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Abstract

Companies in the energy sector are setting ambitious targets to become climate neutral. In this
process, it is of vital importance that each final product is associated with its inherent carbon
intensity (CI). This carbon intensity is a measure of the emissions associated with an energy product
accumulated while moving through the energy value chain, from extracting primary energy sources
up to the utilization of the final product. Carbon intensity is usually measured in gCO2e/x –
grams of CO2-equivalent per mass, volume or energy content of the product. To reduce the carbon
intensity of a product, companies have several choices and investment opportunities, for example
making a switch to cleaner modes of transport or the installation of carbon capture & storage (CCS)
technologies. This thesis aims to design models that find the most cost-efficient solutions for energy
value chains while incorporating restrictions on carbon intensities.

The contribution of this thesis is twofold. Firstly, we present a general modeling framework
that incorporates optimization over carbon intensity in a four-tier supply, production, storage and
customer network with multiple product streams, multiple modes of transport and CCS investment
options. Carbon intensity can be calculated post-optimization relatively easily given a set of alloca-
tion rules, however optimizing over carbon intensity results in a nonconvex quadratic optimization
problem. This problem can be solved to optimality within a few minutes with state-of-the-art solvers
for small instances of at most a hundred variables and carbon intensity restriction values that are
not so low that they approach infeasibility. Secondly, an application of a hydrogen supply chain
network optimization case study in the Netherlands is presented. In this network, emissions from
hydrogen production account for about 95% of total emissions, where total emissions also include
feedstock preparation and transportation emissions. Therefore, investments in CCS are most effec-
tive to reduce carbon emissions. For a linear dynamic model of conventional size of several tens of
thousands of variables, it takes under one second to find the optimal network configuration without
carbon restrictions. Among different CI restrictions, it generally takes a few seconds to find the
first feasible solution, but optimality can rarely be proven within five minutes. Solving the linear
version of the model where emissions are minimized serves as a good starting solution, which can
be used as a warm start in case the model has trouble finding an initial solution satisfying the CI
restrictions.

Keywords: mixed integer nonlinear programming (MINLP), energy value chain optimization,
carbon intensity, carbon capture & storage (CCS)
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Chapter 1

Introduction

According to research from the Intergovernmental Panel on Climate Change, the global temperature
on earth has risen approximately 1.09°C in 2011-2020 compared to the pre-industrial age (Pörtner et
al., 2022). The probability that in the period 2021-2040 this will increase to over 1.5°C, the targeted
global warming limit in the Paris Agreement of 2015, has increased to more than 50%. According
to Lamb et al. (2021), global greenhouse gas (GHG) emissions peaked in 2018 at 58 gigatons CO2-
equivalent, of which about 34% originate directly from the energy systems sector. Therefore, it is of
crucial importance that energy companies take action to lower their carbon emissions in the coming
decades.

Energy systems consist of the supply, storage, distribution and sales of energy products. There
exists a wide range of energy sources: crude oil, natural gas, coal, biomass, nuclear plants, wind
energy, solar power, etc. Feedstock sources are converted into energy products providing different
energy services, such as gas for heating houses or gasoline to fuel cars. The design and optimization
of such energy systems are also called energy value chain optimization.

Energy products have certain associated carbon emissions. These can roughly be classified into
two categories. First of all, there are scope 1 and 2 emissions, which are respectively direct and
indirect emissions originating from operations. These include for example the emissions arising
during the production of the feedstock at the source, emissions from processing feedstock into
products and emissions from transportation of resources. Secondly, there are scope 3 emissions,
which consist of - among others - the use of the energy products sold. Scope 3 emissions can vary
greatly between energy products: for instance, burning pure diesel corresponds to different carbon
emissions than burning biodiesel, where biomass is blended in.

If one accounts for all the emissions that are associated with a final product in an energy value
chain, one can calculate its carbon intensity (CI), also known as emission density. Carbon intensity
is a quantity that can be used to express the inherent emissions of a product. It is expressed
in gCO2e/x – grams of CO2-equivalent per volume, mass or energy content of the product. In
conventional supply chains, the CI property of a product generally increases as it moves through
the network, as the production, manufacturing and transport processes increase the cumulative
carbon emissions.

To reduce the carbon intensity of a product, several decisions during value chain optimization
can be taken. First of all, the selection of feedstock has a large influence on the CI of a product.
For instance, electricity can be produced from coal or natural gas, but wind and solar energy
are much cleaner alternatives. Secondly, investments in the technology carbon capture & storage
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(CCS) can be considered, which captures CO2 emissions during material processing and stores them
underground. Other carbon reduction strategies include the selection of cleaner production units,
other modes of transport and satisfying less demand.

Calculating the CI values post-optimization, i.e., given your optimized material flows, is some-
what ambiguous. The emissions of a factory, for instance, could be distributed among the materials
in various ways: based on the volume of the products, their mass, etc. Although this is an im-
portant topic, it is mainly an accounting challenge. When CI is included as part of the decision
variables in the optimization process, however, we also have challenges of a mathematical nature.
As carbon flows in the supply chain are a result of the material flows, we establish a nonlinear
problem formulation, something that also appears in the well-studied pooling problem in the petro-
chemical industry. This thesis project focuses on finding effective modeling and solution techniques
for carbon intensity in energy value chains.

The research project is conducted in collaboration with ORTEC. ORTEC is a software and
consultancy company, specialized in the optimization of business processes using mathematics and
data science. The project is done for the company Shell, which is one of the largest energy suppliers
in the world. Shell has the ambition to become a net-zero company by 2050, in steps with society.

1.1 Research Objectives

The main challenge surrounding the modeling of carbon intensity is to find the most suitable
formulations and solution methods given the various carbon-related use cases that can be modeled.
This gives rise to the following research questions:

1. What is the most effective way to model carbon flows in mixed-integer linear programming
production and distribution models in the energy value chain optimization domain?

(a) How can a restriction on carbon intensity be included?

(b) How can the option for carbon capture & storage be included?

(c) What is the degree of nonlinearity under different model configurations?

(d) Are there multiple equivalent model formulations that differ in terms of performance?

2. What is the performance in terms of running time of large models which include restrictions on
carbon intensities?

The carbon flows described in Question 1 should be applicable or adjustable to general energy value
chain optimization setups. Questions 1a and 1b concern modeling tricks to incorporate different
carbon-related concepts. Question 1c requires investigation of whether the formulations are convex
or nonconvex, always nonlinear, and to which degree of nonlinearity. Question 1d digs deeper
into how carbon intensity can be modeled. Question 2 mainly concerns how well models with CI
restrictions perform on instances of reasonable size which we would encounter in a real-life setting.

Although the primary goal of this thesis is to find effective modeling and solving techniques, the
underlining aim of these models is to reduce carbon emissions in energy value chains. Therefore,
the business question can be formulated as follows:

What is the most cost-effective way to decrease the carbon intensity of energy products?
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1.2 Research Approach

To answer the research questions, this research project is split into two parts. The contribution of
the first part is a generalized theoretical framework, which mainly serves to answer the first research
question. First, we develop a mixed-integer linear model for a general production and distribution
problem incorporating multiple product types (resources), multiple modes of transport and CCS.
We consider a four-tier model consisting of supply, production, storage and customer nodes. On
top of this linear model, we define how to calculate carbon intensities post-optimization, as well as
a set of equations to incorporate carbon intensity during-optimization in a nonlinear fashion. This
model is validated using artificially created data. The resulting nonconvex nonlinear model can be
solved to optimality using recent solvers, but with stricter CI restrictions the solver cannot prove
optimality within a few minutes of running time on models with not more than a hundred variables
and constraints.

On top of this general modeling framework, we want to incorporate the concept of carbon in-
tensity into a real-life case study. The contribution of this second part is the addition of carbon
intensity to a hydrogen supply chain network optimization model and the corresponding investiga-
tion on performance to answer the second research question. The model and data are based on the
study by Konda et al. (2011), who consider the configuration of a hydrogen network in the Nether-
lands, where the main decision is where to locate production plants and what type of production
plants to build. It is a pure cost minimization model, and although well-to-tank CO2 emissions are
mentioned, they do not optimize over carbon emissions or carbon intensities. We want to see what
other decisions the model makes if these concepts are integrated. Under some assumptions, feasible
and even optimal solutions can be found for model sizes of several tens of thousands of variables
and constraints.

The hydrogen market is one of the most interesting markets to apply the concept of carbon
intensity. Currently, hydrogen production is still classified with a color label, where green hydrogen
corresponds to hydrogen produced with renewable energy, gray hydrogen to the production with
natural gas and blue hydrogen the production with natural gas where the carbon emissions from
the production process are captured by CCS. As every type of energy source and production process
has at least some associated carbon emissions, the trend goes towards classifying hydrogen products
with an inherent carbon intensity (DNV, 2022).

1.3 Thesis Structure

In the remainder of this thesis, we first elaborate on the exact problem we are facing in Chapter
2, including some commonly used terminology surrounding energy value chains. This also includes
which possibilities there are for carbon emission reductions in these chains. Thereafter, in Chapter
3 we give a literature overview of topics related to the problem of carbon intensity modeling. In
Chapter 4, we first discuss a four-level supply chain optimization model, as well as how to incorporate
carbon intensity into this model. Secondly, a broad description of the case study setup and model
is presented. Chapter 5 presents the results of these models and the data used to arrive at these
results. Finally, in Chapter 6 we give a conclusion and discuss the research outline and results.
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Chapter 2

Problem Description

In this chapter, we discuss the problem of carbon intensity modeling and the related energy value
chain optimization topics. In Section 2.1, a schematic overview of a general energy value chain
is given, including several related concepts. Section 2.2 presents the mathematical challenges of
carbon balancing and the similarities with flow and pooling problems.

2.1 Emissions in Energy Value Chains

Energy value chains are usually specific to a certain topology, depending on what energy sources
and energy products are required. Nevertheless, the value chain can be generalized into several
interrelated components, which are schematically represented in Figure 2.1.

Figure 2.1: Schematic overview of an energy value chain.

The energy value chain components from Figure 2.1 are:

◦ Upstream. This includes all the activities up to the manufacturing stage, for instance digging
raw feedstock from the ground, pre-processing the materials and transporting it to the refinery,
or generating electricity using windmills and solar panels.

◦ Manufacturing. This highly depends on the type of energy product that is produced, but most
generally this includes processes such as refinery activities, electrolysis and hydrolysis. Generally,
these activities happen on the same site and have no long distances in between, but this also
depends on the application. For example, the liquefied natural gas chain consists of two distinct
manufacturing processes: liquefaction and regasification.
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◦ Distribution and storage. The transportation and inventory of intermediate and final products
mainly consist of road, cargo and pipeline infrastructures to storage depots and end-users.

◦ End-use. The last stage is the final use of the energy product, like heating the house with gas
or burning gasoline while driving. Emissions depend on the energy product used, for instance
hydrogen is a zero-emission clean fuel at the point of use, while hydrocarbon sources such as oil,
gas and coal have a relatively high carbon content.

2.1.1 Emission Reduction Possibilities

Each of the four components in Figure 2.1 has some associated carbon emissions. Some of the main
components where carbon emissions can be reduced are:

◦ Feedstock selection. Using energy feedstock alternatives with a lower carbon content such as
biomass save a significant amount of emissions at the end-use stage. Also the processing of
feedstock at different locations can vary in direct carbon emissions.

◦ Selection of production units. As technology advances, investments in cleaner technologies will
reduce the emissions at manufacturing units. For instance, cleaner external energy sources can
be used at these units in order to convert energy feedstock into intermediate and final products.

◦ Carbon capture & storage. Another way to save emissions at manufacturing units is the invest-
ment in CCS, which is further explained in Section 2.1.3.

◦ Selection modes of transport. Carbon emissions can be saved by investing in cleaner modes of
transport that distribute materials in the network, like replacing diesel trucks with electric trucks.

◦ Less production. If less demand of the end-user is satisfied, naturally, less CO2 will be emitted.
However, this is not always a viable option, as some minimum production is needed to serve the
energy demand of society and still be profitable as a company.

2.1.2 Scope 1, 2 and 3 Emissions

Greenhouse gas emissions can be separated into three categories: scope 1, 2 and 3 emissions. Scope
1 and 2 emissions originate from business operations, while scope 3 emissions are indirect emissions,
in this context specifically emissions from the end-use of energy products. Scope 1 emissions consist
of direct emissions from operations, like exploration, production, processing and refining. Scope
2 emissions are indirect emissions originating from purchased electricity, steam and heat to run a
company’s operations. Scope 3 emissions are all other indirect emissions, which mainly consist of
the emissions released by the use of energy products by suppliers and customers. Scope 3 emissions
typically account for around 95% of all scope 1, 2 and 3 emissions.

2.1.3 Carbon Capture & Storage

Carbon capture & storage is a technology that is able to capture CO2 that is produced at industrial
facilities (Ravi et al., 2017). For instance, if a CCS facility is installed at a fossil fuel power station,
it can significantly reduce the associated carbon emissions of electricity. However, CCS facilities also
require a baseline energy input to work and have a limited capture rate, which becomes increasingly
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expensive if a higher capture rate is desired (Quarton & Samsatli, 2020). After the CO2 is captured,
it is compressed and transported to a storage location, such as a depleted oil or gas field, or injected
deep underground. Nowadays, two other emerging technologies exist: one where CO2 is directly
captured from the air, and carbon capture, utilization & storage (CCUS), where CO2 is used in a
range of (chemical) applications. These two are not considered in this research project.

2.1.4 Carbon-To-Serve

Carbon intensity has a lot of similarities with the concept of cost-to-serve. Cost-to-serve is the
cost that is needed to deliver one unit of material at a certain location in the supply chain. The
cost-to-serve increases going forwards in the network. In the oil industry, this is called a netback,
which is the cost of bringing one barrel of oil to the market. In the context of GHG emissions, one
could argue that carbon intensity is something analogous to carbon-to-serve. However, it also differs
from cost-to-serve, firstly because intermediate acquired energy products already have an associated
‘carbon cost’, while this does not have to be the case for the cost-to-serve. Secondly, a carbon cost
can also be negative because of carbon capture, which is not the case for cost-to-serve. Ideally, we
want to do some type of quantitative research that puts a restriction on the cost-to-serve, but this
is not well-studied in the literature.

2.1.5 Carbon Intensity

The carbon emissions associated with different stages of a product are studied under different
terminology. Firstly, there is life cycle analysis or life cycle assessment (LCA), which accounts for
the environmental impact over each stage of the life cycle of a product or service. More specifically
in the energy sector, the term well-to-wheels (WtW) is used, which is similar to LCA, but does
not include the production and end-of-life of machines, for instance the emissions associated with
the installation of a wind park. Well-to-wheels consists of two stages: well-to-tank, which are all
processes from extracting primary energy sources to the deliverance of final products, and tank-
to-wheel, which consists of the actual burning of the final product by the engines. The carbon
intensity of a product can be calculated in different ways, depending on whether you take an LCA
or WtW approach, but essentially it corresponds to the GHG emissions associated with the different
steps in the supply chain, expressed in gCO2e/x: grams of CO2-equivalent per x, where x can be a
mass (kg), volume (L) or energy content (MJ or kWh). This measure is more related to a specific
product, while the absolute carbon emissions in grams CO2e per annum (gpta) is a more general
measurement.

2.2 Mathematical Challenges

Next, we discuss which mathematical challenges are faced when modeling carbon intensity. First,
we discuss carbon balancing at intermediate units, after which we discuss how this problem relates
to other flow and pooling problems.
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2.2.1 Carbon Balancing

Figure 2.2 gives a sketch of a simplified energy value chain. Starting from the supply nodes (sup.),
different types of feedstock are transported to the production unit, where the feedstock is converted
into final products. This happens under the supply of some energy source to let the process work.
At the production unit, a CCS unit is added as a decision option to let (some of) the produced
carbon emissions at the production unit be captured. Once the products are produced, they are
stored at a depot, which also needs a (fixed) baseline energy consumption to sustain the products.
Finally, the products are distributed over the customer nodes (cust.) from the depot, where the
customers have certain demands for each of the products.

Figure 2.2: Schematic flow diagram of a simplified energy value chain.

For the configuration in Figure 2.2, the optimization decisions are how much feedstock to acquire
from each supplier, how much product to distribute to each customer and optionally to install a
CCS facility. Given the material flows that the model optimizes for, one can calculate the carbon
intensity of each product at the customer nodes, given the allocation rules of carbon emissions
over the different material streams. The total carbon flow (the material flows times the carbon
intensities) that enters an intermediate node must leave the node, distributed over its output flows.
We assume there is no loss of energy in the system. How this distribution is done is mostly depending
on the process at the unit itself, as carbon flows can for example be distributed based on mass,
volume or energy content. The resulting carbon balance constraints in general consist of carbon
intensity variables multiplied by materials flows, such that the carbon intensity of a node equals the
weighted sum of incoming carbon intensities. At the supply nodes, carbon intensities are still fixed
numbers per unit product, but from the intermediate nodes onward, carbon intensities depend on
other variables in the system and are therefore also variables.

Carbon intensity can be calculated relatively easily post-optimization once the material flows are
known, but including it during-optimization creates nonlinear balance equations. This is because
there is some sort of ‘shadow network’ of carbon flows in the system, which is a result of the material
flow network. Because both flow networks influence each other, it is not possible to optimize both
the material and carbon flows simultaneously in a linear way, something that also appears in the
nonlinear pooling problem. These nonlinearities add significantly to the complexity of the problem:
next to the thousand or even tens of thousands of decision variables and constraints that are present
in a typical supply chain optimization model, these nonlinear constraints might have a big effect on
running times.
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2.2.2 Similarities Flow and Pooling Problems

Energy value chain optimization problems consist of some type of network flow, and often some
blending and/or pooling activities. For standard flow problems, products are transported from
source (supply) to sink (customer) nodes, possibly via transshipment nodes. One such application
in the energy sector is the transport of fuels from a refinery to gasoline stations via depot storage.
In the blending problem, raw feedstock from several source nodes is blended at sink nodes, in such
a way that the attributes of the blends at the sinks meet certain criteria, for instance a minimum
and maximum sulfur content of the blend. The pooling problem generalizes both the minimum-cost
flow problem and the blending problem (Gupte et al., 2017). The pooling problem combines both
concepts, where feedstock from source nodes is blended at in-between ‘pooling’ nodes, from where
it is distributed and blended again at the sink nodes. An example is given in Figure 2.3. The
material streams should be optimized in such a way that the sulfur content restrictions at the sinks
are respected. For instance, sink 3 cannot be satisfied for 100% by source 3, because then the sulfur
content would be 90%, which is above 80%. The nonlinearity arises from the fact that the sulfur
content at the sinks depends on material streams from pools, where in turn at the pools the sulfur
content depends on the material streams from the sources.

Figure 2.3: Example of a pooling problem.

The structure of the pooling problem has several similarities with the carbon intensity modeling
problem. The pooling problem is a nonlinear problem, as the attributes of the materials at the
pooling nodes depend on the flows from sources to pools, making it an unknown quantity. The
carbon intensity of a product at any stage in the supply chain can also be interpreted as an attribute
or property of the product. This attribute can change, depending on the type of material handling,
mode of transport used, etc. Therefore, we get the same nonlinear structure for which the incoming
carbon flow at an intermediate node must equal the outgoing carbon flow. Different than for
standard flow problems, carbon flow can also be added along the arcs, in particular by transportation
emissions. The constraints on the attributes of the products in the pooling problem can be translated
to constraints where the carbon intensities of the products should be lower than a certain threshold.
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Chapter 3

Literature Review

The design and optimization of supply chains is a broad field of research that inherits classical
problems in optimization, such as facility location problems and network flow problems (Garcia &
You, 2015). The goal of supply chain optimization is to design an industry network in such a way
that it optimizes certain metrics, like the minimization of operational costs or the maximization
of the service rate. Supply chains typically contain components such as production units, storage
locations and modes of transport. This chapter discusses concepts of supply chain optimization that
are relevant for carbon intensity modeling: energy value chain optimization (Section 3.1), hydrogen
supply chain models (Section 3.2) carbon capture & storage (Section 3.3), flow and pooling problems
(Section 3.4) and methods to solve nonlinear programming problems (Section 3.5).

3.1 Supply Chain Optimization of Energy Value Chains

Supply chain optimization mainly concerns long-term strategic and mid-term tactical decisions. On
a strategic level, this includes network design and facility location problems, and on a tactical level,
this includes distribution planning and demand analysis. In the literature, several such case studies
in the energy sector have been published, which use mixed-integer linear programming (MILP)
modeling. Most studies focus on the value chain optimization of one energy source in particular,
such as biofuels like bioethanol (Zamboni et al., 2009), synthetic natural gas (Calderón et al., 2017)
or algal biodiesel (Gong & You, 2014). Samsatli and Samsatli (2018) present a multi-objective MILP
model to find an optimal way to utilize primary energy sources for different energy uses, including
decisions in energy conversion, transportation and storage. This model, also known as the value
web model, is one of the largest studied models allowing for various energy resources and network
design decisions. Quarton and Samsatli (2020) extend this model by incorporating CCUS. Hydrogen
technologies were added too, such as power-to-gas, for which electricity is converted into hydrogen
through electrolyzers, as well as the storage of hydrogen. Some papers also consider matheuristics to
reduce the computation times of exact models. An example comes from Ruvalcaba-Sandoval et al.
(2021), who present a matheuristic for a four-tier supply chain consisting of suppliers, factories,
warehouses and customers, where warehouses and their capacities are selected heuristically.

The concept of carbon intensity is not yet widely used in the literature. Studies on carbon
intensity are for example from Moro and Lonza (2018), who discuss the carbon intensity of the
electricity mix, expressed in gCO2e/kWh, of countries in the European Union. However, they do
not optimize this carbon intensity. Studies that consider multi-objective optimization, for instance



Chapter 3. Literature Review 10

Han et al. (2013) and Zarei et al. (2020), usually maximize profit and minimize carbon emissions in
the supply chain, but do not impose a restriction on the carbon intensity of a product. Similarly,
Benjaafar et al. (2012) optimize over cost and carbon emissions in traditional lot sizing problems
to demonstrate how carbon can be used in decision-making models. Nouira et al. (2016) do not
explicitly restrict carbon intensities at the demand side, but look at demand that is sensitive to
carbon emissions per unit product. Another common carbon reduction strategy is carbon cap and
trading, such as done by Nie et al. (2020). They put carbon limits, i.e., caps, on specific processing
units in the supply chain. If these caps are exceeded, carbon permits need to be bought on the
trading market, while a surplus on the carbon cap can be traded to increase revenue. This is different
from carbon intensity modeling, as it concerns restrictions on the emissions at specific units, rather
than restrictions on the accumulated carbon intensity of a product at a stage in the supply chain.

