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Abstract:

Unilever’s Sustainable Living Plan (Unilever, 2021) proposes several sustainability goals regarding packaging. The design

of sustainable packaging already starts at the material selection stage. Material selection is a global concern because of raw

material depletion. It is crucial to find which packaging characteristics can accurately represent a sustainability measure

such that Unilever gets insights into how to improve their packaging portfolio. This research extends the paper of Zhou

et al. (2009) by using Unilever data, a Neural Network (NN) and a Bayesian Neural Network (BNN) in combination

with two evolutionary algorithms, NSGA-II and NSGA-III. Eventually, this study finds that BNN improves the prediction

error compared to NN in exchange for computational time, while NSGA-III does not improve NSGA-II. Based on the

multi-objective optimization with respect to all materials (aluminium, glass, HDPE, LDPE, paper, virgin PET, virgin PP,

recycled PET, recycled PP and steel) using BNN in combination with NSGA-II, the most optimal environmental footprint

and packaging costs equal 0.0026 points and 0.96 euros per gram of packaging. In this case aluminium should be prioritized

the most and LDPE should be prioritized the least. If only plastics (HDPE, LDPE, virgin PET, virgin PP, recycled PET

and recycled PP) are included, then the optimized values equal 0.0011 points and 0.82 euros per gram of packaging. Then,

RPET should be prioritized the most.

Keywords: Machine Learning, NN, BNN, MOGA, NSGA-II, NSGA-III, Packaging, Unilever.
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1 Introduction

Unilever’s Sustainable Living Plan (Unilever, 2021) proposes goals to tackle environmental degra-

dation. This research focuses on the goals regarding packaging. Unilever strives to be the first major

consumer goods company with an absolute plastic reduction across its packaging portfolio, it has the

ambition to halve the use of virgin plastic, which is newly non-recycled plastic made of raw materials,

and to use at least 25% of post-consumer recycled plastic by 2025 (Unilever, 2020).

This research bases on the simultaneous multi-objective optimization process of Zhou, Yin and Hu

(2009), where the environmental impact is modelled using a Life Cycle Assessment (LCA) model.1 The

design of sustainable packaging starts at the material selection stage. Material selection is a global

concern because of raw material depletion. It is crucial to find packaging characteristics that can ac-

curately represent a sustainability measure such that Unilever gets insights into how to improve their

packaging portfolio and to accomplish their packaging manifesto. Using a multi-objective optimization,

it is possible to incorporate multiple goals in the packaging design procedure. Since multiple objectives

are often conflicting, relations and trade-offs between objectives become clear. To find the most optimal

packaging characteristics, Zhou et al. (2009) makes use of a Artificial Neural Network, i.e. a Neural

Network (NN), in combination with a Multi-Objective Genetic Algorithm (MOGA) introduced by Mu-

rata and Ishibuchi (1995). This study extends the paper of Zhou et al. (2009) by using NN as

well as a Bayesian Neural Network (BNN) in combination with an extended version of the general MOGA.

A Genetic Algorithm (GA), which is part of evolutionary algorithms, is a search algorithm based on nat-

ural selection by Charles Darwin’s survival of the fittest and is introduced by Holland in 1975 (Konak,

Coit, & Smith, 2006; Holland, 1992). Genetically strong species are more likely to pass genes to

future generations via reproduction. GA imitates this reproduction process by using a so-called fitness

score. Nowadays GAs are mostly used in combination with multi-objective optimization problems. In

1995 Murata and Ishibuchi (1995) introduced a MOGA that searches for a Pareto optimal solution of

multi-objective optimization problems based on fitness scores. Instead of using MOGAs, a more simple

solution to solve the multi-objective optimization is to convert it to a single-objective optimization by

introducing weights, i.e. the objective becomes a weighted objective of the multiple objectives. Zhang

and Cui (2019) show that in this case results are unstable and it is difficult to find the optimal solution.

MOGAs are able to solve multi-objective optimization problems well, since each individual in the popu-

lation corresponds to a single solution, it searches over different regions of the solution space and it does

not require to prioritize, scale or weight objective functions (Konak et al., 2006). To select packaging

materials that minimize environmental degradation and costs the most, this research uses two versions

of the Non-dominated Sorting Genetic Algorithm (NSGA), namely NSGA-II, and its extended version

NSGA-III (Deb, Pratap, Agarwal & Meyarivan, 2002 ; Konak et al., 2006; Deb & Jain,

2013a; Deb & Jain, 2013b). Based on performance and speed of convergence, NSGA-II is one of the

1Details regarding the abbrevations and symbols can be found in Appendix A.
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best algorithms to deal with multi-objective optimization (Afshari & Tesfamariam, 2019). NSGA-

III was proposed to improve the performance regarding multiple objective problems because NSGA-III

selects diverse and well-distributed nondominated solutions (Yannibelli, Pacini, Monge, Mateos

& Rodriguez, 2020). Ishibuchi, Imada, Setoguchi & Nojima (2016) state that NSGA-III does

not always outperform NSGA-II but that it depends on the number of objectives and the optimization

problem itself. However, Ciro, Dugardin, Yalaoui and Kelly (2016) state that for small multi-

objective problems both algorithms perform similarly, while for large multi-objective problems NSGA-III

performs better.

The first approach of developing a NN was in 1943, when neuro-physiologist McCulloch and mathe-

matician Pitts modelled a NN using electrical circuits (Foote, 2021). The ideas of Pitts and McCul-

loch were extended by psychologist Hebb that noticed that firing an impulse multiple times changes the

strength of that impulse (Foote, 2021). A NN mimics the human brain; similarly to the human brain

a NN consists of neurons connected through edges. A human brain learns by altering the strength of

the synaptic connection between neurons when it is exposed to the same impulse for multiple times.

A NN works in a similar manner and learns the training data by adjusting weights between neurons

until the output of the NN approximates the desired target value (Soleimani, Shoushtari, Mirza &

Salahi, 2013). The NN learns the relationship between the inputs and the outputs and its performance

depends on the generalization ability; it should be able to accurately predict the output of the unseen

test data (Somkuwar, Khaira & Somkuwar, 2010). If the NN fits the training data set too well

and is not able to explain the test data, overfitting occurs (Nielsen, 2015). NNs are useful in this re-

search because NNs analyse complex relations while detailed information on the structure is not required

(Penm, Chaar & Moles, 2013). NNs are flexible and able to solve non-linear problems that cannot

be solved by classical mathematical modeling methods (Azari, Garshasbi, Amini, Rashed-Ali &

Mohammadi, 2016). The universal approximation theorem of Hornik, Stinchcombe and White

(1989) states that NNs with at least one hidden layer are able to approximate any continuous function

to any desired degree of precision.2 Although, compared to classical mathematical models deep learning

models are less interpretable: it is a black-box model and therefore difficult to explain why the model

obtains certain relations between inputs and outputs.

Not only Zhou et al. (2009) but in general literature with respect to MOGAs focuses on NN in-

stead of BNN. A BNN is a stochastic artificial NN trained using Bayesian inference (Jospin, Buntine,

Boussaid, Laga & Bennamoun, 2020). BNN trains a robust model because it finds a distribution

of weights instead of a single point estimate, implying that uncertainty of estimated weights is included

in the model. Thus, the advantage of using BNN over NN is that due to the probability distribution

of weights, uncertainty regarding predictions can be expressed. A problem with standard NNs is the

uncertainty of predictions (Wimarshana, Ryu & Choi, 2014). Confidence in predictions in data-

rich spaces is higher than in non-data-rich spaces; standard NNs cannot express these confidence limits.

2The proof of the universal approximation theorem can be found in Hornik et al. (1989).
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Jospin et al. (2020) mentions that for BNN uncertainty is in line with the observed errors, so that

there is less often over- or underconfidence. Moreover, BNNs distinguish between epistemic and aleatoric

uncertainty, such that they are highly efficient and can learn from small datasets without overfitting

(Jospin et al., 2020).3 Environmental and packaging data is scarce and standard NNs could overfit,

while BNNs correctly estimate the parameters regarding the available data with often high uncertainty if

data is scarce (Qinghui, Creager, Duvenaud & Bettencourt, n.d.). Also, Bayesian deep learning

methods give well-calibrated predictions on out-of-distribution data (Izmailov, Vikram, Hoffman &

Wilson, 2021). Although, BNNs receive criticism on choosing the prior a priori, Jospin et al. (2020)

states that priors are soft constraints and comparable to regularization and data augmentation. The dis-

advantage of using BNN over NN is that in general BNNs are more complex than NNs and more training

epochs are needed for convergence (Jospin et al., 2020).

This study has three research objectives that are in line with the aspirations of Unilever:

1. The overall goal of this paper is to get a clear methodology to benchmark packaging of Unilever’s

products with respect to sustainability and costs, so that Unilever gets clear insights and a road

map towards their packaging manifesto.

2. To select packaging materials that minimize environmental degradation and costs the most, a

general prediction model based on NN and BNN with a Back-Propagation (BP) algorithm is

established. More specifically, the environmental footprint is predicted based on the material

fractions in a package, emissions with respect to a package and recyclability rate of a package.

In this study material fractions of aluminium, glass, HDPE (High Density Polyetheen), LDPE

(Low Density Polyetheen), paper, virgin PET (Polyethyleentereftalaat), virgin PP (Polypropyleen),

recycled PET (RPET), recycled PP (RPP) and steel are considered. The method with respect to

the networks is emphasized in Sections 3.3.1 and 3.3.2.

3. Based on Unilever’s packaging manifesto and savings ambition, NSGA-II and NSGA-III algorithms

minimize the environmental footprint predicted by the network and the life-cycle packaging costs

with respect to above mentioned ten materials. The optimization framework is demonstrated based

on a regular NN as well as a BNN in combination with NSGA-II and NSGA-III. The method with

respect to NSGA algorithms is emphasized in Sections 3.3.4 and 3.3.5.

The remainder of this research is structured as follows: Section 2 summarizes important developments

regarding the methods and algorithms, Section 3 describes the methodology, Section 4 summarizes the

used data, Section 5 describes the main findings and Section 6 summarizes insights and conclusions

drawn from the results. Appendices A-J give additional information regarding the method, data, R code

and results.

3Epistemic uncertainty is uncertainty caused by lack of data, while aleatoric uncertainty is uncertainty caused by the

noise in the process (Jospin et al., 2020).
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2 Literature

Using NNs together with evolutionary algorithms is popular in studies having a science or physics topic,

where often laboratory-based experiments are time consuming and/or expensive. Sometimes it is even

impossible to take into account multiple objectives. Instead of doing laboratory-based experiments, it

became more popular to study multiple objectives using deep learning. This is also the case for product

design. A wide range of industries focuses more and more on sustainable and environmental-friendly

interventions in combination with deep learning methods and optimization techniques, among others in

the construction industry, in waste management and with respect to product design. However, litera-

ture focusing on packaging and using NNs in combination with MOGAs is scarce. Since literature both

focusing on packaging and the proposed methods is scarce, the remainder of this Section summarizes

developments regarding the proposed methods and algorithms, where the subject of these studies is

sustainability or the environment.

Azari et al. (2016), Asadi, Da Silva, Antunes and Dias (2012) and Si et al. (2019) use

NNs and MOGAs to analyze the optimal construction and design of buildings mainly focusing on min-

imizing energy use and costs. Results regarding single-objective optimization shows that NN is able

to predict the behavior of the data well, since training and test mean squared error values are fairly

low. To see the underlying trade-offs, Asadi et al. (2014) split up the optimization task in three

cases: single-objective optimization, double-objective optimizations and triple-objective optimizations.

Si et al. (2019) optimize four objective functions with respect to minimizing the building energy and

maximizing the indoor thermal comfort using a NN and four evolutionary algorithms, namely NSGA-II,

Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Simulated Annealing (MOSA)

and Evolution Strategy (ES). Taking all performance measures into consideration, they concluded that

NSGA-II performed best, followed by MOPSO. ES and MOSA were in this case the worst performers.

Both Asadi et al. (2014) and Si et al. (2019) address to the problem of GA in building construction

and design studies: models for construction and design of buildings are usually complex and therefore

high computational times are required to get accurate results. Therefore, Magnier and Haghighat

(2010) state that using a NN together with a GA is an efficient solution to encounter this problem.

