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Abstract

This research studies the upper dependence structure of extremes in the energy-agriculture-metal

price nexus for the connected commodities system. It uses the theory on extremal graphical models

introduced by Engelke and Hitz (2020) to study the 21 futures returns and focuses on the method

for identifying the structure. Three methods are used. A forward greedy procedure, the extremal

graphical lasso and a newly proposed clustering algorithm based on the Leiden community finding

algorithm. A simulation study finds that using these methods can improve upon the accuracy of an

empirical estimator of the tail correlation and that the extremal graphical lasso is the most accurate

model, although it tends to overestimate the number of edges. The clustering algorithm is found to

be sensitive to mislabelling of the nodes. From the empirical application, it is found that the results

of the three approaches are close to each other and that the strongest connections are found between

nodes that are in the same group. In the connections between groups, we see that natural gas serves

as the strongest connection between groups. The strength of these connections is lower with respect

to the non-extreme correlations. This supports the neutrality hypothesis.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

In the period between January 2006 and May 2008, the world’s food prices increased dramatically.

During that time, the price of corn rose by 180%, soybeans by 127% and rice by 134%, according to the

front-month futures. Rises in food prices affect households with low levels of assets in particular (Alem

and Söderbom, 2012) and have caused an increase in poverty in low-income countries during that time

(Marktanner and Noiset, 2013). This period came to be known in history as the world food price crisis.

Multiple causes have been linked to the events: droughts in grain-producing nations (Fellmann et al.,

2014), rice export restrictions in Vietnam and India (Headey, 2011), but most notably the rise in oil

prices and biofuels demand (Headey and Fan, 2008). In that same period, the price of Brent crude oil

rose by 104%. The linkage between oil and food prices is called the oil-food nexus. There are two main

mechanisms through which the two are coupled.

The first one is a cost-push effect coming from the increase in production expenses. Agriculture is an

energy-intensive sector that relies in multiple ways on petroleum products. Transportation and processing

of agricultural products require fuels for the machinery, such as diesel and petrol. Furthermore, fertilisers

and other agrarian chemicals use fossil resources, such as natural gas as input.

The second effect is a demand-pull effect that results from the rising demand for biofuels. First-

generation biofuels come directly from biomass and compete with other agricultural products, such as

food, for arable land. Consumption of biofuels has increased by over 50% since 2010, according to BP’s

Statistical Review of World Energy 2021 (BP, 2021), and is expected to increase in the coming decades

(IEA, 2021). Reboredo (2012), Kristoufek et al. (2012), Yahya et al. (2019) show that the link between

food and energy prices has increased over the years, fuelling the debate on the food vs. fuel dilemma.

Aside from energy and agricultural commodities, a third commodity type is metals. It has also

been shown that it is closely linked to energy prices due to the energy-intensive nature of processing

the material (Reboredo and Ugolini, 2016). For this commodity type, we typically make the distinction

between industrial metals, such as copper, tin and zinc, and precious metals, such as gold, silver and

platinum.

While the literature has been abundant on the regular co-movements of the three commodity markets,

the focus has been less on their tail dependence. The research that studies the tails usually relies on

copulas. This approach is limited in the number of commodities series that can be considered in cross-

section due to estimation efficiency in the parameters. Although the futures market returns of all three

commodity types have been shown to exhibit heavy-tailedness, few studies directly model the threshold

exceedances using Pareto distributions. This research adds to the current literature by studying the

upper dependence structure of extremes in the energy-agriculture-metal price nexus for the connected

commodities system, consisting of both raw resources and products. To the best of the authors’ knowledge,

this has not been attempted in the literature before. As we are interested in the extremal dependence

structure, we focus on methods for identifying the graph structure from the data. Two existing and

one original method are used for this purpose. The research is topical due to the increase in the use of
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biofuels and recent energy and food price shocks due to the invasion of Ukraine. The recent development

of a general theory of conditional independence for multivariate Pareto distributions enables us to do

this on a scale that has not been attempted before. It is found that tail dependence is the strongest

for commodities of the same type and that interaction between groups is limited. Natural gas is the

commodity type that has the strongest tail dependence with other commodity types as it serves as the

main energy input in energy-intensive energy such as metal production and agriculture. The rest of the

inter-group connection is limited, therefore supporting the neutrality hypothesis.

Section 2 discusses the current state of knowledge on the dependence between commodities and

research on its extremes. This paper adds to this literature by increasing the number of considered

commodities and utilising a model that makes use of extreme conditional independence and graphical

models. This method is described in section 3. Three different approaches are taken to find the graphical

structure and their characteristics and performance are compared in a simulation study in section 4.

After that, the data set on commodity futures returns is introduced and filtered in section 5 in order to

be used for the empirical application. The results of the empirical application are shown in section 6.

Final conclusions are drawn in section 7 and some recommendations for future work are made.
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2 Literature

A considerable amount of literature has been dedicated to the linkage between energy and agricultural

commodity prices. Nonetheless, no univocal consensus has been established. Zhang et al. (2010) finds no

direct long-run price relationship between different foods and fuels and limited if any short-run relations.

This supports the so-called neutrality hypothesis. The data that are used spans from 1989 to 2008.

However, Reboredo (2012), Kristoufek et al. (2012) and Yahya et al. (2019) show that the dependence

between food and energy has increased after the global food price crisis 2006-2008 due to the demand

increase in biofuels, even though only weak connections are found. Baumeister and Kilian (2014) treats

May 2006 as the date of a tentative structural break between oil and agricultural prices due to the

passing of the Energy Policy Act 2005, which promoted the use of ethanol and concludes that the link

is demand-driven instead of being caused by higher production costs. Nazlioglu (2011) disagrees with

the neutrality hypothesis and shows with nonlinear Granger causality methods that there is a persistent

unidirectional causality from oil to corn and soybeans. A follow-up paper, Nazlioglu and Soytas (2012),

further investigates the dynamic relationship between oil and 24 agricultural commodities using panel

data. They find strong support for the role of oil prices on agricultural commodities, contrary to most

literature around that time. They contribute their contradicting result to better use of information with

their panel cointegration and causality analysis compared to previous individual time-series analyses.

They state that even though it might not be possible to find a causal relation of a specific agricultural

commodity to oil prices, a larger group of agricultural commodities may have a connection to oil prices.

That explanation is further explored in this research by creating a large system of both agricultural and

energy resources and products.

Regarding the tail dependence, Wang et al. (2014) find that the explanatory abilities of oil shocks

on agricultural commodity prices have increased in the post-crisis period and are greater than that

of aggregate demand shocks. Ji et al. (2018) conclude that lower tail dependence between oil and food

prices is much stronger in bearish regimes indicating systematic risk spillovers during extreme downwards

movements. On the link between large oil price movements and industrial and precious metals, Reboredo

and Ugolini (2016) find spillover effects on all the metals. They also find that upward oil price movements

were larger than downwards movements. Albulescu et al. (2020) study extreme dependencies among

energy, agriculture and metal commodities indices by applying a copula-based Kendall’s tau approach.

They find stronger dependence between energy and other commodities in lower tails.

Although there has been extensive research on this topic, all of these studies, except Nazlioglu and

Soytas (2012), use only a limited amount of commodities. The main reason is to keep the models

parsimonious. However, Engelke and Hitz (2020) recently developed a general theory of conditional

independence for multivariate Pareto distributions that enables the definition of graphical models and

sparsity for extremes. This allows us to increase dimensions considerably.
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3 Methodology

The methodology that is followed is presented in this section. To be able to use futures returns series

for this extreme value theory model, the autocorrelation of the returns and squared returns has to be

removed. The procedure for this is described in subsection 3.1.

To be able to use extremal graphical models, some theoretical background on extreme value theory

and graphical models is needed. Both concepts are combined in the theory on extremal graphical models

from Engelke and Hitz (2020). These three subjects are summarised in subsection 3.2.

The structure of the graph has to be found first to be able to apply these concepts. Identifying the

graph is the focus of this research. Three methods are employed for that purpose: a forward greedy

procedure that is introduced in the Engelke and Hitz (2020) paper, an extremal version of the graphical

lasso that is also developed by Engelke in a yet-to-be-published work, and an original method developed to

find a leaner and better interpretable graph from the empirical variogram that uses the Leiden community

finding algorithm (Traag et al., 2019). The three methods are described in subsection 3.3. The Leiden

community finding algorithm is elaborated upon in subsubsection 3.3.4. The implementation of this

methodology is done in R and is built upon the package graphicalExtremes published on the Github

page of Sebastian Engelke.

The notation used in this thesis is based on Engelke and Hitz (2020). Bold symbols are used for

column vectors and the components are denoted with a subscript, e.g. xi, i ∈ {1, .., d} is a component of

x. Uppercase letters are used for random variables and lowercase for deterministic values.

