . 1




. (38)

Now, conditional on the past shocks εt−1, . . . , εt−m implied by Ft−1,at−1 the joint normal distri-

bution of the current and future shocks ηt, εt+1, εt will be


ηt

εt+1

εt

 | Ft−1, ht−1, ht−2, . . . , ht−m ∼ N



∑m

j=1 ρjεt−j

0

0

 ,


1−
∑m

j=1 ρ
2
j ρ−1 ρ0

ρ−1 1 0

ρ0 0 1


 .

(39)

Declare the state to be at = εt+1, ht, ht−1, . . . , ht−m and the distribution of ht conditional on Ft−1,
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εt, ht−1, ht−2, . . . , ht−m defined as at−1 can be derived to be

ht | Ft−1,at−1 ∼ N
(
µ∗h,t, σ

∗
h,t

2
)
, where

µ∗h,t = c+ ϕht−1 + κ

m∑
j=1

ρj
yt−j − µ

exp (ht−j/2)
+ κ

ρ0
1−

∑m
j=1 ρ

2
j

εt, σ∗h,t = κ

√√√√1−
m∑
j=0

ρ2j ,
(40)

as ht is a linear transformation of ηt and using the conditional-Gaussian Lemma. The difference

with the original model is that the mean equation now contains the extra term κρ0εt and the sum

of the correlation parameters now starts at zero instead of one.

For the conditional distribution of εt, we use the multivariate conditional-Gaussian lemma such

that

εt | Ft−1, ht−1, ht−2, . . . , ht−m, ηt, εt+1 ∼ N
(
µ∗ε,t, σ

2∗
ε,t

)
, where

µ∗ε,t =
[
ρ0 0

] 1−
∑m

j=1 ρ
2
j ρ−1

ρ−1 1

−1 ht−c−ϕht−1

κ

εt+1

−
 ∑m

j=1 ρj
yt−j−µ

exp(ht−j/2)

0

 ,

σ∗ε,t =

√√√√√1−
[
ρ0 0

] 1−
∑m

j=1 ρ
2
j ρ−1

ρ−1 1

−1  ρ0

0

,
(41)

where η is replaced with ht−c−ϕht−1

κ and εt−j with
yt−j−µ

exp(ht−j/2)
for j = 1, 2, . . . ,m. Now Ft−1, ht−1, ht−2, . . . , ht−m,

ηt, εt+1 imply Ft−1,at.

The distribution of yt conditional on the state and available information will be N(µ∗y,t, σ
2∗
y,t)

with

µ∗y,t =µ+ exp(ht/2)µ∗ε,t

µ+
ρ0 exp(ht/2)

1−
∑m

j=1 ρ
2
j − ρ2−1

ht − c− ϕht−1
κ

−
m∑
j=1

ρj
yt−j − µ

exp(ht−j/2)

− ρ−1εt+1

 , (42)

and

σ∗y,t = exp(ht/2)σ∗ε,t,

= exp(ht/2)

√
1− ρ20

1−
∑m

j=1 ρ
2
j − ρ2−1

.
(43)

The differences between this distribution of yt and that of equation (34), (35) are the extra term

ρ−1εt+1 in (42) and the replacement of
∑m

j=1 ρ
2
j with

∑m
j=1 ρ

2
j − ρ2−1.
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Since the state at includes the future shock εt+1 the state transition density also changes to

p (at | at−1,Ft−1) =
1

σ∗h,t
√

2π
exp

−
(
ht − µ∗h,t

)2
2σ∗h,t

2

× m−1∏
j=1

δ (aj+1,t − aj,t−1)

× 1

σε,t+1

√
2π

exp

(
−(εt+1 − µε,t+1)

2

2σ2ε,t+1

)
.

(44)

as the element j + 1 in aj+1,t is equal to the j-th element in aj,t−1 for j = 1, . . . ,m − 1. The last

term comes from the distribution of εt+1 conditional on the past state at−1 and ht. Because ht and

εt+1 are correlated you can not draw them independently. Here we assume ht is drawn first and

then calculate the distribution of εt+1 given this ht. Since ht is implied by ηt this distribution can

be derived by using the Multivariate conditional-Gaussian lemma on equation (39),

εt+1 | Ft−1, ht, ht−1, ht−2, . . . , ht−m, ηt, εt ∼ N
(
µε,t+1, σ

2
ε,t+1

)
, where

µε,t+1 =
[
ρ−1 0

] 1−
∑m

j=1 ρ
2
j ρ0

ρ0 1

−1 ht−c−ϕht−1

κ

εt

−
 ∑m

j=1 ρj
yt−j−µ

exp(ht−j/2)

0

 ,

=
ρ−1

(
ht−c−ϕht−1

κ −
∑m

j=1 ρj
yt−j−µ

exp(ht−j/2)

)
− ρ−1ρ0εt

1−
∑m

j=0 ρ
2
j

,

σε,t+1 =

√√√√√1−
[
ρ−1 0

] 1−
∑m

j=1 ρ
2
j ρ0

ρ0 1

−1  ρ−1

0

,
=

√
1−

ρ2−1
1−

∑m
j=0 ρ

2
j

.

(45)

If ρ−1 = 0 then εt+1 conditional on the past state and ht it will simply be a standard normal

variable.

17



The optimisation to be solved will be

argmax
εt+1,ht,ht−1,...,ht−m−1

{` (yt | at,Ft−1) + ` (ht | at−1,Ft−1) + ` (εt+1 | at−1, ht,Ft−1) + Vt−1(at−1)} ,

argmax
εt+1,ht,ht−1,...,ht−m−1

{−1

2
log(2π)− log(σ∗y,t)−

(yt − µ∗y,t)2

2σ2∗y,t
+−1

2
log(2π)− log(σ∗h,t)−

(ht − µ∗h,t)2

2σ2∗h,t
+

− 1

2
log(2π)− log(σε,t+1)−

(εt+1 − µε,t+1)
2

2σ2ε,t+1

1

2
log det

{
It|t−1

}
− 1

2
log det

{
It|t
}
− 1

2

(
at|t − at|t−1

)′
It|t−1

(
at|t − at|t−1

)
},

(46)

instead of the usual optimisation in equation (16).

The optimisation step of equation (18) and the gradient and Hessian of equation (19) will now

be be slightly different as the state now also contains εt+1 and you will now also need to take the

derivatives with regarding to εt+1 leading to an extra dimension. This will also be the case for the

state transition density or seen as the log sum of its relevant parts, log{p(ht | at−1,Ft−1)p(εt+1 |

at−1, ht,Ft−1)} as it will also have an extra dimension. The altered optimisation and updating

steps can be found in Appendix B.

For the parameter estimation the distribution we use is the maximisation in equation (29) knowing

that yt | at,Ft−1 ∼ N(µ∗y,t, σ
2∗
y,t) and using the Gaussian log-likelihood with these parameters.

5 CSIR of Malik and Pitt (2011)

Particle filters are another relatively easy to implement and widely applicable methods to solve the

filtering and estimation problem. Particle filters are based on the principle of Bayesian updating,

combining a prior with a likelihood can construct the density of the state conditional on all available

information.

The most commonly used particle filter in econometric literature is that of Malik and Pitt (2011).

They develop the continuous sampling importance resampling (CSIR) method. This method is

popular as it handles a common drawback of particle filters, that of parameter estimation. This

is also the filter Catania (2022) used in their paper to obtain their results and will be a useful

benchmark to include.
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5.1 Filtering with SIR

The CSIR method is a continuous time extension of the sampling importance resampling (SIR)

algorithm of Gordon, Salmond, and Smith (1993). In this Section again it is assumed all densities

are indexed by the set of hyper-parameters θ which is suppressed for notational convenience.

A particle filter uses that the measurement density p(yt|at) can be calculated and one can simulate

from the Markov transition density p(at+1|at). Particle filters are based on recursively simulating

from the approximate prediction density

p(at+1 | Ft) =

∫
p(at+1 | at)p(at | Ft)dat, (47)

and then Bayesian updating as

p(at+1 | Ft+1) =
p(yt+1 | at+1)p(at+1 | Ft)

p(yt+1 | Ft+1)
. (48)

This results in a sample which is approximately distributed as the true filtering density

p(at+1 | Ft+1) ∝ p(yt+1 | at+1)

∫
p(at+1 | at)p(at | Ft)dat. (49)

To sample from this density, the SIR algorithm starts with a random set of a1t , . . . ,a
N
t “particles”

with probability masses π1t , ..., π
N
t drawn from p(at | Ft) then for each time point t in t = 0, . . . , T−1

follows the following algorithm

Algorithm 1 SIR

1: It will sample ãkt+1 ∼ p(at+1|akt ) for k = 1, ...., N

2: For each sample ãkt+1 calculate the normalised weights πkt+1 =
ωk
t+1∑N

i=1 ω
i
t+1

, where ωkt+1 =

p
(
yt+1 | ãkt+1

)
.

3: Sample (from the mixture) akt+1 ∼
∑N

k=1 π
k
t+1δ

(
at+1 − ãkt+1

)
for each k = 1, ..., N . With δ the

Dirac-delta function with mass at zero.

In this last step the original samples are resampled to achieve an equally weighted sample. Malik

and Pitt (2011) show that the first sample in step 1 will converge to samples from p(at+1|Ft) with

N large and the samples from step 3 converge to p(at+1|Ft+1). To obtain the filtered estimates of

the state now calculate the average of all particles k from step 3, at = 1
N

∑N
k=1 a

k
t .
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5.2 Parameter estimation and CSIR

For maximum-likelihood parameter estimation it is required to be able to calculate or approximate

the likelihood. Here the contribution to the likelihood of a single observation can be estimated with

the output of step 2 as p(yt | Ft−1) =
∫
p(yt | at, yt−1)p(at | Ft−1)dat ≈ 1

N

∑N
k=1 p(yt | akt , yt−1) =

1
N

∑N
k=1 ω

k
t and the log-likelihood will thus be log

(
1
N

∑N
k=1 ω

k
t

)
However the original SIR algorithm

has a discontinuous likelihood estimator as it uses the approximating empirical distribution function

(EDF)

F̂N (at+1) =
1
N

∑N
k=1 p

(
y | akt+1

)
I
(
akt+1 < at+1

)
1
N

∑N
i=1 p

(
y | ait+1

) (50)

in step 3 of SIR the samples come from

F̂N (at+1) =
N∑
k=0

πkI
(
at+1 − akt+1

)
. (51)

As this is not a continuous function common gradient-based methods to obtain parameter estimates

fail. To circumvent this issue Malik and Pitt (2011) introduce a new way to sample in step 3.

