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Abstract

Mortgage loans constitute a substantial amount of most Dutch banks’ balance sheets. In a mortgage
contract, the borrower has the option to repay more than the contractual amount at any point
before the due date. These unexpected cash flows make hedging optimally somewhat tricky, which
affects the Asset and Liability Management of a bank; for this reason, it is essential to forecast
them accurately until the interest reset date. As the forecasts are needed until the reset date, one
must make a multi-step forecast over multiple periods into the future. Machine Learning models
are growing in popularity due to their primarily non-parametric approach and ability to capture
non-linearity accurately. Despite their plaudits, they have some shortcomings. One of which is the
lack of interpretability. Machine Learning models and, in particular, Random Forests generally
become less interpretable as they increase inaccuracy. Interpretability of models is critical in the
Banking industry, so it can be seen that the models are fair and do not act on historical biases in
the data used to train the model. This thesis aims to make a highly accurate and interpretable
multi-step mortgage prepayment forecasting model so Knab can optimally hedge prepayment risk
in a compliance-friendly way.
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1 Introduction

As of mid-2020, the total outstanding amount of mortgage debt in the Netherlands is over €740
Billion according to Sta. With the large market, it is essential for any financial institution with
mortgage loans or mortgage-linked products to model mortgage payments and, in particular, banks.
Traditionally, a bank generates profit by providing long-term loans (such as mortgages) funded by
short-term liabilities (deposits), earning money from the spread between the rates. When a bank
provides a mortgage loan to a borrower, they are exposed to three main components of risk in the
loan. The first risk is that the borrower will default on the loan, also known as credit risk. Second
is the liquidity risk from the loan because the bank does not know how much capital will incoming
to due to prepayments. Lastly, interest rate risk is the potential for investment losses resulting from
a change in interest rates.
Most banks are generally risk-averse Nishiyama (2007); therefore, they hedge these risks in order to
lock in the profit from the spreads. This thesis will focus on interest rate risk, and to hedge this,
the bank will enter into an interest rate swap. Dutch regulators allow mortgagors to prepay their
mortgage early. Therefore, the cash flows over the mortgage loan term may differ from the scheduled
amortisation plan. Hence, the interest rate swap will no longer be hedged as the bank will now pay
back more interest than they will receive. Therefore to avoid this over-hedging, the mortgage lender
wants to forecast prepayments so they can be taken into account in the hedge.
The prepayment model must be both accurate and interpretable. Accuracy will allow it to fully
capture cash flows so that the bank can hedge appropriately and model the market value of the
mortgage. The interpretability of the model is also highly important as the model must be able to
explain why it gives a specific prepayment rate for each loan part. It is crucial from both a compli-
ance and moral perspective, as if the model is predicting a prepayment rate that is more difficult to
hedge for the bank, this, in turn, would make the mortgage more expensive for the client. Therefore,
the model must show that it does not act on racial, sexist or any other bias that could have existed
in the historical data that has been used to train the model.
This thesis aims to develop a highly interpretable, time-efficient model for Conditional Prepayment
Rate (CPR) for each loan part for each month until the interest reset date. For Knab, the model
must be both accurate and time-efficient. Accurate so that interest rate risk can be optimally hedged
and time-efficient because Knab updates model parameters monthly for various models; therefore,
models must run relatively fast to continue to be feasible.
In practice, most banks use Multinomial Logistic Regression (MNL) to find the probability of differ-
ent prepayment types before using an expectation approach to obtain CPR on a loan part level. The
first issue with this model is that it assumes a linear relationship between the response variable and
the explanatory variables; therefore, it cannot capture non-linear relationships and clustering that
may occur. The second shortcoming is the independent and identically distributed (i.i.d) assump-
tion for all loan parts in the model. This is not the case because loan parts of the same borrower
are correlated as the borrower does not treat his loans independently but acts on which is most
beneficial on a portfolio level.
Further models have been investigated to overcome the MNL’s inability to capture non-linear rela-
tionships and clustering. The first is the Multinomial Logistic Regression Tree (MNL Tree) model,
which will make a decision tree-like structure with different MNL models that fit each terminal node
of the tree. If we split the data into groups that behave differently, then each MNL model will better
explain more data variance as the modelled data will act more similar. Furthermore, whilst doing
the splits, more of the non-linearity can be captured because of the non-parametric nature of decision
trees, meaning no distribution is assumed. The second model used is a Random Forest (RF); this is
a non-parametric model that captures non-linear relationships. However, RF’s are often referred to
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as "Black Boxes" due to their lack of transparency when producing output. For this reason, its use
when modelling CPR in practice is limited. The last classification model is the Multinomial Logistic
Regression Forest model, which aims to build upon the advantages of the MNL Tree whilst making
the model more stable and hence more accurate. To overcome the second shortcoming of the i.i.d
assumption for the MNL model, modelling on borrower level data instead of loan part level has been
investigated. Assuming each borrower acts i.i.d is more rational than assuming loan parts are.
The expectation approach commonly used in practice could potentially lead to significant errors as
estimated values are multiplied. Therefore, a regression approach has been considered using the
regression equivalent of each classification model considered. Hence, Linear Regression, Linear Re-
gression Tree, Linear Regression Forest and a regression Random Forest.
Both deterministic and stochastic multi-step forecasting methods has been evaluated. Stochastic
forecasting can account for the path dependency of mortgage prepayments and stochastic indepen-
dent variables; both cannot be accounted for when things are modelling deterministically. However,
modelling stochastic may not be computationally feasible with a large data set. Additionally, im-
plementing a stochastic model within Knab’s Asset-Liability Management system is not possible.
Therefore, the focus of the thesis will be to optimise the deterministic model accuracy whilst inves-
tigating the possible loss in accuracy versus the stochastic model.

1.1 What this research adds to the literature

The contents of this paper make the following contributions to literature.

■ Modelling CPR using regression.

■ Comparison between modelling CPR using traditional expectation versus regression approach.

■ Modelling prepayments on a mortgagor level.

■ Comparison between deterministic and stochastic multi-step forecasting prepayments from
both accuracy and computational point of view.

■ Modelling multi-step forecasting prepayment with Random Forest.
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2 General mortgage prepayment background

2.1 Types of mortgages

In the Netherlands, a borrower can have several different types of mortgages. Moreover, a mortgage
can be split into various loan parts of different types. The main different mortgage types are as
follows:

• Linear:

Pay a fixed amount of the loan each month; however, the borrower’s interest decreases linearly,
implying that the total amount paid each month decreases with duration.

• Annuity:

The total amount paid each month remains constant throughout the mortgage. The interest
paid each month decreases with duration, implying that the loan paid each month increases
with duration.

• Interest – only:

The payment only goes towards the interest for a specified amount of time. After the specified
time, both the interest and loan is paid off over the rest of the duration of the mortgage.

• Savings and investment:

The mortgage is linked to a savings account into which the borrower deposits cash each month.
The amount of interest for the savings account is equal to the interest paid on the mortgage,
so they cancel each other out. At the end of the duration of the mortgage, the loan is then
paid off in full (from the savings account).

As of 1 January 2013, mortgage interest rate tax relief has only been permitted on annuity or
linear mortgages.

2.2 Types of prepayment

Prepayment is an accounting term for settling a debt or instalment loan before its official due date.
In the Netherlands, mortgagors’ loans can prepay the loan at any time within the term. A borrower
can make multiple types of mortgage prepayment, which have differing effects on CPR.

• Full Prepayment:

The borrower repays all remaining notional on the loan prior to its contractual due date.
Therefore, the loan ceases to exist after this point. Usually occurs due to house sale.

• Partial Prepayment:

The borrower repays more than the contractual amount; however, not the full notional. Mainly
occurs to lower LTV (lowering mortgage rate), tax reasons or to generally reduce notional owed.

• Non-Cash Prepayment:

The borrower requests that their mortgage rate be reset and the interest reset date changed.
The borrower will pay a penalty that compensates for the loss in market value in the loan for
this prepayment; this offset amount saved by a lower interest rate; therefore, a borrower will
usually only make non-cash prepayment if they want to extend the interest reset date (possibly
to take advantage of low-interest rates as they think rates may increase in future).
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2.3 Reasons for prepayment

• Property Sale:

When a property sale occurs, this would usually lead to a prepayment because the cash from
the sale can be used to pay off outstanding mortgage debt. Commonly, the date of the house
sale does not line up with the interest reset or maturity date of the mortgage, generating a
prepayment. A client can also opt to reattribute the mortgage to the new property. This will
mainly be the case when the mortgage rate in the market is higher than the previous rate or
due to favourable interest guarantees in the old policy. This would not lead to a prepayment.

• Mortgage Refinancing:

This occurs when the borrower pays off the existing mortgage or loan part and replaces it
with a new one. Borrowers usually do this for economic reasons, and the new loan has a lower
mortgage interest rate than the current mortgage rate. A less common reason is to access
increased equity of the property. Refinancing can occur internally (the client does not change
the mortgage provider) or externally (the client does change the mortgage provider).

• Partial prepayments:

A client with sufficient personal funds can reduce mortgage debt by repaying part of the
outstanding mortgage. Reasons to do so could include:

1. Economic motives (e.g. the savings interest rate is lower than the mortgage rate, or to
bring the savings balance below the wealth tax hurdle),

2. Risk perception (the mortgage debt is higher than the value of the residence, the result
of which means a residual debt would remain after any forced sale)

2.4 Prepayment penalty

When borrowers make a prepayment, they will usually pay a penalty fee. The penalty interest
compensates the mortgage provider for missing future interest margin income. However, there are
some instances where a prepayment comes penalty-free.

1. The prepayment amount is within the penalty-free threshold. This amount is 10% of the
original principal amount per calendar year for Knab mortgages.

2. Full prepayment is made due to a property sale.

3. Any amount of payment made at the interest reset date or maturity date of the mortgage is
not classified as prepayment and is therefore penalty-free.

4. If current mortgage interest is higher than the borrower’s mortgage rate.

5. In situations where prepayment is in the form of an insurance payout after the loss of the
property due to damage or using a term life insurance payout after mortality.

6. If prepayment is on a bridge loan (a short-term loan given to borrowers so they can meet
current obligations usually charged at high rates).
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3 Literature

3.1 Review of prepayment motives

The four most common drivers known for mortgage prepayment behaviour were first discussed by
Brennan and Schwartz (1985) and are as follows:
Firstly, Refinance incentive is the difference between the current mortgage rate and the mortgagor’s
rate. If the mortgagor’s rate is much higher than the current rate, generally, there is a higher proba-
bility of prepayment. This effect has been shown to be significant in Richard and Roll (1989), Perry
et al. (2001), Charlier and Van Bussel (2003), Meis (2015). Secondly, Burnout explains how after
the mortgagor has been exposed to an interest rate environment in which it is optimal to prepay,
and they did not, following this in the future, the mortgagor has a lower probability of prepay-
ment. Kang and Zenios (1992) has shown there is a difference in prepayment behaviour between
"fast" and "slow" borrowers. Thirdly, Bussel (1998), Alink (2002), Charlier and Van Bussel (2003),
Hayre (2003) have shown that there is clear seasonality in prepayment behaviour. Reasons for this
seasonality could be that people usually move house in the spring/summer, which often coincides
with prepayment. Fourthly, Kang and Zenios (1992) , Clapp et al. (2001), Deng et al. (2000) have
shown seasoning (mortgage age) as a significant driver of prepayment. CPR vs mortgage age would
generally be a skewed bell curve that stabilises at expiry. When mortgagors have just received the
loan, they will be less likely to prepay or move house as utility is typically maximised upon receipt
of the loan. As mortgage age increases, the probability they have gained excess money to prepay or
move house has increased. CPR then levels off as the probability of the mortgagor moving house
decreases.
The rest of the prepayment motives specified in the literature can be assigned to three categories
summarised in the table on the next page. Firstly loan-specific drivers are highlighted in yellow,
which are pure to do with the dynamics of the loan itself; next are borrower-specific drivers high-
lighted in blue, which are based on the characteristics of the mortgagor taking the loan. Lastly,
Macroeconomic drivers are highlighted in brown, which are related to the current state of the econ-
omy.