3.1 Data filtering

To study the behaviour of commodity prices, we consider the returns of commodity futures. These data

are easy to obtain and span a large array of real-world market prices. Financial time series, such as these,

exhibit some particular characteristics called stylised facts. These include profound serial correlation

of absolute returns, heteroscedasticity and clustering of extreme returns (McNeil et al., 2015). This

complicates its analysis as numerous theories, inter alia extreme value theory, rely on the assumption

of independent and identically distributed random variables. A way to mitigate this obstacle is to use

ARMA-GARCH filtering, as proposed by McNeil and Frey (2000). The goal is to have a variable which

can be used to apply extreme value theory. It uses the univariate GARCH framework, first developed by

Bollerslev et al. (1992), and is given as

X
(t)
i = µi +

p∑
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ϕjX
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i +

q∑
k=1

θkε
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where Z(t)
i is independent and identically distributed. Z(t)

i corresponds to the initial shock in an extreme

event. We collect them for all dimensions as elements of vector Z. The time notation is dropped here

because this random vector is considered to be time-invariant. The cross-sectional dependence of its

elements is what needs to be modelled in order to understand the price relations of commodities in

extreme events. An assumption on the distribution of Z(t)
i has to be made. There are two approaches

that are considered. Firstly, we assume the Student’s t-distribution and estimate the degree of freedom

ν as a parameter. In the second approach, we acknowledge the misspecification of the distribution as

normal, but recognise that the estimation should still lead to a consistent estimator. The Gaussian

likelihood should therefore not be seen as a proper likelihood, but more as an objective function. This

procedure is called Quasi Maximum Likelihood (QML) (McNeil et al., 2015).

The number of lags in the ARMA-GARCH model is selected by considering the AIC of both distribu-

tions separately. The best specifications under both distribution assumptions are then are evaluated for

goodness-of-fit using a Q-Q plot and the Jarque-Bera test. Finally, the serial correlation of the returns

and squared returns are investigated with the correlogram and tested with the Ljung-Box test. The

results of this procedure are shown in section 5 and the ARMA(1,0)-GARCH(1,1) model is selected.

The cross-sectional dependence of the elements of Z in the upper tail has to be modelled in order

to understand extreme price relations. Due to the high number of dimensions of this vector, traditional

methods fail. Instead, we use extremal graphical models which are more suitable for this type of data

due to their visual representation and their ability to reduce the amount of the parameters that need to

be estimated by using the concept of conditional independence. The background on extremal graphical

models is summarised in the next part.

3.2 Background on extremal graphical models

The cross-sectional dependence of the initial shocks of futures returns, i.e. Z, is what needs to be

modelled in order to understand the price relations of commodities in extreme events. Extremal graphical

models are a useful tool for this purpose as they allow for high-dimensional data and produce a visually

interpretable output diagram. They lie at the interface of both extreme value theory and graphical

models. Firstly an introduction is given on the former, followed by one on the latter. Only after that, it

can be explained how these concepts are combined in Engelke and Hitz (2020). This background uses a

different local notation compared to the other parts in this research as it spans a more general theory on

extremal graphical models. That is done to conform with the notation used in most literature concerning

these topics. While X indicates a general random vector is this part, we apply the models on the residual

vector Z in this application.

3.2.1 Extreme value theory

Data on extreme events is scarce due to its very nature. This makes it difficult to use traditional

estimators for building a model. For this reason, extreme value theory was developed. This branch of

statistics focuses on the extreme deviations from the mean. There are two main approaches in this theory:

block maxima and peaks-over-threshold.
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The former approach studies the tail behaviour of multivariate data by looking at the componentwise

maxima. Consider a d-dimensional random vector X which has independent copies X(i), i = 1, ..., n. We

denote the componentwise maxima with Mn = (M1n, ...,Mdn) = (maxni=1X
(i)
1 , ...,maxni=1X

(i)
d ). Under

a linear normalisation with constants bjn ∈ R and ajn > 0, there is convergence towards a limiting

distribution, such that

lim
n→∞

P
(
Mjn − bjn

ajn
⩽ x

)
= Gj(x) = exp− (1 + ξjx)

−1/ξj
+ , x ∈ R,

where z+ = max(z, 0). Gj is called the generalised extreme value distribution, and the heavyiness of the

tail is governed by the parameter ξj . When focused on the analysis of the dependence structure, one

typically estimates the marginals first and then normalises them to standard Pareto.

The transformation is performed as X̌j = 1/
{
1− F̂j (Xj)

}
, where F̂j is the empirical distribution

of the jth element. All observations for which none of the elements exceed a chosen threshold F̂−1(p)

are eliminated. Here F̂ corresponds to the empirical distribution of all data points across vectors. The

threshold p is set 0.85 in this research, as this yields a favourable balance between bias and variance in

the estimator of the tail correlation. The results are validated for robustness by setting the threshold to

0.75 and 0.95 in the sensitivity analysis in section 6. The remaining data points after elimination are

then normalised, i.e. X̃j =
X̌j

F̂−1(p)
, so that F̂−1(p) = 1. For our application, we denote the vector of

transformed residuals as Z̃.

It is said that the standardised vector X̃ is in the max-domain attraction of the d-dimensional random

vector Z if for any z

lim
n→∞

P
(

max
i=1,...,n

X̃i1 ⩽ nz1, . . . , max
i=1,...,n

X̃id ⩽ nzd

)
= P(Z ⩽ z).

If so, Z is max-stable with standard Fréchet marginals P (Zj ⩽ z) = exp (−1/z), z ⩾ 0, and we say

P(Z ⩽ z) = exp (−Λ(z)), z ∈ E ,

where the exponent measure Λ is a Radon measure on the cone E = [0,∞)d\{0}.

This approach has limited use in this application as max-stable distributions have been shown to lead

only to trivial probabilistic structures for the notion of conditional independence by Papastathopoulos

and Strokorb (2016). It is, however, useful to understand where the exponent measure Λ comes from, as

this comes back in the other approach.

The latter approach in extreme value theory looks at the threshold exceedances. Resnick (2007) states

that the convergence in subsubsection 3.2.1 is equivalent to

limu{1− P(X ⩽ uz)} = Λ(z), z ∈ E , z ∈ E , .
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This can be extended to the multivariate distribution of threshold exceedances of X as

P(Y ⩽ z) = lim
u→∞

P
(
X

u
⩽ z | ∥X∥∞ > u

)
=

Λ(z ∧ 1)− Λ(z)

Λ(1)
,

where ∥x∥∞ = maxi∈V |xi|. Limiting random vector Y has a distribution which is called the multivariate

Pareto distribution. u serves as a kind of threshold and is equal to one in the standard Pareto distribution.

We assume that the distribution of Y has a positive and continuous density fY, which is

fY(y) =
∂d

∂y1 . . . ∂yd
P(Y ⩽ y) =

λ(y)

Λ(1)
,

where Λ(1) is a normalisation constant. This means that the density fY is proportional to the density λ

of the component measure. For the density of λ, we introduce Hüssler-Reiss distributions.

Hüssler-Reiss distributions (Hüsler and Reiss, 1989) are a particular type of distributions that are

parameterised by a symmetric, strictly conditionally negative defined matrix Γ. It has non-negative

entries and zeros on the diagonals. The density of the component measure λ can be expressed for any

k ∈ {1, .., d} as (see Engelke et al. (2015))

λ(y) = y−2
k

∏
i̸=k

y−1
i ϕd−1

(
ỹ\k; Σ

(k)
)
, y ∈ E (1)

where ϕp corresponds to the centred p-dimensional normal distribution and

ỹ\k = {log (yi/yk) + Γik/2}i=1,...,d .

The strictly positive definite matrix Σ(k) is defined as follows

Σ(k) =
1

2
{Γik + Γjk − Γij}i,j ̸=k ∈ R(d−1)×(d−1). (2)

The entries of Γ, Γij , correspond to the strength of the dependence between the ith and jth component

(Engelke and Hitz (2020); Engelke and Volgushev (2020)). A value of zero corresponds to complete

dependence and it goes to infinity for independence. This means that the dependence structure of the

multivariate Pareto distribution is summarised in one matrix, similarly to the covariance matrix in a

multivariate normal distribution. This makes them a natural analogue of Gaussian distributions in the

world of asymptotically dependent extremes (Engelke and Hitz, 2020). While having all (extremal)

dependence information summarised in one matrix is rather useful for computers, it is cumbersome for

a human to interpret directly, especially for a high number of dimensions. For this reason, graphical

models were developed. This type of graph consists of nodes and edges that form a network to represent

the dependence structure. Traditionally, they were created for non-extreme data, but Engelke and Hitz

(2020) show how they can be combined with the Hüssler-Reiss Pareto distribution to have an equivalent

for threshold exceedances called extremal graphical models.
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3.2.2 Graphical models

The dependence structure between a set of variables can be summarised in a graphical model. A graph

G consist of a set of vertices or nodes V , corresponding to variables, and a set of edges E, connecting the

vertices. The absence of an edge between two nodes indicates conditional independence. For Figure 1,

this means that X1 is independent of X2 if conditioned on X3. This is denoted as X1 ⊥ X2 | X3. An

undirected graph does not give any orientation to the edges, i.e. edge (i, j) is the same as (j, i) for i, j ∈ V .

This type of graph is the only one used throughout this research.

Figure 1: Example of an undirected graph

A random vector X, corresponding to graph G = (V,E), has elements Xi, i ∈ V that have a continuous

state space Xi ⊂ R. X takes values in the Cartesian product X = ×i∈V Xi.

If the random vector X has a positive and continuous Lebesgue density fX, it follows from the

Hammersley-Clifford theorem that the density is factorised as

fX(x) =
∏
C∈C

ψC (xC) , x ∈ X ,

for suitable functions ψC on ×i∈CXi.