Dantas, Leite and de Jesus Nagahama (2013) try to predict the compressive strength of concrete,

where the sustainable intervention is that the concrete is made of demolition waste. They optimize the

compressive strength using a NN. The NN shows high prediction accuracy equal to a R2 of 0.928 and

0.971 for training and testing, respectively. Mahjoubi, Barhemat, Guo, Meng and Bao (2021)

extend the paper of Dantas et al. (2013) by maximizing the compressive strength but also four

other objectives. Mahjoubi et al. (2021) use two evolutionary algorithms, namely NSGA-III and

Unified Non-dominated Sorting Genetic Algorithm (UNSGA) III. Eventually, they found that in this

problem setting UNSGA-III performs slightly better in the multi-objective optimization than NSGA-III.

The machine learning prediction model in this study is not a NN but they use a Support Vector Machine

together with adaptive boosting followed by a extreme gradient boosting algorithm.
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Ali Abdoli, Falah Nezhad, Salehi Sede and Behboudian (2012) and Azarmi, Oladipo, Vaziri

and Alipour (2018) focus on waste managment using machine learning techniques. Both Abdoli et

al. (2011) and Azarmi et al. (2018) compare a traditional approach, a multivariate regression

model, with a machine learning approach, a NN, to predict waste generation. It was found that the

NN was better able to model trends and fluctuations of solid waste generation than the multivariate

regression model. However, they do not use a MOGA.

Regarding packaging there is less literature. Stoica, Antohi, Zlati and Stoica (2020) do not use

machine learning techniques but an econometric efficiency model to study the impact of replacing plastic

packaging by biodegradable biopolymers. They only study the financial impact and do not optimize

multiple objectives. Up to my knowledge, the Bayesian method in combination with a MOGA of Zhang

and Cui (2019) and the method of Zhou et al. (2009) based on a NN with a MOGA are closest to

the method proposed in this paper but both do not make use of a BNN. Zhou et al. (2009) focuses on

material selection of sustainable soda packaging by doing a multi-objective optimization (minimizing the

weight, minimizing the life-cycle costs and minimizing the environmental impact) using a MOGA and

a NN trained with the BP algorithm. Zhang and Cui (2019) use a MOGA together with a Bayesian

approach to select green suppliers but do not use a BNN. Similarly as Zhou et al. (2009), Somkuwar

et al. (2010) focus on the selection of materials for designing a product using a NN. However, they do

not focus on packaging but on the design of coil springs and ceramic valves for taps. Bezazi, Pierce

and Worden (2007) use a BNN to predict the fatigue life prediction of sandwhich composite materials

and Siripatrawan and Jantawat (2008) use a NN to predict the shelf-life of a packaged snack but

both do not use a multi-objective optimization framework and/or GAs. Bezazi et al. (2007) use both

a NN and BNN and concludes that the Bayesian approach predicted the experimental data better than

the frequentist approach.

Earlier research uses NNs and BNNs or NNs in combination with evolutionary algorithms, but up to

my knowledge there exists no research combining a BNN together with a MOGA framework in such a

problem setting. This paper demonstrates a framework being a combination of NN or BNN together

with NSGA-II or NSGA-III, where the environmental footprint and packaging costs are optimized to

select the most optimal materials.
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3 Methodology

Based on Zhou et al. (2009) and Azari et al. (2016), a two-step research method is conducted.

First, the multiple objectives are stated. Thereafter, the optimization algorithm is conducted. Figure 1

gives a complete overview of the method; Sections 3.1-3.3.5 give a detailed explanation of the distinct

implementations of this method.

Initial

population

...
...

...

. . .

. . .

. . .

...

xnorm
1

xnorm
2

xnorm
d

y1

y2

yt

Evaluation of MOGA

Criterion

satisfied?

End of

optimization

MOGA:

Selection,

Mutation,

Cross-over

...

Next

generation

yes no

Figure 1: Flowchart describing the complete method.

3.1 Data pre-processing

Before training the NN, input data is normalized, such that magnitude and scale of the input data do

not influence the NN training (Azari et al., 2016; Zhou et al., 2009). Also, normalization helps

the optimizer to converge faster (Levy, 2016). Following Si et al. (2019) the minimum-maximum

normalization method transforms all features onto the interval [0, 1]:

xnorm
k =

xk −min(xk)

max(xk)−min(xk)
, (1)

where xnorm
k is the kth normalized input, xk is the kth (raw) input, min(xk) is the minimum value of

the kth input and max(xk) is the maximum value of the kth input.
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3.2 Multi-objective optimization problems

Based on Unilever’s environmental and savings ambition, this study minimizes the environmental impact

and economic impact. Sections 3.2.1 and 3.2.2 summarize the multi-objective optimization shown in

(2). Since it is not realistic to put all materials in one package and approximately 70% of the packaging

data used in this study consists of plastics, a request from Unilever was to exclude some materials and

create a specific material set that only contains plastics; this multi-objective optimization is shown in

(3). This means that in (2) the optimization is conducted with respect to all ten materials, while in (3)

the optimization is conducted with respect to only the six plastics.

min
m∈Ω

zLCA(m)

zcost(m)

(2)

s.t. 0 ≤ mk ≤ 100 ∀ k = 1, . . . ,M

M∑
k=1

mk = 100

min
m∈Ω

zLCA(m)

zcost(m)

(3)

s.t. 0 ≤ mk ≤ 100 ∀ k = 3, . . . , 9

9∑
k=1

mk = 100

λk ∈ {0, 1} ∀ k = 3, . . . , 9

λimj = 0 ∀ i = 3, . . . , 9 and

j = 1, 2, 4, 5, 6, 7, 8, 10

m8 +m9 ≥ 15

In (2) and (3) zLCA equals the environmental footprint measured in points per gram package, zcosts

equals the life-cycle costs measured in euros per gram package, mk is the proportion of material k of

the total package in percentage, M the total number of materials equal to 10 and λk equals a dummy

variable indicating if material k is included or excluded in the problem. The vector of all material frac-

tions m = [m1, . . . ,mM ] includes the fraction of aluminium (m1), the fraction of glass (m2), the fraction

of HDPE (m3), the fraction of LDPE (m4), the fraction of paper (m5), the fraction of PET (m6), the

fraction of PP (m7), the fraction of RPET (m8), the fraction of RPP (m9) and the fraction of steel (m10)

of the total packaging weight in percentages. Many countries in the European Union put an additional

tax payment on packages that are not made of a specific percentage of recycled materials. To make it

more beneficial for tax payments, in (3) the restriction is added that recycled PET (m8) and recycled

PP (m9) should be at least equal to 15% of the total packaging composition. However, this tax reduction

is not implemented in the computation of the packaging costs.

Following Asadi et al. (2012) three scenarios of optimizations are conducted (see Table 1). The

first scenario involves only single-objective optimizations and the second scenario involves bi-objective

optimizations. In this way, trade-offs between the two objective functions can be observed. It is ex-

pected that when a package is more (less) sustainable, zLCA will be lower (higher) and zcost will be

higher (lower).
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Table 1: Optimization scenarios including single- and bi-objective optimizations.

Scenario I

a b
Environmental impact ✕ ✕

Economic impact ✕ ✕

Scenario II

3.2.1 Environmental impact

To evaluate the environmental impact of packaging, the Life Cycle Assessment (LCA) method is used.

The LCA model specifically takes into account the whole life-cycle of packaging because all phases could

have an detrimental impact on the environment. The setup of the LCA framework and principles are

constructed by the International Organization for Standardization (ISO, 2006). In short a

life-cycle includes production phases, process phases, using phases, waste disposal phases and recycling

phases. First, LCA requires to make an inventory analysis of extractions and emissions, i.e. define the

environmental inputs (extraction of raw materials) and environmental outputs (waste and emission of

pollutants). Thereafter, these inputs and outputs are translated to impact categories called Life Cycle

Impact Assessment, e.g. global warming and ozone depletion. Finally, these impact categories are via

weights combined into a single environmental indicator. To minimize the (detrimental) environmental

impact of packaging, the total environmental footprint zLCA expressed in points per gram of packaging

is minimized:

min
m∈Ω

zLCA(m) (4)

The relation between the inputs and the environmental footprint zLCA is predicted by a NN, and is

further discussed in Section 3.3.1.

3.2.2 Economic impact

Since high packaging costs are not beneficial for both Unilever and the consumer, this objective aims

to minimize the life-cycle costs of packaging. Life-cycle costs of packaging include purchase costs of raw

materials, process costs, transportation costs, warehousing costs and recycling costs. To minimize the

life-cycle costs zcosts expressed in euros per gram of packaging, the following measure will be minimized:

min
m∈Ω

zcosts(m) =
∑M

k=1 mkzk,costs, (5)

where mk is the material fraction of material k measured in percentages of the total weight of a package

and zk,costs are the life-cycle costs with respect to material k expressed in euros per gram. Thus, the

reader should be aware that the environmental footprint zLCA is predicted by a NN and optimized,

while for optimization of the life-cycle packaging costs zcosts the relation is assumed to be known and

not predicted by a NN.
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3.3 Optimization Algorithm

The optimization algorithm constitutes of two steps. The first step includes the NN, the second step

includes the MOGA. In the first step both the NN and the BNN are considered, in the second step both

NSGA-II and NSGA-III are considered

3.3.1 Neural Network

This Section discusses the NN in general form based on Hastie, Tibshirani and Friedman (2009),

Nielsen (2015) and Taddy (2019). A standard multilayer NN, shown in Figure 2, consists of an input

layer of d normalized inputs, L hidden layers and an output layer of t outputs, and in this study is trained

using Stochastic Gradient Descent (SGD) and Back-Propagation (BP), where for each pair of normalized

inputs and outputs (xnorm
k ,yk) the algorithm first produces the output yk by passing information from

the input layer through the L hidden layers to the output layer. Then, the error between the predicted

value and the actual value is propagated back from the output layer through the L hidden layers to the

input layer to update the weights. In this way, the NN learns and improves itself. It is a bi-directional

information flow. The training procedure stops when the output is close enough to the desired value. In

this study the input and output layer constitute of d = 13 inputs and t = 1 output and are discussed

later in this Section.

...
...

...

. . .

. . .

. . .

...

xnorm
1

xnorm
2

xnorm
d

y1

y2

yt

Input layer Hidden layer 1 Hidden layer L Output layer

Figure 2: A multilayer NN having an input layer of d inputs, L hidden layers and an output layer of t outputs.

Inputs of neurons, which can be raw data or earlier processed data, are transformed by activation

functions, which are non-linear such that they are able to explain complex relations, and returned as

output of those neuron (Taddy, 2019). This paper will use Rectified Linear Unit (ReLu) (Liu, 2017)

and the sigmoid (Han & Moraga, 1995) activation functions:

δ1(u) = max(0, u) (6)

δ2(u) =
1

1 + exp(−u)
(7)

Compared to ReLu, sigmoid and hyperbolic tangent are less attractive because they saturate, meaning

that large values go to 1 for hyperbolic tangent and small values go to −1 or 0 for sigmoid, and show

only sensitivity for changes around their midpoints, which is 0.5 for sigmoid and 0 for hyperbolic tangent

(Goodfellow, Bengio & Courville, 2017). Also, ReLu is faster compared to sigmoid and hyper-

bolic tangent (Nwankpa, Ijomah, Gachagan & Marshall, 2018). ReLu does not suffer from the
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vanishing gradient problem that describes the problem of the NN weights that barely change compared

to the previous iteration due to very small partial derivative updates. Sigmoid and hyperbolic tangent

do suffer from this problem and the NN training can be completely stopped due to this. However, ReLu

overfits more easily compared to sigmoid (Nwankpa et al., 2018).

Altogether, at each node k information will be transformed via a weighted sum over all inputs plus

a bias term according to

yk = δa

( d∑
i=1

wkix
norm
i + bk

)
, (8)

where yk equals the output of node k, δa is activation function a (a = 1, 2), d the total number of input

nodes preceding to the output yk, wki is the weight for the normalized input xnorm
i at node k and bk

equals the bias at node k. The output of node k, yk, can either be the input of a node in the next hidden

layer or it can be a node in the output layer. In each epoch, the NN updates the weights, starting in the

first epoch with initial weights.