This only works for one-dimensional models so now considering the one dimensional state at+1,

to get a continuous likelihood-function they first sort all particles in ascending order such that

a1t+1 ≤ . . . ,≤ aNt+1 and replace the EDF with

F̃N (at+1) =
N∑
k=0

λkGk

(
at+1 − a(k)t+1

a
(k+1)
t+1 − a(k)t+1

)
, (52)

with a0t+1 = −∞ and aN+1
t+1 = ∞. Here λ0t+1 = π1t+1/2, λ

N
t+1 = πNt+1/2 and λkt+1 = (πk+1

t+1 + πkt+1)/2

for k = 1, . . . , N − 1 and Gk is a uniform distribution on [0,1]. To reduce sample impoverishment

they use a stratification scheme instead of generating a set of N uniform variates. Simply simulate

one u ∼ UID(0, 1) and generate

uj =
(j − 1) + u

N
(53)

for j = 1, . . . , N . And then follow Algorithm 2 to obtain the samples a1∗t+1, . . . , a
N∗
t+1 from F̃N (at+1).

This resampling scheme combined with the SIR algorithm yields the CSIR algorithm where the

likelihood is now approximated as a smooth function in θ and thus is also suited to a standard

maximum-likelihood estimator to obtain estimates for θ.
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Algorithm 2 Continuous resampling

Set s = 0, j = 1 and initialise a vector r1, . . . , rN .
for i=0,. . . , N do s = s + λit+1

while uj ≤ s, j ≤ N do rj = i
u∗j = (uj − (s− λit+1))/λ

i
t+1

j = j + 1 =0

for j=1,. . . , N do if rj = 0 then
set aj∗t+1 = a1t+1

if rj = N then
set aj∗t+1 = aNt+1

else
set aj∗t+1 = (ar

j+1

t+1 − ar
j

t+1)× u∗j + ar
j

t+1

5.3 Estimating the SV models with CSIR

Before one can estimate of the SV model in equation (6) it is required to derive several distributions

such as the unconditional distribution of the state, where the state at will simply be ht, and

ht ∼ N( c
1−ϕ ,

κ2

1−ϕ2 ). The state-transition distribution will be

ht | ht−1,Ft−1 ∼ N(µh,t, σ
2
h,t), where

µh,t = c+ ϕht−1,

σ2h,t = κ2.

(54)

And lastly

yt | ht,Ft−1 ∼ N(µy,t, σ
2
y,t), where

µy,t = µ, σ2y,t = exp(ht).
(55)

Plugging these three distributions into the CSIR algorithm will give the desired filtered densities

and allow for parameter estimation with the maximum likelihood estimator.

For the CSIR method to be able to estimate the model in equation (7) needs to be rewritten in
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Gaussian nonlinear state space representation with uncorrelated errors, as

yt − µ = exp

(
ht
2

)√1− ρ20
1−

∑m
j=1 ρ

2
j

ut +
ρ0

κ
(

1−
∑m

j=1 ρ
2
j

)
×

ht − c− ϕht−1 − κ m∑
j=1

ρj
yt−j

exp(ht−j/2)

 ,
ht =c+ ϕht−1 + κ

m∑
j=1

ρj
yt−j

exp(ht−j/2)
+ κ

√√√√1−
m∑
j=1

ρ2j$t,

(56)

where ut, $t are jointly standard Gaussian variables with E[ut$t] = 0. This can be done by using

that the disturbances η, ε are correlated and conditionally Gaussian as can be seen in equation

(30), ηt can be rewritten as
∑m

j=1 ρjεt−j +
√

1−
∑m

j=1 ρ
2
j$t and εt−j =

yt−j

exp(ht−j/2)
for j = 1, . . . ,m.

Since the correlation between εt and ηt equals ρ0 and εt is independent of εt−j , for j = 1, . . . ,m

Corr(εt, $t) = ρ0√
1−

∑m
j=1 ρ

2
j

and εt can thus be rewritten as εt =

√
1− ρ20

1−
∑m

j=1 ρ
2
j
ut+

ρ0
κ(1−

∑m
j=1 ρ

2
j)
$t

yielding the equation above.

The unconditional distribution of ht is ∼ N( c
1−ϕ , r

2) with

r2 =
κ2

1− ϕ2

1 + 2
m∑
s=1

ϕs
m∑
j=s

ρjρj−s

 . (57)

Now the distribution of yt given the state at = (ht, ht−1, . . . , ht−m) and the available information

Ft−1, will be N(µy,t, σ
2
y,t), where

µy,t = exp

(
ht
2

)
ρ0

κ
(

1−
∑m

j=1 ρ
2
j

) ×
ht − c− ϕht−1 − κ m∑

j=1

ρj
yt−j

exp(ht−j/2)

 , (58)

and

σ2y,t = exp(ht)

(
1− ρ20

1−
∑m

j=1 ρ
2
j

)
. (59)

And (ht | at−1,Ft−1) ∼ N(µh,t, σ
2
h,t) with

µh,t = c+ ϕht−1 + κ

m∑
j=1

ρj
yt−j

exp(ht−j/2)
, (60)
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and

σ2h,t = κ2

1−
m∑
j=1

ρ2j

 . (61)

So the CSIR algorithm will look as follows,

Algorithm 3 CSIR

For k = 1 : N to obtain the samples ak0 = (hk0, h
k
−1, . . . , h

k
−m)′ draw from the unconditional

distribution of h ∼ N( c
1−ϕ , r

2).
For t = 1 : T − 1:
Samples akt ∼ p(at | Ft) are known for k = 1, . . . , N .
=0

1: For k = 1 : N , sample hkt+1 from p(ht+1 | akt ,Ft) and set the j + 1-th element of akt+1 equal to
the j-th element of akt for j = 1, . . . ,m− 1.

2: For k = 1 : N , calculate the normalised weights as πkt+1 =
ωk
t+1∑N

i=1 ω
i
t+1

, where ωkt+1 =

p
(
yt+1 | akt+1,Ft

)
.

3: For k = 1 : N , follow Algorithm 2

6 Simulation study

To evaluate the performance of the filtering and estimation methods, we first compare the mean

absolute errors (MAE) of the one-step ahead predictions of the state and parameter estimates for

the model of Section 3.2 with two inter-temporal leverage effects.

We simulate our data with the parameters c = 0, ϕ = 0.975 and κ = 0.1, ρ0 = −0.30 , ρ1 = −0.70

and ρ2 = 0.30. These values are similar to those used in past simulation studies or found in empir-

ical applications. We use 20 samples each containing 5000 simulated data points. For the Bellman

filter we set the optimisation steps to be at most 100 and for the particle filter we set N = 5000 as

more particles do not lead to an enough increase of performance to warrant the extra computational

time required.

For each sample we split the data into two parts, where we use the first half to train the model

and estimate the parameters and the second half to calculate the MAE of the one-step-ahead pre-

dictions. On top of this, we also calculate the MAE based on the true parameter to investigate the

effect of filtering inaccuracy.

As we see in Table 1, the Bellman filter delivers stable and accurate parameter estimations apart

from the estimated variance of the volatility shock κ. This parameter is consistently estimated too
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low as can be seen by the small standard deviation. The estimated leverage effect parameters are

accurate compared to those of the particle filter, but the ρ2 estimate is much too low. Also all

estimates are pretty unstable as can be seen by the large standard deviation in the sample and

numerical standard estimates.

There are differences between the Bellman filter and the particle filter, the particle filter estimate

of the persistence in the log-volatility equation ϕ is less accurate and has an standard deviation

ten times as high as that of the Bellman filter. The leverage effect estimates are also inaccurate

with a small standard deviation, which would indicate the particle filter estimates do not vary a

lot across samples, however their mean is far from the true value. The particle filter also produces

in most (∼ 80%) cases a singular and non-invertible Hessian matrix as the likelihood function can

be not perfectly smooth, which makes it impossible to calculate the numerical standard errors.

From a filtering aspect using the true parameters the Bellman filter produces slightly better one-

step-ahead predictions of the log-volatility at more than half of the filtering time of the particle

filter. This difference in computational time becomes even more prominent when estimating the

parameters as the particle filter its estimation time is almost three times as large as that of the

Bellman filter. This limits the amount of particles that we can use even though an even larger

amount of particles may be needed to increase the accuracy of the predictions.

This result is mostly in line with the results in Lange (2020) where he finds that using the Bellman

filter to obtain parameter estimates leads to better one-step-ahead predictions and more accurate

parameter estimates.

Comparing the numerical standard errors with the standard deviation of the sample means hints

at incorrectly calculated standard errors in Catania (2022) as he uses the particle filter to obtain

the results. This could be explained by looking at the disadvantages of using the CSIR method

for multivariate state estimation. Malik and Pitt (2011) suggest a univariate approach to obtain a

continuous likelihood function that maximises only the first element in the current state and does

not update the past estimates based on the new information, it only updates the first element of the

current state. The resampling step is introduced to ensure a continuous likelihood but this does not

exactly do as promised as this function will not be perfectly smooth and can contain kinks in the

likelihood. A non-perfectly smooth function could lead to poorly estimated Hessian matrices when

they are evaluated near kinks or on linear pieces causing the negative Hessian to not be invertible

or equal to zero. This would lead to inaccurate standard errors calculated by the CSIR method as

they use a piecewise linear approximation to calculate the standard errors. This combined with the
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fact that gradient-based optimisers could fail for a non-perfectly smooth function causing the user

to resort to non-gradient based optimisers which have a considerably bigger computational burden.

This most likely plays a big part in the difference in the computational times seen in Table 1.

Table 1: Average parameters estimates with standard deviations and the average of numerical
standard errors, MAE of the one-step-ahead predictions and the computational time taken for data
simulated from the model in (7) with m = 2.