A decomposable graph is a graph that can be successively decomposed into its cliques (Lauritzen,

1996). A clique is a subset of nodes where each distinct pair of nodes is connected to each other. If the

graph is decomposable, then the factorisation can be written in terms of marginal densities of the cliques

C, that are part of the clique set C and separators D for the separator set D. This is done as

fX(x) =

∏
C∈C fC (xC)∏
D∈D fD (xD)

, x ∈ X .

Gaussian graphical models correspond to the graphs of multivariate normal distributions. The edge

set can be derived from the precision matrix Θ for a random vector X that follows N(µ,Σ). The precision

matrix is defined as the inverse of the covariance matrix Σ. If Θij is zero, we know that there is no edge

between node i and j. This makes it easier to interpret the dependence structure of a high-dimensional

data set, as we can directly translate a summary statistic, in this case the covariance matrix, to a visual

representation. Extremal graphical models have the same idea, but for threshold exceedances. Although

there are a few more steps involved, they allow for the same easy interpretation as the Gaussian graphical

models.
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3.2.3 Extremal graphical models

The concept of conditional independence of extremes allows the construction of graphical models, such as

in the case of Gaussian graphical models. This gives three major advantages. Firstly, the tail dependence

structure of a model can be shown in a graph that is easily interpretable. That facilitates visual analysis

of the results for high dimensional data. Secondly, sparsity can be introduced, which allows for a more

parsimonious and manageable model in higher dimensions. Thirdly, we can estimate the parameters of

the model separately on lower-dimensional subsets of the data.

As explained above, the graph can be directly derived from the precision matrix Θ of the multivariate

normal distribution for Gaussian graphical models. For the Hüsler–Reiss Pareto distribution, it is derived

from the precision matrix Σ(k) in Equation 1. Engelke and Hitz (2020) state that it is done as follows

Yi ⊥e Yj | Y\{i,j} ⇔


Θ

(k)
ij = 0, if i, j ̸= k,∑
l ̸=k Θ

(k)
lj = 0, if i = k, j ̸= k,∑

l ̸=k Θ
(k)
il = 0, if j = k, i ̸= k,

(3)

where Yi ⊥e Yj | Y\{i,j} indicates conditional independence between vertex i and j, i.e. the absence of

edge (i, j).

To be able to estimate the parameters of the model separately on lower-dimensional subsets of the

data, we only consider block graphs, which are a class of decomposable graphs. These connected graphical

structures consist of cliques that are separated by singleton separator sets. Block graphs are especially

suitable in our application as we expect that commodities within the same type to be closer connected

to each other than to another type, e.g. corn and wheat are more closely related than corn and copper.

Engelke and Hitz (2020) show that we can factorise the d-variate Pareto distribution according to the

graph as

fY(y; θ) =
1

Λ(1; θ)

∏
C∈C

λC (yC ; θC)∏
j∈C y

−2
j

∏
i∈V

y−2
i , y ∈ L.

This allows us to estimate the parametric family of each clique (θC) separately. Each of these cliques

has a lower-dimensional Hüsler-Reiss distribution of its own, characterised by the variogram matrix ΓC .

The parameters of each clique can be estimated using the maximum likelihood estimation of the clique

log-likelihood. Although this in theory leads to a decrease in estimation efficiency compared to maximising

the joint likelihood, Engelke and Hitz (2020) show that this difference is rather small. In addition, using

clique likelihood estimation allows for increasing the dimension of the model to a higher level as long as

the clique size remains small.

Not all components of X may have been converged to the limiting distribution Y. In order to avoid

biased estimates of the dependence parameters θC , we can use censoring on the data (Smith et al. (1997);

Ledford and Tawn (1997)). This practice uses a modified likelihood contribution to only include the

information that a threshold is not exceeded by a certain component instead of using its exact value. Let

XC be a data point corresponding to the clique C ∈ C for which ∥XC∥∞ > u, where u is sufficiently high.
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J is the set of indices j ∈ C that does not exceed the threshold u. The censored likelihood contribution

is defined as

f cens
C (yC ; θC) =

∫
[0,1]|J|

fC (yC ; θC) dyJ , yC ∈ LC .

We use this likelihood contribution to estimate the parameters θC using maximum likelihood estimation.

The theory up to now assumes that we know the structure of the graph, so that we can factorise the

likelihood into the likelihood of the cliques and separators. In practice, however, this has to be found

separately. The focus of this research is on three methods to find the extremal graphical structure from

the data on futures returns.

3.3 Finding the extremal graphical dependence structure from futures return

data

In order to fit the parameters using maximum likelihood estimation and to draw conclusions on the tail

dependence network, we need to know the structure of the graph. Although it is possible to estimate

the variogram from the data directly with Equation 6, only fully connected graphs are found from this

matrix. Sparsity has to be introduced in order to use the concept of conditional independence effectively.

Despite the fact that there are multiple methods for the Gaussian case, there are only a limited set of

options for the extremal case due to the novelty of this theory. This research focuses on three methods

and compares their findings and performances. From this part onward, we focus on the application of

graphical models on commodity futures return data and switch, therefore, back to the notation used in

subsection 3.1.

3.3.1 Forward greedy

The first method uses the minimum spanning tree as a starting point and adds edges using a greedy

forward search based on the BIC.

As a starting point we use the minimum spanning tree, which is defined as the tree that minimises

the sum of distances or weights on that tree. Often, it is used to minimise the costs of building a kind of

network that connects a set of nodes, e.g. laying cabling to connect homes in a neighbourhood. However,

with a proper choosing of the weights, it can serve as the backbone for building the extremal graphical

structure. It is defined as

Tmst = argmin
T =(V,E)

∑
(i,j)∈E

wij . (4)

This minimisation problem is solved in this implementation by the greedy algorithm of Prim (1957).

It is crucial to select suitable weights so that we can recover the true underlying tree structure corre-

sponding to the conditional independence relations. In Engelke and Hitz (2020), the negative maximised

bivariate-loglikelihood are used as edge weights. This has, however, two drawbacks. Firstly, for higher
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dimensions d it can become severely costly to compute d2 likelihood optimisations. Furthermore, a set

of parametric bivariate models has to be chosen advance (Engelke and Volgushev, 2020). As a solution,

Engelke and Volgushev (2020) propose to use the elements of extremal variogram Γ, as Γ
(m)
ij can be

interpreted as the distance between Y m
i and Y m

j , where Ym is defined as Y conditioned on the event

that {Ym > 1} for root node m. This distance is large when Y m
i and Y m

j are weakly dependent and vice

versa. Γ
(m)
ij can be estimated with the GARCH-filtered data as

Γ̂
(m)
ij := V̂ar

(
log Z̃i − log Z̃j : log Z̃m > 1

)
. (5)

The results for all root nodes m is averaged out, i.e.

Γ̂ =
1

d

d∑
m=1

Γ̂(m). (6)

The elements of Γ̂ are used as weights for the minimum spanning tree, i.e.

ŵij = Γ̂ij

They have shown that this approach can consistently recover the true underlying tree.

A tree, however, is not likely to describe the dependence structure sufficiently for higher dimensional

data. More edges can be added to form a block graph. Edges are added one by one and it is checked

whether the graph is still a block graph with a maximum clique size of three. This limit is set to limit

the number of potential edges and reduces the computational load for loglikelihood calculations. The

pseudocode for this approach is given in algorithm 1.

Algorithm 1 Forward greedy algorithm

Calculate estimator Γ̂ from data

Assign weights wij = Γ̂ij to each edge (i, j), i, j ∈ V, i ̸= j

Find Tmst by solving the minimisation problem in Equation 4

Compile list of possible new edges P for which graph G is block graph with maximum clique size ≤ 3

while P ≠ ∅ do

for edge (i, j) in P do
Add (i, j) to G form an extended graph G(i,j)

if G(i,j) is block graph then
Calculate BIC for G(i,j) using the clique loglikehood

end

end

Keep edge with lowest corresponding BIC, i.e. G = argminG(i,j)
BIC

Remove that edge from P
end

13



This heuristic method is adopted from the original work on extremal graphical models from Engelke

and Hitz (2020), with the alteration that it uses BIC instead of AIC. This is done to increase the penalty

for adding edges to find sparser graphs.

The forward greedy method has been shown to provide decent results. However, it can be quite slow

for high dimensions as many edges have to be tried and it does not offer a way to control the sparsity of

the graph explicitly. An alternative to this method is also developed by Sebastian Engelke and is called

extremal graphical lasso.

3.3.2 (Reconnecting) extremal graphical lasso

The second method forces sparsity on the off-diagonal elements precision matrix Σ(k) for all k and uses

it to construct the variogram Γ in order to recover the graph.

The extremal variogram is the summary statistic for the tail dependence of a vector for Hüssler-

Reiss distributions in a similar way as the precision matrix is for dependence in a multivariate normal

distribution. It reveals the underlying graphical structure. The empirical extremal variogram can be

estimated from the data using Equation 6 and Equation 5. In practice, however, the result rarely has any

zero entries in the matrix. This leads to a fully connected graph. Introducing sparsity to this matrix has

some advantages. It allows for an easier interpretation of the graph, can factorise the densities in lower-

dimensional margins and yields more efficient inference (Engelke and Ivanovs, 2021). A well-established

method in Gaussian graphical models is to use graphical lasso (Friedman et al., 2007). It maximises the

penalised likelihood of the precision matrix Θ as

Θ̂ρ = argmax
Θ≥0

log detΘ− tr
(
Σ̂Θ

)
− ρ∥Θ∥1,

where ρ corresponds to the penalising parameter and ||.||1 to the l1 norm of the matrix. This pulls the

off-diagonal elements towards zero, which corresponds to the independence of the corresponding vector

elements. A larger ρ leads to a sparser precision matrix, which translates to fewer edges.