3.2 Hydrogen Supply Chain Models

As our study is performed on a hydrogen case study, we give special attention to hydrogen supply
chain network (HSCN) models in the literature. Almansoori and Shah (2006) present a static
hydrogen supply chain model with factory, storage and transportation components, also considering
different technologies and hydrogen physical products. The same authors extended their model
by making it dynamic and incorporating feedstock availability (Almansoori & Shah, 2009) and
incorporating fueling stations and demand uncertainty (Almansoori & Shah, 2012). More extensions
in different directions to the basic model for different case study regions were proposed in the
literature, which are summarized in Table 3.1. All papers have the following four components in
common: they consider grid squares, which are the demand locations; multiple physical hydrogen
products, usually compressed and liquefied hydrogen; production plants with different production
technologies; the option for multiple modes of transport.

Table 3.1: Model components present in different hydrogen supply chain network adaptations.

Paper Storage
locations

Plant
sizes

Energy
sources

Time
periods

Scenario
analysis

Refuel
stations Uncertainty Case

Almansoori and Shah (2006) x - - - - - - UK
Kim et al. (2008) x - - - - - x Korea
Almansoori and Shah (2009) x x x x - - - UK
Konda et al. (2011) x x x x x x - NL
Almansoori and Shah (2012) x x x x x x x UK
Han et al. (2012) x - - - - - - Korea
Nunes et al. (2015) x - x x - x x UK
Moreno-Benito et al. (2017) x x - x - x - UK
Seo et al. (2020) - x x - - x - Korea
Robles et al. (2020) x - x - - x - France
Cantú et al. (2021) - x x x - - - France

Konda et al. (2011) perform a hydrogen infrastructure case study in the Netherlands, which we use
in this research project. Another paper that comes close to what we are after is from Almansoori
and Betancourt-Torcat (2016), who incorporate emissions constraints in the HSCN model. To over-
come the computational burdens of large models, some (mat)heuristical algorithms are considered.
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Woo and Kim (2019) combine a nonlinear variant of the HSCN problem with a genetic algorithm
structure, and Robles et al. (2020) use genetic algorithms to solve a multi-objective variant of the
problem. Cantú et al. (2021) propose a matheuristic where the problem is split into finding locations
for facilities and minimizing and operational and transportation costs of those facilities.

3.3 Carbon Capture & Storage

Several studies have been conducted concerning carbon capture & storage. Ravi et al. (2017)
designed a framework to optimize the use of CCS in the Netherlands. They develop a MILP
model which minimizes the total cost of capturing CO2 from source locations, choosing capture
technologies and pipeline transportation to physical storage sites. Each source of CO2 can only be
captured by one technology and stored at one location. However, a storage location can receive
CO2 transport from multiple locations and a technology can capture CO2 from multiple sources,
although the latter was not included in the model. By using fractional variables on the amount of
CO2 that is captured, next to binary variables if CO2 is captured, the model is linearized compared
to earlier models. A similar study for Northeastern China was performed by Zhang et al. (2018).

Similar studies have been conducted where sources of CO2 are matched with possible storage
locations. For instance, Middleton and Bielicki (2009) develop a MILP model that determines how
much CO2 from certain sources should be distributed to reservoirs, especially under which pipeline
infrastructure. Tan et al. (2013) develop a similar, but multi-period model, including injection and
storage capacity restrictions. Source-to-sink matching of CO2 is not necessarily what this thesis
focuses on, but the topic is relevant as we also deal with flow problems and CCS variables. A big
difference between these papers and our study is that CO2 emissions are assumed to be fixed in the
papers, while they are variables in our models.

3.4 Flow and Pooling Problems

In the literature, several types of flow problems can be found. Examples include the minimum-cost
flow problem, where transport from a source to a sink should be done in the least costly way, or the
maximum flow problem, which seeks to find the highest possible flow from source to sink (Ahuja
et al., 1988). These problems can be formulated as either single- or multi-commodity problems.
They are usually solved by mixed-integer linear programming, including column generation and
dynamic programming techniques.

The pooling problem, a relevant problem for carbon intensity modeling, is a nonlinear program-
ming problem with bilinear constraints, or bilinear program (BLP). These are strongly NP-hard
problems as they generalize the strongly NP-hard linear max-min problem (Hansen & Jaumard,
1992). Several equivalent formulations were proposed, which can solve the BLPs with nonconvex
quadratic programming. The P-formulation by Foulds et al. (1992) uses flow variables between
nodes and attribute variables to measure the concentration of material properties at the pools.
Ben-Tal et al. (1994) proposed the Q-formulation where the flow variables from supply nodes to
pooling nodes are replaced with proportion variables, representing the fraction of inflow at a pool
from a supply node. Tawarmalani and Sahinidis (2013) extended the Q-formulation into a new
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PQ-formulation by adding valid inequalities to the model. Audet et al. (2004) came up with a
hybrid formulation that combines the P-formulation and Q-formulation, which is especially useful
when considering the generalized pooling problem where edges between pools exist. Finally, Al-
faki and Haugland (2013) present a formulation for the generalized pooling problem based on the
multi-commodity flow problem.

Solution methods for the pooling problems can be separated into local and global optimization
techniques. Local optimization techniques include successive linear programming, which is based
on the linear approximation of the bilinear terms by first-order Taylor expansions (Baker & Lasdon,
1985). Another local optimization method by Floudas and Aggarwal (1990) uses Benders’ decom-
position. Heuristics are also proposed, for instance Audet et al. (2004) use an alternating method,
which iteratively freezes the quality variables and optimizes the flows, in combination with a variable
neighborhood search framework. Alfaki and Haugland (2014) create a greedy construction heuristic
based on the optimization of subgraphs with a single demand node. The problem can be solved
globally using reformulation and spatial branch-and-bound frameworks (Audet et al., 2004; Foulds
et al., 1992; Quesada & Grossmann, 1995) or Lagrangian duality approaches (Adhya et al., 1999;
Almutairi & Elhedhli, 2009).

3.5 Nonlinear Programming Optimization

Mixed-integer nonlinear programming (MINLP) problems are a generalization of MILP problems,
where nonlinear terms might appear in the objective and/or in (some of) the constraints. MINLPs
have applications in chemical engineering such as the pooling problem, but also in other domains
in engineering, network design and medicine. Both convex and nonconvex MINLPs are generally
NP-hard, but nonconvex problems are in practice much harder to solve (Burer & Letchford, 2012).
As the continuous relaxation of nonconvex MINLPs may lead to a nonconvex feasible region, more
has to be done to get a convex relaxation to use in a branch-and-bound framework. One way to
go is to replace nonconvex functions with piecewise linear approximations and use a MILP solver
(Belotti et al., 2013). Another option to solve MINLPs to optimality is to use spatial branch-and-
bound, which replaces nonconvex terms with their convex envelopes and branches on both integer
and continuous variables. More recently, branch-and-reduce algorithms were used, which reduce the
variable domains stronger compared to spatial branch-and-bound. This framework is implemented
inside the commonly used branch-and-reduce optimization navigator (BARON) solver.
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Chapter 4

Methodology

In this chapter, we elaborate on the supply chain optimization models that include carbon intensity
calculations and constraints. In Section 4.1, we introduce a generalized supply chain optimization
model on which the concept of carbon intensity modeling is tested. In Section 4.2, we explain the
setup of a hydrogen supply chain optimization case study where CI is incorporated.

4.1 The Multi-Resource, Multi-Transport Supply Chain Model

We start with a stylized supply chain optimization model for energy products, which we call the
multi-resource, multi-transport (MRMT) model. The model is multi-resource, meaning multiple
materials or products flow through the system, and multi-transport, meaning that multiple modes
of transport are defined between nodes in the network. The model has resemblances with the
four-tier multi-product supply-chain network by Ruvalcaba-Sandoval et al. (2021). The simpler
single-resource, multi-transport (SRMT) model can be found in Appendix A. This section first
describes the basic model without accounting for carbon emissions, after which we discuss how
carbon emissions and carbon intensity can be incorporated into these models. The option for CCS
and linear constraints on carbon emissions, as well as some model assumptions are discussed too.

4.1.1 Indices, Sets, Parameters and Variables

The model is defined on a graph G = (V, E), where V represents the set of nodes (vertices) and E the
set of arcs (edges). Through the network there is a flow of resources, denoted by the set R, which
can be feedstock, intermediate or final products. We define resources per unit, which can in practice
be kilotons or kilowatt hour for example. The nodes are divided into the sets V = S × P ×D × T .
Here, S is the set of source nodes that generate resources into the system, P the set of production
nodes that convert resources into other resources, D the set of depot nodes which temporarily store
resources and T the set of target or customer nodes which make resources disappear from the
system. It is assumed that depots can store multiple resources and receive inflow from multiple
nodes per resource. Next, the set M represents the set of available modes of transport defined on
the arcs. Not every arc can transport every type of resource on every mode of transport, but this
is specified by the exact topology of the data considered. To include CCS investment options, we
define the set P ′ ⊆ P as the subset of processing units for which such investments are possible. Let
L be the set of levels of investments of CCS, where each level corresponds to a different capacity of
CO2 capture and associated installation cost. Table 4.1 shows the full list of indices and sets.
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Table 4.1: Indices and sets of the model.

Index & Set Description

i, j ∈ V nodes of the graph G;

(i, j) ∈ E arcs of the graph G;

N (i)+ = {j ∈ V | (i, j) ∈ E} out-neighbors of node i ∈ V;

N (j)− = {i ∈ V | (i, j) ∈ E} in-neighbors of node j ∈ V;

s ∈ S ⊂ V source nodes (only outflow);

p ∈ P ⊂ V production nodes (inflow and outflow);

d ∈ D ⊂ V depot nodes (inflow and outflow);

t ∈ T ⊂ V target nodes (only inflow);

r ∈ R resources (materials);

m ∈ M modes of transport defined on the arcs;

p′ ∈ P ′ ⊆ P production nodes on which CCS investment is possible;

l ∈ L level of investment in CCS defined on CCS production nodes.

The parameters of the model are presented in Table 4.3. In practice, the list of parameters could
be much bigger, especially with more cost, carbon and throughput parameters. However, we have
chosen a selection of parameters that suffice to reflect the modeling challenges in these types of
models and that serve the test instance as presented in Chapter 5. One parameter requires additional
explanation: yieldrp, the yield of resource r ∈ R at production unit p ∈ P. Yields at a production
unit reflect a ‘recipe’ in which some resources are converted into other resources. For any r ∈ R, p ∈
P: if yieldrp ∈ [−1, 0), the resource is used as input at the production unit; if yieldrp ∈ (0, 1],
the resource is outputted at the production unit; if yieldrp = 0, the resource is not used in the
production process at the unit. The absolute values of the negative yields sum up to one, just as
the positive yields sum up to one. The values represent the fractions in which resources are inputted
or outputted: see Table 4.2 for a numerical example, with a schematic representation in Figure 4.1
including a possible resource flow below the arcs.

Table 4.2: Example yield data of a production unit.

Resource

R1 R2 R3 R4 R5

Yield -0.65 -0.20 -0.15 +0.70 +0.30
Figure 4.1: Schematic example of yield data.

Table 4.4 presents the variables of the model. Not every single possible variable needs to be defined:
for example, if some resource r ∈ R is not demanded at some target t ∈ T , we also do not have to
define xritm, i ∈ N (t)−, m ∈ M; xrt and CIrt. We have defined carbon intensity variables per unit
of resource r ∈ R on location i ∈ V. The carbon intensity restrictions are reflected in the parameter
CImax

rt . Additionally, we define emissionsmax as an upper bound on the absolute amount of CO2

emissions in the whole system, instead of carbon intensities which are per amount of resource.
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Table 4.3: Parameters of the model.

Parameter Description

supplymin
rs minimum amount of resource r ∈ R in order to use source node s ∈ S;

supplymax
rs maximum amount of resource r ∈ R available at source node s ∈ S;

costrs cost per unit of resource r ∈ R deployed from source node s ∈ S;

carbonrs carbon emissions per unit of resource r ∈ R deployed from source node s ∈ S;

throughmax
p maximum throughput of resources at production node p ∈ P;

costp cost per unit of resources handled at production node p ∈ P;

carbonp carbon emissions per unit of resources at production node p ∈ P;

yieldrp yield of resource r ∈ R at production node p ∈ P;

throughmin
d minimum throughput of resources in order to use depot node d ∈ D;

throughmax
rd maximum throughput of resource r ∈ R at depot node d ∈ D;

costfixedd fixed cost to use depot d ∈ D;

carbonfixed
d fixed carbon emissions at depot node d ∈ D;

demandmin
rt minimum demand of resource r ∈ R to be satisfied at target node t ∈ T ;

demandmax
rt maximum demand of resource r ∈ R to be satisfied at target node t ∈ T ;

pricert price paid per unit of resource r ∈ R satisfied at target node t ∈ T ;

throughmax
rijm maximum throughput resource r ∈ R at arc (i, j) ∈ E using mode m ∈ M;

costrijm cost per unit of resource r ∈ R transported over arc (i, j) ∈ E using mode m ∈ M;

carbonrijm carbon emissions per unit of resource r ∈ R over arc (i, j) ∈ E using mode m ∈ M;

capturemax
pl CO2 capture capacity of CCS at production node p ∈ P ′ at level l ∈ L;

installfixedpl installation cost CCS at production node p ∈ P ′ at level l ∈ L;

CImax
rt maximum allowed carbon intensity of resource r ∈ R at target node t ∈ T ;

emissionsmax maximum allowed absolute amount of carbon emissions in the whole chain.

Table 4.4: Variables of the model.

Variable Description

xrijm amount of flow of resource r ∈ R going over arc (i, j) ∈ E using mode m ∈ M;

xri total flow of resource r ∈ R going through node i ∈ V;

yrij amount of carbon flow of resource r ∈ R going over arc (i, j) ∈ E ;

yri total carbon flow from resource r ∈ R going through node i ∈ V;

zrs 1 if resource r ∈ R is supplied from source s ∈ S, 0 otherwise;

zd 1 if depot node d ∈ D is used in the network, 0 otherwise;

CIri carbon intensity per unit of resource r ∈ R at node i ∈ V;

cp amount of CO2 captured at production node p ∈ P ′;

zpl 1 if CCS is installed at location p ∈ P ′ at level l ∈ L, 0 otherwise.
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4.1.2 Linear Program Without Accounting for Carbon Emissions

If we do not account for any carbon flow calculations and restrictions in the model, we arrive at the
MILP model as given in (4.1)-(4.25).

max revenue− costs (4.1)

s.t. xrs =
∑

j∈N (s)+

∑
m∈M

xrsjm r∈R, s∈S (4.2)

xrp =
∑

i∈N (p)−

∑
m∈M

xripm r∈R, p∈P, yieldrp<0 (4.3)

xrp =
∑

j∈N (p)+

∑
m∈M

xrpjm r∈R, p∈P, yieldrp>0 (4.4)

xrd =
∑

i∈N (d)−

∑
m∈M

xridm r∈R, d∈D (4.5)

xrt =
∑

i∈N (t)−

∑
m∈M

xritm r∈R, t∈T (4.6)

revenue =
∑
r∈R

∑
t∈T

pricert · xrt (4.7)

costsources =
∑
r∈R

∑
s∈S

costrs · xrs (4.8)

costprod =
∑
p∈P

∑
r∈R,yieldrp<0

costp · xrp (4.9)

costdepots =
∑
d∈D

costfixedd · zd (4.10)

costtransport =
∑
r∈R

∑
(i,j)∈E

∑
m∈M

costrijm · xrijm (4.11)

costs = costsources + costprod + costdepots + costtransport (4.12)

xrs ≥ supplymin
rs · zrs r∈R, s∈S (4.13)

xrs ≤ min
{
supplymax

rs ,M
}
· zrs r∈R, s∈S (4.14)∑

r∈R,yieldrp<0

xrp ≤ throughmax
p p∈P (4.15)

xrp = −1 · yieldrp
∑

r′∈R,yieldr′p>0

xr′p r∈R, p∈P, yieldrp<0 (4.16)

xrp = yieldrp
∑

r′∈R,yieldr′p>0

xr′p r∈R, p∈P, yieldrp>0 (4.17)
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∑
i∈N (p)−

∑
m∈M

xripm =
∑

j∈N (p)+

∑
m∈M

xrpjm = 0 r∈R, p∈P, yieldrp=0 (4.18)

∑
i∈N (d)−

∑
m∈M

xridm =
∑

j∈N (d)+

xrdjm r∈R, d∈D (4.19)

∑
r∈R

xrd ≥ throughmin
d · zd d∈D (4.20)

xrd ≤ min
{
throughmax

rd ,M
}
· zd r∈R, d∈D (4.21)

demandmin
rt ≤ xrt ≤ demandmax

rt r∈R, t∈T (4.22)

xrijm ≤ throughmax
rijm r∈R, (i,j)∈E, m∈M (4.23)

xrijm ≥ 0 r∈R, (i,j)∈E, m∈M (4.24)

zrs, zd ∈ {0, 1} r∈R, s∈S, d∈D (4.25)

The objective (4.1) maximizes the profit, which is the revenue minus the total costs. Constraints
(4.2)-(4.6) create help variables for the flow of resources through the sources, production units,
depots and targets, respectively. Constraints (4.7)-(4.12) specify the revenue and costs of the
different components in the network. Constraints (4.13) and (4.14) regulate the minimum and
maximum supply of each resource from the sources. The big M that is used is defined as M =∑

r∈R
∑

t∈T demandmax
rt . Constraints (4.15)-(4.18) control the production of resources at the pro-

duction nodes. Constraints (4.15) ensure the total inflow of resources at the production node is no
more than the allowed maximum inflow. Constraints (4.16) ensure for each incoming resource the
right fraction from the total outgoing flow. As the absolute values of the yields of the incoming
resources sum up to one, these constraints also ensure the mass balance at the production nodes.
Constraints (4.17) ensure the right fraction of outflow for each of the outgoing resources. Con-
straints (4.18) make sure resources with a zero yield do not flow in and out of a production unit.
Constraints (4.19)-(4.21) ensure respectively the flow balance, minimum and maximum throughput
restrictions at the depot nodes. The same big M is used as in constraints (4.14). Constraints (4.22)
make sure the demand for each resource at the target nodes is satisfied. Constraints (4.23) preserve
the maximum arc flows. Constraints (4.24) and (4.25) specify the domain of the variables.

4.1.3 Calculating Carbon Intensities Post-Optimization

Before optimizing over carbon intensities, we should properly define how carbon intensities are
calculated. To do so, we start with two numerical examples.

To show the concept of carbon intensity, we start with an example of a production unit. This
example is illustrated in Figure 4.2, where the production unit converts resources R1, R2 and R3 into
R4 and R5. The carbon intensity of an incoming resource itself can be the result of averaging carbon
intensities of the same resource coming from different locations with a different CI. We calculate the
carbon intensities of the outgoing resources by averaging over the fractions of incoming resources
and adding the carbon emissions per unit at the production unit. As we calculate carbon intensities
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on unit/mass basis, the outgoing resources R4 and R5 end up having the same carbon intensity.
However, a correction factor could be performed if one wants to distribute carbon flows differently
over the resources, for example based on the lower heating values of the resources.

Figure 4.2: Carbon intensity calculation example for a production unit (yields above the arrows,
resource flows below the arrows).

Figures 4.3 and 4.4 give an example solution for a depot node, where 50 units of resource R1 flow
in from source node S1 and another 50 units from source node S2. At the depot, the 100 units are
split into 70 units of R1 going to target T1 and 30 units going to target T2. There are two ways to
calculate carbon intensities for the same instance, either by averaging carbon intensities at depot
nodes as done in Figure 4.3 or by distributing carbon flows over arcs as done in Figure 4.4. We
left out the carbon emissions on arcs themselves and do not consider multiple modes of transport
in these examples for simplicity. By multiplying or dividing by the number of units of resource at
nodes, it is easy to go from one solution to another: both provide us with the same carbon intensity
results. How these calculations are done in general by mathematical equations is shown after these
examples. The strategy from Figure 4.3 we define as ‘Option 1’ and the strategy from Figure 4.4
as ‘Option 2’.

Figure 4.3: Depot calculation example
using carbon intensities (CI).

Figure 4.4: Depot calculation example
using carbon flows (y).

Calculation Option 1: Carbon Intensities at the Nodes Equations (4.26)-(4.30) calculate
the carbon intensities per resource and per location post-optimization. To stress the fact that the
resource flow variables are already optimized over, they are marked with a bar (x̄). For (4.27),
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(4.29) and (4.30) the equations are only defined if the denominators are positive, otherwise the
carbon intensities are 0.

CIrs := carbonrs r∈R, s∈S (4.26)

CIrp :=
∑

i∈N (p)−

∑
m∈M

(CIri + carbonripm) · x̄ripm

x̄rp
r∈R, p∈P, yieldrp<0, x̄rp>0 (4.27)

CIrp :=
∑

r∈R,yieldrp<0

CIrp · (−1 · yieldrp) + carbonp r∈R, p∈P, yieldrp>0 (4.28)

CIrd :=
∑

i∈N (d)−

∑
m∈M

(CIri + carbonridm) · x̄ridm

x̄rd
+

carbonfixed
d∑

r′∈R x̄r′d
r∈R, d∈D, x̄rd>0 (4.29)

CIrt :=
∑

i∈N (t)−

∑
m∈M

(CIri + carbonritm) · x̄ritm

x̄rt
r∈R, t∈T , x̄rt>0 (4.30)

At the sources, equations (4.26) set the carbon intensity for each resource to the initial carbon
emissions at the source. At the production units, equations (4.27) first calculate the carbon intensi-
ties of the incoming resources as a weighted sum over the preceding nodes. Then, equations (4.28)
determine the carbon intensities of the outgoing resources as a weighted sum of the incoming carbon
intensities according to the yields, plus the carbon emissions per unit at the production node itself.
At the depots, equations (4.29) set the carbon intensity of a resource as the weighted sum of the
incoming carbon intensities of incoming resources, plus the fixed carbon emissions at the depot as
a share of the total weight of all resources at the depot. At the targets, equations (4.30) set the
carbon intensities per resource as the weighted sum of the incoming flows.