To prevent overfitting the normalized data set will be pre-processed by randomly dividing into three

subsets: 60% for the training data set to adjust the weights of the NN, 20% for the validation data set to

evaluate the performance based on different hyperparameters, and 20% for the test data set to obtain the

performance of the NN on new unseen (independent) data. Since the algorithm might be sensitive to the

train, validation and test split, this three-way holdout method is repeated ten times to prevent for sam-

pling bias. The performance measure is averaged over these ten 3-way holdout samples. After splitting

the data into training, validation and test sets, the structure of the NN is determined using validation

data, i.e. determining the number of layers and the number of neurons in each layer (hyperparameters).

The number of neurons in the input (output) layer equals the number of input (output) variables. Due

to the bias-variance trade-off the selection of the optimal number of neurons in the hidden layers of the

NN is critical. A high bias corresponds to a low accuracy between the model and the training data

(underfitting), whereas a high variance corresponds to a too complex model and a low generalization

ability (overfitting). With underfitting both the training and test error are high, while with overfitting

only the test error is high. A high generalization ability is achieved when both the training and test

error are low. Following Esfandiari, Ghoreyshi and Jahanshahi (2017), the number of neurons

in the hidden layer is determined via trial and error. During training the NN maximizes the likelihood

p(D | θ,M):

θ⋆ = argmax
θ

log
[
p(D | θ,M)

]
, (9)

where θ is the parameter vector, D = (x,y) is the training data andM is the model.
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During the NN training the loss in every epoch is evaluated using the mean absolute error (MAE) and

the root mean squared error (RMSE):

MAE =
1

N

N∑
i=1

| ŷi − yi | (10)

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (11)

where N equals the total number of data points, ŷi equals the predicted value, yi equals the actual value

and ȳ equals the mean of the actual values. MAE is expected to be more robust to outliers than RMSE;

however, if model errors follow a Gaussian Normal distribution, then RMSE would be more suitable to

use (Chai & Draxler, 2014). The performance of the NN or the cost function, which is the average

of the losses of all training instances, is also evaluated using measures (10) and (11). If the above train-

ing performance measures converge over the epochs, the training is ended. Early stopping, which is a

method that prevents the network from continuing training while the performance is not improving, is

used to minimize the number of epochs during the stage to evaluate the performance based on different

hyperparameters (Nielsen, 2015).

The NN constructed in this research predicts the total environmental footprint zLCA in points per

gram, where the material fractions of the packaging m = [m1, . . . ,mM ] measured in percentages, the

technical recyclability rate measured in percentages, the process energy GHG (Green House Gases) emis-

sion measured in carbon-dioxide equivalent and the life-cycle GHG emission measured in carbon-dioxide

equivalent constitute the input layer of the network. The total environmental footprint is predicted and

together with the life-cycle packaging costs zcosts minimized with respect to the material fractions m of

the package. Presumably, the relation between the environmental footprint and the inputs is complex

and therefore it is convenient to use a NN. For training and evaluation of the NN, the torch library

(Falbel & Luraschi, 2021) is used to construct the NN from scratch.

3.3.2 Bayesian Neural Network

This research extends the paper of Zhou et al. (2009) by using a NN as well as a BNN, which

is discussed in this Section. The NN discussed in Section 3.3.1 considers a frequentist approach. Its

task is to maximize the likelihood p(D | θ,M) to train the network. A Bayesian approach does not

get a parameter point estimate but a complete probability distribution over parameters, the posterior

distribution p(θ | D,M). The posterior distribution describes beliefs about the value of each parameter.

A prior distribution p(θ) describes the initial belief of the parameters before observing the data, based on

theory or empirical results. Since no clear theory exists regarding the distribution of the environmental

footprint with respect to the inputs, the default option, a Gaussian Normal distribution, is chosen.

However, results could be sensitive to the prior choice and other distributions could give better results

(Silvestro & Andermann, 2020; Fortuin, Garriga-Alonso, Wenzel, Rätsch, Turner, van

der Wilk & Aitchison, 2021). The aim of a BNN, shown in Figure 3, is to find posterior distributions

for all weights and biases.
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Figure 3: A BNN having an input layer of d inputs, L hidden layers and an output layer of t outputs.

Using Bayes’ rule (Bayes, 1763) the posterior distribution p(θ | D,M) over parameters θ, which

constitute all weights w and biases b, of the model M after observing the training data D can be

written as:

p(θ | D,M) ∝ p(D | θ,M)p(θ), (12)

In the BNN for each node k, again information will be transformed according to (8) but now the weights

follow a distribution, which in this paper is assumed to be a Gaussian Normal distribution:

wki ∼ N (µki, σ
2
ki) (13)

Then, based on observed training data D including observations yi with i = 1, ..., N , predictions on new

unobserved test data yn+1 are obtained using:

p(yn+1 | D,M) =

∫
p(yn+1|θ,M)p(θ|D)dθ (14)

Analytically, the integral in (14) cannot be evaluated, therefore the numerical method Variational In-

ference (VI) is used to solve the integral (Graves, 2011). A more common numerical method is a

Markov chain Monte Carlo sampling algorithm; this study does not considers this method because it

is usually slower than VI (Kochurov & Wiecki, 2017). VI methods solve the integral using an op-

timization technique with a distance measure called the Kullback Leibler (KL) divergence (Kullback

& Leibler, 1951), where the posterior distribution p(θ | D,M) is approximated using a variational

distribution q(θ | η), with η = (µ,σ) the distribution parameters of a Gaussian distribution, that is as

close as possible to the true posterior distribution p(θ | D,M). Both the real posterior distribution and

the variational distribution are unknown but using the latter can solve the optimization problem using

numerical methods.
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VI methods determine the optimal value of θ by minimizing the KL divergence between the variational

distribution q(θ | η) and the posterior distribution p(θ | D,M)4:

KL
[
q(θ | η) || p(θ | D,M)

]
(15)

=

∫
q(θ | η) log

(
q(θ | η)

p(θ | D,M)

)
dη

. . .

= V FE(θ,η) + log(p(D | M))

Minimizing the KL divergence in (15) without the last term, since it does not depend on θ, gives the

minimization problem of the variational free energy V FE(θ,η) (Graves, 2011):

η⋆ = argmin
η∈Ω

V FE(θ,η) (16)

The variational free energy V FE(θ,η) in (16) can be approximated by drawing θi from the variational

distribution q(θ | η):

V FE(θ,η) ≈ 1

N

N∑
i=1

[
log(q(θi | η))− log(p(D | θi,M))− log(p(θi | M)))

]
(17)

Assume that both the variational posterior distribution q(θ | η) and the prior p(θ | η) follow a Gaussian

distribution, according to

q(θ | η) ∼ N (θ | µ,σI) and (18)

p(θ | M) ∼ N (0, I). (19)

The BNN training is based on the Stochastic Variational Inference (SVI), which is SGD for VI (Hoff-

man, Blei, Wang & Paisley, 2013). The problem is that BP training stops in the hidden nodes of

the BNN due to stochasticity. However, Bayes-by-Backprop (BBB) is a solution to implement this in

practice. The remainder of this Section is based on Blundell, Cornebise, Kavukcuoglu & Wier-

stra (2015) and Jospin et al. (2020).

The idea of BBB is to use a reparametrization trick to ensure that BP works.5 The Gaussian variational

distribution in (18) can be reparameterized to: θ = µ+σ⊙ϵ, where ⊙ is element-wise multiplication and

ϵ ∼ N (0, I). Similarly to Blundell et al. (2015) the standard deviation is parameterized according

to σ = log(1+ exp(ρ)), so that it cannot become negative. Then, the non-variational noise ϵ is sampled

independently from µ and log(1 + exp(ρ)).6 The reparameterization can then be used to evaluate the

VI approximation expressed in (17). BP is conducted by calculating the gradients of V FE(θ,η) with

respect to the variational parameters η. Finally, the variational parameters are updated using learning

rate α. These steps are conducted for a predefined total number of epochs, TE. Algorithm (1) gives a

summary of the BBB algorithm that learns the values of the variational parameters η.7 Similar to NN,

4For convenience the variational free energy, V FE(θ,η), is written without D and M. It could also be written as
V FE(θ,η | D,M). For details about the VI method and KL divergence see Appendix B.

5For the proof of the reparameterization trick see Kingma & Welling (2013).
6If all σj = 0, then θj = µj and it reduces to a normal BP algorithm in a deterministic NN.
7This algorithm is specifically for the choice of this paper’s priors; see Jospin et al. (2020) for the general case.
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the performance of the BNN is evaluated according to (10) and (11), and for training and evaluation

of the BNN, the the torch library (Falbel & Luraschi, 2021) is used to construct the BNN from

scratch.

Algorithm 1 Bayes-by-Backprop algorithm.

1: Initialize: η = η0
2: for i = 0 to TE do
3: Draw ϵ ∼ N (0, I)
4: Reparameterization: θ = µ+ log(1 + exp(ρ))⊙ ϵ
5: V FE(θ,η) = log(q(θ | η))− log(p(D | θ,M))− log(p(θ | M))
6: Back-propagation: ∇ηV FE(θ,η)
7: Update: η = η − α∇ηV FE(θ,η)
8: end for

3.3.3 Single-objective Genetic Algorithm

This Section summarizes the algorithm of a general single-objective GA based on (Konak et al, 2006).

As mentioned before GA is an evolutionary algorithm and an iterative procedure where, similarly to nat-

ural evaluation, a population of chromosomes goes through a number of stages called a generation.

Generation g consists of a selection stage, a mutation stage, a cross-over stage and an elitism stage. A

population Pg is randomly initialized and with every generation the population becomes fitter and fitter.

A GA uses a population of possible solutions, i.e. chromosomes. A chromosome, which is a solution

vector, is made of (discrete) genes. A chromosome is a string of characteristics; each gene corresponds

to a characteristic of the chromosome. Therefore, population in generation g, Pg, is defined as C chro-

mosomes of the population in generation g. Due to limited computational power, in this study the

number of chromosomes C is equal to 12. Each chromosome equals a package consisting of material

fractions m = [m1, . . . ,mM ]. Thus, the genes of the chromosomes are equal to the material fractions

m measured in percentages. In the multi-objective optimization in (2) there are ten genes, while in the

multi-objective optimization in (3) there are six genes. In order to imitate natural selection, a fitness

function determines how good a chromosome is. A chromosome with a high fitness score FI is most

likely to be selected for reproduction.

Generation g = 0 starts with a random generation of C chromosomes for population g, Pg. Also,

the cross-over probability P c, the mutation probability Pm and the maximum number of generations G

are initially determined. Due to limited computational power, in this study the number of generations

G is equal to 10. Based on Yang, Chien & Ting (2015) in this study the P c and Pm are set to 0.9

and 0.03, respectively. In the selection stage, chromosomes of population Pg will be selected based on

their fitness score FI. Thereafter, to create offsprings Qg the cross-over and mutation operators are

used.8 In the (single-point) cross-over stage, two chromosomes from population Pg are selected based

on their level of FI. The higher FI, the more likely they are selected. Then, offsprings Qg are created

by interchanging a specific part of the chromosomes. If no interchange takes place, the offsprings are

8Details regarding the cross-over and mutation operator can be found in Appendix C.
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similar to the parents. Not all pairs of chromosome undergo the cross-over operation; it is based on the

cross-over probability P c. In the mutation stage, one gene in a chromosome at a specific locus of each

off-spring is changed by some probability Pm. This brings back genetic diversity into the population and

prevents the algorithm to get stuck in local. Then, the elitism stage guarantees that C chromosomes

from Qg with high fitness scores FI are selected and carried over to the next generation g+1, so that the

genetic quality is improved compared to generation g. The population becomes fitter and fitter during

GA, eventually if the stopping criterion is satisfied, the population converges, the search is terminated

and the current population is returned. Algorithm 2 summarizes the GA algorithm.

Algorithm 2 Single-objective Genetic Algorithm.