A similar method for Hüssler-Reiss distributions has been developed by Engelke, Lalancette and

Volgushev in a yet-to-be-published paper, called Extremal Graphical LASSO (eglasso). It maximises the

penalised likelihood of the precision matrix given by

Θ̂(k)
ρ = argmax

Θ≥0
log detΘ− tr

(
Σ̂(k)Θ

)
− ρ

∑
i ̸=j
i,j ̸=k

|Θij | . (7)

There is, however, a slight complication compared to the graphical lasso for Gaussian graphical models.

While the whole extremal graphical structure is revealed by each Θ(k), independent of the choice of the

root node k, the connections with the root node are not revealed by zero entries. Instead, they correspond

to zero row sums (see Equation 3). This condition is not enforced by the extremal graphical lasso. This

would mean that we can not introduce sparsity on the connections with the root node if we would only
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use one choice of k. As a solution to this problem, they suggest looping through all possible choices of

root nodes and deciding on the connections by a simple majority vote

(i, j) ∈ Êρ ⇔ 1

d− 2
#

{
k ∈ V \{i, j} :

(
Θ̂(k)

ρ

)
ij
̸= 0

}
≥ 1/2.

A potential problem that is observed with the eglasso algorithm, proposed by Engelke, Lalancette

and Volgushev, is that for high values of ρ the graph may become disconnected. This is a problem as

finding the loglikelihood requires a connected graph. That puts a limit on the amount of sparsity that

can be introduced with their method. For that reason, I propose an augmentation of their approach

called Reconnecting Extremal Graphical LASSO (reglasso). This method adds the edge that connects

two disconnected subgraphs corresponding to the smallest element in variogram Γ. This is repeated until

the graph is connected again. This allows us to use extremal graphical lasso for a higher ρ. The full

algorithm for reglasso is given in algorithm 2.

Algorithm 2 Reconnecting extremal graphical lasso

Calculate estimator Γ̂ from data

Set voting matrix V to null matrix

for root node k ∈ V do
Calculate Σ̂(k) from Γ̂ using Equation 2

Estimate sparse precision matrix Θ̂
(k)
ρ from Σ̂(k) using extremal graphical lasso (Equation 7)

Count near-zero elements in Θ̂
(k)
ρ , i.e. Vij = Vij + I{|

(
Θ̂

(k)
ρ

)
ij
| < 1e− 10} , i, j ∈ V, i ̸= j

end

Add edge (i, j) to graph G if Vij

d−2 < 1/2 , i, j ∈ V, i ̸= j

while G is disconnected do
Add edge (i, j) = argmin

(i,j)

Γ̂ij , i, j ∈ V, i ̸= j, i and j are not connected

end

ρ offers a way to control the amount of sparsity in the graph, a higher ρ corresponds to a graph

with fewer edges. This is an improvement compared to the greedy forward procedure, which lacks this

flexibility. The algorithm is repeated for different values of ρ. Each value of ρ corresponds to a different

graph and thus a different model. The BIC is calculated for each graph and the one with lowest value is

selected. The va;ues that are used in this analysis range from 0.01 to 0.15.

Although extremal graphical lasso has made an improvement in terms of flexibility compared to

forward greedy procedure, it lacks its easy interpretable nature due to the indiscriminate enforcement of

sparsity. This yields graphs with many edges and nodes that are not clustered in groups. Therefore, we

would like to have a method that has both characteristics: explicit control of sparsity and a simple and

interpretable graph.
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3.3.3 Clustering algorithm

The third method finds closely-connected nodes with a community-finding algorithm called the Leiden

algorithm and fully connects them as cliques. The disconnected cliques are sewn together using the

strongest single connection between cliques based on the empirical variogram.

Extremal graphical lasso has multiple improvements with respect to the forward greedy procedure. It

does not require the minimum spanning tree, has more flexibility due to the ρ parameter and is faster than

the greedy algorithm. However, it also has some drawbacks. Reglasso is indiscriminate in introducing

sparsity. It, therefore, does not promote the formation of decomposable graphs, which facilitates the use

of clique likelihood estimation. This makes it slower to estimate the parameters of the model and reduces

the estimation efficiency. In addition to that, it makes it more difficult to interpret the graph as the

connections are not clustered. For those reasons, I propose an heuristic approach called the clustering

algorithm. This method is focused specifically on forming and connecting cliques in order to leverage the

potential of clique likelihood estimation. This yields a better interpretable graph that shows different

groups of nodes and how they are connected.

It identifies the cliques in a block graph by finding clusters of strongly connected nodes using a

community finding algorithm. A community is a set of nodes that is more strongly connected to nodes of

the same community than to others. This implementation uses the Leiden algorithm (Traag et al., 2019)

for this purpose. It is described in subsubsection 3.3.4. The algorithm uses the weights of the edges in

the graph to find communities. The larger the weight of a certain edge is, the stronger the connection

between its nodes is and, therefore, the more likely it is that two nodes belong to the same community.

For this reason, the inverse of the elements in variogram Γ are used as weights. This is in contrast to

finding the minimum spanning tree where the element itself is used. The reason for this is that the

community finding algorithm is a maximisation problem, while finding the minimum spanning tree is a

minimisation problem.

Cliques are formed from the found communities leading to a collection of separate fully-connected

subgraphs. These subgraphs have to be sewn together to have a connected graph that can be used for the

application of extremal graphical models. It proceeds by connecting every subgraph with the strongest

potential separator that connects two previously disconnected subgraphs until the graph is connected.

A group of connected cliques forms a new subgraph. A connected graph has only one subgraph. The

strength of the connection is assessed by considering the corresponding element in the empirical variogram

Γ̂. The full algorithm is given in algorithm 3.
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Algorithm 3 Clustering algorithm

Calculate estimator Γ̂ from data

Assign weights wij =
1

Γ̂ij
to each edge (i, j), i, j ∈ V, i ̸= j,

Divide vertices into communities based on wij , with the Leiden algorithm (Traag et al., 2019)

Form complete subgraphs from communities, i.e. form (unconnected) cluster graph G

Collect unconnected subgraphs of G in set U

Collect all potential separators in set S

while G is disconnected do
Add largest wij ∈ S for which i and j are not in the same subgraph

Update U

Remove (i, j) from S
end

The size of the clusters is determined by the resolution parameter γ, of which its origin is explained in

subsubsection 3.3.4. A lower resolution leads to larger cliques and, therefore, more edges. The algorithm

is repeated for different values of γ. Each value of γ corresponds to a different graph. The BIC is

calculated for each graph and the one with lowest value is selected. The values range from 0.01 to 1.00.

Similarly to reglasso it does not require the minimum spanning tree, has flexibility due to a parameter

controlling the sparsity, but has to additional benefit of labelling groups of nodes and forming decompos-

able graphs. This yields an easily interpretable graph. It is built upon a famous algorithm in network

analysis that is called the Leiden algorithm. The workings of this algorithm are explained next.

3.3.4 Communities and Leiden algorithm

The clustering algorithm uses a community finding algorithm, called the Leiden algorithm, to identify

the cliques in the graph. The operation of this algorithm is explained here.

In real-world network structures, it is possible that nodes in a particular group are stronger linked

to each other than those of other groups, e.g. groups of friends in a social network, functionally related

proteins in a protein network and commodity types in a network of trade resources (Palla et al., 2005).

Those groups are called communities. It is useful to identify communities in a large networks as it helps

for the interpretability of the network. Multiple strategies exist for this purpose, e.g. Newman and

Girvan (2004), Blondel et al. (2008) and Traag et al. (2011). One popular algorithm is called the Leiden

algorithm (Traag et al., 2019). It is an iterative algorithm that is fast and uncovers good partitions in

the network.

The algorithm consists of three phases that are iterated until a local optimum is reached. The phases

are: (1) local moving of nodes (2) refinement of partition (3) aggregation of partition.

We start with the singleton partition, i.e. the partition where every node has its own community. In

phase (1), a queue of all nodes in random order is made. The first node is removed from the queue and

added to the community which yields the highest increase in the objective or quality function H. The
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objective function is the modularity and is given by

H =
1

2m

∑
ij

(wij − γninj)δ(σi, σj),

where m is the total edge weight, γ the resolution parameter, ni the degree, of node i, i.e. the number of

connections to other nodes, σi the community of node i and δ(., .) the Kronecker delta function, which

is one if both inputs have the same value, and zero otherwise. The weights wij are the inverse of the

corresponding elements of variogram, as is explained above. The size of the communities is governed by

resolution parameter γ. It functions as a kind of threshold in that the communities should have a density

of at least γ. Lower resolutions lead to fewer and larger communities and vice versa. If the node is moved

to a different community, all the neighbours of the node that do not yet belong to this community, are

added to the rear of the queue. The steps are repeated until the queue is empty. The local moving of

nodes corresponds to step a) in Figure 2.