Calculation Option 2: Carbon Flows through the Nodes The second option calculates
carbon flows explicitly on arcs and calculates the sum of carbon flows that enter each node. This
allows us to post-calculate the carbon intensities by (4.31)-(4.37).

yrsj :=
∑
m∈M

(carbonrs + carbonrsjm) · x̄rsjm r∈R, s∈S, j∈N (s)+ (4.31)

yp :=
∑
r∈R,

yieldrp<0

∑
i∈N (p)−

yrip + carbonp · x̄p p∈P (4.32)

yrpj :=
∑
m∈M

( yp
x̄p

+ carbonrpjm

)
· x̄rpjm r∈R, p∈P, yieldrp>0, j∈N (p)+, x̄p>0 (4.33)

yrd :=
∑

i∈N (d)−

yrid + carbonfixed
d · x̄rd∑

r′∈R x̄r′d
r∈R, d∈D,

∑
r′∈R x̄r′d>0 (4.34)

yrdj :=
∑
m∈M

( yrd
x̄rd

+ carbonrdjm

)
· x̄rdjm r∈R, d∈D, j∈N (d)+, x̄rd>0 (4.35)

yrt :=
∑

i∈N (t)−

yrit r∈R, t∈T (4.36)

CIrt :=
yrt
x̄rt

r∈R, t∈T , x̄rt>0 (4.37)
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Equations (4.31) calculate the carbon flows per resource on arcs leaving the source nodes. Equations
(4.32) calculate the total carbon flow yp of all entering resources at a unit p ∈ P, plus the emissions
at the unit itself. For ease of notation, we use the variable x̄p =

∑
r′∈R,yieldr′p<0 x̄r′p, which is the

total amount of units (‘mass’) going through unit p ∈ P. Equations (4.33) calculate the carbon flow
on outgoing arcs, plus transportation emissions. Equations (4.34) calculate the total carbon flow
per resource entering a depot, plus the fraction of fixed emissions at the depot itself. Equations
(4.35) distribute the total carbon flows at a depot over the outgoing arcs, plus the emissions from
transportation. For depots, it is important that carbon flows from different resources do not ‘mix’.
Equations (4.37) finally calculate the carbon intensity of each resource at the target nodes.

4.1.4 Optimizing Carbon Intensities During-Optimization

To actually incorporate carbon intensities while optimizing the supply chain, we have to introduce
nonlinearities to the model. We propose two sets of bilinear carbon intensity balance constraints,
based on the aforementioned two options to post-calculate carbon intensities. Both options, one
using carbon intensity variables and one using carbon flow variables, are explained in this section.

Optimization Option 1: Carbon Intensity Balance Equations Adding the balance equa-
tions (4.38)-(4.43) to the basic model (4.1)-(4.25) regulates the carbon intensities in the system,
where constraints (4.44) put the actual restrictions on carbon intensities ‘at the back’ of the net-
work. The constraints require the additional variables f rd, which represent the fraction of incoming
resource r ∈ R at depot d ∈ D compared to the total amount of resource flowing through the depot.

CIrs = carbonrs r∈R, s∈S (4.38)

CIrp · xrp =
∑

i∈N (p)−

∑
m∈M

(CIri + carbonripm) · xripm r∈R, p∈P, yieldrp<0

(4.39)

CIrp =
∑

r′∈R,yieldr′p<0

CIr′p · yieldr′p + carbonp r∈R, p∈P, yieldrp>0

(4.40)

f rd ·
∑
r′∈R

xr′d = xrd r∈R, d∈D (4.41)

CIrd · xrd =
∑

i∈N (d)−

∑
m∈M

(CIri + carbonridm) · xridm + carbonfixed
d · f rd r∈R, d∈D (4.42)

CIrt · xrt =
∑

i∈N (t)−

∑
m∈M

(CIri + carbonritm) · xritm r∈R,t∈T (4.43)

CIrt ≤ CImax
rt r∈R, t∈T (4.44)

Constraints (4.38) set the carbon intensities at the resources as their starting values. Constraints
(4.39) calculate the carbon intensities of the incoming resources at production units. Constraints
(4.40) distribute the carbon intensities of the incoming resources over the outgoing resources. Con-
straints (4.41) calculates the fraction of one resource at a depot compared to the other resources
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at the same depot, which is needed for constraints (4.42), which are the carbon intensity balancing
constraints at the depots. Constraints (4.43) calculate the carbon intensities per resource at the
targets. Finally, constraints (4.44) put the restriction on the individual carbon intensities.

Optimization Option 2: Carbon Flow Balance Equations Alternatively, one can calculate
carbon flows on the arcs directly and redistribute these flows at the nodes. For this strategy, we
reduced the number of variables on the arcs by pooling modes of operation between the same nodes
for the same resource. Constraints (4.45)-(4.51) track and restrict carbon flows in the system.

yrsj =
∑
m∈M

(carbonrs + carbonrsjm) · xrsjm r∈R, s∈S, j∈N (s)+ (4.45)

yp =
∑

r∈R, yieldrp<0

∑
i∈N (p)−

yrip + carbonp · xp p∈P (4.46)

yrpj · xp = yp ·
∑
m∈M

xrpjm +
∑
m∈M

carbonrpjm · xrpjm · xp r∈R, p∈P, j∈N (p)+ (4.47)

yrd ·
∑
r′∈R

xr′d =
∑

i∈N (d)−

∑
m∈M

yridm

∑
r′∈R

xr′d + carbonfixed
d · xrd r∈R,d∈D (4.48)

yrdj · xrd = yrd ·
∑
m∈M

xrdjm +
∑
m∈M

carbonrdjm · xrdjm · xrd r∈R, d∈D, j∈N (d)+ (4.49)

yrt =
∑

i∈N (t)−

yrit r∈R, t∈T (4.50)

yrt ≤ CImax
rt · xrt r∈R, t∈T (4.51)

Constraints (4.45) calculate the carbon flows leaving the sources. Constraints (4.46) calculate the
total carbon flow that enters and is produced at a production unit. Constraints (4.47) distribute
the total carbon flow at the production unit over the outgoing arcs. Constraints (4.48) calculate
the incoming carbon flow for each resource at the depots. Constraints (4.49) distribute the carbon
flows over the outgoing arcs of depots. Constraints (4.50) calculate the carbon flows entering the
targets per resource. Constraints (4.51) induce restrictions on carbon intensities.

4.1.5 Carbon Capture & Storage Constraints

Next, we want to include the option for capturing carbon for the production units. To allow for the
option of CCS, we add constraints (4.52)-(4.56) to the model for units p ∈ P ′.

cp ≤ carbonp · xp p∈P ′ (4.52)

cp ≤
∑
l∈L

capturemax
pl · zpl p∈P ′ (4.53)

∑
l∈L

zpl ≤ 1 p∈P ′ (4.54)

cp ≥ 0 p∈P ′ (4.55)

zpl ∈ {0, 1} p∈P ′, l∈L (4.56)
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Constraints (4.52) make sure the captured carbon is not more than the emissions that are actually
emitted at the pool. Constraints (4.53) ensure that either nothing is captured if no investment
is made or no more than the allowed capacity is captured for the chosen investment. Constraints
(4.54) allow for at most one CCS investment per production unit. Constraints (4.55) preserve the
non-negativity of the captured carbon and constraints (4.56) preserve the binary domain of the
investment variables.

In some cases, we want to define production units in groups. For instance, one physical pro-
duction unit with different modes of operation and different baseline energy requirements can be
modeled as multiple separate production units in a group, like pG = {p1, p2}. Now we can keep
the amount of carbon captured per individual production unit, but make the CCS investment on a
group level. Then constraints (4.53) should be replaced by (4.57) to make sure the total emissions
of the group are not larger than the investment.∑

p∈pG

cp ≤
∑
l∈L

capturemax
pGl · zpGl pG⊆P ′ (4.57)

Some adaptations to the previously mentioned equations have to be made to include CCS as a deci-
sion option. First of all, a new cost equation (4.58) is introduced, which calculates the installation
costs of CCS facilities (which can also be defined for installations on a group level). This should be
added to the total cost calculations in equation (4.12).

costCCS =
∑
p∈P ′

∑
l∈L

installfixedpl · zpl (4.58)

When calculating CI post-optimization, we have to subtract some terms from the equations, de-
pending on the type of formulation. When using CI variables, we should subtract the amount of
carbon captured divided by the amount produced at the respective production node p. To do so,
Equations (4.28) should be replaced by Equations (4.59) for p ∈ P ′.

CIrp :=
∑
r∈R,

yieldrp<0

CIrp · (−1 · yieldrp) + carbonp −
c̄p
x̄p

r∈R, p∈P ′, yieldrp>0, x̄p>0 (4.59)

When we calculate total emissions associated with a production node, we can simply subtract the
amount of CO2 captured from the total emissions y associated with production node p. Then
equations (4.32) should be replaced by Equations (4.60) for p ∈ P ′.

yp :=
∑

r∈R, yieldrp<0

∑
i∈N (p)−

∑
m∈M

yripm + carbonp · x̄p − c̄p p∈P ′ (4.60)

When we incorporate CI during-optimization, we have to adapt the constraints similarly. Equations
(4.40) from Option 1 should be replaced by Equations (4.61), where cunitp accounts for the amount of
carbon captured per amount of product produced, and (4.62), the actual adapted balance constraint,
for p ∈ P ′.

cunitp · xp = cp r∈R, p∈P ′, yieldrp>0 (4.61)
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CIrp =
∑

r′∈R,yieldr′p<0

CIr′p · yieldr′p + carbonp − cunitp r∈R, p∈P ′, yieldrp>0 (4.62)

Finally, constraints (4.46) from Option 2 should be replaced by Equations (4.63) for p ∈ P ′.

yp =
∑

r∈R, yieldrp<0

∑
i∈N (p)−

yrip + carbonp · xp − cp p∈P ′ (4.63)

With this modeling strategy, only in constraints (4.61) additional nonlinear terms are introduced,
while all other CCS constraints are linear or do not impose new nonlinearities.

4.1.6 Constraining Total Carbon Emissions Linearly

If one does not want to restrict a certain carbon intensity, but rather all carbon emissions in the
network in absolute terms, one can add equations (4.64)-(4.69) to the basic model. Note that for
CCS in equations (4.66), we actually multiply it by -1 to subtract the amount of CO2 captured.

emissionssources =
∑
r∈R

∑
s∈S

carbonrs · xrs (4.64)

emissionsprod =
∑
p∈P

carbonp · xp (4.65)

emissionsCCS = −1 ·
∑
p∈P ′

cp (4.66)

emissionsdepots =
∑
d∈D

carbonfixed
d · zd (4.67)

emissionstransport =
∑
r∈R

∑
(i,j)∈E

∑
m∈M

carbonrijm · xrijm (4.68)

∑
loc∈{sources,prod,CCS,depots,transport}

emissionsloc ≤ emissionsmax (4.69)

As these constraints are all linear, the model can find the lowest-carbon solution much faster com-
pared to carbon intensity restrictions. However, reducing the total amount of carbon emissions does
not necessarily achieve specific carbon intensity restrictions most effectively.

4.1.7 Discussion of Multi-Resource, Multi-Transport Model

The discussed multi-resource, multi-transport model has made the following additional assumptions:

1. Scope 3 emissions are not explicitly accounted for. However, they could be incorporated in two
ways. First of all, given that we know exactly what product we need, we can add the scope 3
emissions at the end of the network to its carbon intensity. For instance, we might know that
1 liter of diesel emits 3.23 kg of CO2. This requires a precise approximation of the emissions
of our product. Alternatively, if we know the carbon content of the feedstock and have some
distribution rules during processing, this carbon content is ‘passed’ to our final products. This
is especially useful if the composition of our product is not fixed: for example, blending biofuels
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into fossil fuels leads to different scope 3 emissions. In this project, we do not go into detail
regarding these exact scope 3 emissions of products.

2. There are no emissions at the target nodes. This could be included, for example to model the
scope 3 emissions or the carbon emissions resulting from the storage of final products at the
target nodes.

3. So far, we have assumed that there is a demand for all the products we produce. However,
we might also produce byproducts for which there is no demand, which we should get rid of in
the system. This can be done in practice by incorporating demand nodes with zero minimum
demand and infinite maximum demand of the byproduct at a zero price.

4. The modeling framework is also applicable to networks where there are two directed arcs between
two nodes, for example one arc from depot D1 to D2 and one arc from depot D2 to D1. As
both arcs have an associated positive cost, there will only be flow from one depot to another.

5. All carbon intensities in the model are based on units or mass, while it could in fact also be based
on volume or energy content. This requires conversion rules and correction factors at the units
to redistribute carbon flows over our produced products. One could in fact use any arbitrary
distribution of our total carbon flow over our final products, as long as no flow gets lost in the
system. Whether this is also fair in a real-life context, we leave up to policymakers.

6. Carbon intensities can go up if we produce less and we have some fixed carbon emissions we have
to distribute over less product. This is something to keep in the back of our minds, because the
absolute amount of CO2 decreases if we produce less.

7. For CCS, the model allows capturing a fraction of the emitted CO2 at a unit, as long as that
satisfies all the constraints and it is cost-optimal. However, in fact we would capture all emitted
CO2 at a unit up to the capacity of the CCS installment. Incorporating this ‘all-or-nothing’
would lead to extra nonlinearities, as the CO2 emissions at the units are unknown quantities.
However, if this would happen one can always correct the carbon intensities post-optimization
such that all CO2 was captured, resulting in a slightly lower carbon intensity than the model
found. Additionally, it is reasonable to assume for CCS that not 100% but a somewhat lower
percentage of the emitted CO2 is captured, for example because of leaks, depending on the
implemented CCS technology. How CCS is implemented with a fixed capture rate and without
a capture capacity, we discuss in the next section.
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4.2 Hydrogen Supply Chain Network Model

In the second part of the thesis, we apply the concept of carbon intensity to a hydrogen supply
chain network (HSCN) optimization problem. We consider the case study environment of Konda
et al. (2011), who studied the problem of satisfying nationwide hydrogen demand in a least-cost
production and distribution network. In Section 4.2.1, we present a general description of the setup
of the model. In Section 4.2.2, we go into more detail on the mathematical structure of the model
and how to incorporate carbon intensity. This is a new model which is not directly associated with
or compared to the MRMT model. The complete formulations can be found in Appendix B.

4.2.1 Case Study Description

We describe the case study by considering its main pathways, which are schematically presented in
Figure 4.5.

Figure 4.5: Hydrogen case study pathways superstructure.

The model components in 4.5 are further described as:

◦ Feedstock. There are four types of raw materials that can be used to produce hydrogen: natural
gas, coal, biomass or electricity. For simplicity, we assume that these resources are available in
unlimited quantities at any production location, such that only their cost per unit is considered
in the optimization.

◦ Production plants p ∈ P. The raw materials can be transformed into hydrogen under the following
technologies: steam methane reforming (SMR), coal gasification (CG), biomass gasification (BG)
and water electrolysis (WE). Production plants have a variable production capacity, generally
split up into small, medium and large plants. Different sizes and technologies are associated with
different costs and production efficiencies. Production plants can have a CCS structure on top of
them, allowing to capture a certain fraction of the emitted CO2 at the plants.

◦ Hydrogen products i ∈ I. There are two types of physical hydrogen products: compressed/gasified
hydrogen (CH2) and liquefied hydrogen (LH2). As hydrogen is a gas in its natural form, it is
an intensive process to liquefy hydrogen. However, LH2 has a higher energy density than CH2

and can be transported in higher quantities. Therefore, the model should find a trade-off in the
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production of both products. It is assumed that the customer is demanding hydrogen, regardless
of whether that is CH2 or LH2, or possibly a combination of both.

◦ Modes of transport l ∈ L. Hydrogen should be transported from production units to the cus-
tomers. This can be done with different modes of transport. In this case study, we only consider
road transport for simplicity, in particular tube trailers for CH2 and tanker trucks for LH2. Al-
ternative modes of transport that can be considered are rail transport, in particular railway tube
cars for CH2 and railway tank cars for LH2, and pipelines for CH2.

◦ Demand at grid g ∈ G. The country that is studied is split up into several grids, which in this
case correspond to the largest cities in the country. Each grid has a certain daily demand for
hydrogen, which increases over the different time periods that are considered. Demand is satisfied
from production units at grids, for which we assume only a subset of grids is suitable to build
production plants.

Firstly, we consider a static model, where the model solves one fixed time period. Then, we also
consider a dynamic model, in which we consider demand over multiple time periods, meaning new
production plants have to be built over time and/or existing plants have to extend their capacity. In
the dynamic version of the model, we assume that larger plants can be built in earlier time periods
in order to satisfy demand in later time periods. A comparison between the solutions of the static
and dynamic models will be made.

The complete mathematical formulations are given in Appendix B. As the base models are
mainly based on the models in Almansoori and Shah (2006) and Almansoori and Shah (2009), we
chose to state the models in the appendix and give the main description here. One big assump-
tion by Konda et al. (2011) compared to the base models is that there are no hydrogen storage
locations. This is done because the Netherlands is considered, which is a relatively small country
with the largest one-way distance between grids generally not larger than a three hours drive. The
appendix also contains a detailed list of model changes compared to their respective papers. For
example, Konda et al. (2011) consider refueling stations at demand locations, which we leave out
for simplicity, and consider power equations for capital costs, which we simplify by considering fixed
and variable capital costs. Also, some additions to the base models in Almansoori and Shah (2006)
and Almansoori and Shah (2009) are made, for instance by introducing a parameter that holds
information in which grids hydrogen production is allowed.

4.2.2 Case Study Model Structure and Adding Carbon Intensity

The basic models from Almansoori and Shah (2006) and Almansoori and Shah (2009) have a
different structure than the MRMT model as described in Section 4.1. Both models have individual
notations which are not linked to each other. On a structural level, the case study model is more
‘zoomed-out’ in the sense that it does not consider feedstock-to-production arcs, sees each plant as
one big production unit and looks at locations in generalized grids rather than specific locations.
The goal is to add carbon emissions, carbon intensity and CCS to this existing modeling framework,
without changing fundamentally how the model works.

To explain the mathematics of the model, we consider the static variant. This model differen-
tiates DL

ig, the locally satisfied demand of product i in grid g, and DI
ig, the imported hydrogen of
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product i to grid g from another grid. The variable P pig represents the daily hydrogen production of
plant type p producing hydrogen type i in grid g, with corresponding total production in a grid P T

ig

of product i in grid g. Variable Qilgg′ presents the transport of product i using mode of transport
l from grid g to grid g′, where it is the transportation in its own grid for g′ = g. Each grid has
a parameter for the total demand DT

g that should be satisfied. The operational variables in the
models are schematically shown in Figure 4.6, where the blue circles in the top-left corner of grid
g correspond to one type of hydrogen, and the red circles in the bottom-right corner correspond to
the other type of hydrogen.

Figure 4.6: Schematic explanation of operational variables of the case study model.

The objective of the model is to minimize the total daily cost (TDC) of the whole HSCN. For the
hydrogen plants, facility capital costs (FCC) are calculated as daily costs, on top of its facility
operating costs (FOC) and feedstock costs (FSC). The number of transportation units (NTU) is
used to calculate the transport capital costs (TCC), also calculated as daily costs. The transporta-
tion operation costs (TOC) consist of fuel costs (FC), labor costs (LC), maintenance costs (MC)
and general costs (GC), where the latter include transportation insurance, license and registration,
and outstanding finances (Almansoori & Shah, 2006).

Three new elements are added to the base model. Firstly, we calculate the total chain emis-
sions (TCE), consisting of feedstock emissions (TCEFeed), production emissions (TCEProd) and
transportation emissions (TCETrans). Feedstock and production emissions are calculated based
on the hydrogen production of all plants, while transportation emissions are calculated based on
the daily number of trips operational on each origin-destination pair (g, g′) and the distance that
is driven. These total emissions also include the second newly added feature: the option of CCS
plants. We assume that each plant either has CCS implemented or not, where CCS plants capture a
fixed amount of CO2 without any maximum capture restrictions. Thirdly, we show how to calculate
carbon intensity post-optimization, as well as during-optimizing based on the post-optimization
calculation. Carbon intensity calculations are done using the existing operational variables in the
model and the carbon parameters. Thus, the goal is not to reformulate the model in order to
incorporate carbon intensity as efficiently as possible, but to show how to include carbon intensity
in an existing model.

Each plant type has a fixed associated carbon intensity parameter CIStartpi , considering what the
feedstock and production emissions are and if CCS is implemented. As feedstock and production



Chapter 4. Methodology 28

carbon parameters are expressed as ton CO2 emitted per ton H2 in Konda et al. (2011), this is
easy to calculate. Then, to get the carbon intensity CIig of product i satisfied at grid location
g, we separately calculate the carbon intensity CIProd

ig from production plants and the carbon
intensity CITrans

ig coming from transportation. By definition, if product i is not satisfied in grid g,
then CIig = 0. To get the CI of all hydrogen products at a location, we average over the carbon
intensities based on the amount of product satisfied at a grid, which gives the total carbon intensity
CIg of all products satisfied at grid g. Thus, if DT

g > 0, then CIg > 0 and CIig ≥ 0.

4.2.3 Discussion of Hydrogen Supply Chain Network Model

The HSCN model makes two big assumptions regarding carbon intensities. Firstly, as the model
uses the variable Qilgg′ , the transport of product i using mode l from grid g to grid g′, we do not
explicitly state that grid g is satisfied by a particular plant in a grid, but just by all plants of that
product type in a grid. Therefore, the carbon intensity of produced hydrogen products in a grid
is averaged over the plant types in that grid, i.e., as CIPlants

ig . This corresponds to the amount-of-
product averaged CI of a striped circle in Figure 4.6, instead of individual carbon intensities CIpig.
This means for example, if in a grid we have a CG-Large-CH2 plant and an SMR-Small-CCS-CH2

plant, the carbon intensity of the CH2 plants is the amount-of-product weighted average of the
carbon intensity of both plants. Even though one grid with a strict CI restriction might be able
to be completely satisfied by the SMR-Small-CCS-CH2 plant, while other grids are satisfied by
the CG-Large-CH2 plants, we still consider the average carbon intensity of both plants. This can
be avoided by considering a variable Qpilgg′ with an additional index p, but this would require a
complete redesign of the model, as well as a lot more variables. Also, in real-life production planning
we might not always be able to satisfy demand from exactly one plant in a grid, which also makes
it a reasonable assumption to make.