3.2 Review of current literature

Existing literature models prepayment in two different ways; the first is on a portfolio level. The
most simplistic model assumes a flat prepayment rate for all mortgages; this neglects all prepayment
determinants explained in 3.1. Richard and Roll (1989) use "The Goldman Sachs model" otherwise
known as the four-factor model, which multiplies the four main prepayment drivers, refinancing
incentive, age of the mortgage, seasonality, Premium burnout to give CPR. This CPR is applied
to all loans in the portfolio. This model is often used in industry, along with the PSA Standard
Prepayment Model Hayre (2001), which linearly increases at a rate 0.2% from 0% at the origin of
the loan until month 30 then remains at a constant 6% prepayment rate. This is done to capture
that mortgagors are less likely to prepay or refinance when they have just begun the mortgage, a.k.a
the seasoning effect.
A significant issue with modelling on a portfolio level is that it does not capture the heterogeneous
of the different mortgagor’s prepayment rates. This can be incorporated by using cohort analysis
which segments the mortgages into (more) homogeneous groups. Then the techniques described
above can be used on the various cohorts. However one should be careful that each cohort contains
a sufficient number of loans to obtain meaningful results or, on the contrary, not too many such that
it can no longer capture the heterogeneity.
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Prepayment motives
Prepayment motive Neg/Pos Description Literature
Prepayment penalties
poxy

- This is a normalized proxy for size of penalty borrower would face if they where to prepay.
This would disincentives borrowers to prepay.

Charlier and Van Bussel (2003),
Subotniaya (2018)

Lock-in effect - If locked in to a low rate compared to market rate mortgagors that move houses will keep
there mortgage if portable or transfer to new if assumable. If neither and difference be-
tween rates in large enough this could discourage moving, lowering CPR.

Saito (2018), Hayre (2003), Clapp
et al. (2001)

Loan-to-Value (LTV) - Literature finds a a lower LTV implies a higher CRP this could be due to the seasoning
effect. However, this relationship seems counter intuitive because the higher the LTV the
higher the mortgage rate which would imply lower refinancing incentive.

Clapp et al. (2001), Alink (2002),
Deng et al. (2000), Calhoun and
Deng (2002)

Down payment at origin - Larger the down payment to original ratio the lower the coupon and lower the CPR. Goodarzi et al. (1998)
Loan through intermedi-
aries

+ More likely to prepay because intermediary earn commission to alert when optimal to pre-
pay.

Alink (2002), Saito (2018)

National Mortgage Guar-
antee (NHG)

- NHG Mortgages are granted a lower coupon as they are insured by the government. A
lower rate implies lower refinancing incentive therefore lower CPR.

Meis (2015)

Time till reset date + There is greater incentive to prepay earlier because cash saved will be for longer time. Alink (2002)
Market value of loan + This is because if market value increase this has mean that rate has rose on mortgage this

will imply higher prepayment.
Clapp et al. (2001)

Original loan value + If original loan is higher this will imply that borrower needs to borrow more meaning that
they are less likely to have free cash to be able to prepay mortgage.

Clapp et al. (2001), Charlier and
Bussel (2003)

Property Type Depends Family homes have have been shown to have higher prepayment rate than commercial
property’s this could be due to that family’s would move house more often.

Charlier and Bussel (2003), Char-
lier and Van Bussel (2003)

Number of partial pre-
payments

+ Higher the number of prepayments the more likely they are to do it again because they
are clearly pay close attention to market montage rates.

Wanders et al. (2021)

Number of resets + For a similar reason to above the borrower pays close attention to his mortgage. Wanders et al. (2021)
Indicator if defaulted
before

- If borrower has defaulted before then most likely they has money issues therefore don’t
have an excess of cash to prepay.

Wanders et al. (2021)

Indicator if prepaid be-
fore

+ If borrower prepaid before they will more likely do it again as they pay attention to mar-
ket rates and will likely be able to get enough cash to prepay again.

Mieras et al. (2021)

Normalized price incen-
tive

+ This is a proxy for length of till rest times by refinance incentive. This accounts for how
much mortgagor would be saving and for how long implying a positive relationship.

Expert opinion

Age of borrower + It is found to be postive becasue as borrower gets older they will more likely have more
excess money to prepay and will be more likely selling there house for a bigger or smaller
house (depending on age), therefore they will be more likely to prepay.

Charlier and Van Bussel (2003),
Alink (2002), Clapp et al. (2001)

Location of house Depends It has been shown that different areas have different CPR’s in general. This could be be-
cause certain areas are cheaper houses that are sold more often for "upgrades".

Sirignano et al. (2018), Alink
(2002)

Income + Generally more income would imply more ability to prepay however, this is only provided
at loan origin therefore inaccurate.

Clapp et al. (2001),Deng et al.
(2000)

Creditworthiness (FICO
Score)

+ This has been shown to be positively related to CPR beacuse generally higher FICO
means your better at managing money so will prepay when optimal.

Alink (2002), Clapp et al. (2001)

Minority indicator - Non-white indicator has been shown to have a negative relationship with CPR. Clapp et al. (2001)
Media effect + Recent "all-time low" rates have a higher CPR due to the media attention. Hayre (2003)
Unemployment rate + Higher unemployment rate more chance the borrower will have to sell or refinance the

house therefore implying prepayment.
Sirignano et al. (2018), Meis
(2015), Clapp and LaCour-Little
(2001)

Divorce rate + If divorce occurs then this will likely result in a house sale implying a prepayment. Meis (2015), Clapp and LaCour-
Little (2001)

House price inflation + When house price appreciation occurs home sales increase implying increase in CPR. Meis (2015)



Applying cohort analysis captures many prepayment drivers and more granular links between sub-
populations of mortgages and prepayment behaviour than on portfolio level. However, Chinchalkar
and Stein (2010) shows modelling at a loan level can better capture the drivers and heterogeneous
of prepayment and capture the market value of each loan, which cannot be done at a portfolio or
cohort level. The previous literature at the loan level can be thought of in two different categories:
optional theoretical models and exogenous models Charlier and Van Bussel (2003).

3.2.1 Option Theoretical Models

Findley and Capozza (2003) were first to apply an optimal option-theoretic model to mortgage
prepayment. They viewed it as a call option that is only repaid if, and only if, the option is in
the money (contractual rates are higher than current interest rates). This model assumes that
all mortgagors are rational and have the capabilities to do so. It has been shown that in reality,
mortgagor’s do not prepay optimally because prepayment may be influenced by non-financial factors
as stated in 3.1 and therefore may not always prepay when optimal to do so. Kau and Keenan (1995)
claim this is because housing can be seen as consumption goods instead of financial assets. There have
been many extensions of the theoretical option model to try and explain the irrational mortgagor
behaviour. Dunn and McConnell (1981) and Brennan and Schwartz (1985) have incorporated a
Poisson-driven process term; however, the mortgage prepayments these yields are not necessarily
non-optimal. Archer and Ling (1993) show that some prepayments occur when ’out-of-the money’
and mortgagors do not always prepay when it may be optimal to do so. They conclude that
transaction costs may cause the lack of prepayments for ’in-the-money mortgages. However, Stanton
(1995) found that when heterogeneity prepayment costs are modelled, the observed prepayment costs
are considerably lower than ones implied by the model.

3.2.2 Exogenous Models

The most common model used in the banking industry is the Multinomial Logit (MNL) model, aca-
demically Campbell and Dietrich (1983), Zorn and Lea (1989), Capone and Cunningham (1992) and
Calhoun and Deng (2002) have shown significant predictability power for predicting prepayments.
However, the MNL model assumes observations are independent, which is likely not the case, espe-
cially when looking at the loan-part level. Pravinvongvuth and Chen (2005) conclude that the main
drawback of the MNL model is its inability to account for the correlation between mortgage path
and perception variance of mortgages of differing length (due to term or prepayments). A popular
model in the literature is the Proportional Hazards (PH) model, which Green and Shoven (1986),
Schwartz and Torous (1989) have used to predict prepayments. It has been shown that the MNL
AND PH model are very similar; in fact, Shumway (2001) has shown that the PH model can be
interpreted as a logit model done by firm-year. The PH model’s primary disadvantage is its inability
to model non-terminating and terminating events such as a partial and full prepayment. A further
reason why one may choose MNL over PH is that Clapp et al. (2001), Clapp and An (2006) have
shown that the proportionality assumption for the hazard rate may not be true.
More recently Lijmbach et al. (2021) predicted prepayments using the recursive partitioning algo-
rithm designed by Strobl et al. (2008), to extend the MNL model to an MNL-Tree model in which
MNL models are fit to the observations in terminal nodes of a decision tree. The reason being is that
the tree will help capture clustering in the data, which an MNL model is unable to do on its own.
In addition, it helps exploit the non-linearity’s which exist when modelling mortgage prepayment.
A less common approach to modelling prepayment would be to use a Markov model, in which the
transition probability between states depends on the current state. Although this is strong from
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a theoretical point of view Meis (2015) concluded that it does not yield significant results for pre-
dicting prepayment. An additional, less common approach would be to model prepayment from a
Bayesian point of view, Bhattacharya et al. (2019), Popova et al. (2008) constructed a Bayesian
mixture model for which they use a Markov Chain Monte Carlo to estimate parameters. This issue
with the Bayesian approach is the model is dependent on the quality of available covariates.
Machine learning methods are increasing in popularity, but work on its application to prepayment
is still limited. Sirignano (2016) shows the relationship between prepayment behaviour and risk
factors is non-linear. This implies that machine learning techniques should be more appropriate
for modelling as most of them do not assume a distribution , unlike the traditional prepayment
model. Early adoption of a machine learning model by LaCour-Little et al. (2002),shows how a
Non-parametric Kernel Regression can outperform a logit model. Sirignano (2016) has shown that
Neural Networks have significant predictive power for prepayments for both pool-level and loan-level
data. Saito (2018) has shown that Random forests (RF) outperform Neural Networks. Furthermore,
Blumenstock et al. (2020), and Saito (2018) have shown both models outperform hazard and logistic
models, respectively, in addition to being, are robust across different periods, including stressed
periods.

3.2.3 Improving the interpretability of "Black Boxes"

A drawback to the machine learning models mentioned is their lack of "interpretability". Lijmbach
et al. (2021) have attempted to solve this using a Multinomial Logit Regression Tree. The model
recursive partitions the data similarly to a small decision tree then fits the MNL model to the data
in terminal nodes. Each node MNL model will have its own parameters. The idea comes from
Strobl et al. (2008) and is designed in order to capture the non-linear relationships and clustering
whist maintaining interpretability. Lijmbach et al. (2021) have been unable to outperform MNL
on loan-level; however, it has on a portfolio level. Taking into account, the limited small tree size
Lijmbach et al. (2021) have used due to time constraints makes this model is very promising.
Saito (2018) used Partial Dependence Plots to improve the interpretability of the prepayment fore-
casts using the RF. A plot for each input variable is made by varying the dependant variant value
whilst keeping other variables the same. A general relationship between the output variable and the
input variable we are considering can be observed from the graph. Although Partial Dependence
Plots give a good insight into the general working of the model Goldstein et al. (2014) developed
Individual conditional expectation plots which allow the ability to drill down to individual observa-
tions, allowing the ability to identify subgroups and corrections between input variables.
Guidotti et al. (2018) conducted a review of all methods for explaining Black Boxes. These methods
can be broken into three categories: model explanation, outcome explanation, and model inspection.
The model inspection provides a representation for how models work like Saito (2018) and Goldstein
et al. (2014) have done. The outcome explanation uses a local point of view to the interpretable
model. Examples of these include Saliency Masks and Local Interpretable Model-Agnostic Expla-
nations; these are heavily used in image recognition due to their ability to find the most informative
regions Phang et al. (2020). Model explanation gives globally interpretable models that behave
similarly to black boxes but are more interpretable for humans. The global nature of these models
makes them more appropriate for modelling prepayment behaviour.
There are two main methods of doing this; the first is via single tree approximation; however sin-
gle trees can still be challenging to interpret depending on the depth and other hyper-parameters.
The second way is through Rule Extraction. Bénard et al. (2020) developed SIRUS (Stable and
Interpretable Rule Set), which generates a (modified) random forest that creates a rule for each hy-
perrectangle of each tree. It ranks the importance of the rules based on how often they appear. The
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most significant rules are kept and aggregated together, making a shortlist of highly interpretable
rules. Akyüz and Birbil (2021) have created RUX (Rule Extraction), which uses Linear programming
to extract the rules most critical for classification. Furthermore, they have developed RUG (Rule
Generation), which uses Linear programming to create an interpretable model from scratch. Both
Bénard et al. (2020) and Akyüz and Birbil (2021) have found accuracy similar to noninterpretable
models with a short number of rules. However, when using Akyüz and Birbil (2021) models one
could explore whether a model built from scratch to be "transparent" will yield better results for
predicting prepayments.