In phase (2), the partition is set again to the singleton partition. Nodes that belonged to the same

community in phase (1) are merged randomly if they yield an increase in the quality function H. The

larger the increase in H, the more likely they are to merge. Randomness allows for a broader exploration

of the solution space and is controlled with the hyperparameter β, which is set to 0.01, as this is the

default setting of the package and yields decent results. This phase corresponds to step c) in Figure 2.

In phase (3), we aggregate the communities found in phase (2) into nodes and assign them to same

communities as the ones found phase (1). This is step d) in Figure 2. After that, the phases are repeated

until no improvements can be made, i.e. no movement of the nodes yields an increase in the quality

function H.
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Figure 2: Visualisation of the Leiden community-finding algorithm. Reprinted from Traag et al. (2019)

Aside from finding the graphical structure in a new way using the newly proposed clustering algorithm,

it also helps with interpreting the graph as it groups sets of nodes in communities.

The three methods to find the graphical structure should be compared how they perform relative to

each other. The performance measures used for this are explained next.
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3.3.5 Performance measures

The different approaches are compared for the correctness of the structure and data fit. Five measures in

total are used for the evaluation total number of edges, number of not-found edges, number of faulty edges,

Bayes information criterion and mean absolute percentage error with respect to the true tail correlation

matrix. Different combinations of these metrics are used depending on the type of analysis.

The exact structure is known in a simulation study. This makes it possible to evaluate for each

approach whether certain edges are not found in the estimation that is there in the exact graph. This is

the number of not-found edges. Similarly, it can be assessed if there are edges found in the estimation

that are not there in the exact graph. These two metrics indicate how accurate the estimation of the

model was under a certain approach and whether it tends to under-or overestimate connections between

nodes. In the empirical analysis the true graph is not known. We use the total number of edges instead

to give an indication on the complexity of the graph.

The fourth measure is the Mean Absolute Percentage Error of the tail correlations. One of the most

important pieces of information from the model is its implied tail correlation matrix. It gives the bilateral

tail coefficient or tail correlation between each of the variables and is derived for each element from the

model as

χij = 2− Λij(1, 1).

For a model to be effective, we want this measure to be close to the true correlation coefficients. In

the empirical setting, it can be estimated for a threshold u as

χ̂ij =

∑n
k=1 I

{
Z̃

(k)
i > u, Z̃

(k)
j > u

}
∑n

k=1 I
{
Z̃

(k)
j > u

}
It is difficult to estimate these measures using a direct empirical estimator due to the small sample

sizes of the extreme correlations. This effect is shown in section 4 where the empirical estimator is

compared to the exact one.

The last measure is the Bayes Information Criterion (BIC). This metric gives a value for the model

fit of the data while correcting for the increased likelihood due to additional parameters. This metric is

only used for the empirical application because each generated data set in the simulation study has a

different loglikelihood than the previous one. Its formula is

BIC = p ln(n)− 2L
(
θ̂; Z̃(1), . . . , Z̃(n)

)
where p is the number of parameters, n is the number of observations and the second term is twice the

negative censored log-likelihood.
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These are the metrics that are used in the simulation study and empirical analysis in the next sections.

The procedure to generate random samples in the simulation study is explained in the last part of the

methodology.

3.4 Simulation study

In order to compare the graph identification capabilities of the three methods, we perform a simulation

study. A sample is generated of the limiting variable Y from the Hüssler-Reiss Pareto distribution for a

known graph with a known variogram. We simulate Y and not Z̃, because we assume for the empirical

analysis that Z̃ has sufficiently converged to the limiting distribution and we are more interested in

the graph discovery characteristics of the three methods. This assumption is validated in the empirical

analysis by doing a sensitivity analysis on the threshold. The simulation procedure is the same that

is used in Engelke and Hitz (2020) and is implemented in the R package graphicalExtremes. The

pseudocode for the algorithm is given in algorithm 4.

Algorithm 4 Generation of random sample from Hüssler-Reiss Pareto distribution

Assign empty sample S = ∅

Sample n integers from [1, d] in A

for k in V do
Assign nk =

∑d
i=1 I {Ai = k}

if nk > 0 then
Calculate Σ̃(k) from variogram Γ using Equation 8

for m in 1 : nk do
Generate the d-dimensional vector W k, W k ∼ N(0, Σ̃(k))

Generate U , U ∼ Unif(0, 1)

Ỹ k = exp
(
W k − diag(Σ̃(k))/2

)
Y k = Ỹ k∑d

i Ỹ k

1
U

Add Y k to S
end

end

end

It makes uses of Σ̃(k), which is similar to Σ(k), but includes the kth row and column. It is obtained

from the variogram Γ as

Σ̃(k) =
1

2
{Γik + Γjk − Γij}i,j∈V ∈ Rd×d. (8)

This simulation procedure allows us to compare the three methods in the simulation study.
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4 Simulation study

A simulation study is performed to analyse the performance and characteristics of the three different

approaches. We want to evaluate two requirements for each of the methods.

1. The method has to find the correct underlying graph, rated by the number of Edges that are Not

Found (ENF) and the number of Faulty Edges that are added to the graph (FE).

2. The method has to be able to predict the tail correlations more accurately than the empirical

estimator, rated with Mean Absolute Percentage Error with respect to the exact tail correlations

matrix (MAPE).

For this purpose, four graphs with 10 vertices and a corresponding variogram are created. The four

graphs are the following:

1. Tree: a connected graph without cycles. It has a unique path between any two vertices.

2. Block graph (or clique tree): a connected graphs and decomposable graph, consisting of cliques

that are separated by single nodes

3. Undecomposable (or non-chordal) graph: a connected graph that can not be decomposed into

smaller subgraphs

4. (Connected) cluster graph: a connected graphs and decomposable graph, consisting of cliques that

are separated by single edges

For each of the four models, 800 data points are generated using the procedure described in sub-

section 3.4. This data is used to estimate the model again. We do this for 100 simulations in order

to calculate the average and standard deviation of the performance measures and to observe how many

times each method is able to find the edges.

Table 1 shows the mean and standard deviation for the number of Edges Not Found (ENF) in the

model compared to the true graph and the number of Faulty Edges (FE) in model compared to the true

graph. This corresponds to requirement 1. Table 2 shows the mean and standard deviation for the Mean

Absolute Percentage Error (MAPE) of model-implied tail correlation matrix (χ) compared to the true

tail correlation matrix.
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Table 1: Number of Edges Not Found (ENF) in the model compared to the true graph (left). Number of Faulty

Edges (FE) in model compared to the true graph (right). Results for a graph with 10 vertices, a generated sample

size of 800 observations and 100 repetitions of the simulation.

ENF Greedy Reglasso Clustering FE Greedy Reglasso Clustering

Tree 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) Tree 0.9 (0.3) 0.2 (0.4) 1.8 (3.5)

Block 8.4 (1.3) 1.6 (1.2) 3.7 (0.4) Block 0.6 (0.7) 6.2 (2.4) 2.7 (2.4)

Undecomposable 4.5 (0.5) 2.0 (0.3) 3.1 (1.0) Undecomposable 2.4 (0.9) 1.1 (1.1) 6.3 (3.9)

Cluster 9.8 (1.0) 2.6 (0.6) 3.0 (0.0) Cluster 0.7 (0.5) 3.0 (2.4) 1.0 (1.7)

Table 2: Mean Absolute Percentage Error (MAPE) of model-implied tail correlation compared to the true tail

correlation. Results for a graph with 10 vertices, a generated sample size of 800 observations and 100 repetitions

of the simulation.

MAPE Empirical Greedy Reglasso Clustering

Tree 3.7 (1.2) 1.2 (0.6) 1.2 (0.7) 1.2 (0.6)

Block 2.1 (0.7) 1.6 (0.2) 0.9 (0.3) 1.7 (0.2)

Undecomposable 1.8 (0.7) 2.8 (0.4) 0.6 (0.2) 3.3 (1.3)

Cluster 5.5 (1.9) 17.4 (1.6) 2.3 (1.1) 12.8 (1.0)

Tree

Figure 3 shows the true graph and the graphs found by each of the three approaches for the tree. The black

edges correspond to edges in the true graph and the red edges to edges that are found in the estimation,

but are not part of the true graph. The thickness of the edge indicates in how many simulations it is

found.

The full true tree is recovered by each of the three approaches in all of the simulations. This makes

it possible to estimate the tail correlations in an efficient way. Table 2 shows that that all three methods

are able to estimate the true tail correlations with an average absolute error of close to 1%. That is

considerably better than the empirical estimator of the tail correlation, which has an average absolute

error of 3.7%.

However, we see a difference between the methods in the number edges that are incorrectly included

in the estimated graph. While reglasso only includes 0.2 wrong edges on average, we see that this number

is larger for the other two methods.
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(a) True graph (b) Greedy forward selection

(c) Extremal graphical lasso (d) Clustering algorithm

Figure 3: True graph and graphs found for each of the three methods for the tree. Black edges correspond to

edges in the true graph. Red edges correspond to wrongly found edges. The thickness of the edges indicates how

many times that edge is found. Results for a graph with 10 vertices, a generated sample size of 800 observations

and 100 repetitions of the simulation.