1: function Fitness(Pg)
2: computeFitness(Pg)

3: return FIg
4: end function

5: function Selection(Pg)
6: Parent1 = Pg[max(Fitness(Pg))]

7: Parent2 = Pg[max(Fitness(Pi − Parent1))]
8: return [Parent1, Parent2]
9: end function

10: function CrossOver([Parent1, Parent2],P
c)

11: Qg = computeCrossOver([Parent1, Parent2],P
c)

12: return Qg

13: end function

14: function Mutation(Qg,P
m)

15: Qg = computeMutation(Qg,P
m)

16: return Qg

17: end function

18: Initialize: G = 10, C = 12, P c = 0.9, Pm = 0.03
19: P0 = rand(C)

20: FI0 = Fitness(P0)

21: while not termination condition do
22: for g = 0 to G do
23: Qg = Mutation(CrossOver(Selection(Pg),P

c),Pm)

24: maxQg = max(Fitness(Qg))

25: if maxQg > min(Fitness(Pg)) then
26: swap(maxQg,min(Fitness(Pg))

27: end if
28: g ← g + 1
29: end for
30: end while
31: return Pg+1
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3.3.4 NSGA-II

This Section gives an overview of NSGA-II, which uses crowding distance (CD) to obtain the fittest

population (Deb et al., 2002 ;Konak et al., 2006). Chromosomes with a higher CD are considered as

better.9 Similarly as GA in Section 3.3.3, NSGA-II starts with a random population Pg in generation g =

0 and initializes parameters. Offspring Qi are created by applying the selection, cross-over and mutation

operator. If the stopping criterion is satisfied, the algorithm already stops and returns population Pg

for generation g = 0. If not, the algorithm continuous by making a combined population Rg = Pg ∪Qg.

Thus, Rg is twice the size of Pg. The fast non-dominated sorting algorithm10 is applied to identify

all non-dominated fronts F1, . . . , FR in Rg. Then, for all Fj with j = 1, . . . , R the following steps are

conducted:

1. Calculate the CD of all chromosomes in Fj .

2. Create the population of the next generation Pg+1 by including chromosomes of the highest ranked

fronts until the size of Pg+1 equals C (Case 1). Then, if a front contains too many chromosomes

and exceeds size C, the CD measure is used (Case 2) because all chromosomes in that front have

the same performance.

Case 1: If | Pg+1 | + | Fj |≤ C, then Pg+1 = Pg+1 ∪ Fj

Case 2: If | Pg+1 | + | Fj |> C, then add the least crowded C− | Pg+1 | chromosomes from Fj to

Pg+1.

Thereafter, again the selection, cross-over and mutation operator are applied to create offspring Qg+1

of size C. If the stopping criterion is satisfied, the search is terminated and the current population is

returned. Algorithm 3 summarizes the NSGA-II algorithm. The mco library (Mersmann, Trautmann,

Steuer, Bischl & Deb, 2020) is used to solve the multi-objective optimization using NSGA-II.

Algorithm 3 NSGA-II.

1: function FNSA(Rg)
2: [F1, . . . , FR] = computeFronts(Rg)

3: return [F1, . . . , FR]
4: end function

5: function CrowdingDistance(Fj)
6: CDj = computeCrowdingDistance(Fj)

7: if | Pg+1 | + | Fj |≤ C then
8: Pg+1 = Pg+1 ∪ Fj

9: else
10: Pg+1 = Pg+1 ∪ Fj [1 : C− | Pg+1 |]
11: end if
12: return CDj

13: end function
14: Initialize: G = 10, C = 12, P c = 0.9, Pm = 0.03
15: P0 = rand(C)

16: Q0 = Mutation(CrossOver(Selection(P0),P
c),Pm)

9Details about the CD can be found in Appendix D.
10The fast non-dominated sorting algorithm verifies pairwise if a chromosome dominates other chromosomes. Then, the

first most highest ranked front contains all chromosomes that are dominated by no other chromosomes. Chromosomes
do get a penalty term of 1 when they are dominated by other chromosomes, such that they are classified into a least
ranked front.
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17: while not termination condition do
18: for g = 0 to G do
19: Rg ← Pg ∪Qg

20: [F1, . . . , FR] = FNSA(Rg)

21: for j = 1 to R do
22: CDj = CrowdingDistance(Fj)

23: j ← j + 1
24: end for
25: Qg+1 = Mutation(CrossOver(Selection(Pg+1,P

c),Pm)

26: end for
27: g ← g + 1
28: end while
29: return Pg+1

Note:

1. | Pg+1 | and | Fj | equal the number of chromosomes in population g+1 and in front j, respectively.

2. In above algorithm functions Selection, Mutation and CrossOver are similar to the functions in
Algorithm 2.

3.3.5 NSGA-III

This Section summarizes NSGA-III, which is the extended version of NSGA-II in Section 3.3.4 and re-

places the computationally expensive CD operator with another approach to select chromosomes for the

population in the next generation (Deb & Jain, 2013a; Deb & Jain, 2013b). Deb & Jain (2013a)

determine reference points on a hyperplane, so that diversity in chromosomes among the population

remains. The problem with NSGA-II is that when the number of objectives increases, proportionally

there are more non-dominated than dominated solutions in a random set of objective vectors (Deb &

Jain, 2013a; Deb & Jain, 2013b). They use the method of Das and Dennis (1998) to determine the

reference points on the hyperplane. Reference points on a normalized hyperplane are defined such that

they are equally inclined to all axes of the objectives and intercept with one of the axes of the objectives.

Algorithm 4 gives the pseudocode of NSGA-III. Similarly to NSGA-II, NSGA-III starts with a random

population, a merged parent and offspring population and the fast non-dominated sorting algorithm

to determine the fronts. They both use the same crossover and mutation operators, CrossOver and

Mutation respectively. Then, the selection of fronts to be included in the new population takes place

until the size of the new population equals or exceeds C. Now NSGA-II behaves different than NSGA-III.

For NSGA-II the chromosomes in the last front FL that can be partially included is based on the CD

operator, while in NSGA-III this is based on the reference points on the normalized hyperplane.

After normalization of each objective, for NSGA-III the remaining chromosomes from front FL that

will be selected to form a new survival population S is based on the chromosomes in FL that will

maximize the diversity of the population the most. To ensure diverse and well-distributed solutions,

chromosomes of FL that are associated with each of the reference points are selected, so that diversity

of the survival population S is maintained (Yannibelli et al., 2020). Every chromosome in S is

associated with a reference point. That is why for each reference point on the hyperplane a reference

line is defined by connecting the reference point with the origin. Thereafter, the perpendicular distance

of each chromosome in S from each reference line is computed. Then, the reference line corresponding
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to its reference point that is closest to the chromosome in the normalized objective space is associated

with the chromosome (Deb & Jain, 2013a; Deb & Jain, 2013b).

It might be the case that reference points are not associated with any chromosomes or do have multiple as-

sociations. In the Niching operation the number of chromosomes associated with each reference point is

counted and based on this count inclusion or exclusion for the population of the next generation is consid-

ered (Deb & Jain, 2013a; Deb & Jain, 2013b). For details regarding functions Normalize, Associate,

Niching see Appendix E. The MaOEA library (Irawan, 2020) is used to solve the multi-objective op-

timization using NSGA-III. Details regarding the complete R code can be found in Appendix G or in

https://colab.research.google.com/drive/1HwC7E1npLGfKw7pJGPkWLL7ybZZRuNPc?usp=sharing.

Associated to this study, the NSGA algorithms optimize the multi-objective optimization problem dis-

cussed in Section 3.2 with respect to the material fractions. It should be emphasised that the NSGA

algorithms solely optimize with respect to the material fractions, while the NN or BNN predicts the en-

vironmental footprint based on multiple inputs (material fractions, emissions and technical recyclability

rate).

Algorithm 4 NSGA-III.

1: Initialize: G = 10, C = 12, P c = 0.9, Pm = 0.03, H, Zs

2: P0 = rand(C)

3: Q0 = Mutation(CrossOver(Selection(P0),P
c),Pm)

4: while not termination condition do
5: for g = 0 to G do
6: S = ∅
7: Rg ← Pg ∪Qg

8: [F1, . . . , FR] = FNSA(Rg)

9: for j = 1 to R do
10: Define FL = last front to be included

11: if | S | + | Fj |< C then
12: S ← S ∪ Fj

13: else if | S | + | Fj |= C then
14: Pg+1 ← S ∪ FL

15: else
16: Normalize objective space & create Zr:

17: znormk , Snorm, Fnorm
L , Znorm

r , · ← Normalize(zk, S, FL, Zr, ·)
18: Associate each chromosome of Snorm with reference point Znorm

r :

19: for k = 1 to | S | do
20: [πs,∆(s)] = Associate(Snorm

k , Znorm
r )

21: end for
22: Remaining chromosomes from FL to fill up S:
23: S ← S∪ Niching(Fnorm

L , C− | S |, ·)
24: end if
25: j ← j + 1
26: end for
27: Pg+1 ← S
28: Qg+1 = Mutation(CrossOver(Selection(Pg+1,P

c),Pm)

29: end for
30: g ← g + 1
31: end while

https://colab.research.google.com/drive/1HwC7E1npLGfKw7pJGPkWLL7ybZZRuNPc?usp=sharing
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32: return Pg+1

Note:

1. In above algorithm functions Selection, Mutation, CrossOver and FNSA are similar to the functions
in Algorithms 2 and 3.

2. To keep it concise, some details regarding Normalize, Associate and Niching are left out, see
Appendix E for further details.

3. In above algorithm, Zs are H structured reference points, Zr is the reference set, zk is objective
function k, π(s) is the closest reference point and ∆ is the distance between s and π(s).

4 Data

To train, validate and test the proposed method, the Packaging portfolio (Unilever, 2022a), Food

database (Unilever, 2022b), Idemat data set (Delft University of Technology, 2022), average

process GHG emission data (Containers & Good, 2016) and average life-cycle GHG emission data

(Kissinger, Sussmann, Moore & Rees, 2013) are used.11 The Food database provides information

of 17564 products, where each product has one of 364 packages retrieved from the Packaging Portfolio.

However, due to missing data only 4225 observations remain. For each product, data of the material

fractions in percentages, the technical recyclability rate in percentages and the life-cycle costs in euros

per gram of packaging are extracted from the Packaging Portfolio and the Food database. To be able

to evaluate the LCA model and to be able to predict this, data regarding life-cycle assessment based on

the method of the ISO (2006) is needed. The Idemat data set provides the environmental footprints of

the materials in points per kilogram. This is extracted and transformed to the environmental footprint

of every package measured in points per gram of packaging. Table 2 shows the units of measurements

of all variables. Since neural networks perform better if more data points are used, a simulation data

set of 20.000 observations is created that is based on the data of Unilever. Also, some materials are

underrepresented in the original Unilever data set, e.g. RPET and RPP are included in only 8 and 28 of

the packages in the original Unilever data set. For the simulated data a wider range of values is covered.

In the remainder of this paper, the Unilever data set is referred to as the original data set of 4225

observations and the simulation data set is referred to as the simulated data set of 20.000 observations.

Appendix F gives detailed information about both data sets.

Table 2: Units of data variables.

Data Unit
Environmental footprint Points per g of packaging
Life-cycle GHG emissions CO2E in g
Life-cycle costs ¤ per g of packaging
Materials % of total packaging weight
Process energy GHG emissions CO2E in g
Technical recyclability rate %

Note: CO2E is carbon-dioxide equivalent, which makes it possible to compare
different GHG.

11(Containers & Good, 2016) also provide data regarding the transportation energy per material. This is not taken
into account, since this is too sensitive regarding the assumptions made. However, the life-cycle emission data of
(Kissinger et al., 2013) takes into account the complete (average) life-cycle emissions per material, so also the
transportation emissions. Therefore, in this study the life-cycle emissions is rather a proxy than an exact measure
with respect to every package, since these average transportation emissions are not exactly equal to the transportation
emissions of Unilever’s products. Also, (Kissinger et al., 2013) do not distinguish between virgin and recycled
materials.
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5 Results

This Section describes the results of the combined algorithm of an evolutionary algorithm, NSGA-II or

NSGA-III, and a neural network, NN or BNN.

5.1 Grid search hyperparameters and training of the networks

After normalization of the inputs, the network is trained on several hyperparameter settings using the

train and validation data sets. The grid search is limited to search within three hidden layers and ten

neurons per hidden layer. On top of that the total number of hidden neurons in the network is restricted

to be smaller than or equal to 25. Adding more hidden layers and/or having more neurons in the network

did not improve the performance substantially and overfitting is prevented. Via trial-and-error a learning

rate of 0.0005 is chosen for the actual network training using the train and test data. A learning rate of

0.0005 performed best and learning rates bigger than 0.0009 do not learn the patterns of the networks

well. Table 3 shows the performance measures of the network training, which is the average performance

over ten 3-way holdout samples.