3.2.4 Multi-step prepayment forecasting

To value Mortgage-Backed Securities (MBS), the standard method is to forecast the cash flows of
the MBS, discount them, and add them together. In practice, this is usually done on a loan level and
using Monte-Carlo simulation, then aggregating the results as can be seen in Schwartz and Torus
(1989), Busschers (2011), Kang and Zenios (1992). This can allow for path dependency of mortgages,
Wanders et al. (2021) have included state dependency variables in a Monte Carlo simulation to
forecast prepayments over three years. The main issue with the Monte-Carlo simulation is the
computation time, especially when running on loan-level data. There is no current literature readily
available to evaluate that forecasts CPR over the mortgage term deterministically.

12



4 Data

This section gives an insight to the different methods for treating the data and the motivation for
doing so. Then a short description of the data set is given followed by explanation for how and why
adjustments are made for unbalanced data. Please note, that in this section and beyond the scales
on graphs have been excluded for the banks privacy reasons.

4.1 Data treatment

This section describes the two different methods of data aggregation that will be used and compared
for all models in the methodology. The reasons for the aggregated to appropriate level data will be
split into training, testing and validation sets. The training set is the data that the models will be
trained on, the testing set is the data the model will be evaluated on and performance metrics are
generated from. The validation set is for hyperparameter tuning, which is further explained in 5.2.5.

4.1.1 Loan-level

In academic literature and industry, prepayment is usually modelled on loan-level data described in
3.2. There are a few reasons for this; firstly, the most granular level the data goes to, giving the
maximum information possible. The Central Limit Theorem states that the larger the size of the
sample, the smaller the confidence band around the results , implying that generally, the more data,
the more accurate the results are. Furthermore, it can handle the heterogeneous of the different
mortgagor’s prepayment rates. It is on the loan part level already, so no further data aggregation
will be needed.

4.1.2 Mortgage-level

The main issue with using an MNL model is the assumption of the data being independent and
identically distributed. This is not the case for our data because one mortgagor usually has multiple
loan parts; these loan parts will therefore be highly correlated. Therefore, by aggregating data to
mortgagor-level would make the i.i.d assumption more appropriate. As all borrower information is
the same, in the process of combining loan parts, little information is lost apart from the method of
prepayment. The only information that is being aggregated is the prepayment method (i.e to what
loan part(s)).
As described in 3.2.1 prepayment is not always optimal; however, it is rational to think, given
the mortgagor prepays, they will optimally make the prepayment, so the information loss may
not matter. Therefore to aggregate the prepayment amount back from mortgagor CPR to loan-
part CPR, use a model which assumes rational prepayment. However, one could argue with this
assumption because tax incentives may mean the optimal way for one mortgagor may not be the
optimal way for others to prepay. Given the out of date nature of income data, finding the current
tax band is difficult. A new date called "restructuring date" can also be formed when new loan
parts are split up or combined. This may give some further insight into prepayment behaviour.

4.2 Data description

The data set has mainly been taken from Knab’s internal database, where the data is monthly and
ranges from October 2015 to October 2021. Knab is Aegon’s Bank and they only buy and sell
mortgages to Aegon, therefore we have also used data from Aegon to verify if the loan part that has
disappeared from Knab’s data has truly fully prepaid or has loan been sold to Aegon. The first 4
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years of data will be used to fit the model and the last two years will then be used to evaluate the
long-term forecasting accuracy of the model.

Figure 1: Summary of number of loans and percentage of prepayment
types over time

Figure 2 shows seasonality in CPR, with it increasing at the end and middle of the year. The
common reason for the increase in CPR in the middle of the year is due to the 8% (of yearly salary)
holiday allowance given by employers in May. This increase in disposal would incentivize borrowers
to prepay. Furthermore, the expected reason for the increase in CPR at the end of the year is due to
December 31st being the end of fiscal year in the Netherlands. Figure 1 shows a similar seasonality
in partial prepayments increasing at the end and middle of the year, showing partial prepayment is
the main driver for seasonality in CPR. Non-cash prepayments are quite stable, and show no obvious
seasonality however have two outliers, first at the end of 2017 and a larger number of non-cash pre-
payments in October 2019, which coincides with when Knab announced that it would be last month
a client could make a non-cash prepayment penalty-free. It is penalty free because the penalty fee
is accounted for in the new rate, meaning a client would not be getting as low a mortgage rate as
if they chose to pay the penalty. After this month, we see a change in prepayment behaviour, in
which fully prepayments increase in frequency and non-cash prepayments decrease.

Figure 2 Figure 3
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This is most likely from clients moving mortgage provider (and therefore fully prepaying) to one with
the option for penalty free non-cash prepayment. The drivers for prepayments will remain the same;
however, there will be a fundamental change in the levels of probability of states. To account for
this change in state, an indicator variable which is one when after October 2019 and zero otherwise,
this will shift the probability’s according to the new level shown by the data.
Figure 1 shows the number of loans increases over time signifying that the bank is growing. Further-
more, we can see increased shifts in the number of loans, seen at the start of 2017 where the number
of loans increased, this is due to Knab buying mortgage loans from its parent company Aegon. Gen-
rally Knab were buying mortages of similar similar characteristics in terms of seasoning and LTV,
shown in figure 3. This was not the case in June 2016 where a sharp decrease in number of loans
which was then followed by number of loans dramatically increasing again the month after. Figure
3 show’s the bank made a clear business in June 2016 decision selling more younger mortgages with
lower LTV’s and buying the opposite, which is surprising as these two variables generally negatively
correlated. Another shift in strategy from the bank can be seen at start of 2018 where a decease
in average LTV coincides with a in average seasoning in portfolio while number of loans remains
the same. Meaning the bank is selling short dated mortgages and replacing them with longer dated
mortgages.
To ensure these sold mortgages are not seen as prepayments, the loans ids are checked in Aegon’s
data system, and if they do not exist in Aegon’s data, the loan part has been fully prepaid.
The anomalies which occured in 2016 and 2017 seen clearly in figure 2 to our knowledge, have no
reasonable explanation. Therefore, it can not be assumed that these acts will not happen again;
therefore they can not be removed from the data. Generally, partial is most frequent, followed by
full prepayments and non-cash is the least frequent. However, as seen in figure 2, in terms of CPR,
full prepayment contributes the most and more or less dominates the CPR due to the size of full
prepayment cash flows.

Figure 4: Histogram of change in interest rates between months for
each loan part from October 2015 to October 2021

In the Monte Carlo simulation, one must forecast interest rate differential meaning that the market
mortgage rate must be forecast. However, in data construction, the interest rate differential variable
has been provided by Aegon, and they have a separate model for market rate of which the details are
confidential. However, we don’t have the past mortgage data Aegon used to construct the interest
rate differential. For this reason, interest rate differential will be forecasted by forecasting the change
in interest rate differential and adding it to the current interest rate differential; figure 4 shows it’s
disruption. Disruption is very clearly not normal. However, it appears to be a mixture of normal’s
in which 2 different world states exist. In one state, rates are relatively stable and other rates are
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Figure 5: Average change in interest rates for all loan parts in portfolio
throughout time

increasing more rapidly. Figure 5 backs up this hypothesis in which the world is roughly in first
state from 2017 to middle 2019 and the later state for remaining time.
From figure 7 we can see clear seasonality in the partial prepayment percentage with client tending
to partially prepaying more at the end of the year, which is because of suspected. In figure 6 the
average compensation percentage for remains extremely low on average about 0.1% across the whole
time frame. This is expected as 7 shows that usually, most partial prepayments are below 10%,
implying there would be no penalty at all. Even with the partial prepayments that incur a penalty,
the likelihood is that wouldn’t be much above the threshold and penalty would be would be negligible
compared to the prepayment amount.
It can be seen that non-cash compensation seems somewhat random across time. However, there

Figure 6 Figure 7

seems to be a change in state at the end of 2019. Compensation increases after October 2019.
This is because Knab removed penalty-free non-cash prepayment option explained earlier in the
data description. The removal of this option means that a penalty must be paid with a non-
cash prepayment, therefore, increasing the penalty compensation for loss in market value. The full
prepayment compensation is increasing over time. Furthermore, a sharp increase can be seen in
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November 2019, the month after the removal of the penalty free option and can been seen to stay
around this new level. This is most likely due to more people fully prepaying with a penalty because
they are moving mortgage providers to one that offers this option.
Penalty compensation is very difficult to predict as the reason for not paying the penalty must
be predicted, (stated in 2.4), implying one must predict mortality or the event of selling a house.
Although there may be some drivers such as age, which becomes a lot more complex, and more
personal borrower data would be needed for a model, which would not be allowed from a compliance
and ethical point of view. For this reason, it has been decided to take the average of the most recent
year’s penalty compensation percentage for each prepayment state when forecasting. The reason
a year was taken to that only most behavior will be included and not before the change in state
occurs.
For the partial prepayment percentage, 3 possible options will be evaluated. First being simple
average of most recent years values, similarly to how Saito (2018) has modeled it. Next will be an
average with a seasonality factor due to clear seasonality in the data. Lastly, a linear regression
model in which the lasso penalty term will be applied to get a model with a limited number of
regressors. The reason for a linear model is that partial prepayment percentage will have a limited
effect on the cash-flows as full and non-cash should dominate due to the comparative size of cash-
flows. Therefore linear regression will be used to approximate a higher order model.
Due to the change in state that occurs when the penalty-free non-cash prepayment option is removed
in October 2019 the model must be given enough time to train for this new state. Therefore, the
out-of-sample testing period will begin on October 2020 giving a one year testing sample which CPR
can be forecasted over.

4.3 Adjustments for Unbalanced data set

In the data set, figure 1 shows that for a large majority of observations no prepayment occurs
which makes sense as client will most likely not prepay their mortgage every month or even every
couple of months due to time takes for prepayment option to be "in-the-money" once client prepays.
Additionally, a large driver of prepayment is house sales and the client is highly unlikely to move
house every month. Resulting in large number of no prepayment class observations compared to
other classes observations, this is called an unbalanced data set.
Unbalanced data sets are prevalent in real world classification problems as the probability’s of rare
but important events are often required. For this reason, the area of classification with imbalanced
data is heavily researched He and Garcia (2009). Classification Machine Learning techniques do
not cope with unbalanced data very well as the algorithms aim to maximize overall classification
accuracy. However, by doing this the algorithms have the tenancy to be biased towards classifying
the majority correctly as this will have the largest impact on the overall accuracy and the minority
class can be considered noise.
Adjustments can be made in two main ways: adjusting the model to better cope with unbalanced
data or adjusting the data set to become balanced. To understand how adjustments are made to
the model, one must first understand the models, hence the model adjustments will be discussed in
5. The remainder of this chapter will discuss how adjustments can be made to data set.
Modifying the data set to make it balanced can be done in multiple ways, undersampling from the
majority classes, oversampling from minority classes or Synthetic Minority Over-sampling Technique
(SMOTE). SMOTE is a method that creates synthetically manufactured samples within the minority
classes by selecting samples that are close to the feature space. Then, a line is drawn between these
samples from which a random point on this line is selected as the new synthetic variable. This is
done for each of the minority classes resulting in all classes having an equal number of observations.
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Oversampling from the minority data set does not add new information to the model. It may cause
the model to overfit due to the reliance on these samples within the minority classes. This is why
SMOTE is being used over oversampling method. Chawla et al. (2002) has shown a combination of
SMOTE and undersampling performs better than undersampling alone; this has been confirmed on
prepayment data by Ewing et al. (2021). Due to the size of the data set, it is not feasible to use
SMOTE not in conjunction with undersampling. However Saito (2018) has shown that adjustments
made on an algorithm level out-preform adjustments of data level for predicting CPR for this reason
adjustments have been at algorithmic level.