Block graph

For the block graph in Figure 4, we see that reglasso is best able to recover the true graph. This result

can also be seen in Table 2, where it outperforms the other two methods and the empirical estimator

in terms of accuracy of the tail correlations. It does, however, overestimate the number of edges in the

graph significantly. This reduces interpretability of the graph, but has less of a considerable effect on the

tail correlation accuracy compared to missing an edge. Although the greedy and clustering procedure are

still able to improve upon the empirical estimator for the tail correlations, they do not find certain edges

for the following reasons.

For the greedy forward selection, the problem arises from the maximum clique size of three. In the

true graph we see three cliques of which two have a size larger than three. This type of graph is not
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considered by the algorithm. Instead, it forces the graph is smaller cliques, thereby missing some edges.

This is can be seen in Figure 4b.This reduces tail correlation prediction accuracy.

For the clustering algorithm, the problem also arises from a constraint on the graph type. While

a block graph separates cliques by a single node, the clustering algorithm looks for connected cluster

graphs, which separate cliques by a single edge. This leads to a bias that underestimates the inclusion of

certain edges to force the allowed graph type. An example for this is edge (5, 8) in Figure 5d.

(a) True graph (b) Greedy forward selection

(c) Extremal graphical lasso (d) Clustering algorithm

Figure 4: True graph and graphs found for each of the three methods for the block graph. Black edges correspond

to edges in the true graph. Red edges correspond to wrongly found edges. The thickness of the edges indicates how

many times that edge is found. Results for a graph with 10 vertices, a generated sample size of 800 observations

and 100 repetitions of the simulation.

Undecomposable graph

Reglasso performs favourable for the undecomposable graph in Figure 5, as it is able to find 12 of the

14 edges in almost all simulations. This translates in accurate results for the tail correlations in Table 2,

especially when compared to the other two methods and the empirical estimator. Greedy forward selection
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and the clustering algorithm underperform in terms of finding the correct graph and estimating the tail

correlation due to the fact that they are looking for a decomposable graph.

(a) True graph (b) Greedy forward selection

(c) Extremal graphical lasso (d) Clustering algorithm

Figure 5: True graph and graphs found for each of the three methods for the undecomposable graph. Black

edges correspond to edges in the true graph. Red edges correspond to wrongly found edges. The thickness of the

edges indicates how many times that edge is found. Results for a graph with 10 vertices, a generated sample size

of 800 observations and 100 repetitions of the simulation.

Connected cluster graph

For the connected cluster graph in Figure 6, we come to the following results.The greedy forward selection

is not able to recover the full graph in most of the simulation. The reason is the same as for the previous

graphs. The graph identification accuracy is limited because of the limitation of maximum clique size of

three. This yields a poor estimation of the tail correlation that under performs the empirical estimator

in terms of accuracy.

Furthermore, we observe that the tail correlation error of the clustering is also high. This contradicts

the initial hypothesis that the clustering algorithm should perform well on these types of graphs, as it
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especially designed for them. The explanation for this can be deducted from Figure 6d. Vertex 2 is

assigned to the wrong cluster. While it is part of the bottom cluster in the true graph, we see that it

is added to the top cluster or as a separate cluster in partition of the Leiden algorithm. Although this

conceptually seems as a small mistake, it has large implications for the graph. Mislabelling this one node

yields three missing edges and up to three wrong edges. This reduces tail correlation estimation accuracy

to a point that it is outperformed by the empirical estimator. Although the sensitivity to mislabelling is

detrimental for estimating the tail correlations, it may not be that much of a problem when the goal is

only to interpret the graphical structure visually.

(a) True graph (b) Greedy forward selection

(c) Extremal graphical lasso (d) Clustering algorithm

Figure 6: True graph and graphs found for each of the three methods for the connected cluster graph. Black

edges correspond to edges in the true graph. Red edges correspond to wrongly found edges. The thickness of the

edges indicates how many times that edge is found. Results for a graph with 10 vertices, a generated sample size

of 800 observations and 100 repetitions of the simulation.
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In conclusion, it is observed that the (reconnecting) extremal graphical lasso has the highest tail

correlation estimation accuracy of the three methods and outperforms the empirical estimator. The

reason for this is that is able to recover most of the true edges of all methods. It does, however, tend to

overestimate the number of edges in the graph. Despite that not having a big impact on the tail correlation

accuracy, it has a negative effect on the visual interpretation of the graph. The other two methods can,

therefore, complement this method in this aspect. Especially the clustering algorithm, which labels the

nodes into groups, can help to understand the extremal dependence structure in the data. For that

reason, it is useful to apply all of them to the same set of data for the empirical application.
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5 Data

The data that are used for the empirical application consists of weekly future prices of 21 commodities

from the energy, agriculture and metal industry. The time period that is considered ranges from January

6, 2006 through January 1, 2021, corresponding to 783 time points. We have to restrict ourselves to the

most liquid exchange-traded futures. This is measured in open interest, which is the total number of

futures contracts held by market participants at the end of the trading day. This is multiplied with the

closing price and contract size to get the dollar value of the open contracts at a particular date. The

minimum of the dollar value of open contracts is evaluated to be sufficiently high for all dates and across

all commodities. The data is gathered from the Bloomberg terminal. The list of considered commodities

is as follows

• Brent crude

• Natural gas

• Heating oil

• RBOB gasoline

• Corn

• Soybeans

• Sugar

• Wheat

• Rice

• Coffee

• Lumber

• Copper

• Aluminium

• Tin

• Zinc

• Gold

• Silver

• Platinum

Financial time series, such as these, adhere to a set of stylised facts, which include profound serial

correlation of absolute returns, heteroscedasticity and clustering of extreme returns. In order to use

extreme value theory, we have to perform a transformation to make the series i.i.d. ARMA-GARCH

filtering is used for this purpose. The exact procedure is described in subsection 3.1 and only the results

are shown here. The reader is referred to Appendix A for the tables with results for the AIC lag selection

and to Appendix B for the Jarque-Bera and Ljung-Box tests.

The AIC is used to determine the number of lags that have to be included in the ARMA(p,q)-

GARCH(r,s) model. The ARMA(1,0)-GARCH(1,1) has most often the lowest AIC for both the normal

and Student-t distribution assumptions. This configuration is, therefore, used from here on.

Regarding the distribution assumption, we consider Figure 7, which shows the Q-Q plots of the filtered

data under the normal distribution and t-distribution for sugar future returns series, as an example. It

shows that the t-distribution is better able to capture the heavy tails in the data. This is further

confirmed by the Jarque-Bera test, which rejects the null hypothesis of normality for 19 of the 21 series

for a significance level of 1%.
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(a) Q-Q plot for normal distribution (b) Q-Q plot for t-distribution with 9.1 d.o.f.

Figure 7: Q-Q plot of the filtered returns versus the theoretical distribution: normal (left) and t-distribution

(right)

Finally, we examine whether the filtering has removed the serial correlation of the returns and squared

returns. For illustrative purposes, Figure 8 and Figure 9 show the correlogram of the lags of the returns

and squared returns of the sugar future respectively. Most of the serial correlation is removed by the

filtering operations as indicated by the lower number of lags that exceeds the 95% confidence band. This

is further confirmed by the Ljung-Box test on returns and squared returns which shows that the null

hypothesis of no serial correlation is not rejected after filtering. This is in contrast to the unfiltered

series where this null hypothesis is rejected most of the time, indicating serial correlation. The results of

the visual inspection and statistical tests on the filtered data give enough confidence to satisfy the i.i.d.

assumption required for extreme value theory.
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(a) Correlogram for the unfiltered returns (b) Correlogram for the filtered returns

Figure 8: Correlogram of the autocorrelation function and the lags for the unfiltered (left) and filtered (right)

returns. Blue lines represent 95 % confidence band.

(a) Correlogram for the unfiltered squared returns (b) Correlogram for the filtered squared returns

Figure 9: Correlogram of the autocorrelation function and the lags for the unfiltered (left) and filtered (right)

squared returns. Blue lines represent 95 % confidence band.
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To have an idea of the bilateral dependence of the data in a non-extreme setting we consider Table 3

which shows the ranking of the 20 strongest non-extreme correlations. It is useful to compare the relative

strength of bilateral dependencies in the extreme and non-extreme setting to see if relations change in

the tail. This is done in subsection 6.1. For the non-extreme setting, we observe that especially oil-

related commodities are strongly correlated. The reason for this has to do with crude oil being an input

for gasoline and heating oil. Other commodities within the same group, such as food, and precious or

industrial metals, are also strongly connected.

Table 3: Ranking of the 20 largest non-extreme correlations for 21 series of commodity futures returns

Connection Correlation Rank Connection Correlation Rank

Heating oil–Crude oil 0.883 1 Aluminium–Copper 0.579 11

RBOB gasoline–Crude oil 0.791 2 Kerosene–RBOB gasoline 0.524 12

RBOB gasoline–Heating oil 0.728 3 Tin–Copper 0.498 13

Zinc–Copper 0.657 4 Corn–Ethanol 0.480 14

Kerosene–Crude oil 0.656 5 Zinc–Tin 0.456 15

Kerosene–Heating oil 0.641 6 Platinum–Copper 0.434 16

Platinum–Gold 0.636 7 Platinum–Aluminium 0.410 17

Soybeans–Corn 0.623 8 Tin–Aluminium 0.406 18

Wheat–Corn 0.593 9 Oats–Corn 0.404 19

Zinc–Aluminium 0.588 10 Wheat–Soybeans 0.397 20
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6 Empirical application

The methods to find the extremal graphical structure and tail correlations, which are outlined in section 3

and analysed with a simulation study in section 4, are applied to the data set of filtered commodity futures

returns described in section 5. Firstly, the economical findings based on the chosen threshold of p = 0.85

results are shown. After that, a sensitivity analysis on the threshold selection is performed, in order to

verify the robustness of these results.