Table 3: Generalization performance over ten 3-way holdout samples using 10.000 epochs; the best performing
networks are indicated in bold.

(MAE train, MAE test) (RMSE train, RMSE test)
Unilever + All + NN + ReLu (0.0489, 0.0482) (0.0673, 0.0694)
Unilever + All + NN + Sigmoid (0.1396, 0.1394) (0.1463, 0.1462)
Unilever + All + BNN + ReLu (0.0514, 0.0521) (0.0689, 0.0684)
Unilever + All + BNN + Sigmoid (0.1394, 0.1394) (0.1463, 0.1462)
Unilever + Plastics + NN + ReLu (0.0535, 0.0551) (0.0664, 0.0709)
Unilever + Plastics + NN + Sigmoid (0.2326, 0.2333) (0.1519, 0.1529)
Unilever + Plastics + BNN + ReLu (0.0535, 0.0550) (0.0647, 0.0668)
Unilever + Plastics + BNN + Sigmoid (0.1494, 0.1503) (0.1603, 0.1614)
Simulation + All + NN + ReLu (0.1528, 0.1528) (0.0808, 0.0808)
Simulation + All + NN + Sigmoid (0.0971, 0.0972) (0.1023, 0.1025)
Simulation + All + BNN + ReLu (0.0211, 0.0211) (0.0256, 0.0257)
Simulation + All + BNN + Sigmoid (0.0971, 0.0973) (0.1024, 0.1025)
Simulation + Plastics + NN + ReLu (0.0367, 0.0367) (0.0349, 0.0349)
Simulation + Plastics + NN + Sigmoid (0.1100, 0.1100) (0.1105, 0.1105)
Simulation + Plastics + BNN + ReLu (0.0072, 0.0073)) (0.0087, 0.0091)
Simulation + Plastics + BNN + Sigmoid (0.1100, 0.1101) (0.1104, 0.1105)

Settings: learning rate = 0.0005, epochs = 10.000, BNNs are trained using standard normally distributed priors.

In general training a BNN on one 3-way holdout sample takes more time than training a NN. As expected,

for all simulation cases the test error is slightly higher than the train error. Due to the small number

of observations, the original Unilever data shows sensitivity to the 3-way holdout method and suffers

arbitrarily from sampling bias. The test performance is arbitrarily smaller than the train performance in

some cases, which means that it is a coincidence that it fits the sample well, and in some cases it is vice

versa as would be expected. As can be seen in Figures 4 and 5, sigmoid activation needs more epochs to

converge, in general around 30.000 to converge completely, while for ReLu only 10.000 epochs are needed

to converge completely and convergence already starts around 500 epochs. Therefore, in the complete

algorithm ReLu activation has been chosen to train the networks for both the NN and the BNN.
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As highlighted in Table 3, in the remainder of this Section results are shown for ReLu activation,

the simulation data set and MAE loss. Using the train and validation data sets, the most optimal

hyperparameters for training networks inside the NSGA-II and NSGA-III algorithms for the highlighted

cases are shown in Table 4. In Appendix H results for RMSE loss can be found.

Table 4: Most optimal hyperparameters.

Number of hidden layers Neurons in hidden layers
Simulation + All + NN + ReLu 2 (2,4)
Simulation + All + BNN + ReLu 2 (2,4)
Simulation + Plastics + NN + ReLu 3 (1,4,2)
Simulation + Plastics + BNN + ReLu 3 (1,2,3)
Settings: learning rate = 0.0005, epochs = 10.000, BNNs are trained using standard normally distributed priors,
MAE loss, simulation data, ReLu activation.

For the BNN different normal distributions are considered. Table 5 gives an overview of the generalization

performance on ten 3-way holdout samples and shows that using a Gaussian Normal distribution different

than the standard normal distribution does not make a major difference in generalization performance

for both including all materials and including only plastics. Therefore, NSGA algorithms in combination

with a BNN use standard normally distributed priors.

Table 5: Normal distributions considered for priors in the BNN.

(MAE train, MAE validation)

All Plastics
N (µ = 0, σ = 1) (0.0211, 0.0211) (0.0072, 0.0073)
N (µ = 0.5, σ = 0.5) (0.0215, 0.0212) (0.0072, 0.0073)
N (µ = 0.5, σ = 1) (0.0218, 0.0216) (0.0072, 0.0074)
N (µ = 0, σ = 2) (0.0214, 0.0213) (0.0073, 0.0074)
N (µ = 0.5, σ = 2) (0.0215, 0.0214) (0.0073, 0.0074)
N (µ = 5, σ = 0.5) (0.0216, 0.0215) (0.0073, 0.0074)

Distributions

Settings: learning rate = 0.0005, epochs = 10.000, BNNs are trained using standard normally
distributed priors, MAE loss, simulation data, ReLu activation.
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Figure 4: MAE loss using simulation data, training for 10.000 epochs and in case of the BNN then priors follow
a standard Normal distribution.
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Figure 5: MAE loss using Unilever data, training for 10.000 epochs and in case of the BNN then priors follow a
standard Normal distribution.
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5.2 NSGA-II

Conducting the NSGA algorithms for all 3-way holdout samples is too computationally intensive, there-

fore it is trained for the sample attaining the lowest loss. This potentially could give a slight optimistic

bias but Table 6 shows that comparing the generalization performance averaged over ten 3-way holdout

samples is in line with the generalization performance of one sample. However, 3-way holdout samples

using the original Unilever data often suffer from sampling bias and show big differences among each

other. Due to the small number of observations, there is arbitrariness in the sampling.

Table 6: Comparison of performance on ten 3-way holdout samples and one sample.

(MAE train, MAE test)
on ten 3-way holdout samples

(MAE train, MAE test)
on one sample

Simulation + All + NN + ReLu (0.1529, 0.1529) (0.1517, 0.1512)
Simulation + All + BNN + ReLu (0.0211, 0.0211) (0.0212, 0.0216)
Simulation + Plastics + NN + ReLu (0.0367, 0.0367) (0.0067, 0.0069)
Simulation + Plastics + BNN + ReLu (0.0072, 0.0073) (0.0068, 0.0068)

Settings: learning rate = 0.0005, epochs = 10.000, BNNs are trained using standard normally distributed priors, simulation data,
ReLu activation.

As expected, the computational cost for the NSGA-II and NSGA-III algorithms is high. Especially,

NSGA-III in combination with a BNN is computationally intensive. Due to limited computation power,

NSGA-II and NSGA-III algorithms are executed for 10 generations and a population of 12 chromosomes.

Because networks start to converge around 500 epochs using ReLu activation, the network trained in-

side the NSGA algorithms is trained for 500 epochs. Tables 7 and 8 show all Pareto optimal outcomes

for NSGA-II in combination with a NN and a BNN, respectively. In exchange for higher computational

times, MAE values are lower when using a BNN than a NN.12 Moreover, when using a BNN the expected

trade-off between the environmental impact and the cost impact, as explained in Section 3.2, is con-

firmed.13 If including all materials and using a BNN, then from an environmental perspective there is no

clear preference for one of the materials, while in combination with a NN the algorithm tells that paper

(31.4%) and LDPE (20.4%) should be prioritized. Note that in fact, the single-objective optimization

that minimizes the environmental footprint (scenario Ia) is not a single-objective optimization because

also the performance measures (train MAE and test MAE) are minimised. If including all materials

and using a BNN [NN], then from a cost perspective RPET (26.8%) and steel (23.1%) [RPET (18.7%)

and steel (22.1%)] should be prioritized. If including all materials, using a BNN and taking both the

environment and costs into account, then there is no clear preference for one of the materials. However,

LDPE (4.8%) and paper (5.6%) should be least prioritized. If a NN is used, then aluminium (27.8%)

and RPET (19.2%) should be prioritized.

If including only plastics, in all three scenarios the constraint that the sum of RPET and RPP should be

at least 15% is satisfied.14 If including only plastics and using a BNN [NN], then from an environmental

perspective PET (7.2%) and HDPE (10.4%) should be least prioritized [there is no clear preference for

12Appendix I shows that on the Unilever data BNN does not show an improvement compared to NN.
13As can be seen in Appendix I, this expected trade-off is not always confirmed when using the original Unilever data.
14When using the original Unilever data and including only plastics, then sometimes the algorithm had difficulties with
satisfying the constraint of the sum of RPET and RPP being greater or equal to 15%.
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one of the materials]. If including only plastics and using a BNN [NN], then from a cost perspective

RPET (36.7%) [RPET (48.9%)] should be prioritized. If including only plastics, using a BNN [NN] and

taking both the environment and costs into account, then HDPE (31.3%) [RPET (26.6%)] should be

prioritized.

Table 7: Optimization results using NSGA-II with a NN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.02660 0.00187 - - 0.03015 0.00193
Costs (¤/g) - - 0.54 0.25 0.31 1.74
Aluminium (%) 3.9 - 8.2 - 27.8 -
Glass (%) 6.8 - 11.5 - 2.7 -
HDPE (%) 2.0 15.1 15.6 21.6 4.0 18.8
LDPE (%) 20.4 14.5 3.6 1.3 0.8 14.6
Paper (%) 31.4 - 5.5 - 5.1 -
PET (%) 6.4 19.0 8.2 3.4 11.4 14.9
PP (%) 7.6 19.6 1.3 5.9 7.4 13.0
RPET (%) 7.0 19.4 18.7 48.9 19.2 26.6
RPP (%) 3.8 12.5 5.3 18.9 16.1 12.1
Steel (%) 10.7 - 22.1 - 5.4 -
Time (sec.) < 1000 < 2000 < 5 < 5 < 1000 < 2000
MAE train 0.1549 0.0293 - - 0.1571 0.0271
MAE test 0.1558 0.0172 - - 0.1585 0.0185
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ed
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es

Settings: learning rate = 0.0005, epochs = 500, simulation data, ReLu activation.

Table 8: Optimization results using NSGA-II with a BNN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.00259 0.00104 - - 0.00262 0.00107
Costs (¤/g) - - 0.18 0.38 0.96 0.82
Aluminium (%) 8.9 - 16.7 - 14.7 -
Glass (%) 9.1 - 8.4 - 9.3 -
HDPE (%) 8.3 10.4 11.9 21.5 9.0 31.3
LDPE (%) 10.3 18.6 0.9 7.7 4.8 6.2
Paper (%) 11.4 - 0.2 - 5.6 -
PET (%) 8.4 7.2 3.4 5.7 8.7 11.5
PP (%) 14.1 23.1 3.9 8.3 6.5 8.4
RPET (%) 6.9 20.4 26.8 36.7 14.0 22.1
RPP (%) 10.8 20.4 4.6 20.2 12.5 20.5
Steel (%) 11.9 - 23.1 - 14.9 -
Time (sec.) < 3500 < 6000 < 5 < 5 < 3500 < 6000
MAE train 0.0237 0.0077 - - 0.0271 0.0073
MAE test 0.0240 0.0077 - - 0.0274 0.0074
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Settings: learning rate = 0.0005, epochs = 10.000, BNNs are trained using standard normally distributed priors,
simulation data, ReLu activation.

5.3 NSGA-III

Tables 18 and 19 show all Pareto optimal outcomes for NSGA-III in combination with a NN and a BNN,

respectively. Compared to Section 5.2, the expected trade-off between the environmental impact and

the cost impact as explained in Section 3.2 is not always confirmed when using a BNN. It is confirmed

for all cases but not when only costs are minimized and all materials are included. Again, performance

measures (MAE train and MAE loss) are lower when using a BNN than when using a NN in all cases.



Anouk Montfoort - Master thesis 28

If including all materials and taking into account the environment impact, the costs impact or both

impacts and using a NN or BNN does not show a clear preference or prioritization for one of the mate-

rials.

If including only plastics, in all three scenarios the constraint that the sum of RPET and RPP should be

at least 15% is satisfied. If including only plastics and using a BNN [NN], then from an environmental

perspective PP (23.2%), PET (20.7%) and LDPE (20.7%) [PP (17.5%) and RPP (17.4%)] should be pri-

oritized. If including only plastics and using a BNN [NN], then from a cost perspective HDPE (26.0%)

and PP (19.3%) should be prioritized [there is no clear prioritization but LDPE (5.2%) is less prioritized

than others]. If including only plastics, using a BNN or NN and taking both the environment and costs

into account, then there is no clear preference or prioritization for one of the materials. However, when

using NN LDPE (7.3%) is less prioritized than other materials.