Parameters MAE (true) MAE (est) Time taken (seconds)
µ c ϕ κ ρ0 ρ1 ρ2 ht|t−1 ht|t−1 Filtering Estimation

True value 0.05 0 0.975 0.1 -0.30 -0.70 0.30 ht ht
Bellman filter 0.0420 0.0002 0.9632 0.0443 -0.2787 -0.6496 0.0056 0.2064 0.2526 2.2631 893.06
St dev 0.0261 0.0018 0.0339 0.0149 0.3049 0.2956 0.1374 0.0181 0.0304 0.1951 562.44
Num St dev 0.0230 0.0015 0.0095 0.0216 0.3195 0.4926 0.6594

Particle filter 0.0421 0.0003 0.9278 0.0507 -0.1495 -0.0017 -0.1668 0.2066 0.2840 5.2312 2104.6
St dev 0.0081 0.0160 0.3047 0.0753 0.0361 0.0371 0.1651 0.0186 0.0338 0.5608 865.02

Num st dev 0.0133 0.0010 0.0074 0.0096 0.0247 0.0242 0.0229

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors are
given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian
matrix if it is invertible otherwise it will be ignored for calculating the mean (For the particle filter
80% of the cases). For the particle filter the amount of particles is N = 5000 and the Bellman filter has
at most 100 optimisation steps.
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Since the DGP is not always known in advance we investigate the results of estimating an

incorrectly specified model that does not exactly capture the reality. To do so both filters are used

to estimate models based on simulated data generated from the following DGPs:

• The basic SV model in equation 6,

• The SV model in equation (7) with m = 0 and ρ0 = −0.7, such that it is equal to the

asymmetric SV model of Jacquier et al. (2004), that only contains a contemporaneous leverage

effect,

• The SV model of Catania (2022) with m = 1 but ρ0 = 0 and ρ1 = −0.7 to get the asymmetric

SV model Harvey and Shephard (1996) with only an inter-temporal leverage effect,

• The SV model of Catania (2022) with m = 1, ρ0 = −0.3 and ρ1 = −0.7,

• The extended SV model found in equation (10) with m = 0, ρ−1 = −0.1 and ρ0 = −0.7,

• The extended SV model now with m = 1, ρ−1 = −0.1, ρ0 = −0.3 and ρ1 = −0.7,

where all again use µ = 0.05 c = 0, ϕ = 0.975 and κ = 0.1.

For each DGP first the Bellman filter is used to estimate the parameters of the Catania model

of Section 3.2 with m = 0, 1, 2 and for m = 1 with ρ0 = 0. The same is then repeated using the

particle filter.

The parameter estimates in Tables 2:7 are the means of the estimated parameters for each sample

based on the first 2500 observations. The last 2500 observations are used to compute the MAE of

the predicted state for each sample based on the estimated parameters.

For the basic SV model of equation (6) the Bellman filter delivers slightly more accurate param-

eters estimates and also provides a better prediction of the log-volatility as can be seen in Table 2.

All models with different leverage effects, apart from the one with only a contemporaneous leverage

effect, have similar parameter estimates to those found using the correctly specified model without

any leverage effects. The estimates of the leverage effects are estimated to be very small which is as

expected as they should be zero. They do have very large numerical standard errors indicating that

the estimates are unstable. The model with the contemporaneous timing estimates the median of

the return µ to be too low and the persistence of the log-volatility process ϕ also too low, on top
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of that it also assigns an average ρ0 of 0.2033 which is much higher than expected. But because it

does estimate the level c and the variance of the volatility shock κ the most accurate it surprisingly

performs the second best of all models considering the MAE of the predicted log-volatility. The

correctly specified model performs the best.

The estimates using the particle filter do differ from those obtained with the Bellman filter, µ is

estimated too high for all models and c and ϕ estimates are slightly more inaccurate. The main

difference is in the κ and leverage effect estimates. The variance of the volatility shock κ estimate is

even more inaccurate, where the model with the contemporaneous leverage timing even estimates

a value that differs more than 80% with its true value. The leverage effect parameters have much

larger values than expected as they are not close to 0 but can reach values up to 0.2561. This all

results in a worse MAE of log-volatility predictions than with the Bellman filter. Considering the

MAE of the predictions, the SV model of (7) with m = 1 performs the best which is not what we

expected as this is not the correctly specified model. Even more surprising is that the correctly

specified model has the second worst MAE of the predictive log-volatility, which is most likely a

result of the poor parameter estimation of κ.

Table 2: Bellman filter parameter estimates and MAE for simulated data from the basic SV model
in equation (6).

Parameter estimates MAE
µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ht|t−1

True value 0.05 0 0.975 0.1 - - - - ht
Bellman filter 0.0525 0.0014 0.9637 0.0624 - - - - 0.3144

(0.0194) (0.0021) (0.0278) (0.0304) - - - - [0.0306]

0.0339 -0.0004 0.9558 0.0682 - 0.2033 - - 0.3158
(0.0209) (0.0016) (0.0189) (0.0224) - (0.1687) - - [0.0305]

0.0568 0.0009 0.9695 0.0533 - - 0.0215 - 0.3168
(0.0205) (0.0016) (0.0193) (0.0229) - - (0.4490) - [0.0309]

0.0570 0.0008 0.9722 0.0517 - -0.0360 0.0430 - 0.3165
(0.0225) (0.0016) (0.0201) (0.0240) - (0.2886) (0.3419) - [0.0302]

0.0571 0.0008 0.9725 0.0565 - -0.0222 0.0621 -0.03117 0.3176
(0.0222) (0.0015) (0.0183) (0.0302) - (0.2213) (0.4490) (0.4518) [0.0322]

Particle filter 0.0799 -0.0006 0.9899 0.0210 - - - - 0.3553
(0.0194) (0.0006) (0.0064) (0.0092) - - - - [0.0381]

0.0794 -0.0003 0.9946 0.0155 - 0.1921 - - 0.3559
(0.0193) (0.0004) (0.0075) (0.0075) - (0.1921) - - [0.0384]

0.0780 -0.0019 0.9705 0.0430 - - 0.2561 - 0.3540
(0.0188) (0.0014) (0.0116) (0.0120) - - (0.1428) - [0.0394]

0.0854 -0.0029 0.9559 0.0602 - -0.1355 0.1240 - 0.3505
(0.0152) (0.0019) (0.0069) (0.0077) - (0.0168) (0.0412) - [0.0368]

0.0869 -0.0022 0.9652 0.0526 - -0.2088 0.0544 0.1433 0.3531
(0.0122) (0.0014) (0.0065) (0.0071) - (0.0128) (0.0335) (0.0303) [0.0354]

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors
are given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian matrix
if it is invertible otherwise it will be ignored for calculating the mean. For the particle filter the amount of
particles is N = 1000 and the Bellman filter has at most 100 optimisation steps.
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Parameter estimates for the model of Jacquier et al. (2004) with only a contemporaneous corre-

lation found in Table 3 are more similar using the different filtering and estimation methods. Both

estimate the µ parameter too low with the particle filter estimating it even lower. The Bellman

filter provides accurate c and ϕ estimates but they are slightly less accurate for the correctly spec-

ified model. The particle filter also performs well for these parameters with only one less accurate

estimate for ϕ for the simple SV model.

The estimation of κ and the leverage effect parameters is again the most troublesome. The Bellman

filter estimates the κ parameter ∼ 50% too low for all models. The particle filter performs even

worse, for the simple model its estimate is close to zero and all others are around 0.3.

The ρ0 estimate in the correctly specified model estimated with the Bellman filter is less than 0.01

of its true value compared to the 0.15 when estimated with the particle filter. When the leverage

effect timings are incorrectly specified the methods do find large correlations for the incorrect tim-

ings. For the Bellman filter these sum up to the true value of ρ0. For the particle filter this pattern

can also be seen although a little less close to the true value. Apart from the model with only an

inter-temporal correlation, where both methods assign a value of less than 0.05 of the true value of

ρ0 to ρ1.

The two estimation methods do differ more considering the MAE of the predicted log-volatility,

all models estimated with the Bellman filter outperform the best performing model estimated with

the particle filter. This best performing model is those without leverage effects. For the Bellman

filter estimated models the models with leverage effects do perform much better than the simple

model without the leverage effects. But the best performing model is not the correctly specified

one but the one with both a contemporaneous and one inter-temporal leverage effect, possibly due

to the less accurate estimates of c and ϕ.
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Table 3: Bellman filter parameter estimates and MAE for simulated data from the asymmetric SV
model of Jacquier et al. (2004) found in equation (7) when setting m = 0.

Parameter estimates
µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ht|t−1

True value 0.05 0 0.975 0.1 - -0.7 - - ht
Bellman filter 0.0342 0.0006 0.9707 0.0530 - - - - 0.3239

(0.0192) (0.0014) (0.0178) (0.0211) - - - - [0.0287]

0.0407 0.0040 0.9603 0.0445 - -0.6916 - - 0.2905
(0.0200) (0.0015) (0.0109) (0.0141) - (0.2099) - - [0.0438]

0.0280 0.0002 0.9738 0.0468 - - -0.6959 - 0.2815
(0.0201) (0.0012) (0.0104) (0.0133) - - (0.1717) - [0.0307]

0.0362 0.0001 0.9713 0.0486 - -0.4898 -0.2861 - 0.2798
(0.0222) (0.0015) (0.0138) (0.0165) - (0.2629) (0.2763) - [0.0297]

0.0362 0.0001 0.9709 0.0506 - -0.4845 -0.2131 -0.0134 0.2808
(0.0236) (0.0017) (0.0227) (0.0370) - (0.4933) (0.7692) (0.9328) [0.0306]

Particle filter 0.0191 -0.0000 0.9971 0.0067 - - - - 0.3557
(0.0200) (0.0002) (0.0090) (0.0123) - - - - [0.0296]

0.0239 -0.0004 0.9734 0.0355 - -0.5532 - - 0.3602
(0.0063) (0.0009) (0.0035) (0.0038) - (0.0059) - - [0.0276]

0.0164 -0.0002 0.9811 0.0263 - - -0.6983 - 0.3599
(0.0198) (0.0015) (0.0079) (0.0122) - - (0.1129) - [0.0290]

0.0243 -0.0003 0.9743 0.0337 - -0.5215 -0.0896 - 0.3602
(0.0079) (0.0009) (0.0038) (0.0041) - (0.0090) (0.0104) - [0.0280]

0.0196 -0.0002 0.9760 0.0313 - -0.3861 -0.3374 0.0856 0.3593
(0.0078) (0.0008) (0.0039) (0.0045) - (0.0090) (0.0109) (0.0105) [0.0293]

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors
are given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian matrix
if it is invertible otherwise it will be ignored for calculating the mean. For the particle filter the amount of
particles is N = 1000 and the Bellman filter has at most 100 optimisation steps.