4.4 Chosen Variables

Section 3.1 describes a large number of prepayment motives have been proved in past literature.
The focus of the thesis is to optimize the accuracy of the deterministic model as explained in
1. Consequently, no macroeconomic variables have been included have been used because these
variables would need their own model to be foretasted into the future, most of which are stochastic
models. Additionally, no borrower specific variables have been taken because either not able to
obtain the data or data given is most likely out of date (e.g. Income given when mortgage is taken
out has most likely changed).
Now, a large number of Loan specific variables that been generated (which includes large number of
variants of variables for example if prepaid before on loan or borrower level). To reduce number of
variables Lasso paths have been generated by varying the value of alpha then plotting the resulting
coefficients agents corresponding alpha. The variables which shrink to zero for both regression and
classification approaches and that experts within Knab agree are not massively important have been
removed. The variables mainly removed were all the borrower level variables in addition to the
Normalized price incentive variables. The remaining variables are listed in the Appendix C.
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5 Methodology

This section will describe the methods used to obtain forecasts for CPR until the interest reset
date. Predicting CPR has traditionally been done using an expectation approach by predicting the
probability of prepayment types which are each multiplied by the corresponding prepayment amount
for each type and then summed together Saito (2018), Schwartz and Torus (1989). For calculating
a future expected value when multiple different states of the world can occur in the future, the
method is most commonly used to take the expectation approach. Which, in theory, seems like a
more intuitive method and should better proxy how real life works.
However, from an interest rate point of view, Knab is only concerned about the part of the prepay-
ment cash flows that the penalty fee has not compensated for. Consequently, it should account for
the penalty compensation amount for each type of prepayment, in addition to a partial prepayment
percentage to obtain a prepayment amount for partial prepayment. All the additional terms that
need to be estimated bring their own uncertainty, exacerbated when combined to give the final CPR.
Therefore, regression will also be considered when CPR is obtained straight from the model.
To project CPRs for each loan until interest reset date. In this iterative process, forecasted CPR
will affect the following step input variables, consequently affecting the next step’s CPR. Therefore
one step ahead, CPR forecasts will be used with input variables moved forward by one step after
each iteration. For example, one will be added to the seasoning variable after each iteration; this
new seasoning value will be used as input to calculate CPR for the next period.

5.1 Structure to obtain one step ahead CPR

This subsection will describe how one step ahead CPR is obtained for both regression and expectation
approaches. Section 5.3 will extend then extend this until the interest reset date for each loan.

5.1.1 Expectation Approach

Prepayments can take different forms, which each have a different corresponding cash flow, as ex-
plained in 2.1. Therefore each prepayment state has been treated as separate dependent variables
yielding the output of the classification model (described below) for each borrower i at time t has
been classified as:

Yi,t =


0 if No prepayment
1 if Non-cash prepayment
2 if Partial prepayment
3 if Cash Full Prepayment

Using the dependant variables the one step ahead prediction is calculated in the following steps.

1. Run one of the classification model described 5.2 the output of this model will give the state
probabilities.

2. CPRt+1 = P (Ŷ3,t+1) ∗ (Full prep pen comp factor at t+1) + P (Ŷ2,t+1) ∗ PPAt+1 ∗
(Partial prep pen comp factor at t+1) + P (Ŷ1,t+1) ∗ (Non-cash prep pen comp factor at t+1)

Where P(x) is the probability of classification x, which is the output of step 1, PPA Partial Pre-
payment amount is the percentage of notional partially prepaid. Saito (2018) is the only time I
have seen Partial Prepayment Amount (PPA) modelled in current literate. The impact on overall
portfolio-level CPR will be low if PPA is predicted accurately due to its size and low variation in
PPA amounts. Due to this, an average of the last 12 months’ PPA for assumed as the PPA value.
Prep pen comp factor is one minus fraction for which the penalty fee compensates for the loss in the
market value of the loan, which when multiplied by the expected prepayment amount.
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5.1.2 Regression Approach

The regression approach is much more straightforward than the exception one because penalty
compensation and partial prepayment percentage have already been considered in the construction
of CPR. This CPR will be used as dependent output in the regression, as stated below:

Yi,t = CPRi,t (1)

The one major disadvantage with the regression approach is that depending on the chosen model;
there is the possibility that predicted CPR is outside of the limit of zero and one (because you cant
negatively prepay or prepay more than all your remaining notional).

5.2 Exogenous and endogenous models

5.2.1 Multinomial Logit Model

The first model that will be used is the Multinomial Logit Model (MNL) for reasons stated 3.2.2,
but the main reason is that it is the most commonly used model for modelling prepayment in the
industry; in fact Aegon, (Knab’s pare net company) currently uses it. Therefore, the MNL model
will be used as the baseline model to evaluate performance of other models.
The probability of that mortgagor or loan-part (depending on data treatment) i makes a payment
of type j at time t denoted as πi,t,j and given by:

πi,t,j = P [Yi,t = j | Xi,t] =
eX

′
i,tβj∑

s∈K eX
′
i,tβs

(2)

where βj is the vector of coefficients specific for state j. Since
∑K

j=1 πi,t,j = 1 then to ensure
parameter identification β0 = 0.
When estimating MNL model maximum likelihood is used. Additional to the notation provided
before, denote di and mi as the origination date of mortgage or loan-part i and the maturity date
respectively, K as the set of payment types and T the total number of time periods. Then the set of
observed prepayments for a borrower or loan-part i until time t−1 is: Yi,t−1 = [yi,dj , yi,di+1, ..., yi,t−1]
and Nt = [j, di ≤ t ≤ mi, 3 /∈ Yi,t−1] is the set of the mortgages or loan-part in the portfolio at time
t. Since the probability of Yi,t is not independent of its past observations. This gives a likelihood
function:

L (YT ) =
T∏
t=1

∏
j∈J

∏
i∈Nt

P [Yi,t = j|Yi,t−1, Xi,t]
I[yi,t=j]. (3)

Implying a log-likelihood:

logL (YT ) =
T∑
t=1

∑
j∈J

∑
i∈Nt

I[yi,t = j] log

[
eX

′
i,tβj∑K

j=0 e
X′

i,tβj

]
. (4)

To obtain the optimal estimates β̂ the likelihood function L (YT ) is maximized with respect to
coefficients β which is equivalent to maximizing log-likelihood logL (YT ) , as described below:

β̂ = argmaxβL (YT ) (5)
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Marginal Effects

The interpretation of the estimated coefficients β̂ derived from equation 4 is not so straight forward
and not exactly. This is because the coefficients give the effect in probability relative to one of
the prepayment types. However, a change in an independent variable will affect the predicted
probability of all states through equation 2. For this reason, we introduce marginal effects, which
show each independent variable’s effect on the prediction, given that the remaining independent
variables remain constant. To find the marginal effect of a variable, one must find the marginal
effect for each mortgagor\loan-part and find the mean, for this will give an idea of the effect of the
variable on prediction. Calculating the individual marginal effect of the variable involves finding
the rate of change in the prediction probability of a state concerning the variable in question by
taking the gradient from which one can imply the direction. The marginal effects of a mortgagor or
loan-part i with respect to variable xq for a prepayment type j is calculated as:

∂πi,t,j
∂xq

=

∂

(
e
X′

i,tβj∑
s∈K e

X′
i,t

βs

)
∂xq

= πi,t,j

(
βj,q −

∑
s∈K

πi,t,sβj,s

)
(6)

5.2.2 Linear Regression

Linear Regression (LR) is a simplistic model approach that assumes a linear relationship between
CPR and explanatory variables. Resulting in the following model:

yi,t = β0 + β1xi,t,1 + ....+ βnxi,t,n + εi,t = X ′
i,tβ + εi,t (7)

Y t = X ′
tβ + ε (8)

where ε ∼ N(0, ϵ) . To obtain and estimate for the coefficients β,

β̂ = argmin
β

L(β), (9)

where the objective function L(β) is given by:

L(β) =

n∑
i=1

∣∣∣∣yi,t − p∑
j=1

Xi,t,jβj

∣∣∣∣2 = ∥∥Yt −Xtβ
∥∥2. (10)

5.2.3 LASSO Regularization

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularisation technique that was
first introduced by Tibshirani (1996). The LASSO penalty term reduces the number of variables
the model regresses on, which reduces the chance of over-fitting. LASSO has been picked over other
regularisation techniques such as Elastic Net or Ridge because the least essential coefficients in the
regression can be set to zero instead of tending to zero. This is important for Kanab as the aim is to
get a simple, interpretable (and accurate) model as possible, therefore as few regressors as possible
for an accurate model.
A lasso penalty term can be applied to both LR and MNL likelihood functions, in the new likelihood
function to be maximised below:

LLASSO (YT ) = L (YT )− λ
∑
j∈K

∥βj∥1 (11)
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Where λ is a hyperparameter that decides the rate at which the coefficients "shrink" to zero. The
larger λ the more regularization and therefore the fewer regressors that will be included in the model.
K-fold Cross-Validation will be used to find optimal hyperparameters, this process is explained in
more detail in 5.2.8.

Basis-Variance Trade off

Let Yi,T = f(Xi,T ) + ε for some T where f(Xi,T ) is the true function, then the aim is to find
f̂(Xi,T |Yi,t, Xi,t) which minimizes the mean squared error. The mean squared error of a model
can be decomposed into three terms the bias, variance and, nosie, given in the equation below (and
proved in the appendix):

ED,ε

[(
Yi,T − f̂(Xi,T |D)

)2]
=
(
BiasD

[
f̂(Xi,T |D)

])2
+VarD

[
f̂(Xi,T |D)

]
+ σ2 (12)

where D = {Yi,t, Xi,t}, for notation reasons. The bias is the distance between the average prediction
of the model and the actual value; the variance is volatility in prediction overtraining sets. The noise
σ2 is an irreducible error which is not dependent on model or training data but can be thought of as
the randomness that exists in the world. In Machine Learning, there is a bias-variance tradeoff; if
one wants to reduce the model’s error, noise can be reduced, but basis and variance can. However,
one can only be reduced at the cost of increasing the other.
By applying a Lasso penalty term to the models, the variance is decreased; however, the basis of
the model increases.

5.2.4 Decision Tree

DTs have not to be used directly as a classification or regression model. However, they have been
used within other models; therefore, it is critical to understand them.
Decision Trees (DTs) are most often used for regression or classification prediction; however, they can
extract clustering and non-linear patterns in large databases that are important for discrimination
Myles et al. (2004). This way, the data can be split into distinct groups with different prepayment
behaviour implying it would make sense to fit separate models to these groups. DTs use a divide
and conquer approach. Each node of the decision tree assesses which independent variable and at
what value in that variable will result in an optimal split. Data is then split, creating two more
nodes; this process continues recursively until specific stopping criteria are met. The nodes that the
ends with are called leaf nodes, and the one that starts the tree is called the root node. This process
results in a flow chart-like structure where each branch is the list of rules for each path leading to
each leaf node.
More formally, a partition set Pi,t is generated for each independent variable Xi,t by taking the
midpoint of each consecutive data point in the independent variable. Then at each node, the optimal
partition is found by finding which value in the partition set on which specific independent variable
minimises the "error rate". The error rate is calculated differently for classification vs regression
problems.
In regression problems, the "error rate" is usually taken as the sum of residuals in each region and
is defined below:

Error rate =
M∑

m=1

∑
i∈Rm

(yi − ŷRw)
2 (13)

Where m is the leaf and ŷRm is the mean value of instances in the m’th leaf. In classification
problems, the error rate is impurity and can be measured using metrics. Raileanu and Stoffel (2004)
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shown that it rarely matters which measure is used; however, Gini is preferred to Entropy because
it is faster. The reasoning is that Entropy uses logarithms, but Gini does not. The Gini impurity is
defined below as:

Gini =
3∑

i=0

p̂i(1− p̂i) (14)

Where p̂i is the probability of an observation training data with label i to be correctly classified.
The Gini impurity measures incorrectly classifying an observation if it was randomly assigned to
a class according to the class distribution in the set. Therefore minimising Gini gives the optimal
split. After the splitting occurs, the number of nodes then doubles; this process repeats until the
stopping criteria.
Stopping criteria can be multiple different hyperparameters which include; the minimum number of
observations in every leaf, maximum depth of the tree or the threshold decrease in the impurity after
a split. A stopping criterion is implemented so that terminal nodes do not overfit. Otherwise, after
each node is split, the Gini or MSE. will continue to get smaller as partition spaces get smaller and
will tend to zero. Only max depth from one to four will be considered to maintain interpretability.
DTs are non-parametric models, meaning there is no prior distribution assumption, letting the
data speak for itself. A further advantage of DTs is their ease of interpretability; one can easily find
precisely why the model has given its prediction. However, the main disadvantage is its high variance
meaning a slight change in the training data could lead to a significant change in the structure of
the DT. DTs have a low basis and tend to overfit the data, making them often inaccurate.

Algorithm 1 Decsion Tree
1: procedure DT
2: Create node, n = createnode()
3: while Stopping criteria has not been breached do
4: Calculate E, error rate or Gini (depending on problem type) using equation 13 or 14

respectively.
5: if E < E then:
6: The node is leaf node
7: return
8: Find binary split which results in biggest reduction of E
9: Set the child node as the parent node

10: Find alpha α which minimizes CCP using equation 15

Decision Tree Purning

Breiman et al. (1984) first introduced Tree Pruning; it is often used on DTs to prevent overfitting.
Mingers (1989) has shown that pruning increases the accuracy of the DT. Accuracy of predictions is
not the aim of the DT in this instance. However, the Puring will also exaggerate the Patterns seen
in the data, in turn making each leaf node more homogeneous.
Minimal Cost-Complexity Pruning (CCP) is a method of pruning; it accounts for both the number
of errors in classification and the complexity of the trees. The idea is that a penalty term (which
accounts for several terminal nodes) would be added to the error rate. CCP is essentially the upper
threshold of this error rate with the penalty. Meaning new nodes are only grown if they bring enough
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of a decrease in error rate, such that the CCP is not breached.

