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Abstract

The Westerscheldetunnel is one of the largest traffic structures in the Benelux. Hence, it is

important that road traffic can be precisely predicted. We estimate these traffic volumes by

improving seasonal naive forecasting methods. First, a quantile regression model estimates

base probabilistic forecasts with several predictive variables. These predictors are designed

to capture the difference in external circumstances between the traffic intensity now and the

intensity one seasonal cycle ago. Next, with this base model, we use robust peak detection

with the median of absolute deviations. After analysing these peaks, we find new predictors

to use for the probabilistic forecasts. Furthermore, we use a Long Short-Term Memory

network and a Bayesian linear regression model to estimate point forecasts for the traffic

volumes. The best model is 23% more accurate relative to simple seasonal naive forecasting.

Keywords: Traffic Volume, Seasonal Naive Forecasting, Improved Seasonal Naive Forecast-

ing, Probabilistic Forecasting, Point Forecasting, Quantile Regression, Square Root Lasso,

Robust Peak Detection, LSTM Network, Bayesian Regression
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1 Introduction

After completion in 2003, the Westerscheldetunnel became the largest traffic tunnel in the

Benelux with a length of 6.6 kilometers. Every day, around 21 000 vehicles drive through

the tunnel1. This tunnel, situated in the Dutch province of Zeeland, connects the province

to its region Zeeuws-Vlaanderen and to the neighbouring country Belgium. In this paper we

investigate variants of seasonal naive forecasting to predict the traffic flows that occur in the

Westerscheldetunnel.

To analyse these traffic flows, we use data provided by the government agency of the province

of Zeeland, which is called Province Zeeland. This data contains the amount of vehicles that

drive trough the tunnel per hour for the years 2017-2020. We primarily use the data of the years

2017 till 2019 to predict the traffic, as this is the most recent data that is not influenced by the

covid-19 pandemic2.

The main research question of this paper is:

How well can we predict the traffic flows in the Westerscheldetunnel by improving seasonal

naive forecasting methods?

To answer our main research question, we first answer the following sub-questions:

What are external factors that increase the accuracy of the prediction of the traffic flows in

the Westerscheldetunnel?

Which moments have a significant peak in the prediction error and what causes this?

To answer the first sub-question we perform a quantile regression with a square root variant of

the Least Absolute Shrinkage and Selection Operator (Lasso) penalty. With this model, we find

predictors for the traffic flow. We also decompose the seasonality into harmonic frequencies, to

account for the cycling pattern. For the second sub-question, we compare the predictions of the

model to the true observations. Then, we identify the peaks that significantly differ from their

estimate using robust peak detection, following the Median of Absolute Deviations (MAD).

Knowing this, we try to find new external causes which might impact the traffic flow at these

moments. Such that, we do not overlook any important predictors. Now that we have a good

approximation of all influential external factors, we perform two different types of forecasting.

First, we use the quantile regression to achieve probabilistic forecasting. Second, we perform

point forecasting with a Long Short-Term Memory (LSTM) network and a Bayesian Linear

Regression. So, with these models, we predict the traffic volumes and answer our main research

1N.V. Westerscheldetunnel. (n.d.). Westerscheldetunnel. Retreived from https://www.westerscheldetunnel.nl
/nl/westerscheldetunnel/

2Centraal Bureau voor de Statistiek. (2022). Mobiliteit in coronatijd. Retreived from https://www.cbs.nl/nl-
nl/visualisaties/welvaart-in-coronatijd/mobiliteit
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question.

In Section 2, we explain more in depth why we choose our methods and models. In Section 3,

we explain the data alterations we make and the predictors we use. Then, in Section 4, we

elaborate on the methods to answer our research questions. The results of our research are

displayed in Section 5. The conclusion and discussion of these results follow in Section 6.

2 Literature

For this paper, we use quantile regression, we perform a robust method for peak detection and

we construct two models for the point forecasting. In this section we evaluate these methods.

The goal of this research is to predict the traffic flow as good as possible. The importance of

the distinction between explaining and predicting in statistical research was put on the agenda

by Shmueli (2010). He defined predictive modelling as the use of statistical methods to predict

future observations. Meanwhile, he stated that explanatory modelling is used to test causal

hypotheses. Hence, in this research, we do not talk about the causal relations between the traffic

flows and the explanatory variables. We research and discuss the impact of the explanatory

variables on the prediction performance of the model. Therefore, we can not make any causal

conclusions based on our variable analyses. However, we can make conclusion based on the

prediction accuracy of the model.

2.1 Previous Research

Analyzing and predicting road traffic is not a common subject for econometric research. Das &

Tsapakis (2020) researched to predict traffic volumes by using several linear regression models

and machine learning techniques. Seku la et al. (2018) estimate the traffic volume by training

neural networks to learn the relation between these volumes and several influential factors. These

types of models are called volume profiles. However, we believe that these volume profiles could

be improved.

To find methods for the proposed improvements, we first look at seasonal naive forecasting.

Seasonal naive forecasting is a commonly used and is a simple technique for estimating time se-

ries. The core principle is to predict the dependent variable by using the value of the dependent

variable of one seasonal cycle ago (Hyndman & Athanasopoulos, 2018). For further improve-

ments, we look into the field of internet traffic. The predictive methods for internet traffic are

also usable for road traffic. As both fields predict the same: the passage trough a certain point,

whether this point is a website or a tunnel. Papagiannaki et al. (2004) use a baseline to predict

standard behaviour for internet traffic. Then, they use anomaly detection to look for diverging
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observations. The same holds for the research of Gu et al. (2005). They detect anomalies by

comparing the network traffic against a baseline distribution.

Furthermore, we do not want to only use point forecasting. Therefore, we also use proba-

bilistic forecasting. Dawid (1984) encouraged the world of statistics to use more probabilistic

forecasting, where we predict the probability of an event instead of the event itself. For example,

we predict the probability that a certain amount of vehicles passes through the tunnel, rather

than simply predicting the number of expected vehicles (Gneiting, 2008; Gneiting & Katzfuss,

2014). Hence, our research can be used to predict traffic flows in two different ways. First, we

can simply predict the traffic volume for a certain point in the future. Second, we can predict

traffic volumes with an estimation of the probabilities of occurrence.

So by bringing all these fields together, we get a renewed insight in the behaviour of traffic

data. We believe that this approach can yield new insights for both road traffic and for online

traffic. Thus, we get an approach that is widely usable. For example, within the government

agency Province Zeeland, it can be used to analyse traffic flows on all roads under supervision

of the Province. Furthermore, it can be extended to estimate activities on several websites of

the organisation.

2.2 Quantile Regression with Square Root Lasso

So to estimate the traffic volumes as well as possible, we obviously need to have adequate

predicting variables. Therefore, we first construct a simple base model. Then, we can make

predictions with this base model and investigate the outliers. Because we analyse outliers, we

need statistical robust estimations. Hence, for this cause, we use the quantile regression with a

variant of the Lasso error function.

2.2.1 Quantile Regression

The foundation for quantile regression lies around 1750 in the research of Ruer Bošković. He

used the conditional median to perform a regression analysis (Koenker & Hallock, 2001). Then

around 1886, Francis Edgeworth published several papers that translated Bošković’s work into

the plural median, which was a geometric regression approach set to compete with the Ordinary

Least Squares (OLS) regression (Koenker, 2000). Later, this work would be made into the

quantile regression model, as proposed by Koenker & Bassett Jr (1978).

Koenker & Bassett Jr discussed several problems with the robustness of OLS-estimation.

They introduced quantile regression as a robust alternative for the linear model. This is done

by modeling the quantiles of the dependent variable, without assuming a specific conditional
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distribution (Waldmann, 2018). Later Koenker & Hallock (2001) extent Koenker & Bassett Jr’s

research with conditional quantile functions. These functions allow for modelling the conditional

distribution of the dependent variable as a linear expression of the explanatory variables. This

is also seen in Gneiting et al. (2006), where the true observations are displayed against the

quantiles of the estimation distribution. Which should yield a uniform distribution if the model

is robust (Gneiting et al., 2006).

In terms of seasonality, Fourier (1822) introduced a method to describe a harmonic series

into a set of harmonic functions. A variant of this method was also used in the research by Bel-

loni, Chernozhukov, & Fernández-Val (2011), where several sinusoids were used as explanatory

variables in a quantile regression.

As our data contains outliers and several cycling and seasonal patterns (daily, weekly, sea-

sons), we need a regression model that is robust in these situations. Furthermore, our goal for

this model is to make probabilistic forecasts and to detect anomalies. Hence, these predictions

need to be robust. Otherwise, we are not be able to get a good understanding of the outliers

and the factors that might cause them. Therefore, we choose the quantile regression model with

harmonic frequencies to analyse the characteristics of the traffic flows.

2.2.2 Lasso Error Term

The first variant of the Lasso error term was used in the paper by Santosa & Symes (1986), to

account for the white noise in seismograms. Later, Breiman (1995) derived a similar method to

produce lower prediction errors for real and simulated data sets, which he called the nonnegative

garrote. This method can also set parameters to zero, if the predicting variable does not improve

the prediction quality substantially. This was not possible for the Ridge regression model.

However, Breiman did state that Ridge regression was more stable compared to the nonnegative

garrote.

The models and ideas of these two papers where then combined by Tibshirani (1996). He

proposed the Lasso error term for linear estimation, as it provided better forecasting accuracy

and simplified the interpretation by setting unnecessary coefficients to zero. Furthermore, in

contrast to the nonnegative garrote, Tibshirani stated that Lasso showed the stability of a

Ridge regression.

However, as years went by, doubts were raised about the ability of Lasso to specify the

correct sparsity pattern. The sparsity pattern is the subset of variables for which the parameter

is nonzero (Hastie et al., 2015). Hence, these are the variables that are deemed to improve the

prediction quality of the model. Meinshausen & Yu (2009) acknowledge these doubts, but also
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state that Lasso can still provide a good approximation of the sparsity pattern. Furthermore,

they state that Lasso is still a useful tool for model identification when dealing with high-

dimensional data. Lasso is also useful when the data is highly correlated, as long as λ is chosen

to match the design of the data (Dalalyan et al., 2017; Hebiri & Lederer, 2012). Hence, this

allows the inclusion of lagged dependent variables in the model. Belloni, Chernozhukov, &

Wang (2011) constructed a quadratic error term called Square Root Lasso, which outperforms

the regular Lasso and the Cross-Validation Lasso methods.

Hence, we use the square root variant of the Lasso error term for our base model, as it has

the ability to rule out predicting variables that are not important for the predictive performance.

Furthermore, the method can approximate the correct sparsity pattern when dealing with high-

dimensional and highly correlated data sets.