Table 4 shows that for the asymmetric model of Harvey and Shephard (1996) the Bellman filter

delivers accurate parameter estimates for µ, c and ϕ and the κ estimates are again about 50% too

low. For the correctly specified model the correlation estimates are fairly accurate, -0.7397 against

the true value of -0.7. The models with multiple leverage effects assign a value a little smaller

than -0.7 to ρ1 but compensate for this by assigning a weight of about -0.1 to ρ0. When ρ2 is also

estimated it correctly get assigned a small value however with a huge numerical standard error of

almost 1.3. This large standard error causes ρ1 to also have a standard error three times larger than

when it is estimated without ρ2. So while the average estimates of ρ0, ρ1 remain roughly the same

and ρ2 is also estimated close to its true value they now have large standard errors. In the model

with only the contemporaneous leverage effect we now find a large value for ρ0 = −0.6608 similar to

what happened before when the model with only one inter-temporal leverage was estimated on the

data generated from the contemporaneous model, only now reversed. Here the correctly specified

model does predict the log-volatility the best according to its MAE.

The particle filter estimates µ and ϕ to be a little too high and produces accurate c estimates.

For the κ parameter the estimates are again too low, for all models the estimates are more than
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50% too small. The correlation estimates show a similar pattern to that of the Bellman filter only

they are less accurate in estimating the true value of ρ1 and estimate it too big, apart from the

model of equation (7) with m = 2 with divides the effect over the three correlation parameters as

ρ0 = −0.1337, ρ1 = −0.4829 and ρ2 = −0.3836. However the simple SV model without leverage

effects does deliver the best log-volatility predictions according to the MAE.

Parameter estimates in Table 5 based on data simulated from the SV model of Catania with

m = 1 show a similar pattern as found before. Fairly accurate parameter predictions for c and

ϕ. Estimated κ values that are much too low, again underestimating the variance of the volatility

shock. Here the particle filter also estimates µ to be too low and produces on average inaccurate

leverage effect estimates. When estimating the correctly specified model the filter estimates ρ0 =

0.0822, ρ1 = −0.8981 when the true values are ρ0 = −0.3 and ρ1 = −0.7. When ρ2 is also estimated

it correctly get assigned a small value but the estimates of ρ0, ρ1 remain roughly the same. This

is also the case for the Bellman filter estimates only its ρ0 = −0.2475, ρ1 = −0.6737 estimates in

the correctly specified model are much closer to their true values. The estimated leverage effect

parameters in the Catania model with m = 2 are also fairly accurate and even produce the best

forecast of the log-volatility according to the MAE, possibly to the more precise estimates of c and

ϕ. For the particle filter the best performing model once again is the simple SV model without

leverage effects.
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Table 4: Bellman filter parameter estimates and MAE for simulated data from the asymmetric SV
model of Harvey and Shephard (1996) found in equation (7) setting m = 1 and ρ0 = 0.

Parameter estimates
µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ht|t−1

True value 0.05 0 0.975 0.1 - - -0.7 - ht
Bellman filter 0.0588 0.0004 0.9685 0.0597 - - - - 0.3180

(0.0191) (0.0018) (0.0185) (0.0234) - - - - [0.0208]

0.0634 0.0002 0.9780 0.0432 - -0.6608 - - 0.2802
(0.0204) (0.0012) (0.0103) (0.0136) - (0.1838) - - [0.0223]

0.0529 0.0001 0.9734 0.0524 - - -0.7397 - 0.2664
(0.0200) (0.0014) (0.0115) (0.0151) - - (0.1559) - [0.0195]

0.0541 0.0000 0.9734 0.0512 - -0.1120 -0.6608 - 0.2689
(0.0258) (0.0016) (0.0130) (0.0205) - (0.3587) (0.2815) - [0.0233]

0.0545 0.0000 0.9742 0.0538 - -0.1007 -0.6532 -0.0111 0.2691
(0.0224) (0.0014) (0.0158) (0.0523) - (0.2759) (0.8796) (1.2965) [0.0204]

Particle filter 0.0689 0.0003 0.9816 0.0454 - - - - 0.3607
(0.0198) (0.0010) (0.080) (0.0115) - - - - [0.0252]

0.0734 0.0003 0.9875 0.0412 - -0.6584 - - 0.3741
(0.0026) (0.0007) (0.0017) (0.0020) - (0.0025) - - [0.0347]

0.0586 0.0003 0.9875 0.0460 - - -0.8271 - 0.3850
(0.0196) (0.0010) (0.0043) (0.0089) - - (0.0551) - [0.0414]

0.0592 0.0003 0.9878 0.0461 - -0.0583 -0.7780 - 0.3849
(0.0139) (0.0008) (0.0035) (0.0068) - (0.0167) (0.0215) - [0.0421]

0.0662 0.0003 0.9876 0.0403 - -0.1337 -0.4829 -0.3294 0.3836
(0.0608) (0.0006) (0.0024) (0.0038) - (0.0066) (0.0078) (0.0098) [0.0420]

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors
are given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian matrix
if it is invertible otherwise it will be ignored for calculating the mean. For the particle filter the amount
of particles is N = 1000 and the Bellman filter has at most 100 optimisation steps.

Table 5: Bellman filter parameter estimates and MAE for simulated data from the SV model in
equation (7) with m = 1.

Parameter estimates
µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ht|t−1

True value 0.05 0 0.975 0.1 - -0.3 -0.7 - ht
Bellman filter 0.0532 0.0006 0.9530 0.0824 - - - - 0.3902

(0.0188) (0.0030) (0.0412) (0.0393) - - - - [0.0270]

0.0634 0.0002 0.9780 0.0432 - -0.6608 - - 0.3183
(0.0204) (0.0012) (0.0100) (0.0138) - (0.1947) - - [0.0215]

0.0398 -0.0001 0.9718 0.0595 - - -0.8773 - 0.2994
(0.0198) (0.0015) (0.0079) (0.0122) - - (0.1129) - [0.0305]

0.0433 -0.0049 0.9646 0.0558 - -0.2475 -0.6737 - 0.3174
(0.0190) (0.0016) (0.0086) (0.0144) - (0.1973) (0.1316) - [0.0923]

0.0448 -0.0001 0.9719 0.0593 - -0.2460 -0.6482 -0.0257 0.2987
(0.0196) (0.0015) (0.0080) (0.0333) - (0.1911) (0.2021) (0.3794) [0.0315]

Particle filter 0.0387 0.0008 0.9725 0.0663 - - - - 0.4506
(0.0203) (0.0016) (0.0090) (0.0120) - - - - [0.0311]

0.0152 0.0019 0.9752 0.0519 - -0.7222 - - 0.4539
(0.0032) (0.0009) (0.0022) (0.0022) - (0.0034) - - [0.0399]

0.0308 0.0007 0.9668 0.0634 - - -0.8792 - 0.4621
(0.0198) (0.0016) (0.0072) (0.0103) - - (0.0566) - [0.0462]

0.0241 0.0009 0.9664 0.0696 - 0.0822 -0.8981 - 0.4618
(0.0160) (0.0014) (0.0059) (0.0082) - (0.0202) (0.0250) - [0.0466]

0.0266 0.0008 0.9677 0.0727 - 0.0568 -0.8203 -0.0380 0.4615
(0.0094) (0.0012) (0.0046) (0.0065) - (0.0144) (0.0132) (0.0285) [0.0463]

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors
are given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian matrix
if it is invertible otherwise it will be ignored for calculating the mean. For the particle filter the amount of
particles is N = 1000 and the Bellman filter has at most 100 optimisation steps.
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Introducing a relation between the future return shock and current volatility shock into the

model used to generate the data does have an effect on the estimation results. In Tables 6 and 7

these results can be seen to differ from the results in Tables 3 and 5. The log-volatility level and

persistence parameters c and ϕ are estimated just as well as before apart from the c estimate for

the model with two inter-temporal leverage effects estimated with the Bellman filter. The median

of the return µ and variance of the volatility shock κ are even estimated slightly better. The par-

ticle filter κ estimates are even much better than those estimated for the model without ρ−1. The

leverage effect estimates are different now though. Like we could see before the effect of differently

timed leverage effects that are present but excluded from the model get compensated by bigger

leverage effects on the other timings closest in timing to it. This is exactly what can be seen here,

all estimates are bigger to account for the not modelled ρ−1 = −0.1. For the models with m = 1

and m = 2 the ρ0 estimate is now bigger and closer to its true value but still not big enough, ρ1

is still estimated close to 0.14 while this should be zero. The leverage effect estimates for m = 2

are small, only 0.0977 and 0.0517 of their true values but do come with huge numerical standard

errors. Indicating these estimates are highly unstable.

The simple SV model remains the best at predicting the log-volatility when the particle filter is the

estimation method, although the MAE will be 0.4084 instead of 0.3557 which it is when estimated

on the same model with ρ−1 = 0. If ρ−1 6= 0 the particle filter log-volatility predictions worsen a

substantial amount.

For the Bellman filter a different model now performs the best, the model containing only one

inter-temporal relation. Another interesting difference can be seen for the model of Catania with

m = 2 which now performs horribly at forecasting the log-volatility, more than doubling the MSE

of 0.2808 to 0.6316, where the most likely explanation is the estimate of c = 0.0514 which is very

large compared to the typical estimates of 0.0004.

Using data generated from the extended model with m = 1 we find a similar pattern, µ, c, ϕ and κ

are estimated with the same level of accuracy or sometimes more accurately than when estimated

with ρ−1 = 0 even though they do not model ρ−1 explicitly. The main difference lies in the es-

timated leverage effects and predictive log-volatility performance. The estimated leverage effects

with the Bellman filter are fairly similar only now the values of ρ0 are more negative, around -0.05

up till -0.11. The best performing model according to the MSE is now the model with only one

inter-temporal relation. Using the particle filter to estimate the models again results in choosing

the simple SV model as the preferred model for predicting the log-volatility.
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Table 6: Bellman filter parameter estimates and MAE for simulated data from the extended SV
model in equation (10) with m = 0.