Cost complexity criterion(T ) =
|T |∑
w=1

∑
i∈Rw

(yi − ŷRw)
2 + α|T | (15)

where |T | is the terminal number of nodes in tree T. Cost complexity criterion for classification, is
calculated very similarly expect Gini is used instead of Error rate, therefore giving total misclassifi-
cation rate of the terminal nodes being considered at T.

5.2.5 Linear Tree Models

The main disadvantage of using Linear models is their inability to exploit data clustering and account
for non-linear relationships between dependent and independent variables. Lijmbach et al. (2021)
have used the recursive partitioning algorithm designed by Strobl et al. (2008). The algorithm
first finds the most unstable variable using a statistical test. Once found the value of split is
found by minimising the objective function 5, the procedure repeats until all variables are stable.
Implementation of the model must be in Python due to constraints set out by Knab, whereas the
package for this algorithm is only available in R. This makes it not feasible to implement this
algorithm with given time constraints.

LTV > 0.5?

Model 1 Seasoning > 150?

Model 2 Model 3

no yes

no yes

Figure 8: Example of Tree which segments data in step 1 of the Linear
Trees

An alternative method implemented for classification is the hybrid CART-logit, first posed by Chan
and Loh (2004) and includes a 2-step process. The first step splits the data using a classification DT
resulting in piecewise linear segments. Then MNL models can fit the data in each leaf node. Chan
and Loh (2004) extended the model to introduce pruning to the decision tree, and more recently
Dumitrescu et al. (2020) added a regularisation term to obtain Penalised Logistic Tree Regression
(PLTR). Similarly, for the regression case, Karalic (1992) and Chaudhuri et al. (1994) use the same
2-step process; splitting the data using regression DT, then they fit Linear and Polynomial regression
models respectively to the terminal nodes.
Steinberg and Cardell (1998) argues that DTs excel in the detection of local data structure. There-

fore, the discovery of patterns becomes more localised as the tree grows in-depth, limiting the ability
to do further statistical analysis at the nodes. This is not an issue for this research as there is an
emphasis on interpretability; a max depth of 3 has been enforced.
Both regression and classification methods have been us ed, for regression approach, a Linear Regres-
sion Tree (RL-Tree) and classification a Multinational Logit Tree (MNLL-Tree) are both variations
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Figure 9: Graphical representation of example model in Figure 8.
Please note data has been generated randomly, and no insights can be
taken from it.

of a Linear Tree. Current literature is limited to binary classification; the MNL-Tree will be extend-
ing the literature to multinomial output.
Like DTs, a drawback to the Linear Trees is their instability meaning a small change in the training
data could lead to a large change in the structure of the DT in step 1. In turn, leading to different
splits in the data and, hence, impacts the models in each of the nodes.
Figure 9 shows a graphical representation of how the DT splits the data in step one of the example
Linear Tree given in figure 8. The data in different regions in step two will then fit into a unique
model.

5.2.6 Random Forest

Random Forests (RF) is a supervised Machine Learning technique used for regression and classifica-
tion problems. Meaning the model is given both dependent and independent variables to train the
model on. An RF is a collection of DTs, which are described in 5.2.4, the output from each DT is
aggregated together (averaged for regression or majority voting for classification) to give the output
of the RF, as visualised figure 10.
RF has a lower variance but a higher bias than a single DT due to the aggregation of trees. However,
this exact reason why DTs have a lower bias is why they are likely overfitting the data. Therefore, if
the increase in bias is not "overshining" the variance reduction, this will increase prediction accuracy,
which is usually the case for an RF. The "overshining" refers to the variance-bias trade-off.
In the case of a RF Louppe (2014) has shown that the variance of the model is inversely proportional
to the number of trees in the forest. Implying that increasing the number of trees reduces the overall
variance. However, Breiman (2001) has shown there is a performance plateau where computational
costs out weight the reduction invariance. The optimal number of trees will be found using K-fold
cross-validation as described in 5.2.8.
Each of the trees within the RF is created by choosing by a random subset m ≈ √

p of all explanatory
variables p, which are used to create the split at each node. This process is called bootstrapping,
it makes each DT more unique and reduces the correlation between DTs. Furthermore, the random
construction of the trees gives the variables with less predictive power a greater ability to be involved
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in the fit as sometimes dominant predictors will not be included.
RFs are an Ensemble method as they combine several model predictions, making a stronger and
more stable prediction. Hastie et al. (2001) has shown that random forest performs better for clas-
sification than for regression and this is because misclassification error is less sensitive to variance
than is a mean-squared error. In the research paper both a regression and a classification approach
has been considered.

Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction

Figure 10: Visualisation of how a Random Forest works

RFs are often referred to as "black-boxes" as it can be difficult to explain why the RF gives certain
output due to the ensemble. However, it is possible to rank each input variable based on importance.
One method to give some insight into the RF is to obtain the how important each feature is with
the RF by measuring which explanatory variable has biggest impact of the decrease in the error.
Therefore feature importance is measured using:

F (Xi,t) =
∑

z ∈ fδG(Pi,t, z) (16)

where z is the node, f is f’th tree in forest, Pi,t is the partition set for Xi,t and G() is Gini from 14
for classification or Error rate 13. The larger the decrease in impurity and hence F (Xi,t) the more
important the variable in the RF.

An advantage of using a RF vs LR as the regression model is that the model’s predictions will
inherently be bounded between zero and one. In a regression context, RF predictions are the average
predictions of the prediction of the trees in the forest. Each DT prediction for observation Xt can be
thought of a weighted average of the response values Y0,t, .., YN,t in the training data, given below:

f̂(Xi,t) =

N∑
n=0

wn(Xi,t)Yn,t (17)
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where wi(Xi,t) are no negative weights with the constraint that they sum to 1,
∑N

n=0wi(Xi,t) = 1.
Which therefore implies that the output is bounded:

Min
0≤n≤N

Yn,t ≤ f̂(Xi,t) ≤ Max
0≤n≤N

Yn,t (18)

which ensures that the predicted CPR is bounded between zero and one.

Model Based Adjustments For Unbalanced Data

It was briefly discussed in 4.3 that the model could be adjusted to handle the unbalanced data better.
Classification methods such as DTs and RFs use majority voting to decide output meaning. However,
when the data set is unbalanced, the majority class tends to dominate in the voting system, creating
a considerable bias toward the majority class and a large false-negative rate. Chen et al. (2006)
have used threshold adjustments to combat this problem, which is when you adjust the classification
boundary towards minority class. For example, in a binary DT classification problem, one may make
it such that a node only needs 25% of observations to be considered that class instead of the normal
50%. However, this method can become more complex with multiclass classification; for example,
consider data set with multiple minority classes and their corresponding thresholds are breached.
Another method that is used is Cost-Sensitive Learning Ling and Sheng (2008), which a penalty
is placed on misclassifying minority classes, therefore placing a larger emphasis on model correctly
classifying them, to mintage the harshness of the classifier. To implement cost-based learning to
DTs, weights are incorporated into two parts of the algorithm. First, weights are used to weight the
Gini criterion for finding splits in the class. Lastly, weights are applied in the terminal nodes when
calculating the probability of each class.
The Gini is used to find the optimal splitting rule in DT classification, which can be thought of as the
probability of incorrectly classifying an observation if it was randomly assigned to a class according
to the distribution of the dependent variables in the set. Chen and Breiman (2004) describes how
using this metric to split data can be biased on unbalanced data; therefore new variables are defined
to create metrics correct for bias. Let tc =

∑3
i=0 ni be the number of observations in the potential

child node c, where ni is the number of observations in class i. Then the impurity of the child node
c is defined as:

ic = 1−
3∑

i=0

(
ni

tc

)2

(19)

where tc is the total number of observations in the parent node. Therefore, the total impurity for
the split is given by:

Gini =
∑
c∈C

(
tc
tp

)
ic (20)

where C in number of child nodes in the potential split and tp is total number of observations in
parent node. Implying that Gini is the sum of the fraction of number of observations in parent node
which which are in the child nodes multiplied by there corresponding impurity of the child node,
Saito (2018) shows that when there exists unbalanceness in the data set the Gini is effecred, in
turn effects the optimal split given by the DT. Lets define tWc =

∑3
i=0wini as the weighted number

of observations in child node child class c, where wi is the weight associated to class i. Then the
impurity of the child node c is defined as:

iwc = 1−
3∑

i=0

(
wini

tc

)2

(21)
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Therefore, the total impurity for the split is given by:

Gini =
∑
c∈C

(
twc
twp

)
iwc (22)

where twp is weighted total number of observations in parent node. Saito (2018) has shown that by
including weights in the Gini imporoves the performance of the model.

Figure 11: Random forest classification 1 year out of sample forecast
without adjusting the probability

Figure 11 shows the massive overestimation in the probability’s that occurs without making the
weighted adjustments the the output probability’s.

5.2.7 Linear Forests

The literature shows RFs to be effective at predicting prepayments Saito (2018). However, a pos-
sible problem with RFs is that they may not effectively capture parametric relationships between
the response and the predictors, given the non-parametric nature of the model. RFS may fail to
accurately make predictions for extrapolated data which are out of the domain of the data set. This
thesis aims to produce a long-term forecasting model; therefore, extrapolation is massively essential.
Given our limited data size, the likelihood is that the model will have to extrapolate at some points,
for example, rising rates.
Furthermore, in 5.2.5 Linear Trees are described; however, as explained in 5.2.4, a considerable dis-
advantage with DTs is their high variance. This issue persists in Linear Trees because in step one of
the Linear tree algorithm, a DT is fit, and if it drastically changes from a new input, this will also
drastically change the Linear Tree. As we know, RFs reduced this variance by using an ensemble of
trees, by the same logic and inspiration from Zhang et al. (2019) Linear Trees will be extending to
Linear Forests using an ensemble to reduce variance and chance of overfitting.

5.2.8 Hyerparameter Tuning

Hyperparameters are parameters that are used to control how the model will learn. For example, in
the case of a random forest, the number of trees or maximum depth of the trees. Hyperparameter
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tuning is the process of finding optimal hyperparameters for the model. If this is done over the
training set, this will lead to overfitting as the model has been finely tuned to the exact data in the
training set and may not perform so well out-of-sample. A method to avoid this is to use K-fold
cross-validation. In this method, the training and validation set are combined and then split into
K sets. The model will be then trained using K-1 sets as the training set, and the remaining set is
called the validation set. The trained model is then run with the validation set, and the percentage
of correctly classified samples (called accuracy score) is recorded. This process is repeated K times
using one of the K sets as the validation set. The K accuracy scores are averaged; this is the metric
that will then be optimized over.
This K-fold cross-validation is repeated for various hyperparameters to find optimal. There are two
main ways can search through the set of values used as hyperparameters Probst et al. (2019). The
first is Grid Search systematically loops through all values in a given parameter space. Whereas
Random Search randomly values from a given distribution. Bergstra and Bengio (2012) have shown
random search has been shown to be more efficient on learning algorithms, not including RF’s.
However, I believe the same would be true for RF’s as not all hyperparameters are equally important,
and Random Search can account for this. For this reason, Random Search will be used.

5.3 Multi-step Forecasting

Forecasting over multiple periods can be done in a recursively or In this section, the different methods
for forecasting CPR over the lifespan of each mortgage will be explained. They will be evaluated on
both accuracy and run-time.

5.3.1 Deterministic

Different adjustments need to be made to each model to be able to apply multi-step deterministic
multi-step.

5.3.1.1 MNL/MNL-Tree

Estimates for β̂ are obtained in way described above 5.2.1. The equation for πi,t,j as described in
equation (2). To forecast the MNL and MNL-Tree, a model dependent on time till maturity must
be obtained. To do this, the independent variables must be made a function of time till maturity.
This can be easily done for deterministic variables such as Seasoning or Seasonality. However, it is
more difficult for stochastic variables such as market mortgage rate and usually have to be modelled
stochastically. There these variables will be assumed as constant. Therefore, this will yield MNL and
MNL-Tree models that will be a function of time until maturity. Forecasts can easily be extrapolated
from this.