Secondly, an assumption we can make is that every grid can only import one type of hydrogen
product, so either CH2 or LH2, but not both. This still allows to produce both products in a grid,
and even satisfy both products in grids where production is possible. However, this restriction might
increase the speed of nonlinear carbon intensity models, as there is no longer a trade-off possible
of how much CH2 and LH2 to import with different carbon intensities. The demand should then
be completely satisfied by one product or the other. In Chapter 5, the speed increase with and
without this assumption is investigated.

Finally, considering carbon emissions, we assume that CCS can be built on top of every type
of plant. For water electrification this is technically not needed, as emissions mainly depend on
how the electricity is generated. Nevertheless, we keep this option to be consistent with the other
production types. Also, we do not consider the life-cycle emissions of biomass, meaning we do not
account for the carbon emissions that are ‘absorbed’ by biomass.
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Chapter 5

Results

In this chapter, we present the results of the multi-resource, multi-transport (MRMT) model (Sec-
tion 5.1) and the hydrogen supply chain network (HSCN) model (Section 5.2). All code is executed
using Gurobi 9.5.2 in Python 3.9 on a Dell Core i7 computer. The code can be found on GitHub1.

5.1 Results Multi-Resource, Multi-Transport Model

In the first part of the results section, we discuss the topology, data and experiments that are
performed for the MRMT model.

5.1.1 Topology

Figure 5.1 shows the topology of the experimental setup. In total, we have 24 node-resource pairs
and 30 arc-resource-mode triples. Four source nodes supply four different resources, which are
converted into a fifth and sixth resource at two different production units. CCS is defined on
both production units individually. With two modes of transport options, the resources can be
transported to two depots. From the depots, the resources are transported to four target nodes,
which have different demands for different resources.

Figure 5.1: Topology for the computational experiments.

1https://github.com/erikvdheide/MSc-Thesis-Operations-Research

https://github.com/erikvdheide/MSc-Thesis-Operations-Research
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This topology is chosen, because it resembles different modeling components we have in practical
models. The setup is deliberately kept small, such that we can get results from the nonlinear
formulations in acceptable running times. The main goal is to show the correctness of the model
and show some first run time results. In real-world problems, the scale of such a network is usually
much bigger, containing thousands of nodes and arcs.

5.1.2 Data

The data chosen for the topology in Figure 5.1 is given in Tables 5.1-5.6. The data is chosen in such
a way that every carbon reduction possibility becomes active for some type of carbon restriction.
For this topology, we have that S3, P1, M2 and D1 are low-cost, high-carbon options and S4, P2,
M3 and D2 high-cost, low-carbon alternatives. The data on the arcs, not presented in the table, is
that every arc has a cost of 1, a carbon emission of 1 and an infinite throughput, except mode M2
which has a cost of 1 and carbon emissions of 3 and mode M3 with a cost of 2 and carbon emissions
of 1. The capacity of mode M3 for resource R5 is 200 and 300 for resource R6.

Table 5.1: Source data table.

s ∈ S, r ∈ R supplymin
rs supplymax

rs costrs carbonrs

(S1, R1) 0 1000 10 20
(S2, R2) 0 1000 15 15
(S3, R3) 0 1000 2 10
(S3, R4) 0 1000 2 10
(S4, R3) 20 1000 4 2
(S4, R4) 20 1000 4 2

Table 5.2: Production nodes data table.

p ∈ P throughmax
p costp carbonp

P1 ∞ 10 20
P2 500 12 15

Table 5.3: Yields of resources at production units data.

yieldrp r ∈ R

R1 R2 R3 R4 R5 R6

p ∈ P P1 -0.65 0 -0.25 -0.10 1.0 0
P2 0 -0.70 -0.15 -0.15 0 1.0

Table 5.4: CCS units data.

p ∈ P ′, l ∈ L capturemax
p installfixedp

(P1, L1) 2000 1000
(P1, L2) 5000 2000
(P1, L3) 9000 3000
(P2, L1) 2000 1000
(P2, L2) 5000 2000

Table 5.5: Depot data.

d ∈ D, r ∈ R throughmin
d throughmax

rd costfixedd carbonfixed
d

D1 0 500 1500
(D1, R5) ∞
(D1, R6) ∞

D2 50 750 450
(D2, R5) 300
(D2, R6) 300

Table 5.6: Target data.

t ∈ T , r ∈ R demandmin
rt demandmax

rt pricert

(T1, R5) 70 80 40
(T1, R6) 80 90 50
(T2, R5) 85 95 40
(T2, R6) 65 75 50
(T3, R5) 70 80 40
(T4, R6) 85 95 50
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5.1.3 Computational Experiments

This section presents several computational experiments to illustrate the complexity and behavior
of various carbon intensity formulations. We also perform several configurations of linear models
and compare their results with the nonlinear models.

Absolute Emission Restrictions Before we consider any nonlinear formulation, we assess the
trajectory of carbon intensities if we impose progressively stricter linear restrictions, as in constraint
(4.69). For the data as presented in Tables 5.1-5.6, we find that the pure profit maximization
objective is 10,763.0 with associated total emissions in the whole chain of 20,792.5, which was found
in 0.005 seconds. If we consider pure carbon emission minimization, the optimal solution reduces
the emissions in the chain by 63.9% to 7500.5, but also reduced the profit to 4328.75 (-59.8%).

Figure 5.2: Profit objective
for stricter linear emission restrictions.

Figure 5.3: Carbon intensities of the resources at the targets
for stricter linear emission restrictions.

Figure 5.4: Indicators of whether a low-carbon alternative was used
for stricter linear emission restrictions.

Figure 5.2 shows profit at progressively stricter emission restrictions between emissionsmax =

20, 792.5 and emissionsmin = 7500.5. The objective is non-increasing, as can be expected when
imposing stricter restrictions. Figure 5.3 shows the corresponding carbon intensities of resources R5

and R6 at the same linear restriction values. The carbon intensities have a general decreasing trend,
but can also increase for lower absolute emissions. This can be explained by the fact that carbon
intensities relate to each other, as carbon flows are distributed over multiple resources. This can
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also be seen in the picture: generally, where we see sharp spikes up for one resource, we see a similar
spike down for the other resource and vice versa. Solutions might not be unique: for instance,
production units P1 and P2 can receive resource R4 from both S3 and S4, where the proportional
amount that goes to each production unit impacts the carbon intensities of R5 and R6, but not
the overall cost. Also the amount of resource produced plays a role: if less product is produced,
more (fixed) emissions should be distributed over less product, increasing the carbon intensity. The
vertical lines in Figure 5.3 show the moments there is a higher level of CCS investment. This
goes together with sharp declines in carbon intensities. For this dataset in particular, the carbon
intensities of the resources are the same across target locations.

Figure 5.4 shows if one of the low-carbon alternatives became active for that value of emissionsmax.
For example, at emissionsmax = 18, 000, we get that the low-carbon source S4 is used for some
supply and low-carbon depot D2 is used to store the products, where low-carbon mode M3 was not
utilized at all. In the case of demand, the definition is slightly different: it means the maximum
demand was not produced at at least one of the targets. Figure 5.4 shows that the model seeks
to find combinations of lower-carbon alternatives, which are not constantly needed. Using different
modes of transport is here the low-carbon alternative that is used the fewest. Around CCS invest-
ments, other low-carbon alternatives are temporarily not needed. Towards the most strict emission
restrictions, all low-carbon alternatives are needed.

All in all, we can conclude that linear restrictions are a fast way to reduce carbon intensities,
but carbon intensities do not make the same linear trend downward.

Comparing CI Formulations Next, we use our nonlinear formulations to restrict carbon inten-
sities. We perform both Option 1 using CI variables and Option 2 using y (carbon flow) variables.
We set CImax

R5 = {44, 43, . . . , 18} and CImax
R6 = {36, 35, . . . , 15}, as we know from Figure 5.3 those

values are achievable. We also perform runs with restrictions on both R5 and R6 simultaneously,
where we use the combinations of the five strictest carbon intensity restriction values. We always
set a maximum run time of 100 seconds. The model without carbon intensity variables and balance
constraints has 71 variables and 72 constraints, which becomes 99 variables and 80 constraints using
Option 1 (CI variables) and 123 variables and 90 constraints using Option 2 (y variables).

In general, we find that both formulations find the optimal solutions in several milliseconds
to seconds as long as CCS does not have to be used, which is up and until the cut-off points
CImax

R5 = 38 and CImax
R6 = 30. The longest running times up and until these cut-off points are

1.32 seconds for CImax
R6 = 32 with Option 1 and 1.28 seconds for CImax

R5 = 38 with Option 2, all
other running times were under a second. Although this is still very fast, going from about 10
milliseconds for the linear model to 1000 milliseconds for the nonlinear model means an upscale by
a factor of 100. This becomes problematic if we have models that typically run for several minutes
to hours. After the cut-off points, the model needs to determine the amount of carbon to capture
at the production nodes, which leaves an optimality gap that cannot be reduced to (almost) zero
within 100 seconds, though a feasible solution is always found in at most a few seconds. Thus, the
more decision components are involved, the higher the running time is.

Table 5.7 shows the profit objective function values for different CI restriction values. Only
those values are shown for which there was a difference in objective function value between the two
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formulation options. As can be seen, for 7 out of 9 cases the first option gave the best result, while
in 2 out of 9 cases the second option gave the best result. The differences between the solutions
are relatively small, often not more than one percent, though there is one case with a difference of
4.44% and another case with a difference of 3.48%. Better objective function values seem to be for
some consecutive CImax values, which is most likely a coincidence, as previous solutions are, if even
feasible, not chosen as a starting point for the next solution. The optimality gaps range from 8.0%
to 59.6%, higher for stricter CI restrictions, so the solvers have difficulty proving optimality within
the time limit of 100 seconds.

Table 5.7: Profit objective values using two different CI formulations for those CI restrictions
where results differ.

CImax
R5 32 31 30 22 21 19 21

CImax
R6 24 22 18

Objective Option 1 (CI variables)

(optimality gap in %)

9175.49

(9.1)

8763.00

(14.3)

8960.54

(11.7)

8494.64

(17.9)

8367.09

(19.7)

8122.08

(23.3)

9204.41

(8.8)

8805.49

(12.6)

6210.19

(27.6)

Objective Option 2 (y variables)

(optimality gap in %)

9271.01

(8.0)

9151.69

(9.4)

8952.31

(11.8)

8494.17

(17.9)

8363.65

(19.7)

8121.95

(23.3)

9160.31

(9.3)

8763.00

(14.3)

6001.50

(59.6)

Difference in objective value (%) 1.04 4.44 0.09 0.01 0.04 0.002 0.48 0.48 3.48

All in all, the nonlinear models are relatively fast at this scale for not too high carbon intensity
restrictions, and the formulation with CI variables more often finds the best solution, though the
option with y variables is able to find a better solution as well.

Linear Approach to Satisfy CI Restrictions Next, we want to compare the solution values of
the nonlinear model with a model with linear carbon restrictions like constraint (4.69) that satisfies
carbon intensity restrictions. These results are given in Table 5.8. The results for the nonlinear
models in the first row use a maximum running time of 100 seconds and the best solution out of
the two formulation options is reported. In the second row, the solution is given when we tune the
value of emissionsmax such that the carbon intensity restrictions are met. With tuning, we actually
mean trial-and-error of increasing and decreasing emissionsmax until the desired values are met.
As the linear models run in milliseconds, this can still be done quite quickly.

Table 5.8: Best-found solutions and linear approximations at different CI restrictions.

CImax
R5 18 18

CImax
R6 15 15

Best-found max. profit solution nonlinear model
(optimality gap)

7677.33
(30.4%)

8022.41
(24.8%)

5463.75
(65.0%)

Solution with linear restriction on all chain emissions
(difference from best-found solution)

5617.00
(-26.8%)

5265.99
(-34.4%)

5265.99
(-3.6%)

Solution with linear restriction on subchain emissions
(reduction from best-found solution)

7718.50
(+0.5%)

7754.00
(-3.5%)

-

From Table 5.8, we see a reduction in solution quality of 26.8% and 34.4% compared to the nonlinear
model, except if we put a restriction on the carbon intensity of both resources, then the solution
is only 3.6% worse. For the individual CI restrictions, we did put a linear restriction on all chain
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emissions, which gives a worse result, as we also minimize emissions from the resources that do not
need a CI restriction. For example, if we want to restrict the CI of R5, it does not make sense
to consider CCS investments on P2, which only produces R6. Therefore, in the third row we also
perform emission restrictions on subchains, which are all components of the chain that are associated
with that resource. Starting from target-resource pair (t ∈ T , r ∈ R), the subchain is all nodes
and arcs that can be reached by going backward in the network. Now we see only a reduction of
3.5% in solution quality for R6 and even a slight solution improvement for R5 of 0.5%, showing the
nonlinear model did not yet find an optimal solution. Earlier experimentation found that manually
forcing the maximum amount of resources to produce even further improved the solutions, but for
this data no feasible solutions existed for maximum production.

All in all, linear restrictions of subchains are able to find solution values close to solution values
found by nonlinear models for the chosen topology, however one downside is that it is not obvious
which emissionsmax value to choose, so it requires several runs of the model to find the right
restriction value.

Scaled Up Experiments Finally, to have a further investigation on running times we scale up
our topology from Figure 5.1 with five times as many nodes and consequently 52 as many arcs.
Some arbitrary disturbances are made in the data, and the option for CCS is left out.

Some interesting results came out of experimenting with this setup. First of all, the model
without carbon constraints finds the economic-optimal solution with a profit of 42,344.75 and chain
emissions of 235,625.92 in 0.02 seconds. After that, we minimize the carbon emissions in the
chain, which is also a linear model. The model finds the lowest emissions of 67,618.25 also in
0.02 seconds, a reduction of 71.3% compared to the economic-optimal solution emissions, and a
corresponding profit of -7218.88, indicating a loss to arrive at this solution. If we then again
consider the profit-maximizing model with a linear constraint of emissionsmax = 67, 618.25, we
find a profit of 11,963.44 in 0.03 seconds, which is much higher than the pure carbon minimizing
profit. Apparently, for this data there exists a much more economically profitable solution with the
same carbon emissions. Therefore, a carbon minimizing model is useful to find the range of carbon
emissions in the supply chain, but a more profitable solution might still be found by considering
carbon emissions as a constraint.

For the disturbed data, the CIs at the targets are not equal for each target node. Therefore,
if we put carbon restrictions on individual target nodes, the other target nodes do not necessarily
decrease in carbon intensity. For a feasible restriction CImax

R5,T1 = 40, we find a solution of 42,278.12
within a second with an optimality gap of 0.16%, which does not improve in the remaining 99
seconds of running time. For the restriction CImax

R6,T1 = 30, we find a solution of 36,006.48 in two
seconds with an optimality gap of 17.6%, also not improving in 100 seconds. For the combination
of CImax

R5,T1 = 40 and CImax
R6,T1 = 30, the first feasible solution of 13,375.83 is found after five seconds,

improving to 34,827.15 in ten seconds and staying on this solution with an optimality gap of 21.2%.
All in all, it is profitable to first minimize carbon emissions to know what is achievable, and then

rerun the model with a linear restriction on emissions to find an economically better solution. Also,
the nonlinear model finds feasible solutions still relatively fast, but has trouble proving optimality
for these solutions.
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5.2 Results Hydrogen Supply Chain Network Model

In this section, we discuss the results of the HSCN model. In Section 5.2.1, we briefly discuss the
data that is used in the case study. In Section 5.2.2, we discuss the main results of the static model
without any carbon intensity restrictions and in Section 5.2.3 we evaluate the results of nonlinear
carbon intensity constraints. In Section 5.2.4 and Section 5.2.5, we do the same analysis for the
dynamic version of the model.

5.2.1 Case Study Data

The data used in the case study is based on the data described by Konda et al. (2011). They
performed a strategic study on the design of a hydrogen infrastructure network in the Netherlands,
based on the projected trends in the hydrogen market. The full dataset where the models are
evaluated on is given in Appendix C.

In the dataset by Konda et al. (2011), the Netherlands is split into 25 distinct regions, corre-
sponding to the 25 biggest cities, as shown in Figure 5.5. For each region, the H2 demand per day
is calculated based on the vehicle density of the region, as well as the hydrogen market share as a
whole. The latter is assumed to be increasing over time, where four time periods are considered:
2015-2020, 2021-2030, 2031-2040 and 2041-2050. The daily hydrogen demand is assumed to be the
same across days within a time period. While Konda et al. (2011) use multiple demand scenarios, we
fix one demand scenario: a hydrogen market share of 1%, 3%, 7.5% and 17.5% in the respective pe-
riods. Although this might be a too optimistic scenario according to up-to-date market predictions,
it does provide us with a good demonstration of how the model works.

Figure 5.5: Locations in the Netherlands considered, including plant building options.
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Some assumptions had to be made on top of the data from Konda et al. (2011). For example, we
assume that a transportation vehicle emits 750 g CO2/km, independent of the type of hydrogen
and the weight of hydrogen transported. Also, instead of using power equations for the capital costs
of hydrogen plants depending on the exact capacity of the plant, we introduce a fixed capital cost
based on the size of the plant (small, medium, large) and the plant type, as well as a unit production
cost. The distance between destinations is calculated by taking the longitude and latitude values
of the center of the locations and calculating their absolute distances. Within a grid, it is assumed
that the average one-way travel distance is 5 km.

5.2.2 Results Static Model

First, we look at the cost, emission and carbon intensity results without considering nonlinear
carbon intensity restrictions.

Cost Minimization Table 5.9 shows the cost and emission values for the static model for the four
different time periods. As can be seen, facility capital costs account for the largest share of the total
daily cost, with a cost share between 38.6% and 53.0%. The total feedstock plus production costs
account for 87.8%-98.2% of total costs, where the other 12.2%-1.8% accounts for transportation
costs. Of transportation operating costs, the labor cost has the highest share with 66.1%-87.8%.
Regarding the total chain emissions, the production emissions by far have the highest share between
93.3%-95.8%, with transportation emissions only 0.2%-1.9%. The running time is much lower than
in the papers the model is based on: all four demand periods can be run under three seconds. Each
linear model has 10,168 variables and 17,768 constraints.

Table 5.9: Total daily costs and total daily carbon emissions for demand in different time periods
under the objective of cost minimization.

Abrev. Cost or carbon type Period T1 Period T2 Period T3 Period T4 Units

TDC Total daily cost 593,387.68 1,297,992.0 3,225,851.06 7,702,797.90 $/day
FSC Feedstock cost 27,235.17 (4.6%) 87,664.86 (6.8%) 260,472.55 (8.1%) 728,918.42 (9.5%) $/day (% of TDC)
FCC Facility capital cost 303,900.38 (51.2%) 501,207.78 (38.6%) 1,658,506.55 (51.4%) 4,080,497.07 (53.0%) $/day (% of TDC)
FOC Facility operating cost 189,697.69 (32.0%) 610,601.02 (47.0%) 1,130,794.0 (35.1%) 2,748,822.1 (35.7%) $/day (% of TDC)
TCC Transport capital cost 8630.14 (1.5%) 8520.55 (0.7%) 17,424.66 (0.5%) 212,60.27 (0.3%) $/day (% of TDC)
TOC Transport operating cost 63,924.30 (10.8%) 89,997.79 (6.9%) 158,653.31 (4.9%) 123,300.03 (1.6%) $/day (% of TDC)
FC Fueling cost 9089.02 (14.2%) 11,092.43 (12.3%) 15,131.49 (9.5%) 34,450.95 (27.9%) $/day (% of TOC)
LC Labor cost 52,587.35 (82.3%) 76,045.48 (84.5%) 139,323.57 (87.8%) 81,465.11 (66.1%) $/day (% of TOC)
MC Maintenance cost 1730.07 (2.7%) 2103.65 (2.3%) 2825.5 (1.8%) 6586.63 (5.3%) $/day (% of TOC)
GC General cost 517.86 (0.8%) 756.24 (0.8%) 1372.74 (0.9%) 797.34 (0.6%) $/day (% of TOC)

TCE Total chain emissions 689.66 2559.55 9313.57 28,077.07 ton CO2/day
TCEFeed Total feedstock emissions 32.7 (4.7%) 105.4 (4.1%) 376.9 (4.0%) 1114.9 (4.0%) ton CO2/day (% of TCE)
TCEProd Total production emissions 643.62 (93.3%) 2437.98 (95.3%) 8914.92 (95.7%) 26,911.55 (95.8%) ton CO2/day (% of TCE)
TCETrans Total transport emissions 13.29 (1.9%) 16.17 (0.6%) 21.71 (0.2%) 50.61 (0.2%) ton CO2/day (% of TCE)

DT
g Total demand 56.46 181.73 649.88 1992.25 ton H2/day

Run time 0.04 2.52 1.12 0.14 seconds

Each time period is executed individually, meaning we do not assume that plants from previous time
periods can or should be used in later time periods. In the first time period, an SMR-Small-CH2

plant is built in Rotterdam, for which 63 tube trailers satisfy the demand of the whole country. In
the second time period, one SMR-Small-CH2 and one SMR-Small-LH2 are built in Rotterdam. CH2

is served in 8 grids, including Rotterdam, with 85 tube trailers, and LH2 is served to 18 grids with
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7 tanker trucks. Only Haarlem receives both CH2 (6.77 ton H2/day) and LH2 (4.59 ton H2/day).
In the third period, one SMR-Medium-CH2 plant which produces 150.88 tons of CH2 per day and
one SMR-Medium-LH2 producing 499 tons of LH2 per day are built in Rotterdam. Rotterdam and
Zoetermeer are satisfied by CH2 and Zoetermeer and all other locations are satisfied by LH2, using
150 tube trailers and 27 tanker trucks. Finally, in the fourth period, two SMR-Large-LH2 plants
are built in Rotterdam, where 97 tanker trucks satisfy the demand of the whole country.