6.1 Empirical results

Table 4 shows the BIC and the number of edges in the graph for the model obtained by each of the

three approaches. It shows that the greedy forward and clustering algorithm are further away from the

true graph than the extremal graphical lasso, as a higher BIC is obtained with a larger number of edges.

Figure 10 shows the BIC for different numbers of edges. The number of edges comes from the different

steps in the greedy forward algorithm, from the ρ parameter in reglasso and from the resolution parameter

γ in the clustering algorithm. For the greedy forward selection, we can conclude from its BIC plot in

Figure 10a that the algorithm stops too early at 28 edges. The explanation for that is that the clique size

is limited to three for simplicity reasons. Increasing this allows for more potential edges to be evaluated,

but has the downside of increasing computational effort greatly.

The clustering algorithm is able to improve slightly on the forward greedy but still comes short

compared to the extremal graphical lasso. Lower resolution parameter settings have a larger number of

edges in the graph. However, for these settings, the nodes tend to cluster together in a few large blobs

and the rest is left as separate nodes. This creates large cliques that are difficult to estimate due to their

high dimensionality.

Table 4: The number of edges and BIC for the models obtained for the three different structural identification

methods. The full sample and threshold p = 0.85 are used.

p = 0.85

Greedy forward selection Extremal graphical lasso Clustering algorithm

Number of edges 28 43 33

BIC 25,494 23,811 24,238
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(a) BIC versus edges for greedy forward algorithm. (b) BIC versus edges for extremal graphical lasso.

(c) BIC versus edges for clustering algorithm.

Figure 10: BIC versus edges for all three algorithms. Threshold p = 0.85 is used.

Figure 11 shows the graphs found by each of the three methods and a composite graph that shows how

the models agree. For the composite graph, thick and black lines correspond to edges that are included in

all approaches, grey and normal thickness in two and light grey and thin in one. The main advantage of

the clustering algorithm is observed in this figure, namely its interpretability. We see three main clusters

being formed. The first one consists of the oil commodities: crude oil, heating oil, gasoline and kerosene.

This is a strong clique that is found by each of the three models, except for the greedy forward due to its

limit of clique size 3. Another strongly connected group of commodities are essential food commodities,

i.e. corn, soybeans, wheat rice, and oats, and ethanol. These crops serve as a crucial input for the world’s

food supply and can serve as substitutes for each other. Ethanol is part of this group due to its input
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being corn. Sugar and coffee are not part of this cluster. Instead, they are connected together as a more

discretionary food product. The third large cluster consists of industrial metals: copper, aluminium, tin

and zinc. That group is separate from the precious metals gold and platinum. Silver is not in this group.

Instead, it is weakly connected with lumber.

(a) Greedy forward selection (b) Extremal graphical lasso

(c) Clustering algorithm (d) Composite graph

Figure 11: Graphical structure for three different approaches and composite graph. Thick and black lines are

included in all approaches, grey and normal in two and light grey and thin in one. The threshold p = 0.85 is used.

Table 5 shows the ten highest model-implied tail correlations, i.e. χij , of the three approaches and
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their rank for the corresponding approach. We observe that the models agree to a large extent and have a

similar ranking as that of the non-extremal correlations given in Table 3. There is, however, one notable

change in the tail correlations ranking compared to that of their non-extreme cousins. The link between

wheat and corn is higher in the ranking for the high price increases. This is most likely caused by the

fact that price jumps caused by disasters, such as draughts or hurricanes, affect both crops equally as

they are often grown in the same regions, combined with the fact that they are substitutes.

The strongest links between commodity types are those with natural gas. This is seen most clearly in

the graph for the clustering algorithm, but is also visible in the other plots. The link between industrial

metals and natural gas is the strongest with tail correlations ranging around 0.4. The reason for this

is that the metal industry is an energy-intensive industry that relies on natural gas as an energy input.

The link between other commodity types such as liquid energy or food commodities is much weaker with

tail correlations around 0.10 and 0.05 respectively. This further supports the neutrality hypothesis in

the energy-food nexus. We also see weak tail correlations between ethanol and energy commodities. The

non-extreme correlation between gasoline and ethanol has rank 40 of the 210 correlations. For the tail

correlation, the rank has increased to around 180 for each of the three models. An explanation for this

decrease in dependency is that this dependency is demand-pull driven. More demand for gasoline drives

up its price. As gasoline is required to be mixed with ethanol in numerous countries such as the USA

and Brazil, this also drives up the demand, and therefore the price, of ethanol. Gasoline price shocks,

however, are often driven by supply-side issues for crude oil that does not have an effect on ethanol

production.

Table 5: Ranking of the 20 largest tail correlations for 21 series of commodity futures returns for the three

approaches. Threshold p = 0.85 is used.

Greedy forward selection Eglasso Clustering

Connection Tail correlation Rank Tail correlation Rank Tail correlation Rank

Heating oil–Crude oil 0.697 1 0.747 1 0.705 1

RBOB gasoline–Crude oil 0.597 2 0.631 2 0.589 2

RBOB gasoline–Heating oil 0.511 10 0.629 3 0.584 3

Zinc–Copper 0.541 4 0.621 4 0.558 5

Wheat–Corn 0.569 3 0.613 5 0.570 4

Kerosene–Crude oil 0.525 5 0.587 6 0.528 8

Platinum–Gold 0.512 8 0.580 7 0.490 12

Zinc–Aluminium 0.512 9 0.578 8 0.542 6

Kerosene–Heating oil 0.521 6 0.565 9 0.526 9

Aluminium–Copper 0.503 11 0.564 10 0.523 10
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6.2 Threshold sensitivity

The threshold p is used to eliminate the non-extreme observations, i.e. the observations for which none of

the elements exceeds the pth quantile. This is an important parameter to set because a threshold that is

set too low introduces bias, as we include observation that are not far enough in the tail, while a threshold

that is set too high introduces parameter uncertainty due to the smaller number of observations.

The threshold is set to 0.85 in the main analysis using a visual inspection of several tail correlation

plots. It is, however, important to consider the sensitivity to this parameter. For this reason, we consider

a lower threshold of p = 0.75 and a higher threshold of p = 0.95. After standardisation, the original

threshold has 672 observations. For the lower threshold, this increases to 744. The higher threshold has

415 observations.

Comparing Table 6 and Table 7 with Table 4, it is observed that the greedy algorithm remains stable in

the number of edges. Yet again, this is caused by the limit on clique size. For the extremal graphical lasso

and clustering algorithm, however, the story is different. Both methods directly rely on the empirical

estimate of the variogram. For the lower threshold, we see the number of observations increase and

therefore expect a better estimate of the parameter matrix. This translates in a better BIC in relation

to that of the greedy forward method compared to the base case of p = 0.85. Per contra, if the number

of observations is decreased, as is the case for the higher threshold, we see a sharp decline in model fit.

The ranking of the tail correlations does not differ to a large degree for the different thresholds. We do

see higher correlations for lower thresholds. The correlations rankings for all three thresholds are found

in Appendix C.

Table 6: The number of edges and BIC for the models obtained for the three different structural identification

methods. The full sample and threshold p = 0.75 are used.

p = 0.75

Greedy forward selection Extremal graphical lasso Clustering algorithm

Number of edges 29 57 29

BIC 39,609 35,243 36,956

Table 7: The number of edges and BIC for the models obtained for the three different structural identification

methods. The full sample and threshold p = 0.95 are used.

p = 0.95

Greedy forward selection Extremal graphical lasso Clustering algorithm

Number of edges 28 35 22

BIC 3,566 9,237 9,163
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7 Conclusion

This research investigates the upper tail dependence structure of 21 commodity futures returns, spanning

energy, agriculture and metal commodities. It does this by using the theory on extremal graphical models

developed by Engelke and Hitz (2020). For identifying the graphical structure, three different approaches

are taken. The first method uses the minimum spanning tree as a starting point and adds edges using

a greedy forward search based on the BIC. The second method, called extremal graphical lasso, forces

sparsity on the off-diagonal elements precision matrix Σ(k) for all k and uses it to construct the variogram.

The third method, named the clustering method, finds connected nodes and connects them as cliques.

The disconnected cliques are sewn together using the strongest single connection between cliques based

on the empirical variogram.

A simulation study on these three methods shows that an empirical estimator does not suffice for the

tail correlations and that model-implied tail correlations come closer to the true tail correlation matrix.

The extremal graphical lasso is best able to recover the true edges. This translates in the most accurate

tail correlations. However, it overestimates the number of edges in the graph, making it difficult to draw

visual conclusions from the graphs. In a final conclusion, it is found that the clustering algorithm has a

main weakness in that the accuracy of the estimated tail correlation is very sensitive to a mislabelling of

the nodes. It is, however, still useful to understand the network structure of the data.