5.3.1.2 Random Forest

As RFs are "black-boxes" this makes then There are two main methods for forecasting RFs deter-
ministically; the first is done "directly", for which a separate model is developed to forecast each
overtime. This is very computationally expensive; for this reason, it will not be used. The other
method is to use a Multi-Input Multi-Output (MIMO) RF, which instead of returning a single clas-
sification like traditional RFs, it will output a vector of classifications. These multiple classifications
will give the forecasts till maturity. However, the issue with MIMO RF is that it will produce a
vector of fixed length for all observations; this will not be suitable for modelling mortgage prepay-
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ments because each observation will have a different time till maturity; therefore, it needs a different
forecast length.

5.3.2 Monte-Carlo

The deterministic forecasting is unable to deal with stochastic variables as explained 5.2.1 when
forecasting using Monte-Carlo (MC), these stochastic variables can also be forecast using stochastic
models and then incorporated in the MC. Another advantage to forecasting via MC is the ability
to capture path dependency. For example, if the model predicts a prepayment int, the probability
of prepayment in t+1 will decrease. The deterministic forecasting cannot model this as it never
"predicts" a prepayment but instead finds the expected prepayment as a combination of probability
and prepayment amounts. The general structure of the Monte-Carlo simulation is:

1. Run steps for the one-step forecast as stated in 5.1. Note the model will be fit only once, and
then the new one-step ahead independent variables are input into the model.

2. Move deterministic variables by one period.

3. Run stochastic models to forecast one step ahead stochastic variables.

4. Use these new variables as the input variables and run step one again.

5. Iteratively run steps 1-4 until the time until maturity is zero.

6. Repeat steps 1-5 one hundred and fifty times for each loan and then average the CPR and
penalty terms at each forecast time period.

5.4 Procedure for choosing regerssors

Knab aims to get a simple, accurate model with variables that have only shown significant predictive
performance in the past and can be interpreted in an economically correct manner. To achieve this
two different approaches, the first for the Machine Learning models in which one used 3-fold cross-
validation to find the optimal hyperparameters resulting in optimal regressors (in the case of Lasso
penalty models). Then for non Machine Learning models (MNL and LR) first model with all variables
(excluding ones removed from initial regularization). Then variables are iteratively removed based
on which variables have insignificant coefficients (for all states in MNL models). Once completed,
the correct combination of variables is found using trail and error, which maximizes Adjusted R-
squared (McFadden’s for MNL) whilst minimizing Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC). Adjusted McFadden’s R-squared is used for both is defined as:

R2
Adj.McFadden = 1− log (Lc)−K

log (Lnull)
(23)

where Lc is maximized likelihood function, Lnull is the maximized log-likelihood of null function in
which only an intercept is included and K is the number of additional parameters relative to the null
model Long et al. (1997). It is preferred to optimize Adjusted over standard McFadden’s R-squared
because it penalizes you for adding regressors that do not fit the model.
In addition to the adjusted R-squared scores, Information Criteria will be used for all non-Machine
Learning models, which measure the quality of a statistical model, taking into account how well the
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model fits the data and the complexity of the model. Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC) are defined as:

BIC = Klog(n)− log (Lc) (24)

AIC = 2log(n)− log (Lc) (25)

Where n is the number of data points Long et al. (1997). BIC can be prone to underfitting where
as AIC can be prone to overfitting due to how they penalize the number of parameters. Therefore
to minimize the chance of both underfitting and overfitting one must minimize both BIC and AIC,
however if AIC and BIC disagree BIC is preferred as penalizes complexity more yielding a simpler
model.

5.5 Model Performance Evaluation Methods

Prepayments are notoriously hard to predict due to the external influences causing seemingly non-
rational behaviour. Additional banks or other financial institutions which hold large amounts of
mortgages are not so interested in forecasting the exact amount each loan part prepays. They are
much more interested in a portfolio level and how much prepayment occurs because different loan
parts will even each other off. Therefore, the hedge happens on a portfolio level. However, this is
not possible to optimize this source whilst training for several reasons. First, because the algorithm
would then have to group the predictions with the same dates before a weighted average is used to
calculate on a (sub-)portfolio level, however, the date is not an input or accounted for in the model.
Furthermore, the same issue occurs for the classification approach because penalty compensation
terms and partial prepayment amounts are time-dependent. Therefore obtaining a fair comparison
for regression and classification models is not possible in the training data. Therefore once the
optimization procedure on training data (described in 5.4) is completed, one can use the model to
forecast a portfolio for a number of months which can be evaluated vs the observed prepayments.
To combine CPR from loan or borrower level to portfolio level, a weighted averaged approach given
below can be used:

CPRp,t =

∑N
n=0 [CPRn,tNotn,t]∑N

n=0 Notn,t
(26)

where CPRn,t is predicted CPR for nth loan or borrower at time t, N number of loans or borrowers
at time t and is Notn,t is the remaining notional the for nth loan or borrower at time t. It depends
on the model chosen for forecasting whether loan or borrower is used.
For evaluating how the predictive performance of the models out of sample on portfolio level three
main metrics will be used. The is called normalized delta which aims to measure how accurate the
model is at predicting prepayment amounts for whole year. It is calculated as:

∆T =

∑T
t=t1

∑N
n=0 (Pred CPRn,tPred Notn,t − Obs CPRn,tObs Notn,t)∑T

t=t1

∑N
n=0 (Obs CPRn,tObs Notn,t)

(27)

where N is number of loans in portfolio at t1, T = t1 + tw where w is number of periods being
forecast. Pred CPRn,t is the CPR predicted by the model and Obs CPRn,t is observed CPR in
real data for loan n at time t. Pred Notn,t is the predicted notional for loan n at time t, which is
affected by the previous Pred CPRn,t. This issue with the normalized delta metric is that it does
not consider how well the prepayments are predicted through out the year, just as a whole at the
end.
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The other two metrics use and R squared approach which measures how well the model explains the
variance in the data thought out the year. R squared is generally calculated using:

R2 = 1−
∑T

t=t1
(dt − ft)

2∑T
t=t1

(dt − d̄)2
(28)

where ft is the forecasted variable at time t for which R squared is being calculated for. dt is the
corresponding observed variable at time t and d̄ is the average of the observed variables for data
period T − t1.
The first is called Cash flow R squared, which calculated the R squared of the predicted prepayment
cash flow’s similarly to equation 27. Lastly, a portfolio level CPR R squared is calculated by
transforming forecasted CPRs to portfolio level using equation 26 and then calculating the CPR
over the forecasting period.
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6 Results

6.1 Linear Regression

Linear regression was fit to training data using the iterative process described in 5.4, to find the
optimal combination of independent variables. This resulted in the model with coefficients in table
1 and 2. The tables show that similar variables are highly significant in the LR model for loan and

Table 1: Loan Level Coefficients

Variables Coefficients P-value
Seasoning 3.222 x10−5 0.000

Seasoning2 -8.334 x10−8 0.000
NHG -0.0007 0.000

Interest Rate Differential 0.0027 0.000
Prepaid Before Indicator -0.0018 0.000

Burnout As Sum -1.274 x10−9 0.000
After Anomaly Month 0.0007 0.000

Annuity Indicator -0.0047 0.000
Linear Indicator -0.0041 0.000
Bullet Indicator -0.0046 0.000

Savings Indicator -0.0053 0.000
House Indicator -0.0039 0.000

January Indicator 0.0119 0.000
February Indicator 0.0107 0.000

March Indicator 0.0103 0.000
April Indicator 0.0100 0.000
May Indicator 0.0104 0.000
June Indicator 0.0126 0.000
July Indicator 0.0108 0.000

August Indicator 0.0109 0.000
September Indicator 0.0106 0.000

October Indicator 0.0099 0.000
November Indicator 0.0111 0.000
December Indicator 0.0126 0.000

Table 2: Borrower Level Coefficients

Variables Coefficients P-value
Seasoning 9.341 x10−5 0.000

Seasoning2 -4.843 x10−7 0.000
Seasoning3 6.287 x10−10 0.000

Interest Rate Differential 0.0021 0.000
Burnout As Sum -6.485 x10−10 0.000

Prepaid Before Indicator -0.0032 0.000
Annuity Indicator 0.0005 0.001

Linear Indicator 0.0018 0.000
Bullet Indicator 0.0006 0.000
House Indicator -0.0032 0.000

January Indicator 0.0057 0.000
February Indicator 0.0039 0.000

March Indicator 0.0032 0.000
April Indicator 0.0031 0.000
May Indicator 0.0035 0.000
June Indicator 0.0046 0.000
July Indicator 0.0041 0.000

August Indicator 0.0041 0.000
September Indicator 0.0034 0.000

October Indicator 0.0030 0.000
November Indicator 0.0039 0.000
December Indicator 0.0057 0.000

borrower level data. The variables that remain significant in both models agree on the direction of
the corresponding coefficients. The month indicator variables show the models capture the seasonal-
ity that exists in data shown in 2. The Strong negative coefficient of the Seasoning squared variable
captures some of the non-linearity in the data. Furthermore, it captures the idea that the likelihood
of a borrower moving house after a certain amount of time starts to decrease because owners are
settled in their house and have no reasons to move out (i.e. having kids). Two variables which
are highly significant on loan level but not borrower are NHG and After Anomaly indicators which
are negative and positive, respectively. The Dutch government insures NHG or National Mortgage
Guarantee loans. They have lower interest rates attached to them, lowering the probability that it
is optimal to prepay the loan and therefore lowering CPR. The After Anomaly indicator is one after
the option of a non-cash prepayment without a penalty was removed; otherwise its 0. As explained
in 4.2 There appears to be a behaviour change when an option is removed. A slight increase in the
number of full prepayments and a decrease in non-cash prepayments results in an increase in CPR
overall, which is confirmed by the direction of the coefficient.
The tables imply for both borrower and loan-level data that there is a highly significant negative cor-
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relation between if (loan part or borrower) has prepaid before and CPR. This goes against intuition
because, in theory, if someone prepays before, they understand how prepaying can be optimal and
will be more likely to prepay again. However, given the small data period for borrowers, there is not
enough time to see borrowers prepay again because the borrower needs to build up enough capital
to pay the costs of prepaying again. This is backed up by the fact that the number of prepayments
greater than prepaying more than once is minimal.
For categorical variables, which have been transformed into binary variables like loan types, to in-
terpret them, you compare them against each other as a pose to looking at the direction of the
coefficient. For Loan and borrower level data, linear loans have the highest coefficient implying that
they had the highest CPR in the past. In linear loans, the total amount paid each month decreases;
therefore, as the loan ages, the mortgagor may have more disposable income giving them the ability
to prepay. The savings indicator is the lowest for loan data and is not significantly different from
zero on the borrower level. Consequently, both models also agree that loans tied to saving accounts
are less likely to prepay. Generally, the interest rate on your savings corresponds to the mortgage
interest. Since 2012 interest rates have been falling, implying a decreasing mortgage rate on the
loan, making it sub-optimal to prepay. However, with rising interest rates on the near horizon, this
may invert, as these loans are more sensitive to interest rates.
Both models agree on a w shape for seasonality, with the coefficient being largest at the end and
the start of the year, then low in autumn and spring before going high again in June. This agrees
with what we have observed in the data.
Seasoning has a Strong positive correlation with CPR in both models. This agrees with the PSA
model Hayre (2001) which increases CPR for the first 30 months. Additionally, this makes economic
sense because the longer a borrower lives in a house, the more likely they are to move house or
generate enough disposable income to partial prepay, increasing expected CPR. Both models agree
that Interest Rate Differential has a strong positive relationship with CPR, implying that borrowers
prepay more when the option to prepay is "in-the-money" (i.e. beneficial).
Burnout is the sum of all the past Refinance Incentive for a loan (or borrower); therefore, if burnout
is large, it implies that in the past, the borrower has not prepaid when it may have been optimal
to do so; otherwise, the interest rate would of been reset and refinance incentive would be zero,
giving a lower burnout. The variable is by no means perfect because it could be heavily linked to
age. However, this version works the best in the linear regression. The tables 1 and 2 show there
exists a Strong negative relationship between Burnout and CPR, implying that someone who had
not exercised prepayment when it was optimal to do so in the past, meaning they will be less likely
to prepay in future.
The tables both agree that if the mortgage is for a family house instead of an apartment or business
property, they will be less likely to prepay as they are more likely to invest in property in the long
term. The last thing to note is that in both models, a constant term is not significantly different
to zero. This can make sense because, in the case of seasonality, all twelve indicator variables are
included, meaning can adjust the baseline level.