2.3 Peak Analysis

In this research, we use robust peak detection to find anomalies in our prediction errors. This

method is based on statistical dispersion. Statistical dispersion is the extent to which the

data values differ from each other (Siegel, 2016). Rousseeuw (1991) stated that based on the

dispersion of a univariate variable, it is possible to calculate z -scores. These z -scores are a test

statistic to detect if an observation is an outlier. Later, Rousseeuw & Hubert (2011) reviewed

several new outlier-detection methods, instead of using the classical standard deviation. This is

because they state that a single outlier can make the standard deviation arbitrarily large. They

measured this concept in terms of the breakdown value. The breakdown value indicates the

smallest fraction of observations necessary to break the estimator due to being arbitrarily large

(Hubert & Debruyne, 2009). As a single outlier can break the standard deviation estimator,

they give it a breakdown value of 0%.

Rousseeuw & Hubert suggest the MAD as the main test statistic for univariate data, which

has a breakdown value of 50%. As our prediction error is a univariate variable, we use this

statistically robust method to look for anomalies.

2.4 Prediction Analysis

After finding predictors and detecting anomalies, we perform point forecasts. For the prediction

analysis we use two widely different methods. First, we use a LSTM network. Second, we use

Bayesian linear regression.
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2.4.1 LSTM Network

Our first method is based on machine learning. The LSTM network origins from Hopfield

Networks, which were proposed by Hopfield (1982). Later, Rumelhart et al. (1986) added

recurrence to the Hopfield Network to construct a Recurrent Neural Network (RNN). A special

type of RNN is a LSTM network. They were first proposed by Hochreiter & Schmidhuber

(1997). It was developed as a computational lighter and faster version of a RNN, which could

sometimes outperform the RNN itself (Hochreiter & Schmidhuber, 1997).

Gers et al. (2002) proposed a variant of the LSTM network especially developed for estimating

time series (Gers et al., 2002; Heaton, 2017). According to Yu et al. (2019), LSTM networks have

achieved all the interesting results that were previously achieved by RNN’s. They also state that

LSTM networks are better in modeling long-term dependencies than a RNN. However, Zhang

& Qi (2005) state that a regular neural network can not handle seasonality within the data

set. Meanwhile, Gao et al. (2020) see a RNN as a great method to model such long-term

dependencies. Therefore, it will be interesting to see how the LSTM network deals with the

seasonality.

Lastly, to prevent overfitting, Gal & Ghahramani (2016b) proposed the variational dropout

technique. Dropout is the probability that a node and its connections are removed from a

training computation. With variational dropout, we drop the same node-mask at each time

step. Meanwhile, regular dropout discards random node-masks at each dropout. Furthermore,

Gal & Ghahramani (2016b) also used weight decay. Weight decay adds a Ridge penalty term

to the weights of the network to help prevent overfitting (Hastie et al., 2009).

The computational advantages make the LSTM network very useful in our research. In

addition, all neural networks can model the dependent variable as a non-linear function of the

variables (Hastie et al., 2009). This differentiates this method from our quantile regression and

our Bayesian analysis, where we use linear combinations of variables to estimate the dependent

variable. However, we can not clearly derive the computed weights and output signals of the

predictive variables. As output, we only get the value of the predicted dependent variable.

2.4.2 Bayesian Linear Regression

Our second method for the prediction analysis is a Bayesian linear regression. Bayesian analysis

was named after Thomas Bayes, as he was the first to suggest methods to limit the probabilities of

uncertain events (Bayes, 1763). Many decades later, his work would be made into mathematical

methods by Laplace (1829). However, it would take till around 1980 - when computational

power increased - for the Bayesian methods to become widely implemented (Fienberg, 2006).
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This was due to the fact that for a Bayesian analysis, it is necessary to simulate several

’realities’. This is done through generating sequences by sampling from statistical distributions

(Greenberg, 2012). Geman & Geman (1984) proposed the Gibbs-sampler to be used for this.

The Gibbs-sampler is a Markov Chain Monte Carlo (MCMC) algorithm to approximate the

exact posterior distribution of the parameters (Greenberg, 2012). Furthermore, Fernández &

Steel (1998) state that properties like skewness and kurtosis have no impact on the posterior

distribution.

A benefit of Bayesian analysis is that it is exact for small sample sizes (Greenberg, 2012).

Hence, Bayesian inference is a proper method to analyse our data, which is a relatively small

data set. As all dates only occur thrice till 2019, we get a total of 26 544 observations for the

first prediction analysis. Furthermore, this method is interesting for our research as it provides

more predictive insights. This is because the Bayesian analysis also gives us information about

the weights and impact of the predictors on the estimation of the dependent variable. This

contrasts with the LSTM network, which only gives the estimated value.

2.4.3 Mean Absolute Scaled Error

Commonly, the prediction accuracy of point forecasts are measured with the Mean Absolute

Percentage Error (MAPE) (Kim & Kim, 2016). However, Hyndman & Koehler (2006) were not

satisfied with the MAPE and proposed the Mean Absolute Scaled Error (MASE) due to several

reasons. First, the MAPE becomes undefined when the true observation is zero. Furthermore,

Hyndman & Koehler state that the MAPE puts more weight on observations with a low real

value. This is due to the fact that a small error has a relatively larger effect on a small real

value than it has on a large real value. In addition, Makridakis & Hibon (1979) explain that the

MAPE is skewed as it has no upper bound for the errors. So the MAPE can go far above hundred

percent. However, it can never go below zero percent. Later, Hyndman & Athanasopoulos (2018)

extended the use of the MASE by creating a MASE suitable for seasonal time series.

Therefore, in this research, we choose the seasonal MASE over the commonly used MAPE.

For example, our data has relatively low values of traffic at night (Figure 3), which sometimes

even equal zero. Furthermore, the data contains multiple large peaks. Hence, all these factor

would result in a skewed MAPE. Thus, we measure the prediction accuracy of our models with

the MASE suitable for seasonal time series.
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3 Data and Assumptions

The data contains all passing traffic in the Westerscheldetunnel per hour. These hourly obser-

vations are split into the two driving directions and per three vehicle length classes: 0-560 cm,

561-1220 cm and 1221+ cm. This research focuses on the total amount of traffic passing through

the Westerscheldetunnel in both directions per hour. This value is denoted by TOT. The data

ranges from 2017/01/01 till 2020/12/31. However, as the data of 2020 is heavily affected by the

covid-19 outbreak, we first use the data from 2017 till 2019. Later, we include the data of 2020.

In Figure 1 we see the traffic flow for all hours in January and February 2019, which gives 1 416

observations:

Figure 1: Hourly amount of vehicle passing from both directions through the
Westerscheldetunnel in January and February 2019

3.1 Covid-19

In February 2020, the first Dutch people got covid-19. In March 2020, the Netherlands went

into their first intelligent lockdown3. As we know today, the rest of 2020 was heavily impacted

by the virus. The pandemic also had a large impact on the traffic activities. In Figure 2 we see

the Dutch traffic activity in 2020 compared to traffic activity in 20192.

3Rijksoverheid. (n.d.). Coronavirus Tijdlijn. Retrieved from https://www.rijksoverheid.nl/onderwerpen/coronavirus-
tijdlijn
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Figure 2: Traffic intensity of the Netherlands in 2020 in comparison to 2019

We can clearly see that the traffic activities in 2020 are negatively affected by the covid-19

virus. Therefore, we only use the data before 2020 in the first part of our research. Later, we

use the full data set to predict the traffic flows in the Westerscheldetunnel by including covid-19

related variables.

3.2 External Predictors

For our research, we need to find external factors that help predict the traffic activity in the

Westerscheldetunnel. To do this, we incorporate possible influential predictors in our model. We

use two methods to find these variables. First, we simply discuss such factors with the traffic

experts at Province Zeeland. For example, the weather data per hour and day-specific variables

like holidays and toll free days (Appendix A.1). Our second method to discover influential

predictors is based on our peak analysis. For the large peaks in our prediction error, we try to

explain it with new impactful predictors.

For most of these predictive variables, we need to make an important alteration. As seen in

Figure 1, every hour behaves similar throughout the weeks. As we include the seasonal lagged

dependent variable into our model, it is very important that we incorporate these external

predictors in terms of differences. For example, we do not simply include the hourly amount of

rain. We include the difference in the amount of rain with the observation of 168 hours (one

seasonal cycle) ago. Otherwise, we would have a form of serial correlation for our parameters

(Cameron & Trivedi, 2005). This is due to the fact that the lagged observation is dependent

on the amount of rain then. Furthermore, the current observation would be calculated with the

lagged variable and the current amount of rain. Hence, we would indirectly use the amount of
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rain multiple times in the estimation.

In the last part of our research, we perform probabilistic and point forecasts for the years

2017 till 2020. We include the same variables as for the regular analysis and add several covid-19

indicators suggested by the experts. For example, the difference in the number of daily covid-19

infections, the number of daily hospitalizations due to covid-19 and a variable stating if there is

a lockdown (Appendix A.4).

3.3 Trend and Seasonality

In Figure 3 we can clearly see an additive seasonal pattern consisting of one week (168 observa-

tion). Furthermore, we also see small differences between weekdays themselves and between the

two weekend-days. For example, based on Figure 1, the peaks on Friday seem consistently lower

than those on Tuesday. Hence, our data set contains a seasonal pattern of one full week. It

is important for our quantile regression that this seasonality is preserved throughout the whole

data set (as explained later in Section 4.1). Therefore, we complete the weeks at the beginning

and at the end of our data set.

Figure 3: Hourly amount of vehicle passing from both directions through the
Westerscheldetunnel from Monday January 7th till Sunday January 27th 2019

After removing the seasonality from the time series, we look for a possible trend. In Figure 4

we see a very fluctuating trend for the data from 2017 till 2019. Due to the lack of a clear slope,

we state that there is no trend present for TOT in the years 2017 till 2019. As the changes in
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trend can easily be caused by external factors like weather and holidays.

Figure 4: Trend after removing the seasonality from Monday December 26th 2016 till
Sunday January 1th 2020

4 Methodology

In this section we explain our methods and models more in depth. First, we explain our quantile

regression. Then, we elaborate on our robust peak detection method. At last, we tell more about

the LSTM model and the Bayesian linear analysis. All models are constructed based on a random

training set, consisting of seventy percent of all observation. The remaining thirty percent is

used to measure the prediction accuracy of the models in terms of the MASE.

4.1 Quantile Regression with Square Root Lasso

With quantile regression we can estimate the conditional quantile functions (Koenker & Hallock,

2001):

min
β∈Rp

∑
ρτ (TOTi − ξ(xi, β)), (1)

where ξ(xi, β) is a linear function of parameters and ρτ (·) is a tilted absolute value function

that yields the τ th quantile of [TOTi − ξ(xi, β)] as the solution. This allows the model to learn

a specific quantile, instead of the mean. In this research, we use τ = 0.05, 0.1, 0.15, ..., 0.9, 0.95

for the probability forecasts.
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Belloni, Chernozhukov, & Fernández-Val (2011) add sinusoidal functions to the minimization

problem, such that we approximate a Fourier decomposition. Hence, we get:

min
β∈Rp

∑
ρτ [TOTi − {g(ti) + ξ(xi, β)}], (2)

where g(ti) = α0+α1ti+α2sin(2πti)+α3cos(2πti)+α2sin(4πti)+α3cos(4πti) for timestamp ti.