The theory on extremal graphical models and the three graph identification methods are applied to

the filtered data set consisting of 21 futures series returns ranging from 2006 to 2021. It is found that

the results of the three approaches are close to each other and that the strongest connections are found

between nodes that are in the same group. In the connections between groups, we see that natural

gas serves as the pivot. The strength of these connections is lower with respect to the non-extreme

correlations. This supports the neutrality hypothesis.

There are multiple ways that this research can be extended. The clustering algorithm has room for

improvement as its performance is quite sensitive to mislabelling nodes. Furthermore, connecting cliques

happen with a single edge, instead of a single node, which is the case in block graphs. Grouping the

nodes in different ways and overlapping these results to find the separator nodes can be a way to tackle

both problems. Other extremal graph identification strategies can be tested as well. Engelke, Lalancette

and Volgushev are also working on a neighbourhood selection method for extremes in parallel to the

extremal graphical lasso. This method has shown some promising results, but no specific details on the

implementation of this approach are released at the time of writing.

A different approach to studying the dependence structure of commodities is to study its causal struc-

ture. Bayesian networks are graphical models that are more concerned with cause and effect. Forming

this kind of model would allow for having a more detailed look into which commodity price spike causes

a spike in another commodity. To the best of the author’s knowledge, there is no extremal version of this

theory at this point in time.
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An extension of the current research can be to translate the found results into a solution for this

tail dependence by forming a hedging portfolio. In this portfolio, a balance has to be struck between

non-extreme and extreme dependence. For example, the connection between corn and wheat is weaker

in normal times than during large price hikes. This dependence is, therefore, less of concern most of the

time. However, during those few extreme occasions, we may find that the hedge proves the most useful.

A balance has therefore to be struck. Combining the extreme and non-extreme results in one portfolio

should allow investors and producers to be more protected against large shocks in prices.
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A AIC for different GARCH tests

Table 8: Akaike Information Criterion for different lags of the ARMA(p,q)-GARCH(r,s) model. Each row

corresponds to the univariate future return series of the 21 different commodities. Bold-faced numbers indicate

the lowest values of the row.

AIC ARMA(1,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1) ARMA(1,1)-GARCH(2,1)

Crude oil -3.494 -3.491 -3.491

Natural gas -2.635 -2.638 -2.637

Ethanol -3.472 -3.470 -3.467

Heating oil -3.561 -3.559 -3.557

RBOB gasoline -3.190 -3.189 -3.187

Kerosene -3.831 -3.841 -3.839

Corn -3.673 -3.671 -3.669

Soybeans -4.089 -4.087 -4.085

Sugar -3.401 -3.403 -3.400

Wheat -3.499 -3.497 -3.495

Raw rice -3.989 -3.988 -3.986

Oats -3.325 -3.324 -3.321

Arabica coffee -3.578 -3.588 -3.574

Lumber -3.360 -3.358 -3.357

Copper -3.916 -3.917 -3.914

Aluminium -4.219 -4.217 -4.215

Tin -3.900 -3.897 -3.895

Zinc -3.625 -3.627 -3.625

Gold -4.650 -4.648 -4.646

Silver -3.877 -3.874 -3.872

Platinum -4.037 -4.032 -4.030
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B Jarque-Bera and Ljung-Box test results

Table 9: Jarque-Bera test for filtered returns with normal distribution assumption

Statistic p-value Statistic p-value Statistic p-value

Crude oil 76.9 0.000 Soybeans 20.6 0.000 Copper 175.5 0.000

Natural gas 5.5 0.065 Sugar 77.8 0.000 Aluminium 22.3 0.000

Ethanol 160.1 0.000 Wheat 24.2 0.000 Tin 311.6 0.000

Heating oil 172.4 0.000 Raw rice 29.0 0.000 Zinc 1.1 0.567

RBOB gasoline 548.8 0.000 Oats 48.3 0.000 Gold 27.5 0.000

Kerosene 106.7 0.000 Arabica coffee 21.6 0.000 Silver 491.2 0.000

Corn 1702.2 0.000 Lumber 25.3 0.000 Platinum 88.8 0.000

Table 10: Ljung-Box tests for the unfiltered and filtered returns for 21 commodity futures.

Unfiltered returns Filtered returns Unfiltered squared returns Filtered squared returns

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

Crude oil 35.2 0.019 27.5 0.093 594.1 0.000 21.8 0.295

Natural gas 29.9 0.071 22.0 0.283 76.1 0.000 13.5 0.811

Ethanol 29.5 0.078 21.2 0.325 81.6 0.000 9.0 0.973

Heating oil 21.0 0.398 20.6 0.359 172.4 0.000 33.3 0.022

RBOB gasoline 43.1 0.002 32.1 0.030 220.6 0.000 26.6 0.114

Kerosene 58.4 0.000 23.4 0.219 134.6 0.000 21.4 0.315

Corn 31.8 0.045 27.8 0.086 75.9 0.000 10.0 0.953

Soybeans 30.2 0.067 18.8 0.468 213.7 0.000 36.6 0.009

Sugar 26.8 0.142 21.0 0.339 98.0 0.000 9.7 0.960

Wheat 36.3 0.014 30.5 0.046 90.7 0.000 16.5 0.627

Raw rice 44.1 0.001 37.7 0.006 258.3 0.000 26.1 0.128

Oats 22.1 0.337 20.3 0.378 19.3 0.505 17.8 0.536

Arabica coffee 25.4 0.188 27.1 0.101 43.4 0.002 24.8 0.168

Lumber 31.4 0.050 29.8 0.055 120.8 0.000 9.3 0.969

Copper 53.5 0.000 31.2 0.039 276.9 0.000 25.6 0.141

Aluminium 22.0 0.340 14.5 0.754 231.2 0.000 24.6 0.175

Tin 69.7 0.000 23.6 0.214 499.5 0.000 11.3 0.913

Zinc 14.9 0.780 8.2 0.985 398.6 0.000 17.1 0.581

Gold 23.2 0.280 8.9 0.976 300.7 0.000 27.1 0.103

Silver 7.4 0.995 8.1 0.985 92.7 0.000 33.3 0.022

Platinum 16.9 0.658 11.0 0.925 266.5 0.000 18.6 0.482
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C Tail correlation tables for different thresholds

Table 11: Ranking of the 20 largest tail correlations for 21 series of commodity futures returns for the three

approaches. Threshold p = 0.75 is used.

Greedy forward selection Eglasso Clustering

Connection Tail correlation Rank Tail correlation Rank Tail correlation Rank

Heating oil–Crude oil 0.725 1 0.764 1 0.740 1

RBOB gasoline–Crude oil 0.615 2 0.648 2 0.633 2

RBOB gasoline–Heating oil 0.608 3 0.644 3 0.628 3

Zinc–Copper 0.597 5 0.630 4 0.611 5

Wheat–Corn 0.600 4 0.624 5 0.616 4

Kerosene–Crude oil 0.595 6 0.602 6 0.573 9

Platinum–Gold 0.565 9 0.592 7 0.580 7

Zinc–Aluminium 0.580 7 0.588 8 0.581 6

Kerosene–Heating oil 0.524 13 0.586 9 0.570 10

Corn–Ethanol 0.564 10 0.582 10 0.562 12

Table 12: Ranking of the 20 largest tail correlations for 21 series of commodity futures returns for the three

approaches. Threshold p = 0.85 is used.

Greedy forward selection Eglasso Clustering

Connection Tail correlation Rank Tail correlation Rank Tail correlation Rank

Heating oil–Crude oil 0.697 1 0.747 1 0.705 1

RBOB gasoline–Crude oil 0.597 2 0.631 2 0.589 2

RBOB gasoline–Heating oil 0.511 10 0.629 3 0.584 3

Zinc–Copper 0.541 4 0.621 4 0.558 5

Wheat–Corn 0.569 3 0.613 5 0.570 4

Kerosene–Crude oil 0.525 5 0.587 6 0.528 8

Platinum–Gold 0.512 8 0.580 7 0.490 12

Zinc–Aluminium 0.512 9 0.578 8 0.542 6

Kerosene–Heating oil 0.521 6 0.565 9 0.526 9

Aluminium–Copper 0.503 11 0.564 10 0.523 10
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Table 13: Ranking of the 20 largest tail correlations for 21 series of commodity futures returns for the three

approaches. Threshold p = 0.95 is used.

Greedy forward selection Eglasso Clustering

Connection Tail correlation Rank Tail correlation Rank Tail correlation Rank

Heating oil–Crude oil 0.620 1 0.750 1 0.622 1

RBOB gasoline–Heating oil 0.499 2 0.624 2 0.471 2

RBOB gasoline–Crude oil 0.402 9 0.620 3 0.465 3

Zinc–Copper 0.463 4 0.600 4 0.460 4

Wheat–Corn 0.473 3 0.592 5 0.452 5

Platinum–Gold 0.382 12 0.575 6 0.382 11

Kerosene–Crude oil 0.409 7 0.563 7 0.407 8

Soybeans–Corn 0.424 5 0.561 8 0.406 9

Zinc–Aluminium 0.411 6 0.553 9 0.435 6

Zinc–Tin 0.383 11 0.535 10 0.362 12
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