Parameter estimates
µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ht|t−1

True value 0.05 0 0.975 0.1 -0.1 -0.7 - - ht
Bellman filter 0.0422 0.0005 0.9616 0.0706 - - - - 0.3445

(0.0188) (0.0021) (0.0237) (0.0281) - - - - [0.0347]

0.0565 0.0008 0.9702 0.0524 - -0.7726 - - 0.3077
(0.0195) (0.0016) (0.0083) (0.0119) - (0.1588) - - [0.0807]

0.0295 -0.0004 0.9669 0.0597 - - -0.7521 - 0.2876
(0.0199) (0.0016) (0.0113) (0.0142) - - (0.1328) - [0.0341]

0.0466 -0.0004 0.9689 0.0552 - -0.6462 -0.1833 - 0.2893
(0.0221) (0.0017) (0.0112) (0.0161) - (0.2831) (0.3469) - [0.0344]

0.0524 0.0514 0.9635 0.0607 - -0.6371 -0.0977 -0.0517 0.6316
(0.0209) (0.0015) (0.0122) (0.0249) - (0.2941) (1.3780) (1.1967) [1.5415]

Particle filter 0.0292 0.0001 0.9745 0.0680 - - - - 0.4084
(0.0194) (0.0015) (0.0088) (0.0136) - - - - [0.0533]

0.0362 0.0000 0.9754 0.0690 - -0.6223 - - 0.4190
(0.0041) (0.0013) (0.0031) (0.0034) - (0.0042) - - [0.0560]

0.0176 0.0001 0.9801 0.0554 - - -0.6006 - 0.4159
(0.0197) (0.0012) (0.0067) (0.0112) - - (0.0907) - [0.0555]

0.0412 0.0001 0.9758 0.0782 - -0.6658 0.1390 - 0.4172
(0.0023) (0.0010) (0.0017) (0.0020) - (0.0023) (0.0026) - [0.0555]

0.0416 0.0000 0.9756 0.0811 - -0.6537 0.1380 0.0045 0.4171
(0.0024) (0.0010) (0.0015) (0.0015) - (0.0018) (0.0019) (0.0026) [0.0560]

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors
are given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian matrix
if it is invertible otherwise it will be ignored for calculating the mean. For the particle filter the amount of
particles is N = 1000 and the Bellman filter has at most 100 optimisation steps.
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Table 7: Bellman filter parameter estimates and MAE for simulated data from the extended SV
model in equation (10) with m = 1.

Parameter estimates
µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ht|t−1

True value 0.05 0 0.975 0.1 -0.1 -0.3 -0.7 - ht
Bellman filter 0.0558 0.0007 0.9691 0.0716 - - - - 0.3961

(0.0187) (0.0019) (0.0152) (0.0225) - - - - [0.0301]

0.0611 0.0000 0.9750 0.0582 - -0.7758 - - 0.3186
(0.0191) (0.0014) (0.0053) (0.0104) - (0.1260) - - [0.0279]

0.0441 -0.0003 0.9717 0.0648 - - -0.8502 - 0.3001
(0.0198) (0.0016) (0.0080) (0.0125) - - (0.0992) - [0.0289]

0.0508 -0.0003 0.9718 0.0598 - -0.3085 -0.6367 - 0.3016
(0.0217) (0.0017) (0.0086) (0.0158) - (0.2285) (0.1797) - [0.0283]

0.0493 -0.0002 0.9717 0.0636 - -0.3014 -0.6507 0.0469 0.3010
(0.0218) (0.0017) (0.0097) (0.0421) - (0.2924) (0.2000) (0.6069) [0.0273]

Particle filter 0.0427 0.0008 0.9694 0.0927 - - - - 0.4780
(0.0202) (0.0020) (0.0079) (0.0126) - - - - [0.0397]

0.0526 0.0005 0.9818 0.0593 - -0.8099 - - 0.4970
(0.0027) (0.0008) (0.0017) (0.0026) - (0.0029) - - [0.0509]

0.0303 0.0005 0.9834 0.0485 - - -0.9710 - 0.5046
(0.0199) (0.0011) (0.0031) (0.0064) - - (0.0453) - [0.0566]

0.0481 0.0004 0.9822 0.0488 - -0.6516 -0.3668 - 0.4994
(0.0027) (0.0007) (0.0018) (0.0023) - (0.0026) (0.0023) - [0.0539]

0.0449 0.0005 0.9818 0.0456 - -0.6733 -0.2595 -0.1829 0.5006
(0.0025) (0.0007) (0.0015) (0.0014) - (0.0021) (0.0021) (0.0017) [0.0532]

Note: MAE = mean absolute error. Given are the averages of 20 samples of 5000 simulated data points
where the first 2500 observations are used to estimate the parameters and are then used to calculate the
MAE of the predicted one-step-ahead state for the last 2500 observations. Two types of standard errors
are given, the first is standard deviation for means of the samples and the second is a numerical standard
deviation calculated by taking the average of the square root of the diagonal of the inverted Hessian matrix
if it is invertible otherwise it will be ignored for calculating the mean. For the particle filter the amount of
particles is N = 1000 and the Bellman filter has at most 100 optimisation steps.

This simulation study shows that the Bellman filter can generally estimate parameters as ac-

curately as the particle filter with a much smaller computational burden. While both methods

consistently underestimate κ, the Bellman filter does estimate the µ and leverage effect parameters

more accurately than the particle filter. Both methods estimate big values for the incorrect timing

of the leverage effect when the model is misspecified, when the timing from which the leverage

effect follows is not included in the model the filters assign big values to the timing that is the

closest to the true timing. If too many lags are included the effect gets divided over the multiple

legs instead of identifying the correct timing and assigning all other leverage effects to be zero.

The particle filter also fails to estimate the leverage effect parameters accurately even when the

model is correctly specified. This results in poorly predicted log-volatility if these leverage effects

are included. From this perspective the preferred model will be that without any leverage effects

for all generated data sets apart from the data actually generated from the SV model without a

leverage effect. Then the preferred model would be that of Catania with a contemporaneous and

one inter-temporal leverage effect. This illustrates that we should be careful drawing conclusions

from the leverage parameter estimates found with the particle filter.
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When the model is correctly specified the Bellman filter leverage estimates are reasonably accu-

rate. In the presence of model misspecification when not enough leverage effects are included this

is compensated by assigning a bigger effect to the leverage effect of a different timing. The leverage

effect estimates do have a large numerical standard error so while on average they are accurate they

are also unstable especially when more inter-temporal lags are added. This needs to be taken into

consideration when these estimates are interpreted. Because of the estimation method used in the

particle filter it often is unable to calculate the numerical standard errors or incorrectly calculates

them, because of this these values do not have a lot of information on the actual standard errors

so we can not draw a similar conclusion as done for the Bellman filter.

From a log-volatility predictive point of view the Bellman is also the preferred method of estimation,

apart from the poorly estimated model of Catania with m = 2 in Table 6, the worst performing

model estimated with the Bellman filter always performs better than the best performing model

estimated with the particle filter.

7 Empirical study

The estimation and predictive performance of the models that was established in the previous

section show that the parameter estimates heavily depend on the underlying DGP and choosing

the correct model to estimate the data. Particularly the leverage effects can have large but poorly

estimated values while in reality their value should be zero due to the misspecification of the leverage

effects in the model. To reduce this risk of model misspecification multiple models are estimated,

one without leverage effects and ones that have a contemporaneous leverage effect and up to nine

inter-temporal leverage effects.

7.1 Data

For the empirical study we use daily logarithmic returns of two similar financial markets, the

Standard & Poor’s 500 (S&P 500) and the National Association of Securities Dealers Automated

Quotations (Nasdaq) Composite. As they are both based in the US they are expected to share

somewhat similar characteristics and should have similar parameter estimates and patterns in the

data if the estimator performs well. Another advantage of using US data is that it is the biggest

stock market in the world and thus covers a large part of the market capitalisation.

Data ranges from a time period of the 3rd of January 2000 up until the 31st of December 2019 and
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will be retrieved from the Oxford-Man Institute of Quantitative Finance. This data contains 5013

data points.

The first 4013 observations of the data set are used to estimate the parameters and the remain-

ing data is considered the out-of-sample data for which the model tries to predict the volatility.

Although we do not know the exact volatility to compare the predictions with we can use a proxy,

that of squared returns. In econometric literature this is common practice even though this is

generally a noisy estimate. The volatility estimates of the Bellman filter for the model of Catania

(2022) are obtained by using the first element of the predicted state ht|t−1 to then calculate the

predicted volatility as σ̂2t = exp(ht|t−1). For the extended model ht|t−1 is the second element of the

state but follows the same calculation from there. For the particle filter the estimated volatility is

also calculated as σ̂2t = exp(ht|t−1). The performance of the predictions is measured by taking the

average of the mean squared error MSE = 1
T

∑5013
t=4014(σ̂

2
t − y2t )2.

As squared returns are not a perfect volatility proxy the same research is performed with realised

volatility (Andersen, Bollerslev, Diebold, & Ebens, 2001) now as the proxy for the “true” volatility.

The realised volatility is retrieved from the Oxford-Man Institute of Quantitative Finance which

calculates the daily 5-min Sub-sampled realised volatility. The realised volatility is sub-sampled

into 5 minute samples and then averaged out to reduce the effect of modest amounts of noise present

in the prices of assets.

To help pick the preferred model we calculate the Bayesian Information Criterion (BIC) for each

model. This criterion reduces the risk of overfitting by introducing a penalty term for the number

of parameters in the model. It is calculated as, BIC = −2 ∗LogLik + ln T ∗np, where LogLik is the

log-likelihood and np is the number of parameters in the model. The preferred model is the model

with the lowest BIC.

7.2 Parameter estimates

The parameter estimates using the Nasdaq data are given in Table 8. They indicate that the

leverage effect and volatility feedback do play a big role in financial returns. We find that the

model of Catania and the extended model estimated with the Bellman filter find similar values

for µ ranging from 0.0243 to 0.0450 and for ϕ ranging from 0.9837 to 0.9942, which is very close

to one indicating a high persistence in the log-volatility process. Estimating the extended model

instead of the Catania model does result in different level of the log-volatility c estimates, with the
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Catania model (excluding the model specification without leverage effects) having estimates that

are fairly stable for different inter-temporal lags.The lowest estimate being 0.0019 and the highest

0.0039. This is not the case for the extended model where the values fluctuate between -0.0043

and 0.0042 when lags are included. Resulting in a either positive of negative unconditional mean

of the log-volatility. The estimates of κ for the extended model are also estimated much lower than

those of the Catania model. Even though the simulation study already found that the Bellman

filter already severely underestimates the variance of the volatility shock.