Although we use a static model instead of a dynamic model as in Konda et al. (2011), these
results are in line with their results: mainly SMR units in the Rotterdam area are built, producing
a combination of CH2 and LH2. If we would make the assumption that only one type of hydrogen
can be imported into a grid, the solutions of periods T2 and T3 change slightly. For period two, a
cost increase of 0.07% leads to a solution where 7 grids import CH2 and 17 grids import LH2 from
Rotterdam, while Rotterdam itself uses both. For period three, a cost increase of 0.02% leads to a
solution where Zoetermeer only receives CH2 instead of both CH2 and LH2.

CO2 Minimization To get an impression of the CO2 reductions that are possible at which costs,
we also run the model on pure CO2 emissions minimization. These results are given in Table 5.10.
Compared to the cost minimization case, the total daily costs become 1.5, 1.6, 1.7, and 1.6 times as
large, while the total CO2 emissions become 6.7, 7.4, 7.8 and 8.1 times as low respectively for the four
time periods. The share of facility capital costs to total daily costs increases for CO2 minimization
compared to cost minimization, as carbon minimization requires building more plants in order to
reduce transportation emissions. For total chain emissions, we see that the share of production
emissions decreases, though still relatively high. This is because of the CCS plants that are built.
For the first period, one SMR-CCS-CH2 plant is built in Rotterdam and one in Amsterdam. For
the second period, three SMR-CCS-CH2 plants are built in Rotterdam, Amsterdam and Arnhem,
and one SMR-CCS-LH2 plant in Rotterdam. In the third period, 5 SMR-CCS-CH2 plants are built
across the five possible destinations, and one SMR-CCS-LH2 plant is built in Rotterdam. Finally,
in the last time period we have six SMR-CCS-CH2 plants across the possible production locations
(two in Amsterdam), and one SMR-CCS-LH2 plant in Rotterdam.

Table 5.10: Total daily costs and total daily carbon emissions for demand in different time
periods under the objective of CO2 minimization.

Abrev. Cost or carbon type Period T1 Period T2 Period T3 Period T4 Units

TDC Total daily cost 900,879.49 2,061,347.06 5,499,763.06 12,587,043.53 $/day
FSC Feedstock cost 27,235.17 (3.0%) 79,504.86 (3.9%) 265,098.89 (4.8%) 738,039.09 (5.9%) $/day (% of TDC)
FCC Facility capital cost 607,800.77 (67.5%) 1,299,429.11 (63.0%) 325,4949.22 (59.2%) 6,958,874.35 (55.3%) $/day (% of TDC)
FOC Facility operating cost 205,788.12 (22.8%) 501,286.79 (24.3%) 1,408,459.01 (25.6%) 3,426,228.97 (27.2%) $/day (% of TDC)
TCC Transport capital cost 7671.23 (0.9%) 14,219.18 (0.7%) 46,246.58 (0.8%) 120,657.53 (1.0%) $/day (% of TDC)
TOC Transport operating cost 52,384.2 (5.8%) 166,907.12 (8.1%) 525,009.35 (9.5%) 1,343,243.58 (10.7%) $/day (% of TDC)
FC Fueling cost 4512.48 (8.6%) 21,112.55 (12.6%) 49,092.4 (9.4%) 118,980.12 (8.9%) $/day (% of TOC)
LC Labor cost 46,561.88 (88.9%) 140,403.45 (84.1%) 462,126.08 (8.4%) 1,190,212.06 (88.6%) $/day (% of TOC)
MC Maintenance cost 849.52 (1.6%) 4010.16 (2.4%) 9261.65 (1.8%) 22,395.44 (1.7%) $/day (% of TOC)
GC General cost 460.32 (0.9%) 1380.96 (0.8%) 4529.22 (0.9%) 11,655.96 (0.9%) $/day (% of TOC)

TCE Total chain emissions 103.64 346.96 1191.38 3473.04 ton CO2/day
TCEFeed Total feedstock emissions 32.7 (31.6%) 105.4 (30.4%) 376.9 (31.6%) 1114.9 (32.1%) ton CO2/day (% of TCE)
TCEProd Total production emissions 64.36 (62.1%) 210.74 (60.7%) 743.27 (62.4%) 2186.03 (62.9%) ton CO2/day (% of TCE)
TCETrans Total transport emissions 6.53 (6.3%) 30.82 (8.9%) 71.17 (6.0%) 172.1 (5.0%) ton CO2/day (% of TCE)

DT
g Total demand 56.46 181.73 649.88 1992.25 ton H2/day

Run time 0.07 1.40 3.24 5.58 seconds
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In general, we see that much more plants and only CCS plants are built in order to reduce trans-
portation emissions. These solutions might not be realistic in real life, for example because it
requires 1388 tube trailers to transport the much higher quantities of CH2 in the last time period,
which the model does not penalize as vehicles have no fixed associated carbon emissions. In practice,
one can first run a CO2 minimization and then a cost maximization with a linear CO2 constraint,
knowing the minimum CO2 level achievable. However, as the cost improvements were so little doing
this for the minimization of the CO2 level, this was not done for the results in Table 5.10.

Corresponding CI Values Finally, we look at the range of carbon intensity values that can
be achieved for this setup. We look at three problems: the CO2 minimization problem, the cost
minimization problem and the CO2 maximization problem. Of course, the latter is something we
want to avoid at all costs, but it is just to illustrate the range of carbon intensity values that are
possible. These values are given in Figure 5.11. As can be seen, for pure cost minimization the
values are around 14-15 ton CO2 per ton H2, which can be reduced to about 1.6-2.0 ton CO2 per
ton H2, which means a carbon intensity close to zero is not possible to achieve for this data. In
practice, if other assumptions are made, like only considering green electricity or assuming biomass
to be carbon neutral, this actually might be possible. The carbon intensity can be as much as 45-46
tons of CO2 per ton of H2, but this also corresponds to a very inefficient supply chain.

Table 5.11: Carbon intensity CIg values, weighted-averaged over hydrogen products i, under
three model configurations for the fourth time period.

Problem
Carbon intensity (ton CO2/ton H2) of grid g

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25

CO2 min. 1.65 1.72 1.88 1.76 1.65 1.74 1.77 1.87 1.97 1.70 1.85 1.81 2.01 2.00 2.00 2.00 1.75 2.00 1.70 2.04 2.03 1.85 1.70 2.04 1.80
Cost min. 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 15.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.7 14.7 14.6 14.6
CO2 max. 45.4 45.3 45.3 45.4 45.2 45.3 45.4 45.1 45.0 45.0 45.0 45.1 45.5 45.3 45.5 45.6 45.4 46.0 43.9 45.2 45.3 45.7 43.9 45.9 45.2

5.2.3 Carbon Intensity Constraints in Static Model

Next, we want to include specific carbon intensity constraints at specific locations, such that some
customers can demand a hydrogen product with a lower carbon intensity, while others do not have
to. We discuss the run times of the nonlinear models and show some typical solutions when imposing
CI restrictions. For each experiment, we assume that there can only be import of one hydrogen
product in each grid, unless stated otherwise.

CI Restrictions on Non-Production Cities First of all, we are interested in carbon intensity
restrictions for cities that do not have the possibility to produce hydrogen. We focus on a CI
restriction of both hydrogen products, i.e., no matter which type(s) of hydrogen a grid location
receives, the average carbon intensity must be below the restriction value. If we put a restriction
on a single hydrogen product, we generally see that the demand is satisfied by the other product,
such that one carbon intensity becomes zero and always satisfies the constraint.

Table 5.12 shows how much time the nonlinear solver needs to find an optimal solution, and
in case of no optimality after five minutes, what the remaining optimality gap is. Except for one
situation, the model could always find an optimal solution within five minutes. The run times for
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the linear model without CI restrictions are 2.5 and 0.2 for time periods T3 and T4 respectively.
Table 5.12 shows that a stricter CI restriction of 5 results in a higher running time for Zoetermeer
and Haarlem, but in a lower running time for Apeldoorn, Enschede and Leeuwarden, compared to
a restriction value of 10. Out of all 20 runs from Table 5.12, the average cost increase to obtain
the solution that satisfies the CI constraint is 2.68% (minimum 0.46%, maximum 6.09%) where the
total emissions in the chain decrease on average by 14.59% (minimum 2.23%, maximum 41.39%).
Including CI optimization introduces 225 additional variables and 95 additional variables compared
to the linear model, for a single CI constraint.

Table 5.12: Run time complexity of cities without production possibility for two time periods
and two CI restrictions. Maximum running time of 300 s.

Run time in seconds
(optimality gap in %)

Zoetermeer Haarlem Apeldoorn Enschede Leeuwarden

T3 - CI ≤ 10 13.4 11.8 21.3 39.4 53.5
T3 - CI ≤ 5 15.5 12.3 4.6 6.2 25.3
T4 - CI ≤ 10 1.1 3.2 3.9 2.7 3.5
T4 - CI ≤ 5 1.9 300 (0.27) 1.8 1.7 1.7

We give a full example solution to demonstrate the choices that are made by the model. We take
Zoetermeer in time period T4 with a CI restriction of 5. In the linear cost minimization problem,
all of Zoetermeer’s demand is satisfied from one of two SMR-Large-LH2 plants in Rotterdam with
a corresponding carbon intensity of 14.59. When imposing the CI restriction, an additional SMR-
Small-CCS-CH2 plant is built in Rotterdam on top of the two existing LH2 plants, which increases
the costs by 4.7% and decreases the CI of Zoetermeer to 1.83. By the assumption that production
plants grouped by the same hydrogen product in the same grid have different carbon intensities, the
restriction would not have been met if this CH2-CCS plant would have been an LH2-CCS plant. In
that case, the CI would be averaged with the already established LH2 plants in Rotterdam, which
would not decrease the CI enough to satisfy the restriction.

We discuss some other notable results. For T4 and a CI restriction of 10, all five cities find
the same solution where one of the two SMR-Large-LH2 plants in Rotterdam is replaced by an
SMR-Large-LH2-CCS plant, such that the carbon intensities of all 25 locations become around 8.6.
For the stricter CI restriction of 5, all five cities require a new SMR-Small-CCS-CH2 plant to satisfy
the restriction. For Haarlem, where the optimal solution was not found in 5 seconds, we find a
solution where an SMR-Medium-CH2-CSS plant is built, as a small CCS plant does not suffice to
satisfy Haarlem’s demand fully. For period T3, where we have one SMR-Medium-CH2 and one
SMR-Medium-LH2 plant in Rotterdam, we generally see that one additional SMR-Small-CH2-CCS
plant is built, and one medium plant is downgraded to a small plant.

CI Restrictions on Production Cities Next, we consider restrictions on cities that can produce
hydrogen and therefore also can have their demand satisfied by two types of hydrogen. The run time
results are given in Table 5.13 for the five production locations and the same two time periods and
CI restriction values. Compared to the cities without production possibilities, there are more cases
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that do not solve to optimality in five minutes: four compared to one. However, the running time
fluctuates quite a lot: for instance, a CI restriction of 10 in Arnhem in period T4 leads to the optimal
solution in 2.5 seconds, but for a CI restriction of 5 the model cannot find the optimal solution in
5 minutes. For Maastricht en Groningen, quite in the corners of the country, the model finds very
fast in T4 that it is most cost-efficient to build an additional SMR-Small-CH2-CCS plant in their
respective cities. Both cities import LH2 and produce CH2 for their own demand satisfaction.

Table 5.13: Run time complexity of cities with production possibility for two time periods and
two CI restrictions. Maximum running time of 300 s.

Run time in seconds
(optimality gap in %)

Rotterdam Amsterdam Arnhem Maastricht Groningen

T3 - CI ≤ 10 18.9 300 (0.74) 36.0 300 (0.67) 16.6
T3 - CI ≤ 5 4.4 4.3 6.7 5.7 5.7
T4 - CI ≤ 10 5.7 21.7 2.5 1.1 1.0
T4 - CI ≤ 5 46.1 300 (2.68) 300 (0.9) 6.39 1.3

Also here, we give a full example to demonstrate typical choices the model makes. We look at
Rotterdam in the third time period, which is interesting as Rotterdam satisfies 128.88 tons of CH2

(CI 11.42) and 5.67 tons of LH2 (CI 15.18) from its own production. The optimal solution with
the CI restriction is to partly satisfy demand from a CCS CH2 plant in Amsterdam to get a CI of
exactly 5. This plant might as well have been in Rotterdam, but by building it in Amsterdam the
model ‘escapes’ the fact that it would otherwise be averaged with the already established CH2 plant
in Rotterdam with a higher CI. If we consider the same CI restriction in Amsterdam, a city that
can build plants but does not do it in the cost minimization case, we find the same solution where
a small CCS-CH2 plant should be built in Amsterdam, but this time serving Amsterdam itself.

More CI Restrictions Simultaneously Next, we want to investigate whether having carbon
intensity restrictions on more cities simultaneously increases or decreases the total running time.
We consider pairs of cities that are far apart, including Rotterdam, Zoetermeer, Leeuwarden and
Groningen. We again assume that only one type of hydrogen can be imported. Table 5.14 shows
the results for these pairs, including for restrictions on all 25 grids.

Table 5.14: Run time complexity of a combination of cities with and without production possi-
bility for two time periods and two CI restrictions. Maximum running time of 300 s.

Run time in seconds
(optimality gap in %)

Zoetermeer, Leeuwarden
(no prod., no prod.)

Rotterdam, Leeuwarden
(prod., no prod.)

Zoetermeer, Groningen
(no prod., prod.)

Rotterdam, Groningen
(prod., prod.)

All

T3 - CI ≤ 10 36.1 27.8 20.1 88.5 17.0
T3 - CI ≤ 5 28.2 5.7 29.5 4.5 40.7
T4 - CI ≤ 10 1.0 2.7 3.6 3.1 1.4
T4 - CI ≤ 5 300 (0.4) 5.9 174.2 300 (0.66) 2.7

The running times from Table 5.14 are not drastically different than previously seen for single re-
strictions. Running times are most often in between the running times of both individual restrictions
of the pair cities. A common solution seen is that an additional SMR-Medium-CH2-CCS plant is
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built to satisfy the CI restrictions of both locations. Putting a restriction on all 25 cities leads to
a solution with only CCS plants. It still takes the model between 1.4 and 40.7 to find the optimal
configuration with CCS plants.

With vs. Without Import Restriction Finally for the static model, we investigate the run
time complexity of the nonlinear model if we let go of the assumption that only one type of hydrogen
can be imported in a grid. This increases the solution space, specifically to balance the amount
of each of the products to import such that the CI restriction can be met exactly. Table 5.15
demonstrates the running times for two cities where no hydrogen production is possible and two
cities where production is possible. For 12 out of 16 cases, the model cannot find the optimal
solution within five minutes. Most optimality gaps are under one percent, but the larger optimality
gaps are around four percent, and the largest is 7.2%. Only for Rotterdam in periods T3 and T4
for CI ≤ 10, the solution is found quicker if we let go of the assumption. In total, the best-found
solutions with the assumption are in 8 out of 16 cases better, the best-found solutions without the
assumption are in 6 out of 16 cases better, and the solutions are the same in 2 out of 16 cases.
The solutions with the assumption are on average 0.6% better. The assumption is not found to be
better for either producing cities or non-producing cities. All in all, the run time increases if we let
go of the import restriction assumption, and solution quality may or may not improve if the solver
is terminated early.

Table 5.15: Run time complexity of cities with and without production possibility without the
assumption of only one import product, for two time periods and two CI restrictions. Maximum

running time of 300 s.

Run time in seconds
(optimality gap in %)

Zoetermeer
(no prod.)

Haarlem
(no prod.)

Rotterdam
(prod.)

Amsterdam
(prod.)

T3 - CI ≤ 10 300 (0.63) 300 (0.72) 9.2 300 (0.4)
T3 - CI ≤ 5 300 (0.74) 300 (1.21) 300 (0.94) 300 (0.51)
T4 - CI ≤ 10 300 (0.07) 300 (1.17) 3.4 300 (4.48)
T4 - CI ≤ 5 63.9 300 (4.73) 300 (3.86) 300 (7.17)
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5.2.4 Results Dynamic Model

Lastly, we evaluate the dynamic version of the model. With this model, we optimize all four time
periods simultaneously. First, we compare the solutions of the linear model with that of the static
model, after which we test carbon intensity constraints.

Table 5.16 demonstrates the solutions of the dynamic and static models. The types of solutions
are different by the model assumptions that are made. For the dynamic model, we allow large
plants to be built in early time periods to satisfy demand in later time periods. This is also what we
see: an SMR-Large-LH2 plant is built in periods 1 and 3. For the static model, the model does not
know the demand in upcoming periods. Therefore, we enforce a constraint such that the plants that
are already built in the previous period remain intact or get upgraded in size. The average daily
cost over the entire time horizon is 10.9% lower than for the dynamic model, which is a significant
amount, as this corresponds to a cost saving of 4.17 billion dollars over the complete time horizon.
The optimal solution of the linear dynamic model was found in 0.45 seconds. The model has 48,790
variables and 81,810 constraints.

Table 5.16: Solutions of the dynamic and static model with rolling time horizon.

Total daily cost (TDC) Period T1 Period T2 Period T3 Period T4 Avg. period

Dynamic model 3,505,486.75 341,025.60 3,259,133.49 3,615,506.31 2,588,599.29
NPp,CH2,G01 - - - -
NPp,LH2,G01 1 SMR-Large 1 SMR-Large 2 SMR-Large 2 SMR-Large

Static model 593,387.68 1,115,651.77 2,724,762.30 6,265,703.07 2,906,152.71
NPp,CH2,G01 1 SMR-Small 1 SMR-Small 1 SMR-Medium 1 SMR-Large
NPp,LH2,G01 - 1 SMR-Small 1 SMR-Medium 1 SMR-Large

5.2.5 Carbon Intensity Constraints in Dynamic Model

Incorporating carbon intensity in the dynamic model leads to an even bigger set of possible combi-
nations of restrictions to test on. Therefore, we demonstrate some interesting results for a limited
number of cities, more focusing on time periods and restriction values. We assume that if a CI
restriction is set in a time period before the last period, this restriction holds or gets stricter in
the later periods. For instance, if we put a CI restriction of 5 in Zoetermeer in T2, then the CI of
Zoetermeer must also be below 5 in T3 and T4. This is reasonable to assume, as carbon emission
restrictions generally get stricter over the years, ultimately reaching net zero in 2050. We also again
assume only one hydrogen product can be imported into a grid, unless stated otherwise.

CI Restrictions on a Non-Production City Table 5.17 shows the results of CI restrictions
on a city without production possibility, Zoetermeer, for different time periods. The CI restriction
value is kept the same over time at the value 5. The dynamic model results in larger running times
than the static model. In this case, it took up to 20 seconds to find the first feasible solution, and
the optimal solution was never found within five minutes. From Table 5.17, we can also conclude
that CI restrictions on more time periods lead to a higher reduction of chain emissions. The big
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difference in total emission reduction between the second-to-last and last column can be explained
by the fact that for the T2-T3-T4 case a solution is found which builds an SMR-Large-CH2-CCS
which is used in the last period to satisfy the demand of multiple cities, where in the T1-T2-T3-T4
case only an SMR-Small-CH2-CCS plant is built especially for Zoetermeer and the other cities are
satisfied by two SMR-Large-LH2 plants.

Table 5.17: Dynamic model results under the restriction of CI ≤ 5 for the city of Zoetermeer
without production possibility.

Zoetermeer
T4

Zoetermeer
T3-T4

Zoetermeer
T2-T3-T4

Zoetermeer
T1-T2-T3-T4

First feasible solution (s) 2 2 20 15
Total running time (s) 300 300 300 300
Optimality gap (%) 0.64 1.08 2.90 2.00
Cost increase (%) 3.88 4.62 6.02 4.91
Chain CO2 decrease (%) 1.71 2.40 29.73 2.65

We give a full example of a typical solution for Zoetermeer with a CI restriction in T3 and T4. In
the first time period, an SMR-Large-LH2 and SMR-Small-CH2-CCS are built in Rotterdam, but
only the SMR-Large-LH2 plant is operational in the first two time periods. In the third and fourth
period, the SMR-Small-CH2-CCS also becomes operational, reducing the CI of Zoetermeer from
14.59 to 1.83.

CI Restrictions on a Production City Table 5.18 presents the same CI restriction experiments
for Rotterdam. Rotterdam knows higher running times and optimality gaps than Zoetermeer, where
a restriction on all time periods even leads to the first feasible solution found after 54 seconds. The
model might have a harder time finding the optimal solution for Rotterdam, as this is the key
production city, influencing the transportation to most other cities. This table also clearly shows
the increase in costs and the decrease in chain emissions when imposing restrictions for more periods.
The total chain emissions have a larger decrease compared to Zoetermeer, as CCS plants that are
built and used in Rotterdam also satisfy a part of the other demand.

Table 5.18: Dynamic model results under the restriction of CI ≤ 5 for the city of Rotterdam
with production possibility.

Rotterdam
T4

Rotterdam
T3-T4

Rotterdam
T2-T3-T4

Rotterdam
T1-T2-T3-T4

First feasible solution (s) 3 4 5 54
Total running time (s) 300 300 300 300
Optimality gap (%) 2.43 2.94 3.38 7.91
Cost increase (%) 4.97 6.18 6.86 12.18
Chain CO2 decrease (%) 28.94 32.33 33.36 36.15
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CI Restrictions on All Cities Table 5.19 shows the results if we put the same CI restriction
on all cities. It takes on average somewhat longer to find the first feasible solution, but this time
all optima were found within five minutes. This might be explained by the fact that there is less
choice around the optimum: to satisfy a CI restriction of 5, all plants must have implemented CCS.
The CO2 emissions decrease is substantial, with a decrease of up to 80% for the most strict CI
restrictions.

Table 5.19: Dynamic model results under the restriction of CI ≤ 5 for all grids.