Table 9: Optimization results using NSGA-III with a NN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.06162 0.00203 - - 0.05417 0.00200
Costs (¤/g) - - 0.94 0.95 0.79 1.34
Aluminium (%) 9.3 - 10.5 - 8.0 -
Glass (%) 10.3 - 14.7 - 13.1 -
HDPE (%) 9.5 21.2 9.5 18.0 11.4 18.9
LDPE (%) 13.1 12.5 5.3 5.2 5.8 7.3
Paper (%) 9.9 - 4.8 - 6.4 -
PET (%) 8.7 15.9 12.8 19.2 10.6 20.0
PP (%) 7.5 17.5 9.5 19.5 7.3 17.1
RPET (%) 11.0 15.6 10.3 18.3 15.0 19.2
RPP (%) 10.4 17.4 10.4 19.9 10.5 17.6
Steel (%) 10.3 - 12.2 - 11.7 -
Time (sec.) < 2000 < 3500 < 5 < 5 < 2000 < 3500
MAE train 0.1682 0.0263 - - 0.1661 0.0268
MAE test 0.1710 0.0203 - - 0.1687 0.0200
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Settings: learning rate = 0.0005, epochs = 500, simulation data, ReLu activation.

Table 10: Optimization results using NSGA-III with a BNN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.00261 0.00105 - - 0.00304 0.00106
Costs (¤/g) - 1.04 1.23 0.76 1.62
Aluminium (%) 10.3 - 14.2 - 15.7 -
Glass (%) 5.6 - 9.9 - 10.9 -
HDPE (%) 13.4 16.5 11.7 26.0 6.4 17.2
LDPE (%) 10.7 20.7 6.8 13.2 4.9 16.1
Paper (%) 8.5 - 8.7 - 4.1 -
PET (%) 10.3 20.7 8.0 14.8 8.8 17.7
PP (%) 12.5 23.2 11.6 19.3 10.6 21.1
RPET (%) 10.3 12.7 6.9 15.2 8.2 14.0
RPP (%) 8.6 6.3 12.6 11.5 16.0 14.0
Steel (%) 9.8 - 9.7 - 14.4 -
Time (sec.) < 6500 > 9000 < 5 < 5 < 6500 > 9000
MAE train 0.0284 0.0079 - - 0.0248 0.0076
MAE test 0.0288 0.0079 - - 0.0256 0.0076
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Settings: learning rate = 0.0005, epochs = 10.000, BNNs are trained using standard normally distributed priors,
simulation data, ReLu activation.
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5.4 Limitations

This research has important limitations, which could cause potential uncertainties in the results. To

compare the hypothetical material fractions predicted by the networks with actual outcomes, results of

the NSGA algorithms combined with NNs or BNNs could be compared to results of the NSGA algorithms

without neural networks. The latter case could be seen as the potential underlying data generating pro-

cess (DGP). It should be emphasised that in this study this relation is not the true underlying DGP and

thus a limitation of this study is that material fractions could not be compared to true optimal material

fractions. The prediction of the NN inside the NSGA algorithms is based on the material fractions,

the emissions and the technical recyclability rate, while for the potential DGP it is solely based on the

material fractions and the environmental footprint for every material. This relation is presumably more

complex and requires more advanced data. However, for research purposes it might be interesting to

make this comparison. Results with respect to this potential DGP can be found in Appendix J.

Due to computational power, this study is limited in the number of generations and chromosomes in the

NSGA algorithms. These hyperparameters should preferably be increased. Limitations related to the

used method are relying solely on neural networks instead of using multiple machine learning methods

and using only Gaussian Normally distributed priors in the BNN. Limitations related to the data are the

little amount of observations of the original Unilever data set, assuming fixed costs that do not change

with seasonality or other factors, emission and environmental footprint data that is not from Unilever

but an external database and missing data with respect to the process energy GHG emissions of RPP

and RPET. Unilever should extend its data set with more advanced numerical data of better quality.

Confounding problems could arise due to the selection or exclusion of environmental variables and/or dif-

ferences in natural circumstances or protocol differences when measuring environmental variables. Then,

the data is manipulated by another source that changes as well, e.g. temporal differences, seasonal

differences, location differences. Conditioning on these covariates conditional unconfoundedness can be

assumed (Deng, 2021). Also, randomization in generating samples could account for differences in

natural circumstances and ensures independence among samples (Wiens & Parker, 1995). In general

for causal inference randomization is important and is in this study incorporated in several ways, e.g.

sufficiently large and randomized simulated data set and random initialization in the neural network.

6 Conclusion

As mentioned in Section 1, this study has three research objectives, which now can be answered:

1. By creating this methodology to benchmark packaging of Unilever’s products regarding sustainabil-

ity, Unilever is one step closer to achieving their sustainability packaging manifesto. This research

provides Unilever a primary multi-objective framework to build further on by extending it with

higher quality data and more objectives to determine an explicit strategy to navigate towards and

achieve their Sustainable Living Plan (Unilever, 2021). To get a more realistic situation objec-

tives regarding legalisation and laws could be added, since some materials have stricter rules than

others, e.g. plastics have stricter laws than paper. To make the connection with food, objectives
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maximizing shelf-life could be added because some (sustainable) materials have a declining effect

on shelf-life. The interpretation of results should be taken with caution because the original data

set of Unilever counts little observations.

2. The prediction model based on NN and BNN in this study found that the generalization perfor-

mance is lower using a BNN than a NN. If all materials are included and the network is trained

with ReLu activation for 10.000 epochs, the MAE (RMSE) on the test set equals 0.153 (0.081)

and 0.021 (0.026) for NN and BNN, respectively. If only plastics are included and the network is

trained with ReLu activation for 10.000 epochs, the MAE on the test set equals 0.037 (0.035) and

0.007 (0.009) for NN and BNN, respectively.

3. This study finds that the multi-objective optimization with respect to all materials (only plastics)

using a NN in combination with NSGA-II gives a training MAE and test MAE of 0.157 and 0.159

(0.027 and 0.019), respectively, and in combination with NSGA-III gives a training MAE and

test MAE of 0.166 and 0.169 (0.027 and 0.020), respectively. A multi-objective optimization with

respect to all materials (only plastics) using a BNN, with standard normally distributed priors, in

combination with NSGA-II gives a train MAE and test MAE of 0.027 and 0.027 (0.007 and 0.007),

respectively, and in combination with NSGA-III gives a train MAE and test MAE of 0.025 and

0.026 (0.008 and 0.008), respectively. Overall, findings of this study show that BNN improves the

prediction error compared to NN in exchange for computational time, while NSGA-III does not

improve it compared to NSGA-II. Based on the multi-objective optimization with respect to all

materials using a BNN in combination with NSGA-II, the most optimal environmental footprint and

packaging costs equal 0.0026 points per gram of packaging and 0.96 euros per gram of packaging.

In this case aluminium should be prioritized the most and LDPE should be prioritized the least.

If only plastics are included, then the optimized values equal 0.0011 points per gram of packaging

and 0.82 euros per gram of packaging. Then, RPET should be prioritized the most. Among the

other plastics, there is no clear preference.

To extend literature future research could focus more on improving NSGA algorithms in combination

with BNNs because it is found that it is beneficial for the accuracy of the network. Computational

times of NSGA algorithms are high and therefore this could be an entrance for future research, e.g. by

incorporating a tool such as preliminary dropout of individuals in the population and/or early stopping.

To improve the overall algorithm and method, it might be interesting to use Adam optimizer to overcome

the intensive computational burden, to consider Unified NSGA-III of Seada and Deb (2014) and/or to

extend the method of Blundell et al. (2015) by trying a wider set of priors instead of only Gaussian

Normal priors. Going beyond the scope of this research, another option would be to use other machine

learning methods, e.g. random forest, in combination with NSGA.
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A Nomenclature

Table 11: Nomenclature including abbreviations and symbols.

Variables Definition

Abbreviations:

BBB Bayes-By-Backprop

BNN Bayesian Neural Network

BP Back-Propagation

CD Crowding Distance

DGP Data Generating Process

ES Evolution Strategy

GA Genetic Algorithm

GHG Green House Gases

HDPE High Density Polyetheen

ISO International Organization for Standardization

KL Kullback Leibler

LDPE Low Density Polyetheen

MAE Mean absolute error

MOGA Multi-Objective Genetic Algorithm

MOPSO Multi-Objective Particular Swarm Optimization

MOSA Multi-Objective Simulated Annealing

LCA Life Cycle Assessment

NN Neural Network

NSGA Non-dominated Sorting Genetic Algorithm

PET Polyethyleentereftalaat (virgin)

PP Polypropyleen (virgin)

ReLu Rectified Linear Unit

RMSE Root mean squared error

RPET Recycled PET

RPP Recycled PP

SGD Stochastic Gradient Descent

SVI Stochastic Variational Inference

UNSGA Unified Non-dominated Sorting Genetic Algorithm

VI Variational Inference

Symbols:

zLCA Environmental footprint in points/gram

zcost Life-cycle costs in euros/gram

mk Proportion of material k of the total package in percentages

m1 Proportion of aluminium of the total package in percentages
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m2 Proportion of glass of the total package in percentages

m3 Proportion of HDPE of the total package in percentages

m4 Proportion of LDPE of the total package in percentages

m5 Proportion of paper of the total package in percentages

m6 Proportion of virgin PET of the total package in percentages

m7 Proportion of virgin PP of the total package in percentages

m8 Proportion of recycled PET of the total package in percentages

m9 Proportion of recycled PP of the total package in percentages

m10 Proportion of steel of the total package in percentages

M Total number of materials of the package equal to 10

λk Dummy variable that indicates if material k is included or excluded in the problem.

zk,LCA Total environmental footprint of material k in points per kilogram

zk,costs Life-cycle costs for material k of the package

xk Raw value of input k of the NN

xnorm
k Normalized value of output k of the NN

yk Actual value of output k of the NN

ŷk Predicted value of output k of the NN

ȳ Mean of actual values y1, . . . , yN

L Number of hidden layers in the NN

δa Activation function a

wki Weight for the normalized input xnorm
i at node k

d Total number of inputs

t Total number of outputs

N Total number of data points

bk Bias at node k

θ Parameter vector

D Training data set, D = (x,y)

M Model

µ Vector of mean values of Gaussian Normal distribution

σ Vector of standard deviations of Gaussian Normal distribution

p(D | θ,M) Likelihood

p(θ) Prior distribution

p(θ | D,M) Posterior distribution

q(θ | η) Variational distribution

V FE(θ,η) Variational free energy

η Distribution parameters of variational distribution

I Identity matrix

ϵ Error term

TE Total number of epochs

α Learning rate
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∇ Gradient

⊙ Element-wise multiplication

g gth generation

C Total number of chromosomes in population

g Generation g

Pg Population in generation g

FI Fitness score

Qg Offsprings in generation g

P c Cross-over probability

Pm Mutation probability

G Maximum number of generations

Rg Merged population of Pg and Qg

Fj Front j

R Maximum number of fronts

FL Last front to be included

S Survival population

H Total number of reference points

Zs H structured reference points

Zr Reference set

r Reference point in reference set Zr

zk Objective function k

s Chromosome s in survival population S

πs Closest reference point s

∆ Distance between s and π(s)

l Reference line
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B VI and KL divergence

This Appendix provides detailed information regarding the VI methods and KL divergence. The complete

derivation of how to write out the KL divergence given in (15) in Section 3.3.2 is as follows:

KL
[
q(θ | η) || p(θ | D,M)

]
(20)

=

∫
q(θ | η) log

(
q(θ | η)

p(θ | D,M)

)
dη

= E

[
log

(
q(θ | η)

p(θ | D,M)

)]
(expectation with respect to q(θ | η))

= E

[
log

(
q(θ | η)

p(D | θ,M)p(θ | M)
p(D | M)

)]
(using conditional probability rules)

= E

[
log(q(θ | η))− log(p(D | θ,M))− log(p(θ | M)) + log(p(D | M))

]
(writing out the logarithm)

= E

[
log(q(θ | η))− log(p(D | θ,M))− log(p(θ | M)))

]
+ log(p(D | M)(the last logarithm does not depend on θ)

= V FE(θ,η) + log(p(D | M))

The negative value of the variational free energy V FE(θ,η) can also be seen as the Evidence Lower

Bound, ELBO(θ,η). Since KL
[
q(θ | η) || p(θ | D,M)

]
≥ 0, −V FE(θ,η) ≤ log(p(D | M)) and

therefore the KL divergence can be written as:

KL
[
q(θ | η) || p(θ | D,M)

]
= −ELBO(θ,η) + log(p(D | M) (21)

Therefore, minimizing (17) of Section 3.3.2 as in (16) of Section 3.3.2 is similar to maximizing the

ELBO:

η⋆ = argmax
η∈Ω

ELBO(θ,η) (22)



Anouk Montfoort - Master thesis 40

C Operators in GAs

This Appendix provides detailed information regarding the cross-over and mutation operators, which are

used to create offsprings, and is based on Yannibelli et al. (2020).