However, g(ti) can be arbitrarily long. Therefore, we use the following function for the harmonic

frequencies (Zhu & Woodcock, 2014; Zhou et al., 2022):

g(ti) =
S∑
s=1

(
α1scos

(
2πsti
T

)
+ α2ssin

(
2πsti
T

))
. (3)

Here, S is the number of seasonal patterns and T is the amount of observations per seasonal

period. The variable ti represents the place of the hour within the week. Therefore, we have

T = 168 and t ∈ {1, ..., T}. Furthermore, S = 158 as this is amount of weeks that are included

in our data set for 2017 till 2019. When we include 2020 in our data set, we get S = 210.

Hence, it is important to complete the weeks at the beginning and at the end of our data set,

as mentioned in Section 3.3. Otherwise, S would not be a whole integer.

After constructing the main part of the minimization problem, we add the square root Lasso

error function. Therefore, we the Lasso error function and lambda as provided by Belloni,

Chernozhukov, & Wang (2011):

min
β∈Rp

(
1

N

N∑
i=1

ρτ [TOTi − {g(ti) + ξ(xi, β)}]

)1/2

+ λ||β||1, (4)

where ||β||1 =
∑p

j=1 |βj |, with p being equal to the number of parameters. A parameter is

dropped from the sparsity pattern when β < 0.0001. Furthermore, the penalty level λ equals:

λ = cN1/2Φ−1(1− α/2p), (5)

for some constant c > 0 and probability level 0 < α < 1. The function Φ−1(·) corresponds to

the inverse normal distribution. We choose c = 1.1 and α = 0.05 as recommended by Belloni,

Chernozhukov, & Wang (2011).

4.2 Peak Detection

To detect peaks, we compare the prediction errors for the quantile regression with τ = 0.5.

Whenever a prediction error is significantly large, we mark it as an outlier. For this research we
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use the MAD as given by Rousseeuw & Hubert (2011):

MAD = c median(|ei − ẽ|), (6)

where ẽ is the median of all prediction errors e. Furthermore, c is a chosen constant, such

that the MAD is consistent for the standard deviation of the distribution (Rousseeuw & Croux,

1993). This is achieved when this constant corresponds with the area of data between the 25th

and the 75th quantile. As the distribution should be symmetrical, we only use the value that

yields the 75th quantile. As the value for the 25th can easily be derived from this (Rousseeuw &

Croux, 1993). For example, for the normal distribution we would have c = 1.483, due to:

c =
1

Φ−1(0.75)
≈ 1.483. (7)

However, our prediction error does not follow a normal distribition, as the Jarque-Bera p-value

is practically 0 due to a very high kurtosis (Heij et al., 2004). We do see that the error term

moderately follows a symmetric distribution, as the skewness is -0.99 (Hair et al., 2022). So even

though the variable is slightly skewed, we believe that their is enough symmetry to perform the

outlier analysis. As our goals is only to get an indication of the days that are affected the most

by outliers.

Furthermore, the mean is 2.82 for the prediction error. Then, based on a t-test, we see that

this mean is significantly different from 0 (Heij et al., 2004). Therefore, we account for this

by subtracting this mean from all error terms. Next, we scale the variance to 1, such that we

standardize the variance. Then, we get a symmetric distribution centered around zero. Thus,

now we can derive the value for the 75th quantile and compute the constant by dividing one by

this quantile value. The steps in this process are applied to all models.

Next, to compute the z-scores, Rousseeuw & Hubert propose to use the MAD to derive

them:

zi =
|vi − ṽ|
MAD

, (8)

where v is the altered error term as described before. Furthermore, we use a critical value of

2.5 for the z-score (Rousseeuw & Hubert, 2011). So when zi ≥ 2.5, we mark observation i as an

outlier.

Next, we take all outliers and sort them per day. Such that, we get an overview of the number

of outlying hours per day. Hence, we get a global indication of how much a day is affected by

outliers. Then, we use the peaks over threshold method to identify the most affected dates. The

height of a threshold is a subjective decision. We choose a threshold based on the 70th percentile
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(Leadbetter, 1991; McNeil & Saladin, 1997). This yields the 90 most affected days, which we

use to identify missing predictive variables. For all missing predictors, we constructed dummy

variables.

With these new predictors, we once again perform our quantile regressions with square root

Lasso to obtain new probability forecasts. However, if these new models do not show clear signs

of improvement, we tune lambda to get the sparsity pattern that yields the lowest MASE. This

will be done with the quantile regression for the 50th percentile. Then, this found value for

lambda is also used for all quantile regression based on other percentiles.

4.3 Point Predictions

The next step in our research is to predict the traffic volumes in the Westerscheldetunnel as

good as possible. For the LSTM Network, we use all the predictors. This includes the variables

added after the peak analysis. For the Bayesian regression we can not use all predictors, as this

yields uninvertable matrices due to high singularity. Hence, for the Bayesian linear regression,

we use the sparsity pattern as selected by the quantile regression with square root Lasso based

on the 50th percentile. After performing the point forecasts for 2017 till 2019, we predict the

traffic flows till 2020 with the inclusion of several covid-19 related variables.

4.3.1 MASE

To compare our different models, we use the MASE for seasonal time series as proposed by

Hyndman & Athanasopoulos (2018) to measure their accuracy. The MASE is always computed

based on the out of sample test set.

MASE = mean(|qt|) = mean

(∣∣∣∣∣ TOTt − T̂OT t
1

T−m
∑T

t=m+1 |TOTt − TOTt−m|

∣∣∣∣∣
)
, (9)

where TOTt − T̂OTt is the forecast error and m is the length of the seasonal period. Hence, we

get that m = 168. Furthermore, the forecast error is scaled on the denominator, which is equal to

the Mean Absolute Error (MAE) of the seasonal naive forecasts (Hyndman & Athanasopoulos,

2018). Thus, we get that the MASE < 1 when our model outperforms simple seasonal naive

forecasting.

4.3.2 LSTM Network

This research uses the LSTM network as proposed by Gers et al. (2002). For the LSTM network,

every computation exists of a Multilayer Perceptron (MLP). A MLP is a series of nodes connected
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by weights and output signals (Gardner & Dorling, 1998). It consists of at least three layers: an

input layer, one or more hidden layers and an output layer. This is displayed in Figure 5.

Figure 5: A MLP with two hidden layers from Gardner & Dorling (1998)

In the above figure we see that the input of this MLP consists of three values. For example,

one lagged variable and two explanatory variables. Next, it passes through two hidden layers

yielding two output values. This paper uses only one hidden layer with a size of 1 + 2
3k, where k

is the number of parameters (Gers et al., 2002; Heaton, 2017). Furthermore, in contrast to the

example in Figure 5, we only have one output value TOTt.

By assigning different weights and output signals to nodes, the model trains itself in estimat-

ing more accurately. The error term that is used to find optimal estimations is the Normalized

Root Mean Squared Error (NRMSE) (Gers et al., 2002):

NRMSE =

√
(yk − tk)2√

(max(tk)−min(tk))2
, (10)

where yk is the output of the LSTM network and tk is the target output. To improve the quality

of our model, we standardize all inputs with a mean of zero and a standard deviation of one

(Hastie et al., 2009). Thus, we standardize a variable x by subtracting its mean (µ) and dividing

by its standard deviation (σ) (Heij et al., 2004):

x− µ
σ
∼ N(0, 1). (11)

In our research we use the variational dropout method and weight decay method as given by
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Gal & Ghahramani (2016a). We use recurrent dropouts rate of 0, 0.05, 0.1, 0.15, 0.2, 0.25 and

0.3 (Gal & Ghahramani, 2016b; Semeniuta et al., 2016; Srivastava et al., 2014). For the batch

size, we use the values of 32, 64 and 128 (Kandel & Castelli, 2020; Goodfellow et al., 2016).

We first look for the dropout rate that yield the lowest MASE. Therefore, we use a default

batch size of 64. Next, we look for the batch size that gives the lowest MASE, with the best

found dropout rate. When training a LSTM network, we stop the network when the loss of the

validation set has not decreased for ten epochs (Dodge et al., 2020). As neural networks are a

stochastic process, output can vary even when specifying a seed. Hence, we construct 50 LSTM

networks for each parameter-tuning step and report the mean.

4.3.3 Bayesian Linear Regression

For the second variable analysis, we use a Bayesian linear regression as given by Greenberg

(2012). We use a Markov Chain Monte Carlo (MCMC) algorithm to construct a linear re-

gression with normal distributed error terms. Hence, our dependent variable TOTt follows the

multivariate normal distribution:

TOTt ∼ Nn(Xtβt, σ
2
t IK), (12)

where TOTt is a size n vector of all observations and Xt is the set of the selected variables. Next,

βt is the set of corresponding parameters. We define n as the amount of observations and K as

the number of parameters of the sparsity pattern. Hence, we get n = 26 544 for the period till

2019 and n = 35 280 for the period including 2020. Then, we use the following non-informative

prior specification:

β|σ ∼ NK(b, σ2B) and p(σ2) ∝ σ−2, (13)

with b = 0 and B = IK/σ
2. Therefore, we have the prior:

β|σ ∼ NK(0, IK). (14)

Given the prior, we use the Gibbs sampler. We draw β from the multivariate normal distri-

bution and σ2 from the inverse gamma distribution:

β(g) ∼ NK(β̂(g), B(g)) (15)

σ2
(g) ∼ IG(n/2, δ(g)/2), (16)
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where β̂(0) = b, B(0) = B and

B(g) = σ2
(g−1)

(X ′X +B−1)−1 (17)

= σ2
(g−1)

(X ′X)−1

β̂(g) = B(g)(σ−2
(g−1)

X ′y +B−10 β0) (18)

= (X ′X + σ2
(g)

)−1(X ′y)

δ(g) = (y −Xβ(g))′(y −Xβ(g)). (19)

We do this until g = 500 000. After all simulations, we remove a 10% burn-in sample and

we use a thin-value of 10 to create the preferred sample (Greenberg, 2012). Then, we use the

medians of parameters β and σ2 to estimate T̂OT t.

4.4 Comparison Lagged Differences

To further evaluate our point forecasts, we also construct a model where we include several

lagged variants of the dependent variable. This to account for possible missing information or

forms of serial correlation (Heij et al., 2004). Then, we can see if the addition of these predictors

increases the accuracy of the point forecasts. For this, we choose the model that has the lowest

MASE. To construct the variables in a similar method as our other external predictors, we use

the lagged difference of the traffic volumes of 1, 2, 3, 4 and 5 hour(s) ago compared respectively

to the traffic intensities of 169, 170, 171, 172 and 173 hours ago. Hence, we get that the variable

TOT j is equal to:

TOT j = TOTt−j − TOTt−T−j , (20)

where T = 168 and j = 1, 2, 3, 4, 5. In this way we construct an indication if the general trend

for traffic flow is lower compared to the traffic volumes one seasonal cycle ago.