All grids
T4

All grids
T3-T4

All grids
T2-T3-T4

All grids
T1-T2-T3-T4

First feasible solution (s) 3 7 7 54
Total running time (s) 21.8 27.3 131.7 61.1
Optimality gap (%) 0 0 0 0
Cost increase (%) 7.72 9.09 9.61 9.71
Chain CO2 decrease (%) 59.49 74.90 79.21 80.01

CI Restrictions Progressively Stricter Table 5.20 shows the results for Zoetermeer and Rot-
terdam if we impose progressively stricter restrictions. Feasible solutions can be found in just a few
seconds, but there remains a substantial optimality gap, more so for the stricter than the looser re-
strictions. There is also a big difference in solution type, where for the first of Zoetermeer’s columns
a solution is found where an SMR-Small-CH2-CCS plant is built to satisfy all Zoetermeer’s demand,
whereas in the last column of Rotterdam two SMR-Large-LH2 plants are built, where one has CCS
from the first period onward and one CCS only in the last period.

Table 5.20: Dynamic model results under progressively stricter CI restrictions for two different
locations.

Zoetermeer
T1-T2-T3-T4
CI ≤ 10-8-6-4

Rotterdam
T1-T2-T3-T4
CI ≤ 10-8-6-4

Zoetermeer
T1-T2-T3-T4
CI ≤ 8-6-4-2

Rotterdam
T1-T2-T3-T4
CI ≤ 8-6-4-2

First feasible solution (s) 3 7 2 1
Total running time (s) 300 300 300 300
Optimality gap (%) 1.98 3.88 2.87 5.19
Cost increase (%) 4.91 7.68 5.76 9.80
Chain CO2 decrease (%) 2.65 35.15 29.83 80.75

CI Restrictions Without Import Assumption We also ran the same setups as in Table 5.20,
but this time without the assumption that a grid can only import one hydrogen product. These
results are given in Table 5.21. In total, 2 out of 4 solutions are worse, 1 out of 4 solutions is better
and the last solution has the same objective function value. Especially remarkable is the solution
for Zoetermeer and CI ≤ 10-8-6-4 where the first solution was only found only after 96 seconds, and
the solution found after five minutes is of poor quality with a cost increase of almost 60%, while we
know this can be at most 4.9% from Table 5.20.
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Table 5.21: Dynamic model results under progressively stricter CI restrictions for two different
locations without the assumption of only one imported hydrogen product.

Zoetermeer
T1-T2-T3-T4
CI ≤ 10-8-6-4

Rotterdam
T1-T2-T3-T4
CI ≤ 10-8-6-4

Zoetermeer
T1-T2-T3-T4
CI ≤ 8-6-4-2

Rotterdam
T1-T2-T3-T4
CI ≤ 8-6-4-2

First feasible solution (s) 96 13 3 1
Total running time (s) 300 300 300 300
Optimality gap (%) 35.60 3.74 6.59 5.24
Cost increase (%) 59.32 7.43 9.80 9.80
Chain CO2 decrease (%) 68.92 19.13 80.76 80.75

Solutions With Starting Solution Finally, we try to find a better solution for Zoetermeer with
CI ≤ 10-8-6-4 by giving the model a starting solution. As starting solution, we provide a solution
that minimizes the chain emissions, which we know for sure satisfies the carbon intensity restrictions.
This solution is found in 11 seconds for the dynamic model. Figure 5.6 gives the solution values
over time for ten minutes of run time if we do not give the model a start solution. Figure 5.7 shows
the same results, but with the start solution. As can be seen, without the starting solution, the
model finds after about 100 seconds a solution of around 400 thousand dollars, which gradually
improves over time. However, if we give the model a starting solution, the model is able to find a
solution of around 300 thousand dollars after about 65 seconds, which is better than the model can
find without starting solution in 600 seconds. After 600 seconds, a solution is found that is 22.6%
better when using a starting solution. This is an indication that it is useful to provide the model
with a feasible starting solution if the solver has trouble finding an initial solution.

Figure 5.6: Upper and lower bound for
Zoetermeer, CI ≤ 10-8-6-4, without starting solution.

Figure 5.7: Upper and lower bound for Zoetermeer,
CI ≤ 10-8-6-4, with starting solution.

We also provided a starting solution for a case where the initial solution can be found quicker. If
we consider the exact same setup, but this time for Rotterdam instead of Zoetermeer, we find that
using a starting solution ends up at a solution which is 14.7% worse than when using no starting
solution. Using a so-called warm start therefore does not automatically lead to a better solution.
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Chapter 6

Conclusion

This thesis aims to incorporate the property of carbon intensity (CI) into energy value chain opti-
mization models. Carbon intensity is a measure of the accumulated emissions in the network that
are associated with an energy product, usually expressed in gCO2e/x – grams of CO2-equivalent
per volume, mass, or energy content of the product. In this thesis, we present a general modeling
framework for a four-tier supply chain network including carbon intensity and carbon capture &
storage (CCS), as well as an application on a hydrogen supply chain network case study.

6.1 Main Findings

The first question this thesis tries to answer is the following: What is the most effective way to
model carbon flows in mixed-integer linear programming production and distribution models in the
energy value chain optimization domain? To answer this question, we consider a generic model
with supply, production, depot and target nodes, including multiple modes of transport and CCS.

Carbon intensity is included by considering CI variables of a resource (product) at each lo-
cation. This way, carbon intensity can be tracked throughout the network, and eventually be
restricted on the customer side. Balance equations make sure the carbon intensity at a node is the
resource-weighted sum of the incoming carbon intensities. Specific constraints involving production
processes and fixed carbon emissions at depots are presented as well. Carbon capture & storage
is incorporated by including variables for the amount of CO2 that is captured at a node, as well
as binary variables for which level of CCS investment is made. Although carbon emissions at a
node are unknown beforehand, this way of modeling allows to incorporate CCS linearly into carbon
intensity constraints. Only at production nodes with multiple resources, some nonlinear constraints
were needed to incorporate CCS.

Calculating carbon intensities post-optimization after product flows are optimized can be done
relatively easily, given a set of rules on how to distribute carbon flows over products. If this is trans-
lated to CI restrictions during-optimization, we end up with a nonconvex quadratic optimization
problem. The problem is nonconvex, as we have nonlinear equality constraints for carbon balancing.
The problem is quadratic or bilinear, because we multiply carbon intensities with product flows to
get carbon flows. State-of-the-art solvers are able to solve such problems to optimality. We find
that optimal solutions can be found for small data instances where carbon intensities are restricted,
provided that the carbon intensity restriction is not too strict. For CI intensity restrictions close
to the minimum achievable carbon intensity, the model generally cannot prove what the optimal
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solution is as it has to weigh many carbon reduction possibilities. Carbon intensities can much more
easily be reduced by linear carbon restrictions defined on the whole supply chain, but those might
not target carbon intensities of specific targets effectively. We have tried an alternative formulation
using carbon flow variables, but based on the numerical experiments done in this study, neither of
the two formulations consistently outperformed the other.

The second research question this thesis aims to answer is: What is the performance in terms
of running time of large models which include restrictions on carbon intensities? To answer this
question, we looked at a case study model from the literature specifically to assess the effect on
models of a realistic real-life scale. We include carbon emissions, carbon intensity and CCS in the
hydrogen supply chain network optimization model for the Netherlands by Konda et al. (2011).
Compared to the cost minimization case, there can be up to eight times as little carbon emissions
when we minimize the carbon emissions in the chain. For a static model, we find that CI restrictions
on cities that can produce hydrogen have a larger effect on running times than for cities that can
only receive hydrogen. If an assumption that only one type of hydrogen product can be imported
is loosened, optimal solutions are rarely found within five minutes of running time. This is because
there are significantly more options the model has to balance the import of hydrogen from different
locations with different carbon intensities. A linear dynamic model reduces the average daily cost by
10.9% compared to a linear static model. Under the emission data that is provided by Konda et al.
(2011), we typically find solutions where steam methane reforming plants are built in Rotterdam,
and the installation of CCS allows a decrease in carbon intensities. Emissions of transportation
have a very minor role compared to emissions from hydrogen production, which makes CCS the
best investment to reduce CO2 emissions in hydrogen supply chains.

More generally, where linear models of about ten thousand variables are able to find the optimal
solution in up to two seconds, nonlinear models incorporating CI generally need longer and in
some cases do not find optimal solutions within five minutes. For a dynamic model of several tens
of thousands of variables, it generally takes up to ten seconds to find the first feasible solution
satisfying a CI restriction. For one specific restriction, it took 96 seconds to find the first feasible
solution, but this can be improved by providing a warm start with the pure carbon minimization
solution which satisfies the CI restriction too. We can conclude that CI can be included in models
of realistic scale, provided that the linear base model can be solved to optimality in a reasonable
time, such that the nonlinear model most likely will find a feasible but not the optimal solution.

6.2 Discussion & Further Research

Finally, we discuss the work of this thesis and where further research can be performed.

Multi-Resource, Multi-Transport Model In this thesis we have looked at a generic multi-
resource, multi-transport (MRMT) supply chain model with CCS components. These models reflect
practical optimization models, but cannot incorporate all features that industry models have. There-
fore, there remain plenty of challenges in carbon intensity modeling. Moreover, the focus of this
thesis was not so much on the accounting aspects. In particular, we have looked at basic alloca-
tion rules of carbon flows based on a mass balance. If we consider biofuels in refinery processes,
it becomes relevant to also consider energy content balancing. We also did not distinguish CO2
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emissions and more general greenhouse gas or CO2-equivalent emissions. In addition, there was
little focus in this thesis on scope 3 emissions, which is something to study further as there is a high
share of scope 3 emissions for hydrocarbon energy sources compared to operational scope 1 and 2
emissions. The carbon flow formulation did not significantly outperform the formulation using CI
variables. Other interesting alternatives to study are the Q-formulation and the multi-commodity
flow formulation for generalized pooling problems as given by Alfaki and Haugland (2013). These
have been shown to outperform the P-formulation for the pooling problem, which indicates it might
also be beneficial for the carbon intensity modeling problem. However, these alternatives were not
considered in this project as they are hard to generalize to less specific network structures.

Hydrogen Supply Chain Network Model Although the hydrogen case study has provided us
with valuable results, one shortcoming of the original study is that the data is somewhat outdated.
Today, the market share for low-duty hydrogen vehicles is only expected to be 1% in 2050 (DNV,
2022), which is much less than Konda et al. (2011) predicted back then. Also, the assumptions
on production carbon emissions might not be accurate. The emissions for electrolysis assumed by
Konda et al. (2011) are quite high, though a large share of electricity is generated from renewable
sources nowadays. Also, the emissions for biomass do not reflect the complete life cycle of biomass.
Using other emission data might result in completely different solutions, however in this thesis we
aimed to stay as close to the paper by Konda et al. (2011) as possible. The run times of the
linear case study model were relatively short, though these models consist of tens of thousands of
variables and constraints. The model might not be too ‘complex’ in the sense that steam methane
reforming is both the most cost-efficient option as well as the most carbon-efficient option, discarding
the other three production technologies. The model still has the potential to be extended with
more complexity considering multiple modes of transport (including pipelines), external import of
feedstock, storage locations, uncertainty, etc. Also, some sensitivity analysis can be performed based
on other factors. For instance, if we know that there is a high employment rate in Groningen, what
is the network cost when building a plant in Groningen compared to the mathematically optimal
solution that might not decide to build a plant in Groningen? Depending on these cost differences,
one can still decide to build a plant in Groningen. These strategic models are usually only performed
on a monthly or yearly basis, compared to daily operational models. Therefore, we can allow the
solvers to have more running time than the few minutes that were used in this project, although you
cannot say beforehand how much the solution quality improves if more hours of running time are
provided. Finally, where for the MRMT model we found that linearly restricting subchains resulted
in good CI approximations, this was not effective for the hydrogen case study model, as there are
no real subchains - each demand location can receive any hydrogen product from any location.

Heuristics As there is little to find in the literature about carbon intensity optimization or re-
stricting cost-to-serve, we would go as far as to say that this thesis can be seen as a starting point for
research in the realm of carbon intensity. As seen throughout this thesis, nonlinear models generally
find feasible solutions or can even be solved to optimality, but this is only compared to linear models
that run in at most a few seconds. Therefore, heuristics can be designed to solve problems of larger
scale. Most generally, some search algorithms might be defined to find those model components
that have the largest effect on carbon intensity. For each main continuous and integer variable in
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the model, we should know the associated carbon emissions. By iteratively putting different linear
restrictions on each of the variables, we could end up at a solution satisfying CI restrictions with-
out imposing a nonlinear structure. To iterate between solutions, a variable neighborhood descent
structure might be defined. However, heuristics are usually very specific to a problem structure.
Therefore, one can also think of heuristics that build solutions from scratch, for example by opening
or closing production facilities with a genetic algorithm. In the case of the hydrogen case study, we
saw that production emissions account by far for the largest share of total emissions. One idea is
the following: first, define all possible technology-size-CCS-location combinations. Then, for one or
multiple combinations, define how much production must be realized, such that the total produc-
tion sums up to the total demand. Assign cities with the strictest carbon intensity restrictions to
the production units with the lowest carbon intensities and continue until all cities are connected
to production units. Then you can calculate the carbon intensities at the target locations and the
total costs of the solution. Continue creating production schedules such that the solution is feasible
according to CI restrictions and the costs are as low as possible. Another strategy which we do
not recommend as it did not seem to work is fixing the carbon intensities at certain values and
then calculating the corresponding network solution. Each solution was found to be very specific to
certain CI values, and changing one CI value generally leads to an infeasible solution.

Vision for the Future Decarbonizing industry and accelerating a green economy are some of
the most urgent issues of this century. Carbon intensity as a tool is not only relevant in the energy
sector, but also in many other sectors like retail, where customers can actively become aware of the
emissions that are associated with products they buy. Though the goal of this thesis was to look
at carbon intensity restrictions for specific customers, we should keep in mind that under scarce
resources a higher global reduction could be achieved if we restrict the carbon emissions of the entire
supply chain. We should collaborate to achieve the most efficient decarbonization strategy.
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Appendix A

Single-Resource, Multi-Transport Model

This appendix presents the single-resource, multi-transport (SRST) model, which is a special case
of the multi-resource, multi-transport (MRMT) model. The reader can study this model if they
want to start with an easier version of the MRMT model. We refer to Tables 4.1, 4.3 and 4.4 for
the notation of the model, which is simplified for this model. In particular, we do not have the set
of resources r ∈ R as we only consider one resource. Also, the set p ∈ P has a slightly different
interpretation here: instead of production units and depots, we consider pools, which linearly blend
all the resources that come in and produce one outgoing resource. This is in fact the same as a depot
for which different streams for the same resource can mix. From the SRST model, it is relatively
easy to arrive at the single-resource, single-transport (SRST) model, just by ignoring all indices and
summations over m ∈ M.

A.1 Exact Model Formulation

The following parts are discussed: the basic model without any carbon constraints (A.1.1); calculat-
ing carbon intensity post-optimization (A.1.2); incorporating carbon intensities during-optimization
(A.1.3); carbon capture and storage (A.1.4); constraining carbon emissions linearly (A.1.5).

A.1.1 Linear Program Without Accounting for Carbon Emissions

If we do not account for any carbon flow calculations and restrictions in the model, we arrive at the
MILP model as given in (A.1)-(A.13).

max revenue− costsnodes − costsarcs (A.1)

s.t. revenue =
∑
t∈T

∑
i∈N (t)−

∑
m∈M

pricet · xitm (A.2)

costsnodes =
∑

i∈S∪P

∑
j∈N (i)+

∑
m∈M

costi · xijm (A.3)

costarcs =
∑

(i,j)∈E

∑
m∈M

costij · xijm (A.4)

∑
j∈N (s)+

∑
m∈M

xsjm ≥ supplymin
s · zs s ∈ S (A.5)
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∑
j∈N (s)+

∑
m∈M

xsjm ≤ min
{
supplymax

s ,M
}
· zs s ∈ S (A.6)

∑
i∈N (p)−

∑
m∈M

xipm =
∑

j∈N (p)+

∑
m∈M

xpjm p ∈ P (A.7)

∑
i∈N (p)−

∑
m∈M

xipm ≥ throughmin
p · zp p ∈ P (A.8)

∑
i∈N (p)−

∑
m∈M

xipm ≤ min
{
throughmax

p ,M
}
· zp p ∈ P (A.9)

xijm ≤ throughmax
ijm (i, j) ∈ E ,m ∈ M (A.10)

demandmin
t ≤

∑
i∈N (t)−

∑
m∈M

xitm ≤ demandmax
t t ∈ T (A.11)

xijm ≥ 0 (i, j) ∈ E ,m ∈ M (A.12)

zi ∈ {0, 1} i ∈ (S ∪ P ) (A.13)

Objective (A.1) and constraints (A.2)-(A.4) regulate the profit that is maximized. Constraints
(A.5) and (A.6) regulate the minimum and maximum supply. The big M that is used is M =∑

t∈T demandmax
t . Constraints (A.7) make sure the total flow into a pool equals to total flow out

of a pool. Constraints (A.8)-(A.9) regulate the minimum and maximum throughput of the pool.
Constraints (A.10) restrict how much flow can go on an arc. Constraints (A.11) make sure the
necessary demand is satisfied. Constraints (A.12) and (A.13) specify the domain of the variables.

A.1.2 Calculating Carbon Intensities Post-Optimization

Two options to calculate carbon intensities post-optimization are discussed: using CI variables
(Option 1) and carbon flow y variables (Option 2).

Calculation Option 1: Carbon Intensities at the Nodes

CIs := carbons s ∈ S (A.14)

x̄j :=
∑

i∈N (j)−

∑
m∈M

x̄ijm j ∈ P ∪ T (A.15)

CIp :=
∑

i∈N (p)−

∑
m∈M

(
(CIi + carbonipm) · x̄ipm

x̄p

)
+ carbonp p ∈ P, x̄p > 0 (A.16)

CIt :=
∑

i∈N (t)−

∑
m∈M

(
(CIi + carbonitm) · x̄itm

x̄t

)
t ∈ T , x̄t > 0 (A.17)

Equations (A.14) set the carbon intensity per unit material at the source to its parameter value.
Equations (A.15) are a shortcut to calculate the total resource flow going through a pool or target.
Equations (A.16) set the carbon intensities at the pooling nodes as a resource-weighted sum of the
incoming carbon intensities, plus the carbon emissions per product at the node itself. Equations
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(A.17) set the carbon intensities at the target nodes as a resource-weighted sum of the incoming
carbon intensities.

Calculation Option 2: Carbon Flows through the Nodes

ysj :=
∑
m∈M

(carbons + carbonsjm) · x̄sjm s ∈ S, j ∈ N (s)+ (A.18)

x̄j :=
∑

i∈N (j)−

∑
m∈M

x̄ijm j ∈ P ∪ T (A.19)

yp :=
∑

i∈N (p)−

yip + carbonp · x̄p p ∈ P (A.20)

ypj :=
∑
m∈M

(yp
x̄i

+ carbonpjm

)
· x̄pjm p ∈ P, j ∈ N (p)+, x̄i > 0 (A.21)

CIt :=

∑
i∈N (t)− yit

x̄t
t ∈ T , x̄t > 0 (A.22)

Equations (A.18) calculate the carbon flows on arcs leaving the source nodes. Equations (A.19)
are a shortcut to calculate the resource flows through pools and target nodes. Equations (A.20)
calculate the total carbon flow into the pool plus the emissions realized at the pool. Equations
(A.21) calculate the carbon flows leaving the pooling nodes. Equations (A.22) calculate the carbon
intensities at the target nodes.

A.1.3 Optimizing Carbon Intensities During-Optimization

To restrict carbon intensities during-optimization, we use nonlinear balance constraints at the nodes.
We again consider two options: using CI variables (Option 1) and carbon flow y variables (Option
2), which we both discuss.

Optimization Option 1: Carbon Intensity Balance Equations

CIs = carbons s ∈ S (A.23)

CIp

∑
i∈N (p)−

∑
m∈M

xipm =
∑

i∈N (p)−

∑
m∈M

(CIi + carbonipm + carbonp) · xipm p ∈ P (A.24)

CIt

∑
i∈N (t)−

∑
m∈M

xitm =
∑

i∈N (t)−

∑
m∈M

(CIi + carbonitm) · xitm t ∈ T (A.25)

CIt ≤ CImax
t t ∈ T (A.26)

Constraints (A.23) set the carbon intensity per unit material at the source to its parameter value.
Constraints (A.24) regulate the carbon intensity balancing at the pools. Notice that these con-
straints contain bilinear terms. Both the left-hand side and the right-hand side consider a summa-
tion over the incoming carbon flow at a pool, but as incoming and outgoing flow are equal, one
can also consider a summation over outgoing flow. Constraints (A.25) calculate the total carbon
intensities at the target nodes. Constraints (A.26) restrict the carbon intensities at the targets.
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Optimization Option 2: Carbon Flow Balance Equations

ysj =
∑
m∈M

(carbons + carbonijm) · xsjm s ∈ S, j ∈ N (s)+ (A.27)

xj =
∑

i∈N (j)−

∑
m∈M

xijm j ∈ P ∪ T (A.28)

yp =
∑

i∈N (p)−

yip + carbonp · xp p ∈ P (A.29)

ypj · xp = yp

∑
m∈M

xpjm +
∑
m∈M

carbonpjm · xpjm · xp p ∈ P, j ∈ N (p)+ (A.30)

yt =
∑

i∈N (t)−

yit t ∈ T (A.31)

yt ≤ CImax
t · xt t ∈ T (A.32)

Constraints (A.27) calculate the carbon flow on arcs leaving the source nodes. Constraints (A.28)
calculate the resource flow going through a pool or target. Constraints (A.29) calculate the total
carbon flow going into a pool plus the emissions at the pooling node itself. Constraints (A.30)
determine the carbon flows on the arcs leaving the pools. Notice that these constraints contain
bilinear terms. Constraints (A.31) calculate the carbon flow entering the demand nodes. Constraints
(A.32) restrict carbon flows according to carbon intensity restrictions.