C.1 Cross-over operator in GAs

In the (single-point) cross-over stage, two chromosomes from the population in generation g, Pg, are

selected based on their fitness score FI. The higher FI, the more likely they are selected. Then,

in generation g offsprings Q = [Q1, Q2] are created from parents Parent = [Parent1, Parent2] by

interchanging a specific part of the chromosomes based on a cross-over probability P c:

Q1c = 0.5
(
(1 + P c

c )Parent1c + (1− P c
c )Parent2c

)
(23)

Q2c = 0.5
(
(1− P c

c )Parent1c + (1 + P c
c )Parent2c

)
, (24)

where lowercase c equals the cth locus of the parent or offspring chromosome, i.e. gene c of the chromo-

some. The cross-over probability P c follows a polynomial probability distribution according to:

P c
c =

(2uc)
(1/(Dc+1)) if uc ≤ 0.5(

1
2(1−uc)

)(1/(Dc+1))
if uc > 0.5

, (25)

where uc is a random number generated on the interval [0, 1] and Dc equals the index of the cross-over

distribution, which is a predetermined non-negative real number. The higher (lower) Dc, the higher the

probability that the offspring chromosomes are close to (more different from) the parent chromosomes.

C.2 Mutation operator in GAs

In the mutation stage, one gene in a chromosome at a specific locus of each off-spring is changed by some

probability Pm:

Q1c =

Parent1c + Pm
c (Parent1c − Lc) if. uc ≤ 0.5

Parent1c + Pm
c (Uc − Parent1c) if. uc > 0.5

(26)

Q2c =

Parent2c + Pm
c (Parent2c − Lc) if. uc ≤ 0.5

Parent2c + Pm
c (Uc − Parent2c) if. uc > 0.5

, (27)

where again lowercase c equals gene c of the chromosome, Lc equals the lower-bound of locus c of the

chromosome and Uc equals the upper-bound of locus c of the chromosome. Lc and Uc ensure that the

mutation operator creates values inside the bounds. The mutation probability Pm
c follows a polynomial

probability distribution according to:

P c
c =

(2uc)
(1/(Dm+1)) − 1 if uc ≤ 0.5

1−
(
2(1− uc)

)(1/(Dm+1))
if uc > 0.5

, (28)

where Dm equals the index of the mutation distribution, which is a predetermined non-negative real

number.



Anouk Montfoort - Master thesis 41

D Crowding Distance

This Appendix provides detailed information regarding the Crowding Distance (CD) and is based on

Konak et al. (2006). Obtaining the CD starts with ranking the population and identifying the

non-dominated fronts F1, F2, ..., FR (by using the fast non-dominated sorting algorithm). Then, for each

front j = 1, . . . , R the following steps are repeated:

1. For each objective function k, the chromosomes in Fj are sorted in ascending order. Define xFj ,k

as the vector containing all chromosomes in front Fj for objective function k.

2. Then, a CD value of ∞ is assigned to the minimum and maximum chromosomes in Fj :

CD(min(xFj ,k)) = CD(max(xFj ,k)) =∞

3. All other values except from CD(min(xFj ,k)) and CD(max(xFj ,k)) are valued according to:

CD(xFj ,k) =
zk(xFj+1,k)− zk(xFj−1,k)

zmax
k − zmin

k

, (29)

where zk(·) equals the value of objective function k, zmax
k and zk(·) and zmin

k equal the maximum

and minimum value of zk(·) observed so far during the search, respectively.

4. To find the total CD of chromosomes x, sum all CDs over all objectives: CD(x) =
∑

k CDk(x)
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E Details regarding NSGA-III

This Appendix provides detailed information regarding NSGA-III and is based on (Deb & Jain (2013a)

and Deb & Jain (2013b).

E.1 Normalize operator

The Normalize operator starts with finding the optimal point of survival population S by finding the

minimal value of each objective function. Thereafter, each objective is transformed by subtracting

the minimal value from each objective function. Then, the extreme points in each objective axis are

distinguished and each transformed objective function z′′k (s) is now an extreme objective vector zmax
k ).

The extreme objective vectors zmax
k are used to form the hyperplane. Finally, the intercept of each

objective axis k with the hyperplane is computed and the objective functions are normalized. Algorithm

5 shows the pseudocode of this procedure.

Algorithm 5 Normalize(zk, S, FL, Zr) operator.

1: Input: Normalized survival population Snorm and structured points Zs

2: for k = 1 to | z | do
3: Compute optimal point: zmin

k = mins∈S zk(s)
4: Transform objectives: z′′k (s) = zk(s)− zmin

k

5: Compute the extreme points: rmax
k

6: end for

7: Each transformed objective function z′′k (s) is now an extreme objective vector zmax
k .

8: The hyperplane is formed by the extreme objective vector zmax.

9: for k = 1 to | z | do
10: Compute intercepts interk of the kth objective axis and the hyperplane.

11: end for
12: for k = 1 to | z | do
13: Normalize objective functions: znormk =

zk−zmin
k

interk−zmin
k

14: end for
15: Znorm

r = Zs

16: return [znorm, Znorm
r ]

E.2 Associate operator

After normalization of each objective, for each reference point r in the normalized reference set Znorm
r a

reference line l is defined by connecting the reference point with the origin. Thereafter, every chromosome

s in survival population S is associated with a reference point. Then, the perpendicular distance of each

chromosome s in S from each reference line l is computed. Finally, the reference line l closest to

the chromosome s in the normalized objective space is associated with the chromosome and returned.

Algorithm 6 shows the pseudocode of this procedure.
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Algorithm 6 Associate(Snorm, Znorm
r ) operator.

1: Input: Normalized reference set Znorm
r and normalized survival population Snorm

2: for each reference point r in Znorm
r do

3: Compute reference line l
4: end for
5: for each chromosome s in Snorm do
6: for each l in Znorm

r do

7: Compute ∆⊥(s, l) = s− lT s
||l||

8: end for
9: end for

10: πs = argminl∈Znorm
r

∆⊥(s, l)

11: ∆(s) = ∆⊥(s, πs)

12: return [πs,∆(s)]

E.3 Niching operator

It might be the case that reference points are not associated with any chromosomes or do have multiple

associations. The niche count ρr counts the number of chromosomes in Pg+1 associated with each refer-

ence point.

First, the set with reference points that have minimum ρr is determined. If there are multiple ref-

erence points with minimum ρr, then one reference point is randomly chosen and denoted by r̃. If ρr̃=0,

which means that no chromosome in Pg+1 is associated with r̃, there are two possibilities for reference

point r̃ in front FL.

1. It could be that one or more chromosomes in FL are already associated with r̃. Then, the reference

point with the shortest perpendicular distance from the reference line is added to Pg+1. Then, the

niche count ρr̃ is increased by one.

2. None of the chromosomes in FL is associated with reference point r̃. Then, r̃ is not considered at

all for the current generation.

If ρr̃ ≥ 1, meaning that one chromosome in Pg+1 is already associated with reference point, a chromosome

from FL associated with reference point r̃ is randomly chosen and added to Pg+1. Then, the niche count

ρr̃ is increased by one. In every iteration the niche counts are updated and the operation is repeated

until Pg+1 is completed with the missing number of chromosomes. Algorithm 7 shows the pseudocode

of this procedure.
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Algorithm 7 Niching(ρr, π,∆, Znorm
r , FL, Pg+1) operator.

1: Input: Niche count ρr, πs (closest reference point s), ∆(s) (distance between s and πs), Normalized
reference set Znorm

r and FL

2: while Pg+1 < C do
3: Jmin = argminr∈Znorm

r
ρr

4: Ir̃ = {πs = r̃, s ∈ FL}
5: r̃ = rand(Jmin)
6: if Ir̃ ̸= ∅ then
7: if ρr̃ = 0 then

8: Pg+1 = Pg+1 ∪
(
argmins∈Ir̃ ∆(s)

)
9: else

10: Pg+1 = Pg+1 ∪ rand(Ir̃)
11: end if
12: ρr̃ = ρr̃ + 1
13: else
14: Znorm

r = Znorm
r /r̃

15: end if
16: end while

17: return Pg+1
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F Details regarding the data

This Appendix gives details regarding the data used in this research.

F.1 Data definitions and assumptions

Table 12 summarizes the details, assumptions and restrictions of the data set.

Table 12: Details regarding the used data.

Data Unit Source Notes

Environmental

footprint

Points per g of

packaging

Idemat (Delft
University of
Technology,
2022)

Life-cycle GHG

emissions

CO2E in g Kissinger,
Sussmann,
Moore & Rees
(2013)

Life-cycle GHG emissions are emissions from

cradle-to-gate, meaning that also transportation

costs are taken into account. These

transportation costs are not exactly equal to the

transportation costs of Unilever’s products.

Moreover, the life-cycle emissions of PP are only

based on one source and there is no difference

made between virgin and recycled materials.

CO2E is carbon-dioxide equivalent, which makes

it possible to compare different GHG.

Packaging life-cycle

costs of 2022

¤ per g of packaging Packaging
Portfolio
(Unilever,
2022a),
Food database
(Unilever,
2022b)

Specifically, this data is available for aluminium,

glass, HDPE, LDPE, paper, virgin PP, recycled

PP, virgin PET, recycled PET, steel. In this

research solvents, ink, nylon, rubber and other

plastics that have a small contribution to the

total weight of the packaging are ignored. Also,

it is assumed that the costs of the raw materials

are fixed and do not depend on the quantity.

Percentage of

material of total

weight of package

% Packaging
Portfolio
(Unilever,
2022a),
Food database
(Unilever,
2022b)

Specifically, this data is available for aluminium,

glass, HDPE, LDPE, paper, virgin PP, recycled

PP, virgin PET, recycled PET, steel. In this

research solvents, ink, nylon, rubber and other

plastics that have a small contribution to the

total weight of the packaging are ignored.
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Process Energy

GHG Emissions

CO2E in g Containers &
Good (2016)

The process energy of recycled PP was not

available in Containers & Good (2016).

Therefore, it is approximated as follows: to get

the process emissions of recycled PP, the process

emissions of virgin PP is reduced by the average

decrease in percentages for which PET is

reduced to become recycled PET.

Technical

recyclability rate

% Packaging
Portfolio
(Unilever,
2022a),
Food database
(Unilever,
2022b)

F.2 Simulation data set

Table 13 summarizes how the simulated data is generated.

Table 13: Computation of simulated data.

Data Computation of simulated version

Environmental footprint The environmental footprint of every package is calculated using

the environmental footprint of every material of Delft

University of Technology, 2022) and the randomly

generated material proportions.

Life-cycle packaging costs The life-cycle packaging costs are calculated using the average

life-cycle packaging costs from the Packaging Portfolio

(Unilever, 2022a) and the randomly generated material

proportions.

Materials (aluminium, glass,

HDPE, LDPE, paper, PET, PP,

RPET, RPP and steel)

The material composition of each package is randomly generated

between zero and hundred. It is made sure that the sum of all

materials in every package equals hundred.

Technical recyclability rate The technical recyclability rate is calculated by computing the

proportion of RPET and RPP in every package.
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Process emissions of a package

The process emissions of every package are calculated using the

process emissions of every material of Containers & Good

(2016) and the randomly generated material proportions.