5 Results

In this section, we state the results of our models and predictions. Further, more in-depth,

conclusions are drawn in Section 6.

5.1 First Quantile Regression

An overview of the predicted quantiles from the quantile regressions is displayed in Figure 6.

Here, we see the distribution of the true observations in the test set across the predicted quan-

tiles. For example, it should hold that the 90 percent of these true observation should have a
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value lower than the prediction of the quantile regression based on the 90th percentile. Thus,

when we use twenty quantiles, every quantile should approximately contain five percent of the

observations.

Figure 6: An overview of the distribution of the true observations of the test set across the
predicted quantiles for the first quantile regressions

However, we see that we overpredict below the 5th percentile and above the 95th percentile.

Which indicates that the outliers are not modelled correctly. Furthermore, we underpredict in

the quantiles between the 30th and 50th percentile.

To analyse the outliers, we use the quantile regression based on the 50th percentile. This

model selects six variables for the sparsity pattern: Wind Force, Temperature, Air Pressure, Hol-

iday Dutch, Cos 158 and TOT 158. These variables are explained in Table 10 (Appendix A.1).

The coefficients of these variables are listed in Table 16 (Appendix B). Based on this model, we

perform our peak analysis. This specific model has a MASE of 0.971.

5.2 Peak Detection

Based on the quantile regression for the 50th percentile, we detect 1 000 outlying hours in the

whole data set. This is equal to 3.8% of all observations. These anomalies are distributed across

275 days, which make up 24.9% of all days. In Table 19 (Appendix C), we have the 90 days that

contain the most outliers. All these days are provided with an explanation on why they might

diverge.
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Figure 7: An overview of the number of outliers per day for all dates from 26/10/2016 till
05/01/2020

There seems to be a big influence of Christmas and the weekends around Easter, Ascension

Day and Whit Sunday. The days before and after public holidays also occur frequently in these

90 days. Therefore, we also include these additional dates for other variables as a precaution.

Furthermore, the dates which are a week after the holidays are also regularly labeled as an

outlier. This is probably caused by the fact that special days can affect the next week through

the lagged predictor TOT 168. We also find twelve days that are a toll free Saturday. In

addition, we see fourteen Saturdays which are a week after a toll free Saturdays. The created

predictors to account for these days are listed in Table 14 (Appendix A.3)

5.3 Altered Quantile Regression

For the second and ’altered’ quantile regression, the predictors are added which are found in the

peak analysis. Hence, the variable indicating if there is a holiday is now split into indicators for

vacation periods and separate special days. In Figure 8, we see how the true observations in the

test set are distributed across the predicted quantiles.
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Figure 8: An overview of the distribution of the true observations of the test set across the
predicted quantiles for the first quantile regressions

When we compare these results to the results of the first quantile regressions (Figure 6), we

see two almost identical distributions. There is still overprediction in the quantiles below the

5th percentile and above the 95th percentile. Even more, we still underpredict between the 35th

and the 50th percentile. Thus, the needed changes did not occur for the predicted quantiles.

This is illustrated by the quantile regression based on the 50th percentile. This model

selected the following variables for the sparsity pattern: Wind Force, Temperature, Air Pressure,

Cos 158 and TOT 158. The main difference with the previous model is the lack of a vacation

or holiday indicating predictor. The coefficients for the other predictors stayed almost exactly

the same. These coefficients are listed in Table 17 (Appendix B). In term of the outliers, the

model yields 999 outlying observations spread throughout 275 days for the whole data set.

Furthermore, the model has a MASE of 0.972, which is practically the same as for the first

quantile regression.

5.4 Tuned Quantile Regression

Hence, the altered quantile regression does not show clear sings of improvement. Therefore, as

mentioned in Section 4.2, we tune λ to obtain the quantile regression with lowest MASE. This

is based on the quantile regression for the 50th percentile. In Figure 9 we see the MASE for

λ = 1, 10, 20, 30, ..., 560. The red observation is the MASE for λ = 570.89, which is the value for

λ according to equation (5).

Here, we can see that the MASE is the lowest for λ = 10. The MASE for λ = 10 is
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Figure 9: An overview of the MASE of the quantile regressions for λ =
1, 10, 20, ..., 560, 570.89

0.946, while the MASE is 0.972 for λ = 570.89. The MASE for λ = 1 is not showed, as it

frequently yields singularity. Hence, due to the inconsistency for λ = 1, we choose λ = 10 for

our new ’tuned’ quantile regression. The sparsity pattern and coefficients for this model are

listed in Table 18 (Appendix B). This tuned quantile regression yields 882 outliers across 276

days. Hence, for the tuned model, there is a decrease in the number of outliers. However, the

number of days containing outliers remains similar.

Table 1: An overview of the three different quantile regressions with
square root Lasso for the 50th percentile

First QR Altered QR Tuned QR
λ 568.18 570.89 10
Number of predictors 6 6 39
MASE 0.971 0.972 0.946
Number of outliers 1 000 999 882
Number of affected days 275 274 276

This means that tuning lambda has improved the point forecasting of the quantile regression

based on the 50th percentile. However, more importantly, we want to use the quantile regressions

for probabilistic forecasting. In (Gneiting et al., 2006).
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Figure 10: An overview of the distribution of the true observations of the test set across
the predicted quantiles for the tuned quantile regressions

5.5 LSTM Network

For our point forecasts, we start with the LSTM network. For this model, we use all the

predictors as found after the peak analysis. In Table 2, we see an overview of the average MASE

and number of epochs per recurrent dropout rate.

Table 2: The average MASE and number of epochs per dropout rate for
the period 2017-2019

Dropout Rate MASE Epochs
0 1.020 47.1

0.05 1.063 45.4
0.1 1.141 38.0

0.15 1.255 29.6
0.2 1.368 30.9

0.25 1.552 26.8
0.3 1.801 23.9

We see that the average MASE is the lowest when we use no recurrent dropout. However,

the MASE is not below 1, which means that it does not outperform seasonal naive forecasting.

Furthermore, without recurrent dropout, we see that the LSTM network is computationally

heavier compared to the ones with recurrent dropout. As described in Section 4.3.2, we now

choose our optimal recurrent dropout rate to tune the batch size. Hence, in Table 3, we see the

average MASE and number of epochs per batch size with a recurrent dropout rate of 0.
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Table 3: The average MASE and number of epochs per batch size for the
altered sparsity pattern for the period 2017-2019

Batch Size MASE Epochs
32 1.031 36.2
64 1.020 47.1

128 1.010 64.8

The results show that the network with a batch size of 64 is slightly outperformed by the

network with a batch size of 128. However, all models are less accurate than seasonal naive

forecasting. Furthermore, we see a clear difference in computational power. As the LSTM

network with a batch size of 32 only uses 36.2 epochs on average, compared to the 64.8 number

of average epochs for a batch size of 128.

In summary, we see that for the tuned sparsity pattern, the LSTM network with a recurrent

dropout rate of 0 and a batch size of 128 has the lowest MASE. Unfortunately, the MASE is

still above 1. Hence, the model predicts less accurate than seasonal naive forecasting. Further-

more, the model also has a lower MASE than the point forecasts of the 50th percentile quantile

regression. With respect to the outliers, this model yields on average 2 017.9 outlying hours over

604.8 days. Which is surprising as the model with a batch size of 32 has 1 252.5 outliers across

422.5 days on average. Even though that model has a higher MASE.

5.6 Bayesian Linear Regression

For the Bayesian linear regressions, we use the predictors that are selected for the sparsity

pattern by the tuned quantile regression. A statistical overview of the coefficients is shown in

Table 23 (Appendix E). The model has a MASE of 1.062, which indicates that it is outperformed

by seasonal naive forecasting. In terms of the outlying observations, the regression yields 959

outliers spread over 308 days.

5.7 Model overview

The results for the used models per sparsity pattern are stated in Table 4. For the LSTM

network, the model was selected based on the lowest MASE.

In terms of the MASE, we see that the tuned quantile regression based on the 50th per-

centile has highest accuracy. Furthermore, this model also yields the lowest number of outliers.

Meanwhile, the LSTM network yields a much higher amount of outlying outliers. The Bayesian

regression seems to be only a bit behind the quantile regression, in terms of the MASE and

the number of outliers. Unfortunately, the MASE of the Bayesian regression and of the LSTM

network are both higher than 1.
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Table 4: An overview of the models for the two different sparsity patterns
for the period 2017-2019

QR for
50th perc.

LSTM Bayesian

Number of predictors 44 356 44
MASE 0.943 1.010 1.062
Number of outliers 884 2 017.9 959
Number of affected days 277 604.8 308

5.8 Covid-19

In this section we see the results of the models for the data till 2020, with the inclusion of the

covid-19 related predictors. As described in Section 3.2, we perform the similar research steps

as before. So, to recap briefly, first we perform a quantile regression with square root Lasso.

Second, we tune the value of λ to get the lowest MASE and obtain probabilistic forecasts. Last,

we use the predictor for our LSTM networks and Bayesian regressions.

5.8.1 Quantile Regression with Square Root Lasso (including data of 2020)

For the years 2017 till 2020, we see the distribution of the probabilistic forecasts in figure

Figure 11. Here we see that we underpredict in the quantiles between the 35th and 45th percentile.

Furthermore, we clearly overpredict above the 95th percentile and below the 5th percentile.

Figure 11: An overview of the distribution of test observations across the predicted quan-
tiles for 2017 till 2020

The quantile regression for the 50th percentile selected the following 7 predictors for the

sparsity pattern: Wind Force, Temperature, Air Pressure, Infections, Hospitalizations, Cos 210
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and TOT 168. This is based on λ = 669.50, which is the value for λ according to equation (5).

Further explanation of these variables can be found in Table 10 and Table 15 (Appendix A).

The coefficients of these seven variables are listed in Table 24 (Appendix F.1). This model has

a MASE of 0.980, which indicates that it predict slightly better than seasonal naive forecasting.

Furthermore, the model yields 1 307 outliers (3.7%), spread out over 357 different days (24.3%).

For the tuned sparsity pattern, an overview of the MASE for λ = 1, 10, 20, ..., 660 is given in

Figure 12. This is based on the quantile regressions for the 50th percentile. The red observation

is the MASE for λ = 669.50.

Figure 12: An overview of the MASE of the quantile regressions for 2017 till 2020 with
λ = 1, 10, 20, ..., 680, 669.50

We clearly see that the MASE is the lowest for λ = 1. However, for several quantile re-

gressions based on other percentiles, this model had problems with high levels of singularity.