A.1.4 Carbon Capture & Storage Constraints

To allow for the option of carbon capture & storage, add constraints (A.33)-(A.37) to the model.

cp ≤ carbonp · xp p ∈ P ′ (A.33)

cp ≤
∑
l∈L

capturemax
pl · zpl p ∈ P ′ (A.34)

∑
l∈L

zpl ≤ 1 p ∈ P ′ (A.35)

cp ≥ 0 p ∈ P ′ (A.36)

zpl ∈ {0, 1} p ∈ P ′, l ∈ L (A.37)

Constraints (A.33) make sure the captured carbon is not more than the emissions that are actually
emitted at the pool. Constraints (A.34) ensure that either nothing is captured if no investment
is made, and otherwise no more than the allowed capacity is captured for the chosen investment.
Constraints (A.35) allow for at most one CCS investment per node. Constraints (A.36) and (A.37)
specify the domain of the CCS variables.
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Some adaptations to the previously mentioned equations have to be made to include CCS as a
decision option. A new CCS cost equation (A.38) should be added to the total cost calculations as
in the objective (A.1).

costsCCS =
∑
p∈P ′

∑
l∈L

installpl · zpl (A.38)

Equations (A.16) should be replaced by Equations (A.39) for p ∈ P ′.

CIp :=
∑

i∈N (p)−

∑
m∈M

(
(CIi + carbonipm) · x̄ipm

x̄p

)
+ carbonp −

c̄p
x̄p

p ∈ P ′, x̄p > 0 (A.39)

Equations (A.20) should be replaced by Equations (A.40) for p ∈ P ′.

yp :=
∑

i∈N (p)−

∑
m∈M

yipm + carbonp · x̄p − c̄p p ∈ P ′ (A.40)

Constraints (A.24) should be replaced by Equations (A.41) for p ∈ P ′.

CIp

∑
i∈N (p)−

∑
m∈M

xipm =
∑

i∈N (p)−

∑
m∈M

(CIi + carbonipm + carbonp) · xipm − cp p ∈ P ′ (A.41)

Constraints (A.29) should be replaced by Equations (A.42) for p ∈ P ′.

yp =
∑

i∈N (p)−

yip + carbonp · xp − cp p ∈ P ′ (A.42)

A.1.5 Constraining Total Carbon Emissions Linearly

Adding equations (A.43)-(A.47) allows to put linear restrictions on the total amount of carbon
emitted in the whole supply chain. Note that for CCS in equations (A.45), we actually multiply it
by -1 to subtract the amount of CO2 captured.

emissionssources =
∑
s∈S

∑
j∈N (s)+

∑
m∈M

carbons · xsjm (A.43)

emissionspools =
∑
p∈P

∑
i∈N (p)−

∑
m∈M

carbonp · xipm (A.44)

emissionsCCS = −1 ·
∑
p∈P ′

cp (A.45)

emissionstransport =
∑

(i,j)∈E

∑
m∈M

carbonijm · xijm (A.46)

∑
loc∈{sources,pools,CCS,transport}

emissionsloc ≤ emissionsmax (A.47)
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Appendix B

Hydrogen Case Study: Full Model

This appendix presents the modeling framework for the hydrogen case study, which we largely base
on the setup by Konda et al. (2011). As Konda et al. (2011) do not present a mathematical model,
the actual mathematical formulations are based on the work by Almansoori and Shah (2006) and
Almansoori and Shah (2009). We first present a static variant of the model in Section B.1 which
optimizes the hydrogen supply chain network (HSCN) for one demand period. Then, we present
the dynamic model in Section B.2 solving the HSCN for four time periods. The notation in these
models is completely separate from the MRMT model as presented in Chapter 4.1.

B.1 Static Model

We first discuss the static model mainly based on the model by Almansoori and Shah (2006).

B.1.1 Indices, Sets, Parameters and Variables

The model consists of a set of grids G, which are in our case cities in the Netherlands. In earlier
papers, the map of the United Kingdom was split into several block grids, explaining the name
grid, which we keep as notation. Each grid has a certain daily hydrogen demand. These can be
different physical types of hydrogen, presented in the set I. Hydrogen is produced at plants from
the set P, which are plants that technologically produce hydrogen in different ways. Each plant has
a size and the option for CCS, and for ease of notation, we collect all those decisions in one set P,
which consists of technology-size-CCS triples. Additionally, a set of feedstock used by plants in P
can be defined, but as we do not restrict feedstock availability, we can simplify by considering cost
and carbon data of feedstock under the set P. Finally, the set L presents the set of transportation
modes. Table B.1 presents the full set of indices and sets for the static HSCN model.

Table B.1: Indices and sets of the hydrogen case study model.

Index & Set Description

g ∈ G grid square or location;

g′ ∈ G also a grid square;

i ∈ I physical form of hydrogen product;

p ∈ P plant type with corresponding technology, size and CCS decision;

l ∈ L type of transportation mode.
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Table B.2 presents the full list of parameters for the static HSCN model.

Table B.2: Parameters of the hydrogen case study model.

Parameter Description

CCF capital charge factor, defined as the length of the time period (years);

CCSCost cost of capturing CO2 by CCS ($/ton CO2);

CCSEF efficiency of CCS as the percentage of CO2 that can be captured (%);

CIStart
pi start CI values of plant type p producing product i (ton CO2/ton H2);

CImax
ig maximum allowed CI of product i at grid g;

CImax
g maximum average allowed CI of all hydrogen products at grid g;

CO2Feed
p CO2 emissions from feedstock preparation for plant p (ton CO2/ton H2);

CO2Prod
pi CO2 emissions from production for plant p producing product i (ton CO2/ton H2);

CO2Trans CO2 transportation emissions per distance driven (ton CO2/km);

DT
g daily demand for hydrogen in grid g in some time period (ton H2/day);

DWl driver wage of transportation mode l ($/h);

FEwithin
l fuel economy mode l within a grid (km/L diesel);

FEbetween
l fuel economy mode l between grids (km/L diesel);

FPl fuel price of transportation mode l ($/L diesel);

FSPp feedstock price for the main feedstock needed for plant p ($/ton or $/MWh);

GEl general expenses of transportation mode l ($/day/vehicle);

Llgg′ average delivery distance between grids g and g′ by transportation mode l (km/trip)1;

LUTl load/unload time for transportation mode l (h/trip);

MEl maintenance expenses of transportation mode l ($/km);

PCapmin
pi minimum production capacity of plant p for product form i (ton H2/day);

PCapmax
pi maximum production capacity of plant p for product form i (ton H2/day);

PCCpi capital cost of establishing plant type p producing product form i ($/plant);

PCRp production conversation rate out of main feedstock at plant p (ton feed/ton H2 or MWh/ton H2);

Qmin
il minimum product flow of product i by transportation mode l (ton H2/day);

Qmax
il maximum product flow of product i by transportation mode l (ton H2/day);

SPwithin
l average speed of transportation mode l within a grid (km/h);

SP between
l average speed of transportation mode l between grids (km/h);

TCapil capacity of transportation mode l transporting product form i (ton H2/trip);

TMAl availability of transportation mode l (h/day);

TMCil capital cost of establishing transportation mode l transporting product form i ($/vehicle);

TCEmax maximum allowed total chain emissions (ton CO2/day);

UPCpi unit production cost for product form i produced by plant type p ($/ton H2);

α network operating period (days/year);

1Prod
ig 1 if product i can be produced in grid g, 0 otherwise;

1CCS
p 1 if plant p is a CCS plant, 0 otherwise.

1 Llgg′ is defined such that for g′ = g the parameter equals the estimated travel distance within a grid for mode l.
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Table B.3 presents the full list of variables for the static HSCN model.

Table B.3: Variables of the case study model.

Variable Description

Continuous operational variables:

DL
ig demand product i in grid g satisfied by local production in the same grid (ton H2/day);

DI
ig demand product i in grid g satisfied by imported production from another grid (ton H2/day);

P pig amount daily produced of product i from plant type p in grid g (ton H2/day);

P T
ig total daily production of product i in grid g (ton H2/day);

Qilgg′ daily amount of product i between grid g and g′ per day using mode l (ton H2/day)1;

NOT ilgg′ number of trips daily of product i transported by mode l between grid g and g′;

Continuous cost variables:

FC fuel cost ($/day);

FCC facility capital cost ($);

FOC facility operating cost ($/day);

FSC feedstock cost ($/day);

GC general cost ($/day);

LC labor cost ($/day);

MC maintenance cost ($/day);

TCC transportation capital cost ($);

TDC total daily cost network ($/day);

TOC transportation operating cost ($/day);

Continuous CO2 variables:

CIPlants
ig CI of the plants producing product i in grid g (ton CO2/ton H2);

CIProd
ig CI of product i satisfied at the customer in grid g due to production (ton CO2/ton H2);

CITrans
ig CI of product i satisfied at the customer in grid g due to transportation (ton CO2/ton H2);

CIig CI of product i satisfied at the customer in grid g (ton CO2/ton H2);

CIg average CI of all products satisfied at the customer in grid g (ton CO2/ton H2);

TCEFeed total feedstock emissions (ton CO2/day);

TCEProd total production emissions (ton CO2/day);

TCETrans total transportation emissions (ton CO2/day);

TCE total chain emissions (ton CO2/day);

Integer variables:

NP pig number of plants of type p producing product form i in grid g;

NTU il number of daily transport units needed of mode l for product i;

Binary variables:

Xilgg′ 1 if at least some product i is transported from g to g′ using mode l, 0 otherwise;

Y ig 1 if product i is exported to another grid from grid g, 0 otherwise;

Zig 1 if product i is imported from another grid into grid g, 0 otherwise.

1 Qilgg′ is defined such that for g′ = g the variable equals the amount of product i satisfied within a grid by mode l.
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B.1.2 Exact Model

Here we present the exact model formulation. The model is split up into three parts: the operational
part, which makes sure that production, transportation and demand match; the cost part, which
makes sure it is done in the most cost-efficient way; the CO2 part, which demonstrates how to
calculate total chain emissions and carbon intensities and how to restrict carbon intensity. For a
detailed explanation of the operational and cost part, we refer to the paper of Almansoori and Shah
(2006). In Section B.1.3, we discuss the changes made to their model. The domains of the variables
are not explicitly taken care of in the constraints, as the domains can be seen in Table B.3.

Operational Part Constraints (B.1)-(B.15) present the operational part.

DL
ig ≤ P T

ig ∀i, g if 1Prod
ig = 1 (B.1)

DL
ig =

∑
l

Qilgg ∀i, g (B.2)

DI
ig =

∑
l,g′,g′ ̸=g

Qilg′g ∀i, g (B.3)

DT
g =

∑
i

(
DL

ig +DI
ig

)
∀g (B.4)

DL
ig = P T

ig −
∑

l,g′,g′ ̸=g

Qilgg′ ∀i, g (B.5)

P T
ig =

∑
p

P pig ∀i, g if 1Prod
ig = 1 (B.6)

PCapmin
pi ·NP pig ≤ P pig ≤ PCapmax

pi ·NP pig ∀p, i, g if 1Prod
ig = 1 (B.7)∑

p

PCapmin
pi ·NP pig ≤ P T

ig ≤
∑
p

PCapmax
pi ·NP pig ∀i, g if 1Prod

ig = 1 (B.8)

Qmin
il ·Xilgg′ ≤ Qilgg′ ≤ Qmax

il ·Xilgg′ ∀i, l, g, g′; g′ ̸= g if 1Prod
ig = 1 (B.9)

Xilgg′ +Xilg′g ≤ 1 ∀i, l, g, g′; g′ ̸= g (B.10)

Y ig ≥ Xilgg′ ∀i, l, g, g′; g′ ̸= g if 1Prod
ig = 1 (B.11)

Zig ≥ Xilg′g ∀i, l, g, g′; g′ ̸= g (B.12)

Y ig +Zig ≤ 1 ∀i, g (B.13)∑
i

Zig ≤ 1 ∀g (B.14)

DL
ig = P pig = P T

ig = Qilgg′ = NP pig = Xilgg′ = Y ig = 0 ∀p, i, l, g, g′ if 1Prod
ig = 0 (B.15)
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Cost Part Constraints (B.16)-(B.28) present the cost part.

FCC =
∑
p,i,g

PCCpi ·NP pig (B.16)

FOC =
∑
i,g,p

(UPCpi + 1CCS
p · CCSCost · CO2Prodpi) · P pig (B.17)

FSC =
∑
p

(
FSPp · PCRp ·

∑
i,g

P pig

)
(B.18)

NOT ilgg′ =
Qilgg′

TCapil
∀i, l, g, g′ (B.19)

NTU il ≥
∑

g,g′,g′ ̸=g

NOT ilgg′

TMAl

(
2Llgg′

SP between
l

+ LUTl

)
+
∑
g

NOT ilgg

TCapil · TMAl

(
2Llgg

SPwithin
l

+ LUT1

)
∀i, l

(B.20)

TCC =
∑
i,l

TMCil ·NTU il (B.21)

FC =
∑

i,l,g,g′,g′ ̸=g

FPl

(
2Llgg′ ·Qilgg′

FEbetween
l · TCapil

)
+
∑
i,l,g

FPl

(
2Llgg ·Qilgg

FEwithin
l · TCapil

)
(B.22)

LC =
∑

i,l,g,g′,g′ ̸=g

DWl

(
Qilgg′

TCapil

(
2Llgg′

SP between
l

+ LUTl

))
+
∑
i,l,g

DWl

(
Qilgg

TCapil

(
2Llgg

SPwithin
l

+ LUTl

))
(B.23)

MC =
∑

i,l,g,g′

MEl

(
2Llgg′ ·Qilgg′

TCapil

)
(B.24)

GC =
∑
i,l

GEl ·NTU il (B.25)

TOC = FC +LC +MC +GC (B.26)

TDC =
FCC + TCC

α · CCF
+ FOC + TOC + FSC (B.27)

min{TDC} (B.28)
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CO2 Part Constraints (B.29)-(B.33) calculate the total feedstock, production and transportation
carbon emissions and put restrictions on the total emissions.

TCEFeed =
∑
p

CO2Feed
p

∑
i,g

P pig (B.29)

TCEProd =
∑
p,i,g

(
(1− 1CCS

p ) · CO2Prod
pi + 1CCS

p · (1− CCSEF ) · CO2Prod
pi

)
P pig (B.30)

TCETrans = CO2Trans
∑

i,l,g,g′

NOT ilgg′ · 2Llgg′ (B.31)

TCE = TCEFeed + TCEProd + TCETrans (B.32)

TCE ≤ TCEmax (B.33)

Constraints (B.34)-(B.41) show how to calculate carbon intensities post-optimization using the
existing model variables, using several intermediate steps. Carbonig and Carbong represent total
emissions, if we multiply by the amount of product satisfied.

CIStartpi :=
(
CO2Feed

p + (1− 1CCS
p ) · CO2Prod

pi + 1CCS
p · (1− CCSEF ) · CO2Prod

pi

)
∀p, i (B.34)

CIPlants
ig :=

∑
p

P̄ pig

P̄
T
ig

· CIStartpi ∀i, g (B.35)

CIProd
ig :=

∑
l,g′

Q̄ilg′g∑
l∗,g′∗ Q̄il∗g′∗g

· CIPlants
ig′ ∀i, g (B.36)

CITrans
ig :=

CO2Trans
∑

l,g′
¯NOT ilg′g · 2Llg′g

D̄
L
ig + D̄

I
ig

∀i, g (B.37)

CIig := CIProd
ig + CITrans

ig ∀i, g (B.38)

CIg :=
∑
i

CIig ·
(D̄

L
ig + D̄

I
ig)

DT
g

∀g (B.39)

Carbonig := CIig · (D̄
L
ig + D̄

I
ig) ∀i, g (B.40)

Carbong := CIg ·DT
g ∀g (B.41)

Constraints (B.42)-(B.51) show an option to incorporate carbon intensity during-optimization using
balance constraints and restriction constraints. This is inspired by the post-calculation option by
multiplying the terms in the denominator on both sides of the equation, resulting in quadratic
equality constraints.

CIStartpi =
(
CO2Feed

p + (1− 1CCS
p ) · CO2Prod

pi + 1CCS
p · (1− CCSEF ) · CO2Prod

pi

)
∀p, i (B.42)

CIPlants
ig · P T

ig =
∑
p

P pig · CIStartpi ∀i, g (B.43)
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CIProd
ig ·

∑
l∗,g′∗

Qil∗g′∗g =
∑
l,g′

Qilg′g ·CIPlants
ig′ ∀i, g (B.44)

CITrans
ig · (DL

ig +DI
ig) = CO2Trans

∑
l,g′

NOT ilg′g · 2Llg′g ∀i, g (B.45)

CIig = CIProd
ig +CITrans

ig ∀i, g (B.46)

CIg =
∑
i

CIig · (DL
ig +DI

ig) ·
1

DT
g

∀g (B.47)

CIig ≤ CImax
ig ∀i, g (B.48)

CIg ≤ CImax
g ∀g (B.49)

CIPlants
ig = 0 ∀i, g if 1Prod

ig = 0 (B.50)

CIig = CIg = 0 ∀i, g if DT
g = 0 (B.51)

B.1.3 Model Changes and Assumptions

The model is based on the framework by Konda et al. (2011) and is mainly based on the formulation
by Almansoori and Shah (2006). However, some changes are made to accompany the setup and to
add carbon emissions. These are explained here:

◦ The parameter Dig is replaced by Dg, as for customers it does not matter whether they receive
CH2, LH2 or both, as long as they receive some type of hydrogen. This is the same in the data by
Almansoori and Shah (2006), but still they defined a variable Dig, presumably for the generality
of the model. As a consequence, constraints (B.4) and (B.5) are adapted.

◦ Almansoori and Shah (2006) are not very specific about the definition of Qilgg′ for g′ = g.
Therefore, we define it as the locally satisfied demand of product i with mode l, making Llgg′

for g′ = g the average distance traveled within a grid. Consequently, constraints (B.2) are added
to define Qilgg. Also constraints (B.20), (B.22) and (B.23) are adapted, additionally taking into
account SP between

l , SPwithin
l , FEbetween

l and FEbetween
l .

◦ Constraints (B.14) are added to make sure only one type of hydrogen product is imported in
each grid. This assumption can be dropped for example if you consider multiple fueling stations
per grid, but it improves the speed of the model. It still allows having both products satisfied
in a grid that produces hydrogen. In this report, we show results both with and without this
constraint.

◦ Almansoori and Shah (2006) consider storage facilities, as they consider the United Kingdom,
which is larger than the Netherlands. However, as the Netherlands studied by Konda et al. (2011)
is sufficiently small, storage facilities are not considered here.

◦ As given in the data by Konda et al. (2011), plants can only be built on a subset of locations.
To reflect that, we introduce parameter 1Prod

ig , which is used in constraints (B.1), (B.6), (B.7),
(B.8), (B.9), (B.11) and (B.15).

◦ Almansoori and Shah (2006) use the variable NTU as the number of transportation units.
However, as we have different costs for different transportation units, we extend this variable
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to the variables NTU il. Consequently, constraints (B.20)-(B.21) are changed. These NTU il

variables actually serve as an underestimation of the number of units needed, assuming vehicles
can perfectly route all (partial) trips, where NTU ilgg would be an overestimation, as that assumes
vehicles must only drive on one (g, g′) route. We will use the underestimation, as we have a
strategic model, thus our goal is not to solve a corresponding operational vehicle routing problem.
To account for carbon emissions, we explicitly use a variable for the number of trips NOT ilgg

between grids.

◦ While Konda et al. (2011) use a power equation for FOC and take FFC as a percentage of
FOC, we fix FCC based on the average size of the plant and introduce a unit production cost
UPC as used in Almansoori and Shah (2009).

◦ Scenarios from Konda et al. (2011) are not incorporated, as well as forecourt production and
refueling stations.

◦ On top of Almansoori and Shah (2006), parameters for feedstock cost FSPp and production
conversation rate PCRp are added to calculate the feedstock costs FSC in constraint (B.18).

◦ The carbon emission parameters CO2Feed
p , CO2Prod

pi and CO2Trans, the carbon intensity param-
eters CIStartpi , CImax

ig and CImax
g and the CCS parameters CCSCost, CCSEF and 1CCS

p are
added to the model. Variables TCEFeed, TCEProd, TCETrans and TCE are added to reflect
carbon emissions and variables CIPlants

ig , CIProd
ig , CITrans

ig , CIig and CIg to reflect carbon in-
tensities. CO2 constraints (B.29)-(B.51) are added and constraint (B.17) is adapted to account
for CCS.

◦ Carbon intensity is defined as CIig, which is the carbon intensity of product i at grid g. If a
customer does not receive some product i, the corresponding CI is assumed to be 0. As the
HSCN model is on a higher level than the MRMT model, i.e., we work with plants in grids rather
than explicit locations of grids, some more generalized assumptions are made. This includes
how carbon intensity is ‘averaged’ over different plants. This is where CIPlants

ig comes in place.
We assume that different plants p producing the same product i in grid g have an averaged CI.
Therefore, it might happen that one customer is served by an SMR-CH2-CCS plant to have a low
CI, while other customers are served by an SMR-LH2 plant in the same grid with a lower cost but
higher CI. However, if we would have an SMR-CH2-CCS and SMR-CH2 plant in the same grid,
the carbon intensity of both would be averaged. This could be changed by defining the carbon
intensity of plants as CIPlants

pig , but this also requires a variable Qpilgg′ , which is not implemented
in the model by Almansoori and Shah (2006) and requires a lot more variables.
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B.2 Dynamic Model

The dynamic model, where we optimize the four time periods simultaneously, has a lot of resem-
blances with the static model. The approach taken here is different than the time period model of
Almansoori and Shah (2009), in particular the time periods are incorporated in a simpler manner.
First we discuss how the indices, sets, parameters and variables change compared to the static
model, after which we present the complete mathematical formulation.

B.2.1 Indices, Sets, Parameters and Variables

Compared to the static model, we only need one new index and set for the dynamic model, which
is time period t in the set of time periods T . To optimize over time periods, we need to define the
parameters NP 0

pig, the initial number of plants of type p producing product i in grid g, and NTU0
il,

the initial number of transportation units of mode l for product i. Every variable from Table B.3
gets an additional time index t. Next to the new variables TDCt and TCEt, we also keep the
variables TDC and TCE, such that we can calculate and optimize over the entire time horizon. We
also introduce the variables IP pigt ∈ N (Investment Plants), indicating the number of new plants
built of type p producing product i in grid g at time period t. Variables ITU ilt ∈ N (Investment
Transportation Units) represent how many new transportation units of type i and mode l are bought
in period t. For the dynamic model, we assume plants do not have a minimum capacity. This allows
building larger plants in earlier time periods. An alternative strategy is to allow plant upgrades
between time periods, for instance from a small to a medium plant. However, this asks for much
more variables, as we should account for every possible upgrade. Therefore, we only assume that
plants can be upgraded with CCS between time periods. We introduce the variables UPCCS

p′igt ∈ N
(Upgrade Plants), which is 1 if plant p′ producing product i in grid g is upgraded with CCS in time
period t, 0 otherwise. The index p′ is a specific case of p, which indicates the production technology
and the size, but not whether CCS is implemented. There is no fixed upgrade cost for CCS, however
upgrading with CCS does increase the unit production cost.