Comparing the estimates to those found with the particle filter the differences are clear. While

the parameter estimates of ϕ are very similar, the estimates of µ and κ are much more unstable

and dependant on the leverage effects included. The lowest µ estimate is 0.0100 while the highest

found is 0.0595 and the κ estimates vary between 0.1328 and 0.2771 which is much higher than the

highest value found with the Bellman filter being 0.2021.

The leverage parameters estimates in the three panels do differ more than the other estimates.

However when estimating the model with only a contemporaneous leverage effect they yield similar

estimates, all three find values of ρ0 close to -0.70 with the Bellman filter assigning a small weight

of 0.0530 to ρ−1 for the extended model. A similar value is assigned to ρ−1 for the model with

both a contemporaneous and a inter-temporal leverage effect. But for all models with two or more

inter-temporal lags the estimated ρ−1 is a small negative number between -0.0549 and -0.0267. We

should be careful interpreting the weight of ρ0 in the contemporaneous model as in the simulation

study we have seen that the filters can assign a big weight to the wrong leverage effect if the correct

timing is omitted.

If we look at the estimation results of the Bellman filter for the original model we can draw some

careful conclusions on the trends that we see. The Bellman filter can estimate the leverage effect

somewhat accurate if too many legs were included. While in the simulation study it did assign a

weight too small to the correct timing and assign some small values to the incorrect timings it was

still somewhat accurate. For all models the estimated value of ρ0 < −0.4673 which indicates the

presence of the volatility feedback effect in our data. This is followed by large negative estimates of

ρ1 < −0.5211 for the models with more than one inter-temporal leverage effect. Also some positive

values that vary between 0.4693 and 0.0632 for ρ2 are found. The last trend that we see for the

Bellman filter is that the models which included at least 6 inter-temporal lags find positive values

for ρ6 and for those with less than 6 lags a noticeable positive value for the last lag included. From

the simulation study we know that if a lag is omitted the lag with the closest timing will com-
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pensate for that, which leads to the suspicion that positive volatility shocks following a negative

contemporaneous and one lagged return shock may be partially reversed on day two and day six.

The leverage parameter estimates for the extended model show a similar pattern only with some-

times much smaller values for ρ0 and bigger values for ρ1. Adding the correlation between the

current volatility shock and future return shock thus reduces the effect of volatility feedback and

increases the impact of the leverage effect represented by ρ1.

As shown in the simulation study, the particle filter is not able to estimate the leverage parameters

accurately and this can be seen in the variation of the estimates for the models with different lags.

Where in the model with m = 2, ρ1 = −0.6037 it is estimated to be 0.5721 when m = 4. Because

of this is not worth it to analyse these estimates too much.

Now for models estimated on the S&P 500 data there are some differences compared to the

models estimated on the Nasdaq data. In Table 9 it can be seen that the estimated volatility

feedback effect using the Bellman filter for the Catania model is smaller, seen by the smaller values

of ρ0. For the extended model however it is now estimated to be bigger.

Regarding the other leverage effects there are also some differences. On this data set ρ1 is esti-

mated to be bigger when estimated for both the original and extended model, where the extended

model finds slightly smaller values. ρ2 is no longer a small positive number as it is now sometimes

even negative but ρ3 is. The same goes for ρ6 which is now small and mostly negative but ρ5 is

now found to be consistently estimated with positive values although a bit smaller than previously

found for ρ6. Here we can suspect that positive volatility shocks following a contemporaneous and

one lagged negative return shock may be partially reversed on day three and day five.

The estimates of ρ−1 do not share a clear result, for the models with a small amount of leverage

effects it has estimates between 0.1244 and 0.1881, however when more than four inter-temporal

leverage effects are included it has small negative estimates similar to those found in Table 8.

The leverage parameters estimated with the particle filter are again heavily dependant on the lags

included in the model as they vary heavily, ρ1 is estimated to be -0.6503 when m = 3 and 0.1975

when m = 9. Sometimes the estimates do resemble those of the Bellman filter but as seen in

the simulation study we should be careful drawing conclusions as the particle filter is not able to

accurately estimate the leverage parameters

In the estimation of the first four parameters there are also some differences. The intercept of the

log-volatility equation c is estimated to be negative for most models with for the extended model
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even values up to -0.0100. This causes the unconditional mean of the log-volatility to generally

be negative instead of positive which is the case for the Nasdaq data set when the Catania model

is estimated with the Bellman filter. The Bellman filter now also estimates higher values for κ

indicating a higher variance of the volatility shocks.

In summary, both data sets estimate the presence of the volatility feedback effect and find that

leverage effects are present in the data. Although they vary slightly on the timing of the these

leverage effects.

The extra leverage effect in the extended model is generally estimated to be small and negative, but

can have small positive estimates as well when few leverage effects are included. We can not draw

a clear conclusion on the exact relation between the current volatility shock and the future return

shock. However the extra leverage effect does lead to a differently estimated volatility feedback

effect and slightly different leverage effects. The estimation of the variance of the volatility shock

is also influenced.

7.3 Model selection

The selection of a clear preferred model remains challenging. If the BIC is used, then for the Nas-

daq data set the best Bellman filter estimated Catania model is the model with six inter-temporal

leverage effects. While for the extended model m = 9 is considered the best. For the particle

filter it is the model with only a contemporaneous leverage effect, the asymmetric SV model of

Jacquier et al. (2004). However these preferred models do not perform the best if we consider their

predictive power for the volatility. If we consider the volatility predictions the extended model with

m = 3 has a MSE of 2.8646 and 0.3369 when the squared returns and realised variance are used as

a proxy. The best performing Catania model estimated with the Bellman filter is with m = 2 and

has a MSE of 3.0100 and 0.4155. This indicates that introducing and estimating the extra leverage

effect into the model of Catania is worthwhile from a volatility forecasting perspective when the

estimation method is the Bellman filter.

Although the simulation study finds that the particle filter delivers worse or at most just as good

parameter estimates as the Bellman filter it performs better predictive wise. The model with m = 1

has the lowest MSE of all estimated models for the squared returns being 2.8597. When few lever-

age effects are included in the model its predicted volatility is also slightly closer to the realised

variance. However the extended model still performs better with the best MSE being almost 19%
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smaller.

For the models estimated on the S&P 500 data set a similar conclusion can be drawn. Modelling

the returns with the extended model yields the best volatility forecasts for both the squared returns

and the realised variance, although the best model estimated with the particle filter matches the

MSE of the best extended model when the squared returns are used as the true volatility proxy.

The difference in performance for the realised variance proxy is now less, a best value of 0.2696 for

the extended model compared to the 0.2797 for the particle filter. This best performing model with

the particle filter is now one with seven inter-temporal lags even though these performed poorly

with the Nasdaq data.

The BIC does select the best predictive model for the Bellman filter estimated original model, the

model with m = 5, but this still performs worse than the predictions made with most of the models

using the extended model or original model estimated with the particle filter. The best performing

model predictive-wise is now the extended model with m = 1 outperforming all other specifications.

Again confirming that this extended model is worthwhile investigating further.

Table 8: Estimation and volatility forecasting results for the Nasdaq with the Bellman filter (top
and middle panel) and the particle filter (bottom panel).

µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 MSE y2 MSE rv LogL(*103) BIC (*104)

0.0450 0.0077 0.9899 0.1486 3.0175 0.4496 -6.0468 1.2127
0.0378 0.0030 0.9895 0.1509 -0.6954 3.0164 0.4299 -5.9980 1.2046
0.0320 0.0028 0.9882 0.1439 -0.6158 -0.1530 3.0188 0.4306 -5.9970 1.2044
0.0303 0.0033 0.9895 0.1992 -0.4673 -0.5211 0.4693 3.0100 0.4155 -5.9887 1.2036
0.0274 0.0039 0.9907 0.1874 -0.5215 -0.5297 0.2151 0.3164 3.0134 0.4237 -5.9852 1.2037
0.0276 0.0036 0.9913 0.1985 -0.4794 -0.5877 0.3046 0.0224 0.2771 3.0133 0.4206 -5.9796 1.2034
0.0308 0.0032 0.9923 0.1892 -0.5476 -0.5159 0.1721 0.1377 -0.0499 0.3515 3.0147 0.4240 -5.9701 1.2023
0.0338 0.0020 0.9926 0.2021 -0.5012 -0.5658 0.2600 0.0536 0.0122 -0.0372 0.3876 3.0134 0.4174 -5.9607 1.2013
0.0337 0.0019 0.9925 0.1999 -0.4973 -0.5548 0.1691 0.1592 -0.0521 0.0119 0.4134 -0.0469 3.0133 0.4174 -5.9578 1.2015
0.0324 0.0024 0.9926 0.2005 -0.4944 -0.5156 0.0632 0.0632 0.0514 -0.0524 0.4655 -0.1302 0.0637 3.0139 0.4192 -5.9561 1.2020
0.0313 0.0029 0.9931 0.1940 -0.5241 -0.5135 0.0655 0.0655 -0.0404 0.0480 0.4126 -0.0901 -0.0440 0.1092 3.0155 0.4237 −5.9548 1.2026

0.0375 0.0031 0.9895 0.1563 0.0530 -0.6877 2.8948 0.3997 -5.9986 1.2047
0.0312 0.0028 0.9882 0.1485 0.0734 -0.5987 -0.1599 2.8809 0.3911 -5.9974 1.2053
0.0243 -0.0003 0.9881 0.1373 -0.0549 -0.1283 -0.7229 0.5778 2.9697 0.3440 -5.9836 1.2033
0.0372 0.0042 0.9836 0.1837 -0.0429 -0.0307 -0.8538 0.2223 0.4041 2.8646 0.3369 -5.9711 1.2017
0.0435 -0.0019 0.9847 0.1267 -0.0324 -0.0729 -0.7718 0.5324 0.0488 0.1858 2.9913 0.3542 -5.9556 1.1994
0.0264 -0.0012 0.9942 0.1146 -0.0450 -0.3413 -0.6451 0.2640 0.2623 -0.0948 0.4083 3.3200 0.5441 -5.9669 12025
0.0351 -0.0043 0.9910 0.1400 -0.0386 -0.2853 -0.6145 0.3629 0.2263 -0.0273 -0.1232 0.4016 3.1813 0.4443 -5.9546 1.2009
0.0397 -0.0026 0.9915 0.1158 -0.0389 -0.1784 -0.6823 0.1227 0.1837 -0.1866 0.0187 0.5416 0.0387 3.1638 0.4433 -5.9502 1.2008
0.0384 -0.0037 0.9892 0.1228 -0.0484 -0.1787 -0.6321 0.2304 0.2107 -0.0203 -0.0978 0.5453 -0.1836 -0.0124 3.1429 0.4306 -5.9492 1.2014
0.0437 -0.0031 0.9918 0.1426 -0.0267 -0.1214 -0.5901 0.3339 0.2772 -0.0848 0.0482 0.4872 -0.1937 -0.1847 0.1423 3.1171 0.4027 −5.9291 1.1983