Life-cycle emissions of a package The life-cycle emissions of every package are calculated using the

life-cycle emissions of every material of Kissinger, Sussmann,

Moore & Rees (2013) and the randomly generated material

proportions.

F.3 Descriptive statistics

Table 14 gives an overview of the distribution of packages and materials in the data set.

Table 14: Distribution of packaging types and materials in the Unilever data set.

Packaging type Frequency (in %) Materials Frequency (in %)
Bag 13.3 Aluminium 0.8
Bottle 12.3 Glass 2.0
Bucket 9.7 Paper/Carton 22.6
Can 5.5 Plastic 69.4
Box 21.5 Steel 5.1
Container 18.8 Other 0.1
Jar 12.1
Portion pack 3.8
Other 3.0

Table 15 shows the descriptive statistics of both the Unilever data set and the simulation data set.

Table 15: Range of variables.

Unilever data set Simulation data set
Number of observations 4225 20.000

Min Mean Max Min Mean Max
Dependent variables

Environmental footprint (points/gram of packaging) 0 0.02 1.00 0.08 0.15 0.30
Life-cycle packaging costs (¤/gram of packaging) 0 0.84 466.38 2.62 28.06 52.34

Independent variables and features
Aluminium (%) 0 2.72 100 0 9.99 43.67
Glass (%) 0 2.24 99.73 0 9.96 34.69
HDPE (%) 0 1.38 100 0 9.97 35.83
LDPE (%) 0 6.87 100 0 9.95 35.63
Paper (%) 0 26.15 100 0 10.03 32.33
PET (%) 0 10.53 100 0 9.91 33.31
PP (%) 0 43.19 100 0 10.05 36.07
RPET (%) 0 0.05 32.24 0 10.06 41.08
RPP (%) 0 0.54 99.43 0 10.2 35.14
Steel (%) 0 6.32 100 0 10.06 42.89
Technical recyclability rate (%) 0 78.72 100 0.18 20.08 89.22
Process emissions of a package (CO2E in grams) 36.96 32073.69 414906 1.03 8398.00 51416.45
Life-cycle emissions of a package (CO2E in grams) 47.58 22621 585000 47.02 52574.08 227038.6



Anouk Montfoort - Master thesis 48

G Details regarding the code

This Appendix summarizes the details regarding the programming code conducted in R. The networks

are constructed from scratch using the torch library (Falbel & Luraschi, 2021). The mco library

(Mersmann, Trautmann, Steuer, Bischl & Deb, 2020) and the MaOEA library (Irawan, 2020)

are used to solve the multi-objective optimization using NSGA-II and NSGA-III, respectively.

To optimize the learning process of the networks, in the R code exponential decay and step decay

were also considered. This is not discussed in the paper, since it did not give a substantial improvement.

Due to confidentiality reasons and due to a small number of data points, the program code shared

in Google Colab shows the code using a simulation data set based on Unilever’s data of 20.000 ob-

servations and can be found using the following link: https://colab.research.google.com/drive/

1HwC7E1npLGfKw7pJGPkWLL7ybZZRuNPc?usp=sharing. The original Rmarkdown code can be found

using this link: https://drive.google.com/drive/folders/1PGeF8g7sdNVzHcLE4TdNYdOd5oGuxe41?

usp=sharing

https://colab.research.google.com/drive/1HwC7E1npLGfKw7pJGPkWLL7ybZZRuNPc?usp=sharing
https://colab.research.google.com/drive/1HwC7E1npLGfKw7pJGPkWLL7ybZZRuNPc?usp=sharing
https://drive.google.com/drive/folders/1PGeF8g7sdNVzHcLE4TdNYdOd5oGuxe41?usp=sharing
https://drive.google.com/drive/folders/1PGeF8g7sdNVzHcLE4TdNYdOd5oGuxe41?usp=sharing
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H RMSE loss

This Appendix provides the plots of the RMSE loss for the original Unilever data, the simulation data,

ReLu activation function and sigmoid activation function.

Figure 6: RMSE loss using simulation data, training for 10.000 epochs and in case of the BNN then priors follow
a standard Normal distribution.
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Figure 7: RMSE loss using Unilever data, training for 10.000 epochs and in case of the BNN then priors follow
a standard Normal distribution.
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I NSGA results on Unilever data set

This Appendix gives the NSGA results on the original Unilever data set.

Table 16: Optimization results using NSGA-II with a NN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 2.40344 0.62505 - - 1.73165 0.70898
Costs (¤/g) - - 0.04 0.08 0.25 0.36
Aluminium (%) 15.9 - 5.5 - 13.6 -
Glass (%) 7.2 - 8.4 - 8.2 -
HDPE (%) 11.7 24.3 28.2 41.7 8.1 6.1
LDPE (%) 15.7 5.6 0.7 9.1 6.3 16.5
Paper (%) 7.3 - 2.2 - 6.2 -
PET (%) 10.4 20.4 13.3 8.7 6.0 6.9
PP (%) 4.0 16.8 6.3 18.4 10.9 35.6
RPET (%) 11.8 12.2 31.0 22.0 10.4 17.1
RPP (%) 7.9 20.3 2.8 0.2 13.9 17.9
Steel (%) 8.1 - 1.6 - 16.4 -
Time (sec.) < 1000 < 1500 < 5 < 5 < 1000 < 1000
MAE train 0.0383 0.0484 - - 0.0419 0.0478
MAE test 0.0400 0.0497 - - 0.0435 0.0491

O
p
ti
m
iz
ed

va
lu
es

Settings: learning rate = 0.0005, epochs = 500, simulation data, ReLu activation.

Table 17: Optimization results using NSGA-II with a BNN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.95975 0.79621 - - 0.99675 0.93841
Costs (¤/g) - - 0.06 0.05 0.24 0.38
Aluminium (%) 18.3 - 18.6 - 10.0 -
Glass (%) 3.5 - 20.3 - 10.0 -
HDPE (%) 15.6 16.8 13.4 41.1 10.8 7.8
LDPE (%) 4.0 29.2 1.86 0.7 3 17.5
Paper (%) 9.5 - 11.8 - 5.8 -
PET (%) 14.4 16.9 7.3 11.2 7.0 12.8
PP (%) 10.9 18.0 0.9 0.2 15.7 29.1
RPET (%) 3.1 7.8 19.5 43.4 13.7 16.2
RPP (%) 9.5 11.5 0.1 3.4 12.6 16.5
Steel (%) 11.3 - 6.2 - 11.5 -
Time (sec.) < 4000 < 6000 < 5 < 5 < 3500 < 8000
MAE train 0.0398 0.0483 - - 0.0397 0.0473
MAE test 0.0421 0.0483 - - 0.0420 0.0472

O
p
ti
m
iz
ed

va
lu
es

Settings: learning rate = 0.0005, epochs = 500, simulation data, ReLu activation.
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Table 18: Optimization results using NSGA-III with a NN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 1.834 0.439 - - 1.16966 0.56897
Costs (¤/g) - - 0.24 0.25 0.23 0.31
Aluminium (%) 9.2 - 10.7 - 11.9 -
Glass (%) 12.2 - 13.9 - 10.2 -
HDPE (%) 7.3 11.98 5.73 17.01 4.84 17.18
LDPE (%) 14.3 17.7 10.9 15.1 10 16.5
Paper (%) 4.6 - 7.9 - 5.1 -
PET (%) 9.4 23.3 9.7 21.4 6.9 19.3
PP (%) 12.9 18.5 11.1 21.9 13.7 17.8
RPET (%) 8.8 15.6 9.5 14.6 10.1 10.2
RPP (%) 10.5 13.0 7.23 10.1 16.9 19.0
Steel (%) 10.8 - 13.2 - 10.5 -
Time (sec.) < 1500 < 2000 < 5 < 5 < 1500 < 2000
MAE train 0.0395 0.0496 - - 0.0453 0.0477
MAE test 0.0412 0.0510 - - 0.0472 0.0489

O
p
ti
m
iz
ed

va
lu
es

Settings: learning rate = 0.0005, epochs = 500, simulation data, ReLu activation.

Table 19: Optimization results using NSGA-III with a BNN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.84448 0.96563 - - 0.72350 0.83110
Costs (¤/g) - - 0.15 0.40 0.21 0.36
Aluminium (%) 9.3 - 12.1 - 10.7 -
Glass (%) 12.0 - 11.1 - 8.4 -
HDPE (%) 14.3 19.8 12.0 14.0 11.1 11.5
LDPE (%) 12.6 13.7 13.2 17.8 16.3 17.7
Paper (%) 9.0 - 8.4 - 6.3 -
PET (%) 13.3 17.6 13.74 19.6 9.3 22.1
PP (%) 10.1 11.5 9.1 14.4 5.5 16.0
RPET (%) 7.1 14.7 8.8 14.0 7.9 15.6
RPP (%) 1.8 22.7 2.7 20.3 8.8 17.2
Steel (%) 10.6 - 9.0 - 15.7 -
Time (sec.) < 6000 < 15000 < 5 < 5 < 6000 < 9000
MAE train 0.0396 0.0455 - - 0.0410 0.0467
MAE test 0.0420 0.0454 - - 0.0434 0.0467

O
p
ti
m
iz
ed

va
lu
es

Settings: learning rate = 0.0005, epochs = 500, simulation data, ReLu activation.
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J NSGA results without NN or BNN

This Appendix gives the NSGA results using simulation data, where there is no NN or BNN included

inside the NSGA algorithms. In this way hypothetical material fractions predicted by the networks could

be compared with this potential DGP. A limitation of this study is that the true DGP presumably is

a more complex relation that requires more advanced data. In the results shown below the assumed

relation between the environmental footprint (zLCA) in points per gram and the material (mk) fractions

in percentages is:

zLCA(m) =
∑M

k=1 mkzk,LCA, (30)

where mk is the material fraction of material k measured in percentages of the total packaging weight

and zk,LCA is the total environmental footprint of material k in points per gram. Tables 20 and 21 show

the results of the NSGA-II and NSGA-III without NN or BNN, respectively.

Table 20: Optimization results using NSGA-II without a NN or BNN.

Scenario Ia Scenario Ib Scenario II

All Plastics All Plastics All Plastics
Environmental footprint (points/g) 0.01806 0.01049 - - 0.03650 0.02673
Costs (¤/g) - - 0.55 0.21 0.49 0.39
Aluminium (%) 1.4 - 5.1 - 8.0 -
Glass (%) 10.1 - 4.5 - 20.3 -
HDPE (%) 4.7 2.8 2.2 2.7 8.5 5.2
LDPE (%) 1.7 14.9 1.6 14.0 1.4 7.3
Paper (%) 24.5 - 32.3 - 10.9 -
PET (%) 4.3 9.1 11.2 13.3 4.9 17.6
PP (%) 5.1 28.4 5.7 8.7 8.1 8.4
RPET (%) 2.1 29.8 18.3 9.5 13.0 16.7
RPP (%) 23.3 15.0 3.1 51.7 2.9 44.9
Steel (%) 22.8 - 15.9 - 22.1 -
Time (sec.) 0.026 0.028 0.913 0.388 0.643 1.498

O
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ti
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ed
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es

Settings: simulation data.

Table 21: Optimization results using NSGA-III without a NN or BNN.

Scenario Ia Scenario Ib Scenario II
All Plastics All Plastics All Plastics

Environmental footprint (points/g) 0.05733 0.05125 - - 0.05744 0.04950
Costs (¤/g) - - 0.91 0.68 0.94 0.78
Aluminium (%) 8.7 - 12.8 - 11.8 -
Glass (%) 12.1 - 14.7 - 12.8 -
HDPE (%) 13.8 10.7 13.2 20.2 14.8 13.9
LDPE (%) 12.0 11.1 8.4 3.7 9.4 7.3
Paper (%) 12.5 - 8.5 - 9.9 -
PET (%) 8.5 15.3 6.8 14.8 7.5 12.7
PP (%) 6.1 25.9 6.6 19.7 5.6 26.6
RPET (%) 9.0 24.4 9.4 29.6 9.1 28.8
RPP (%) 11.0 12.6 10.5 12.0 11.3 10.7
Steel (%) 6.3 - 9.1 - 7.7 -
Time (sec.) 0.119 0.096 1.773 0.854 1.462 1.075

O
p
ti
m
iz
ed

va
lu
es

Settings: simulation data.
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