B.2.2 Exact Model

We present the exact formulation of the dynamic HSCN model.

Operational Part Constraints (B.52)-(B.69) present the operational part of the dynamic HSCN
model. Constraints (B.66)-(B.68) make sure previously built plants remain operational in later time
periods, possibly with an upgrade of CCS.

DL
igt ≤ P T

igt ∀i, g, t if 1Prod
ig = 1 (B.52)

DL
igt =

∑
l

Qilggt ∀i, g, t (B.53)

DI
igt =

∑
l,g′,g′ ̸=g

Qilg′gt ∀i, g, t (B.54)

DT
gt =

∑
i

(
DL

igt +DI
igt

)
∀g, t (B.55)
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DL
igt = P T

igt −
∑

l,g′,g′ ̸=g

Qilgg′t ∀i, g, t (B.56)

P T
igt =

∑
p

P pigt ∀i, g, t if 1Prod
ig = 1 (B.57)

PCapmin
pi ·NP pigt ≤ P pigt ≤ PCapmax

pi ·NP pigt ∀p, i, g, t if 1Prod
ig = 1 (B.58)∑

p

PCapmin
pi ·NP pigt ≤ P T

igt ≤
∑
p

PCapmax
pi ·NP pigt ∀i, g, t if 1Prod

ig = 1 (B.59)

Qmin
il ·Xilgg′t ≤ Qilgg′t ≤ Qmax

il ·Xilgg′t ∀i, l, g, g′, t; g′ ̸= g if 1Prod
ig = 1 (B.60)

Xilgg′t +Xilg′gt ≤ 1 ∀i, l, g, g′, t; g′ ̸= g (B.61)

Y igt ≥ Xilgg′t ∀i, l, g, g′, t; g′ ̸= g if 1Prod
ig = 1 (B.62)

Zigt ≥ Xilg′gt ∀i, l, g, g′, t; g′ ̸= g (B.63)

Y igt +Zigt ≤ 1 ∀i, g, t (B.64)∑
i

Zigt ≤ 1 ∀g, t (B.65)

NP pigt1 = NP 0
pig + IP pigt1 ∀p, i, g (B.66)

NP pigt = NP pig(t−1) + IP pigt −UPCCS
p′igt ∀p, p′ ⊆ p, i, g, t ̸= t1 if 1CCS

p = 0

(B.67)

NP pigt = NP pig(t−1) + IP pigt +UPCCS
p′igt ∀p, p′ ⊆ p, i, g, t ̸= t1 if 1CCS

p = 1

(B.68)

DL
igt=Ppigt=PT

igt=Qilgg′t=NPpigt=IPpigt=UPCCS
p′igt=Xilgg′t=Y igt=0 ∀p, p′ ⊆ p, i, l, g, g′, t if 1Prod

ig = 0

(B.69)

Cost Part Constraints (B.70)-(B.88) present the cost part of the dynamic HSCN model. Con-
straints (B.75)-(B.76) make sure previously acquired transportation units remain available; con-
straints (B.77)-(B.78) define if and how many new transportation units should be acquired.

FCCt1 =
∑
p,i,g

PCCpi ·NP 0
pig +

∑
p,i,g

PCCpi · IP pigt1 (B.70)

FCCt =
∑
p,i,g

PCCpi · IP pigt ∀t ̸= t1 (B.71)

FOCt =
∑
i,g,p

(UPCpi + 1CCS
p · CCSCost · CO2Prodpi) · P pigt ∀t (B.72)

FSCt =
∑
p

(
FSPp · PCRp ·

∑
i,g

P pigt

)
∀t (B.73)

NOT ilgg′t =
Qilgg′t

TCapil
∀i, l, g, g′, t (B.74)

NTU ilt1 = NTU0
il + ITU ilt1 ∀i, l (B.75)
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NTU ilt = NTU il(t−1) + ITU ilt ∀i, l, t ̸= t1 (B.76)

ITU ilt1
≥
∑

g,g′,g′ ̸=g

NOT ilgg′t1
TMAl

(
2Llgg′

SPbetween
l

+LUTl

)
+
∑

g

NOT ilggt1
TCapil·TMAl

(
2Llgg

SPwithin
l

+LUT1

)
−NTU0

il ∀i, l (B.77)

ITU ilt≥
∑

g,g′,g′ ̸=g

NOT ilgg′t
TMAl

(
2Llgg′

SPbetween
l

+LUTl

)
+
∑

g

NOT ilggt
TCapil·TMAl

(
2Llgg

SPwithin
l

+LUT1

)
−NTU il(t−1) ∀i, l, t ̸= t1

(B.78)

TCCt1 =
∑
i,l

TMCil · (NTU0
il + ITU ilt1) (B.79)

TCCt =
∑
i,l

TMCil · ITU il ∀t ̸= t (B.80)

FCt =
∑

i,l,g,g′,g′ ̸=g

FPl

(
2Llgg′ ·Qilgg′t

FEbetween
l · TCapil

)
+
∑
i,l,g

FPl

(
2Llgg ·Qilggt

FEwithin
l · TCapil

)
∀t (B.81)

LCt =
∑

i,l,g,g′,g′ ̸=g

DWl

(
Qilgg′t

TCapil

(
2Llgg′

SP between
l

+ LUTl

))
+
∑
i,l,g

DWl

(
Qilggt

TCapil

(
2Llgg

SPwithin
l

+ LUTl

))
∀t

(B.82)

MCt =
∑

i,l,g,g′

MEl

(
2Llgg′ ·Qilgg′t

TCapil

)
∀t (B.83)

GCt =
∑
i,l

GEl ·NTU ilt ∀t (B.84)

TOCt = FCt +LCt +MCt +GCt ∀t (B.85)

TDCt =
FCCt + TCCt

α · CCFt
+ FOCt + TOCt + FSCt ∀t (B.86)

TDC =
∑
t

CFFt∑
t∗ CFFt

TDCt (B.87)

min{TDC} (B.88)

CO2 Part Constraints (B.89)-(B.95) present the total chain emissions for the dynamic HSCN
model.

TCEFeed
t =

∑
p

CO2Feed
p

∑
i,g

P pigt ∀t (B.89)

TCEProd
t =

∑
p,i,g

(
(1− 1CCS

p ) · CO2Prod
pi + 1CCS

p · (1− CCSEF ) · CO2Prod
pi

)
P pigt ∀t (B.90)

TCETrans
t = CO2Trans

∑
i,l,g,g′

NOT ilgg′t · 2Llgg′ ∀t (B.91)

TCEt = TCEFeed
t + TCEProd

t + TCETrans
t ∀t (B.92)

TCE =
∑
t

CFFt∑
t∗ CFFt

TCEt (B.93)
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TCEt ≤ TCEmax
t ∀t (B.94)

TCE ≤ TCEmax (B.95)

Constraints (B.96)-(B.103) present the calculation of CI post-optimization for the dynamic HSCN
model.

CIStartpi :=
(
CO2Feed

p + (1− 1CCS
p ) · CO2Prod

pi + 1CCS
p · (1− CCSEF ) · CO2Prod

pi

)
∀p, i (B.96)

CIPlants
igt :=

∑
p

P̄ pigt

P̄
T
igt

· CIStartpi ∀i, g, t (B.97)

CIProd
igt :=

∑
l,g′

Q̄ilg′gt∑
l∗,g′∗ Q̄il∗g′∗gt

· CIPlants
ig′t ∀i, g, t (B.98)

CITrans
igt :=

CO2Trans
∑

l,g′
¯NOT ilg′gt · 2Llg′g

D̄
L
igt + D̄

I
igt

∀i, g, t (B.99)

CIigt := CIProd
igt + CITrans

igt ∀i, g, t (B.100)

CIgt :=
∑
i

CIigt ·
(D̄

L
igt + D̄

I
igt)

DT
gt

∀g, t (B.101)

Carbonigt := CIigt · (D̄
L
igt + D̄

I
igt) ∀i, g, t (B.102)

Carbongt := CIgt ·DT
gt ∀g, t (B.103)

Constraints (B.104)-(B.113) present the calculation of CI during-optimization for the dynamic
HSCN model.

CIStartpi =
(
CO2Feed

p + (1− 1CCS
p ) · CO2Prod

pi + 1CCS
p · (1− CCSEF ) · CO2Prod

pi

)
∀p, i (B.104)

CIPlants
igt · P T

igt =
∑
p

P pigt · CIStartpi ∀i, g, t (B.105)

CIProd
igt ·

∑
l∗,g′∗

Qil∗g′∗gt =
∑
l,g′

Qilg′gt ·CIPlants
ig′t ∀i, g, t (B.106)

CITrans
igt · (DL

igt +DI
igt) = CO2Trans

∑
l,g′

NOT ilg′gt · 2Llg′g ∀i, g, t (B.107)

CIigt = CIProd
igt +CITrans

igt ∀i, g, t (B.108)

CIgt =
∑
i

CIigt · (DL
igt +DI

igt) ·
1

DT
gt

∀g, t (B.109)

CIigt ≤ CImax
igt ∀i, g, t (B.110)

CIgt ≤ CImax
gt ∀g, t (B.111)

CIPlants
igt = 0 ∀i, g, t if 1Prod

igt = 0 (B.112)

CIigt = CIgt = 0 ∀i, g, t if DT
gt = 0 (B.113)
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Appendix C

Hydrogen Case Study: Full Data Set

This appendix presents the full dataset of the case study for both the static and dynamic model.
Most of the data is based on Konda et al. (2011), but in a few cases some data is utilized from other
papers or the internet, either to simplify the model or in case the paper was lacking data.

C.1 Sets

The elements of the sets are given below.

◦ G = {Rotterdam, Zoetermeer, Leiden, The Hague, Amsterdam, Haarlem, IJmuiden, Utrecht,
Amersfoort, Arnhem, Apeldoorn, Nijmegen, Eindhoven, ’s-Hertogenbosch, Tilburg, Breda, Dor-
drecht, Middelburg, Maastricht, Enschede, Zwolle, Assen, Groningen, Leeuwarden, Almere};

◦ I = {CH2, LH2};

◦ L = {tube trailer (CH2 only), tanker truck (LH2 only)};

◦ P = {SMR-Small, SMR-Medium, SMR-Large, CG-Small, CG-Medium, CG-Large, BG-Small,
BG-Medium, BG-Large, WE-Small, WE-Medium, WE-Large, SMR-Small-CCS, SMR-Medium-
CCS, SMR-Large-CCS, CG-Small-CCS, CG-Medium-CCS, CG-Large-CCS, BG-Small-CCS, BG-
Medium-CCS, BG-Large-CCS, WE-Small-CCS, WE-Medium-CCS, WE-Large-CCS}.

◦ T = {2015-2020, 2021-2030, 2031-2040, 2041-2050}.

C.2 Parameters

The parameter values are given below.

◦ CCF = 6 years for period T1, 10 years for period T2, T3 and T4;

◦ CCSCost = 25 $/ton CO2 (optional range of 5-55 in case of further analysis);

◦ CCSEF = 90%;

◦ CO2Feedp = given Table C.1;

◦ CO2Prodpi = given in Table C.1;

◦ CO2Trans = 0.00075 ton CO2/km (750 g CO2/km);
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◦ DT
g = given in Table C.2, same as DT

gt. The daily hydrogen demand in a grid in a given time
period is calculated by the formula below.

DT
g (kg/day) = NumV eh ·MarketShare ·Densityg ·DistTrav(km/day) ·FuelEconomy(kg/km)

The total number of vehicles NumV eh in a time period is calculated by assuming 6,865,000
vehicles in 2004 with an annual growth rate of 2.4%, then averaging the number of vehicles over
the length of the time period. The hydrogen market shares MarketShare are assumed to be
1% in T1, 3% in T2, 7.5% in T3 and 17.5% in T4. The density of cars in each grid Densityg is
calculated based on the percentage of cars and FCV market penetration in the regions as given in
Konda et al. (2011). It is assumed that the average distance traveled DistTrav = 52.5 km/day
and the fuel economy FuelEconomy = 0.011 kg/km.

◦ DWl = 35 $/h ∀l;

◦ FEwithin
l = 2.30 km/L diesel ∀l;

◦ FEbetween
l = 2.55 km/L diesel ∀l;

◦ FPl = 1.3 $/L diesel ∀l;

◦ FSPp = 120 $/ton NG for p = SMR, 30 $/ton coal for p = CG, 50 $/ton biomass for p = BG,
50 $/MWh for p = WE, which is based on Almansoori and Shah (2012);

◦ GEl = 8.22 $/day/vehicle ∀l;

◦ Llgg′ = is given in Table C.3. The distances between grids are calculated based on the longitude
and latitude values of the centers of the regions. The distance traveled within in a grid is assumed
to be 5 km.

◦ LUTl = 4 h for l = tube tanker and 2 h for l = tanker truck;

◦ NP 0
pig = 0 ∀p, i, g;

◦ NTU0
il = 0 ∀i, l;

◦ MEl = 0.0976 $/km ∀l;

◦ PCapmin
pi = 20 ton H2/day for small plants, 100 ton H2/day for medium plants, 500 ton H2/day

for large plants, and 0 in case of the dynamic model;

◦ PCapmax
pi = 99 ton H2/day for small plants, 499 ton H2/day for medium plants, 1000 ton H2/day

for large plants;

◦ PCCpi = given in Table C.4. These values are calculated by taking the middle value of the
minimum and maximum capacity of plants (60 for small plants, 300 for medium plants, 750 for
large plants) and plugging these in the formulas given in Konda et al. (2011).

◦ PCRp = given in Table C.5. These values are a rough estimate by considering the correspond-
ing values from Almansoori and Shah (2012). For the missing values in their paper, a linear
extrapolation is done;
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◦ UPCpi = given in Table C.4. These values are a rough estimate by considering the correspond-
ing values from Almansoori and Shah (2009). For the missing values in their paper, a linear
extrapolation is done;

◦ Qmin
il = 0 ∀i, l;

◦ Qmax
il =

∑
g D

T
g ∀i, l;

◦ SPwithin
l = 25 km/h ∀l;

◦ SP between
l = 50 km/h ∀l;

◦ TCapil = 0.2 ton H2/trip for = l tube trailer & i = CH2 and 4 ton H2/trip for l = tanker truck,
i = LH2;

◦ TMAl = 24 h/day ∀l;

◦ TMCil = 300,000 $/vehicle for l = tube trailer & i = CH2 and 800,000 $/vehicle for l = tanker
truck & i = LH2;

◦ α = 365 days/year;

◦ 1Prod
ig = given in Table C.2.

Table C.1: Production emissions (CO2Prod
pi ) and feedstock preparation emissions (CO2Feed

p ) at
plants.

Product
Technology

Production emissions in
ton CO2/ton H2 (CO2Prod

pi )
Feed emissions in

ton CO2/ton H2 (CO2Feed
p )

CH2 plant LH2 plant
Small Medium Large Small Medium Large

SMR 11.4 10.8 10.3 15.1 14.6 14.0 0.58
CG 24.8 23.8 22.9 27.6 26.6 25.7 1.31
BG 26.9 25.4 24.0 29.0 27.5 26.2 0.21
WE 43.9 41.1 38.6 26.2 24.5 23.0 0
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Table C.2: Hydrogen demand per time period (DT
g ) and possible plant building locations (1ig).

Grid Location Hydrogen demand in ton/day (DT
g ) Possible building

site for CH2

(1{CH2}g)

Possible building
site for LH2

(1{LH2}g)
T1

(2015-2020)

T2
(2021-2030)

T3
(2031-2040)

T4
(2041-2050)

G01 Rotterdam 18.82 37.62 134.55 334.58 1 1
G02 Zoetermeer 3.08 6.15 22.00 54.71 0 0
G03 Leiden 3.08 6.15 22.00 54.71 0 0
G04 The Hague 3.08 6.15 22.00 54.71 0 0
G05 Amsterdam 8.29 16.56 59.23 147.30 1 0
G06 Haarlem 5.68 11.36 40.62 101.01 0 0
G07 IJmuiden 2.37 4.73 16.92 42.09 0 0
G08 Utrecht 4.50 8.99 32.16 79.96 0 0
G09 Amersfoort 4.50 8.99 32.16 79.96 0 0
G10 Arnhem 0 5.68 20.31 75.75 1 0
G11 Apeldoorn 0 5.09 18.19 67.86 0 0
G12 Nijmegen 0 5.09 18.19 67.86 0 0
G13 Eindhoven 0 4.73 16.92 63.13 0 0
G14 ’s-Hertogenbosch 0 4.73 16.92 63.13 0 0
G15 Tilburg 0 4.73 16.92 63.13 0 0
G16 Breda 0 4.73 16.92 63.13 0 0
G17 Dordrecht 3.08 6.15 22.00 54.71 0 0
G18 Middelburg 0 3.08 11.00 41.03 0 0
G19 Maastricht 0 8.16 29.19 108.90 1 0
G20 Enschede 0 3.79 13.54 50.50 0 0
G21 Zwolle 0 3.67 13.12 48.92 0 0
G22 Assen 0 3.55 12.69 47.35 0 0
G23 Groningen 0 4.14 14.81 55.24 1 0
G24 Leeuwarden 0 4.50 16.08 59.97 0 0
G25 Almere 0 3.19 11.42 42.61 0 0

Total demand/sites 56.46 181.73 649.88 1922.25 5 1
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Table C.3: Distance matrix between grids, rounded, in km/trip (Llgg′ ∀l).

Llgg′ G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25
G01 5 15 26 20 57 53 60 48 67 98 107 94 87 62 55 44 18 76 146 168 128 185 202 168 72
G02 15 5 11 13 44 38 45 43 62 97 102 96 96 69 66 58 30 87 158 165 119 174 190 154 62
G03 26 11 5 16 36 27 34 44 61 98 101 100 105 76 75 68 41 95 168 164 115 168 183 146 57
G04 20 13 16 5 52 42 48 56 75 110 115 109 107 80 75 64 38 79 166 178 131 184 199 161 73
G05 57 44 36 52 5 17 22 35 41 81 75 89 111 80 88 89 64 131 178 137 82 132 147 111 25
G06 53 38 27 42 17 5 8 46 57 96 92 103 119 89 94 91 64 122 185 154 98 146 159 119 42
G07 60 45 34 48 22 8 5 54 63 103 97 110 127 97 102 99 72 126 194 158 100 145 157 115 46
G08 48 43 44 56 35 46 54 5 20 54 59 58 76 45 56 63 44 123 143 122 81 140 159 132 31
G09 67 62 61 75 41 57 63 20 5 40 40 49 80 51 67 78 63 142 147 103 62 122 142 119 23
G10 98 97 98 110 81 96 103 54 40 5 26 20 67 52 73 90 87 167 127 73 60 121 144 135 59
G11 107 102 101 115 75 92 97 59 40 26 5 45 92 73 94 109 100 180 152 63 35 96 119 111 50
G12 94 96 100 109 89 103 110 58 49 20 45 5 48 39 59 78 80 157 107 85 80 140 164 154 71
G13 87 96 105 107 111 119 127 76 80 67 92 48 5 31 33 51 69 129 67 131 127 188 211 197 102
G14 62 69 76 80 80 89 97 45 51 52 73 39 31 5 21 40 46 119 98 124 105 168 190 171 73
G15 55 66 75 75 88 94 102 56 67 73 94 59 33 21 5 20 37 100 93 145 125 187 209 187 86
G16 44 58 68 64 89 91 99 63 78 90 109 78 51 40 20 5 28 80 103 163 138 200 220 194 93
G17 18 30 41 38 64 64 72 44 63 87 100 80 69 46 37 28 5 81 128 159 124 184 203 173 73
G18 76 87 95 79 131 122 126 123 142 167 180 157 129 119 100 80 81 5 162 239 204 261 277 241 148
G19 146 158 168 166 178 185 194 143 147 127 152 107 67 98 93 103 128 162 5 174 187 246 270 261 169
G20 168 165 164 178 137 154 158 122 103 73 63 85 131 124 145 163 159 239 174 5 64 89 113 132 112
G21 128 119 115 131 82 98 100 81 62 60 35 80 127 105 125 138 124 204 187 64 5 62 85 78 58
G22 185 174 168 184 132 146 145 140 122 121 96 140 188 168 187 200 184 261 246 89 62 5 25 56 113
G23 202 190 183 199 147 159 157 159 142 144 119 164 211 190 209 220 203 277 270 113 85 25 5 51 130
G24 168 154 146 161 111 119 115 132 119 135 111 154 197 171 187 194 173 241 261 132 78 56 51 5 101
G25 72 62 57 73 25 42 46 31 23 59 50 71 102 73 86 93 73 148 169 112 58 113 130 101 5

Table C.4: Plant capital costs (PCCpi) and unit production costs (UPCpi).

Product
Technology

Plant capital cost in
106$ (PCCpi)

Unit production cost in
$/ton H2 (UPCpi)

CH2 plant LH2 plant CH2 & LH2 plant
Small Medium Large Small Medium Large Small Medium Large

SMR 666 2248 4481 1164 3806 7447 3360 1740 1430
CG 1716 5987 12,154 2263 7770 15,631 2500 2030 1560
BG 1788 6039 12,037 2298 7395 14,337 4890 3520 2150
WE 2706 10,748 23,487 3128 12,228 26,474 6820 5030 3240

Table C.5: Production conversation rate from feedstock at plants (PCRp).

Product
Technology

Production conversation rate (PCRp) Unit/ton H2

Small Medium Large

SMR 4.02 3.34 3.16 ton NG/ton H2

CG 5.95 5.64 5.33 ton coal/ton H2

BG 25.5 18.4 11.3 ton biomass/ton H2

WE 52.5 52.5 52.5 MWh/ton H2
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