Linear Regression with Lasso penalty term

To find optimal level of penalization λ, 3-Fold cross-validation has been performed on the training
data optimizing the out-of-sample R-squared. The process has been described in further detail in
5.2.8. This resulted in a λ of 0.0005.
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6.2 Multinomial Logit Model

First, to reduce the number of variables in the MNL model, the lasso penalty term was fit with a
total of 30 different values for lambda ranging from 0.0001 to 10000. As lambda is increased, the
less critical (and less critical of highly correlated) variables for prediction coefficients shrink to zero
faster than the more important variables. It was chosen by an expert judgment that at a lambda of
10, remove all variables that had zero for coefficients for all of the states. This results in a lot of the
expected highly correlated variables dropping out. The details of which variables had been removed
can be found in the appendix.
Then the iterative process of finding optimal regressors described in 5.4 is performed, yielding the
MNL model with coefficients described in table 3. The resulting MNL model has a Mcfadden R2 of
11% , a AIC of 1,129,430 and BIC of 1,483,430
Section 5.2.1 explains why the coefficients in the MNL model can be difficult to interpret; therefore
the Average Marginal Effects (AME) are used instead to gain an understanding of the model. For the
interpretation, Partial, Full and Non-cash states will mainly be considered because the classification
approach uses these states to create CPR.
There exist positive AME family house indicator for Partial but negative for both Non-cash and full;
if the property is a family house, the owners are more likely to see themselves there more long term,
therefore reducing the probability of full prepaying (to move) and more likely to partially prepay
to reduce the interest rates over the long term. Refinance incentive and interest rate differential
aim to capture the similar idea of prepayment probability increases when it is optimal to prepay.
The direction of both partial and non-cash AMEs agree with this hypothesis. However, for full
prepayment, the AME for refinance incentive and interest rate differential differ in the direction.
The reason why there might be a weaker relationship in this state is that full prepayments are
predominately driven by moving house, and the incentive to prepay is not going to be the primary
motivation in moving house.
LTV has a positive AME for partial, implying borrowers will partially prepay more when LTV is high
to move to a lower mortgage rate bucket. There exists a decreasing relationship between LTV and
probability of non-cash prepayment, which will most likely be due to its correlation with Seasoning,
i.e. the older the mortgage the more the borrower will have paid back and therefore a lower LTV.
The After Anomaly Indicator shows the shift in the state, which happens as penalty-free non-cash
option is removed. A decrease in the probability of Non-cash and an increase of Full is observed,
which makes sense because the removal of this option means fewer people may have the money to
be able to pay the penalty in non-cash prepayment. The removal of the option may be driving
borrowers to move to a bank that offers it and, therefore, full prepay.
Seasoning and Month Till Maturity are inversely correlated; therefore, it is somewhat surprising for
the AMEs to act in the same direction for partial and full states. However, this could be possible
because the time till maturity could capture that for loans with a larger time till maturity, it will be
more beneficial (if in-the-money) to make non-cash prepayment because the borrower will be saving
money on interest payments for longer. The AME of Seasoning shows that the older the mortgage,
the more likely they are to move property and, therefore fully prepay.
The loan type indicators confirm the argument made in 6.1 that Linear are most likely to partially
prepay and Saving loans the least. The seasonality dummy variables show some clear seasonality in
partial prepayment probability, where we see large values for AME at the end/start of the year for
tax reasons, then decrease in spring and autumn before increasing again in summer when employees
receive holiday pay. There is no economic reason why a borrower would make a non-cash prepayment
in one month vs another; this is demonstrated in the data where there doesn’t seem to be a pattern in
Ames. For full prepayments, seasonality peaks in the summer months between June and September,
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Table 3: Multinomial Logit Model summary table

Coefficients Average Marginal Effects
Variables Partial Non-cash Full None Partial Non-cash Full None
Seasoning -0.0001 -0.0046 0.0203 0 −3.354x10−5 -7.084x10−5 0.0001 0.0008

(0.912) (0.000) (0.000)
Seasoning2 −3.116x10−5 1.223x10−5 −7.07X10−5 0 -1.171x106-7 2.047x10−7 -4.823x10−7 -1.054 x10−6

(0.000) (0.000) (0.0229)
House Property Type Indicator 0.4406 0.0788 -0.5303 0 0.0004 -0.0005 -0.0026 -0.0001

(0.000) (0.000) (0.000)
Refinance Incentive 4.231x10−6 7.45X10−5 -7.075X10−6 0 8.16x10−9 1.126x10−7 -7.952x10−8 -4.128x10−8

(0.000) (0.000) (0.0418)
Month Till Maturity -0.0009 0.0014 -9.077X10−6 0 -1.222 x 10−6 3.32x10−5 2.943x10−6 0.0004

(0.000) (0.000) (0.824)
Annuity Indicator -1.2866 -0.9757 0.4203 0 -0.0015 -0.0206 0.0033 0.0187

(0.000) (0.000) (0.0053)
Linear Indicator -1.0754 -0.3258 0.3922 0 -0.0001 -0.0114 0.0041 0.0074

(0.000) (0.000) (0.000)
Bullet Indicator -1.0703 -1.3823 0.1369 0 -0.0008 -0.0282 0.0022 0.0268

(0.000) (0.000) (0.017)
Saving Indicator -4.4698 1.1179 0.1558 0 -0.0036 0.0163 0.0015 -0.0142

(0.000) (0.000) (0.007)
Interest Rate Differential 1.0133 0.1597 0.2288 0 0.0012 0.0021 0.0018 -0.0051

(0.000) (0.000) (0.000)
NHG Indicator -0.0849 -0.2888 0.0906 0 0.0003 -0.0040 -0.0013 0.0024

(0.037) (0.000) (0.000)
LTV 0.7372 -2.2314 0.1729 0 0.0011 -0.0409 0.0014 0.0383

(0.000) (0.000) (0.000)
After Anomaly Month -0.2325 -0.1576 0.4144 0 -0.0003 -0.0028 0.0023 0.0008

(0.043) (0.002) (0.000)
January Indicator -8.1023 -2.6730 -6.3870 0 -0.0082 -0.0438 -0.0389 0.0912

(0.000) (0.000) (0.000)
February Indicator -7.7111 -3.0656 -6.4876 0 -0.0085 -0.0519 -0.0397 0.1004

(0.000) (0.000) (0.000)
March Indicator -7.7584 -2.9383 -6.4897 0 -0.0083 -0.0514 -0.0395 0.0994

(0.000) (0.0052) (0.000)
April Indicator -7.7588 -3.0506 -6.5300 0 -0.0087 -0.0520 -0.0407 0.1016

(0.000) (0.000) (0.000)
May Indicator -7.7394 -2.9894 -6.4278 0 -0.0085 -0.0472 -0.0410 0.0969

(0.000) (0.000) (0.000)
June Indicator -7.9062 -2.6363 -6.3106 0 -0.0073 -0.0442 -0.0388 0.0905

(0.000) (0.0049) (0.000)
July Indicator -8.0446 -2.7981 -6.4158 0 -0.0077 -0.0467 -0.0399 0.0945

(0.000) (0.000) (0.000)
August Indicator -8.2567 -3.8332 -6.3197 0 -0.00052 -0.0462 -0.0389 0.0788

(0.000) (0.000) (0.000)
September Indicator -8.3829 -3.0283 -6.4059 0 -0.00089 -0.0490 -0.0397 0.0979

(0.000) (0.000) (0.000)
October Indicator -8.3131 -3.0019 -6.5942 0 -0.0092 -0.0471 -0.0416 0.0981

(0.000) (0.000) (0.000)
November Indicator -7.9031 -2.7001 -6.4698 0 -0.0102 -0.0466 -0.0405 0.0975

(0.00440) (0.000) (0.000)
December Indicator -7.2064 -2.5682 -6.3302 0 -0.0072 -0.0431 -0.0383 0.0888

(0.000) (0.000) (0.0047)

as people generally prefer to move house in the summer.

Multinomial Logit Model with Lasso penalty term

To find optimal level of penalization λ, 3-Fold cross-validation has been performed on the training
data optimizing the out-of-sample Gini. The process has been described in further detail in 5.2.8.
This resulted in a λ of 0.0001.
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6.3 Linear Tree

In the MNL-Tree, we first fit the decision tree from which rules are extracted and used as indicator
variables in an MNL model. Max depths ranging from one to three have been investigated to
maintain interpretability. Hyperparameter tuning has been applied to each max depth model, in
which we use cross-validation to maximize the error giving an optimal Max depth of 2 for the MNL
Tree and 3 LR Tree. In step one of the algorithm DTs are formed to which linear models are then
fit; the resulting DT’S are obtained below:
LR Tree:

Seasoning <= 7

LR1 Refinance Incentive <= 1330.5804

LR2 LTV <= 0.7

LR2 LR3

MNL Tree:
Arrears Decayed <= 2.3

MNL1 MNL2

Figure 12 and 13 show the coefficients of the LR Tree and MNL Tree respectively. It can be see
large number of non-zero coefficients for all of the models in the nodes. As can be seen even with
short trees of a max depth of 3 it can get quite complex to explain the models. Interpreting 12 is
more complex than LR beacasue you have multiple LR to stat nd you ahve to consider the spliting
rule(s) that occurs which happen before the node which can have and effect on the coefficients.

Figure 12: LR Tree Coefficients
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Figure 13: MNL Tree Coefficients

6.4 Random Forest

To reduce the probability of overfitting 3-fold cross-validation was performed; further details on
motivation can be found in 5.2.8. The resulting optimal hyperparameters can be found below in
table 4.

Table 4: Random Forest Hyperparameter table

Treatment of Data
Modeling Approach Hyperparameter Loan Level Borrower Level

Classification n_estimators 700 800
min_samples_split 20 100
min_samples_leaf 20 20

max_leaf_nodes 48 18
max_features auto auto

max_depth 30 70
class_weight balanced balanced

ccp_alpha 0.01 10
Regression n_estimators 800 1800

min_samples_split 1000 15
min_samples_leaf 4 15

max_leaf_nodes 37 10
max_features auto sqrt

max_depth 10 90
ccp_alpha 0 0.01

In order to gain some insight into which variables are important in the RF model for predicting
CPR, a feature importance plot has been included.
Please note labels for variables can be found in Appendix C. Figure 14 shows that important variables
for RFs can vary based on the type of approach used. For regression, the Number of Past Partial
Prepayments and If any prepayment occurred previously are both very important for forecasting
CPR, whereas it is not important for forecasting prepayment type through classification approach.
In contrast, Arrears Decayed is Highly important for the Classification approach but not at all for
regression.
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Figure 14: Feature importance for Random Forests on loan level

As explained in 5.2.6 it can be difficult to understand why this is the case; however, an interesting
observation is that Arrears Decayed is not significant in the MNL model, implying that there must
be a non-linear relationship between this variable and prepayment type which the linear MNL model
is not able to capture.
Interestingly enough, the variables that both types of RFs agree are important are linked to com-
monly accepted and widely used variables in the literature. Richard and Roll (1989) model is
heavily used forms the foundation of most prepayment models, in which they make use of four fac-
tors; Seasoning, seasonality, Burnout, and Refinance incentive. RFs agree that Seasoning, Month
Till Maturity and Month Till Reset are all important and can all be thought of as being linked to
one of four factors, Seasoning. Additionally, Interest Rate Differential and Refinance Incentive are
important and heavily related to the Refinance Incentive factor. Lastly, the graph shows that all
Burnout variables are relatively important. Therefore the only factor not being represented in the
RFs is seasonality, with all of the month indicator variables having very low importance scores. With
December and June having a slight increase in importance over the other months, this is warranted
by the data, which shows increases in those months. However, they are still of quite low importance
compared to the other non-seasonality variables.
From the graph, one can see that loan type is quite important in the classification and regression
models, which agrees with finding in the LR and MNL models, which finds them significant.

6.5 Forecasting

A one-year multi-step forecast has been obtained for the various models outlined in the Methodol-
ogy. The forecasting period starts in November 2020 and ends in October 2021. Forecasting will be
done on a borrower or loan level depending on the type of model used; this will then be aggregated
to the portfolio level, which will then be evaluated using metrics in 5.5.
First, the deterministic models will be discussed. The MNL model is the industry standard there-
fore, this can be the baseline model which the results will be compared to it. In figure 18 the MNL
does a relatively good job, with CPR R Square scores of just over 30% meaning that on a portfolio
level 30% t 30% of the CPR in data be explained by the MNL loan level model. Additionally 40
% of the projected cash flows on portfolio level can be be explained by the MNL loan level model.
Furthermore, figure 17 the normalized delta is 4% meaning that the loan level MNL model estimates
4% more cash than observed for prepayments for the year forecasting period. From looking at figure
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16 the MNL fails to fully capture the great increase increase which occurs in December and January,
in addition to overestimation of the CPR which occurs in the summer months.