Therefore, we choose to use λ = 10. For this model the MASE is 0.953 and it yields 1 202

outliers spread out over 365 days. The model selected 45 predictors, for which the coefficients

can be found in Table 25 (Appendix F.1). However, for the quantile regressions, we focus on

probabilistic forecasting. In Figure 13 we see the distribution of the observations of the test

set over the predicted quantiles. There, we see a distribution that seems to be uniform, which

implies that we have found a robust model for probabilistic forecasting (Gneiting et al., 2006).
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Figure 13: An overview of the distribution of test observations across the predicted quan-
tiles for 2017 till 2020 with a tuned lambda

5.8.2 LSTM Network (including data of 2020)

In Table 5, we have the average MASE and number of epochs per recurrent dropout rate. For

these LSTM networks, we used the same predictors as for the previous version. Furthermore,

we included the five Covid-19 related variables as described in Table 15 (Appendix A).

Table 5: The average MASE and number of epochs per dropout rate for
the period 2017-2020

Mean
Batch Size MASE Epochs
0 1.034 41.8
0.05 1.067 35.1
0.1 1.152 28.3
0.15 1.275 25.4
0.2 1.380 23.0
0.25 1.534 21.4
0.3 1.765 20.7

Once again, the MASE is the lowest when the network has no recurrent dropout. The

average MASE for this model is not below 1. Hence, the model does not outperform seasonal

naive forecasting. In addition, the average number of epochs is larger without recurrent dropout

in comparison to the other networks. For the next step, we choose a recurrent dropout rate of 0

to tune the batch size. The average MASE and number of epochs per batch size are displayed

in Table 6.
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Table 6: The average MASE and number of epochs per batch size for the
altered sparsity pattern for the period 2017-2020

Mean
Batch Size MASE Epochs
32 1.054 33.7
64 1.034 41.8
128 1.013 55.6

Again, the model with a batch size of 128 has on average the lowest MASE. However, none

of the three models outperforms seasonal naive forecasting. Furthermore, the LSTM network

with a batch size of 128 uses the most epochs on average. This model yields averagely 1 987.1

outliers across 593.5 days. This is slightly more than the 1 886.8 average outliers for a batch size

of 64. With a batch size of 32, we get 2 769.2 outlying hours on average.

In summary, we see that the LSTM network with a recurrent dropout rate of 0 and a batch

size of 128 has the lowest MASE. Unfortunately, the MASE is still above 1. Furthermore, it is

also outperformed by the point forecasts of the quantile regression based on the 50th percentile.

In terms of the outliers, this model yields on average 1 987.1 outlying observation over 593.5

days. Which is slightly more than the network with a batch size of 32, while that model has a

higher MASE.

5.8.3 Bayesian Linear Regression (including data of 2020)

For the Bayesian regression with the years 2017 till 2020, we once again used the sparsity pattern

as selected by the tuned quantile regression based on the 50th percentile. These coefficients are

shown in Table 28 (Appendix F.3). The model has a MASE of 1.067, which is higher than for

seasonal naive forecasting. The model marks 1 351 observations as outliers across 420 days.

5.8.4 Model Overview (including data of 2020)

In Table 7, the results per sparsity pattern are stated for the period of 2017 till 2020. The LSTM

network with the lowest MASE was selected based on the tuning of the parameters.

Table 7: An overview of the point prediction models for the period 2017-2020

QR for
50th perc.

LSTM Bayesian

Number of predictors 45 465 45
MASE 0.953 1.013 1.067
Number of outliers 1 202 1 987.1 1 351
Number of affected days 365 593.5 420

Once again, only the tuned quantile regression based on the 50th percentile has a MASE
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below 1. Furthermore, this model also yields the lowest number of outlying hours. The LSTM

network is narrowly outperformed by seasonal naive forecasting. However, it has much more

outliers than the Bayesian regression, while that model has a higher MASE.

5.9 Comparison Lagged Differences

At last, we have the results of the comparisons between our previous models and a model with

the inclusion of lagged differences of the dependent variable. As mentioned in Section 4.4, we

add lagged differences to our point prediction model with the lowest MASE. Hence, we do this to

the LSTM network for both periods. However, as the point prediction of the quantile regression

for the 50th percentile unexpectedly has an even lower MASE, we also add the lagged differences

to this quantile regression point forecast. The models with lagged differences use the same

specifications as their counterparts without lagged differences.

Table 8: An overview of the 50th percentile quantile regression and the LSTM Network with the
inclusion of the lagged differences for the period 2017-2019

Without Lagged Differences With Lagged Differences
QR for
50th perc.

LSTM
QR for
50th perc.

LSTM

Number of predictors 44 356 38 361
MASE 0.943 1.010 0.726 0.833
Number of outliers 884 2 017.9 853 1 490
Number of affected days 277 604.8 332 455.0

In Table 9, we see an overview of the predictive performance of our LSTM network and

quantile regression for the period 2017 till 2019. external predictors. We clearly see that there

is a big improvement in the MASE when we include the special lagged differences. Furthermore,

for the LSTM network, there is also a large decrease in the number of outliers. Hence, the model

with the added lagged differences outperforms the model with only external predictors for the

period 2017 till 2019. However, for the quantile regression, we see that the model indeed yields

less outliers, but it does have more days containing outliers.

The coefficients for the 50th percentile quantile regression are given in Table 29 (Appendix G).

Here, we see a that the coefficient for TOT 1 is 0.635. However, the other four lagged differences

all have a coefficient close to zero, lying between -0.05 and 0.03.

In Table 30, we see the same for the period 2017-2020. Here, the models with lagged

difference predictors have a lower MASE than the ones with only external predictors. Also,

LSTM network yield fewer outliers and days containing outliers. Furthermore, the quantile

regression yields once again fewer outliers, but also yields more days containing outliers.
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Table 9: An overview of the 50th percentile quantile regression and the LSTM Network with the
inclusion of the lagged differences for the period 2017-2020

Without Lagged Differences With Lagged Differences
QR for
50th perc.

LSTM
QR for
50th perc.

LSTM

Number of predictors 45 465 44 470
MASE 0.953 1.013 0.734 0.823
Number of outliers 1 202 1 987.1 1 163 1 877.3
Number of affected days 365 593.5 444 554.0

The coefficients for the sparsity pattern of the quantile regression based on the 50th percentile

are listed in Table 30 (Appendix G). For this model the coefficient for TOT 1 is 0.651. Once

again, the coefficient for the other four lagged differences are close to zero and lie between -0.05

and 0.03.

6 Conclusion

In this paper, we predicted the traffic flows in the Westerscheldetunnel by improving naive

forecasting methods. By modelling differences in possible influential external factors, we achieved

statically robust probabilistic forecasts. This was accomplished after including dummy variables

based on our peak analysis. Hence, we can conclude that we got statistically robust probability

forecasting results for the quantile regressions for the period 2017 till 2019 and for the period

2017 till 2020.

Our two point forecasting methods did not outperform simple seasonal naive forecasting. For

the point forecasts by the LSTM network it was therefore necessary to include lagged differences.

However, for the point forecast, we can say that the quantile regression with square root Lasso

based on the 50th percentile was surprisingly the most accurate. This was true in terms of

having the lowest MASE as well as yielding the least outliers. Thus, we can conclude that the

50th percentile quantile regression was the most accurate point forecast.

For the point forecasts for the period 2017 till 2020, we see very similar results. However,

the amount of outliers even decreased for the LSTM network. As these differences are relatively

small, we can not conclude if this is caused by the new predictors or by an increase in the amount

of observations. In addition, the LSTM network is thus outperformed by the quantile regression,

which might indicate that it could not deal with the seasonality, as previously suggested by Zhang

& Qi (2005).

Lastly, for the quantile regression with lagged differences, we saw that only the first lagged

difference was greatly present in terms of the coefficients. Hence, the other four lagged differences
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seem to contribute less to the prediction. More importantly, the inclusion of these lagged

differences did make the models less usable. They do substantially improve the accuracy of our

models, but they also limit the window in which the estimation could be made. Due to the fact

that we need the data of the hour before, we can not make any long-term predictions with these

models.

So, in conclusion, our improved naive forecasting did outperform simple seasonal naive fore-

casting in some cases. Though, the biggest improvement in accuracy was made when we included

lagged differences alongside the external predictors. As shown, the models with the inclusion

of these lagged differences easily outperform their counterparts with only external predictors.

Furthermore, it seems that our method for probability forecasting was very suitable to predict

the traffic volumes and the corresponding probabilities.

6.1 Executive Summary

Our suggested methods for improving seasonal naive forecasting, do in fact yield better prediction

results. The best method is to use external variables and construct them in terms of the

difference with one seasonal cycle ago. Then, we can make probabilistic forecasts based on

quantile regressions with square root Lasso. When adding lagged differences of the dependent

variable, we can also outperform simple seasonal naive point forecasting.

6.2 Discussion and Further Research

In the following section, we discuss several remarks that can be made about this research.

Furthermore, we talk about some opportunities for further research.

Vacation Periods and Lockdowns

For the Netherlands and for Germany, different regions of the country have different vacation

periods. In this research, these periods are combined. However, it can be argued that there is a

difference in the impact of vacation periods when split across regions. This can be investigated

further by including the vacation periods separately in future research. The same holds for the

covid-19 situations in Belgium and Germany. For example, their lockdowns are not taken into

account by our model.

Total Traffic Activity

In this research, we predict the total traffic activity in Westerscheldetunnel. However, for future

research it might be interesting to split this into both driving directions and even into the
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separate vehicle length classes. We do believe that the methods presented in this paper are very

suitable for such research.

Coefficient TOT 168

An interesting topic for future research is the coefficient for TOT 168. Throughout the paper

and the models, we see that this coefficient is always very close to 1. This is intuitively logical,

as we model the difference in circumstances between the traffic volume now and 168 hours ago.

Therefore, it is interesting to see if there is a statistical relation between the accuracy of a model

and the coefficient of TOT 168.

Kurtosis and Skewness

It could be that the quantile regression had some problems with the kurtosis and skewness of

several covid-19 predictors. Hence, it could be argued that the sparsity pattern is not correctly

specified. However, the overall pattern of the MASE is clearly visible for the tuned sparsity

pattern. Therefore, we believe that the tuned sparsity pattern for the period 2017-2020 is a

correct estimation of the influential predictors. The same holds for the tuned sparsity pattern

for the period 2017-2019.
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Appendix

A Variable Analysis

Most predictive variables are defined in terms of their difference between the current observation

and the observation of a week (168 hours) earlier. It includes weather data4, holidays and covid-

19 related variables5

A.1 Regular Variables

Table 10: The predictive variables for the variables analysis with the data from 2017 till 2019

Variable Description
Wind Force The difference in wind force measured in m/s
Temperature The difference in temperature measured in oC
Sunshine The difference in the fraction of the hour that the sun shine
Rain The difference in the fraction of the hour that it rains
Rainfall The difference in the amount of rainfall in mm6

Air Pressure The difference in airpressure measured in Pascal
Fog The difference between the booleans indicating if there is fog7

Snow The difference between the booleans indicating if there is snow7

Thunder The difference between the booleans indicating if there is thunder7

Ice The difference between the booleans indicating if there is ice7

Toll Free The difference between the booleans indicating if there is a toll free day
Holiday Dutch The difference between the booleans indicating if there is a Dutch holiday
Holiday Belgian The difference between the booleans indicating if there is a Belgian holiday
Holiday German The difference between the booleans indicating if there is a German holiday
Sin s The sinusoid sin((2πti)/(sT )), for s = 1, ..., 158
Cos s The sinusoid cos((2πti)/(sT )), for s = 1, ..., 158
TOT 168 The value of TOT for the previous week

A.2 Holidays and Toll Free Days

Below, we have the marked dates to account for the public holidays and vacation periods for

the Netherlands8, Belgium9 and Germany10. Furthermore, we see the toll-free Saturdays.