0.0365 0.0012 0.9913 0.1328 3.0255 0.4641 -6.0565 1.2146
0.0390 0.0006 0.9877 0.1624 -0.7304 2.8740 0.4066 −5.9812 1.2012
0.0100 0.0010 0.9857 0.1405 -0.2823 -0.5512 2.8597 0.4077 -5.9978 1.2054
0.0252 0.0012 0.9921 0.2771 -0.3032 -0.6037 0.6670 2.9452 0.4108 -5.9924 1.2051
0.0275 -0.0003 0.9887 0.2066 -0.3756 0.0141 -0.6200 0.4885 2.8795 0.4081 -5.9896 1.2054
0.0587 0.0002 0.9918 0.2112 -0.4566 0.5721 -0.2289 -0.3144 0.1983 3.0198 0.5003 -6.0239 1.2131
0.0447 0.0011 0.9923 0.2544 -0.3370 0.0555 0.0022 -0.2962 0.7125 -0.3511 2.9495 0.4678 -6.0164 1.2124
0.0320 0.0002 0.9916 0.2630 -0.1106 -0.0876 0.3166 -0.6991 0.4422 -0.1496 0.0865 2.9452 0.4728 -6.0287 1.2157
0.0595 0.0006 0.9921 0.1747 -0.3660 0.0774 0.2795 0.1265 -0.1946 0.2173 -0.3504 0.1656 3.0658 0.4751 -6.0433 1.2194
0.0322 -0.0000 0.9905 0.2142 -0.1831 -0.0915 -0.0509 0.3514 -0.0537 -0.2553 0.1888 0.3884 -0.5529 3.0865 0.5239 -6.0331 1.2182
0.0328 0.0006 0.9901 0.1748 -0.2892 0.3235 -0.1289 0.1215 -0.5111 0.0548 0.0055 -0.1732 0.3145 -0.0898 3.0363 0.4965 -6.0314 1.2187

Note: MSE = mean squared error, LogL = log-likelihood and BIC = Bayesian information criterion. Given are the parameter estimates based on the first 4013 data points. These parameters
are used to predict the volatility of the last 1000 data points and then used to calculate the MSE with the squared returns and realised volatility used as ‘true’ volatility. For the particle filter
the amount of particles is N = 1000.
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Table 9: Estimation and volatility forecasting results for the S&P 500 with the Bellman filter (top
and middle panel) and the particle filter (bottom panel).

µ c ϕ κ ρ−1 ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 MSE y2 MSE rv LogL (*103) BIC (*104)

0.0605 0.0057 0.9815 0.1956 2.0137 0.8515 -5.4466 1.0926
0.0574 -0.0002 0.9875 0.1839 -0.8209 1.5367 0.3237 -5.3686 1.0787
0.0385 -0.0036 0.9795 0.1811 -0.4960 -0.5306 1.5365 0.3251 -5.3190 1.0754
0.0358 -0.0029 0.9809 0.2463 -0.3576 -0.7141 0.3537 1.5286 0.3090 -5.3421 1.0742
0.0279 0.0003 0.9841 0.2523 -0.3712 -0.6791 -0.0420 0.4626 1.5314 0.3102 -5.3323 1.0731
0.0287 0.0001 0.9848 0.2534 -0.3739 -0.7446 0.0458 0.3414 0.1208 1.5317 0.3101 -5.3291 1.0733
0.0333 -0.0011 0.9870 0.2742 -0.3472 -0.6865 -0.0170 0.3920 -0.1696 0.3118 1.5316 0.3067 -5.3162 1.0715
0.0352 -0.0018 0.9876 0.2671 -0.3554 -0.7148 -0.0025 0.3785 -0.1577 0.2416 0.0920 1.5319 0.3076 -5.3135 1.0718
0.0371 -0.0019 0.9890 0.2720 -0.3599 -0.6803 -0.0182 0.3791 -0.1703 0.2478 -0.1050 0.2288 1.5324 0.3071 -5.3080 1.0716
0.0334 -0.0008 0.9888 0.2707 -0.3648 -0.6803 -0.0276 0.3821 -0.1644 0.2519 -0.0944 0.2126 0.0032 1.5330 0.3079 -5.3074 1.0723
0.0350 -0.0012 0.9893 0.2753 -0.3563 -0.6693 -0.0168 0.3719 -0.1721 0.2500 -0.1059 0.2263 -0.1090 0.1250 1.5330 0.3071 −5.3043 1.0725

0.0561 0.0002 0.9872 0.1934 0.0608 -0.8040 1.4618 0.2974 -5.3707 1.0791
0.0386 -0.0050 0.9798 0.1839 0.1881 -0.4657 -0.5077 1.4342 0.2780 -5.3516 1.0761
0.0426 -0.0059 0.9813 0.1925 0.1615 -0.4251 -0.5920 0.2031 1.4390 0.2712 -5.3431 1.0753
0.0398 -0.0042 0.9836 0.1880 0.1294 -0.4358 -0.5310 -0.1139 0.36878 1.4479 0.2696 -5.3354 1.0746
0.0396 -0.0039 0.9841 0.1859 0.1244 -0.4361 -0.5799 -0.0840 0.2577 0.1487 1.4467 0.2699 5.3332 1.0749
0.0343 -0.0076 0.9829 0.1701 -0.0390 -0.2009 -0.6272 -0.0904 0.4032 -0.2928 0.3947 1.4917 0.3094 -5.3171 1.0725
0.0358 -0.0100 0.9835 0.1363 -0.0725 -0.2007 -0.7595 -0.1254 0.3535 -0.0771 0.2504 0.1431 1.5138 0.3252 −5.3077 1.0715
0.0426 -0.0085 0.9909 0.1166 -0.0619 -0.3314 -0.6775 -0.1226 0.3429 -0.0693 0.2038 -0.0268 0.2852 1.6042 0.4040 -5.3091 1.0726
0.0506 -0.0097 0.9891 0.1400 -0.0547 -0.3548 -0.6540 -0.0539 0.4135 -0.0788 0.1782 -0.0785 0.2201 0.0388 1.5804 0.3820 -5.3106 1.0737
0.0450 -0.0070 0.9910 0.1318 -0.0315 -0.4132 -0.6250 -0.0612 0.3693 -0.0768 0.1581 -0.0846 0.2038 -0.0246 0.1891 1.5961 0.3985 -5.3099 1.0744

0.0559 -0.0030 0.9836 0.1745 1.5269 0.3239 -5.4633 1.0960
0.0573 -0.0018 0.9834 0.2021 -0.7840 1.4436 0.2881 -5.3533 1.0748
0.0408 -0.0040 0.9789 0.1874 -0.5967 -0.4347 1.4342 0.2909 -5.3391 1.0728
0.0437 -0.0031 0.9804 0.2265 -0.5600 -0.5506 0.2932 1.4404 0.2874 −5.3345 1.0727
0.0296 -0.0044 0.9775 0.1959 -0.4218 -0.6503 0.0431 0.02445 1.4370 0.2945 -5.3403 1.0747
0.0344 -0.0036 0.9838 0.2524 -0.3147 -0.0938 -0.7347 0.3058 0.2706 1.4471 0.2964 -5.3512 1.0777
0.0534 -0.0019 0.9902 0.2369 -0.1978 -0.0267 -0.1126 -0.3370 -0.0651 0.7161 1.4748 0.3154 -5.4220 1.0927
0.0277 -0.0049 0.9834 0.2083 -0.2009 -0.3043 -0.1355 0.0192 -0.6362 0.2711 0.3240 1.4419 0.3001 -5.3689 1.0829
0.0523 -0.0002 0.9900 0.2423 -0.6549 -0.2556 0.0233 0.1484 0.3256 -0.2608 0.0420 0.2916 1.4730 0.2797 -5.3478 1.0803
0.0387 -0.0014 0.9931 0.1839 -0.3407 -0.4583 -0.2208 0.0810 -0.0495 0.1138 0.2103 0.1352 0.4413 1.4570 0.2830 -5.3734 1.0863
0.0796 0.0001 0.9895 0.2071 -0.5350 0.1975 0.0197 0.1278 -0.0678 0.0011 -0.0512 0.2626 0.0746 0.0500 1.5227 0.3093 -5.4241 1.0973

Note: MSE = mean squared error, LogL = log-likelihood and BIC = Bayesian information criterion. Data used is 100× the log returns of the S&P 500. Given are the parameter estimates
based on the first 4013 data points. These parameters are used to predict the volatility and then used to calculate the MSE with the squared returns and realised volatility. For the particle
filter the amount of particles is N = 1000.

8 Conclusion

In this paper, we investigate the different leverage effects present in financial returns and test

which SV model can predict volatility the best. The log returns are modelled using several differ-

ent stochastic volatility models with different leverage timings and causalities. These models range

from a simple SV model without a leverage effect, the asymmetric models of Jacquier et al. (2004)

and Harvey and Shephard (1996) who respectively model the leverage effect as contemporaneous

and inter-temporal, to the model of Catania (2022) that includes a contemporaneous relation in

addition to several inter-temporal lags. These models all model volatility shocks to be a function

of past and/or current return shocks. We expand on this by arguing that there can also exist a

relation between a future return shock and the current volatility shock and incorporate this into a

SV model by extending the model of Catania (2022).