Figure 15 Figure 16

When the lasso penalty term is added to the MNL model, it produces less variation in the forecasted
CPR, producing predictions in a simpler shape than MNL but with smaller extremes. Figure 17
shows an increase in normalized delta and figure 18 a reduction in both types of R squared values,
which all point to an overall worse fit.

Figure 17: Loan Level Deterministic Forecasting Normalized Deltas

In figure 16 both of the RFs do not capture any of the seasonality in the data, with both of them
resulting in a slightly increasing straight line for CPR on portfolio level. Figure 17 shows the RFs
have some of the best-normalized deltas meaning that they do a good job of forecasting the exact
level of prepayments. However, when looking at figure 18 the R squared of the predicted prepay-
ment cash flows are with neither model obtaining a score above 20%. Furthermore, looking at their
CPR R squared scores, they are inferior, with both obtaining negative scores, meaning that naively
assuming that the average CPR on portfolio level would have given a better fit. The main issue
with the RF models is their poor ability to capture seasonality; this could be due to the model’s
architecture, which recursively performs a binary split. Therefore the model is very good at finding
clustering in the data; however, if data goes up incrementally but not enough to exceed the thresh-
old, it will remain in the same cluster giving the same output.
2).
Now looking at the LR in figure 16 one can see that it fits the forecasts relatively well. It captures
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Figure 18: Loan Level Deterministic Forecasting R Squared

the CPR increase in December and January better than any model so far and significantly better
than the MNL. It fails to capture the large decrease followed by a sharp increase in February and
March. However, it does a reasonable job of averaging them out. The LR has a normalized delta of
less than 1%, which is very good compared with the models. However, the R squared are not scores
are not as high as expected, with the portfolio CPR R squared score being lower than the MNL
model. The main reason for this is because of the overestimation in June, which has been skewed
by the large anomaly which happened in June 2016 (seen in figure 2). To check if this was the
case, we fit the same model with the same variables, only excluding the first year of data in train-
ing. This resulted in the pink line on figure 16. Now the graphs see smother increase over summer
months (as expected according to past data seen in figure The main issue with the LR model that
has just been demonstrated is the chance of overfitting the training data given the short data pe-
riod. This promoted LR with a lasso penalty term; however, the resulting model gives an extremely
sparse model, which results in a model with an extremely poor fit, which almost just looks like a
horizontal line on portfolio level. This result shows that the LR is highly likely to be overfitting;
however, it is not easy to test given a short data period. The RL with Lasso model has the worst fit-
out of the deterministic forecasted with a portfolio CPR R squared of about -25% shown in figure 18.

Figure 19: R Squared comparison for stochastic and deterministic fore-
casts

Now moving on to the Hybrid tree models, which include Linear trees and forests. Figure 15 shows
the compassion of the Hybrid tree models, and the LR Tree has a very similar fit to LR; however,
it seems to handle the June anomaly better. 18 confirms this because both R squared values have
increased against the standard LR and MNL. The MNL Tree is seen to have a worse fit than the
MNL with lower R square values and a higher normalized delta; this is mainly because it fails to
correctly capture the increase in CPR in December and particularly January. This could be because
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when the data is split using the tree part, now overarching seasonality that exists in the full data is
not as Strong in the two subgroups; therefore, the models underestimate the CPR. The Linear Forest
does much better than the RF, showing that a model that can capture incremental change in data
rather than shift to a whole new node is better for our data set. However, Linear Forest seems to
perform worse than the Linear Tree. Ensemble models are not universally better than corresponding
"single" counterparts. The Ensemble will only give better prediction if the single models suffer from
instability; this is unlikely to be true in our data set with many observations and variables. The
MNL Tree does not forecast CPR and the normal MNL model. Clearly, there is not enough data
for the clustering to occur for classification. Even at the lowest depth tree, data segmentation does
not improve the fits of the 2 models.

Figure 20 Figure 21

Figure 20 shows how the stochastic models are forecasted over time. It only makes sense to stochas-
tically model classification models because they output the probability of different states, which can
then be sampled from. 19 shows how the, generally that Monte Carlo is worse than its deterministic
counterpart based on the R Squared. I believe that this is because the error carried forward in
the Monte Carlo simulation is worse because if CPR is wrong in the first month, this will impact
the notional in the time period, which affects CPR in the following time period. Therefore, this
approach of choosing a state that occurs punished model in the month after. Implying that taking
a deterministic approach would be less wrong most of the time s, it can be considered an average.
Th fits get progressively worse as we move from right to left on Figure 20. Interestingly, the RF
performs considerably more than its deterministic version. implying the RFs predictions are more
accurate than their probability and the CPR’s trending upwards.
Figure 21 shows the one year forecast of the LR and MNL models on both loan and borrower levels.
On the Borrower level, the RL is more or less below the loan level LR forecast for forecasted dates.
It does not capture the increase in December; however, it better handles anomalies and ends the
last half of the forecast. Furthermore, figure 18 has the best portfolio R squared for both by both
measures. The Borrower MNL forecasts very similarly to loan-level one, but it has lower CPR R
squared, but a higher prepayment cash flow R squared.
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7 Conclusion

Throughout the thesis, various methods and models to produce multi-step forecasting of model for
prepayment rate have been investigated to find which gives the most accurate CPR on portfolio
level.
Chapter 1 gives a background to the problem and why a bank needs to forecast mortgage pre-
payments, and what the research adds to the current literature. Chapter 2 gives a more detailed
background on mortgage information, in which mortgage and prepayment types are described. Fur-
thermore, the various reasons a borrower may prepay their mortgage are explained and how the
prepayment penalty works. In the next chapter, a literature review is conducted in which the
various prepayment motives have been proved to be helpful when predicting CPR. Additionally, a
comprehensive review of all the current literature on predicting prepayment, including portfolio-level
models, option theoretic models, exogenous models, multi-step forecasting models and a brief review
of making Machine Learning models more interpretable.
In chapter 4, the two different methods of data aggregation are described and the reason for choosing
each. A thorough descriptive analysis was carried out, in which anomalies were discovered. After
which, it is explained how our data set is unbalanced and why this can be an issue for Machine
Learning classification models. Next, it discusses how adjustments for the imbalanced data set can
be made to the data or the model and why model-based adjustments have been preferred.
In chapter 5, the research methodology was laid out; first, the two different approaches (regression
vs classification) explained that classification is usually used for forecasting CPR. However, because
additional terms in the classification approach all bring their own error, a straightforward regression
might be more accurate. The multiple models are then explained, including Linear models, Linear
Trees, Random Forests, and Linear Forests, each of which has regression and classification variants.
In the Random Forest, it discussed the purpose of adjusting for an unbalanced for the Random
Forest classification model. Furthermore, it is discussed how Hyperparameter Tuning is used to
helping find the optimal models. It is explained how the process of the multi-step CPR foresting
takes place for both deterministic and stochastic forecasting. Additionally, the process for finding
optimal parameters is described. Before the chapter finishes with the model performance metrics, it
describes how the CPR should be evaluated on a portfolio level as a pose to the modelling level.
Chapter 6 shows the results of the analysis. It has been found that common drivers in the literature
such as burnout, seasoning, refinance incentive and seasonality are significant drivers of prepayment
in our data set. Contrary to current literature, it has been found that using regression to forecast
CPR directly is an effective method of modelling prepayment. Furthermore, modelling CPR on bor-
rower level as a pose to loan-level yields more accurate results for Linear Regression. Given our data
set, the linear models (Multinomial Logit and Linear Regression) outperform the Random Forest,
with the Random Forest failing to detect seasonality. However, there exists the possibility of over-
fitting due to the short data period and evidenced when removing larger outlier months model fits
forecasted CPR improves. It has been shown that Hybrid models such as Linear Trees and Linear
Forests do not make enough of a justifiable increase in forested CPRs worth using a more complex
model to forecast CPRs. Lastly, forecasting CPRs deterministically as opposed to stochastically
yields more accurate CPRs.
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8 Future Research

The main limitation of the research is the data length, with only data from the end of 2015 to 2021
available. Fitting models to more extensive data periods where more "states" exist may improve the
performance of RFs, as it could better account for the clusters. An example of a different scenario
is how would this model perform in a rising interest rate environment? Furthermore, the testing
period is only limited to one year, which is not ideal because the test data could potentially have
anomaly months in it, making it hard to tell if the model is performing poorly or not. An excellent
example of this could be in June, as all models over-predict CPR. This persists even when the first
year of training data is excluded (which includes the June anomaly(which skews the model)).
One further model was intended to be used but did not get approved by Knab in time. They were
the RUX and RUG models developed by Akyüz and Birbil (2021) which could be used to improve
the interpretability of the RF. RF has not been shown to perform well given our dataset; however,
this could be different given a larger data period. Additionally, it could be used in the first step of
the Linear Trees to increase the stability of the model.
It could be interesting to look into macroeconomic variables. This study did not include them in
our model because the main focus was on deterministic forecasting. In deterministic forecasting,
stochastic variables must remain constant. Therefore it did not make sense to forecast for a long data
period assuming macroeconomic variables are constant. Therefore I propose using macroeconomic
models to forecast these variables into the future, which will hopefully increase the accuracy of
the stochastic forecasting models. Another way to improve the stochastic model is to use an EM
algorithm on the change in interest rate differential to find the transition probability of going from
one state to another. At the moment, we assume a normal mixture model for which the probability
of the next state does not depend on the current state, which economically does not make sense.
The purpose of forecasting mortgage prepayments is so they can be taken into account when hedging
interest rate risk. The bank will have different costs depending on whether the model has false
negative or false positive; therefore, this could be taken into account using cost-sensitive learning.
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Appendices

A Variance-Bias Decomposition

E
[
(y − f̂)2

]
= E

[
(f + ε− f̂)2

]
= E

[
(f + ε− f̂ + E[f̂ ]− E[f̂ ])2

]
= E

[
(f − E[f̂ ])2

]
+ E[ε2] + E

[
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]
+ 2E

[
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+ 2E

[
ε(E[f̂ ]− f̂)
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+ 2E
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(E[f̂ ]− f̂)(f − E[f̂ ])

]
= (f − E[f̂ ])2 + E[ε2] + E

[
(E[f̂ ]− f̂)2

]
+ 2(f − E[f̂ ]) E[ε] + 2E[ε] E

[
E[f̂ ]− f̂

]
+ 2E

[
E[f̂ ]− f̂

]
(f − E[f̂ ])

= (f − E[f̂ ])2 + E[ε2] + E
[
(E[f̂ ]− f̂)2

]
= (f − E[f̂ ])2 +Var[ε] + Var

[
f̂
]

= Bias[f̂ ]2 +Var[ε] + Var
[
f̂
]

= Bias[f̂ ]2 + σ2 +Var
[
f̂
]
.

(29)

B Penalty Model

Penalty Fee = 1

[{
Prepay
amount

}
>

Principle
10

]
1 [Curr Rate < Mor Rate]

∑
i=1

N

[{
Prepay
amount

}
− Principle

10

]
[Curr Rate − Mor Rate]

1

12i(1+Curr Rate) (30)
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C Variable notations

• 0 - Seasoning

• 1 - Month Till Maturity

• 2 - Month Till Reset

• 3 - LTV

• 4 - Interest Rate Differential

• 5 - Refinance Incentive

• 6 - Burnout (Max past Refinance Incentive - current Refinance Incentive)

• 7 - Arrears Decayed

• 8 - Burnout (Max past Refinance Incentive)

• 9 - Burnout (Sum of past Refinance Incentive)

• 10 - Number of Past Partial Prepayment

• 11 - Number of Past Non-cash Prepayment

• 12 - If any prepayment occurred previously

• 13 - NHG

• 14 - Annuity Indicator

• 15 - Linear Indicator

• 16 - Saving Indicator

• 17 - Seasoning2
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• 18 - Seasoning3

• 19 - Business Property Indicator

• 20 - Family House Indicator

• 21 - Other Property Indicator

• 22 - Apartment Indicator

• 23 - After Anomaly Month Indicator

• 24 - January Indicator

• 25 - October Indicator

• 26 - November Indicator

• 27 - December Indicator

• 28 - February Indicator

• 29 - March Indicator

• 30 - April Indicator

• 31 - May Indicator

• 32 - June Indicator

• 33 - July Indicator

• 34 - August Indicator

• 34 - September Indicator
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