4Koninklijk Nederlands Metereologisch Instituut. (2022). Uurwaarden van Weerstations. Retrieved from
https://daggegevens.knmi.nl/klimatologie/uurgegevens

5Rijksinstituut voor Volksgezondheid en Milieu. (2022). Covid-19 cumulatieve aantallen per
gemeente. Retrieved from https://data.rivm.nl/meta/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-
9cfa-441e93ea5604

6Observations with a rainfall of < 0.05 mm were given a value of −1. We adjusted this to a more representative
value of 0.025.

7Missing observations are replaced with a zero.
8Kalender Nederland. (n.d.). Kalender Nederland. Retrieved from http://kalender-nl.nl/
9Kalender België. (n.d.). Kalender België. Retrieved from http://kalender-be.be/

10Schulferien.org. (n.d.). Schulferien Deutschland. Retrieved from https://www.schulferien.org/deutschland/
ferien/
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Table 11: The dates that are marked as a public holiday or vacation period per country, which
are used in the quantile regression before the outlier analysis

Country Period Dates (YYYYMMDD)
Netherlands 19/12/2016 -

31/12/2017
20161224:20161231, 20170101:20170108, 20170218:20170228, 20170301:20170305, 20170414:20170417, 20170422:20170428,
20170505, 20170525:20170528, 20170602:20170605, 20170708:20170731, 20170801:20170831, 20170901:20170903,
20171014:20171029, 20171223:20171231,

01/01/2018 -
31/12/2018

20180101:20180107, 20180217:20180228, 20180301:20180304, 20180330:20180331, 20180401:20180402, 20180427:20180430,
20180501:20180506, 20180510:20180513, 20180518:20180521, 20180707:20180731, 20180801:20180831, 20180901:20180902,
20181013:20181028, 20181222:20181231,

01/01/2019 -
05/12/2020

20190101:20190106, 20190216:20190228, 20190301:20190303, 20190419:20190422, 20190427:20190430, 20190501:20190505,
20190530:20190531, 20190601:20190602, 20190607:20190610, 20190706:20190731, 20190801:20190831, 20190901,
20191012:20191027, 20191221:20191231,

Belgium 19/12/2016 -
31/12/2017

20161224:20161231, 20170101:20170108, 20170225:20170228, 20170301:20170305, 20170401:20170417, 20170501,
20170525:20170528, 20170602:20170605, 20170701:20170731, 20170801:20170831, 20170901:20170903, 20171028:20171031,
20171101:20171105, 20171111, 20171223:20171231,

01/01/2018 -
31/12/2018

20180101:20180107, 20180210:20180218, 20180331, 20180401:20180415, 20180501, 20180510:20180513, 20180518:20180521,
20180630, 20180701:20180731, 20180801:20180831, 20180901:20180902, 20181027:20181031, 20181101:20181104, 20181111,
20181222:20181231,

01/01/2019 -
05/12/2020

20190101:20190106, 20190302:20190310, 20190406:20190422, 20190501, 20190530:20190531, 20190601:20190602,
20190607:20190610, 20190629:20190630, 20190701:20190731, 20190801:20190831, 20190901, 20191026:20191031,
20191101:20191103, 20191111, 20191221:20191231, 20200101:20200105

Germany 19/12/2016 -
31/12/2017

20161219:20161231, 20170101:20170108, 20170128:20170131, 20170201:20170228, 20170301:20170319, 20170401:20170423,
20170501, 20170520:20170528, 20170602:20170618, 20170622:20170630, 20170701:20170731, 20170801:20170831,
20170901:20170911, 20170930, 20171001:20171031, 20171101:20171105, 20171122, 20171221:20171231,

01/01/2018 -
31/12/2018

20180101:20180114, 20180201:20180225, 20180305:20180331, 20180401:20180407, 20180428:20180430, 20180501,
20180507:20180531, 20180601:20180603, 20180623:20180630, 20180701:20180731, 20180801:20180831, 20180901:20180910,
20180929:20180930, 20181001:20181028, 20181101:20181102, 20181219:20181231,

01/01/2019 -
05/12/2020

20190101:20190113, 20190131, 20190201:20190228, 20190301:20190315, 20190404:20190430, 20190501, 20190513:20190517,
20190531, 20190601:20190602, 20190607:20190630, 20190701:20190731, 20190801:20190831, 20190901:20190910,
20190928:20190930, 20191001:20191031, 20191101, 20191120, 20191220:20191231, 20200101:20200105

Table 12: The dates that are a toll-free Saturday

Country Period Dates (YYYYMMDD)
Toll-Free 18/12/2016 - 31/12/2017 20170128, 20170225, 20170408, 20170909, 20171028, 20171125,

01/01/2018 - 31/12/2018 20180127, 20180224, 20180414, 20180908, 20181027, 20181124,
01/01/2019 - 05/12/2020 20190126, 20190223, 20190413, 20190831, 20190914, 20191026, 20191123
01/01/2020 - 03/01/2021 20200125, 20200229, 20200912, 20201128

A.3 Vacations and Special Days

Here, we have the altered versions of these holiday variables, which are split into vacation

periods and several special days. This renewed version of the old holiday variable is made after

the outlier analysis, as stated in Section 5.2. The indicator for a toll-free Saturday is still used

after these changes.

Table 13: The dates that are marked as a vacation period per country

Country Period Date (YYYYMMDD)
Netherlands 19/12/2016 -

31/12/2017
20161224:20161231, 20170101:20170108, 20170218:20170228, 20170301:20170305, 20170422:20170430, 20170708:20170731,
20170801:20170831, 20170901:20170903, 20171014:20171029, 20171223:20171231

01/01/2018 -
31/12/2018

20180101:20180107, 20180217:20180228, 20180301:20180304, 20180428:20180430,20180501:20180506, 20180707:20180731,
20180801:20180831, 20180901:20180902, 20181013:20181028, 20181222:20181231

01/01/2019 -
31/12/2019

20190101:20190106, 20190216:20190228, 20190301:20190303, 20190427:20190430, 20190501:20190505, 20190706:20190731,
20190801:20190831, 20190901, 20191012:20191027, 20191221:20191231

01/01/2020 -
03/01/2021

20200101:20200105, 20200215:20200229, 20200301, 20200425:20200430, 20200501:20200510, 20200704:20200731,
20200801:20200830, 20201017:20201025, 20201219:20201231, 20210101:20210103

Belgium 19/12/2016 -
31/12/2017

20161224:20161231, 20170101:20170108, 20170225:20170228, 20170301:20170305, 20170401:20170417, 20170701:20170731,
20170801:20170831, 20170901:20170903, 20171028:20171031, 20171101:20171105, 20171223:20171231,

01/01/2018 -
31/12/2018

20180101:20180107, 20180210:20180218, 20180401:20180415, 20180630, 20180701:20180731, 20180801:20180831,
20180901:20180902, 20181027:20181031, 20181101:20181104, 20181222:20181231,

01/01/2019 -
31/12/2019

20190101:20190106, 20190302:20190310, 20190406:20190422, 20190629:20190630, 20190701:20190731, 20190801:20190831,
20190901, 20191026:20191031, 20191101:20191103, 20191221:20191231

01/01/2020 -
03/01/2021

20200101:20200105, 20200222:20200229, 20200301, 20200404:20200419, 20200701:20200731, 20200801:20200831, 20201031,
20201101:20201108, 20201219:20201231, 20210101:20210103

Germany 19/12/2016 -
31/12/2017

20161219:20161231, 20170101:20170108, 20170128:20170131, 20170201:20170228, 20170301:20170319, 20170401:20170423,
20170520:20170528, 20170602:20170618, 20170622:20170630, 20170701:20170731, 20170801:20170831, 20170901:20170911,
20170930, 20171001:20171031, 20171101:20171105, 20171122, 20171221:20171231,

01/01/2018 -
31/12/2018

20180101:20180114, 20180201:20180225, 20180305:20180331, 20180401:20180407, 20180428:20180430, 20180507:20180531,
20180601:20180603, 20180623:20180630, 20180701:20180731, 20180801:20180831, 20180901:20180910, 20180929:20180930,
20181001:20181028, 20181101:20181102, 20181219:20181231

01/01/2019 -
31/12/2019

20190101:20190113, 20190131, 20190201:20190228, 20190301:20190315, 20190404:20190430, 20190611:20190630,
20190701:20190731, 20190801:20190831, 20190901:20190910, 20190928:20190930, 20191001:20191031, 20191101,
20191220:20191231

01/01/2020 -
03/01/2021

20200101:20200106, 20200201:20200229, 20200301:20200315, 20200328:20200331, 20200401:20200426, 20200508,
20200516:20200531, 20200601:20200614, 20200620:20200620, 20200701:20200731, 20200801:20200831, 20200901:20200913,
20201003:20201031, 20201101:20201108, 20201118, 20201219:20201231, 20210101:20210103
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Table 14: The public holidays and special days

Dummy Variable Public Holiday / Special Day Explanation
New Year New Year’s Eve: 31/12
New Years Eve New Year: 01/01
New Year After The day after New Year’s Eve: 02/01
Christmas Vacation After The first Monday after the Dutch and Belgian Christmas Vacation
Easter Weekend The weekend of Easter (including Good Friday and Easter Monday)
Easter Before The Thursday before Easter (Maundy Thursday)
Ascension Day Weekend The weekend of Ascension Day (Thursday till Sunday)
Ascension Day Before The Wednesday before Ascension Day
Whit Sunday Weekend The weekend of Whit Sunday (including Whit Monday)
Whit Sunday Before The Thursday and Friday before Whit Sunday
Christmas Christmas’ Eve and Christmas: 24-26/12
Christmas After The days following Christmas: 27-29/12
Christmas Before The day before Christmas: 23/12
Sugar Feast The Sugar Feast
Sugar Feast After The day after the Sugar Feast
Kings Day The Dutch King’s Day: 27/04
Kings Day After The day after the Dutch King’s Day: 28/04
Remembrance ofthe Death The Dutch day Remembrance of the Death: 04/05
Liberation Day The Dutch Liberation Day: 05/05
Workers Day International Workers’ Day: 01/05
Armistice Day The Belgian day Armistice Day: 11/11
Belgian National Day The Belgian national holiday: 21/07
German Unity Day German Unity Day: 03/10
Maintenance The yearly maintenance night
Incident Hours that there was inconvenience due to an incident

A.4 Covid-19 Variables

Following, we see an overview of the added predictive variables for the covid-19 pandemic.