We estimate the parameters of the models with the newly developed Bellman filter of Lange

(2020) and compare it to the estimates obtained with the CSIR method used by Catania (2022)

originally. We perform an extensive simulation study to evaluate the accuracy of the parameter es-
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timation and log-volatility prediction for different SV models. In the case of model misspecification

the estimated leverage effects are not stable and can get estimated to have big values on the wrong

timing if the true timing of the leverage effect is excluded from the model. We find that the Bell-

man filter does provide similar of more accurate estimates than the particle filter for the median of

the returns and for the level and persistence of the log-volatility. Both methods underestimate the

variance of the volatility shocks with a large margin. The Bellman filter does estimate the leverage

parameters much more accurate than the particle filter in the case of both correctly specified and

misspecified models. The particle filter leverage effect estimates are so poor that for log-volatility

forecasting the model outperforms the correctly specified models when leverage effects are present

in the data.

Finally, index return data of the S&P 500 and Nasdaq are used to estimate the parameters

for ten different SV models and we evaluate what model provides the best volatility estimates,

where the true volatility is proxied with squared returns and realised volatility. The Bellman filter

and particle filter are used to estimate the basic SV model without leverage effects and the model

of Catania (2022) with several leverage effects. The Bellman filter is also used to estimate the

extended model with different leverage effects. Both indices do show a presence of the volatility

feedback effect and several leverage effects.

The models selected using the BIC and from a volatility prediction point of view have no clear

conclusion on the optimal amount of inter-temporal leverage effects to include in the model. For

both data sets it is found that generally the extended model can forecast the volatility the most ac-

curate when either squared returns or realised volatility is used as a proxy for the “true” volatility.

While the relationship between the current volatility shock and the future return shock is found to

be small it does increase volatility forecasts and is therefore worth incorporating into SV models

that model financial log returns.

This research is still limited in the sense that it only investigates US indices. Estimation of

the models on other indices, individual stock returns or exchange rate data is needed to confirm

if the result found in this paper holds for different data. We also use a relatively small amount of

particles to estimate the parameters with the particle filter to relieve the computational burden of

the estimation process. It would be interesting to investigate if the same difference in forecasting

performance is found when the amount of particles used is increased.
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Future research may also include adding more than one extra leverage effect to the model. Including

the relation between tomorrow’s return shock en today’s volatility shock increases the volatility

predictions, perhaps incorporating a relation between the day after tomorrow’s return shock and

today’s volatility shock will do the same.
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A Optimisation and updating step for the SV model of Catania

(2020)

Since at and at−1 share m− 1 elements

 at
at−1

 is equal to

 at
ht−m−1

.

The optimisation and updating steps for the model of equation (7) will be

 at
ht−m−1

←
 at
ht−m−1

+

 J11
t − 1

2
d2`(yt|a)
dada′ −

1
2E
(
d2`(yt|a)
dada′

)
0(m+1)×1

01×(m+1) 0

+

 0 01×(m+1)

0(m+1)×1 It−1|t−1

−1
 J1

t + d`(yt|at)
dat

0

−
 0

It|t−1(at−1 − at−1|t−1)

 ,
(62)

with 0a×b a matrix of zeros with dimension a× b,

J1
t =

ht − µh,t
σ2h,t
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For the updating of the information matrix It|t we will take the Schur complement of the

bottom-right block of the negative Hessian with size (m+ 1)× (m+ 1) evaluated at at|t

 J11
t − 1

2
d2`(yt|a)
dada′ −

1
2

(
E d2`(yt|a)

dada′

)
0(m+1)×1

01×(m+1) 0

+

 0 01×(m+1)

0(m+1)×1 It−1|t−1

 , (66)

B Optimisation and updating step for the extended SV model

For the model in equation (10) the optimisation and updating steps will be different as now the

first element of the state at contains the return shock εt+1 and the first element of at−1 is εt, the
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combined vector of the states is no longer

 at

ht−m−1

. With some creative rearranging where the

first element of at−1 is removed and placed at the end of at−1 to get a∗t−1 = ht−1, . . . , ht−m−1, εt

they can be placed such that the combined vector will be


at

ht−m−1

εt

. However It−1|t−1 then also

needs to be rearranged to match the new form of a∗t−1 by removing the first row and column and

adding the transposed version of them at the end of the matrix to get I∗t−1|t−1 . For the gradient

this process is repeated for both at−1|t−1 and It|t−1 to obtain a∗t−1|t−1 and I∗t|t−1.

In the original model we need to use the degenerate extension of the Bellman filter as the elements

of at apart from ht are deterministic functions of the past state at−1 but this is not the case now

for εt. Adjusting the optimisation step for this will result in


at

ht−m−1

εt

←


at

ht−m−1

εt

+



J11
t − 1

2
d2`(yt|a)
dada′ −

1
2E
(
d2`(yt|a)
dada′

)
0(m+2)×1 J12

t

0′(m+2)×1 0 0

J21
t 0 J22

t

+

 02×2 0′(m+2)×2

0(m+2)×2 It−1|t−1



−1



J1
t + d`(yt|at)

dat

0

J2
t

−


0

0

I∗t|t−1(a
∗
t−1 − a∗t−1|t−1)


 ,

(67)

with 0a×b a matrix of zeros with dimensions a× b.

The first and second derivatives of the state transition density with respect to the state at will
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now be

J1
t =

ht − µ∗h,t
σ2∗h,t



0

−1

ϕ− κ
2ρ1

yt−1−µ
exp(ht−1/2)

−κ
2ρ2

yt−2−µ
exp(ht−2/2)

...

−κ
2ρm

yt−m−µ
exp(ht−m/2)


+
εt+1 − µε,t+1

σ2ε,t+1


ρ−1

1−
∑m

j=0 ρ
2
j



0

1/κ

−ϕ/κ+ ρ1
2

yt−1−µ
exp(ht−1/2)

ρ2
2

yt−2−µ
exp(ht−2/2)

...

ρm
2

yt−m−µ
exp(ht−m/2)


+



−1

0

0

0
...

0




=:

ht − µ∗h,t
σ2∗h,t

c∗t +
εt+1 − µε,t+1

σ2ε,t+1

d∗t ,

J2
t =

ht − µ∗h,t
σ2∗h,t

κ
ρ0

1−
∑m

j=1 ρ
2
j

− εt+1 − µε,t+1

σ2ε,t+1

ρ−1ρ0
1−

∑m
j=0 ρ

2
j

,

J11
t =

−1

σ2∗h,t
c∗tc
∗′
t +

ht − µ∗h,t
σ2∗h,t

κ

4
diag



0

0

ρ1
yt−1−µ

exp(ht−1/2)
...

ρm
yt−m−µ

exp(ht−m/2)


+

−1

σ2ε,t+1

d∗td
∗′
t +

εt+1 − µε,t+1

σ2ε,t+1

ρ−1
1−

∑m
j=1 ρ

2
j

1

4
diag



0

0

ρ1
yt−1−µ

exp(ht−1/2)
...

ρm
yt−m−µ

exp(ht−m/2)


,

J12
t =

−1

σ2∗h,t
κ

ρ0
1−

∑m
j=1 ρ

2
j

c∗t +
−1

σ2∗ε,t+1

ρ−1ρ0
1−

∑m
j=0 ρ

2
j

d∗t ,

J21
t =

−1

σ2∗h,t
κ

ρ0
1−

∑m
j=1 ρ

2
j

c∗′t +
−1

σ2∗ε,t+1

ρ−1ρ0
1−

∑m
j=0 ρ

2
j

d∗′t ,

J22
t =

−1

σ2∗h,t
κ2

ρ20
(1−

∑m
j=1 ρ

2
j )

2
+
−1

σ2∗ε,t+1

(ρ−1ρ0)
2

(1−
∑m

j=0 ρ
2
j )

2
,

(68)
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and the derivatives of p(yt | at,Ft−1) with respect to at are

d` (yt | at,Ft−1)
dat

=
yt − µ∗y,t
σ2∗y,t





0

(µ∗y,t − µ)/2

0

0
...

0


+

ρ0 exp(ht/2)

1−
∑m

j=1 ρ
2
j − ρ2−1



−ρ−1

1/κ

−ϕ/κ+ ρ1/2
yt−1−µ

exp(ht−1/2)

ρ2/2
yt−2−µ

exp(ht−2/2)
...

ρm/2
yt−m−µ

exp(ht−m/2)




+

(
(yt − µ∗y,t)2

σ3∗y,t
− 1

σ∗y,t

)


0

σ∗y,t/2

0
...

0


,

=:
yt − µ∗y,t
σ2∗y,t





0

(µ∗y,t − µ)/2

0
...

0


+ b∗t


+

(
(yt − µ∗y,t)2

σ3∗y,t
− 1

σ∗y,t

)


0

σ∗y,t/2

0
...

0


,

(69)

and

d2` (yt | a,Ft−1)
dada′

=
−1

σ2∗y,t





0

(µ∗y,t − µ)/2

0
...

0


+ b∗t







0

(µ∗y,t − µ)/2

0
...

0


+ b∗t



′

+

(
1

σ2∗y,t
−

3(yt − µ∗y,t)2

σ4∗y,t

)


0

σ∗y,t/2

0
...

0





0

σ∗y,t/2

0
...

0



′

− 2
yt − µ∗y,t
σ3∗y,t





0

(µ∗y,t − µ)/2

0
...

0


+ b∗t





0

σ∗y,t/2

0
...

0



′

− 2
yt − µ∗y,t
σ3∗y,t



0

σ∗y,t/2

0
...

0







0

(µ∗y,t − µ)/2

0
...

0


+ b∗t



′

+
yt − µ∗y,t
σ2∗y,t

×
diag



0(
µ∗y,t − µ

)
/4

0
...

0


− 1

4

ρ0 exp (ht/2)

1−
∑k

j=1 ρ
2
j

diag



0

0

ρ1
yt−1−µ

exp(ht−1/2)
...

ρm
yt−m−µ

exp(ht−m/2)


+



0

1/2

0
...

0


b∗t
′ + b∗t



0

1/2

0
...

0



′

+

(
(yt − µ∗y,t)2

σ3∗y,t
− 1

σ∗y,t

)
diag



0

σ∗y,t/4

0
...

0


.

(70)

For the updating of the information matrix It|t we will take the Schur complement of the
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bottom-right block of the negative Hessian with size m×m


J11
t − 1

2
d2`(yt|a)
dada′ −

1
2E
(
d2`(yt|a)
dada′

)
0m+2×1 J12

t

0′m+2×1 0 0

J21
t 0 J22

t

+

 02×2 0′m+2×2

0m+2×2 I∗t−1|t−1

 (71)
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