These variables are combined with the predictors in Table 10 and the altered vacation variables

as mentioned in Appendix A.3.

Table 15: The additional covid-19 related variables for the variables analysis with the inclusion
of the year 2020

Variable Description
Infections The difference in the number of daily infections with covid-19
Hospitalizations The difference in the number of daily hospitalizations due to covid-19
Deceased The difference in the number of deceased covid-19 patients
Lockdown Intelligent The difference between the booleans indicating if there is an intelligent lockdown
Lockdown Hard The difference between the booleans indicating if there is a hard lockdown
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B Sparsity Pattern

Below are the coefficients for the variables selected by the quantile regression with square root

Lasso. As mentioned before in Section 4.1, coefficients are set to zero when β < 0.0001.

Table 16: The predicting variables that are selected for the sparsity pat-
tern in the first quantile regression for the period 2017-2019

Variable Coefficient
Wind Force -1.014
Temperature 1.195
Air Pressure 0.426
Holiday Dutch -1.865
Cos 158 1.036
TOT 168 0.995

Table 17: The predicting variables that are selected for the sparsity pat-
tern in the altered quantile regression for the period 2017-2019

Variable Coefficient
Wind Force -1.000
Temperature 1.165
Air Pressure 0.417
Cos 158 1.057
TOT 168 0.995

Table 18: The predicting variables that are selected for the sparsity pattern in the tuned
quantile regression with λ = 10 for the period 2017-2019

Variable Coefficient Variable Coefficient
Wind Force -1.054 Christmas -37.016
Temperature 1.106 Christmas Before 7.557
Sun 9.984 Christmas After -20.383
Rain -2.372 Sugar Feast -20.242
Air Pressure 0.367 Sugar Feast After -13.983
Fog -1.004 Kings Day -175.326
Snow -37.916 Kings Day After -24.436
Thunder 1.316 Liberation Day 4.773
Vacation Dutch -7.817 Armistice Day -1.250
Vacation Belgian -1.034 Belgian National Day 24.227
Vacation German -2.143 Toll Free 142.754
New Year -17.947 Maintenance -39.257
New Years Eve -90.023 Incident -11.216
New Year After -4.964 Sin 1 0.505
Christmas Vacation After -17.541 Cos 1 -0.403
Easter Weekend -8.996 Sin 2 2.288
Easter Before 13.299 Cos 8 1.609
Ascension Day Weekend -11.847 Cos 9 1.119
Ascension Day Before 21.692 TOT 168 0.993
Whit Sunday Weekend -12.675
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C Outliers

In this section, we have the 91 days that contain the most outliers. This is determined by the

z -scores of the outliers.

Table 19: The 90 days which contain the most by outlying hours

Date
Number of
Outliers

Explanation Date
Number of
Outliers

Explanation

27-4-2017 13 King’s Day 24-2-2018 7 Toll Free Saturday
4-5-2018 13 Remembrance of the Dead 2-4-2018 7 Easter Weekend
25-12-2018 13 Christmas 9-4-2018 7 Week after Easter Weekend
25-12-2019 13 Christmas 21-4-2018 7 Week after Toll Free Saturday
4-5-2017 11 Remembrance of the Dead 18-5-2018 7 Days before Whit Sunday Weekend
27-4-2018 11 King’s Day 8-9-2018 7 Toll Free Saturday
8-4-2017 10 Toll Free Saturday 27-12-2018 7 Days after Christmas
15-4-2017 10 Easter Weekend 23-2-2019 7 Toll Free Saturday
2-3-2019 10 Week after Toll Free Saturday 5-6-2019 7 Day after Sugar Feast
28-10-2017 9 Toll Free Saturday 7-6-2019 7 Days before Whit Sunday Weekend
25-11-2017 9 Toll Free Saturday 10-6-2019 7 Whit Sunday Weekend
2-12-2017 9 Week after Toll Free Saturday 17-6-2019 7 Week after Whit Sunday Weekend
25-12-2017 9 Christmas 24-12-2019 7 Christmas
3-3-2018 9 Week after Toll Free Saturday 28-12-2016 6 Days after Christmas
21-5-2018 9 Whit Sunday Weekend 17-4-2017 6 Easter Weekend
28-5-2018 9 Week after Whit Sunday Weekend 24-4-2017 6 Week after Easter Weekend
1-12-2018 9 Week after Toll Free Saturday 28-4-2017 6 Day after King’s Day
22-4-2019 9 Easter Weekend 25-5-2017 6 Ascension Day Weekend
26-10-2019 9 Toll Free Saturday 26-5-2017 6 Ascension Day Weekend
28-1-2017 8 Toll Free Saturday 1-6-2017 6 Week after Ascension Day Weekend
4-11-2017 8 Week after Toll Free Saturday 27-12-2017 6 Days after Christmas
26-12-2017 8 Christmas 28-12-2017 6 Days after Christmas
27-1-2018 8 Toll Free Saturday 3-2-2018 6 Week after Toll Free Saturday
10-5-2018 8 Ascension Day Weekend 27-10-2018 6 Toll Free Saturday
11-5-2018 8 Ascension Day Weekend 28-12-2018 6 Days after Christmas
17-5-2018 8 Days before Whit Sunday Weekend 31-5-2019 6 Ascension Day Weekend
15-9-2018 8 Week after Toll Free Saturday 27-12-2019 6 Days after Christmas
24-12-2018 8 Christmas 2-1-2020 6 Day after New Year
26-12-2018 8 Christmas 27-12-2016 5 Days after Christmas
7-1-2019 8 First day after Christmas Vacation 29-12-2016 5 Days after Christmas
8-1-2019 8 Week after New Year 2-1-2017 5 Day after New Year
29-4-2019 8 Week after Easter Weekend 9-1-2017 5 First day after Christmas Vacation
30-5-2019 8 Ascension Day Weekend 4-3-2017 5 Week after Toll Free Saturday
6-6-2019 8 Days before Whit Sunday Weekend 29-12-2017 5 Days after Christmas
7-9-2019 8 Week after Toll Free Saturday 2-1-2018 5 Day after New Year
2-11-2019 8 Week after Toll Free Saturday 9-1-2018 5 Week after the day after New Year
23-11-2019 8 Toll Free Saturday 10-1-2018 5 Week after Christmas Vacation
30-11-2019 8 Week after Toll Free Saturday 2-1-2019 5 Day after New Year
26-12-2019 8 Christmas 9-1-2019 5 Week after the day after New Year
26-12-2016 7 Christmas 10-1-2019 5 Week after Christmas Vacation
4-2-2017 7 Week after Toll Free Saturday 26-1-2019 5 Christmas
2-6-2017 7 Days before Whit Sunday Weekend 2-2-2019 5 Week after Toll Free Saturday
5-6-2017 7 Whit Sunday Weekend 13-4-2019 5 Toll Free Saturday
12-6-2017 7 Week after Whit Sunday Weekend 24-10-2019 5 Week after an incident
8-1-2018 7 Week after New Year 23-12-2019 5 Day before Christmas

First day after Christmas Vacation

D LSTM Network

In this section, we see the more detailed results for the LSTM networks. As mentioned in

Section 4.3.2, the statistical properties are calculated based on the 50 LSTM networks that are

constructed per parameter-tuning step.
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Table 20: A statistical overview of the MASE and number of epochs per dropout rate for the
period 2017-2019

Mean St. Dev. Max Min
Dropout Rate MASE Epochs MASE Epochs MASE Epochs MASE Epochs
0 1.020 47.1 0.033 11.8 1.125 70 0.969 18
0.05 1.063 45.4 0.045 10.2 1.181 74 0.989 29
0.1 1.141 38.0 0.079 10.1 1.313 56 1.014 19
0.15 1.255 29.6 0.095 10.0 1.531 66 1.098 14
0.2 1.368 30.9 0.105 13.2 1.621 69 1.148 11
0.25 1.552 26.8 0.134 10.0 1.937 50 1.319 10
0.3 1.801 23.9 0.155 9.025 2.136 64 1.436 10

Table 21: A statistical overview of the MASE and number of epochs per batch size for the sparsity
pattern from the altered quantile regression for the period 2017-2019

Mean St. Dev. Max Min
Batch Size MASE Epochs MASE Epochs MASE Epochs MASE Epochs
32 1.031 36.2 0.027 14.9 1.010 81 0.991 13
64 1.020 47.1 0.033 11.8 1.125 70 0.969 18
128 1.010 64.8 0.033 20.5 1.092 123 0.960 25

E Bayesian Linear Regression

Following, we have a statistical overview of the coefficients for all predictors used in the Bayesian

regression.

Table 22: The statistics of the Bayesian linear regression coefficients for the altered sparsity
pattern for the period 2017-2019

Variable 10th Percentile Median 90th Percentile St. Deviation
Wind Force -0.9082813 -0.1015080 0.6952674 0.626076016
Temperature 2.548960 3.0277775 3.508571 0.374651503
Air Pressure 1.201691 1.3824101 1.560702 0.140420001
Vacation Dutch -50.71006 -45.5009798 -40.30684 4.034383897
COS 158 35.96704 39.4684274 42.93454 2.715541655
TOT 168 0.9525116 0.9556068 0.9586999 0.002419613
σ2 82675.02 83994.48 85339.19 1039.348
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Table 23: The statistics of the Bayesian linear regression coefficients for the tuned sparsity
pattern for the period 2017-2019

Variable Median 10th Percentile 90th Percentile St. Deviation
Wind Force -1.324 -2.088 -0.559 0.594
Temperature 2.449 1.974 2.925 0.371
Sun 15.962 10.148 21.793 4.538
Rain -2.113 -9.940 5.730 6.103
Air Pressure 0.887 0.708 1.066 0.140
Fog 13.091 3.772 22.417 7.277
Snow -43.228 -63.509 -22.930 15.892
Thunder 8.942 -8.248 26.051 13.403
Vacation Dutch -41.333 -46.515 -36.144 4.052
Vacation Belgian -19.058 -24.323 -13.818 4.097
Vacation German -6.502 -11.105 -1.908 3.588
New Year -144.026 -173.839 -114.066 23.358
New Years Eve -181.350 -210.791 -151.342 23.258
New Year After -18.037 -47.958 12.378 23.475
Christmas Vacation After 139.239 108.245 170.006 24.043
Easter Weekend -89.910 -104.753 -75.272 11.534
Easter Before 113.277 84.439 141.962 22.524
Ascension Day Weekend -173.189 -188.867 -157.641 12.143
Ascension Day Before 220.254 190.856 250.261 23.093
Whit Sunday Weekend -122.586 -140.284 -104.651 13.885
Christmas -226.222 -245.926 -206.663 15.299
Christmas Before 79.651 52.845 106.610 21.005
Christmas After -82.849 -97.632 -67.943 11.585
Sugar Feast 34.932 5.796 63.917 22.683
Sugar Feast After 53.834 24.161 83.338 23.024
Kings Day -323.891 -352.954 -294.819 22.675
Kings Day After 84.104 50.223 117.933 26.521
Liberation Day 110.470 76.834 144.255 26.248
Armistice Day 79.658 51.150 108.882 22.483
Belgian National Day 105.801 76.797 134.758 22.665
Toll Free 240.110 228.459 251.701 9.063
Maintenance 97.088 52.029 142.012 35.158
Incident -19.329 -55.467 16.421 28.023
Sin 1 1.393 -3.500 6.312 3.846
Cos 1 28.647 14.931 42.263 10.670
Sin 2 77.473 45.446 109.040 24.815
Cos 8 281.376 92.103 470.510 147.895
Cos 9 -294.787 -487.233 -102.122 150.169
TOT 168 0.963 0.960 0.966 0.002
σ2 73310.0 72133.7 74505.0 925.7

F Covid-19 Analysis

In this section, the results are displayed for the models for the data till 2020. For which we

include covid-19 related variables.

F.1 Sparsity Pattern (including data of 2020)

In the table below, the coefficients are listed for the variables selected for the two sparsity

patterns, including the covid-19 related data and variables.
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Table 24: The predicting variables for 2017-2020 that are selected for
the sparsity pattern in the altered quantile regression

Variable Coefficient
Wind Force -1.042
Temperature 1.006
Air Pressure 0.314
Infections -0.037
Hospitalizations -0.060
Cos 210 1.649
TOT 168 0.994

Table 25: The predicting variables for 2017-2020 that are selected for the sparsity pattern
in the tuned quantile regression

Variable Coefficient Variable Coefficient
Wind Force -1.109 Christmas After -13.105
Temperature 1.055 Sugar Feast -14.735
Sun 10.006 Sugar Feast After -2.636
Rain -1.891 Kings Day -193.354
Rainfall -0.203 Kings Day After -8.566
Air Pressure 0.291 Remembrance ofthe Death -3.715
Fog -0.732 Armistice Day -5.234
Snow -32.572 Belgian National Day 20.931
Thunder 0.942 German Unity Day 0.977
Vacation Dutch -5.471 Toll Free 135.259
Vacation Belgian -2.419 Maintenance -54.598
Vacation German -2.916 Incident -24.907
New Year -34.248 Infections -0.015
New Years Eve -113.074 Hospitalizations -0.709
New Year After -9.965 Deceased 1.423
Christmas Vacation After -12.962 Lockdown Intelligent -29.558
Easter Weekend -7.607 Lockdown Hard -53.551
Easter Before 14.407 Sin 1 0.746
Ascension Day Weekend -12.743 Sin 2 3.230
Ascension Day Before 27.353 Cos 5 0.769
Whit Sunday Weekend -11.337 Cos 6 1.545
Christmas -36.664 TOT 168 0.992
Christmas Before 7.114

F.2 LSTM Network (including data of 2020)

Here, we have the more detailed results for the LSTM networks of the data till 2020. As men-

tioned before, we use 50 LSTM networks per parameter-tuning step to compute the statistical

properties.
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Table 26: A statistical overview of the MASE and number of epochs per dropout rate for the
period 2017-2020

Mean St. Dev. Max Min
Dropout Rate MASE Epochs MASE Epochs MASE Epochs MASE Epochs
0 1.034 41.8 0.024 15.2 1.073 101 0.976 17
0.05 1.067 35.1 0.058 9.8 1.265 58 0.985 19
0.1 1.152 28.3 0.072 7.7 1.318 47 1.037 16
0.15 1.275 25.4 0.101 9.7 1.480 62 1.068 13
0.2 1.380 23.0 0.117 8.9 1.733 56 1.158 8
0.25 1.534 21.4 0.150 8.5 1.869 50 1.228 9
0.3 1.765 20.7 0.138 8.1 2.093 46 1.523 7

Table 27: A statistical overview of the MASE and number of epochs per batch size for the sparsity
pattern from the altered quantile regression for the period 2017-2020

Mean St. Dev. Max Min
Batch Size MASE Epochs MASE Epochs MASE Epochs MASE Epochs
32 1.054 33.7 0.031 13.4 1.138 63 1.007 8
64 1.034 41.8 0.024 15.2 1.073 101 0.976 17
128 1.013 55.6 0.034 15.4 1.101 97 0.947 33
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F.3 Bayesian Linear Regression (including data of 2020)

Next, an overview of the parameters is listed for all predictors used in the Bayesian regression.

Table 28: The statistics of the Bayesian linear regression coefficients for the tuned sparsity
pattern for the period 2017-2020

Variable Median 10th Percentile 90th Percentile St. Deviation
Wind Force -0.680 -1.307 -0.051 0.489
Temperature 2.159 1.756 2.561 0.315
Sun 13.471 8.498 18.486 3.896
Rain -3.301 -11.474 4.819 6.361
Rainfall -0.080 -3.970 3.856 3.057
Air Pressure 0.679 0.528 0.831 0.118
Fog 11.677 3.731 19.612 6.163
Snow -40.709 -59.246 -22.028 14.590
Thunder 4.616 -9.917 19.104 11.327
Vacation Dutch -38.250 -42.706 -33.846 3.465
Vacation Belgian -23.262 -27.779 -18.783 3.512
Vacation German -5.905 -9.877 -1.946 3.090
New Year -180.618 -206.119 -155.616 19.806
New Years Eve -212.229 -237.523 -186.469 19.867
New Year After -58.666 -84.045 -33.308 19.832
Christmas Vacation After 109.996 84.958 135.325 19.742
Easter Weekend -82.755 -95.311 -70.346 9.731
Easter Before 101.167 76.514 125.516 19.089
Ascension Day Weekend -165.114 -178.317 -152.001 10.240
Ascension Day Before 219.704 194.874 244.685 19.375
Whit Sunday Weekend -117.333 -132.174 -102.259 11.676
Christmas -217.177 -233.922 -200.633 12.924
Christmas Before 72.867 49.524 96.005 18.191
Christmas After -68.344 -81.770 -54.927 10.453
Sugar Feast 88.971 64.390 113.441 19.171
Sugar Feast After 64.293 39.624 89.103 19.370
Kings Day -239.467 -268.164 -211.167 22.293
Kings Day After 68.245 43.481 92.592 19.182
Remembrance ofthe Death 133.866 105.417 162.562 22.223
Armistice Day 61.715 37.249 86.091 19.093
Belgian National Day 115.742 91.037 139.895 19.065
German Unity Day 92.934 68.487 117.692 19.156
Toll Free 236.430 226.108 246.633 7.970
Maintenance 99.699 61.801 137.704 29.613
Incident 2.602 -26.843 31.928 22.894
Infections -0.027 -0.067 0.013 0.031
Hospitalizations -4.685 -5.872 -3.504 0.923
Deceased 0.827 -2.197 3.830 2.358
Lockdown Intelligent -50.985 -66.968 -34.885 12.513
Lockdown Hard -38.793 -71.668 -6.550 25.373
Sin 1 1.358 -2.859 5.538 3.265
Sin 2 12.537 6.172 18.866 4.953
Cos 5 -3.523 -43.899 36.396 31.268
Cos 6 35.314 -1.533 72.194 28.776
TOT 168 0.961 0.959 0.964 0.002
σ2 69499.6 68530.0 70471.9 760.1
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G Lagged Differences

Next, we see the coefficients for the sparsity pattern that was selected by the 50th percentile

quantile regression, where we included the lagged differences as described in Section 4.4

Table 29: The predicting variables for 2017-2019 that are selected for the sparsity pattern,
where the lagged differences were included

Variable Coefficient Variable Coefficient
Wind Force -0.366 Christmas -2.275
Temperature 0.529 Christmas After -6.765
Sun 8.359 Sugar Feast -5.602
Rain -0.941 Sugar Feast After -4.280
Rainfall 0.206 Kings Day -27.908
Air Pressure 0.176 Liberation Day 2.673
Fog 0.552 Kings Day After -5.032
Snow -10.775 Belgian National Day 1.861
Thunder -0.217 Toll Free 47.377
Ice 0.284 Cos 1 -0.115
Vacation Dutch -2.442 Sin 2 2.120
Vacation Belgian 0.608 Cos 4 0.714
Vacation German -1.224 Cos 5 0.793
New Years Eve -22.559 TOT 1 0.635
Christmas Vacation After -1.186 TOT 2 -0.042
Easter Weekend -4.535 TOT 3 -0.049
Ascension Day Weekend -3.139 TOT 4 0.012
Ascension Day Before 2.280 TOT 5 0.026
Whit Sunday Weekend -7.044 TOT 168 0.995

Table 30: The predicting variables for 2017-2020 that are selected for the sparsity pattern,
where the lagged differences were included

Variable Coefficient Variable Coefficient
Wind Force -0.369 Sugar Feast -2.601
Temperature 0.510 Sugar Feast After -6.352
Sun 5.681 Kings Day -20.756
Rain -0.909 Remembrance ofthe Death -8.381
Rainfall -1.097 Armistice Day –1.799
Air Pressure 0.099 Belgian National Day 8.934
Fog 0.206 German Unity Day -1.150
Snow -10.805 Toll Free 41.175
Vacation Dutch -1.967 Infections -0.006
Vacation Belgian -0.595 Hospitalizations -0.342
Vacation German -1.652 Deceased 0.821
New Years Eve -21.040 Lockdown Intelligent -11.475
New Year After -1.808 Lockdown Hard -23.008
Christmas Vacation After -1.484 Sin 2 1.961
Easter Weekend -3.803 Cos 4 0.089
Ascension Day Weekend -4.029 Cos 5 1.906
Ascension Day Before 15.223 TOT 1 0.651
Whit Sunday Weekend -4.466 TOT 2 -0.041
Whit Sunday Before 3.464 TOT 3 -0.040
Christmas -0.710 TOT 4 0.010
Christmas Before 0.414 TOT 5 0.025
Christmas After -2.724 TOT 168 0.994
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H Code

For this research we used four programs. First, we shaped and merged the data with

WSTDataAnalysis.py. Next, we used QRwithSquareRootLasso.R to perform all quantile re-

gressions and construct the sparsity patterns. After this, we used LSTMNetwork.py and

BayesianAnalysis.R to respectively perform our LSTM networks and Bayesian linear regres-

sions. Further details and explanations are provided in the codes themselves. It is important to

mention that even though a seed is specified, results will still vary. This is due to the fact that

not all functions of the code use this seed.
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